Commit 912902ce authored by Radim Krčmář's avatar Radim Krčmář

Merge tag 'kvm-arm-for-4.8' of...

Merge tag 'kvm-arm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into next

KVM/ARM changes for Linux 4.8

- GICv3 ITS emulation
- Simpler idmap management that fixes potential TLB conflicts
- Honor the kernel protection in HYP mode
- Removal of the old vgic implementation
parents 61f5dea1 3a88bded
...@@ -2182,7 +2182,7 @@ after pausing the vcpu, but before it is resumed. ...@@ -2182,7 +2182,7 @@ after pausing the vcpu, but before it is resumed.
4.71 KVM_SIGNAL_MSI 4.71 KVM_SIGNAL_MSI
Capability: KVM_CAP_SIGNAL_MSI Capability: KVM_CAP_SIGNAL_MSI
Architectures: x86 Architectures: x86 arm64
Type: vm ioctl Type: vm ioctl
Parameters: struct kvm_msi (in) Parameters: struct kvm_msi (in)
Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
...@@ -2195,10 +2195,18 @@ struct kvm_msi { ...@@ -2195,10 +2195,18 @@ struct kvm_msi {
__u32 address_hi; __u32 address_hi;
__u32 data; __u32 data;
__u32 flags; __u32 flags;
__u8 pad[16]; __u32 devid;
__u8 pad[12];
}; };
No flags are defined so far. The corresponding field must be 0. flags: KVM_MSI_VALID_DEVID: devid contains a valid value
devid: If KVM_MSI_VALID_DEVID is set, contains a unique device identifier
for the device that wrote the MSI message.
For PCI, this is usually a BFD identifier in the lower 16 bits.
The per-VM KVM_CAP_MSI_DEVID capability advertises the need to provide
the device ID. If this capability is not set, userland cannot rely on
the kernel to allow the KVM_MSI_VALID_DEVID flag being set.
On x86, address_hi is ignored unless the KVM_CAP_X2APIC_API capability is On x86, address_hi is ignored unless the KVM_CAP_X2APIC_API capability is
enabled. If it is enabled, address_hi bits 31-8 provide bits 31-8 of the enabled. If it is enabled, address_hi bits 31-8 provide bits 31-8 of the
......
...@@ -4,16 +4,22 @@ ARM Virtual Generic Interrupt Controller (VGIC) ...@@ -4,16 +4,22 @@ ARM Virtual Generic Interrupt Controller (VGIC)
Device types supported: Device types supported:
KVM_DEV_TYPE_ARM_VGIC_V2 ARM Generic Interrupt Controller v2.0 KVM_DEV_TYPE_ARM_VGIC_V2 ARM Generic Interrupt Controller v2.0
KVM_DEV_TYPE_ARM_VGIC_V3 ARM Generic Interrupt Controller v3.0 KVM_DEV_TYPE_ARM_VGIC_V3 ARM Generic Interrupt Controller v3.0
KVM_DEV_TYPE_ARM_VGIC_ITS ARM Interrupt Translation Service Controller
Only one VGIC instance may be instantiated through either this API or the Only one VGIC instance of the V2/V3 types above may be instantiated through
legacy KVM_CREATE_IRQCHIP api. The created VGIC will act as the VM interrupt either this API or the legacy KVM_CREATE_IRQCHIP api. The created VGIC will
controller, requiring emulated user-space devices to inject interrupts to the act as the VM interrupt controller, requiring emulated user-space devices to
VGIC instead of directly to CPUs. inject interrupts to the VGIC instead of directly to CPUs.
Creating a guest GICv3 device requires a host GICv3 as well. Creating a guest GICv3 device requires a host GICv3 as well.
GICv3 implementations with hardware compatibility support allow a guest GICv2 GICv3 implementations with hardware compatibility support allow a guest GICv2
as well. as well.
Creating a virtual ITS controller requires a host GICv3 (but does not depend
on having physical ITS controllers).
There can be multiple ITS controllers per guest, each of them has to have
a separate, non-overlapping MMIO region.
Groups: Groups:
KVM_DEV_ARM_VGIC_GRP_ADDR KVM_DEV_ARM_VGIC_GRP_ADDR
Attributes: Attributes:
...@@ -39,6 +45,13 @@ Groups: ...@@ -39,6 +45,13 @@ Groups:
Only valid for KVM_DEV_TYPE_ARM_VGIC_V3. Only valid for KVM_DEV_TYPE_ARM_VGIC_V3.
This address needs to be 64K aligned. This address needs to be 64K aligned.
KVM_VGIC_V3_ADDR_TYPE_ITS (rw, 64-bit)
Base address in the guest physical address space of the GICv3 ITS
control register frame. The ITS allows MSI(-X) interrupts to be
injected into guests. This extension is optional. If the kernel
does not support the ITS, the call returns -ENODEV.
Only valid for KVM_DEV_TYPE_ARM_VGIC_ITS.
This address needs to be 64K aligned and the region covers 128K.
KVM_DEV_ARM_VGIC_GRP_DIST_REGS KVM_DEV_ARM_VGIC_GRP_DIST_REGS
Attributes: Attributes:
...@@ -109,8 +122,8 @@ Groups: ...@@ -109,8 +122,8 @@ Groups:
KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEV_ARM_VGIC_GRP_CTRL
Attributes: Attributes:
KVM_DEV_ARM_VGIC_CTRL_INIT KVM_DEV_ARM_VGIC_CTRL_INIT
request the initialization of the VGIC, no additional parameter in request the initialization of the VGIC or ITS, no additional parameter
kvm_device_attr.addr. in kvm_device_attr.addr.
Errors: Errors:
-ENXIO: VGIC not properly configured as required prior to calling -ENXIO: VGIC not properly configured as required prior to calling
this attribute this attribute
......
...@@ -66,6 +66,8 @@ extern void __kvm_tlb_flush_vmid(struct kvm *kvm); ...@@ -66,6 +66,8 @@ extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu); extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
extern void __init_stage2_translation(void); extern void __init_stage2_translation(void);
extern void __kvm_hyp_reset(unsigned long);
#endif #endif
#endif /* __ARM_KVM_ASM_H__ */ #endif /* __ARM_KVM_ASM_H__ */
...@@ -241,8 +241,7 @@ int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); ...@@ -241,8 +241,7 @@ int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *);
int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
int exception_index); int exception_index);
static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr, static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
phys_addr_t pgd_ptr,
unsigned long hyp_stack_ptr, unsigned long hyp_stack_ptr,
unsigned long vector_ptr) unsigned long vector_ptr)
{ {
...@@ -251,18 +250,13 @@ static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr, ...@@ -251,18 +250,13 @@ static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr,
* code. The init code doesn't need to preserve these * code. The init code doesn't need to preserve these
* registers as r0-r3 are already callee saved according to * registers as r0-r3 are already callee saved according to
* the AAPCS. * the AAPCS.
* Note that we slightly misuse the prototype by casing the * Note that we slightly misuse the prototype by casting the
* stack pointer to a void *. * stack pointer to a void *.
*
* We don't have enough registers to perform the full init in
* one go. Install the boot PGD first, and then install the
* runtime PGD, stack pointer and vectors. The PGDs are always
* passed as the third argument, in order to be passed into
* r2-r3 to the init code (yes, this is compliant with the
* PCS!).
*/
kvm_call_hyp(NULL, 0, boot_pgd_ptr); * The PGDs are always passed as the third argument, in order
* to be passed into r2-r3 to the init code (yes, this is
* compliant with the PCS!).
*/
kvm_call_hyp((void*)hyp_stack_ptr, vector_ptr, pgd_ptr); kvm_call_hyp((void*)hyp_stack_ptr, vector_ptr, pgd_ptr);
} }
...@@ -272,16 +266,13 @@ static inline void __cpu_init_stage2(void) ...@@ -272,16 +266,13 @@ static inline void __cpu_init_stage2(void)
kvm_call_hyp(__init_stage2_translation); kvm_call_hyp(__init_stage2_translation);
} }
static inline void __cpu_reset_hyp_mode(phys_addr_t boot_pgd_ptr, static inline void __cpu_reset_hyp_mode(unsigned long vector_ptr,
phys_addr_t phys_idmap_start) phys_addr_t phys_idmap_start)
{ {
/* kvm_call_hyp((void *)virt_to_idmap(__kvm_hyp_reset), vector_ptr);
* TODO
* kvm_call_reset(boot_pgd_ptr, phys_idmap_start);
*/
} }
static inline int kvm_arch_dev_ioctl_check_extension(long ext) static inline int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
{ {
return 0; return 0;
} }
......
...@@ -25,9 +25,6 @@ ...@@ -25,9 +25,6 @@
#define __hyp_text __section(.hyp.text) notrace #define __hyp_text __section(.hyp.text) notrace
#define kern_hyp_va(v) (v)
#define hyp_kern_va(v) (v)
#define __ACCESS_CP15(CRn, Op1, CRm, Op2) \ #define __ACCESS_CP15(CRn, Op1, CRm, Op2) \
"mrc", "mcr", __stringify(p15, Op1, %0, CRn, CRm, Op2), u32 "mrc", "mcr", __stringify(p15, Op1, %0, CRn, CRm, Op2), u32
#define __ACCESS_CP15_64(Op1, CRm) \ #define __ACCESS_CP15_64(Op1, CRm) \
......
...@@ -26,16 +26,7 @@ ...@@ -26,16 +26,7 @@
* We directly use the kernel VA for the HYP, as we can directly share * We directly use the kernel VA for the HYP, as we can directly share
* the mapping (HTTBR "covers" TTBR1). * the mapping (HTTBR "covers" TTBR1).
*/ */
#define HYP_PAGE_OFFSET_MASK UL(~0) #define kern_hyp_va(kva) (kva)
#define HYP_PAGE_OFFSET PAGE_OFFSET
#define KERN_TO_HYP(kva) (kva)
/*
* Our virtual mapping for the boot-time MMU-enable code. Must be
* shared across all the page-tables. Conveniently, we use the vectors
* page, where no kernel data will ever be shared with HYP.
*/
#define TRAMPOLINE_VA UL(CONFIG_VECTORS_BASE)
/* /*
* KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels. * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels.
...@@ -49,9 +40,8 @@ ...@@ -49,9 +40,8 @@
#include <asm/pgalloc.h> #include <asm/pgalloc.h>
#include <asm/stage2_pgtable.h> #include <asm/stage2_pgtable.h>
int create_hyp_mappings(void *from, void *to); int create_hyp_mappings(void *from, void *to, pgprot_t prot);
int create_hyp_io_mappings(void *from, void *to, phys_addr_t); int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
void free_boot_hyp_pgd(void);
void free_hyp_pgds(void); void free_hyp_pgds(void);
void stage2_unmap_vm(struct kvm *kvm); void stage2_unmap_vm(struct kvm *kvm);
...@@ -65,7 +55,6 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); ...@@ -65,7 +55,6 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
phys_addr_t kvm_mmu_get_httbr(void); phys_addr_t kvm_mmu_get_httbr(void);
phys_addr_t kvm_mmu_get_boot_httbr(void);
phys_addr_t kvm_get_idmap_vector(void); phys_addr_t kvm_get_idmap_vector(void);
phys_addr_t kvm_get_idmap_start(void); phys_addr_t kvm_get_idmap_start(void);
int kvm_mmu_init(void); int kvm_mmu_init(void);
......
...@@ -97,7 +97,9 @@ extern pgprot_t pgprot_s2_device; ...@@ -97,7 +97,9 @@ extern pgprot_t pgprot_s2_device;
#define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY) #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
#define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN) #define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
#define PAGE_KERNEL_EXEC pgprot_kernel #define PAGE_KERNEL_EXEC pgprot_kernel
#define PAGE_HYP _MOD_PROT(pgprot_kernel, L_PTE_HYP) #define PAGE_HYP _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_XN)
#define PAGE_HYP_EXEC _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY)
#define PAGE_HYP_RO _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY | L_PTE_XN)
#define PAGE_HYP_DEVICE _MOD_PROT(pgprot_hyp_device, L_PTE_HYP) #define PAGE_HYP_DEVICE _MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
#define PAGE_S2 _MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY) #define PAGE_S2 _MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
#define PAGE_S2_DEVICE _MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY) #define PAGE_S2_DEVICE _MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY)
......
...@@ -80,6 +80,10 @@ static inline bool is_kernel_in_hyp_mode(void) ...@@ -80,6 +80,10 @@ static inline bool is_kernel_in_hyp_mode(void)
return false; return false;
} }
/* The section containing the hypervisor idmap text */
extern char __hyp_idmap_text_start[];
extern char __hyp_idmap_text_end[];
/* The section containing the hypervisor text */ /* The section containing the hypervisor text */
extern char __hyp_text_start[]; extern char __hyp_text_start[];
extern char __hyp_text_end[]; extern char __hyp_text_end[];
......
...@@ -46,13 +46,6 @@ config KVM_ARM_HOST ...@@ -46,13 +46,6 @@ config KVM_ARM_HOST
---help--- ---help---
Provides host support for ARM processors. Provides host support for ARM processors.
config KVM_NEW_VGIC
bool "New VGIC implementation"
depends on KVM
default y
---help---
uses the new VGIC implementation
source drivers/vhost/Kconfig source drivers/vhost/Kconfig
endif # VIRTUALIZATION endif # VIRTUALIZATION
...@@ -22,7 +22,6 @@ obj-y += kvm-arm.o init.o interrupts.o ...@@ -22,7 +22,6 @@ obj-y += kvm-arm.o init.o interrupts.o
obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o obj-y += arm.o handle_exit.o guest.o mmu.o emulate.o reset.o
obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o obj-y += coproc.o coproc_a15.o coproc_a7.o mmio.o psci.o perf.o
ifeq ($(CONFIG_KVM_NEW_VGIC),y)
obj-y += $(KVM)/arm/vgic/vgic.o obj-y += $(KVM)/arm/vgic/vgic.o
obj-y += $(KVM)/arm/vgic/vgic-init.o obj-y += $(KVM)/arm/vgic/vgic-init.o
obj-y += $(KVM)/arm/vgic/vgic-irqfd.o obj-y += $(KVM)/arm/vgic/vgic-irqfd.o
...@@ -30,9 +29,4 @@ obj-y += $(KVM)/arm/vgic/vgic-v2.o ...@@ -30,9 +29,4 @@ obj-y += $(KVM)/arm/vgic/vgic-v2.o
obj-y += $(KVM)/arm/vgic/vgic-mmio.o obj-y += $(KVM)/arm/vgic/vgic-mmio.o
obj-y += $(KVM)/arm/vgic/vgic-mmio-v2.o obj-y += $(KVM)/arm/vgic/vgic-mmio-v2.o
obj-y += $(KVM)/arm/vgic/vgic-kvm-device.o obj-y += $(KVM)/arm/vgic/vgic-kvm-device.o
else
obj-y += $(KVM)/arm/vgic.o
obj-y += $(KVM)/arm/vgic-v2.o
obj-y += $(KVM)/arm/vgic-v2-emul.o
endif
obj-y += $(KVM)/arm/arch_timer.o obj-y += $(KVM)/arm/arch_timer.o
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/kvm_host.h> #include <linux/kvm_host.h>
#include <linux/list.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/fs.h> #include <linux/fs.h>
...@@ -122,7 +123,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) ...@@ -122,7 +123,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
if (ret) if (ret)
goto out_fail_alloc; goto out_fail_alloc;
ret = create_hyp_mappings(kvm, kvm + 1); ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
if (ret) if (ret)
goto out_free_stage2_pgd; goto out_free_stage2_pgd;
...@@ -201,7 +202,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) ...@@ -201,7 +202,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
r = KVM_MAX_VCPUS; r = KVM_MAX_VCPUS;
break; break;
default: default:
r = kvm_arch_dev_ioctl_check_extension(ext); r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
break; break;
} }
return r; return r;
...@@ -239,7 +240,7 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) ...@@ -239,7 +240,7 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
if (err) if (err)
goto free_vcpu; goto free_vcpu;
err = create_hyp_mappings(vcpu, vcpu + 1); err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
if (err) if (err)
goto vcpu_uninit; goto vcpu_uninit;
...@@ -1038,7 +1039,6 @@ long kvm_arch_vm_ioctl(struct file *filp, ...@@ -1038,7 +1039,6 @@ long kvm_arch_vm_ioctl(struct file *filp,
static void cpu_init_hyp_mode(void *dummy) static void cpu_init_hyp_mode(void *dummy)
{ {
phys_addr_t boot_pgd_ptr;
phys_addr_t pgd_ptr; phys_addr_t pgd_ptr;
unsigned long hyp_stack_ptr; unsigned long hyp_stack_ptr;
unsigned long stack_page; unsigned long stack_page;
...@@ -1047,13 +1047,12 @@ static void cpu_init_hyp_mode(void *dummy) ...@@ -1047,13 +1047,12 @@ static void cpu_init_hyp_mode(void *dummy)
/* Switch from the HYP stub to our own HYP init vector */ /* Switch from the HYP stub to our own HYP init vector */
__hyp_set_vectors(kvm_get_idmap_vector()); __hyp_set_vectors(kvm_get_idmap_vector());
boot_pgd_ptr = kvm_mmu_get_boot_httbr();
pgd_ptr = kvm_mmu_get_httbr(); pgd_ptr = kvm_mmu_get_httbr();
stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
hyp_stack_ptr = stack_page + PAGE_SIZE; hyp_stack_ptr = stack_page + PAGE_SIZE;
vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector); vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr); __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
__cpu_init_stage2(); __cpu_init_stage2();
kvm_arm_init_debug(); kvm_arm_init_debug();
...@@ -1075,15 +1074,9 @@ static void cpu_hyp_reinit(void) ...@@ -1075,15 +1074,9 @@ static void cpu_hyp_reinit(void)
static void cpu_hyp_reset(void) static void cpu_hyp_reset(void)
{ {
phys_addr_t boot_pgd_ptr; if (!is_kernel_in_hyp_mode())
phys_addr_t phys_idmap_start; __cpu_reset_hyp_mode(hyp_default_vectors,
kvm_get_idmap_start());
if (!is_kernel_in_hyp_mode()) {
boot_pgd_ptr = kvm_mmu_get_boot_httbr();
phys_idmap_start = kvm_get_idmap_start();
__cpu_reset_hyp_mode(boot_pgd_ptr, phys_idmap_start);
}
} }
static void _kvm_arch_hardware_enable(void *discard) static void _kvm_arch_hardware_enable(void *discard)
...@@ -1293,14 +1286,14 @@ static int init_hyp_mode(void) ...@@ -1293,14 +1286,14 @@ static int init_hyp_mode(void)
* Map the Hyp-code called directly from the host * Map the Hyp-code called directly from the host
*/ */
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
kvm_ksym_ref(__hyp_text_end)); kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
if (err) { if (err) {
kvm_err("Cannot map world-switch code\n"); kvm_err("Cannot map world-switch code\n");
goto out_err; goto out_err;
} }
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
kvm_ksym_ref(__end_rodata)); kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
if (err) { if (err) {
kvm_err("Cannot map rodata section\n"); kvm_err("Cannot map rodata section\n");
goto out_err; goto out_err;
...@@ -1311,7 +1304,8 @@ static int init_hyp_mode(void) ...@@ -1311,7 +1304,8 @@ static int init_hyp_mode(void)
*/ */
for_each_possible_cpu(cpu) { for_each_possible_cpu(cpu) {
char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE); err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
PAGE_HYP);
if (err) { if (err) {
kvm_err("Cannot map hyp stack\n"); kvm_err("Cannot map hyp stack\n");
...@@ -1323,7 +1317,7 @@ static int init_hyp_mode(void) ...@@ -1323,7 +1317,7 @@ static int init_hyp_mode(void)
kvm_cpu_context_t *cpu_ctxt; kvm_cpu_context_t *cpu_ctxt;
cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu); cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1); err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
if (err) { if (err) {
kvm_err("Cannot map host CPU state: %d\n", err); kvm_err("Cannot map host CPU state: %d\n", err);
...@@ -1331,10 +1325,6 @@ static int init_hyp_mode(void) ...@@ -1331,10 +1325,6 @@ static int init_hyp_mode(void)
} }
} }
#ifndef CONFIG_HOTPLUG_CPU
free_boot_hyp_pgd();
#endif
/* set size of VMID supported by CPU */ /* set size of VMID supported by CPU */
kvm_vmid_bits = kvm_get_vmid_bits(); kvm_vmid_bits = kvm_get_vmid_bits();
kvm_info("%d-bit VMID\n", kvm_vmid_bits); kvm_info("%d-bit VMID\n", kvm_vmid_bits);
......
...@@ -32,23 +32,13 @@ ...@@ -32,23 +32,13 @@
* r2,r3 = Hypervisor pgd pointer * r2,r3 = Hypervisor pgd pointer
* *
* The init scenario is: * The init scenario is:
* - We jump in HYP with four parameters: boot HYP pgd, runtime HYP pgd, * - We jump in HYP with 3 parameters: runtime HYP pgd, runtime stack,
* runtime stack, runtime vectors * runtime vectors
* - Enable the MMU with the boot pgd
* - Jump to a target into the trampoline page (remember, this is the same
* physical page!)
* - Now switch to the runtime pgd (same VA, and still the same physical
* page!)
* - Invalidate TLBs * - Invalidate TLBs
* - Set stack and vectors * - Set stack and vectors
* - Setup the page tables
* - Enable the MMU
* - Profit! (or eret, if you only care about the code). * - Profit! (or eret, if you only care about the code).
*
* As we only have four registers available to pass parameters (and we
* need six), we split the init in two phases:
* - Phase 1: r0 = 0, r1 = 0, r2,r3 contain the boot PGD.
* Provides the basic HYP init, and enable the MMU.
* - Phase 2: r0 = ToS, r1 = vectors, r2,r3 contain the runtime PGD.
* Switches to the runtime PGD, set stack and vectors.
*/ */
.text .text
...@@ -68,8 +58,11 @@ __kvm_hyp_init: ...@@ -68,8 +58,11 @@ __kvm_hyp_init:
W(b) . W(b) .
__do_hyp_init: __do_hyp_init:
cmp r0, #0 @ We have a SP? @ Set stack pointer
bne phase2 @ Yes, second stage init mov sp, r0
@ Set HVBAR to point to the HYP vectors
mcr p15, 4, r1, c12, c0, 0 @ HVBAR
@ Set the HTTBR to point to the hypervisor PGD pointer passed @ Set the HTTBR to point to the hypervisor PGD pointer passed
mcrr p15, 4, rr_lo_hi(r2, r3), c2 mcrr p15, 4, rr_lo_hi(r2, r3), c2
...@@ -114,34 +107,25 @@ __do_hyp_init: ...@@ -114,34 +107,25 @@ __do_hyp_init:
THUMB( ldr r2, =(HSCTLR_M | HSCTLR_A | HSCTLR_TE) ) THUMB( ldr r2, =(HSCTLR_M | HSCTLR_A | HSCTLR_TE) )
orr r1, r1, r2 orr r1, r1, r2
orr r0, r0, r1 orr r0, r0, r1
isb
mcr p15, 4, r0, c1, c0, 0 @ HSCR mcr p15, 4, r0, c1, c0, 0 @ HSCR
isb
@ End of init phase-1
eret eret
phase2: @ r0 : stub vectors address
@ Set stack pointer ENTRY(__kvm_hyp_reset)
mov sp, r0 /* We're now in idmap, disable MMU */
mrc p15, 4, r1, c1, c0, 0 @ HSCTLR
@ Set HVBAR to point to the HYP vectors ldr r2, =(HSCTLR_M | HSCTLR_A | HSCTLR_C | HSCTLR_I)
mcr p15, 4, r1, c12, c0, 0 @ HVBAR bic r1, r1, r2
mcr p15, 4, r1, c1, c0, 0 @ HSCTLR
@ Jump to the trampoline page
ldr r0, =TRAMPOLINE_VA
adr r1, target
bfi r0, r1, #0, #PAGE_SHIFT
ret r0
target: @ We're now in the trampoline code, switch page tables /* Install stub vectors */
mcrr p15, 4, rr_lo_hi(r2, r3), c2 mcr p15, 4, r0, c12, c0, 0 @ HVBAR
isb isb
@ Invalidate the old TLBs
mcr p15, 4, r0, c8, c7, 0 @ TLBIALLH
dsb ish
eret eret
ENDPROC(__kvm_hyp_reset)
.ltorg .ltorg
......
...@@ -32,8 +32,6 @@ ...@@ -32,8 +32,6 @@
#include "trace.h" #include "trace.h"
extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
static pgd_t *boot_hyp_pgd; static pgd_t *boot_hyp_pgd;
static pgd_t *hyp_pgd; static pgd_t *hyp_pgd;
static pgd_t *merged_hyp_pgd; static pgd_t *merged_hyp_pgd;
...@@ -483,28 +481,6 @@ static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) ...@@ -483,28 +481,6 @@ static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
} while (pgd++, addr = next, addr != end); } while (pgd++, addr = next, addr != end);
} }
/**
* free_boot_hyp_pgd - free HYP boot page tables
*
* Free the HYP boot page tables. The bounce page is also freed.
*/
void free_boot_hyp_pgd(void)
{
mutex_lock(&kvm_hyp_pgd_mutex);
if (boot_hyp_pgd) {
unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
unmap_hyp_range(boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
boot_hyp_pgd = NULL;
}
if (hyp_pgd)
unmap_hyp_range(hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
mutex_unlock(&kvm_hyp_pgd_mutex);
}
/** /**
* free_hyp_pgds - free Hyp-mode page tables * free_hyp_pgds - free Hyp-mode page tables
* *
...@@ -519,15 +495,20 @@ void free_hyp_pgds(void) ...@@ -519,15 +495,20 @@ void free_hyp_pgds(void)
{ {
unsigned long addr; unsigned long addr;
free_boot_hyp_pgd();
mutex_lock(&kvm_hyp_pgd_mutex); mutex_lock(&kvm_hyp_pgd_mutex);
if (boot_hyp_pgd) {
unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
boot_hyp_pgd = NULL;
}
if (hyp_pgd) { if (hyp_pgd) {
unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE) for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE); unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE) for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE); unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
free_pages((unsigned long)hyp_pgd, hyp_pgd_order); free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
hyp_pgd = NULL; hyp_pgd = NULL;
...@@ -679,17 +660,18 @@ static phys_addr_t kvm_kaddr_to_phys(void *kaddr) ...@@ -679,17 +660,18 @@ static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
* create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
* @from: The virtual kernel start address of the range * @from: The virtual kernel start address of the range
* @to: The virtual kernel end address of the range (exclusive) * @to: The virtual kernel end address of the range (exclusive)
* @prot: The protection to be applied to this range
* *
* The same virtual address as the kernel virtual address is also used * The same virtual address as the kernel virtual address is also used
* in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
* physical pages. * physical pages.
*/ */
int create_hyp_mappings(void *from, void *to) int create_hyp_mappings(void *from, void *to, pgprot_t prot)
{ {
phys_addr_t phys_addr; phys_addr_t phys_addr;
unsigned long virt_addr; unsigned long virt_addr;
unsigned long start = KERN_TO_HYP((unsigned long)from); unsigned long start = kern_hyp_va((unsigned long)from);
unsigned long end = KERN_TO_HYP((unsigned long)to); unsigned long end = kern_hyp_va((unsigned long)to);
if (is_kernel_in_hyp_mode()) if (is_kernel_in_hyp_mode())
return 0; return 0;
...@@ -704,7 +686,7 @@ int create_hyp_mappings(void *from, void *to) ...@@ -704,7 +686,7 @@ int create_hyp_mappings(void *from, void *to)
err = __create_hyp_mappings(hyp_pgd, virt_addr, err = __create_hyp_mappings(hyp_pgd, virt_addr,
virt_addr + PAGE_SIZE, virt_addr + PAGE_SIZE,
__phys_to_pfn(phys_addr), __phys_to_pfn(phys_addr),
PAGE_HYP); prot);
if (err) if (err)
return err; return err;
} }
...@@ -723,8 +705,8 @@ int create_hyp_mappings(void *from, void *to) ...@@ -723,8 +705,8 @@ int create_hyp_mappings(void *from, void *to)
*/ */
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr) int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
{ {
unsigned long start = KERN_TO_HYP((unsigned long)from); unsigned long start = kern_hyp_va((unsigned long)from);
unsigned long end = KERN_TO_HYP((unsigned long)to); unsigned long end = kern_hyp_va((unsigned long)to);
if (is_kernel_in_hyp_mode()) if (is_kernel_in_hyp_mode())
return 0; return 0;
...@@ -1687,14 +1669,6 @@ phys_addr_t kvm_mmu_get_httbr(void) ...@@ -1687,14 +1669,6 @@ phys_addr_t kvm_mmu_get_httbr(void)
return virt_to_phys(hyp_pgd); return virt_to_phys(hyp_pgd);
} }
phys_addr_t kvm_mmu_get_boot_httbr(void)
{
if (__kvm_cpu_uses_extended_idmap())
return virt_to_phys(merged_hyp_pgd);
else
return virt_to_phys(boot_hyp_pgd);
}
phys_addr_t kvm_get_idmap_vector(void) phys_addr_t kvm_get_idmap_vector(void)
{ {
return hyp_idmap_vector; return hyp_idmap_vector;
...@@ -1705,6 +1679,22 @@ phys_addr_t kvm_get_idmap_start(void) ...@@ -1705,6 +1679,22 @@ phys_addr_t kvm_get_idmap_start(void)
return hyp_idmap_start; return hyp_idmap_start;
} }
static int kvm_map_idmap_text(pgd_t *pgd)
{
int err;
/* Create the idmap in the boot page tables */
err = __create_hyp_mappings(pgd,
hyp_idmap_start, hyp_idmap_end,
__phys_to_pfn(hyp_idmap_start),
PAGE_HYP_EXEC);
if (err)
kvm_err("Failed to idmap %lx-%lx\n",
hyp_idmap_start, hyp_idmap_end);
return err;
}
int kvm_mmu_init(void) int kvm_mmu_init(void)
{ {
int err; int err;
...@@ -1719,28 +1709,41 @@ int kvm_mmu_init(void) ...@@ -1719,28 +1709,41 @@ int kvm_mmu_init(void)
*/ */
BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); kvm_info("HYP VA range: %lx:%lx\n",
kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
hyp_idmap_start < kern_hyp_va(~0UL)) {
/*
* The idmap page is intersecting with the VA space,
* it is not safe to continue further.
*/
kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
err = -EINVAL;
goto out;
}
if (!hyp_pgd || !boot_hyp_pgd) { hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
if (!hyp_pgd) {
kvm_err("Hyp mode PGD not allocated\n"); kvm_err("Hyp mode PGD not allocated\n");
err = -ENOMEM; err = -ENOMEM;
goto out; goto out;
} }
/* Create the idmap in the boot page tables */ if (__kvm_cpu_uses_extended_idmap()) {
err = __create_hyp_mappings(boot_hyp_pgd, boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
hyp_idmap_start, hyp_idmap_end, hyp_pgd_order);
__phys_to_pfn(hyp_idmap_start), if (!boot_hyp_pgd) {
PAGE_HYP); kvm_err("Hyp boot PGD not allocated\n");
err = -ENOMEM;
if (err) {
kvm_err("Failed to idmap %lx-%lx\n",
hyp_idmap_start, hyp_idmap_end);
goto out; goto out;
} }
if (__kvm_cpu_uses_extended_idmap()) { err = kvm_map_idmap_text(boot_hyp_pgd);
if (err)
goto out;
merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
if (!merged_hyp_pgd) { if (!merged_hyp_pgd) {
kvm_err("Failed to allocate extra HYP pgd\n"); kvm_err("Failed to allocate extra HYP pgd\n");
...@@ -1748,28 +1751,9 @@ int kvm_mmu_init(void) ...@@ -1748,28 +1751,9 @@ int kvm_mmu_init(void)
} }
__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
hyp_idmap_start); hyp_idmap_start);
return 0; } else {
} err = kvm_map_idmap_text(hyp_pgd);
if (err)
/* Map the very same page at the trampoline VA */
err = __create_hyp_mappings(boot_hyp_pgd,
TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
__phys_to_pfn(hyp_idmap_start),
PAGE_HYP);
if (err) {
kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
TRAMPOLINE_VA);
goto out;
}
/* Map the same page again into the runtime page tables */
err = __create_hyp_mappings(hyp_pgd,
TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
__phys_to_pfn(hyp_idmap_start),
PAGE_HYP);
if (err) {
kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
TRAMPOLINE_VA);
goto out; goto out;
} }
......
...@@ -36,8 +36,9 @@ ...@@ -36,8 +36,9 @@
#define ARM64_HAS_VIRT_HOST_EXTN 11 #define ARM64_HAS_VIRT_HOST_EXTN 11
#define ARM64_WORKAROUND_CAVIUM_27456 12 #define ARM64_WORKAROUND_CAVIUM_27456 12
#define ARM64_HAS_32BIT_EL0 13 #define ARM64_HAS_32BIT_EL0 13
#define ARM64_HYP_OFFSET_LOW 14
#define ARM64_NCAPS 14 #define ARM64_NCAPS 15
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
......
...@@ -47,8 +47,7 @@ ...@@ -47,8 +47,7 @@
int __attribute_const__ kvm_target_cpu(void); int __attribute_const__ kvm_target_cpu(void);
int kvm_reset_vcpu(struct kvm_vcpu *vcpu); int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
int kvm_arch_dev_ioctl_check_extension(long ext); int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext);
unsigned long kvm_hyp_reset_entry(void);
void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start); void __extended_idmap_trampoline(phys_addr_t boot_pgd, phys_addr_t idmap_start);
struct kvm_arch { struct kvm_arch {
...@@ -348,8 +347,7 @@ int kvm_perf_teardown(void); ...@@ -348,8 +347,7 @@ int kvm_perf_teardown(void);
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr, static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr,
phys_addr_t pgd_ptr,
unsigned long hyp_stack_ptr, unsigned long hyp_stack_ptr,
unsigned long vector_ptr) unsigned long vector_ptr)
{ {
...@@ -357,19 +355,14 @@ static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr, ...@@ -357,19 +355,14 @@ static inline void __cpu_init_hyp_mode(phys_addr_t boot_pgd_ptr,
* Call initialization code, and switch to the full blown * Call initialization code, and switch to the full blown
* HYP code. * HYP code.
*/ */
__kvm_call_hyp((void *)boot_pgd_ptr, pgd_ptr, __kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr);
hyp_stack_ptr, vector_ptr);
} }
static inline void __cpu_reset_hyp_mode(phys_addr_t boot_pgd_ptr, void __kvm_hyp_teardown(void);
static inline void __cpu_reset_hyp_mode(unsigned long vector_ptr,
phys_addr_t phys_idmap_start) phys_addr_t phys_idmap_start)
{ {
/* kvm_call_hyp(__kvm_hyp_teardown, phys_idmap_start);
* Call reset code, and switch back to stub hyp vectors.
* Uses __kvm_call_hyp() to avoid kaslr's kvm_ksym_ref() translation.
*/
__kvm_call_hyp((void *)kvm_hyp_reset_entry(),
boot_pgd_ptr, phys_idmap_start);
} }
static inline void kvm_arch_hardware_unsetup(void) {} static inline void kvm_arch_hardware_unsetup(void) {}
......
...@@ -25,29 +25,6 @@ ...@@ -25,29 +25,6 @@
#define __hyp_text __section(.hyp.text) notrace #define __hyp_text __section(.hyp.text) notrace
static inline unsigned long __kern_hyp_va(unsigned long v)
{
asm volatile(ALTERNATIVE("and %0, %0, %1",
"nop",
ARM64_HAS_VIRT_HOST_EXTN)
: "+r" (v) : "i" (HYP_PAGE_OFFSET_MASK));
return v;
}
#define kern_hyp_va(v) (typeof(v))(__kern_hyp_va((unsigned long)(v)))
static inline unsigned long __hyp_kern_va(unsigned long v)
{
u64 offset = PAGE_OFFSET - HYP_PAGE_OFFSET;
asm volatile(ALTERNATIVE("add %0, %0, %1",
"nop",
ARM64_HAS_VIRT_HOST_EXTN)
: "+r" (v) : "r" (offset));
return v;
}
#define hyp_kern_va(v) (typeof(v))(__hyp_kern_va((unsigned long)(v)))
#define read_sysreg_elx(r,nvh,vh) \ #define read_sysreg_elx(r,nvh,vh) \
({ \ ({ \
u64 reg; \ u64 reg; \
......
...@@ -29,21 +29,48 @@ ...@@ -29,21 +29,48 @@
* *
* Instead, give the HYP mode its own VA region at a fixed offset from * Instead, give the HYP mode its own VA region at a fixed offset from
* the kernel by just masking the top bits (which are all ones for a * the kernel by just masking the top bits (which are all ones for a
* kernel address). * kernel address). We need to find out how many bits to mask.
* *
* ARMv8.1 (using VHE) does have a TTBR1_EL2, and doesn't use these * We want to build a set of page tables that cover both parts of the
* macros (the entire kernel runs at EL2). * idmap (the trampoline page used to initialize EL2), and our normal
* runtime VA space, at the same time.
*
* Given that the kernel uses VA_BITS for its entire address space,
* and that half of that space (VA_BITS - 1) is used for the linear
* mapping, we can also limit the EL2 space to (VA_BITS - 1).
*
* The main question is "Within the VA_BITS space, does EL2 use the
* top or the bottom half of that space to shadow the kernel's linear
* mapping?". As we need to idmap the trampoline page, this is
* determined by the range in which this page lives.
*
* If the page is in the bottom half, we have to use the top half. If
* the page is in the top half, we have to use the bottom half:
*
* T = __virt_to_phys(__hyp_idmap_text_start)
* if (T & BIT(VA_BITS - 1))
* HYP_VA_MIN = 0 //idmap in upper half
* else
* HYP_VA_MIN = 1 << (VA_BITS - 1)
* HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
*
* This of course assumes that the trampoline page exists within the
* VA_BITS range. If it doesn't, then it means we're in the odd case
* where the kernel idmap (as well as HYP) uses more levels than the
* kernel runtime page tables (as seen when the kernel is configured
* for 4k pages, 39bits VA, and yet memory lives just above that
* limit, forcing the idmap to use 4 levels of page tables while the
* kernel itself only uses 3). In this particular case, it doesn't
* matter which side of VA_BITS we use, as we're guaranteed not to
* conflict with anything.
*
* When using VHE, there are no separate hyp mappings and all KVM
* functionality is already mapped as part of the main kernel
* mappings, and none of this applies in that case.
*/ */
#define HYP_PAGE_OFFSET_SHIFT VA_BITS
#define HYP_PAGE_OFFSET_MASK ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
#define HYP_PAGE_OFFSET (PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
/* #define HYP_PAGE_OFFSET_HIGH_MASK ((UL(1) << VA_BITS) - 1)
* Our virtual mapping for the idmap-ed MMU-enable code. Must be #define HYP_PAGE_OFFSET_LOW_MASK ((UL(1) << (VA_BITS - 1)) - 1)
* shared across all the page-tables. Conveniently, we use the last
* possible page, where no kernel mapping will ever exist.
*/
#define TRAMPOLINE_VA (HYP_PAGE_OFFSET_MASK & PAGE_MASK)
#ifdef __ASSEMBLY__ #ifdef __ASSEMBLY__
...@@ -53,13 +80,33 @@ ...@@ -53,13 +80,33 @@
/* /*
* Convert a kernel VA into a HYP VA. * Convert a kernel VA into a HYP VA.
* reg: VA to be converted. * reg: VA to be converted.
*
* This generates the following sequences:
* - High mask:
* and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
* nop
* - Low mask:
* and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
* and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK
* - VHE:
* nop
* nop
*
* The "low mask" version works because the mask is a strict subset of
* the "high mask", hence performing the first mask for nothing.
* Should be completely invisible on any viable CPU.
*/ */
.macro kern_hyp_va reg .macro kern_hyp_va reg
alternative_if_not ARM64_HAS_VIRT_HOST_EXTN alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
and \reg, \reg, #HYP_PAGE_OFFSET_MASK and \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK
alternative_else alternative_else
nop nop
alternative_endif alternative_endif
alternative_if_not ARM64_HYP_OFFSET_LOW
nop
alternative_else
and \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK
alternative_endif
.endm .endm
#else #else
...@@ -70,7 +117,22 @@ alternative_endif ...@@ -70,7 +117,22 @@ alternative_endif
#include <asm/mmu_context.h> #include <asm/mmu_context.h>
#include <asm/pgtable.h> #include <asm/pgtable.h>
#define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET) static inline unsigned long __kern_hyp_va(unsigned long v)
{
asm volatile(ALTERNATIVE("and %0, %0, %1",
"nop",
ARM64_HAS_VIRT_HOST_EXTN)
: "+r" (v)
: "i" (HYP_PAGE_OFFSET_HIGH_MASK));
asm volatile(ALTERNATIVE("nop",
"and %0, %0, %1",
ARM64_HYP_OFFSET_LOW)
: "+r" (v)
: "i" (HYP_PAGE_OFFSET_LOW_MASK));
return v;
}
#define kern_hyp_va(v) (typeof(v))(__kern_hyp_va((unsigned long)(v)))
/* /*
* We currently only support a 40bit IPA. * We currently only support a 40bit IPA.
...@@ -81,9 +143,8 @@ alternative_endif ...@@ -81,9 +143,8 @@ alternative_endif
#include <asm/stage2_pgtable.h> #include <asm/stage2_pgtable.h>
int create_hyp_mappings(void *from, void *to); int create_hyp_mappings(void *from, void *to, pgprot_t prot);
int create_hyp_io_mappings(void *from, void *to, phys_addr_t); int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
void free_boot_hyp_pgd(void);
void free_hyp_pgds(void); void free_hyp_pgds(void);
void stage2_unmap_vm(struct kvm *kvm); void stage2_unmap_vm(struct kvm *kvm);
...@@ -97,7 +158,6 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); ...@@ -97,7 +158,6 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
phys_addr_t kvm_mmu_get_httbr(void); phys_addr_t kvm_mmu_get_httbr(void);
phys_addr_t kvm_mmu_get_boot_httbr(void);
phys_addr_t kvm_get_idmap_vector(void); phys_addr_t kvm_get_idmap_vector(void);
phys_addr_t kvm_get_idmap_start(void); phys_addr_t kvm_get_idmap_start(void);
int kvm_mmu_init(void); int kvm_mmu_init(void);
......
...@@ -164,6 +164,7 @@ ...@@ -164,6 +164,7 @@
#define PTE_CONT (_AT(pteval_t, 1) << 52) /* Contiguous range */ #define PTE_CONT (_AT(pteval_t, 1) << 52) /* Contiguous range */
#define PTE_PXN (_AT(pteval_t, 1) << 53) /* Privileged XN */ #define PTE_PXN (_AT(pteval_t, 1) << 53) /* Privileged XN */
#define PTE_UXN (_AT(pteval_t, 1) << 54) /* User XN */ #define PTE_UXN (_AT(pteval_t, 1) << 54) /* User XN */
#define PTE_HYP_XN (_AT(pteval_t, 1) << 54) /* HYP XN */
/* /*
* AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers). * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
......
...@@ -55,7 +55,9 @@ ...@@ -55,7 +55,9 @@
#define PAGE_KERNEL_EXEC __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE) #define PAGE_KERNEL_EXEC __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE)
#define PAGE_KERNEL_EXEC_CONT __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_CONT) #define PAGE_KERNEL_EXEC_CONT __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_CONT)
#define PAGE_HYP __pgprot(_PAGE_DEFAULT | PTE_HYP) #define PAGE_HYP __pgprot(_PAGE_DEFAULT | PTE_HYP | PTE_HYP_XN)
#define PAGE_HYP_EXEC __pgprot(_PAGE_DEFAULT | PTE_HYP | PTE_RDONLY)
#define PAGE_HYP_RO __pgprot(_PAGE_DEFAULT | PTE_HYP | PTE_RDONLY | PTE_HYP_XN)
#define PAGE_HYP_DEVICE __pgprot(PROT_DEVICE_nGnRE | PTE_HYP) #define PAGE_HYP_DEVICE __pgprot(PROT_DEVICE_nGnRE | PTE_HYP)
#define PAGE_S2 __pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_NORMAL) | PTE_S2_RDONLY) #define PAGE_S2 __pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_NORMAL) | PTE_S2_RDONLY)
......
...@@ -82,6 +82,10 @@ extern void verify_cpu_run_el(void); ...@@ -82,6 +82,10 @@ extern void verify_cpu_run_el(void);
static inline void verify_cpu_run_el(void) {} static inline void verify_cpu_run_el(void) {}
#endif #endif
/* The section containing the hypervisor idmap text */
extern char __hyp_idmap_text_start[];
extern char __hyp_idmap_text_end[];
/* The section containing the hypervisor text */ /* The section containing the hypervisor text */
extern char __hyp_text_start[]; extern char __hyp_text_start[];
extern char __hyp_text_end[]; extern char __hyp_text_end[];
......
...@@ -87,9 +87,11 @@ struct kvm_regs { ...@@ -87,9 +87,11 @@ struct kvm_regs {
/* Supported VGICv3 address types */ /* Supported VGICv3 address types */
#define KVM_VGIC_V3_ADDR_TYPE_DIST 2 #define KVM_VGIC_V3_ADDR_TYPE_DIST 2
#define KVM_VGIC_V3_ADDR_TYPE_REDIST 3 #define KVM_VGIC_V3_ADDR_TYPE_REDIST 3
#define KVM_VGIC_ITS_ADDR_TYPE 4
#define KVM_VGIC_V3_DIST_SIZE SZ_64K #define KVM_VGIC_V3_DIST_SIZE SZ_64K
#define KVM_VGIC_V3_REDIST_SIZE (2 * SZ_64K) #define KVM_VGIC_V3_REDIST_SIZE (2 * SZ_64K)
#define KVM_VGIC_V3_ITS_SIZE (2 * SZ_64K)
#define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */ #define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */
#define KVM_ARM_VCPU_EL1_32BIT 1 /* CPU running a 32bit VM */ #define KVM_ARM_VCPU_EL1_32BIT 1 /* CPU running a 32bit VM */
......
...@@ -726,6 +726,19 @@ static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused ...@@ -726,6 +726,19 @@ static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused
return is_kernel_in_hyp_mode(); return is_kernel_in_hyp_mode();
} }
static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
int __unused)
{
phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
/*
* Activate the lower HYP offset only if:
* - the idmap doesn't clash with it,
* - the kernel is not running at EL2.
*/
return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
}
static const struct arm64_cpu_capabilities arm64_features[] = { static const struct arm64_cpu_capabilities arm64_features[] = {
{ {
.desc = "GIC system register CPU interface", .desc = "GIC system register CPU interface",
...@@ -803,6 +816,12 @@ static const struct arm64_cpu_capabilities arm64_features[] = { ...@@ -803,6 +816,12 @@ static const struct arm64_cpu_capabilities arm64_features[] = {
.field_pos = ID_AA64PFR0_EL0_SHIFT, .field_pos = ID_AA64PFR0_EL0_SHIFT,
.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT, .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
}, },
{
.desc = "Reduced HYP mapping offset",
.capability = ARM64_HYP_OFFSET_LOW,
.def_scope = SCOPE_SYSTEM,
.matches = hyp_offset_low,
},
{}, {},
}; };
......
...@@ -36,6 +36,7 @@ config KVM ...@@ -36,6 +36,7 @@ config KVM
select HAVE_KVM_IRQFD select HAVE_KVM_IRQFD
select KVM_ARM_VGIC_V3 select KVM_ARM_VGIC_V3
select KVM_ARM_PMU if HW_PERF_EVENTS select KVM_ARM_PMU if HW_PERF_EVENTS
select HAVE_KVM_MSI
---help--- ---help---
Support hosting virtualized guest machines. Support hosting virtualized guest machines.
We don't support KVM with 16K page tables yet, due to the multiple We don't support KVM with 16K page tables yet, due to the multiple
...@@ -54,13 +55,6 @@ config KVM_ARM_PMU ...@@ -54,13 +55,6 @@ config KVM_ARM_PMU
Adds support for a virtual Performance Monitoring Unit (PMU) in Adds support for a virtual Performance Monitoring Unit (PMU) in
virtual machines. virtual machines.
config KVM_NEW_VGIC
bool "New VGIC implementation"
depends on KVM
default y
---help---
uses the new VGIC implementation
source drivers/vhost/Kconfig source drivers/vhost/Kconfig
endif # VIRTUALIZATION endif # VIRTUALIZATION
...@@ -20,7 +20,6 @@ kvm-$(CONFIG_KVM_ARM_HOST) += emulate.o inject_fault.o regmap.o ...@@ -20,7 +20,6 @@ kvm-$(CONFIG_KVM_ARM_HOST) += emulate.o inject_fault.o regmap.o
kvm-$(CONFIG_KVM_ARM_HOST) += hyp.o hyp-init.o handle_exit.o kvm-$(CONFIG_KVM_ARM_HOST) += hyp.o hyp-init.o handle_exit.o
kvm-$(CONFIG_KVM_ARM_HOST) += guest.o debug.o reset.o sys_regs.o sys_regs_generic_v8.o kvm-$(CONFIG_KVM_ARM_HOST) += guest.o debug.o reset.o sys_regs.o sys_regs_generic_v8.o
ifeq ($(CONFIG_KVM_NEW_VGIC),y)
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-init.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-init.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-irqfd.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-irqfd.o
...@@ -30,12 +29,6 @@ kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio.o ...@@ -30,12 +29,6 @@ kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio-v2.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio-v2.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio-v3.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-mmio-v3.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-kvm-device.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-kvm-device.o
else kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic/vgic-its.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic-v2.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic-v2-emul.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic-v3.o
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/vgic-v3-emul.o
endif
kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/arch_timer.o kvm-$(CONFIG_KVM_ARM_HOST) += $(KVM)/arm/arch_timer.o
kvm-$(CONFIG_KVM_ARM_PMU) += $(KVM)/arm/pmu.o kvm-$(CONFIG_KVM_ARM_PMU) += $(KVM)/arm/pmu.o
...@@ -53,10 +53,9 @@ __invalid: ...@@ -53,10 +53,9 @@ __invalid:
b . b .
/* /*
* x0: HYP boot pgd * x0: HYP pgd
* x1: HYP pgd * x1: HYP stack
* x2: HYP stack * x2: HYP vectors
* x3: HYP vectors
*/ */
__do_hyp_init: __do_hyp_init:
...@@ -110,71 +109,27 @@ __do_hyp_init: ...@@ -110,71 +109,27 @@ __do_hyp_init:
msr sctlr_el2, x4 msr sctlr_el2, x4
isb isb
/* Skip the trampoline dance if we merged the boot and runtime PGDs */
cmp x0, x1
b.eq merged
/* MMU is now enabled. Get ready for the trampoline dance */
ldr x4, =TRAMPOLINE_VA
adr x5, target
bfi x4, x5, #0, #PAGE_SHIFT
br x4
target: /* We're now in the trampoline code, switch page tables */
msr ttbr0_el2, x1
isb
/* Invalidate the old TLBs */
tlbi alle2
dsb sy
merged:
/* Set the stack and new vectors */ /* Set the stack and new vectors */
kern_hyp_va x1
mov sp, x1
kern_hyp_va x2 kern_hyp_va x2
mov sp, x2 msr vbar_el2, x2
kern_hyp_va x3
msr vbar_el2, x3
/* Hello, World! */ /* Hello, World! */
eret eret
ENDPROC(__kvm_hyp_init) ENDPROC(__kvm_hyp_init)
/* /*
* Reset kvm back to the hyp stub. This is the trampoline dance in * Reset kvm back to the hyp stub.
* reverse. If kvm used an extended idmap, __extended_idmap_trampoline
* calls this code directly in the idmap. In this case switching to the
* boot tables is a no-op.
*
* x0: HYP boot pgd
* x1: HYP phys_idmap_start
*/ */
ENTRY(__kvm_hyp_reset) ENTRY(__kvm_hyp_reset)
/* We're in trampoline code in VA, switch back to boot page tables */
msr ttbr0_el2, x0
isb
/* Ensure the PA branch doesn't find a stale tlb entry or stale code. */
ic iallu
tlbi alle2
dsb sy
isb
/* Branch into PA space */
adr x0, 1f
bfi x1, x0, #0, #PAGE_SHIFT
br x1
/* We're now in idmap, disable MMU */ /* We're now in idmap, disable MMU */
1: mrs x0, sctlr_el2 mrs x0, sctlr_el2
ldr x1, =SCTLR_ELx_FLAGS ldr x1, =SCTLR_ELx_FLAGS
bic x0, x0, x1 // Clear SCTL_M and etc bic x0, x0, x1 // Clear SCTL_M and etc
msr sctlr_el2, x0 msr sctlr_el2, x0
isb isb
/* Invalidate the old TLBs */
tlbi alle2
dsb sy
/* Install stub vectors */ /* Install stub vectors */
adr_l x0, __hyp_stub_vectors adr_l x0, __hyp_stub_vectors
msr vbar_el2, x0 msr vbar_el2, x0
......
...@@ -164,22 +164,3 @@ alternative_endif ...@@ -164,22 +164,3 @@ alternative_endif
eret eret
ENDPROC(__fpsimd_guest_restore) ENDPROC(__fpsimd_guest_restore)
/*
* When using the extended idmap, we don't have a trampoline page we can use
* while we switch pages tables during __kvm_hyp_reset. Accessing the idmap
* directly would be ideal, but if we're using the extended idmap then the
* idmap is located above HYP_PAGE_OFFSET, and the address will be masked by
* kvm_call_hyp using kern_hyp_va.
*
* x0: HYP boot pgd
* x1: HYP phys_idmap_start
*/
ENTRY(__extended_idmap_trampoline)
mov x4, x1
adr_l x3, __kvm_hyp_reset
/* insert __kvm_hyp_reset()s offset into phys_idmap_start */
bfi x4, x3, #0, #PAGE_SHIFT
br x4
ENDPROC(__extended_idmap_trampoline)
...@@ -63,6 +63,21 @@ ENTRY(__vhe_hyp_call) ...@@ -63,6 +63,21 @@ ENTRY(__vhe_hyp_call)
ret ret
ENDPROC(__vhe_hyp_call) ENDPROC(__vhe_hyp_call)
/*
* Compute the idmap address of __kvm_hyp_reset based on the idmap
* start passed as a parameter, and jump there.
*
* x0: HYP phys_idmap_start
*/
ENTRY(__kvm_hyp_teardown)
mov x4, x0
adr_l x3, __kvm_hyp_reset
/* insert __kvm_hyp_reset()s offset into phys_idmap_start */
bfi x4, x3, #0, #PAGE_SHIFT
br x4
ENDPROC(__kvm_hyp_teardown)
el1_sync: // Guest trapped into EL2 el1_sync: // Guest trapped into EL2
save_x0_to_x3 save_x0_to_x3
......
...@@ -299,9 +299,16 @@ static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:% ...@@ -299,9 +299,16 @@ static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par) static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par)
{ {
unsigned long str_va = (unsigned long)__hyp_panic_string; unsigned long str_va;
__hyp_do_panic(hyp_kern_va(str_va), /*
* Force the panic string to be loaded from the literal pool,
* making sure it is a kernel address and not a PC-relative
* reference.
*/
asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
__hyp_do_panic(str_va,
spsr, elr, spsr, elr,
read_sysreg(esr_el2), read_sysreg_el2(far), read_sysreg(esr_el2), read_sysreg_el2(far),
read_sysreg(hpfar_el2), par, read_sysreg(hpfar_el2), par,
......
...@@ -65,7 +65,7 @@ static bool cpu_has_32bit_el1(void) ...@@ -65,7 +65,7 @@ static bool cpu_has_32bit_el1(void)
* We currently assume that the number of HW registers is uniform * We currently assume that the number of HW registers is uniform
* across all CPUs (see cpuinfo_sanity_check). * across all CPUs (see cpuinfo_sanity_check).
*/ */
int kvm_arch_dev_ioctl_check_extension(long ext) int kvm_arch_dev_ioctl_check_extension(struct kvm *kvm, long ext)
{ {
int r; int r;
...@@ -86,6 +86,12 @@ int kvm_arch_dev_ioctl_check_extension(long ext) ...@@ -86,6 +86,12 @@ int kvm_arch_dev_ioctl_check_extension(long ext)
case KVM_CAP_VCPU_ATTRIBUTES: case KVM_CAP_VCPU_ATTRIBUTES:
r = 1; r = 1;
break; break;
case KVM_CAP_MSI_DEVID:
if (!kvm)
r = -EINVAL;
else
r = kvm->arch.vgic.msis_require_devid;
break;
default: default:
r = 0; r = 0;
} }
...@@ -132,31 +138,3 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu) ...@@ -132,31 +138,3 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
/* Reset timer */ /* Reset timer */
return kvm_timer_vcpu_reset(vcpu, cpu_vtimer_irq); return kvm_timer_vcpu_reset(vcpu, cpu_vtimer_irq);
} }
extern char __hyp_idmap_text_start[];
unsigned long kvm_hyp_reset_entry(void)
{
if (!__kvm_cpu_uses_extended_idmap()) {
unsigned long offset;
/*
* Find the address of __kvm_hyp_reset() in the trampoline page.
* This is present in the running page tables, and the boot page
* tables, so we call the code here to start the trampoline
* dance in reverse.
*/
offset = (unsigned long)__kvm_hyp_reset
- ((unsigned long)__hyp_idmap_text_start & PAGE_MASK);
return TRAMPOLINE_VA + offset;
} else {
/*
* KVM is running with merged page tables, which don't have the
* trampoline page mapped. We know the idmap is still mapped,
* but can't be called into directly. Use
* __extended_idmap_trampoline to do the call.
*/
return (unsigned long)kvm_ksym_ref(__extended_idmap_trampoline);
}
}
...@@ -1546,7 +1546,7 @@ static void unhandled_cp_access(struct kvm_vcpu *vcpu, ...@@ -1546,7 +1546,7 @@ static void unhandled_cp_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params) struct sys_reg_params *params)
{ {
u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu); u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
int cp; int cp = -1;
switch(hsr_ec) { switch(hsr_ec) {
case ESR_ELx_EC_CP15_32: case ESR_ELx_EC_CP15_32:
...@@ -1558,7 +1558,7 @@ static void unhandled_cp_access(struct kvm_vcpu *vcpu, ...@@ -1558,7 +1558,7 @@ static void unhandled_cp_access(struct kvm_vcpu *vcpu,
cp = 14; cp = 14;
break; break;
default: default:
WARN_ON((cp = -1)); WARN_ON(1);
} }
kvm_err("Unsupported guest CP%d access at: %08lx\n", kvm_err("Unsupported guest CP%d access at: %08lx\n",
......
/* /*
* Copyright (C) 2012 ARM Ltd. * Copyright (C) 2015, 2016 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as * it under the terms of the GNU General Public License version 2 as
...@@ -12,16 +11,10 @@ ...@@ -12,16 +11,10 @@
* GNU General Public License for more details. * GNU General Public License for more details.
* *
* You should have received a copy of the GNU General Public License * You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software * along with this program. If not, see <http://www.gnu.org/licenses/>.
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/ */
#ifndef __KVM_ARM_VGIC_H
#ifndef __ASM_ARM_KVM_VGIC_H #define __KVM_ARM_VGIC_H
#define __ASM_ARM_KVM_VGIC_H
#ifdef CONFIG_KVM_NEW_VGIC
#include <kvm/vgic/vgic.h>
#else
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/kvm.h> #include <linux/kvm.h>
...@@ -29,248 +22,187 @@ ...@@ -29,248 +22,187 @@
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/types.h> #include <linux/types.h>
#include <kvm/iodev.h> #include <kvm/iodev.h>
#include <linux/irqchip/arm-gic-common.h> #include <linux/list.h>
#define VGIC_V3_MAX_CPUS 255
#define VGIC_V2_MAX_CPUS 8
#define VGIC_NR_IRQS_LEGACY 256 #define VGIC_NR_IRQS_LEGACY 256
#define VGIC_NR_SGIS 16 #define VGIC_NR_SGIS 16
#define VGIC_NR_PPIS 16 #define VGIC_NR_PPIS 16
#define VGIC_NR_PRIVATE_IRQS (VGIC_NR_SGIS + VGIC_NR_PPIS) #define VGIC_NR_PRIVATE_IRQS (VGIC_NR_SGIS + VGIC_NR_PPIS)
#define VGIC_MAX_PRIVATE (VGIC_NR_PRIVATE_IRQS - 1)
#define VGIC_V2_MAX_LRS (1 << 6) #define VGIC_MAX_SPI 1019
#define VGIC_V3_MAX_LRS 16 #define VGIC_MAX_RESERVED 1023
#define VGIC_MAX_IRQS 1024 #define VGIC_MIN_LPI 8192
#define VGIC_V2_MAX_CPUS 8
#define VGIC_V3_MAX_CPUS 255
#if (VGIC_NR_IRQS_LEGACY & 31)
#error "VGIC_NR_IRQS must be a multiple of 32"
#endif
#if (VGIC_NR_IRQS_LEGACY > VGIC_MAX_IRQS)
#error "VGIC_NR_IRQS must be <= 1024"
#endif
/*
* The GIC distributor registers describing interrupts have two parts:
* - 32 per-CPU interrupts (SGI + PPI)
* - a bunch of shared interrupts (SPI)
*/
struct vgic_bitmap {
/*
* - One UL per VCPU for private interrupts (assumes UL is at
* least 32 bits)
* - As many UL as necessary for shared interrupts.
*
* The private interrupts are accessed via the "private"
* field, one UL per vcpu (the state for vcpu n is in
* private[n]). The shared interrupts are accessed via the
* "shared" pointer (IRQn state is at bit n-32 in the bitmap).
*/
unsigned long *private;
unsigned long *shared;
};
struct vgic_bytemap {
/*
* - 8 u32 per VCPU for private interrupts
* - As many u32 as necessary for shared interrupts.
*
* The private interrupts are accessed via the "private"
* field, (the state for vcpu n is in private[n*8] to
* private[n*8 + 7]). The shared interrupts are accessed via
* the "shared" pointer (IRQn state is at byte (n-32)%4 of the
* shared[(n-32)/4] word).
*/
u32 *private;
u32 *shared;
};
struct kvm_vcpu;
enum vgic_type { enum vgic_type {
VGIC_V2, /* Good ol' GICv2 */ VGIC_V2, /* Good ol' GICv2 */
VGIC_V3, /* New fancy GICv3 */ VGIC_V3, /* New fancy GICv3 */
}; };
#define LR_STATE_PENDING (1 << 0) /* same for all guests, as depending only on the _host's_ GIC model */
#define LR_STATE_ACTIVE (1 << 1) struct vgic_global {
#define LR_STATE_MASK (3 << 0) /* type of the host GIC */
#define LR_EOI_INT (1 << 2) enum vgic_type type;
#define LR_HW (1 << 3)
struct vgic_lr { /* Physical address of vgic virtual cpu interface */
unsigned irq:10; phys_addr_t vcpu_base;
union {
unsigned hwirq:10;
unsigned source:3;
};
unsigned state:4;
};
struct vgic_vmcr { /* virtual control interface mapping */
u32 ctlr; void __iomem *vctrl_base;
u32 abpr;
u32 bpr;
u32 pmr;
};
struct vgic_ops { /* Number of implemented list registers */
struct vgic_lr (*get_lr)(const struct kvm_vcpu *, int); int nr_lr;
void (*set_lr)(struct kvm_vcpu *, int, struct vgic_lr);
u64 (*get_elrsr)(const struct kvm_vcpu *vcpu);
u64 (*get_eisr)(const struct kvm_vcpu *vcpu);
void (*clear_eisr)(struct kvm_vcpu *vcpu);
u32 (*get_interrupt_status)(const struct kvm_vcpu *vcpu);
void (*enable_underflow)(struct kvm_vcpu *vcpu);
void (*disable_underflow)(struct kvm_vcpu *vcpu);
void (*get_vmcr)(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
void (*set_vmcr)(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
void (*enable)(struct kvm_vcpu *vcpu);
};
struct vgic_params { /* Maintenance IRQ number */
/* vgic type */
enum vgic_type type;
/* Physical address of vgic virtual cpu interface */
phys_addr_t vcpu_base;
/* Number of list registers */
u32 nr_lr;
/* Interrupt number */
unsigned int maint_irq; unsigned int maint_irq;
/* Virtual control interface base address */
void __iomem *vctrl_base; /* maximum number of VCPUs allowed (GICv2 limits us to 8) */
int max_gic_vcpus; int max_gic_vcpus;
/* Only needed for the legacy KVM_CREATE_IRQCHIP */ /* Only needed for the legacy KVM_CREATE_IRQCHIP */
bool can_emulate_gicv2; bool can_emulate_gicv2;
}; };
struct vgic_vm_ops { extern struct vgic_global kvm_vgic_global_state;
bool (*queue_sgi)(struct kvm_vcpu *, int irq);
void (*add_sgi_source)(struct kvm_vcpu *, int irq, int source); #define VGIC_V2_MAX_LRS (1 << 6)
int (*init_model)(struct kvm *); #define VGIC_V3_MAX_LRS 16
int (*map_resources)(struct kvm *, const struct vgic_params *); #define VGIC_V3_LR_INDEX(lr) (VGIC_V3_MAX_LRS - 1 - lr)
enum vgic_irq_config {
VGIC_CONFIG_EDGE = 0,
VGIC_CONFIG_LEVEL
};
struct vgic_irq {
spinlock_t irq_lock; /* Protects the content of the struct */
struct list_head lpi_list; /* Used to link all LPIs together */
struct list_head ap_list;
struct kvm_vcpu *vcpu; /* SGIs and PPIs: The VCPU
* SPIs and LPIs: The VCPU whose ap_list
* this is queued on.
*/
struct kvm_vcpu *target_vcpu; /* The VCPU that this interrupt should
* be sent to, as a result of the
* targets reg (v2) or the
* affinity reg (v3).
*/
u32 intid; /* Guest visible INTID */
bool pending;
bool line_level; /* Level only */
bool soft_pending; /* Level only */
bool active; /* not used for LPIs */
bool enabled;
bool hw; /* Tied to HW IRQ */
struct kref refcount; /* Used for LPIs */
u32 hwintid; /* HW INTID number */
union {
u8 targets; /* GICv2 target VCPUs mask */
u32 mpidr; /* GICv3 target VCPU */
};
u8 source; /* GICv2 SGIs only */
u8 priority;
enum vgic_irq_config config; /* Level or edge */
};
struct vgic_register_region;
struct vgic_its;
enum iodev_type {
IODEV_CPUIF,
IODEV_DIST,
IODEV_REDIST,
IODEV_ITS
}; };
struct vgic_io_device { struct vgic_io_device {
gpa_t addr; gpa_t base_addr;
int len; union {
const struct vgic_io_range *reg_ranges;
struct kvm_vcpu *redist_vcpu; struct kvm_vcpu *redist_vcpu;
struct vgic_its *its;
};
const struct vgic_register_region *regions;
enum iodev_type iodev_type;
int nr_regions;
struct kvm_io_device dev; struct kvm_io_device dev;
}; };
struct irq_phys_map { struct vgic_its {
u32 virt_irq; /* The base address of the ITS control register frame */
u32 phys_irq; gpa_t vgic_its_base;
};
bool enabled;
struct irq_phys_map_entry { bool initialized;
struct list_head entry; struct vgic_io_device iodev;
struct rcu_head rcu; struct kvm_device *dev;
struct irq_phys_map map;
/* These registers correspond to GITS_BASER{0,1} */
u64 baser_device_table;
u64 baser_coll_table;
/* Protects the command queue */
struct mutex cmd_lock;
u64 cbaser;
u32 creadr;
u32 cwriter;
/* Protects the device and collection lists */
struct mutex its_lock;
struct list_head device_list;
struct list_head collection_list;
}; };
struct vgic_dist { struct vgic_dist {
spinlock_t lock;
bool in_kernel; bool in_kernel;
bool ready; bool ready;
bool initialized;
/* vGIC model the kernel emulates for the guest (GICv2 or GICv3) */ /* vGIC model the kernel emulates for the guest (GICv2 or GICv3) */
u32 vgic_model; u32 vgic_model;
int nr_cpus; /* Do injected MSIs require an additional device ID? */
int nr_irqs; bool msis_require_devid;
int nr_spis;
/* TODO: Consider moving to global state */
/* Virtual control interface mapping */ /* Virtual control interface mapping */
void __iomem *vctrl_base; void __iomem *vctrl_base;
/* Distributor and vcpu interface mapping in the guest */ /* base addresses in guest physical address space: */
phys_addr_t vgic_dist_base; gpa_t vgic_dist_base; /* distributor */
/* GICv2 and GICv3 use different mapped register blocks */
union { union {
phys_addr_t vgic_cpu_base; /* either a GICv2 CPU interface */
phys_addr_t vgic_redist_base; gpa_t vgic_cpu_base;
/* or a number of GICv3 redistributor regions */
gpa_t vgic_redist_base;
}; };
/* Distributor enabled */ /* distributor enabled */
u32 enabled; bool enabled;
/* Interrupt enabled (one bit per IRQ) */
struct vgic_bitmap irq_enabled;
/* Level-triggered interrupt external input is asserted */
struct vgic_bitmap irq_level;
/* struct vgic_irq *spis;
* Interrupt state is pending on the distributor
*/
struct vgic_bitmap irq_pending;
/* struct vgic_io_device dist_iodev;
* Tracks writes to GICD_ISPENDRn and GICD_ICPENDRn for level-triggered
* interrupts. Essentially holds the state of the flip-flop in
* Figure 4-10 on page 4-101 in ARM IHI 0048B.b.
* Once set, it is only cleared for level-triggered interrupts on
* guest ACKs (when we queue it) or writes to GICD_ICPENDRn.
*/
struct vgic_bitmap irq_soft_pend;
/* Level-triggered interrupt queued on VCPU interface */
struct vgic_bitmap irq_queued;
/* Interrupt was active when unqueue from VCPU interface */
struct vgic_bitmap irq_active;
/* Interrupt priority. Not used yet. */
struct vgic_bytemap irq_priority;
/* Level/edge triggered */
struct vgic_bitmap irq_cfg;
/*
* Source CPU per SGI and target CPU:
*
* Each byte represent a SGI observable on a VCPU, each bit of
* this byte indicating if the corresponding VCPU has
* generated this interrupt. This is a GICv2 feature only.
*
* For VCPUn (n < 8), irq_sgi_sources[n*16] to [n*16 + 15] are
* the SGIs observable on VCPUn.
*/
u8 *irq_sgi_sources;
/* bool has_its;
* Target CPU for each SPI:
*
* Array of available SPI, each byte indicating the target
* VCPU for SPI. IRQn (n >=32) is at irq_spi_cpu[n-32].
*/
u8 *irq_spi_cpu;
/* /*
* Reverse lookup of irq_spi_cpu for faster compute pending: * Contains the attributes and gpa of the LPI configuration table.
* * Since we report GICR_TYPER.CommonLPIAff as 0b00, we can share
* Array of bitmaps, one per VCPU, describing if IRQn is * one address across all redistributors.
* routed to a particular VCPU. * GICv3 spec: 6.1.2 "LPI Configuration tables"
*/ */
struct vgic_bitmap *irq_spi_target; u64 propbaser;
/* Target MPIDR for each IRQ (needed for GICv3 IROUTERn) only */
u32 *irq_spi_mpidr;
/* Bitmap indicating which CPU has something pending */ /* Protects the lpi_list and the count value below. */
unsigned long *irq_pending_on_cpu; spinlock_t lpi_list_lock;
struct list_head lpi_list_head;
/* Bitmap indicating which CPU has active IRQs */ int lpi_list_count;
unsigned long *irq_active_on_cpu;
struct vgic_vm_ops vm_ops;
struct vgic_io_device dist_iodev;
struct vgic_io_device *redist_iodevs;
/* Virtual irq to hwirq mapping */
spinlock_t irq_phys_map_lock;
struct list_head irq_phys_map_list;
}; };
struct vgic_v2_cpu_if { struct vgic_v2_cpu_if {
...@@ -298,78 +230,88 @@ struct vgic_v3_cpu_if { ...@@ -298,78 +230,88 @@ struct vgic_v3_cpu_if {
}; };
struct vgic_cpu { struct vgic_cpu {
/* Pending/active/both interrupts on this VCPU */
DECLARE_BITMAP(pending_percpu, VGIC_NR_PRIVATE_IRQS);
DECLARE_BITMAP(active_percpu, VGIC_NR_PRIVATE_IRQS);
DECLARE_BITMAP(pend_act_percpu, VGIC_NR_PRIVATE_IRQS);
/* Pending/active/both shared interrupts, dynamically sized */
unsigned long *pending_shared;
unsigned long *active_shared;
unsigned long *pend_act_shared;
/* CPU vif control registers for world switch */ /* CPU vif control registers for world switch */
union { union {
struct vgic_v2_cpu_if vgic_v2; struct vgic_v2_cpu_if vgic_v2;
struct vgic_v3_cpu_if vgic_v3; struct vgic_v3_cpu_if vgic_v3;
}; };
/* Protected by the distributor's irq_phys_map_lock */ unsigned int used_lrs;
struct list_head irq_phys_map_list; struct vgic_irq private_irqs[VGIC_NR_PRIVATE_IRQS];
spinlock_t ap_list_lock; /* Protects the ap_list */
/*
* List of IRQs that this VCPU should consider because they are either
* Active or Pending (hence the name; AP list), or because they recently
* were one of the two and need to be migrated off this list to another
* VCPU.
*/
struct list_head ap_list_head;
u64 live_lrs; u64 live_lrs;
};
#define LR_EMPTY 0xff /*
* Members below are used with GICv3 emulation only and represent
* parts of the redistributor.
*/
struct vgic_io_device rd_iodev;
struct vgic_io_device sgi_iodev;
#define INT_STATUS_EOI (1 << 0) /* Contains the attributes and gpa of the LPI pending tables. */
#define INT_STATUS_UNDERFLOW (1 << 1) u64 pendbaser;
struct kvm; bool lpis_enabled;
struct kvm_vcpu; };
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write); int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write);
int kvm_vgic_hyp_init(void);
int kvm_vgic_map_resources(struct kvm *kvm);
int kvm_vgic_get_max_vcpus(void);
void kvm_vgic_early_init(struct kvm *kvm); void kvm_vgic_early_init(struct kvm *kvm);
int kvm_vgic_create(struct kvm *kvm, u32 type); int kvm_vgic_create(struct kvm *kvm, u32 type);
void kvm_vgic_destroy(struct kvm *kvm); void kvm_vgic_destroy(struct kvm *kvm);
void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu); void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu);
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu); void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu);
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu); int kvm_vgic_map_resources(struct kvm *kvm);
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu); int kvm_vgic_hyp_init(void);
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
bool level); bool level);
int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid, int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid, unsigned int intid,
unsigned int virt_irq, bool level); bool level);
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg); int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, u32 virt_irq, u32 phys_irq);
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, int virt_irq, int phys_irq);
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq); int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq);
bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq); bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq);
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
#define irqchip_in_kernel(k) (!!((k)->arch.vgic.in_kernel)) #define irqchip_in_kernel(k) (!!((k)->arch.vgic.in_kernel))
#define vgic_initialized(k) (!!((k)->arch.vgic.nr_cpus)) #define vgic_initialized(k) ((k)->arch.vgic.initialized)
#define vgic_ready(k) ((k)->arch.vgic.ready) #define vgic_ready(k) ((k)->arch.vgic.ready)
#define vgic_valid_spi(k, i) (((i) >= VGIC_NR_PRIVATE_IRQS) && \ #define vgic_valid_spi(k, i) (((i) >= VGIC_NR_PRIVATE_IRQS) && \
((i) < (k)->arch.vgic.nr_irqs)) ((i) < (k)->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS))
bool kvm_vcpu_has_pending_irqs(struct kvm_vcpu *vcpu);
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu);
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu);
int vgic_v2_probe(const struct gic_kvm_info *gic_kvm_info,
const struct vgic_ops **ops,
const struct vgic_params **params);
#ifdef CONFIG_KVM_ARM_VGIC_V3 #ifdef CONFIG_KVM_ARM_VGIC_V3
int vgic_v3_probe(const struct gic_kvm_info *gic_kvm_info, void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg);
const struct vgic_ops **ops,
const struct vgic_params **params);
#else #else
static inline int vgic_v3_probe(const struct gic_kvm_info *gic_kvm_info, static inline void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
const struct vgic_ops **ops,
const struct vgic_params **params)
{ {
return -ENODEV;
} }
#endif #endif
#endif /* old VGIC include */ /**
#endif * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
*
* The host's GIC naturally limits the maximum amount of VCPUs a guest
* can use.
*/
static inline int kvm_vgic_get_max_vcpus(void)
{
return kvm_vgic_global_state.max_gic_vcpus;
}
int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
#endif /* __KVM_ARM_VGIC_H */
/*
* Copyright (C) 2015, 2016 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_ARM_KVM_VGIC_VGIC_H
#define __ASM_ARM_KVM_VGIC_VGIC_H
#include <linux/kernel.h>
#include <linux/kvm.h>
#include <linux/irqreturn.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <kvm/iodev.h>
#define VGIC_V3_MAX_CPUS 255
#define VGIC_V2_MAX_CPUS 8
#define VGIC_NR_IRQS_LEGACY 256
#define VGIC_NR_SGIS 16
#define VGIC_NR_PPIS 16
#define VGIC_NR_PRIVATE_IRQS (VGIC_NR_SGIS + VGIC_NR_PPIS)
#define VGIC_MAX_PRIVATE (VGIC_NR_PRIVATE_IRQS - 1)
#define VGIC_MAX_SPI 1019
#define VGIC_MAX_RESERVED 1023
#define VGIC_MIN_LPI 8192
enum vgic_type {
VGIC_V2, /* Good ol' GICv2 */
VGIC_V3, /* New fancy GICv3 */
};
/* same for all guests, as depending only on the _host's_ GIC model */
struct vgic_global {
/* type of the host GIC */
enum vgic_type type;
/* Physical address of vgic virtual cpu interface */
phys_addr_t vcpu_base;
/* virtual control interface mapping */
void __iomem *vctrl_base;
/* Number of implemented list registers */
int nr_lr;
/* Maintenance IRQ number */
unsigned int maint_irq;
/* maximum number of VCPUs allowed (GICv2 limits us to 8) */
int max_gic_vcpus;
/* Only needed for the legacy KVM_CREATE_IRQCHIP */
bool can_emulate_gicv2;
};
extern struct vgic_global kvm_vgic_global_state;
#define VGIC_V2_MAX_LRS (1 << 6)
#define VGIC_V3_MAX_LRS 16
#define VGIC_V3_LR_INDEX(lr) (VGIC_V3_MAX_LRS - 1 - lr)
enum vgic_irq_config {
VGIC_CONFIG_EDGE = 0,
VGIC_CONFIG_LEVEL
};
struct vgic_irq {
spinlock_t irq_lock; /* Protects the content of the struct */
struct list_head ap_list;
struct kvm_vcpu *vcpu; /* SGIs and PPIs: The VCPU
* SPIs and LPIs: The VCPU whose ap_list
* this is queued on.
*/
struct kvm_vcpu *target_vcpu; /* The VCPU that this interrupt should
* be sent to, as a result of the
* targets reg (v2) or the
* affinity reg (v3).
*/
u32 intid; /* Guest visible INTID */
bool pending;
bool line_level; /* Level only */
bool soft_pending; /* Level only */
bool active; /* not used for LPIs */
bool enabled;
bool hw; /* Tied to HW IRQ */
u32 hwintid; /* HW INTID number */
union {
u8 targets; /* GICv2 target VCPUs mask */
u32 mpidr; /* GICv3 target VCPU */
};
u8 source; /* GICv2 SGIs only */
u8 priority;
enum vgic_irq_config config; /* Level or edge */
};
struct vgic_register_region;
struct vgic_io_device {
gpa_t base_addr;
struct kvm_vcpu *redist_vcpu;
const struct vgic_register_region *regions;
int nr_regions;
struct kvm_io_device dev;
};
struct vgic_dist {
bool in_kernel;
bool ready;
bool initialized;
/* vGIC model the kernel emulates for the guest (GICv2 or GICv3) */
u32 vgic_model;
int nr_spis;
/* TODO: Consider moving to global state */
/* Virtual control interface mapping */
void __iomem *vctrl_base;
/* base addresses in guest physical address space: */
gpa_t vgic_dist_base; /* distributor */
union {
/* either a GICv2 CPU interface */
gpa_t vgic_cpu_base;
/* or a number of GICv3 redistributor regions */
gpa_t vgic_redist_base;
};
/* distributor enabled */
bool enabled;
struct vgic_irq *spis;
struct vgic_io_device dist_iodev;
struct vgic_io_device *redist_iodevs;
};
struct vgic_v2_cpu_if {
u32 vgic_hcr;
u32 vgic_vmcr;
u32 vgic_misr; /* Saved only */
u64 vgic_eisr; /* Saved only */
u64 vgic_elrsr; /* Saved only */
u32 vgic_apr;
u32 vgic_lr[VGIC_V2_MAX_LRS];
};
struct vgic_v3_cpu_if {
#ifdef CONFIG_KVM_ARM_VGIC_V3
u32 vgic_hcr;
u32 vgic_vmcr;
u32 vgic_sre; /* Restored only, change ignored */
u32 vgic_misr; /* Saved only */
u32 vgic_eisr; /* Saved only */
u32 vgic_elrsr; /* Saved only */
u32 vgic_ap0r[4];
u32 vgic_ap1r[4];
u64 vgic_lr[VGIC_V3_MAX_LRS];
#endif
};
struct vgic_cpu {
/* CPU vif control registers for world switch */
union {
struct vgic_v2_cpu_if vgic_v2;
struct vgic_v3_cpu_if vgic_v3;
};
unsigned int used_lrs;
struct vgic_irq private_irqs[VGIC_NR_PRIVATE_IRQS];
spinlock_t ap_list_lock; /* Protects the ap_list */
/*
* List of IRQs that this VCPU should consider because they are either
* Active or Pending (hence the name; AP list), or because they recently
* were one of the two and need to be migrated off this list to another
* VCPU.
*/
struct list_head ap_list_head;
u64 live_lrs;
};
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write);
void kvm_vgic_early_init(struct kvm *kvm);
int kvm_vgic_create(struct kvm *kvm, u32 type);
void kvm_vgic_destroy(struct kvm *kvm);
void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu);
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu);
int kvm_vgic_map_resources(struct kvm *kvm);
int kvm_vgic_hyp_init(void);
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
bool level);
int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid, unsigned int intid,
bool level);
int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, u32 virt_irq, u32 phys_irq);
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq);
bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq);
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu);
#define irqchip_in_kernel(k) (!!((k)->arch.vgic.in_kernel))
#define vgic_initialized(k) ((k)->arch.vgic.initialized)
#define vgic_ready(k) ((k)->arch.vgic.ready)
#define vgic_valid_spi(k, i) (((i) >= VGIC_NR_PRIVATE_IRQS) && \
((i) < (k)->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS))
bool kvm_vcpu_has_pending_irqs(struct kvm_vcpu *vcpu);
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu);
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu);
#ifdef CONFIG_KVM_ARM_VGIC_V3
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg);
#else
static inline void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
{
}
#endif
/**
* kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
*
* The host's GIC naturally limits the maximum amount of VCPUs a guest
* can use.
*/
static inline int kvm_vgic_get_max_vcpus(void)
{
return kvm_vgic_global_state.max_gic_vcpus;
}
#endif /* __ASM_ARM_KVM_VGIC_VGIC_H */
...@@ -112,34 +112,76 @@ ...@@ -112,34 +112,76 @@
#define GICR_WAKER_ProcessorSleep (1U << 1) #define GICR_WAKER_ProcessorSleep (1U << 1)
#define GICR_WAKER_ChildrenAsleep (1U << 2) #define GICR_WAKER_ChildrenAsleep (1U << 2)
#define GICR_PROPBASER_NonShareable (0U << 10) #define GIC_BASER_CACHE_nCnB 0ULL
#define GICR_PROPBASER_InnerShareable (1U << 10) #define GIC_BASER_CACHE_SameAsInner 0ULL
#define GICR_PROPBASER_OuterShareable (2U << 10) #define GIC_BASER_CACHE_nC 1ULL
#define GICR_PROPBASER_SHAREABILITY_MASK (3UL << 10) #define GIC_BASER_CACHE_RaWt 2ULL
#define GICR_PROPBASER_nCnB (0U << 7) #define GIC_BASER_CACHE_RaWb 3ULL
#define GICR_PROPBASER_nC (1U << 7) #define GIC_BASER_CACHE_WaWt 4ULL
#define GICR_PROPBASER_RaWt (2U << 7) #define GIC_BASER_CACHE_WaWb 5ULL
#define GICR_PROPBASER_RaWb (3U << 7) #define GIC_BASER_CACHE_RaWaWt 6ULL
#define GICR_PROPBASER_WaWt (4U << 7) #define GIC_BASER_CACHE_RaWaWb 7ULL
#define GICR_PROPBASER_WaWb (5U << 7) #define GIC_BASER_CACHE_MASK 7ULL
#define GICR_PROPBASER_RaWaWt (6U << 7) #define GIC_BASER_NonShareable 0ULL
#define GICR_PROPBASER_RaWaWb (7U << 7) #define GIC_BASER_InnerShareable 1ULL
#define GICR_PROPBASER_CACHEABILITY_MASK (7U << 7) #define GIC_BASER_OuterShareable 2ULL
#define GIC_BASER_SHAREABILITY_MASK 3ULL
#define GIC_BASER_CACHEABILITY(reg, inner_outer, type) \
(GIC_BASER_CACHE_##type << reg##_##inner_outer##_CACHEABILITY_SHIFT)
#define GIC_BASER_SHAREABILITY(reg, type) \
(GIC_BASER_##type << reg##_SHAREABILITY_SHIFT)
#define GICR_PROPBASER_SHAREABILITY_SHIFT (10)
#define GICR_PROPBASER_INNER_CACHEABILITY_SHIFT (7)
#define GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT (56)
#define GICR_PROPBASER_SHAREABILITY_MASK \
GIC_BASER_SHAREABILITY(GICR_PROPBASER, SHAREABILITY_MASK)
#define GICR_PROPBASER_INNER_CACHEABILITY_MASK \
GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, MASK)
#define GICR_PROPBASER_OUTER_CACHEABILITY_MASK \
GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, MASK)
#define GICR_PROPBASER_CACHEABILITY_MASK GICR_PROPBASER_INNER_CACHEABILITY_MASK
#define GICR_PROPBASER_InnerShareable \
GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)
#define GICR_PROPBASER_nCnB GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, nCnB)
#define GICR_PROPBASER_nC GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, nC)
#define GICR_PROPBASER_RaWt GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWt)
#define GICR_PROPBASER_RaWb GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWt)
#define GICR_PROPBASER_WaWt GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, WaWt)
#define GICR_PROPBASER_WaWb GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, WaWb)
#define GICR_PROPBASER_RaWaWt GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWaWt)
#define GICR_PROPBASER_RaWaWb GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWaWb)
#define GICR_PROPBASER_IDBITS_MASK (0x1f) #define GICR_PROPBASER_IDBITS_MASK (0x1f)
#define GICR_PENDBASER_NonShareable (0U << 10) #define GICR_PENDBASER_SHAREABILITY_SHIFT (10)
#define GICR_PENDBASER_InnerShareable (1U << 10) #define GICR_PENDBASER_INNER_CACHEABILITY_SHIFT (7)
#define GICR_PENDBASER_OuterShareable (2U << 10) #define GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT (56)
#define GICR_PENDBASER_SHAREABILITY_MASK (3UL << 10) #define GICR_PENDBASER_SHAREABILITY_MASK \
#define GICR_PENDBASER_nCnB (0U << 7) GIC_BASER_SHAREABILITY(GICR_PENDBASER, SHAREABILITY_MASK)
#define GICR_PENDBASER_nC (1U << 7) #define GICR_PENDBASER_INNER_CACHEABILITY_MASK \
#define GICR_PENDBASER_RaWt (2U << 7) GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, MASK)
#define GICR_PENDBASER_RaWb (3U << 7) #define GICR_PENDBASER_OUTER_CACHEABILITY_MASK \
#define GICR_PENDBASER_WaWt (4U << 7) GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, MASK)
#define GICR_PENDBASER_WaWb (5U << 7) #define GICR_PENDBASER_CACHEABILITY_MASK GICR_PENDBASER_INNER_CACHEABILITY_MASK
#define GICR_PENDBASER_RaWaWt (6U << 7)
#define GICR_PENDBASER_RaWaWb (7U << 7) #define GICR_PENDBASER_InnerShareable \
#define GICR_PENDBASER_CACHEABILITY_MASK (7U << 7) GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)
#define GICR_PENDBASER_nCnB GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, nCnB)
#define GICR_PENDBASER_nC GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, nC)
#define GICR_PENDBASER_RaWt GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWt)
#define GICR_PENDBASER_RaWb GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWt)
#define GICR_PENDBASER_WaWt GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, WaWt)
#define GICR_PENDBASER_WaWb GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, WaWb)
#define GICR_PENDBASER_RaWaWt GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWaWt)
#define GICR_PENDBASER_RaWaWb GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWaWb)
#define GICR_PENDBASER_PTZ BIT_ULL(62)
/* /*
* Re-Distributor registers, offsets from SGI_base * Re-Distributor registers, offsets from SGI_base
...@@ -175,59 +217,90 @@ ...@@ -175,59 +217,90 @@
#define GITS_CWRITER 0x0088 #define GITS_CWRITER 0x0088
#define GITS_CREADR 0x0090 #define GITS_CREADR 0x0090
#define GITS_BASER 0x0100 #define GITS_BASER 0x0100
#define GITS_IDREGS_BASE 0xffd0
#define GITS_PIDR0 0xffe0
#define GITS_PIDR1 0xffe4
#define GITS_PIDR2 GICR_PIDR2 #define GITS_PIDR2 GICR_PIDR2
#define GITS_PIDR4 0xffd0
#define GITS_CIDR0 0xfff0
#define GITS_CIDR1 0xfff4
#define GITS_CIDR2 0xfff8
#define GITS_CIDR3 0xfffc
#define GITS_TRANSLATER 0x10040 #define GITS_TRANSLATER 0x10040
#define GITS_CTLR_ENABLE (1U << 0) #define GITS_CTLR_ENABLE (1U << 0)
#define GITS_CTLR_QUIESCENT (1U << 31) #define GITS_CTLR_QUIESCENT (1U << 31)
#define GITS_TYPER_PLPIS (1UL << 0)
#define GITS_TYPER_IDBITS_SHIFT 8
#define GITS_TYPER_DEVBITS_SHIFT 13 #define GITS_TYPER_DEVBITS_SHIFT 13
#define GITS_TYPER_DEVBITS(r) ((((r) >> GITS_TYPER_DEVBITS_SHIFT) & 0x1f) + 1) #define GITS_TYPER_DEVBITS(r) ((((r) >> GITS_TYPER_DEVBITS_SHIFT) & 0x1f) + 1)
#define GITS_TYPER_PTA (1UL << 19) #define GITS_TYPER_PTA (1UL << 19)
#define GITS_TYPER_HWCOLLCNT_SHIFT 24
#define GITS_CBASER_VALID (1UL << 63) #define GITS_CBASER_VALID (1UL << 63)
#define GITS_CBASER_nCnB (0UL << 59) #define GITS_CBASER_SHAREABILITY_SHIFT (10)
#define GITS_CBASER_nC (1UL << 59) #define GITS_CBASER_INNER_CACHEABILITY_SHIFT (59)
#define GITS_CBASER_RaWt (2UL << 59) #define GITS_CBASER_OUTER_CACHEABILITY_SHIFT (53)
#define GITS_CBASER_RaWb (3UL << 59) #define GITS_CBASER_SHAREABILITY_MASK \
#define GITS_CBASER_WaWt (4UL << 59) GIC_BASER_SHAREABILITY(GITS_CBASER, SHAREABILITY_MASK)
#define GITS_CBASER_WaWb (5UL << 59) #define GITS_CBASER_INNER_CACHEABILITY_MASK \
#define GITS_CBASER_RaWaWt (6UL << 59) GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, MASK)
#define GITS_CBASER_RaWaWb (7UL << 59) #define GITS_CBASER_OUTER_CACHEABILITY_MASK \
#define GITS_CBASER_CACHEABILITY_MASK (7UL << 59) GIC_BASER_CACHEABILITY(GITS_CBASER, OUTER, MASK)
#define GITS_CBASER_NonShareable (0UL << 10) #define GITS_CBASER_CACHEABILITY_MASK GITS_CBASER_INNER_CACHEABILITY_MASK
#define GITS_CBASER_InnerShareable (1UL << 10)
#define GITS_CBASER_OuterShareable (2UL << 10) #define GITS_CBASER_InnerShareable \
#define GITS_CBASER_SHAREABILITY_MASK (3UL << 10) GIC_BASER_SHAREABILITY(GITS_CBASER, InnerShareable)
#define GITS_CBASER_nCnB GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, nCnB)
#define GITS_CBASER_nC GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, nC)
#define GITS_CBASER_RaWt GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, RaWt)
#define GITS_CBASER_RaWb GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, RaWt)
#define GITS_CBASER_WaWt GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, WaWt)
#define GITS_CBASER_WaWb GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, WaWb)
#define GITS_CBASER_RaWaWt GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, RaWaWt)
#define GITS_CBASER_RaWaWb GIC_BASER_CACHEABILITY(GITS_CBASER, INNER, RaWaWb)
#define GITS_BASER_NR_REGS 8 #define GITS_BASER_NR_REGS 8
#define GITS_BASER_VALID (1UL << 63) #define GITS_BASER_VALID (1UL << 63)
#define GITS_BASER_nCnB (0UL << 59) #define GITS_BASER_INDIRECT (1ULL << 62)
#define GITS_BASER_nC (1UL << 59)
#define GITS_BASER_RaWt (2UL << 59) #define GITS_BASER_INNER_CACHEABILITY_SHIFT (59)
#define GITS_BASER_RaWb (3UL << 59) #define GITS_BASER_OUTER_CACHEABILITY_SHIFT (53)
#define GITS_BASER_WaWt (4UL << 59) #define GITS_BASER_INNER_CACHEABILITY_MASK \
#define GITS_BASER_WaWb (5UL << 59) GIC_BASER_CACHEABILITY(GITS_BASER, INNER, MASK)
#define GITS_BASER_RaWaWt (6UL << 59) #define GITS_BASER_CACHEABILITY_MASK GITS_BASER_INNER_CACHEABILITY_MASK
#define GITS_BASER_RaWaWb (7UL << 59) #define GITS_BASER_OUTER_CACHEABILITY_MASK \
#define GITS_BASER_CACHEABILITY_MASK (7UL << 59) GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, MASK)
#define GITS_BASER_SHAREABILITY_MASK \
GIC_BASER_SHAREABILITY(GITS_BASER, SHAREABILITY_MASK)
#define GITS_BASER_nCnB GIC_BASER_CACHEABILITY(GITS_BASER, INNER, nCnB)
#define GITS_BASER_nC GIC_BASER_CACHEABILITY(GITS_BASER, INNER, nC)
#define GITS_BASER_RaWt GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWt)
#define GITS_BASER_RaWb GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWt)
#define GITS_BASER_WaWt GIC_BASER_CACHEABILITY(GITS_BASER, INNER, WaWt)
#define GITS_BASER_WaWb GIC_BASER_CACHEABILITY(GITS_BASER, INNER, WaWb)
#define GITS_BASER_RaWaWt GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWaWt)
#define GITS_BASER_RaWaWb GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWaWb)
#define GITS_BASER_TYPE_SHIFT (56) #define GITS_BASER_TYPE_SHIFT (56)
#define GITS_BASER_TYPE(r) (((r) >> GITS_BASER_TYPE_SHIFT) & 7) #define GITS_BASER_TYPE(r) (((r) >> GITS_BASER_TYPE_SHIFT) & 7)
#define GITS_BASER_ENTRY_SIZE_SHIFT (48) #define GITS_BASER_ENTRY_SIZE_SHIFT (48)
#define GITS_BASER_ENTRY_SIZE(r) ((((r) >> GITS_BASER_ENTRY_SIZE_SHIFT) & 0xff) + 1) #define GITS_BASER_ENTRY_SIZE(r) ((((r) >> GITS_BASER_ENTRY_SIZE_SHIFT) & 0xff) + 1)
#define GITS_BASER_NonShareable (0UL << 10)
#define GITS_BASER_InnerShareable (1UL << 10)
#define GITS_BASER_OuterShareable (2UL << 10)
#define GITS_BASER_SHAREABILITY_SHIFT (10) #define GITS_BASER_SHAREABILITY_SHIFT (10)
#define GITS_BASER_SHAREABILITY_MASK (3UL << GITS_BASER_SHAREABILITY_SHIFT) #define GITS_BASER_InnerShareable \
GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)
#define GITS_BASER_PAGE_SIZE_SHIFT (8) #define GITS_BASER_PAGE_SIZE_SHIFT (8)
#define GITS_BASER_PAGE_SIZE_4K (0UL << GITS_BASER_PAGE_SIZE_SHIFT) #define GITS_BASER_PAGE_SIZE_4K (0UL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_16K (1UL << GITS_BASER_PAGE_SIZE_SHIFT) #define GITS_BASER_PAGE_SIZE_16K (1UL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_64K (2UL << GITS_BASER_PAGE_SIZE_SHIFT) #define GITS_BASER_PAGE_SIZE_64K (2UL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGE_SIZE_MASK (3UL << GITS_BASER_PAGE_SIZE_SHIFT) #define GITS_BASER_PAGE_SIZE_MASK (3UL << GITS_BASER_PAGE_SIZE_SHIFT)
#define GITS_BASER_PAGES_MAX 256 #define GITS_BASER_PAGES_MAX 256
#define GITS_BASER_NR_PAGES(r) (((r) & 0xff) + 1)
#define GITS_BASER_TYPE_NONE 0 #define GITS_BASER_TYPE_NONE 0
#define GITS_BASER_TYPE_DEVICE 1 #define GITS_BASER_TYPE_DEVICE 1
...@@ -243,7 +316,10 @@ ...@@ -243,7 +316,10 @@
*/ */
#define GITS_CMD_MAPD 0x08 #define GITS_CMD_MAPD 0x08
#define GITS_CMD_MAPC 0x09 #define GITS_CMD_MAPC 0x09
#define GITS_CMD_MAPVI 0x0a #define GITS_CMD_MAPTI 0x0a
/* older GIC documentation used MAPVI for this command */
#define GITS_CMD_MAPVI GITS_CMD_MAPTI
#define GITS_CMD_MAPI 0x0b
#define GITS_CMD_MOVI 0x01 #define GITS_CMD_MOVI 0x01
#define GITS_CMD_DISCARD 0x0f #define GITS_CMD_DISCARD 0x0f
#define GITS_CMD_INV 0x0c #define GITS_CMD_INV 0x0c
...@@ -253,6 +329,22 @@ ...@@ -253,6 +329,22 @@
#define GITS_CMD_CLEAR 0x04 #define GITS_CMD_CLEAR 0x04
#define GITS_CMD_SYNC 0x05 #define GITS_CMD_SYNC 0x05
/*
* ITS error numbers
*/
#define E_ITS_MOVI_UNMAPPED_INTERRUPT 0x010107
#define E_ITS_MOVI_UNMAPPED_COLLECTION 0x010109
#define E_ITS_CLEAR_UNMAPPED_INTERRUPT 0x010507
#define E_ITS_MAPD_DEVICE_OOR 0x010801
#define E_ITS_MAPC_PROCNUM_OOR 0x010902
#define E_ITS_MAPC_COLLECTION_OOR 0x010903
#define E_ITS_MAPTI_UNMAPPED_DEVICE 0x010a04
#define E_ITS_MAPTI_PHYSICALID_OOR 0x010a06
#define E_ITS_INV_UNMAPPED_INTERRUPT 0x010c07
#define E_ITS_INVALL_UNMAPPED_COLLECTION 0x010d09
#define E_ITS_MOVALL_PROCNUM_OOR 0x010e01
#define E_ITS_DISCARD_UNMAPPED_INTERRUPT 0x010f07
/* /*
* CPU interface registers * CPU interface registers
*/ */
......
...@@ -164,6 +164,8 @@ int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, ...@@ -164,6 +164,8 @@ int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
int len, struct kvm_io_device *dev); int len, struct kvm_io_device *dev);
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
struct kvm_io_device *dev); struct kvm_io_device *dev);
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
gpa_t addr);
#ifdef CONFIG_KVM_ASYNC_PF #ifdef CONFIG_KVM_ASYNC_PF
struct kvm_async_pf { struct kvm_async_pf {
......
...@@ -868,6 +868,7 @@ struct kvm_ppc_smmu_info { ...@@ -868,6 +868,7 @@ struct kvm_ppc_smmu_info {
#define KVM_CAP_MAX_VCPU_ID 128 #define KVM_CAP_MAX_VCPU_ID 128
#define KVM_CAP_X2APIC_API 129 #define KVM_CAP_X2APIC_API 129
#define KVM_CAP_S390_USER_INSTR0 130 #define KVM_CAP_S390_USER_INSTR0 130
#define KVM_CAP_MSI_DEVID 131
#ifdef KVM_CAP_IRQ_ROUTING #ifdef KVM_CAP_IRQ_ROUTING
...@@ -1026,12 +1027,14 @@ struct kvm_one_reg { ...@@ -1026,12 +1027,14 @@ struct kvm_one_reg {
__u64 addr; __u64 addr;
}; };
#define KVM_MSI_VALID_DEVID (1U << 0)
struct kvm_msi { struct kvm_msi {
__u32 address_lo; __u32 address_lo;
__u32 address_hi; __u32 address_hi;
__u32 data; __u32 data;
__u32 flags; __u32 flags;
__u8 pad[16]; __u32 devid;
__u8 pad[12];
}; };
struct kvm_arm_device_addr { struct kvm_arm_device_addr {
...@@ -1076,6 +1079,8 @@ enum kvm_device_type { ...@@ -1076,6 +1079,8 @@ enum kvm_device_type {
#define KVM_DEV_TYPE_FLIC KVM_DEV_TYPE_FLIC #define KVM_DEV_TYPE_FLIC KVM_DEV_TYPE_FLIC
KVM_DEV_TYPE_ARM_VGIC_V3, KVM_DEV_TYPE_ARM_VGIC_V3,
#define KVM_DEV_TYPE_ARM_VGIC_V3 KVM_DEV_TYPE_ARM_VGIC_V3 #define KVM_DEV_TYPE_ARM_VGIC_V3 KVM_DEV_TYPE_ARM_VGIC_V3
KVM_DEV_TYPE_ARM_VGIC_ITS,
#define KVM_DEV_TYPE_ARM_VGIC_ITS KVM_DEV_TYPE_ARM_VGIC_ITS
KVM_DEV_TYPE_MAX, KVM_DEV_TYPE_MAX,
}; };
......
...@@ -21,18 +21,11 @@ ...@@ -21,18 +21,11 @@
#include <asm/kvm_hyp.h> #include <asm/kvm_hyp.h>
#ifdef CONFIG_KVM_NEW_VGIC
extern struct vgic_global kvm_vgic_global_state;
#define vgic_v2_params kvm_vgic_global_state
#else
extern struct vgic_params vgic_v2_params;
#endif
static void __hyp_text save_maint_int_state(struct kvm_vcpu *vcpu, static void __hyp_text save_maint_int_state(struct kvm_vcpu *vcpu,
void __iomem *base) void __iomem *base)
{ {
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
int nr_lr = (kern_hyp_va(&vgic_v2_params))->nr_lr; int nr_lr = (kern_hyp_va(&kvm_vgic_global_state))->nr_lr;
u32 eisr0, eisr1; u32 eisr0, eisr1;
int i; int i;
bool expect_mi; bool expect_mi;
...@@ -74,7 +67,7 @@ static void __hyp_text save_maint_int_state(struct kvm_vcpu *vcpu, ...@@ -74,7 +67,7 @@ static void __hyp_text save_maint_int_state(struct kvm_vcpu *vcpu,
static void __hyp_text save_elrsr(struct kvm_vcpu *vcpu, void __iomem *base) static void __hyp_text save_elrsr(struct kvm_vcpu *vcpu, void __iomem *base)
{ {
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
int nr_lr = (kern_hyp_va(&vgic_v2_params))->nr_lr; int nr_lr = (kern_hyp_va(&kvm_vgic_global_state))->nr_lr;
u32 elrsr0, elrsr1; u32 elrsr0, elrsr1;
elrsr0 = readl_relaxed(base + GICH_ELRSR0); elrsr0 = readl_relaxed(base + GICH_ELRSR0);
...@@ -93,7 +86,7 @@ static void __hyp_text save_elrsr(struct kvm_vcpu *vcpu, void __iomem *base) ...@@ -93,7 +86,7 @@ static void __hyp_text save_elrsr(struct kvm_vcpu *vcpu, void __iomem *base)
static void __hyp_text save_lrs(struct kvm_vcpu *vcpu, void __iomem *base) static void __hyp_text save_lrs(struct kvm_vcpu *vcpu, void __iomem *base)
{ {
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
int nr_lr = (kern_hyp_va(&vgic_v2_params))->nr_lr; int nr_lr = (kern_hyp_va(&kvm_vgic_global_state))->nr_lr;
int i; int i;
for (i = 0; i < nr_lr; i++) { for (i = 0; i < nr_lr; i++) {
...@@ -147,7 +140,7 @@ void __hyp_text __vgic_v2_restore_state(struct kvm_vcpu *vcpu) ...@@ -147,7 +140,7 @@ void __hyp_text __vgic_v2_restore_state(struct kvm_vcpu *vcpu)
struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2; struct vgic_v2_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v2;
struct vgic_dist *vgic = &kvm->arch.vgic; struct vgic_dist *vgic = &kvm->arch.vgic;
void __iomem *base = kern_hyp_va(vgic->vctrl_base); void __iomem *base = kern_hyp_va(vgic->vctrl_base);
int nr_lr = (kern_hyp_va(&vgic_v2_params))->nr_lr; int nr_lr = (kern_hyp_va(&kvm_vgic_global_state))->nr_lr;
int i; int i;
u64 live_lrs = 0; u64 live_lrs = 0;
......
/*
* Contains GICv2 specific emulation code, was in vgic.c before.
*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/irqchip/arm-gic.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
#define GICC_ARCH_VERSION_V2 0x2
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
{
return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
}
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg;
u32 word_offset = offset & 3;
switch (offset & ~3) {
case 0: /* GICD_CTLR */
reg = vcpu->kvm->arch.vgic.enabled;
vgic_reg_access(mmio, &reg, word_offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
vcpu->kvm->arch.vgic.enabled = reg & 1;
vgic_update_state(vcpu->kvm);
return true;
}
break;
case 4: /* GICD_TYPER */
reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
vgic_reg_access(mmio, &reg, word_offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
break;
case 8: /* GICD_IIDR */
reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
vgic_reg_access(mmio, &reg, word_offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
break;
}
return false;
}
static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id, ACCESS_WRITE_SETBIT);
}
static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT);
}
static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
}
static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
}
static bool handle_mmio_set_active_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
}
static bool handle_mmio_clear_active_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
}
static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
return false;
}
#define GICD_ITARGETSR_SIZE 32
#define GICD_CPUTARGETS_BITS 8
#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int i;
u32 val = 0;
irq -= VGIC_NR_PRIVATE_IRQS;
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
return val;
}
static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int i, c;
unsigned long *bmap;
u32 target;
irq -= VGIC_NR_PRIVATE_IRQS;
/*
* Pick the LSB in each byte. This ensures we target exactly
* one vcpu per IRQ. If the byte is null, assume we target
* CPU0.
*/
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
int shift = i * GICD_CPUTARGETS_BITS;
target = ffs((val >> shift) & 0xffU);
target = target ? (target - 1) : 0;
dist->irq_spi_cpu[irq + i] = target;
kvm_for_each_vcpu(c, vcpu, kvm) {
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
if (c == target)
set_bit(irq + i, bmap);
else
clear_bit(irq + i, bmap);
}
}
}
static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 reg;
/* We treat the banked interrupts targets as read-only */
if (offset < 32) {
u32 roreg;
roreg = 1 << vcpu->vcpu_id;
roreg |= roreg << 8;
roreg |= roreg << 16;
vgic_reg_access(mmio, &roreg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
vgic_update_state(vcpu->kvm);
return true;
}
return false;
}
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 *reg;
reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
vcpu->vcpu_id, offset >> 1);
return vgic_handle_cfg_reg(reg, mmio, offset);
}
static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg;
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
vgic_dispatch_sgi(vcpu, reg);
vgic_update_state(vcpu->kvm);
return true;
}
return false;
}
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int sgi;
int min_sgi = (offset & ~0x3);
int max_sgi = min_sgi + 3;
int vcpu_id = vcpu->vcpu_id;
u32 reg = 0;
/* Copy source SGIs from distributor side */
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
u8 sources = *vgic_get_sgi_sources(dist, vcpu_id, sgi);
reg |= ((u32)sources) << (8 * (sgi - min_sgi));
}
mmio_data_write(mmio, ~0, reg);
return false;
}
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, bool set)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int sgi;
int min_sgi = (offset & ~0x3);
int max_sgi = min_sgi + 3;
int vcpu_id = vcpu->vcpu_id;
u32 reg;
bool updated = false;
reg = mmio_data_read(mmio, ~0);
/* Clear pending SGIs on the distributor */
for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
u8 mask = reg >> (8 * (sgi - min_sgi));
u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
if (set) {
if ((*src & mask) != mask)
updated = true;
*src |= mask;
} else {
if (*src & mask)
updated = true;
*src &= ~mask;
}
}
if (updated)
vgic_update_state(vcpu->kvm);
return updated;
}
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (!mmio->is_write)
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
else
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
}
static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (!mmio->is_write)
return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
else
return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
}
static const struct vgic_io_range vgic_dist_ranges[] = {
{
.base = GIC_DIST_SOFTINT,
.len = 4,
.handle_mmio = handle_mmio_sgi_reg,
},
{
.base = GIC_DIST_CTRL,
.len = 12,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_misc,
},
{
.base = GIC_DIST_IGROUP,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GIC_DIST_ENABLE_SET,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_enable_reg,
},
{
.base = GIC_DIST_ENABLE_CLEAR,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_enable_reg,
},
{
.base = GIC_DIST_PENDING_SET,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_pending_reg,
},
{
.base = GIC_DIST_PENDING_CLEAR,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_pending_reg,
},
{
.base = GIC_DIST_ACTIVE_SET,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_active_reg,
},
{
.base = GIC_DIST_ACTIVE_CLEAR,
.len = VGIC_MAX_IRQS / 8,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_active_reg,
},
{
.base = GIC_DIST_PRI,
.len = VGIC_MAX_IRQS,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_priority_reg,
},
{
.base = GIC_DIST_TARGET,
.len = VGIC_MAX_IRQS,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_target_reg,
},
{
.base = GIC_DIST_CONFIG,
.len = VGIC_MAX_IRQS / 4,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_cfg_reg,
},
{
.base = GIC_DIST_SGI_PENDING_CLEAR,
.len = VGIC_NR_SGIS,
.handle_mmio = handle_mmio_sgi_clear,
},
{
.base = GIC_DIST_SGI_PENDING_SET,
.len = VGIC_NR_SGIS,
.handle_mmio = handle_mmio_sgi_set,
},
{}
};
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{
struct kvm *kvm = vcpu->kvm;
struct vgic_dist *dist = &kvm->arch.vgic;
int nrcpus = atomic_read(&kvm->online_vcpus);
u8 target_cpus;
int sgi, mode, c, vcpu_id;
vcpu_id = vcpu->vcpu_id;
sgi = reg & 0xf;
target_cpus = (reg >> 16) & 0xff;
mode = (reg >> 24) & 3;
switch (mode) {
case 0:
if (!target_cpus)
return;
break;
case 1:
target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
break;
case 2:
target_cpus = 1 << vcpu_id;
break;
}
kvm_for_each_vcpu(c, vcpu, kvm) {
if (target_cpus & 1) {
/* Flag the SGI as pending */
vgic_dist_irq_set_pending(vcpu, sgi);
*vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
kvm_debug("SGI%d from CPU%d to CPU%d\n",
sgi, vcpu_id, c);
}
target_cpus >>= 1;
}
}
static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long sources;
int vcpu_id = vcpu->vcpu_id;
int c;
sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
for_each_set_bit(c, &sources, dist->nr_cpus) {
if (vgic_queue_irq(vcpu, c, irq))
clear_bit(c, &sources);
}
*vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
/*
* If the sources bitmap has been cleared it means that we
* could queue all the SGIs onto link registers (see the
* clear_bit above), and therefore we are done with them in
* our emulated gic and can get rid of them.
*/
if (!sources) {
vgic_dist_irq_clear_pending(vcpu, irq);
vgic_cpu_irq_clear(vcpu, irq);
return true;
}
return false;
}
/**
* kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
* @kvm: pointer to the kvm struct
*
* Map the virtual CPU interface into the VM before running any VCPUs. We
* can't do this at creation time, because user space must first set the
* virtual CPU interface address in the guest physical address space.
*/
static int vgic_v2_map_resources(struct kvm *kvm,
const struct vgic_params *params)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int ret = 0;
if (!irqchip_in_kernel(kvm))
return 0;
mutex_lock(&kvm->lock);
if (vgic_ready(kvm))
goto out;
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(dist->vgic_cpu_base)) {
kvm_err("Need to set vgic cpu and dist addresses first\n");
ret = -ENXIO;
goto out;
}
vgic_register_kvm_io_dev(kvm, dist->vgic_dist_base,
KVM_VGIC_V2_DIST_SIZE,
vgic_dist_ranges, -1, &dist->dist_iodev);
/*
* Initialize the vgic if this hasn't already been done on demand by
* accessing the vgic state from userspace.
*/
ret = vgic_init(kvm);
if (ret) {
kvm_err("Unable to allocate maps\n");
goto out_unregister;
}
ret = kvm_phys_addr_ioremap(kvm, dist->vgic_cpu_base,
params->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
true);
if (ret) {
kvm_err("Unable to remap VGIC CPU to VCPU\n");
goto out_unregister;
}
dist->ready = true;
goto out;
out_unregister:
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &dist->dist_iodev.dev);
out:
if (ret)
kvm_vgic_destroy(kvm);
mutex_unlock(&kvm->lock);
return ret;
}
static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
*vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source;
}
static int vgic_v2_init_model(struct kvm *kvm)
{
int i;
for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4)
vgic_set_target_reg(kvm, 0, i);
return 0;
}
void vgic_v2_init_emulation(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
dist->vm_ops.init_model = vgic_v2_init_model;
dist->vm_ops.map_resources = vgic_v2_map_resources;
kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
}
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
bool updated = false;
struct vgic_vmcr vmcr;
u32 *vmcr_field;
u32 reg;
vgic_get_vmcr(vcpu, &vmcr);
switch (offset & ~0x3) {
case GIC_CPU_CTRL:
vmcr_field = &vmcr.ctlr;
break;
case GIC_CPU_PRIMASK:
vmcr_field = &vmcr.pmr;
break;
case GIC_CPU_BINPOINT:
vmcr_field = &vmcr.bpr;
break;
case GIC_CPU_ALIAS_BINPOINT:
vmcr_field = &vmcr.abpr;
break;
default:
BUG();
}
if (!mmio->is_write) {
reg = *vmcr_field;
mmio_data_write(mmio, ~0, reg);
} else {
reg = mmio_data_read(mmio, ~0);
if (reg != *vmcr_field) {
*vmcr_field = reg;
vgic_set_vmcr(vcpu, &vmcr);
updated = true;
}
}
return updated;
}
static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
}
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 reg;
if (mmio->is_write)
return false;
/* GICC_IIDR */
reg = (PRODUCT_ID_KVM << 20) |
(GICC_ARCH_VERSION_V2 << 16) |
(IMPLEMENTER_ARM << 0);
mmio_data_write(mmio, ~0, reg);
return false;
}
/*
* CPU Interface Register accesses - these are not accessed by the VM, but by
* user space for saving and restoring VGIC state.
*/
static const struct vgic_io_range vgic_cpu_ranges[] = {
{
.base = GIC_CPU_CTRL,
.len = 12,
.handle_mmio = handle_cpu_mmio_misc,
},
{
.base = GIC_CPU_ALIAS_BINPOINT,
.len = 4,
.handle_mmio = handle_mmio_abpr,
},
{
.base = GIC_CPU_ACTIVEPRIO,
.len = 16,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GIC_CPU_IDENT,
.len = 4,
.handle_mmio = handle_cpu_mmio_ident,
},
};
static int vgic_attr_regs_access(struct kvm_device *dev,
struct kvm_device_attr *attr,
u32 *reg, bool is_write)
{
const struct vgic_io_range *r = NULL, *ranges;
phys_addr_t offset;
int ret, cpuid, c;
struct kvm_vcpu *vcpu, *tmp_vcpu;
struct vgic_dist *vgic;
struct kvm_exit_mmio mmio;
u32 data;
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
KVM_DEV_ARM_VGIC_CPUID_SHIFT;
mutex_lock(&dev->kvm->lock);
ret = vgic_init(dev->kvm);
if (ret)
goto out;
if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
ret = -EINVAL;
goto out;
}
vcpu = kvm_get_vcpu(dev->kvm, cpuid);
vgic = &dev->kvm->arch.vgic;
mmio.len = 4;
mmio.is_write = is_write;
mmio.data = &data;
if (is_write)
mmio_data_write(&mmio, ~0, *reg);
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
mmio.phys_addr = vgic->vgic_dist_base + offset;
ranges = vgic_dist_ranges;
break;
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
mmio.phys_addr = vgic->vgic_cpu_base + offset;
ranges = vgic_cpu_ranges;
break;
default:
BUG();
}
r = vgic_find_range(ranges, 4, offset);
if (unlikely(!r || !r->handle_mmio)) {
ret = -ENXIO;
goto out;
}
spin_lock(&vgic->lock);
/*
* Ensure that no other VCPU is running by checking the vcpu->cpu
* field. If no other VPCUs are running we can safely access the VGIC
* state, because even if another VPU is run after this point, that
* VCPU will not touch the vgic state, because it will block on
* getting the vgic->lock in kvm_vgic_sync_hwstate().
*/
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
if (unlikely(tmp_vcpu->cpu != -1)) {
ret = -EBUSY;
goto out_vgic_unlock;
}
}
/*
* Move all pending IRQs from the LRs on all VCPUs so the pending
* state can be properly represented in the register state accessible
* through this API.
*/
kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
vgic_unqueue_irqs(tmp_vcpu);
offset -= r->base;
r->handle_mmio(vcpu, &mmio, offset);
if (!is_write)
*reg = mmio_data_read(&mmio, ~0);
ret = 0;
out_vgic_unlock:
spin_unlock(&vgic->lock);
out:
mutex_unlock(&dev->kvm->lock);
return ret;
}
static int vgic_v2_create(struct kvm_device *dev, u32 type)
{
return kvm_vgic_create(dev->kvm, type);
}
static void vgic_v2_destroy(struct kvm_device *dev)
{
kfree(dev);
}
static int vgic_v2_set_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
int ret;
ret = vgic_set_common_attr(dev, attr);
if (ret != -ENXIO)
return ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
u32 reg;
if (get_user(reg, uaddr))
return -EFAULT;
return vgic_attr_regs_access(dev, attr, &reg, true);
}
}
return -ENXIO;
}
static int vgic_v2_get_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
int ret;
ret = vgic_get_common_attr(dev, attr);
if (ret != -ENXIO)
return ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
u32 reg = 0;
ret = vgic_attr_regs_access(dev, attr, &reg, false);
if (ret)
return ret;
return put_user(reg, uaddr);
}
}
return -ENXIO;
}
static int vgic_v2_has_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
phys_addr_t offset;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR:
switch (attr->attr) {
case KVM_VGIC_V2_ADDR_TYPE_DIST:
case KVM_VGIC_V2_ADDR_TYPE_CPU:
return 0;
}
break;
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
return vgic_has_attr_regs(vgic_dist_ranges, offset);
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
return vgic_has_attr_regs(vgic_cpu_ranges, offset);
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
return 0;
case KVM_DEV_ARM_VGIC_GRP_CTRL:
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0;
}
}
return -ENXIO;
}
struct kvm_device_ops kvm_arm_vgic_v2_ops = {
.name = "kvm-arm-vgic-v2",
.create = vgic_v2_create,
.destroy = vgic_v2_destroy,
.set_attr = vgic_v2_set_attr,
.get_attr = vgic_v2_get_attr,
.has_attr = vgic_v2_has_attr,
};
/*
* Copyright (C) 2012,2013 ARM Limited, All Rights Reserved.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqchip/arm-gic.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
static struct vgic_lr vgic_v2_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
struct vgic_lr lr_desc;
u32 val = vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr];
lr_desc.irq = val & GICH_LR_VIRTUALID;
if (lr_desc.irq <= 15)
lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7;
else
lr_desc.source = 0;
lr_desc.state = 0;
if (val & GICH_LR_PENDING_BIT)
lr_desc.state |= LR_STATE_PENDING;
if (val & GICH_LR_ACTIVE_BIT)
lr_desc.state |= LR_STATE_ACTIVE;
if (val & GICH_LR_EOI)
lr_desc.state |= LR_EOI_INT;
if (val & GICH_LR_HW) {
lr_desc.state |= LR_HW;
lr_desc.hwirq = (val & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT;
}
return lr_desc;
}
static void vgic_v2_set_lr(struct kvm_vcpu *vcpu, int lr,
struct vgic_lr lr_desc)
{
u32 lr_val;
lr_val = lr_desc.irq;
if (lr_desc.state & LR_STATE_PENDING)
lr_val |= GICH_LR_PENDING_BIT;
if (lr_desc.state & LR_STATE_ACTIVE)
lr_val |= GICH_LR_ACTIVE_BIT;
if (lr_desc.state & LR_EOI_INT)
lr_val |= GICH_LR_EOI;
if (lr_desc.state & LR_HW) {
lr_val |= GICH_LR_HW;
lr_val |= (u32)lr_desc.hwirq << GICH_LR_PHYSID_CPUID_SHIFT;
}
if (lr_desc.irq < VGIC_NR_SGIS)
lr_val |= (lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT);
vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = lr_val;
if (!(lr_desc.state & LR_STATE_MASK))
vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr |= (1ULL << lr);
else
vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr &= ~(1ULL << lr);
}
static u64 vgic_v2_get_elrsr(const struct kvm_vcpu *vcpu)
{
return vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr;
}
static u64 vgic_v2_get_eisr(const struct kvm_vcpu *vcpu)
{
return vcpu->arch.vgic_cpu.vgic_v2.vgic_eisr;
}
static void vgic_v2_clear_eisr(struct kvm_vcpu *vcpu)
{
vcpu->arch.vgic_cpu.vgic_v2.vgic_eisr = 0;
}
static u32 vgic_v2_get_interrupt_status(const struct kvm_vcpu *vcpu)
{
u32 misr = vcpu->arch.vgic_cpu.vgic_v2.vgic_misr;
u32 ret = 0;
if (misr & GICH_MISR_EOI)
ret |= INT_STATUS_EOI;
if (misr & GICH_MISR_U)
ret |= INT_STATUS_UNDERFLOW;
return ret;
}
static void vgic_v2_enable_underflow(struct kvm_vcpu *vcpu)
{
vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr |= GICH_HCR_UIE;
}
static void vgic_v2_disable_underflow(struct kvm_vcpu *vcpu)
{
vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr &= ~GICH_HCR_UIE;
}
static void vgic_v2_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
u32 vmcr = vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr;
vmcrp->ctlr = (vmcr & GICH_VMCR_CTRL_MASK) >> GICH_VMCR_CTRL_SHIFT;
vmcrp->abpr = (vmcr & GICH_VMCR_ALIAS_BINPOINT_MASK) >> GICH_VMCR_ALIAS_BINPOINT_SHIFT;
vmcrp->bpr = (vmcr & GICH_VMCR_BINPOINT_MASK) >> GICH_VMCR_BINPOINT_SHIFT;
vmcrp->pmr = (vmcr & GICH_VMCR_PRIMASK_MASK) >> GICH_VMCR_PRIMASK_SHIFT;
}
static void vgic_v2_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
u32 vmcr;
vmcr = (vmcrp->ctlr << GICH_VMCR_CTRL_SHIFT) & GICH_VMCR_CTRL_MASK;
vmcr |= (vmcrp->abpr << GICH_VMCR_ALIAS_BINPOINT_SHIFT) & GICH_VMCR_ALIAS_BINPOINT_MASK;
vmcr |= (vmcrp->bpr << GICH_VMCR_BINPOINT_SHIFT) & GICH_VMCR_BINPOINT_MASK;
vmcr |= (vmcrp->pmr << GICH_VMCR_PRIMASK_SHIFT) & GICH_VMCR_PRIMASK_MASK;
vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = vmcr;
}
static void vgic_v2_enable(struct kvm_vcpu *vcpu)
{
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vcpu->arch.vgic_cpu.vgic_v2.vgic_vmcr = 0;
vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr = ~0;
/* Get the show on the road... */
vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr = GICH_HCR_EN;
}
static const struct vgic_ops vgic_v2_ops = {
.get_lr = vgic_v2_get_lr,
.set_lr = vgic_v2_set_lr,
.get_elrsr = vgic_v2_get_elrsr,
.get_eisr = vgic_v2_get_eisr,
.clear_eisr = vgic_v2_clear_eisr,
.get_interrupt_status = vgic_v2_get_interrupt_status,
.enable_underflow = vgic_v2_enable_underflow,
.disable_underflow = vgic_v2_disable_underflow,
.get_vmcr = vgic_v2_get_vmcr,
.set_vmcr = vgic_v2_set_vmcr,
.enable = vgic_v2_enable,
};
struct vgic_params __section(.hyp.text) vgic_v2_params;
static void vgic_cpu_init_lrs(void *params)
{
struct vgic_params *vgic = params;
int i;
for (i = 0; i < vgic->nr_lr; i++)
writel_relaxed(0, vgic->vctrl_base + GICH_LR0 + (i * 4));
}
/**
* vgic_v2_probe - probe for a GICv2 compatible interrupt controller
* @gic_kvm_info: pointer to the GIC description
* @ops: address of a pointer to the GICv2 operations
* @params: address of a pointer to HW-specific parameters
*
* Returns 0 if a GICv2 has been found, with the low level operations
* in *ops and the HW parameters in *params. Returns an error code
* otherwise.
*/
int vgic_v2_probe(const struct gic_kvm_info *gic_kvm_info,
const struct vgic_ops **ops,
const struct vgic_params **params)
{
int ret;
struct vgic_params *vgic = &vgic_v2_params;
const struct resource *vctrl_res = &gic_kvm_info->vctrl;
const struct resource *vcpu_res = &gic_kvm_info->vcpu;
memset(vgic, 0, sizeof(*vgic));
if (!gic_kvm_info->maint_irq) {
kvm_err("error getting vgic maintenance irq\n");
ret = -ENXIO;
goto out;
}
vgic->maint_irq = gic_kvm_info->maint_irq;
if (!gic_kvm_info->vctrl.start) {
kvm_err("GICH not present in the firmware table\n");
ret = -ENXIO;
goto out;
}
vgic->vctrl_base = ioremap(gic_kvm_info->vctrl.start,
resource_size(&gic_kvm_info->vctrl));
if (!vgic->vctrl_base) {
kvm_err("Cannot ioremap GICH\n");
ret = -ENOMEM;
goto out;
}
vgic->nr_lr = readl_relaxed(vgic->vctrl_base + GICH_VTR);
vgic->nr_lr = (vgic->nr_lr & 0x3f) + 1;
ret = create_hyp_io_mappings(vgic->vctrl_base,
vgic->vctrl_base + resource_size(vctrl_res),
vctrl_res->start);
if (ret) {
kvm_err("Cannot map VCTRL into hyp\n");
goto out_unmap;
}
if (!PAGE_ALIGNED(vcpu_res->start)) {
kvm_err("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)vcpu_res->start);
ret = -ENXIO;
goto out_unmap;
}
if (!PAGE_ALIGNED(resource_size(vcpu_res))) {
kvm_err("GICV size 0x%llx not a multiple of page size 0x%lx\n",
(unsigned long long)resource_size(vcpu_res),
PAGE_SIZE);
ret = -ENXIO;
goto out_unmap;
}
vgic->can_emulate_gicv2 = true;
kvm_register_device_ops(&kvm_arm_vgic_v2_ops, KVM_DEV_TYPE_ARM_VGIC_V2);
vgic->vcpu_base = vcpu_res->start;
kvm_info("GICH base=0x%llx, GICV base=0x%llx, IRQ=%d\n",
gic_kvm_info->vctrl.start, vgic->vcpu_base, vgic->maint_irq);
vgic->type = VGIC_V2;
vgic->max_gic_vcpus = VGIC_V2_MAX_CPUS;
on_each_cpu(vgic_cpu_init_lrs, vgic, 1);
*ops = &vgic_v2_ops;
*params = vgic;
goto out;
out_unmap:
iounmap(vgic->vctrl_base);
out:
return ret;
}
/*
* GICv3 distributor and redistributor emulation
*
* GICv3 emulation is currently only supported on a GICv3 host (because
* we rely on the hardware's CPU interface virtualization support), but
* supports both hardware with or without the optional GICv2 backwards
* compatibility features.
*
* Limitations of the emulation:
* (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore)
* - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI.
* - We do not support the message based interrupts (MBIs) triggered by
* writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0.
* - We do not support the (optional) backwards compatibility feature.
* GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports
* the compatiblity feature, you can use a GICv2 in the guest, though.
* - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI.
* - Priorities are not emulated (same as the GICv2 emulation). Linux
* as a guest is fine with this, because it does not use priorities.
* - We only support Group1 interrupts. Again Linux uses only those.
*
* Copyright (C) 2014 ARM Ltd.
* Author: Andre Przywara <andre.przywara@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg = 0xffffffff;
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg = 0;
/*
* Force ARE and DS to 1, the guest cannot change this.
* For the time being we only support Group1 interrupts.
*/
if (vcpu->kvm->arch.vgic.enabled)
reg = GICD_CTLR_ENABLE_SS_G1;
reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1);
vgic_update_state(vcpu->kvm);
return true;
}
return false;
}
/*
* As this implementation does not provide compatibility
* with GICv2 (ARE==1), we report zero CPUs in bits [5..7].
* Also LPIs and MBIs are not supported, so we set the respective bits to 0.
* Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs).
*/
#define INTERRUPT_ID_BITS 10
static bool handle_mmio_typer(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg;
reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1;
reg |= (INTERRUPT_ID_BITS - 1) << 19;
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_iidr(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
u32 reg;
reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id,
ACCESS_WRITE_SETBIT);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id,
ACCESS_WRITE_CLEARBIT);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_set_active_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_clear_active_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8))
return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset,
vcpu->vcpu_id);
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 *reg;
if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) {
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
return false;
}
static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 *reg;
if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) {
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
vcpu->vcpu_id, offset >> 1);
return vgic_handle_cfg_reg(reg, mmio, offset);
}
/*
* We use a compressed version of the MPIDR (all 32 bits in one 32-bit word)
* when we store the target MPIDR written by the guest.
*/
static u32 compress_mpidr(unsigned long mpidr)
{
u32 ret;
ret = MPIDR_AFFINITY_LEVEL(mpidr, 0);
ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8;
ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16;
ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24;
return ret;
}
static unsigned long uncompress_mpidr(u32 value)
{
unsigned long mpidr;
mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0);
mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1);
mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2);
mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3);
return mpidr;
}
/*
* Lookup the given MPIDR value to get the vcpu_id (if there is one)
* and store that in the irq_spi_cpu[] array.
* This limits the number of VCPUs to 255 for now, extending the data
* type (or storing kvm_vcpu pointers) should lift the limit.
* Store the original MPIDR value in an extra array to support read-as-written.
* Unallocated MPIDRs are translated to a special value and caught
* before any array accesses.
*/
static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm *kvm = vcpu->kvm;
struct vgic_dist *dist = &kvm->arch.vgic;
int spi;
u32 reg;
int vcpu_id;
unsigned long *bmap, mpidr;
/*
* The upper 32 bits of each 64 bit register are zero,
* as we don't support Aff3.
*/
if ((offset & 4)) {
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
/* This region only covers SPIs, so no handling of private IRQs here. */
spi = offset / 8;
/* get the stored MPIDR for this IRQ */
mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]);
reg = mpidr;
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (!mmio->is_write)
return false;
/*
* Now clear the currently assigned vCPU from the map, making room
* for the new one to be written below
*/
vcpu = kvm_mpidr_to_vcpu(kvm, mpidr);
if (likely(vcpu)) {
vcpu_id = vcpu->vcpu_id;
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
__clear_bit(spi, bmap);
}
dist->irq_spi_mpidr[spi] = compress_mpidr(reg);
vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK);
/*
* The spec says that non-existent MPIDR values should not be
* forwarded to any existent (v)CPU, but should be able to become
* pending anyway. We simply keep the irq_spi_target[] array empty, so
* the interrupt will never be injected.
* irq_spi_cpu[irq] gets a magic value in this case.
*/
if (likely(vcpu)) {
vcpu_id = vcpu->vcpu_id;
dist->irq_spi_cpu[spi] = vcpu_id;
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]);
__set_bit(spi, bmap);
} else {
dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED;
}
vgic_update_state(kvm);
return true;
}
/*
* We should be careful about promising too much when a guest reads
* this register. Don't claim to be like any hardware implementation,
* but just report the GIC as version 3 - which is what a Linux guest
* would check.
*/
static bool handle_mmio_idregs(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 reg = 0;
switch (offset + GICD_IDREGS) {
case GICD_PIDR2:
reg = 0x3b;
break;
}
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static const struct vgic_io_range vgic_v3_dist_ranges[] = {
{
.base = GICD_CTLR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_ctlr,
},
{
.base = GICD_TYPER,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_typer,
},
{
.base = GICD_IIDR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_iidr,
},
{
/* this register is optional, it is RAZ/WI if not implemented */
.base = GICD_STATUSR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this write only register is WI when TYPER.MBIS=0 */
.base = GICD_SETSPI_NSR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this write only register is WI when TYPER.MBIS=0 */
.base = GICD_CLRSPI_NSR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when DS=1 */
.base = GICD_SETSPI_SR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when DS=1 */
.base = GICD_CLRSPI_SR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICD_IGROUPR,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_rao_wi,
},
{
.base = GICD_ISENABLER,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_enable_reg_dist,
},
{
.base = GICD_ICENABLER,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_enable_reg_dist,
},
{
.base = GICD_ISPENDR,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_pending_reg_dist,
},
{
.base = GICD_ICPENDR,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_pending_reg_dist,
},
{
.base = GICD_ISACTIVER,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_active_reg_dist,
},
{
.base = GICD_ICACTIVER,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_active_reg_dist,
},
{
.base = GICD_IPRIORITYR,
.len = 0x400,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_priority_reg_dist,
},
{
/* TARGETSRn is RES0 when ARE=1 */
.base = GICD_ITARGETSR,
.len = 0x400,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICD_ICFGR,
.len = 0x100,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_cfg_reg_dist,
},
{
/* this is RAZ/WI when DS=1 */
.base = GICD_IGRPMODR,
.len = 0x80,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when DS=1 */
.base = GICD_NSACR,
.len = 0x100,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when ARE=1 */
.base = GICD_SGIR,
.len = 0x04,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when ARE=1 */
.base = GICD_CPENDSGIR,
.len = 0x10,
.handle_mmio = handle_mmio_raz_wi,
},
{
/* this is RAZ/WI when ARE=1 */
.base = GICD_SPENDSGIR,
.len = 0x10,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICD_IROUTER + 0x100,
.len = 0x1ee0,
.bits_per_irq = 64,
.handle_mmio = handle_mmio_route_reg,
},
{
.base = GICD_IDREGS,
.len = 0x30,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_idregs,
},
{},
};
static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
/* since we don't support LPIs, this register is zero for now */
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 reg;
u64 mpidr;
struct kvm_vcpu *redist_vcpu = mmio->private;
int target_vcpu_id = redist_vcpu->vcpu_id;
/* the upper 32 bits contain the affinity value */
if ((offset & ~3) == 4) {
mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu);
reg = compress_mpidr(mpidr);
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
reg = redist_vcpu->vcpu_id << 8;
if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
reg |= GICR_TYPER_LAST;
vgic_reg_access(mmio, &reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
return false;
}
static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id,
ACCESS_WRITE_SETBIT);
}
static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_enable_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id,
ACCESS_WRITE_CLEARBIT);
}
static bool handle_mmio_set_active_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_set_active_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id);
}
static bool handle_mmio_clear_active_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_clear_active_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id);
}
static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id);
}
static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset,
redist_vcpu->vcpu_id);
}
static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
u32 *reg;
reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
redist_vcpu->vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
return false;
}
static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
struct kvm_vcpu *redist_vcpu = mmio->private;
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
redist_vcpu->vcpu_id, offset >> 1);
return vgic_handle_cfg_reg(reg, mmio, offset);
}
#define SGI_base(x) ((x) + SZ_64K)
static const struct vgic_io_range vgic_redist_ranges[] = {
{
.base = GICR_CTLR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_ctlr_redist,
},
{
.base = GICR_TYPER,
.len = 0x08,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_typer_redist,
},
{
.base = GICR_IIDR,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_iidr,
},
{
.base = GICR_WAKER,
.len = 0x04,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = GICR_IDREGS,
.len = 0x30,
.bits_per_irq = 0,
.handle_mmio = handle_mmio_idregs,
},
{
.base = SGI_base(GICR_IGROUPR0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_rao_wi,
},
{
.base = SGI_base(GICR_ISENABLER0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_enable_reg_redist,
},
{
.base = SGI_base(GICR_ICENABLER0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_enable_reg_redist,
},
{
.base = SGI_base(GICR_ISPENDR0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_pending_reg_redist,
},
{
.base = SGI_base(GICR_ICPENDR0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_pending_reg_redist,
},
{
.base = SGI_base(GICR_ISACTIVER0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_set_active_reg_redist,
},
{
.base = SGI_base(GICR_ICACTIVER0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_clear_active_reg_redist,
},
{
.base = SGI_base(GICR_IPRIORITYR0),
.len = 0x20,
.bits_per_irq = 8,
.handle_mmio = handle_mmio_priority_reg_redist,
},
{
.base = SGI_base(GICR_ICFGR0),
.len = 0x08,
.bits_per_irq = 2,
.handle_mmio = handle_mmio_cfg_reg_redist,
},
{
.base = SGI_base(GICR_IGRPMODR0),
.len = 0x04,
.bits_per_irq = 1,
.handle_mmio = handle_mmio_raz_wi,
},
{
.base = SGI_base(GICR_NSACR),
.len = 0x04,
.handle_mmio = handle_mmio_raz_wi,
},
{},
};
static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
if (vgic_queue_irq(vcpu, 0, irq)) {
vgic_dist_irq_clear_pending(vcpu, irq);
vgic_cpu_irq_clear(vcpu, irq);
return true;
}
return false;
}
static int vgic_v3_map_resources(struct kvm *kvm,
const struct vgic_params *params)
{
int ret = 0;
struct vgic_dist *dist = &kvm->arch.vgic;
gpa_t rdbase = dist->vgic_redist_base;
struct vgic_io_device *iodevs = NULL;
int i;
if (!irqchip_in_kernel(kvm))
return 0;
mutex_lock(&kvm->lock);
if (vgic_ready(kvm))
goto out;
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) ||
IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) {
kvm_err("Need to set vgic distributor addresses first\n");
ret = -ENXIO;
goto out;
}
/*
* For a VGICv3 we require the userland to explicitly initialize
* the VGIC before we need to use it.
*/
if (!vgic_initialized(kvm)) {
ret = -EBUSY;
goto out;
}
ret = vgic_register_kvm_io_dev(kvm, dist->vgic_dist_base,
GIC_V3_DIST_SIZE, vgic_v3_dist_ranges,
-1, &dist->dist_iodev);
if (ret)
goto out;
iodevs = kcalloc(dist->nr_cpus, sizeof(iodevs[0]), GFP_KERNEL);
if (!iodevs) {
ret = -ENOMEM;
goto out_unregister;
}
for (i = 0; i < dist->nr_cpus; i++) {
ret = vgic_register_kvm_io_dev(kvm, rdbase,
SZ_128K, vgic_redist_ranges,
i, &iodevs[i]);
if (ret)
goto out_unregister;
rdbase += GIC_V3_REDIST_SIZE;
}
dist->redist_iodevs = iodevs;
dist->ready = true;
goto out;
out_unregister:
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &dist->dist_iodev.dev);
if (iodevs) {
for (i = 0; i < dist->nr_cpus; i++) {
if (iodevs[i].dev.ops)
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
&iodevs[i].dev);
}
}
out:
if (ret)
kvm_vgic_destroy(kvm);
mutex_unlock(&kvm->lock);
return ret;
}
static int vgic_v3_init_model(struct kvm *kvm)
{
int i;
u32 mpidr;
struct vgic_dist *dist = &kvm->arch.vgic;
int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]),
GFP_KERNEL);
if (!dist->irq_spi_mpidr)
return -ENOMEM;
/* Initialize the target VCPUs for each IRQ to VCPU 0 */
mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0)));
for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) {
dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0;
dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr;
vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1);
}
return 0;
}
/* GICv3 does not keep track of SGI sources anymore. */
static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
}
void vgic_v3_init_emulation(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
dist->vm_ops.queue_sgi = vgic_v3_queue_sgi;
dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source;
dist->vm_ops.init_model = vgic_v3_init_model;
dist->vm_ops.map_resources = vgic_v3_map_resources;
kvm->arch.max_vcpus = KVM_MAX_VCPUS;
}
/*
* Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
* generation register ICC_SGI1R_EL1) with a given VCPU.
* If the VCPU's MPIDR matches, return the level0 affinity, otherwise
* return -1.
*/
static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
{
unsigned long affinity;
int level0;
/*
* Split the current VCPU's MPIDR into affinity level 0 and the
* rest as this is what we have to compare against.
*/
affinity = kvm_vcpu_get_mpidr_aff(vcpu);
level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
affinity &= ~MPIDR_LEVEL_MASK;
/* bail out if the upper three levels don't match */
if (sgi_aff != affinity)
return -1;
/* Is this VCPU's bit set in the mask ? */
if (!(sgi_cpu_mask & BIT(level0)))
return -1;
return level0;
}
#define SGI_AFFINITY_LEVEL(reg, level) \
((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
/**
* vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
* @vcpu: The VCPU requesting a SGI
* @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
*
* With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
* This will trap in sys_regs.c and call this function.
* This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
* target processors as well as a bitmask of 16 Aff0 CPUs.
* If the interrupt routing mode bit is not set, we iterate over all VCPUs to
* check for matching ones. If this bit is set, we signal all, but not the
* calling VCPU.
*/
void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu *c_vcpu;
struct vgic_dist *dist = &kvm->arch.vgic;
u16 target_cpus;
u64 mpidr;
int sgi, c;
int vcpu_id = vcpu->vcpu_id;
bool broadcast;
int updated = 0;
sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
mpidr = SGI_AFFINITY_LEVEL(reg, 3);
mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
/*
* We take the dist lock here, because we come from the sysregs
* code path and not from the MMIO one (which already takes the lock).
*/
spin_lock(&dist->lock);
/*
* We iterate over all VCPUs to find the MPIDRs matching the request.
* If we have handled one CPU, we clear it's bit to detect early
* if we are already finished. This avoids iterating through all
* VCPUs when most of the times we just signal a single VCPU.
*/
kvm_for_each_vcpu(c, c_vcpu, kvm) {
/* Exit early if we have dealt with all requested CPUs */
if (!broadcast && target_cpus == 0)
break;
/* Don't signal the calling VCPU */
if (broadcast && c == vcpu_id)
continue;
if (!broadcast) {
int level0;
level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
if (level0 == -1)
continue;
/* remove this matching VCPU from the mask */
target_cpus &= ~BIT(level0);
}
/* Flag the SGI as pending */
vgic_dist_irq_set_pending(c_vcpu, sgi);
updated = 1;
kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
}
if (updated)
vgic_update_state(vcpu->kvm);
spin_unlock(&dist->lock);
if (updated)
vgic_kick_vcpus(vcpu->kvm);
}
static int vgic_v3_create(struct kvm_device *dev, u32 type)
{
return kvm_vgic_create(dev->kvm, type);
}
static void vgic_v3_destroy(struct kvm_device *dev)
{
kfree(dev);
}
static int vgic_v3_set_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
int ret;
ret = vgic_set_common_attr(dev, attr);
if (ret != -ENXIO)
return ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
return -ENXIO;
}
return -ENXIO;
}
static int vgic_v3_get_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
int ret;
ret = vgic_get_common_attr(dev, attr);
if (ret != -ENXIO)
return ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
return -ENXIO;
}
return -ENXIO;
}
static int vgic_v3_has_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR:
switch (attr->attr) {
case KVM_VGIC_V2_ADDR_TYPE_DIST:
case KVM_VGIC_V2_ADDR_TYPE_CPU:
return -ENXIO;
case KVM_VGIC_V3_ADDR_TYPE_DIST:
case KVM_VGIC_V3_ADDR_TYPE_REDIST:
return 0;
}
break;
case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
return -ENXIO;
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
return 0;
case KVM_DEV_ARM_VGIC_GRP_CTRL:
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0;
}
}
return -ENXIO;
}
struct kvm_device_ops kvm_arm_vgic_v3_ops = {
.name = "kvm-arm-vgic-v3",
.create = vgic_v3_create,
.destroy = vgic_v3_destroy,
.set_attr = vgic_v3_set_attr,
.get_attr = vgic_v3_get_attr,
.has_attr = vgic_v3_has_attr,
};
/*
* Copyright (C) 2013 ARM Limited, All Rights Reserved.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/irqchip/arm-gic-common.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
static u32 ich_vtr_el2;
static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
struct vgic_lr lr_desc;
u64 val = vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr];
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
lr_desc.irq = val & ICH_LR_VIRTUAL_ID_MASK;
else
lr_desc.irq = val & GICH_LR_VIRTUALID;
lr_desc.source = 0;
if (lr_desc.irq <= 15 &&
vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7;
lr_desc.state = 0;
if (val & ICH_LR_PENDING_BIT)
lr_desc.state |= LR_STATE_PENDING;
if (val & ICH_LR_ACTIVE_BIT)
lr_desc.state |= LR_STATE_ACTIVE;
if (val & ICH_LR_EOI)
lr_desc.state |= LR_EOI_INT;
if (val & ICH_LR_HW) {
lr_desc.state |= LR_HW;
lr_desc.hwirq = (val >> ICH_LR_PHYS_ID_SHIFT) & GENMASK(9, 0);
}
return lr_desc;
}
static void vgic_v3_set_lr(struct kvm_vcpu *vcpu, int lr,
struct vgic_lr lr_desc)
{
u64 lr_val;
lr_val = lr_desc.irq;
/*
* Currently all guest IRQs are Group1, as Group0 would result
* in a FIQ in the guest, which it wouldn't expect.
* Eventually we want to make this configurable, so we may revisit
* this in the future.
*/
switch (vcpu->kvm->arch.vgic.vgic_model) {
case KVM_DEV_TYPE_ARM_VGIC_V3:
lr_val |= ICH_LR_GROUP;
break;
case KVM_DEV_TYPE_ARM_VGIC_V2:
if (lr_desc.irq < VGIC_NR_SGIS)
lr_val |= (u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT;
break;
default:
BUG();
}
if (lr_desc.state & LR_STATE_PENDING)
lr_val |= ICH_LR_PENDING_BIT;
if (lr_desc.state & LR_STATE_ACTIVE)
lr_val |= ICH_LR_ACTIVE_BIT;
if (lr_desc.state & LR_EOI_INT)
lr_val |= ICH_LR_EOI;
if (lr_desc.state & LR_HW) {
lr_val |= ICH_LR_HW;
lr_val |= ((u64)lr_desc.hwirq) << ICH_LR_PHYS_ID_SHIFT;
}
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = lr_val;
if (!(lr_desc.state & LR_STATE_MASK))
vcpu->arch.vgic_cpu.vgic_v3.vgic_elrsr |= (1U << lr);
else
vcpu->arch.vgic_cpu.vgic_v3.vgic_elrsr &= ~(1U << lr);
}
static u64 vgic_v3_get_elrsr(const struct kvm_vcpu *vcpu)
{
return vcpu->arch.vgic_cpu.vgic_v3.vgic_elrsr;
}
static u64 vgic_v3_get_eisr(const struct kvm_vcpu *vcpu)
{
return vcpu->arch.vgic_cpu.vgic_v3.vgic_eisr;
}
static void vgic_v3_clear_eisr(struct kvm_vcpu *vcpu)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_eisr = 0;
}
static u32 vgic_v3_get_interrupt_status(const struct kvm_vcpu *vcpu)
{
u32 misr = vcpu->arch.vgic_cpu.vgic_v3.vgic_misr;
u32 ret = 0;
if (misr & ICH_MISR_EOI)
ret |= INT_STATUS_EOI;
if (misr & ICH_MISR_U)
ret |= INT_STATUS_UNDERFLOW;
return ret;
}
static void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
u32 vmcr = vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr;
vmcrp->ctlr = (vmcr & ICH_VMCR_CTLR_MASK) >> ICH_VMCR_CTLR_SHIFT;
vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
}
static void vgic_v3_enable_underflow(struct kvm_vcpu *vcpu)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_hcr |= ICH_HCR_UIE;
}
static void vgic_v3_disable_underflow(struct kvm_vcpu *vcpu)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_hcr &= ~ICH_HCR_UIE;
}
static void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
u32 vmcr;
vmcr = (vmcrp->ctlr << ICH_VMCR_CTLR_SHIFT) & ICH_VMCR_CTLR_MASK;
vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr = vmcr;
}
static void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vgic_v3->vgic_vmcr = 0;
vgic_v3->vgic_elrsr = ~0;
/*
* If we are emulating a GICv3, we do it in an non-GICv2-compatible
* way, so we force SRE to 1 to demonstrate this to the guest.
* This goes with the spec allowing the value to be RAO/WI.
*/
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)
vgic_v3->vgic_sre = ICC_SRE_EL1_SRE;
else
vgic_v3->vgic_sre = 0;
/* Get the show on the road... */
vgic_v3->vgic_hcr = ICH_HCR_EN;
}
static const struct vgic_ops vgic_v3_ops = {
.get_lr = vgic_v3_get_lr,
.set_lr = vgic_v3_set_lr,
.get_elrsr = vgic_v3_get_elrsr,
.get_eisr = vgic_v3_get_eisr,
.clear_eisr = vgic_v3_clear_eisr,
.get_interrupt_status = vgic_v3_get_interrupt_status,
.enable_underflow = vgic_v3_enable_underflow,
.disable_underflow = vgic_v3_disable_underflow,
.get_vmcr = vgic_v3_get_vmcr,
.set_vmcr = vgic_v3_set_vmcr,
.enable = vgic_v3_enable,
};
static struct vgic_params vgic_v3_params;
static void vgic_cpu_init_lrs(void *params)
{
kvm_call_hyp(__vgic_v3_init_lrs);
}
/**
* vgic_v3_probe - probe for a GICv3 compatible interrupt controller
* @gic_kvm_info: pointer to the GIC description
* @ops: address of a pointer to the GICv3 operations
* @params: address of a pointer to HW-specific parameters
*
* Returns 0 if a GICv3 has been found, with the low level operations
* in *ops and the HW parameters in *params. Returns an error code
* otherwise.
*/
int vgic_v3_probe(const struct gic_kvm_info *gic_kvm_info,
const struct vgic_ops **ops,
const struct vgic_params **params)
{
int ret = 0;
struct vgic_params *vgic = &vgic_v3_params;
const struct resource *vcpu_res = &gic_kvm_info->vcpu;
vgic->maint_irq = gic_kvm_info->maint_irq;
ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
/*
* The ListRegs field is 5 bits, but there is a architectural
* maximum of 16 list registers. Just ignore bit 4...
*/
vgic->nr_lr = (ich_vtr_el2 & 0xf) + 1;
vgic->can_emulate_gicv2 = false;
if (!vcpu_res->start) {
kvm_info("GICv3: no GICV resource entry\n");
vgic->vcpu_base = 0;
} else if (!PAGE_ALIGNED(vcpu_res->start)) {
pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)vcpu_res->start);
vgic->vcpu_base = 0;
} else if (!PAGE_ALIGNED(resource_size(vcpu_res))) {
pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n",
(unsigned long long)resource_size(vcpu_res),
PAGE_SIZE);
} else {
vgic->vcpu_base = vcpu_res->start;
vgic->can_emulate_gicv2 = true;
kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
KVM_DEV_TYPE_ARM_VGIC_V2);
}
if (vgic->vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
kvm_register_device_ops(&kvm_arm_vgic_v3_ops, KVM_DEV_TYPE_ARM_VGIC_V3);
vgic->vctrl_base = NULL;
vgic->type = VGIC_V3;
vgic->max_gic_vcpus = VGIC_V3_MAX_CPUS;
kvm_info("GICV base=0x%llx, IRQ=%d\n",
vgic->vcpu_base, vgic->maint_irq);
on_each_cpu(vgic_cpu_init_lrs, vgic, 1);
*ops = &vgic_v3_ops;
*params = vgic;
return ret;
}
/*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/rculist.h>
#include <linux/uaccess.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include <trace/events/kvm.h>
#include <asm/kvm.h>
#include <kvm/iodev.h>
#include <linux/irqchip/arm-gic-common.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
/*
* How the whole thing works (courtesy of Christoffer Dall):
*
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
* something is pending on the CPU interface.
* - Interrupts that are pending on the distributor are stored on the
* vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
* ioctls and guest mmio ops, and other in-kernel peripherals such as the
* arch. timers).
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is
* recalculated
* - To calculate the oracle, we need info for each cpu from
* compute_pending_for_cpu, which considers:
* - PPI: dist->irq_pending & dist->irq_enable
* - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
* - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
* registers, stored on each vcpu. We only keep one bit of
* information per interrupt, making sure that only one vcpu can
* accept the interrupt.
* - If any of the above state changes, we must recalculate the oracle.
* - The same is true when injecting an interrupt, except that we only
* consider a single interrupt at a time. The irq_spi_cpu array
* contains the target CPU for each SPI.
*
* The handling of level interrupts adds some extra complexity. We
* need to track when the interrupt has been EOIed, so we can sample
* the 'line' again. This is achieved as such:
*
* - When a level interrupt is moved onto a vcpu, the corresponding
* bit in irq_queued is set. As long as this bit is set, the line
* will be ignored for further interrupts. The interrupt is injected
* into the vcpu with the GICH_LR_EOI bit set (generate a
* maintenance interrupt on EOI).
* - When the interrupt is EOIed, the maintenance interrupt fires,
* and clears the corresponding bit in irq_queued. This allows the
* interrupt line to be sampled again.
* - Note that level-triggered interrupts can also be set to pending from
* writes to GICD_ISPENDRn and lowering the external input line does not
* cause the interrupt to become inactive in such a situation.
* Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
* inactive as long as the external input line is held high.
*
*
* Initialization rules: there are multiple stages to the vgic
* initialization, both for the distributor and the CPU interfaces.
*
* Distributor:
*
* - kvm_vgic_early_init(): initialization of static data that doesn't
* depend on any sizing information or emulation type. No allocation
* is allowed there.
*
* - vgic_init(): allocation and initialization of the generic data
* structures that depend on sizing information (number of CPUs,
* number of interrupts). Also initializes the vcpu specific data
* structures. Can be executed lazily for GICv2.
* [to be renamed to kvm_vgic_init??]
*
* CPU Interface:
*
* - kvm_vgic_cpu_early_init(): initialization of static data that
* doesn't depend on any sizing information or emulation type. No
* allocation is allowed there.
*/
#include "vgic.h"
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu);
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu);
static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
int virt_irq);
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu);
static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;
static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
{
vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
}
static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
}
int kvm_vgic_map_resources(struct kvm *kvm)
{
return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
}
/*
* struct vgic_bitmap contains a bitmap made of unsigned longs, but
* extracts u32s out of them.
*
* This does not work on 64-bit BE systems, because the bitmap access
* will store two consecutive 32-bit words with the higher-addressed
* register's bits at the lower index and the lower-addressed register's
* bits at the higher index.
*
* Therefore, swizzle the register index when accessing the 32-bit word
* registers to access the right register's value.
*/
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
#define REG_OFFSET_SWIZZLE 1
#else
#define REG_OFFSET_SWIZZLE 0
#endif
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
{
int nr_longs;
nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
if (!b->private)
return -ENOMEM;
b->shared = b->private + nr_cpus;
return 0;
}
static void vgic_free_bitmap(struct vgic_bitmap *b)
{
kfree(b->private);
b->private = NULL;
b->shared = NULL;
}
/*
* Call this function to convert a u64 value to an unsigned long * bitmask
* in a way that works on both 32-bit and 64-bit LE and BE platforms.
*
* Warning: Calling this function may modify *val.
*/
static unsigned long *u64_to_bitmask(u64 *val)
{
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
*val = (*val >> 32) | (*val << 32);
#endif
return (unsigned long *)val;
}
u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
{
offset >>= 2;
if (!offset)
return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
else
return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
}
static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
int cpuid, int irq)
{
if (irq < VGIC_NR_PRIVATE_IRQS)
return test_bit(irq, x->private + cpuid);
return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
}
void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
int irq, int val)
{
unsigned long *reg;
if (irq < VGIC_NR_PRIVATE_IRQS) {
reg = x->private + cpuid;
} else {
reg = x->shared;
irq -= VGIC_NR_PRIVATE_IRQS;
}
if (val)
set_bit(irq, reg);
else
clear_bit(irq, reg);
}
static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
return x->private + cpuid;
}
unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
return x->shared;
}
static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
{
int size;
size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
x->private = kzalloc(size, GFP_KERNEL);
if (!x->private)
return -ENOMEM;
x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
return 0;
}
static void vgic_free_bytemap(struct vgic_bytemap *b)
{
kfree(b->private);
b->private = NULL;
b->shared = NULL;
}
u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
u32 *reg;
if (offset < VGIC_NR_PRIVATE_IRQS) {
reg = x->private;
offset += cpuid * VGIC_NR_PRIVATE_IRQS;
} else {
reg = x->shared;
offset -= VGIC_NR_PRIVATE_IRQS;
}
return reg + (offset / sizeof(u32));
}
#define VGIC_CFG_LEVEL 0
#define VGIC_CFG_EDGE 1
static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
int irq_val;
irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
return irq_val == VGIC_CFG_EDGE;
}
static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}
static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
}
static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
}
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
}
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
}
static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
}
static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
}
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
}
static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
}
static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
}
static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
}
static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
if (!vgic_dist_irq_get_level(vcpu, irq)) {
vgic_dist_irq_clear_pending(vcpu, irq);
if (!compute_pending_for_cpu(vcpu))
clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}
}
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
}
void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
}
void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
}
static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
if (irq < VGIC_NR_PRIVATE_IRQS)
set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
else
set_bit(irq - VGIC_NR_PRIVATE_IRQS,
vcpu->arch.vgic_cpu.pending_shared);
}
void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
if (irq < VGIC_NR_PRIVATE_IRQS)
clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
else
clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
vcpu->arch.vgic_cpu.pending_shared);
}
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
{
return !vgic_irq_is_queued(vcpu, irq);
}
/**
* vgic_reg_access - access vgic register
* @mmio: pointer to the data describing the mmio access
* @reg: pointer to the virtual backing of vgic distributor data
* @offset: least significant 2 bits used for word offset
* @mode: ACCESS_ mode (see defines above)
*
* Helper to make vgic register access easier using one of the access
* modes defined for vgic register access
* (read,raz,write-ignored,setbit,clearbit,write)
*/
void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
phys_addr_t offset, int mode)
{
int word_offset = (offset & 3) * 8;
u32 mask = (1UL << (mmio->len * 8)) - 1;
u32 regval;
/*
* Any alignment fault should have been delivered to the guest
* directly (ARM ARM B3.12.7 "Prioritization of aborts").
*/
if (reg) {
regval = *reg;
} else {
BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
regval = 0;
}
if (mmio->is_write) {
u32 data = mmio_data_read(mmio, mask) << word_offset;
switch (ACCESS_WRITE_MASK(mode)) {
case ACCESS_WRITE_IGNORED:
return;
case ACCESS_WRITE_SETBIT:
regval |= data;
break;
case ACCESS_WRITE_CLEARBIT:
regval &= ~data;
break;
case ACCESS_WRITE_VALUE:
regval = (regval & ~(mask << word_offset)) | data;
break;
}
*reg = regval;
} else {
switch (ACCESS_READ_MASK(mode)) {
case ACCESS_READ_RAZ:
regval = 0;
/* fall through */
case ACCESS_READ_VALUE:
mmio_data_write(mmio, mask, regval >> word_offset);
}
}
}
bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
vgic_reg_access(mmio, NULL, offset,
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
return false;
}
bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id, int access)
{
u32 *reg;
int mode = ACCESS_READ_VALUE | access;
struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
if (access & ACCESS_WRITE_CLEARBIT) {
if (offset < 4) /* Force SGI enabled */
*reg |= 0xffff;
vgic_retire_disabled_irqs(target_vcpu);
}
vgic_update_state(kvm);
return true;
}
return false;
}
bool vgic_handle_set_pending_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id)
{
u32 *reg, orig;
u32 level_mask;
int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
struct vgic_dist *dist = &kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
level_mask = (~(*reg));
/* Mark both level and edge triggered irqs as pending */
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
orig = *reg;
vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
/* Set the soft-pending flag only for level-triggered irqs */
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
vcpu_id, offset);
vgic_reg_access(mmio, reg, offset, mode);
*reg &= level_mask;
/* Ignore writes to SGIs */
if (offset < 2) {
*reg &= ~0xffff;
*reg |= orig & 0xffff;
}
vgic_update_state(kvm);
return true;
}
return false;
}
bool vgic_handle_clear_pending_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id)
{
u32 *level_active;
u32 *reg, orig;
int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
struct vgic_dist *dist = &kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
orig = *reg;
vgic_reg_access(mmio, reg, offset, mode);
if (mmio->is_write) {
/* Re-set level triggered level-active interrupts */
level_active = vgic_bitmap_get_reg(&dist->irq_level,
vcpu_id, offset);
reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
*reg |= *level_active;
/* Ignore writes to SGIs */
if (offset < 2) {
*reg &= ~0xffff;
*reg |= orig & 0xffff;
}
/* Clear soft-pending flags */
reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
vcpu_id, offset);
vgic_reg_access(mmio, reg, offset, mode);
vgic_update_state(kvm);
return true;
}
return false;
}
bool vgic_handle_set_active_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id)
{
u32 *reg;
struct vgic_dist *dist = &kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
if (mmio->is_write) {
vgic_update_state(kvm);
return true;
}
return false;
}
bool vgic_handle_clear_active_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id)
{
u32 *reg;
struct vgic_dist *dist = &kvm->arch.vgic;
reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
vgic_reg_access(mmio, reg, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
if (mmio->is_write) {
vgic_update_state(kvm);
return true;
}
return false;
}
static u32 vgic_cfg_expand(u16 val)
{
u32 res = 0;
int i;
/*
* Turn a 16bit value like abcd...mnop into a 32bit word
* a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
*/
for (i = 0; i < 16; i++)
res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
return res;
}
static u16 vgic_cfg_compress(u32 val)
{
u16 res = 0;
int i;
/*
* Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
* abcd...mnop which is what we really care about.
*/
for (i = 0; i < 16; i++)
res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
return res;
}
/*
* The distributor uses 2 bits per IRQ for the CFG register, but the
* LSB is always 0. As such, we only keep the upper bit, and use the
* two above functions to compress/expand the bits
*/
bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
phys_addr_t offset)
{
u32 val;
if (offset & 4)
val = *reg >> 16;
else
val = *reg & 0xffff;
val = vgic_cfg_expand(val);
vgic_reg_access(mmio, &val, offset,
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
if (mmio->is_write) {
/* Ignore writes to read-only SGI and PPI bits */
if (offset < 8)
return false;
val = vgic_cfg_compress(val);
if (offset & 4) {
*reg &= 0xffff;
*reg |= val << 16;
} else {
*reg &= 0xffff << 16;
*reg |= val;
}
}
return false;
}
/**
* vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
* @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
*
* Move any IRQs that have already been assigned to LRs back to the
* emulated distributor state so that the complete emulated state can be read
* from the main emulation structures without investigating the LRs.
*/
void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
{
u64 elrsr = vgic_get_elrsr(vcpu);
unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
int i;
for_each_clear_bit(i, elrsr_ptr, vgic->nr_lr) {
struct vgic_lr lr = vgic_get_lr(vcpu, i);
/*
* There are three options for the state bits:
*
* 01: pending
* 10: active
* 11: pending and active
*/
BUG_ON(!(lr.state & LR_STATE_MASK));
/* Reestablish SGI source for pending and active IRQs */
if (lr.irq < VGIC_NR_SGIS)
add_sgi_source(vcpu, lr.irq, lr.source);
/*
* If the LR holds an active (10) or a pending and active (11)
* interrupt then move the active state to the
* distributor tracking bit.
*/
if (lr.state & LR_STATE_ACTIVE)
vgic_irq_set_active(vcpu, lr.irq);
/*
* Reestablish the pending state on the distributor and the
* CPU interface and mark the LR as free for other use.
*/
vgic_retire_lr(i, vcpu);
/* Finally update the VGIC state. */
vgic_update_state(vcpu->kvm);
}
}
const
struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
int len, gpa_t offset)
{
while (ranges->len) {
if (offset >= ranges->base &&
(offset + len) <= (ranges->base + ranges->len))
return ranges;
ranges++;
}
return NULL;
}
static bool vgic_validate_access(const struct vgic_dist *dist,
const struct vgic_io_range *range,
unsigned long offset)
{
int irq;
if (!range->bits_per_irq)
return true; /* Not an irq-based access */
irq = offset * 8 / range->bits_per_irq;
if (irq >= dist->nr_irqs)
return false;
return true;
}
/*
* Call the respective handler function for the given range.
* We split up any 64 bit accesses into two consecutive 32 bit
* handler calls and merge the result afterwards.
* We do this in a little endian fashion regardless of the host's
* or guest's endianness, because the GIC is always LE and the rest of
* the code (vgic_reg_access) also puts it in a LE fashion already.
* At this point we have already identified the handle function, so
* range points to that one entry and offset is relative to this.
*/
static bool call_range_handler(struct kvm_vcpu *vcpu,
struct kvm_exit_mmio *mmio,
unsigned long offset,
const struct vgic_io_range *range)
{
struct kvm_exit_mmio mmio32;
bool ret;
if (likely(mmio->len <= 4))
return range->handle_mmio(vcpu, mmio, offset);
/*
* Any access bigger than 4 bytes (that we currently handle in KVM)
* is actually 8 bytes long, caused by a 64-bit access
*/
mmio32.len = 4;
mmio32.is_write = mmio->is_write;
mmio32.private = mmio->private;
mmio32.phys_addr = mmio->phys_addr + 4;
mmio32.data = &((u32 *)mmio->data)[1];
ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
mmio32.phys_addr = mmio->phys_addr;
mmio32.data = &((u32 *)mmio->data)[0];
ret |= range->handle_mmio(vcpu, &mmio32, offset);
return ret;
}
/**
* vgic_handle_mmio_access - handle an in-kernel MMIO access
* This is called by the read/write KVM IO device wrappers below.
* @vcpu: pointer to the vcpu performing the access
* @this: pointer to the KVM IO device in charge
* @addr: guest physical address of the access
* @len: size of the access
* @val: pointer to the data region
* @is_write: read or write access
*
* returns true if the MMIO access could be performed
*/
static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
struct kvm_io_device *this, gpa_t addr,
int len, void *val, bool is_write)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct vgic_io_device *iodev = container_of(this,
struct vgic_io_device, dev);
const struct vgic_io_range *range;
struct kvm_exit_mmio mmio;
bool updated_state;
gpa_t offset;
offset = addr - iodev->addr;
range = vgic_find_range(iodev->reg_ranges, len, offset);
if (unlikely(!range || !range->handle_mmio)) {
pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
return -ENXIO;
}
mmio.phys_addr = addr;
mmio.len = len;
mmio.is_write = is_write;
mmio.data = val;
mmio.private = iodev->redist_vcpu;
spin_lock(&dist->lock);
offset -= range->base;
if (vgic_validate_access(dist, range, offset)) {
updated_state = call_range_handler(vcpu, &mmio, offset, range);
} else {
if (!is_write)
memset(val, 0, len);
updated_state = false;
}
spin_unlock(&dist->lock);
if (updated_state)
vgic_kick_vcpus(vcpu->kvm);
return 0;
}
static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, void *val)
{
return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
}
static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
struct kvm_io_device *this,
gpa_t addr, int len, const void *val)
{
return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
true);
}
static struct kvm_io_device_ops vgic_io_ops = {
.read = vgic_handle_mmio_read,
.write = vgic_handle_mmio_write,
};
/**
* vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
* @kvm: The VM structure pointer
* @base: The (guest) base address for the register frame
* @len: Length of the register frame window
* @ranges: Describing the handler functions for each register
* @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
* @iodev: Points to memory to be passed on to the handler
*
* @iodev stores the parameters of this function to be usable by the handler
* respectively the dispatcher function (since the KVM I/O bus framework lacks
* an opaque parameter). Initialization is done in this function, but the
* reference should be valid and unique for the whole VGIC lifetime.
* If the register frame is not mapped for a specific VCPU, pass -1 to
* @redist_vcpu_id.
*/
int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
const struct vgic_io_range *ranges,
int redist_vcpu_id,
struct vgic_io_device *iodev)
{
struct kvm_vcpu *vcpu = NULL;
int ret;
if (redist_vcpu_id >= 0)
vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
iodev->addr = base;
iodev->len = len;
iodev->reg_ranges = ranges;
iodev->redist_vcpu = vcpu;
kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
mutex_lock(&kvm->slots_lock);
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
&iodev->dev);
mutex_unlock(&kvm->slots_lock);
/* Mark the iodev as invalid if registration fails. */
if (ret)
iodev->dev.ops = NULL;
return ret;
}
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
{
return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
}
static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *active, *enabled, *act_percpu, *act_shared;
unsigned long active_private, active_shared;
int nr_shared = vgic_nr_shared_irqs(dist);
int vcpu_id;
vcpu_id = vcpu->vcpu_id;
act_percpu = vcpu->arch.vgic_cpu.active_percpu;
act_shared = vcpu->arch.vgic_cpu.active_shared;
active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
active = vgic_bitmap_get_shared_map(&dist->irq_active);
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
bitmap_and(act_shared, active, enabled, nr_shared);
bitmap_and(act_shared, act_shared,
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
nr_shared);
active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
active_shared = find_first_bit(act_shared, nr_shared);
return (active_private < VGIC_NR_PRIVATE_IRQS ||
active_shared < nr_shared);
}
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
unsigned long pending_private, pending_shared;
int nr_shared = vgic_nr_shared_irqs(dist);
int vcpu_id;
vcpu_id = vcpu->vcpu_id;
pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
pend_shared = vcpu->arch.vgic_cpu.pending_shared;
if (!dist->enabled) {
bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS);
bitmap_zero(pend_shared, nr_shared);
return 0;
}
pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
bitmap_and(pend_shared, pending, enabled, nr_shared);
bitmap_and(pend_shared, pend_shared,
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
nr_shared);
pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
pending_shared = find_first_bit(pend_shared, nr_shared);
return (pending_private < VGIC_NR_PRIVATE_IRQS ||
pending_shared < vgic_nr_shared_irqs(dist));
}
/*
* Update the interrupt state and determine which CPUs have pending
* or active interrupts. Must be called with distributor lock held.
*/
void vgic_update_state(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int c;
kvm_for_each_vcpu(c, vcpu, kvm) {
if (compute_pending_for_cpu(vcpu))
set_bit(c, dist->irq_pending_on_cpu);
if (compute_active_for_cpu(vcpu))
set_bit(c, dist->irq_active_on_cpu);
else
clear_bit(c, dist->irq_active_on_cpu);
}
}
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
return vgic_ops->get_lr(vcpu, lr);
}
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
struct vgic_lr vlr)
{
vgic_ops->set_lr(vcpu, lr, vlr);
}
static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
{
return vgic_ops->get_elrsr(vcpu);
}
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
{
return vgic_ops->get_eisr(vcpu);
}
static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
{
vgic_ops->clear_eisr(vcpu);
}
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
{
return vgic_ops->get_interrupt_status(vcpu);
}
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
{
vgic_ops->enable_underflow(vcpu);
}
static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
{
vgic_ops->disable_underflow(vcpu);
}
void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
vgic_ops->get_vmcr(vcpu, vmcr);
}
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
vgic_ops->set_vmcr(vcpu, vmcr);
}
static inline void vgic_enable(struct kvm_vcpu *vcpu)
{
vgic_ops->enable(vcpu);
}
static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu)
{
struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
vgic_irq_clear_queued(vcpu, vlr.irq);
/*
* We must transfer the pending state back to the distributor before
* retiring the LR, otherwise we may loose edge-triggered interrupts.
*/
if (vlr.state & LR_STATE_PENDING) {
vgic_dist_irq_set_pending(vcpu, vlr.irq);
vlr.hwirq = 0;
}
vlr.state = 0;
vgic_set_lr(vcpu, lr_nr, vlr);
}
static bool dist_active_irq(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
}
bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq)
{
int i;
for (i = 0; i < vgic->nr_lr; i++) {
struct vgic_lr vlr = vgic_get_lr(vcpu, i);
if (vlr.irq == virt_irq && vlr.state & LR_STATE_ACTIVE)
return true;
}
return vgic_irq_is_active(vcpu, virt_irq);
}
/*
* An interrupt may have been disabled after being made pending on the
* CPU interface (the classic case is a timer running while we're
* rebooting the guest - the interrupt would kick as soon as the CPU
* interface gets enabled, with deadly consequences).
*
* The solution is to examine already active LRs, and check the
* interrupt is still enabled. If not, just retire it.
*/
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
{
u64 elrsr = vgic_get_elrsr(vcpu);
unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
int lr;
for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
if (!vgic_irq_is_enabled(vcpu, vlr.irq))
vgic_retire_lr(lr, vcpu);
}
}
static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
int lr_nr, struct vgic_lr vlr)
{
if (vgic_irq_is_active(vcpu, irq)) {
vlr.state |= LR_STATE_ACTIVE;
kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
vgic_irq_clear_active(vcpu, irq);
vgic_update_state(vcpu->kvm);
} else {
WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
vlr.state |= LR_STATE_PENDING;
kvm_debug("Set pending: 0x%x\n", vlr.state);
}
if (!vgic_irq_is_edge(vcpu, irq))
vlr.state |= LR_EOI_INT;
if (vlr.irq >= VGIC_NR_SGIS) {
struct irq_phys_map *map;
map = vgic_irq_map_search(vcpu, irq);
if (map) {
vlr.hwirq = map->phys_irq;
vlr.state |= LR_HW;
vlr.state &= ~LR_EOI_INT;
/*
* Make sure we're not going to sample this
* again, as a HW-backed interrupt cannot be
* in the PENDING_ACTIVE stage.
*/
vgic_irq_set_queued(vcpu, irq);
}
}
vgic_set_lr(vcpu, lr_nr, vlr);
}
/*
* Queue an interrupt to a CPU virtual interface. Return true on success,
* or false if it wasn't possible to queue it.
* sgi_source must be zero for any non-SGI interrupts.
*/
bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
u64 elrsr = vgic_get_elrsr(vcpu);
unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr);
struct vgic_lr vlr;
int lr;
/* Sanitize the input... */
BUG_ON(sgi_source_id & ~7);
BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
BUG_ON(irq >= dist->nr_irqs);
kvm_debug("Queue IRQ%d\n", irq);
/* Do we have an active interrupt for the same CPUID? */
for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) {
vlr = vgic_get_lr(vcpu, lr);
if (vlr.irq == irq && vlr.source == sgi_source_id) {
kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
return true;
}
}
/* Try to use another LR for this interrupt */
lr = find_first_bit(elrsr_ptr, vgic->nr_lr);
if (lr >= vgic->nr_lr)
return false;
kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
vlr.irq = irq;
vlr.source = sgi_source_id;
vlr.state = 0;
vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
return true;
}
static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
if (!vgic_can_sample_irq(vcpu, irq))
return true; /* level interrupt, already queued */
if (vgic_queue_irq(vcpu, 0, irq)) {
if (vgic_irq_is_edge(vcpu, irq)) {
vgic_dist_irq_clear_pending(vcpu, irq);
vgic_cpu_irq_clear(vcpu, irq);
} else {
vgic_irq_set_queued(vcpu, irq);
}
return true;
}
return false;
}
/*
* Fill the list registers with pending interrupts before running the
* guest.
*/
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
unsigned long *pa_percpu, *pa_shared;
int i, vcpu_id;
int overflow = 0;
int nr_shared = vgic_nr_shared_irqs(dist);
vcpu_id = vcpu->vcpu_id;
pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
VGIC_NR_PRIVATE_IRQS);
bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
nr_shared);
/*
* We may not have any pending interrupt, or the interrupts
* may have been serviced from another vcpu. In all cases,
* move along.
*/
if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu))
goto epilog;
/* SGIs */
for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
if (!queue_sgi(vcpu, i))
overflow = 1;
}
/* PPIs */
for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
if (!vgic_queue_hwirq(vcpu, i))
overflow = 1;
}
/* SPIs */
for_each_set_bit(i, pa_shared, nr_shared) {
if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
overflow = 1;
}
epilog:
if (overflow) {
vgic_enable_underflow(vcpu);
} else {
vgic_disable_underflow(vcpu);
/*
* We're about to run this VCPU, and we've consumed
* everything the distributor had in store for
* us. Claim we don't have anything pending. We'll
* adjust that if needed while exiting.
*/
clear_bit(vcpu_id, dist->irq_pending_on_cpu);
}
}
static int process_queued_irq(struct kvm_vcpu *vcpu,
int lr, struct vgic_lr vlr)
{
int pending = 0;
/*
* If the IRQ was EOIed (called from vgic_process_maintenance) or it
* went from active to non-active (called from vgic_sync_hwirq) it was
* also ACKed and we we therefore assume we can clear the soft pending
* state (should it had been set) for this interrupt.
*
* Note: if the IRQ soft pending state was set after the IRQ was
* acked, it actually shouldn't be cleared, but we have no way of
* knowing that unless we start trapping ACKs when the soft-pending
* state is set.
*/
vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
/*
* Tell the gic to start sampling this interrupt again.
*/
vgic_irq_clear_queued(vcpu, vlr.irq);
/* Any additional pending interrupt? */
if (vgic_irq_is_edge(vcpu, vlr.irq)) {
BUG_ON(!(vlr.state & LR_HW));
pending = vgic_dist_irq_is_pending(vcpu, vlr.irq);
} else {
if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
vgic_cpu_irq_set(vcpu, vlr.irq);
pending = 1;
} else {
vgic_dist_irq_clear_pending(vcpu, vlr.irq);
vgic_cpu_irq_clear(vcpu, vlr.irq);
}
}
/*
* Despite being EOIed, the LR may not have
* been marked as empty.
*/
vlr.state = 0;
vlr.hwirq = 0;
vgic_set_lr(vcpu, lr, vlr);
return pending;
}
static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
{
u32 status = vgic_get_interrupt_status(vcpu);
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct kvm *kvm = vcpu->kvm;
int level_pending = 0;
kvm_debug("STATUS = %08x\n", status);
if (status & INT_STATUS_EOI) {
/*
* Some level interrupts have been EOIed. Clear their
* active bit.
*/
u64 eisr = vgic_get_eisr(vcpu);
unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
int lr;
for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
WARN_ON(vlr.state & LR_STATE_MASK);
/*
* kvm_notify_acked_irq calls kvm_set_irq()
* to reset the IRQ level, which grabs the dist->lock
* so we call this before taking the dist->lock.
*/
kvm_notify_acked_irq(kvm, 0,
vlr.irq - VGIC_NR_PRIVATE_IRQS);
spin_lock(&dist->lock);
level_pending |= process_queued_irq(vcpu, lr, vlr);
spin_unlock(&dist->lock);
}
}
if (status & INT_STATUS_UNDERFLOW)
vgic_disable_underflow(vcpu);
/*
* In the next iterations of the vcpu loop, if we sync the vgic state
* after flushing it, but before entering the guest (this happens for
* pending signals and vmid rollovers), then make sure we don't pick
* up any old maintenance interrupts here.
*/
vgic_clear_eisr(vcpu);
return level_pending;
}
/*
* Save the physical active state, and reset it to inactive.
*
* Return true if there's a pending forwarded interrupt to queue.
*/
static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
bool level_pending;
if (!(vlr.state & LR_HW))
return false;
if (vlr.state & LR_STATE_ACTIVE)
return false;
spin_lock(&dist->lock);
level_pending = process_queued_irq(vcpu, lr, vlr);
spin_unlock(&dist->lock);
return level_pending;
}
/* Sync back the VGIC state after a guest run */
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
u64 elrsr;
unsigned long *elrsr_ptr;
int lr, pending;
bool level_pending;
level_pending = vgic_process_maintenance(vcpu);
/* Deal with HW interrupts, and clear mappings for empty LRs */
for (lr = 0; lr < vgic->nr_lr; lr++) {
struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
level_pending |= vgic_sync_hwirq(vcpu, lr, vlr);
BUG_ON(vlr.irq >= dist->nr_irqs);
}
/* Check if we still have something up our sleeve... */
elrsr = vgic_get_elrsr(vcpu);
elrsr_ptr = u64_to_bitmask(&elrsr);
pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
if (level_pending || pending < vgic->nr_lr)
set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return;
spin_lock(&dist->lock);
__kvm_vgic_flush_hwstate(vcpu);
spin_unlock(&dist->lock);
}
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
if (!irqchip_in_kernel(vcpu->kvm))
return;
__kvm_vgic_sync_hwstate(vcpu);
}
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
if (!irqchip_in_kernel(vcpu->kvm))
return 0;
return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
}
void vgic_kick_vcpus(struct kvm *kvm)
{
struct kvm_vcpu *vcpu;
int c;
/*
* We've injected an interrupt, time to find out who deserves
* a good kick...
*/
kvm_for_each_vcpu(c, vcpu, kvm) {
if (kvm_vgic_vcpu_pending_irq(vcpu))
kvm_vcpu_kick(vcpu);
}
}
static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{
int edge_triggered = vgic_irq_is_edge(vcpu, irq);
/*
* Only inject an interrupt if:
* - edge triggered and we have a rising edge
* - level triggered and we change level
*/
if (edge_triggered) {
int state = vgic_dist_irq_is_pending(vcpu, irq);
return level > state;
} else {
int state = vgic_dist_irq_get_level(vcpu, irq);
return level != state;
}
}
static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
unsigned int irq_num, bool level)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int edge_triggered, level_triggered;
int enabled;
bool ret = true, can_inject = true;
trace_vgic_update_irq_pending(cpuid, irq_num, level);
if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
return -EINVAL;
spin_lock(&dist->lock);
vcpu = kvm_get_vcpu(kvm, cpuid);
edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
level_triggered = !edge_triggered;
if (!vgic_validate_injection(vcpu, irq_num, level)) {
ret = false;
goto out;
}
if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
if (cpuid == VCPU_NOT_ALLOCATED) {
/* Pretend we use CPU0, and prevent injection */
cpuid = 0;
can_inject = false;
}
vcpu = kvm_get_vcpu(kvm, cpuid);
}
kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
if (level) {
if (level_triggered)
vgic_dist_irq_set_level(vcpu, irq_num);
vgic_dist_irq_set_pending(vcpu, irq_num);
} else {
if (level_triggered) {
vgic_dist_irq_clear_level(vcpu, irq_num);
if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
vgic_dist_irq_clear_pending(vcpu, irq_num);
vgic_cpu_irq_clear(vcpu, irq_num);
if (!compute_pending_for_cpu(vcpu))
clear_bit(cpuid, dist->irq_pending_on_cpu);
}
}
ret = false;
goto out;
}
enabled = vgic_irq_is_enabled(vcpu, irq_num);
if (!enabled || !can_inject) {
ret = false;
goto out;
}
if (!vgic_can_sample_irq(vcpu, irq_num)) {
/*
* Level interrupt in progress, will be picked up
* when EOId.
*/
ret = false;
goto out;
}
if (level) {
vgic_cpu_irq_set(vcpu, irq_num);
set_bit(cpuid, dist->irq_pending_on_cpu);
}
out:
spin_unlock(&dist->lock);
if (ret) {
/* kick the specified vcpu */
kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
}
return 0;
}
static int vgic_lazy_init(struct kvm *kvm)
{
int ret = 0;
if (unlikely(!vgic_initialized(kvm))) {
/*
* We only provide the automatic initialization of the VGIC
* for the legacy case of a GICv2. Any other type must
* be explicitly initialized once setup with the respective
* KVM device call.
*/
if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
return -EBUSY;
mutex_lock(&kvm->lock);
ret = vgic_init(kvm);
mutex_unlock(&kvm->lock);
}
return ret;
}
/**
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
* @kvm: The VM structure pointer
* @cpuid: The CPU for PPIs
* @irq_num: The IRQ number that is assigned to the device. This IRQ
* must not be mapped to a HW interrupt.
* @level: Edge-triggered: true: to trigger the interrupt
* false: to ignore the call
* Level-sensitive true: raise the input signal
* false: lower the input signal
*
* The GIC is not concerned with devices being active-LOW or active-HIGH for
* level-sensitive interrupts. You can think of the level parameter as 1
* being HIGH and 0 being LOW and all devices being active-HIGH.
*/
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
bool level)
{
struct irq_phys_map *map;
int ret;
ret = vgic_lazy_init(kvm);
if (ret)
return ret;
map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
if (map)
return -EINVAL;
return vgic_update_irq_pending(kvm, cpuid, irq_num, level);
}
/**
* kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
* @kvm: The VM structure pointer
* @cpuid: The CPU for PPIs
* @virt_irq: The virtual IRQ to be injected
* @level: Edge-triggered: true: to trigger the interrupt
* false: to ignore the call
* Level-sensitive true: raise the input signal
* false: lower the input signal
*
* The GIC is not concerned with devices being active-LOW or active-HIGH for
* level-sensitive interrupts. You can think of the level parameter as 1
* being HIGH and 0 being LOW and all devices being active-HIGH.
*/
int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
unsigned int virt_irq, bool level)
{
int ret;
ret = vgic_lazy_init(kvm);
if (ret)
return ret;
return vgic_update_irq_pending(kvm, cpuid, virt_irq, level);
}
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
/*
* We cannot rely on the vgic maintenance interrupt to be
* delivered synchronously. This means we can only use it to
* exit the VM, and we perform the handling of EOIed
* interrupts on the exit path (see vgic_process_maintenance).
*/
return IRQ_HANDLED;
}
static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
int virt_irq)
{
if (virt_irq < VGIC_NR_PRIVATE_IRQS)
return &vcpu->arch.vgic_cpu.irq_phys_map_list;
else
return &vcpu->kvm->arch.vgic.irq_phys_map_list;
}
/**
* kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
* @vcpu: The VCPU pointer
* @virt_irq: The virtual IRQ number for the guest
* @phys_irq: The hardware IRQ number of the host
*
* Establish a mapping between a guest visible irq (@virt_irq) and a
* hardware irq (@phys_irq). On injection, @virt_irq will be associated with
* the physical interrupt represented by @phys_irq. This mapping can be
* established multiple times as long as the parameters are the same.
*
* Returns 0 on success or an error value otherwise.
*/
int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, int virt_irq, int phys_irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
struct irq_phys_map *map;
struct irq_phys_map_entry *entry;
int ret = 0;
/* Create a new mapping */
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
spin_lock(&dist->irq_phys_map_lock);
/* Try to match an existing mapping */
map = vgic_irq_map_search(vcpu, virt_irq);
if (map) {
/* Make sure this mapping matches */
if (map->phys_irq != phys_irq)
ret = -EINVAL;
/* Found an existing, valid mapping */
goto out;
}
map = &entry->map;
map->virt_irq = virt_irq;
map->phys_irq = phys_irq;
list_add_tail_rcu(&entry->entry, root);
out:
spin_unlock(&dist->irq_phys_map_lock);
/* If we've found a hit in the existing list, free the useless
* entry */
if (ret || map != &entry->map)
kfree(entry);
return ret;
}
static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
int virt_irq)
{
struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
struct irq_phys_map_entry *entry;
struct irq_phys_map *map;
rcu_read_lock();
list_for_each_entry_rcu(entry, root, entry) {
map = &entry->map;
if (map->virt_irq == virt_irq) {
rcu_read_unlock();
return map;
}
}
rcu_read_unlock();
return NULL;
}
static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
{
struct irq_phys_map_entry *entry;
entry = container_of(rcu, struct irq_phys_map_entry, rcu);
kfree(entry);
}
/**
* kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
* @vcpu: The VCPU pointer
* @virt_irq: The virtual IRQ number to be unmapped
*
* Remove an existing mapping between virtual and physical interrupts.
*/
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct irq_phys_map_entry *entry;
struct list_head *root;
root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
spin_lock(&dist->irq_phys_map_lock);
list_for_each_entry(entry, root, entry) {
if (entry->map.virt_irq == virt_irq) {
list_del_rcu(&entry->entry);
call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
break;
}
}
spin_unlock(&dist->irq_phys_map_lock);
return 0;
}
static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct irq_phys_map_entry *entry;
spin_lock(&dist->irq_phys_map_lock);
list_for_each_entry(entry, root, entry) {
list_del_rcu(&entry->entry);
call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
}
spin_unlock(&dist->irq_phys_map_lock);
}
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
kfree(vgic_cpu->pending_shared);
kfree(vgic_cpu->active_shared);
kfree(vgic_cpu->pend_act_shared);
vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
vgic_cpu->pending_shared = NULL;
vgic_cpu->active_shared = NULL;
vgic_cpu->pend_act_shared = NULL;
}
static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
int nr_longs = BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
int sz = nr_longs * sizeof(unsigned long);
vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
if (!vgic_cpu->pending_shared
|| !vgic_cpu->active_shared
|| !vgic_cpu->pend_act_shared) {
kvm_vgic_vcpu_destroy(vcpu);
return -ENOMEM;
}
return 0;
}
/**
* kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
*
* No memory allocation should be performed here, only static init.
*/
void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
}
/**
* kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
*
* The host's GIC naturally limits the maximum amount of VCPUs a guest
* can use.
*/
int kvm_vgic_get_max_vcpus(void)
{
return vgic->max_gic_vcpus;
}
void kvm_vgic_destroy(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int i;
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vgic_vcpu_destroy(vcpu);
vgic_free_bitmap(&dist->irq_enabled);
vgic_free_bitmap(&dist->irq_level);
vgic_free_bitmap(&dist->irq_pending);
vgic_free_bitmap(&dist->irq_soft_pend);
vgic_free_bitmap(&dist->irq_queued);
vgic_free_bitmap(&dist->irq_cfg);
vgic_free_bytemap(&dist->irq_priority);
if (dist->irq_spi_target) {
for (i = 0; i < dist->nr_cpus; i++)
vgic_free_bitmap(&dist->irq_spi_target[i]);
}
kfree(dist->irq_sgi_sources);
kfree(dist->irq_spi_cpu);
kfree(dist->irq_spi_mpidr);
kfree(dist->irq_spi_target);
kfree(dist->irq_pending_on_cpu);
kfree(dist->irq_active_on_cpu);
vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
dist->irq_sgi_sources = NULL;
dist->irq_spi_cpu = NULL;
dist->irq_spi_target = NULL;
dist->irq_pending_on_cpu = NULL;
dist->irq_active_on_cpu = NULL;
dist->nr_cpus = 0;
}
/*
* Allocate and initialize the various data structures. Must be called
* with kvm->lock held!
*/
int vgic_init(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int nr_cpus, nr_irqs;
int ret, i, vcpu_id;
if (vgic_initialized(kvm))
return 0;
nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
if (!nr_cpus) /* No vcpus? Can't be good... */
return -ENODEV;
/*
* If nobody configured the number of interrupts, use the
* legacy one.
*/
if (!dist->nr_irqs)
dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
nr_irqs = dist->nr_irqs;
ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
if (ret)
goto out;
dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
GFP_KERNEL);
dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
GFP_KERNEL);
dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
GFP_KERNEL);
if (!dist->irq_sgi_sources ||
!dist->irq_spi_cpu ||
!dist->irq_spi_target ||
!dist->irq_pending_on_cpu ||
!dist->irq_active_on_cpu) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < nr_cpus; i++)
ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
nr_cpus, nr_irqs);
if (ret)
goto out;
ret = kvm->arch.vgic.vm_ops.init_model(kvm);
if (ret)
goto out;
kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
if (ret) {
kvm_err("VGIC: Failed to allocate vcpu memory\n");
break;
}
/*
* Enable and configure all SGIs to be edge-triggere and
* configure all PPIs as level-triggered.
*/
for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
if (i < VGIC_NR_SGIS) {
/* SGIs */
vgic_bitmap_set_irq_val(&dist->irq_enabled,
vcpu->vcpu_id, i, 1);
vgic_bitmap_set_irq_val(&dist->irq_cfg,
vcpu->vcpu_id, i,
VGIC_CFG_EDGE);
} else if (i < VGIC_NR_PRIVATE_IRQS) {
/* PPIs */
vgic_bitmap_set_irq_val(&dist->irq_cfg,
vcpu->vcpu_id, i,
VGIC_CFG_LEVEL);
}
}
vgic_enable(vcpu);
}
out:
if (ret)
kvm_vgic_destroy(kvm);
return ret;
}
static int init_vgic_model(struct kvm *kvm, int type)
{
switch (type) {
case KVM_DEV_TYPE_ARM_VGIC_V2:
vgic_v2_init_emulation(kvm);
break;
#ifdef CONFIG_KVM_ARM_VGIC_V3
case KVM_DEV_TYPE_ARM_VGIC_V3:
vgic_v3_init_emulation(kvm);
break;
#endif
default:
return -ENODEV;
}
if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
return -E2BIG;
return 0;
}
/**
* kvm_vgic_early_init - Earliest possible vgic initialization stage
*
* No memory allocation should be performed here, only static init.
*/
void kvm_vgic_early_init(struct kvm *kvm)
{
spin_lock_init(&kvm->arch.vgic.lock);
spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
}
int kvm_vgic_create(struct kvm *kvm, u32 type)
{
int i, vcpu_lock_idx = -1, ret;
struct kvm_vcpu *vcpu;
mutex_lock(&kvm->lock);
if (irqchip_in_kernel(kvm)) {
ret = -EEXIST;
goto out;
}
/*
* This function is also called by the KVM_CREATE_IRQCHIP handler,
* which had no chance yet to check the availability of the GICv2
* emulation. So check this here again. KVM_CREATE_DEVICE does
* the proper checks already.
*/
if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
ret = -ENODEV;
goto out;
}
/*
* Any time a vcpu is run, vcpu_load is called which tries to grab the
* vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
* that no other VCPUs are run while we create the vgic.
*/
ret = -EBUSY;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!mutex_trylock(&vcpu->mutex))
goto out_unlock;
vcpu_lock_idx = i;
}
kvm_for_each_vcpu(i, vcpu, kvm) {
if (vcpu->arch.has_run_once)
goto out_unlock;
}
ret = 0;
ret = init_vgic_model(kvm, type);
if (ret)
goto out_unlock;
kvm->arch.vgic.in_kernel = true;
kvm->arch.vgic.vgic_model = type;
kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
out_unlock:
for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
mutex_unlock(&vcpu->mutex);
}
out:
mutex_unlock(&kvm->lock);
return ret;
}
static int vgic_ioaddr_overlap(struct kvm *kvm)
{
phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
return 0;
if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
(cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
return -EBUSY;
return 0;
}
static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
phys_addr_t addr, phys_addr_t size)
{
int ret;
if (addr & ~KVM_PHYS_MASK)
return -E2BIG;
if (addr & (SZ_4K - 1))
return -EINVAL;
if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
return -EEXIST;
if (addr + size < addr)
return -EINVAL;
*ioaddr = addr;
ret = vgic_ioaddr_overlap(kvm);
if (ret)
*ioaddr = VGIC_ADDR_UNDEF;
return ret;
}
/**
* kvm_vgic_addr - set or get vgic VM base addresses
* @kvm: pointer to the vm struct
* @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
* @addr: pointer to address value
* @write: if true set the address in the VM address space, if false read the
* address
*
* Set or get the vgic base addresses for the distributor and the virtual CPU
* interface in the VM physical address space. These addresses are properties
* of the emulated core/SoC and therefore user space initially knows this
* information.
*/
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
{
int r = 0;
struct vgic_dist *vgic = &kvm->arch.vgic;
int type_needed;
phys_addr_t *addr_ptr, block_size;
phys_addr_t alignment;
mutex_lock(&kvm->lock);
switch (type) {
case KVM_VGIC_V2_ADDR_TYPE_DIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
addr_ptr = &vgic->vgic_dist_base;
block_size = KVM_VGIC_V2_DIST_SIZE;
alignment = SZ_4K;
break;
case KVM_VGIC_V2_ADDR_TYPE_CPU:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
addr_ptr = &vgic->vgic_cpu_base;
block_size = KVM_VGIC_V2_CPU_SIZE;
alignment = SZ_4K;
break;
#ifdef CONFIG_KVM_ARM_VGIC_V3
case KVM_VGIC_V3_ADDR_TYPE_DIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
addr_ptr = &vgic->vgic_dist_base;
block_size = KVM_VGIC_V3_DIST_SIZE;
alignment = SZ_64K;
break;
case KVM_VGIC_V3_ADDR_TYPE_REDIST:
type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
addr_ptr = &vgic->vgic_redist_base;
block_size = KVM_VGIC_V3_REDIST_SIZE;
alignment = SZ_64K;
break;
#endif
default:
r = -ENODEV;
goto out;
}
if (vgic->vgic_model != type_needed) {
r = -ENODEV;
goto out;
}
if (write) {
if (!IS_ALIGNED(*addr, alignment))
r = -EINVAL;
else
r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
block_size);
} else {
*addr = *addr_ptr;
}
out:
mutex_unlock(&kvm->lock);
return r;
}
int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
u64 addr;
unsigned long type = (unsigned long)attr->attr;
if (copy_from_user(&addr, uaddr, sizeof(addr)))
return -EFAULT;
r = kvm_vgic_addr(dev->kvm, type, &addr, true);
return (r == -ENODEV) ? -ENXIO : r;
}
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
u32 val;
int ret = 0;
if (get_user(val, uaddr))
return -EFAULT;
/*
* We require:
* - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
* - at most 1024 interrupts
* - a multiple of 32 interrupts
*/
if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
val > VGIC_MAX_IRQS ||
(val & 31))
return -EINVAL;
mutex_lock(&dev->kvm->lock);
if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
ret = -EBUSY;
else
dev->kvm->arch.vgic.nr_irqs = val;
mutex_unlock(&dev->kvm->lock);
return ret;
}
case KVM_DEV_ARM_VGIC_GRP_CTRL: {
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
r = vgic_init(dev->kvm);
return r;
}
break;
}
}
return -ENXIO;
}
int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
int r = -ENXIO;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
u64 addr;
unsigned long type = (unsigned long)attr->attr;
r = kvm_vgic_addr(dev->kvm, type, &addr, false);
if (r)
return (r == -ENODEV) ? -ENXIO : r;
if (copy_to_user(uaddr, &addr, sizeof(addr)))
return -EFAULT;
break;
}
case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
u32 __user *uaddr = (u32 __user *)(long)attr->addr;
r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
break;
}
}
return r;
}
int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
{
if (vgic_find_range(ranges, 4, offset))
return 0;
else
return -ENXIO;
}
static void vgic_init_maintenance_interrupt(void *info)
{
enable_percpu_irq(vgic->maint_irq, 0);
}
static int vgic_cpu_notify(struct notifier_block *self,
unsigned long action, void *cpu)
{
switch (action) {
case CPU_STARTING:
case CPU_STARTING_FROZEN:
vgic_init_maintenance_interrupt(NULL);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
disable_percpu_irq(vgic->maint_irq);
break;
}
return NOTIFY_OK;
}
static struct notifier_block vgic_cpu_nb = {
.notifier_call = vgic_cpu_notify,
};
static int kvm_vgic_probe(void)
{
const struct gic_kvm_info *gic_kvm_info;
int ret;
gic_kvm_info = gic_get_kvm_info();
if (!gic_kvm_info)
return -ENODEV;
switch (gic_kvm_info->type) {
case GIC_V2:
ret = vgic_v2_probe(gic_kvm_info, &vgic_ops, &vgic);
break;
case GIC_V3:
ret = vgic_v3_probe(gic_kvm_info, &vgic_ops, &vgic);
break;
default:
ret = -ENODEV;
}
return ret;
}
int kvm_vgic_hyp_init(void)
{
int ret;
ret = kvm_vgic_probe();
if (ret) {
kvm_err("error: KVM vGIC probing failed\n");
return ret;
}
ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
"vgic", kvm_get_running_vcpus());
if (ret) {
kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
return ret;
}
ret = __register_cpu_notifier(&vgic_cpu_nb);
if (ret) {
kvm_err("Cannot register vgic CPU notifier\n");
goto out_free_irq;
}
on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
return 0;
out_free_irq:
free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
return ret;
}
int kvm_irq_map_gsi(struct kvm *kvm,
struct kvm_kernel_irq_routing_entry *entries,
int gsi)
{
return 0;
}
int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
{
return pin;
}
int kvm_set_irq(struct kvm *kvm, int irq_source_id,
u32 irq, int level, bool line_status)
{
unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
trace_kvm_set_irq(irq, level, irq_source_id);
BUG_ON(!vgic_initialized(kvm));
return kvm_vgic_inject_irq(kvm, 0, spi, level);
}
/* MSI not implemented yet */
int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id,
int level, bool line_status)
{
return 0;
}
/*
* Copyright (C) 2012-2014 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from virt/kvm/arm/vgic.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __KVM_VGIC_H__
#define __KVM_VGIC_H__
#include <kvm/iodev.h>
#define VGIC_ADDR_UNDEF (-1)
#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
#define IMPLEMENTER_ARM 0x43b
#define ACCESS_READ_VALUE (1 << 0)
#define ACCESS_READ_RAZ (0 << 0)
#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
#define ACCESS_WRITE_IGNORED (0 << 1)
#define ACCESS_WRITE_SETBIT (1 << 1)
#define ACCESS_WRITE_CLEARBIT (2 << 1)
#define ACCESS_WRITE_VALUE (3 << 1)
#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
#define VCPU_NOT_ALLOCATED ((u8)-1)
unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x);
void vgic_update_state(struct kvm *kvm);
int vgic_init_common_maps(struct kvm *kvm);
u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset);
u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset);
void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq);
void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq);
void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq);
void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
int irq, int val);
void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq);
void vgic_unqueue_irqs(struct kvm_vcpu *vcpu);
struct kvm_exit_mmio {
phys_addr_t phys_addr;
void *data;
u32 len;
bool is_write;
void *private;
};
void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
phys_addr_t offset, int mode);
bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
phys_addr_t offset);
static inline
u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
{
return le32_to_cpu(*((u32 *)mmio->data)) & mask;
}
static inline
void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
{
*((u32 *)mmio->data) = cpu_to_le32(value) & mask;
}
struct vgic_io_range {
phys_addr_t base;
unsigned long len;
int bits_per_irq;
bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
phys_addr_t offset);
};
int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
const struct vgic_io_range *ranges,
int redist_id,
struct vgic_io_device *iodev);
static inline bool is_in_range(phys_addr_t addr, unsigned long len,
phys_addr_t baseaddr, unsigned long size)
{
return (addr >= baseaddr) && (addr + len <= baseaddr + size);
}
const
struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
int len, gpa_t offset);
bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id, int access);
bool vgic_handle_set_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id);
bool vgic_handle_clear_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id);
bool vgic_handle_set_active_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id);
bool vgic_handle_clear_active_reg(struct kvm *kvm,
struct kvm_exit_mmio *mmio,
phys_addr_t offset, int vcpu_id);
bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
phys_addr_t offset);
void vgic_kick_vcpus(struct kvm *kvm);
int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset);
int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr);
int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr);
int vgic_init(struct kvm *kvm);
void vgic_v2_init_emulation(struct kvm *kvm);
void vgic_v3_init_emulation(struct kvm *kvm);
#endif
...@@ -157,6 +157,9 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) ...@@ -157,6 +157,9 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
int i; int i;
INIT_LIST_HEAD(&dist->lpi_list_head);
spin_lock_init(&dist->lpi_list_lock);
dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL); dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
if (!dist->spis) if (!dist->spis)
return -ENOMEM; return -ENOMEM;
...@@ -177,6 +180,7 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) ...@@ -177,6 +180,7 @@ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
spin_lock_init(&irq->irq_lock); spin_lock_init(&irq->irq_lock);
irq->vcpu = NULL; irq->vcpu = NULL;
irq->target_vcpu = vcpu0; irq->target_vcpu = vcpu0;
kref_init(&irq->refcount);
if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
irq->targets = 0; irq->targets = 0;
else else
...@@ -211,6 +215,7 @@ static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) ...@@ -211,6 +215,7 @@ static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
irq->vcpu = NULL; irq->vcpu = NULL;
irq->target_vcpu = vcpu; irq->target_vcpu = vcpu;
irq->targets = 1U << vcpu->vcpu_id; irq->targets = 1U << vcpu->vcpu_id;
kref_init(&irq->refcount);
if (vgic_irq_is_sgi(i)) { if (vgic_irq_is_sgi(i)) {
/* SGIs */ /* SGIs */
irq->enabled = 1; irq->enabled = 1;
...@@ -253,6 +258,9 @@ int vgic_init(struct kvm *kvm) ...@@ -253,6 +258,9 @@ int vgic_init(struct kvm *kvm)
if (ret) if (ret)
goto out; goto out;
if (vgic_has_its(kvm))
dist->msis_require_devid = true;
kvm_for_each_vcpu(i, vcpu, kvm) kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vgic_vcpu_init(vcpu); kvm_vgic_vcpu_init(vcpu);
...@@ -271,7 +279,6 @@ static void kvm_vgic_dist_destroy(struct kvm *kvm) ...@@ -271,7 +279,6 @@ static void kvm_vgic_dist_destroy(struct kvm *kvm)
dist->initialized = false; dist->initialized = false;
kfree(dist->spis); kfree(dist->spis);
kfree(dist->redist_iodevs);
dist->nr_spis = 0; dist->nr_spis = 0;
mutex_unlock(&kvm->lock); mutex_unlock(&kvm->lock);
......
/*
* GICv3 ITS emulation
*
* Copyright (C) 2015,2016 ARM Ltd.
* Author: Andre Przywara <andre.przywara@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/uaccess.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
#include "vgic.h"
#include "vgic-mmio.h"
/*
* Creates a new (reference to a) struct vgic_irq for a given LPI.
* If this LPI is already mapped on another ITS, we increase its refcount
* and return a pointer to the existing structure.
* If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
* This function returns a pointer to the _unlocked_ structure.
*/
static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
/* In this case there is no put, since we keep the reference. */
if (irq)
return irq;
irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
if (!irq)
return NULL;
INIT_LIST_HEAD(&irq->lpi_list);
INIT_LIST_HEAD(&irq->ap_list);
spin_lock_init(&irq->irq_lock);
irq->config = VGIC_CONFIG_EDGE;
kref_init(&irq->refcount);
irq->intid = intid;
spin_lock(&dist->lpi_list_lock);
/*
* There could be a race with another vgic_add_lpi(), so we need to
* check that we don't add a second list entry with the same LPI.
*/
list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
if (oldirq->intid != intid)
continue;
/* Someone was faster with adding this LPI, lets use that. */
kfree(irq);
irq = oldirq;
/*
* This increases the refcount, the caller is expected to
* call vgic_put_irq() on the returned pointer once it's
* finished with the IRQ.
*/
vgic_get_irq_kref(irq);
goto out_unlock;
}
list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
dist->lpi_list_count++;
out_unlock:
spin_unlock(&dist->lpi_list_lock);
return irq;
}
struct its_device {
struct list_head dev_list;
/* the head for the list of ITTEs */
struct list_head itt_head;
u32 device_id;
};
#define COLLECTION_NOT_MAPPED ((u32)~0)
struct its_collection {
struct list_head coll_list;
u32 collection_id;
u32 target_addr;
};
#define its_is_collection_mapped(coll) ((coll) && \
((coll)->target_addr != COLLECTION_NOT_MAPPED))
struct its_itte {
struct list_head itte_list;
struct vgic_irq *irq;
struct its_collection *collection;
u32 lpi;
u32 event_id;
};
/*
* Find and returns a device in the device table for an ITS.
* Must be called with the its_lock mutex held.
*/
static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
{
struct its_device *device;
list_for_each_entry(device, &its->device_list, dev_list)
if (device_id == device->device_id)
return device;
return NULL;
}
/*
* Find and returns an interrupt translation table entry (ITTE) for a given
* Device ID/Event ID pair on an ITS.
* Must be called with the its_lock mutex held.
*/
static struct its_itte *find_itte(struct vgic_its *its, u32 device_id,
u32 event_id)
{
struct its_device *device;
struct its_itte *itte;
device = find_its_device(its, device_id);
if (device == NULL)
return NULL;
list_for_each_entry(itte, &device->itt_head, itte_list)
if (itte->event_id == event_id)
return itte;
return NULL;
}
/* To be used as an iterator this macro misses the enclosing parentheses */
#define for_each_lpi_its(dev, itte, its) \
list_for_each_entry(dev, &(its)->device_list, dev_list) \
list_for_each_entry(itte, &(dev)->itt_head, itte_list)
/*
* We only implement 48 bits of PA at the moment, although the ITS
* supports more. Let's be restrictive here.
*/
#define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
#define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
#define PENDBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16))
#define PROPBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12))
#define GIC_LPI_OFFSET 8192
/*
* Finds and returns a collection in the ITS collection table.
* Must be called with the its_lock mutex held.
*/
static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
{
struct its_collection *collection;
list_for_each_entry(collection, &its->collection_list, coll_list) {
if (coll_id == collection->collection_id)
return collection;
}
return NULL;
}
#define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
#define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
/*
* Reads the configuration data for a given LPI from guest memory and
* updates the fields in struct vgic_irq.
* If filter_vcpu is not NULL, applies only if the IRQ is targeting this
* VCPU. Unconditionally applies if filter_vcpu is NULL.
*/
static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
struct kvm_vcpu *filter_vcpu)
{
u64 propbase = PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
u8 prop;
int ret;
ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
&prop, 1);
if (ret)
return ret;
spin_lock(&irq->irq_lock);
if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
irq->priority = LPI_PROP_PRIORITY(prop);
irq->enabled = LPI_PROP_ENABLE_BIT(prop);
vgic_queue_irq_unlock(kvm, irq);
} else {
spin_unlock(&irq->irq_lock);
}
return 0;
}
/*
* Create a snapshot of the current LPI list, so that we can enumerate all
* LPIs without holding any lock.
* Returns the array length and puts the kmalloc'ed array into intid_ptr.
*/
static int vgic_copy_lpi_list(struct kvm *kvm, u32 **intid_ptr)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct vgic_irq *irq;
u32 *intids;
int irq_count = dist->lpi_list_count, i = 0;
/*
* We use the current value of the list length, which may change
* after the kmalloc. We don't care, because the guest shouldn't
* change anything while the command handling is still running,
* and in the worst case we would miss a new IRQ, which one wouldn't
* expect to be covered by this command anyway.
*/
intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
if (!intids)
return -ENOMEM;
spin_lock(&dist->lpi_list_lock);
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
/* We don't need to "get" the IRQ, as we hold the list lock. */
intids[i] = irq->intid;
if (++i == irq_count)
break;
}
spin_unlock(&dist->lpi_list_lock);
*intid_ptr = intids;
return irq_count;
}
/*
* Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
* is targeting) to the VGIC's view, which deals with target VCPUs.
* Needs to be called whenever either the collection for a LPIs has
* changed or the collection itself got retargeted.
*/
static void update_affinity_itte(struct kvm *kvm, struct its_itte *itte)
{
struct kvm_vcpu *vcpu;
if (!its_is_collection_mapped(itte->collection))
return;
vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
spin_lock(&itte->irq->irq_lock);
itte->irq->target_vcpu = vcpu;
spin_unlock(&itte->irq->irq_lock);
}
/*
* Updates the target VCPU for every LPI targeting this collection.
* Must be called with the its_lock mutex held.
*/
static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
struct its_collection *coll)
{
struct its_device *device;
struct its_itte *itte;
for_each_lpi_its(device, itte, its) {
if (!itte->collection || coll != itte->collection)
continue;
update_affinity_itte(kvm, itte);
}
}
static u32 max_lpis_propbaser(u64 propbaser)
{
int nr_idbits = (propbaser & 0x1f) + 1;
return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
}
/*
* Scan the whole LPI pending table and sync the pending bit in there
* with our own data structures. This relies on the LPI being
* mapped before.
*/
static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
{
gpa_t pendbase = PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
struct vgic_irq *irq;
int last_byte_offset = -1;
int ret = 0;
u32 *intids;
int nr_irqs, i;
nr_irqs = vgic_copy_lpi_list(vcpu->kvm, &intids);
if (nr_irqs < 0)
return nr_irqs;
for (i = 0; i < nr_irqs; i++) {
int byte_offset, bit_nr;
u8 pendmask;
byte_offset = intids[i] / BITS_PER_BYTE;
bit_nr = intids[i] % BITS_PER_BYTE;
/*
* For contiguously allocated LPIs chances are we just read
* this very same byte in the last iteration. Reuse that.
*/
if (byte_offset != last_byte_offset) {
ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
&pendmask, 1);
if (ret) {
kfree(intids);
return ret;
}
last_byte_offset = byte_offset;
}
irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
spin_lock(&irq->irq_lock);
irq->pending = pendmask & (1U << bit_nr);
vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_put_irq(vcpu->kvm, irq);
}
kfree(intids);
return ret;
}
static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
u32 reg = 0;
mutex_lock(&its->cmd_lock);
if (its->creadr == its->cwriter)
reg |= GITS_CTLR_QUIESCENT;
if (its->enabled)
reg |= GITS_CTLR_ENABLE;
mutex_unlock(&its->cmd_lock);
return reg;
}
static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
gpa_t addr, unsigned int len,
unsigned long val)
{
its->enabled = !!(val & GITS_CTLR_ENABLE);
}
static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
u64 reg = GITS_TYPER_PLPIS;
/*
* We use linear CPU numbers for redistributor addressing,
* so GITS_TYPER.PTA is 0.
* Also we force all PROPBASER registers to be the same, so
* CommonLPIAff is 0 as well.
* To avoid memory waste in the guest, we keep the number of IDBits and
* DevBits low - as least for the time being.
*/
reg |= 0x0f << GITS_TYPER_DEVBITS_SHIFT;
reg |= 0x0f << GITS_TYPER_IDBITS_SHIFT;
return extract_bytes(reg, addr & 7, len);
}
static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
}
static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
switch (addr & 0xffff) {
case GITS_PIDR0:
return 0x92; /* part number, bits[7:0] */
case GITS_PIDR1:
return 0xb4; /* part number, bits[11:8] */
case GITS_PIDR2:
return GIC_PIDR2_ARCH_GICv3 | 0x0b;
case GITS_PIDR4:
return 0x40; /* This is a 64K software visible page */
/* The following are the ID registers for (any) GIC. */
case GITS_CIDR0:
return 0x0d;
case GITS_CIDR1:
return 0xf0;
case GITS_CIDR2:
return 0x05;
case GITS_CIDR3:
return 0xb1;
}
return 0;
}
/*
* Find the target VCPU and the LPI number for a given devid/eventid pair
* and make this IRQ pending, possibly injecting it.
* Must be called with the its_lock mutex held.
*/
static void vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
u32 devid, u32 eventid)
{
struct its_itte *itte;
if (!its->enabled)
return;
itte = find_itte(its, devid, eventid);
/* Triggering an unmapped IRQ gets silently dropped. */
if (itte && its_is_collection_mapped(itte->collection)) {
struct kvm_vcpu *vcpu;
vcpu = kvm_get_vcpu(kvm, itte->collection->target_addr);
if (vcpu && vcpu->arch.vgic_cpu.lpis_enabled) {
spin_lock(&itte->irq->irq_lock);
itte->irq->pending = true;
vgic_queue_irq_unlock(kvm, itte->irq);
}
}
}
/*
* Queries the KVM IO bus framework to get the ITS pointer from the given
* doorbell address.
* We then call vgic_its_trigger_msi() with the decoded data.
*/
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
{
u64 address;
struct kvm_io_device *kvm_io_dev;
struct vgic_io_device *iodev;
if (!vgic_has_its(kvm))
return -ENODEV;
if (!(msi->flags & KVM_MSI_VALID_DEVID))
return -EINVAL;
address = (u64)msi->address_hi << 32 | msi->address_lo;
kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
if (!kvm_io_dev)
return -ENODEV;
iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
mutex_lock(&iodev->its->its_lock);
vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
mutex_unlock(&iodev->its->its_lock);
return 0;
}
/* Requires the its_lock to be held. */
static void its_free_itte(struct kvm *kvm, struct its_itte *itte)
{
list_del(&itte->itte_list);
/* This put matches the get in vgic_add_lpi. */
vgic_put_irq(kvm, itte->irq);
kfree(itte);
}
static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
{
return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
}
#define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
#define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
#define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
#define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
#define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
#define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
#define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
/*
* The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
* Must be called with the its_lock mutex held.
*/
static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
struct its_itte *itte;
itte = find_itte(its, device_id, event_id);
if (itte && itte->collection) {
/*
* Though the spec talks about removing the pending state, we
* don't bother here since we clear the ITTE anyway and the
* pending state is a property of the ITTE struct.
*/
its_free_itte(kvm, itte);
return 0;
}
return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
}
/*
* The MOVI command moves an ITTE to a different collection.
* Must be called with the its_lock mutex held.
*/
static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
u32 coll_id = its_cmd_get_collection(its_cmd);
struct kvm_vcpu *vcpu;
struct its_itte *itte;
struct its_collection *collection;
itte = find_itte(its, device_id, event_id);
if (!itte)
return E_ITS_MOVI_UNMAPPED_INTERRUPT;
if (!its_is_collection_mapped(itte->collection))
return E_ITS_MOVI_UNMAPPED_COLLECTION;
collection = find_collection(its, coll_id);
if (!its_is_collection_mapped(collection))
return E_ITS_MOVI_UNMAPPED_COLLECTION;
itte->collection = collection;
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
spin_lock(&itte->irq->irq_lock);
itte->irq->target_vcpu = vcpu;
spin_unlock(&itte->irq->irq_lock);
return 0;
}
/*
* Check whether an ID can be stored into the corresponding guest table.
* For a direct table this is pretty easy, but gets a bit nasty for
* indirect tables. We check whether the resulting guest physical address
* is actually valid (covered by a memslot and guest accessbible).
* For this we have to read the respective first level entry.
*/
static bool vgic_its_check_id(struct vgic_its *its, u64 baser, int id)
{
int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
int index;
u64 indirect_ptr;
gfn_t gfn;
if (!(baser & GITS_BASER_INDIRECT)) {
phys_addr_t addr;
if (id >= (l1_tbl_size / GITS_BASER_ENTRY_SIZE(baser)))
return false;
addr = BASER_ADDRESS(baser) + id * GITS_BASER_ENTRY_SIZE(baser);
gfn = addr >> PAGE_SHIFT;
return kvm_is_visible_gfn(its->dev->kvm, gfn);
}
/* calculate and check the index into the 1st level */
index = id / (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
if (index >= (l1_tbl_size / sizeof(u64)))
return false;
/* Each 1st level entry is represented by a 64-bit value. */
if (kvm_read_guest(its->dev->kvm,
BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
&indirect_ptr, sizeof(indirect_ptr)))
return false;
indirect_ptr = le64_to_cpu(indirect_ptr);
/* check the valid bit of the first level entry */
if (!(indirect_ptr & BIT_ULL(63)))
return false;
/*
* Mask the guest physical address and calculate the frame number.
* Any address beyond our supported 48 bits of PA will be caught
* by the actual check in the final step.
*/
indirect_ptr &= GENMASK_ULL(51, 16);
/* Find the address of the actual entry */
index = id % (SZ_64K / GITS_BASER_ENTRY_SIZE(baser));
indirect_ptr += index * GITS_BASER_ENTRY_SIZE(baser);
gfn = indirect_ptr >> PAGE_SHIFT;
return kvm_is_visible_gfn(its->dev->kvm, gfn);
}
static int vgic_its_alloc_collection(struct vgic_its *its,
struct its_collection **colp,
u32 coll_id)
{
struct its_collection *collection;
if (!vgic_its_check_id(its, its->baser_coll_table, coll_id))
return E_ITS_MAPC_COLLECTION_OOR;
collection = kzalloc(sizeof(*collection), GFP_KERNEL);
collection->collection_id = coll_id;
collection->target_addr = COLLECTION_NOT_MAPPED;
list_add_tail(&collection->coll_list, &its->collection_list);
*colp = collection;
return 0;
}
static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
{
struct its_collection *collection;
struct its_device *device;
struct its_itte *itte;
/*
* Clearing the mapping for that collection ID removes the
* entry from the list. If there wasn't any before, we can
* go home early.
*/
collection = find_collection(its, coll_id);
if (!collection)
return;
for_each_lpi_its(device, itte, its)
if (itte->collection &&
itte->collection->collection_id == coll_id)
itte->collection = NULL;
list_del(&collection->coll_list);
kfree(collection);
}
/*
* The MAPTI and MAPI commands map LPIs to ITTEs.
* Must be called with its_lock mutex held.
*/
static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
u32 coll_id = its_cmd_get_collection(its_cmd);
struct its_itte *itte;
struct its_device *device;
struct its_collection *collection, *new_coll = NULL;
int lpi_nr;
device = find_its_device(its, device_id);
if (!device)
return E_ITS_MAPTI_UNMAPPED_DEVICE;
if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
lpi_nr = its_cmd_get_physical_id(its_cmd);
else
lpi_nr = event_id;
if (lpi_nr < GIC_LPI_OFFSET ||
lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
return E_ITS_MAPTI_PHYSICALID_OOR;
collection = find_collection(its, coll_id);
if (!collection) {
int ret = vgic_its_alloc_collection(its, &collection, coll_id);
if (ret)
return ret;
new_coll = collection;
}
itte = find_itte(its, device_id, event_id);
if (!itte) {
itte = kzalloc(sizeof(struct its_itte), GFP_KERNEL);
if (!itte) {
if (new_coll)
vgic_its_free_collection(its, coll_id);
return -ENOMEM;
}
itte->event_id = event_id;
list_add_tail(&itte->itte_list, &device->itt_head);
}
itte->collection = collection;
itte->lpi = lpi_nr;
itte->irq = vgic_add_lpi(kvm, lpi_nr);
update_affinity_itte(kvm, itte);
/*
* We "cache" the configuration table entries in out struct vgic_irq's.
* However we only have those structs for mapped IRQs, so we read in
* the respective config data from memory here upon mapping the LPI.
*/
update_lpi_config(kvm, itte->irq, NULL);
return 0;
}
/* Requires the its_lock to be held. */
static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
{
struct its_itte *itte, *temp;
/*
* The spec says that unmapping a device with still valid
* ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
* since we cannot leave the memory unreferenced.
*/
list_for_each_entry_safe(itte, temp, &device->itt_head, itte_list)
its_free_itte(kvm, itte);
list_del(&device->dev_list);
kfree(device);
}
/*
* MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
* Must be called with the its_lock mutex held.
*/
static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
bool valid = its_cmd_get_validbit(its_cmd);
struct its_device *device;
if (!vgic_its_check_id(its, its->baser_device_table, device_id))
return E_ITS_MAPD_DEVICE_OOR;
device = find_its_device(its, device_id);
/*
* The spec says that calling MAPD on an already mapped device
* invalidates all cached data for this device. We implement this
* by removing the mapping and re-establishing it.
*/
if (device)
vgic_its_unmap_device(kvm, device);
/*
* The spec does not say whether unmapping a not-mapped device
* is an error, so we are done in any case.
*/
if (!valid)
return 0;
device = kzalloc(sizeof(struct its_device), GFP_KERNEL);
if (!device)
return -ENOMEM;
device->device_id = device_id;
INIT_LIST_HEAD(&device->itt_head);
list_add_tail(&device->dev_list, &its->device_list);
return 0;
}
/*
* The MAPC command maps collection IDs to redistributors.
* Must be called with the its_lock mutex held.
*/
static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u16 coll_id;
u32 target_addr;
struct its_collection *collection;
bool valid;
valid = its_cmd_get_validbit(its_cmd);
coll_id = its_cmd_get_collection(its_cmd);
target_addr = its_cmd_get_target_addr(its_cmd);
if (target_addr >= atomic_read(&kvm->online_vcpus))
return E_ITS_MAPC_PROCNUM_OOR;
if (!valid) {
vgic_its_free_collection(its, coll_id);
} else {
collection = find_collection(its, coll_id);
if (!collection) {
int ret;
ret = vgic_its_alloc_collection(its, &collection,
coll_id);
if (ret)
return ret;
collection->target_addr = target_addr;
} else {
collection->target_addr = target_addr;
update_affinity_collection(kvm, its, collection);
}
}
return 0;
}
/*
* The CLEAR command removes the pending state for a particular LPI.
* Must be called with the its_lock mutex held.
*/
static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
struct its_itte *itte;
itte = find_itte(its, device_id, event_id);
if (!itte)
return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
itte->irq->pending = false;
return 0;
}
/*
* The INV command syncs the configuration bits from the memory table.
* Must be called with the its_lock mutex held.
*/
static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u32 device_id = its_cmd_get_deviceid(its_cmd);
u32 event_id = its_cmd_get_id(its_cmd);
struct its_itte *itte;
itte = find_itte(its, device_id, event_id);
if (!itte)
return E_ITS_INV_UNMAPPED_INTERRUPT;
return update_lpi_config(kvm, itte->irq, NULL);
}
/*
* The INVALL command requests flushing of all IRQ data in this collection.
* Find the VCPU mapped to that collection, then iterate over the VM's list
* of mapped LPIs and update the configuration for each IRQ which targets
* the specified vcpu. The configuration will be read from the in-memory
* configuration table.
* Must be called with the its_lock mutex held.
*/
static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u32 coll_id = its_cmd_get_collection(its_cmd);
struct its_collection *collection;
struct kvm_vcpu *vcpu;
struct vgic_irq *irq;
u32 *intids;
int irq_count, i;
collection = find_collection(its, coll_id);
if (!its_is_collection_mapped(collection))
return E_ITS_INVALL_UNMAPPED_COLLECTION;
vcpu = kvm_get_vcpu(kvm, collection->target_addr);
irq_count = vgic_copy_lpi_list(kvm, &intids);
if (irq_count < 0)
return irq_count;
for (i = 0; i < irq_count; i++) {
irq = vgic_get_irq(kvm, NULL, intids[i]);
if (!irq)
continue;
update_lpi_config(kvm, irq, vcpu);
vgic_put_irq(kvm, irq);
}
kfree(intids);
return 0;
}
/*
* The MOVALL command moves the pending state of all IRQs targeting one
* redistributor to another. We don't hold the pending state in the VCPUs,
* but in the IRQs instead, so there is really not much to do for us here.
* However the spec says that no IRQ must target the old redistributor
* afterwards, so we make sure that no LPI is using the associated target_vcpu.
* This command affects all LPIs in the system that target that redistributor.
*/
static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
struct vgic_dist *dist = &kvm->arch.vgic;
u32 target1_addr = its_cmd_get_target_addr(its_cmd);
u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
struct kvm_vcpu *vcpu1, *vcpu2;
struct vgic_irq *irq;
if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
target2_addr >= atomic_read(&kvm->online_vcpus))
return E_ITS_MOVALL_PROCNUM_OOR;
if (target1_addr == target2_addr)
return 0;
vcpu1 = kvm_get_vcpu(kvm, target1_addr);
vcpu2 = kvm_get_vcpu(kvm, target2_addr);
spin_lock(&dist->lpi_list_lock);
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
spin_lock(&irq->irq_lock);
if (irq->target_vcpu == vcpu1)
irq->target_vcpu = vcpu2;
spin_unlock(&irq->irq_lock);
}
spin_unlock(&dist->lpi_list_lock);
return 0;
}
/*
* The INT command injects the LPI associated with that DevID/EvID pair.
* Must be called with the its_lock mutex held.
*/
static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
u32 msi_data = its_cmd_get_id(its_cmd);
u64 msi_devid = its_cmd_get_deviceid(its_cmd);
vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
return 0;
}
/*
* This function is called with the its_cmd lock held, but the ITS data
* structure lock dropped.
*/
static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
u64 *its_cmd)
{
int ret = -ENODEV;
mutex_lock(&its->its_lock);
switch (its_cmd_get_command(its_cmd)) {
case GITS_CMD_MAPD:
ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
break;
case GITS_CMD_MAPC:
ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
break;
case GITS_CMD_MAPI:
ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
break;
case GITS_CMD_MAPTI:
ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
break;
case GITS_CMD_MOVI:
ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
break;
case GITS_CMD_DISCARD:
ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
break;
case GITS_CMD_CLEAR:
ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
break;
case GITS_CMD_MOVALL:
ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
break;
case GITS_CMD_INT:
ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
break;
case GITS_CMD_INV:
ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
break;
case GITS_CMD_INVALL:
ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
break;
case GITS_CMD_SYNC:
/* we ignore this command: we are in sync all of the time */
ret = 0;
break;
}
mutex_unlock(&its->its_lock);
return ret;
}
static u64 vgic_sanitise_its_baser(u64 reg)
{
reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
GITS_BASER_SHAREABILITY_SHIFT,
vgic_sanitise_shareability);
reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
GITS_BASER_INNER_CACHEABILITY_SHIFT,
vgic_sanitise_inner_cacheability);
reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
GITS_BASER_OUTER_CACHEABILITY_SHIFT,
vgic_sanitise_outer_cacheability);
/* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
reg &= ~GENMASK_ULL(15, 12);
/* We support only one (ITS) page size: 64K */
reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
return reg;
}
static u64 vgic_sanitise_its_cbaser(u64 reg)
{
reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
GITS_CBASER_SHAREABILITY_SHIFT,
vgic_sanitise_shareability);
reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
GITS_CBASER_INNER_CACHEABILITY_SHIFT,
vgic_sanitise_inner_cacheability);
reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
vgic_sanitise_outer_cacheability);
/*
* Sanitise the physical address to be 64k aligned.
* Also limit the physical addresses to 48 bits.
*/
reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
return reg;
}
static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
return extract_bytes(its->cbaser, addr & 7, len);
}
static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
gpa_t addr, unsigned int len,
unsigned long val)
{
/* When GITS_CTLR.Enable is 1, this register is RO. */
if (its->enabled)
return;
mutex_lock(&its->cmd_lock);
its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
its->creadr = 0;
/*
* CWRITER is architecturally UNKNOWN on reset, but we need to reset
* it to CREADR to make sure we start with an empty command buffer.
*/
its->cwriter = its->creadr;
mutex_unlock(&its->cmd_lock);
}
#define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
#define ITS_CMD_SIZE 32
#define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
/*
* By writing to CWRITER the guest announces new commands to be processed.
* To avoid any races in the first place, we take the its_cmd lock, which
* protects our ring buffer variables, so that there is only one user
* per ITS handling commands at a given time.
*/
static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
gpa_t addr, unsigned int len,
unsigned long val)
{
gpa_t cbaser;
u64 cmd_buf[4];
u32 reg;
if (!its)
return;
mutex_lock(&its->cmd_lock);
reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
reg = ITS_CMD_OFFSET(reg);
if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
mutex_unlock(&its->cmd_lock);
return;
}
its->cwriter = reg;
cbaser = CBASER_ADDRESS(its->cbaser);
while (its->cwriter != its->creadr) {
int ret = kvm_read_guest(kvm, cbaser + its->creadr,
cmd_buf, ITS_CMD_SIZE);
/*
* If kvm_read_guest() fails, this could be due to the guest
* programming a bogus value in CBASER or something else going
* wrong from which we cannot easily recover.
* According to section 6.3.2 in the GICv3 spec we can just
* ignore that command then.
*/
if (!ret)
vgic_its_handle_command(kvm, its, cmd_buf);
its->creadr += ITS_CMD_SIZE;
if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
its->creadr = 0;
}
mutex_unlock(&its->cmd_lock);
}
static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
return extract_bytes(its->cwriter, addr & 0x7, len);
}
static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
return extract_bytes(its->creadr, addr & 0x7, len);
}
#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len)
{
u64 reg;
switch (BASER_INDEX(addr)) {
case 0:
reg = its->baser_device_table;
break;
case 1:
reg = its->baser_coll_table;
break;
default:
reg = 0;
break;
}
return extract_bytes(reg, addr & 7, len);
}
#define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
static void vgic_mmio_write_its_baser(struct kvm *kvm,
struct vgic_its *its,
gpa_t addr, unsigned int len,
unsigned long val)
{
u64 entry_size, device_type;
u64 reg, *regptr, clearbits = 0;
/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
if (its->enabled)
return;
switch (BASER_INDEX(addr)) {
case 0:
regptr = &its->baser_device_table;
entry_size = 8;
device_type = GITS_BASER_TYPE_DEVICE;
break;
case 1:
regptr = &its->baser_coll_table;
entry_size = 8;
device_type = GITS_BASER_TYPE_COLLECTION;
clearbits = GITS_BASER_INDIRECT;
break;
default:
return;
}
reg = update_64bit_reg(*regptr, addr & 7, len, val);
reg &= ~GITS_BASER_RO_MASK;
reg &= ~clearbits;
reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
reg |= device_type << GITS_BASER_TYPE_SHIFT;
reg = vgic_sanitise_its_baser(reg);
*regptr = reg;
}
#define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
{ \
.reg_offset = off, \
.len = length, \
.access_flags = acc, \
.its_read = rd, \
.its_write = wr, \
}
static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
gpa_t addr, unsigned int len, unsigned long val)
{
/* Ignore */
}
static struct vgic_register_region its_registers[] = {
REGISTER_ITS_DESC(GITS_CTLR,
vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_IIDR,
vgic_mmio_read_its_iidr, its_mmio_write_wi, 4,
VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_TYPER,
vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_CBASER,
vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_CWRITER,
vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_CREADR,
vgic_mmio_read_its_creadr, its_mmio_write_wi, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_BASER,
vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_ITS_DESC(GITS_IDREGS_BASE,
vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
VGIC_ACCESS_32bit),
};
/* This is called on setting the LPI enable bit in the redistributor. */
void vgic_enable_lpis(struct kvm_vcpu *vcpu)
{
if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
its_sync_lpi_pending_table(vcpu);
}
static int vgic_its_init_its(struct kvm *kvm, struct vgic_its *its)
{
struct vgic_io_device *iodev = &its->iodev;
int ret;
if (its->initialized)
return 0;
if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base))
return -ENXIO;
iodev->regions = its_registers;
iodev->nr_regions = ARRAY_SIZE(its_registers);
kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
iodev->base_addr = its->vgic_its_base;
iodev->iodev_type = IODEV_ITS;
iodev->its = its;
mutex_lock(&kvm->slots_lock);
ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
mutex_unlock(&kvm->slots_lock);
if (!ret)
its->initialized = true;
return ret;
}
#define INITIAL_BASER_VALUE \
(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
((8ULL - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | \
GITS_BASER_PAGE_SIZE_64K)
#define INITIAL_PROPBASER_VALUE \
(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
static int vgic_its_create(struct kvm_device *dev, u32 type)
{
struct vgic_its *its;
if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
return -ENODEV;
its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
if (!its)
return -ENOMEM;
mutex_init(&its->its_lock);
mutex_init(&its->cmd_lock);
its->vgic_its_base = VGIC_ADDR_UNDEF;
INIT_LIST_HEAD(&its->device_list);
INIT_LIST_HEAD(&its->collection_list);
dev->kvm->arch.vgic.has_its = true;
its->initialized = false;
its->enabled = false;
its->dev = dev;
its->baser_device_table = INITIAL_BASER_VALUE |
((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
its->baser_coll_table = INITIAL_BASER_VALUE |
((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
dev->private = its;
return 0;
}
static void vgic_its_destroy(struct kvm_device *kvm_dev)
{
struct kvm *kvm = kvm_dev->kvm;
struct vgic_its *its = kvm_dev->private;
struct its_device *dev;
struct its_itte *itte;
struct list_head *dev_cur, *dev_temp;
struct list_head *cur, *temp;
/*
* We may end up here without the lists ever having been initialized.
* Check this and bail out early to avoid dereferencing a NULL pointer.
*/
if (!its->device_list.next)
return;
mutex_lock(&its->its_lock);
list_for_each_safe(dev_cur, dev_temp, &its->device_list) {
dev = container_of(dev_cur, struct its_device, dev_list);
list_for_each_safe(cur, temp, &dev->itt_head) {
itte = (container_of(cur, struct its_itte, itte_list));
its_free_itte(kvm, itte);
}
list_del(dev_cur);
kfree(dev);
}
list_for_each_safe(cur, temp, &its->collection_list) {
list_del(cur);
kfree(container_of(cur, struct its_collection, coll_list));
}
mutex_unlock(&its->its_lock);
kfree(its);
}
static int vgic_its_has_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR:
switch (attr->attr) {
case KVM_VGIC_ITS_ADDR_TYPE:
return 0;
}
break;
case KVM_DEV_ARM_VGIC_GRP_CTRL:
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return 0;
}
break;
}
return -ENXIO;
}
static int vgic_its_set_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
struct vgic_its *its = dev->private;
int ret;
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
unsigned long type = (unsigned long)attr->attr;
u64 addr;
if (type != KVM_VGIC_ITS_ADDR_TYPE)
return -ENODEV;
if (its->initialized)
return -EBUSY;
if (copy_from_user(&addr, uaddr, sizeof(addr)))
return -EFAULT;
ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
addr, SZ_64K);
if (ret)
return ret;
its->vgic_its_base = addr;
return 0;
}
case KVM_DEV_ARM_VGIC_GRP_CTRL:
switch (attr->attr) {
case KVM_DEV_ARM_VGIC_CTRL_INIT:
return vgic_its_init_its(dev->kvm, its);
}
break;
}
return -ENXIO;
}
static int vgic_its_get_attr(struct kvm_device *dev,
struct kvm_device_attr *attr)
{
switch (attr->group) {
case KVM_DEV_ARM_VGIC_GRP_ADDR: {
struct vgic_its *its = dev->private;
u64 addr = its->vgic_its_base;
u64 __user *uaddr = (u64 __user *)(long)attr->addr;
unsigned long type = (unsigned long)attr->attr;
if (type != KVM_VGIC_ITS_ADDR_TYPE)
return -ENODEV;
if (copy_to_user(uaddr, &addr, sizeof(addr)))
return -EFAULT;
break;
default:
return -ENXIO;
}
}
return 0;
}
static struct kvm_device_ops kvm_arm_vgic_its_ops = {
.name = "kvm-arm-vgic-its",
.create = vgic_its_create,
.destroy = vgic_its_destroy,
.set_attr = vgic_its_set_attr,
.get_attr = vgic_its_get_attr,
.has_attr = vgic_its_has_attr,
};
int kvm_vgic_register_its_device(void)
{
return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
KVM_DEV_TYPE_ARM_VGIC_ITS);
}
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
/* common helpers */ /* common helpers */
static int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr, int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
phys_addr_t addr, phys_addr_t alignment) phys_addr_t addr, phys_addr_t alignment)
{ {
if (addr & ~KVM_PHYS_MASK) if (addr & ~KVM_PHYS_MASK)
...@@ -210,20 +210,27 @@ static void vgic_destroy(struct kvm_device *dev) ...@@ -210,20 +210,27 @@ static void vgic_destroy(struct kvm_device *dev)
kfree(dev); kfree(dev);
} }
void kvm_register_vgic_device(unsigned long type) int kvm_register_vgic_device(unsigned long type)
{ {
int ret = -ENODEV;
switch (type) { switch (type) {
case KVM_DEV_TYPE_ARM_VGIC_V2: case KVM_DEV_TYPE_ARM_VGIC_V2:
kvm_register_device_ops(&kvm_arm_vgic_v2_ops, ret = kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
KVM_DEV_TYPE_ARM_VGIC_V2); KVM_DEV_TYPE_ARM_VGIC_V2);
break; break;
#ifdef CONFIG_KVM_ARM_VGIC_V3 #ifdef CONFIG_KVM_ARM_VGIC_V3
case KVM_DEV_TYPE_ARM_VGIC_V3: case KVM_DEV_TYPE_ARM_VGIC_V3:
kvm_register_device_ops(&kvm_arm_vgic_v3_ops, ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops,
KVM_DEV_TYPE_ARM_VGIC_V3); KVM_DEV_TYPE_ARM_VGIC_V3);
if (ret)
break;
ret = kvm_vgic_register_its_device();
break; break;
#endif #endif
} }
return ret;
} }
/** vgic_attr_regs_access: allows user space to read/write VGIC registers /** vgic_attr_regs_access: allows user space to read/write VGIC registers
...@@ -428,4 +435,3 @@ struct kvm_device_ops kvm_arm_vgic_v3_ops = { ...@@ -428,4 +435,3 @@ struct kvm_device_ops kvm_arm_vgic_v3_ops = {
}; };
#endif /* CONFIG_KVM_ARM_VGIC_V3 */ #endif /* CONFIG_KVM_ARM_VGIC_V3 */
...@@ -102,6 +102,7 @@ static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu, ...@@ -102,6 +102,7 @@ static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
irq->source |= 1U << source_vcpu->vcpu_id; irq->source |= 1U << source_vcpu->vcpu_id;
vgic_queue_irq_unlock(source_vcpu->kvm, irq); vgic_queue_irq_unlock(source_vcpu->kvm, irq);
vgic_put_irq(source_vcpu->kvm, irq);
} }
} }
...@@ -116,6 +117,8 @@ static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu, ...@@ -116,6 +117,8 @@ static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
val |= (u64)irq->targets << (i * 8); val |= (u64)irq->targets << (i * 8);
vgic_put_irq(vcpu->kvm, irq);
} }
return val; return val;
...@@ -143,6 +146,7 @@ static void vgic_mmio_write_target(struct kvm_vcpu *vcpu, ...@@ -143,6 +146,7 @@ static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target); irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -157,6 +161,8 @@ static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu, ...@@ -157,6 +161,8 @@ static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
val |= (u64)irq->source << (i * 8); val |= (u64)irq->source << (i * 8);
vgic_put_irq(vcpu->kvm, irq);
} }
return val; return val;
} }
...@@ -178,6 +184,7 @@ static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu, ...@@ -178,6 +184,7 @@ static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
irq->pending = false; irq->pending = false;
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -201,6 +208,7 @@ static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu, ...@@ -201,6 +208,7 @@ static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
} else { } else {
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
} }
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -429,6 +437,7 @@ int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write, ...@@ -429,6 +437,7 @@ int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
struct vgic_io_device dev = { struct vgic_io_device dev = {
.regions = vgic_v2_cpu_registers, .regions = vgic_v2_cpu_registers,
.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers), .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
.iodev_type = IODEV_CPUIF,
}; };
return vgic_uaccess(vcpu, &dev, is_write, offset, val); return vgic_uaccess(vcpu, &dev, is_write, offset, val);
...@@ -440,6 +449,7 @@ int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, ...@@ -440,6 +449,7 @@ int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
struct vgic_io_device dev = { struct vgic_io_device dev = {
.regions = vgic_v2_dist_registers, .regions = vgic_v2_dist_registers,
.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers), .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
.iodev_type = IODEV_DIST,
}; };
return vgic_uaccess(vcpu, &dev, is_write, offset, val); return vgic_uaccess(vcpu, &dev, is_write, offset, val);
......
...@@ -23,12 +23,35 @@ ...@@ -23,12 +23,35 @@
#include "vgic-mmio.h" #include "vgic-mmio.h"
/* extract @num bytes at @offset bytes offset in data */ /* extract @num bytes at @offset bytes offset in data */
static unsigned long extract_bytes(unsigned long data, unsigned int offset, unsigned long extract_bytes(unsigned long data, unsigned int offset,
unsigned int num) unsigned int num)
{ {
return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0); return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
} }
/* allows updates of any half of a 64-bit register (or the whole thing) */
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
unsigned long val)
{
int lower = (offset & 4) * 8;
int upper = lower + 8 * len - 1;
reg &= ~GENMASK_ULL(upper, lower);
val &= GENMASK_ULL(len * 8 - 1, 0);
return reg | ((u64)val << lower);
}
bool vgic_has_its(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
return false;
return dist->has_its;
}
static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu, static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len) gpa_t addr, unsigned int len)
{ {
...@@ -43,7 +66,12 @@ static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu, ...@@ -43,7 +66,12 @@ static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
case GICD_TYPER: case GICD_TYPER:
value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
value = (value >> 5) - 1; value = (value >> 5) - 1;
if (vgic_has_its(vcpu->kvm)) {
value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
value |= GICD_TYPER_LPIS;
} else {
value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19; value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
}
break; break;
case GICD_IIDR: case GICD_IIDR:
value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
...@@ -80,15 +108,17 @@ static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu, ...@@ -80,15 +108,17 @@ static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
{ {
int intid = VGIC_ADDR_TO_INTID(addr, 64); int intid = VGIC_ADDR_TO_INTID(addr, 64);
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid); struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
unsigned long ret = 0;
if (!irq) if (!irq)
return 0; return 0;
/* The upper word is RAZ for us. */ /* The upper word is RAZ for us. */
if (addr & 4) if (!(addr & 4))
return 0; ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
return extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len); vgic_put_irq(vcpu->kvm, irq);
return ret;
} }
static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu, static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
...@@ -96,15 +126,17 @@ static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu, ...@@ -96,15 +126,17 @@ static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
unsigned long val) unsigned long val)
{ {
int intid = VGIC_ADDR_TO_INTID(addr, 64); int intid = VGIC_ADDR_TO_INTID(addr, 64);
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid); struct vgic_irq *irq;
if (!irq)
return;
/* The upper word is WI for us since we don't implement Aff3. */ /* The upper word is WI for us since we don't implement Aff3. */
if (addr & 4) if (addr & 4)
return; return;
irq = vgic_get_irq(vcpu->kvm, NULL, intid);
if (!irq)
return;
spin_lock(&irq->irq_lock); spin_lock(&irq->irq_lock);
/* We only care about and preserve Aff0, Aff1 and Aff2. */ /* We only care about and preserve Aff0, Aff1 and Aff2. */
...@@ -112,6 +144,32 @@ static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu, ...@@ -112,6 +144,32 @@ static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr); irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
}
static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
bool was_enabled = vgic_cpu->lpis_enabled;
if (!vgic_has_its(vcpu->kvm))
return;
vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
if (!was_enabled && vgic_cpu->lpis_enabled)
vgic_enable_lpis(vcpu);
} }
static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu, static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
...@@ -125,6 +183,8 @@ static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu, ...@@ -125,6 +183,8 @@ static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
value |= ((target_vcpu_id & 0xffff) << 8); value |= ((target_vcpu_id & 0xffff) << 8);
if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
value |= GICR_TYPER_LAST; value |= GICR_TYPER_LAST;
if (vgic_has_its(vcpu->kvm))
value |= GICR_TYPER_PLPIS;
return extract_bytes(value, addr & 7, len); return extract_bytes(value, addr & 7, len);
} }
...@@ -147,6 +207,142 @@ static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu, ...@@ -147,6 +207,142 @@ static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
return 0; return 0;
} }
/* We want to avoid outer shareable. */
u64 vgic_sanitise_shareability(u64 field)
{
switch (field) {
case GIC_BASER_OuterShareable:
return GIC_BASER_InnerShareable;
default:
return field;
}
}
/* Avoid any inner non-cacheable mapping. */
u64 vgic_sanitise_inner_cacheability(u64 field)
{
switch (field) {
case GIC_BASER_CACHE_nCnB:
case GIC_BASER_CACHE_nC:
return GIC_BASER_CACHE_RaWb;
default:
return field;
}
}
/* Non-cacheable or same-as-inner are OK. */
u64 vgic_sanitise_outer_cacheability(u64 field)
{
switch (field) {
case GIC_BASER_CACHE_SameAsInner:
case GIC_BASER_CACHE_nC:
return field;
default:
return GIC_BASER_CACHE_nC;
}
}
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
u64 (*sanitise_fn)(u64))
{
u64 field = (reg & field_mask) >> field_shift;
field = sanitise_fn(field) << field_shift;
return (reg & ~field_mask) | field;
}
#define PROPBASER_RES0_MASK \
(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
#define PENDBASER_RES0_MASK \
(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
static u64 vgic_sanitise_pendbaser(u64 reg)
{
reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
GICR_PENDBASER_SHAREABILITY_SHIFT,
vgic_sanitise_shareability);
reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
vgic_sanitise_inner_cacheability);
reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
vgic_sanitise_outer_cacheability);
reg &= ~PENDBASER_RES0_MASK;
reg &= ~GENMASK_ULL(51, 48);
return reg;
}
static u64 vgic_sanitise_propbaser(u64 reg)
{
reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
GICR_PROPBASER_SHAREABILITY_SHIFT,
vgic_sanitise_shareability);
reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
vgic_sanitise_inner_cacheability);
reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
vgic_sanitise_outer_cacheability);
reg &= ~PROPBASER_RES0_MASK;
reg &= ~GENMASK_ULL(51, 48);
return reg;
}
static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
return extract_bytes(dist->propbaser, addr & 7, len);
}
static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
u64 propbaser = dist->propbaser;
/* Storing a value with LPIs already enabled is undefined */
if (vgic_cpu->lpis_enabled)
return;
propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
propbaser = vgic_sanitise_propbaser(propbaser);
dist->propbaser = propbaser;
}
static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
}
static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
u64 pendbaser = vgic_cpu->pendbaser;
/* Storing a value with LPIs already enabled is undefined */
if (vgic_cpu->lpis_enabled)
return;
pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
pendbaser = vgic_sanitise_pendbaser(pendbaser);
vgic_cpu->pendbaser = pendbaser;
}
/* /*
* The GICv3 per-IRQ registers are split to control PPIs and SGIs in the * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
* redistributors, while SPIs are covered by registers in the distributor * redistributors, while SPIs are covered by registers in the distributor
...@@ -218,7 +414,7 @@ static const struct vgic_register_region vgic_v3_dist_registers[] = { ...@@ -218,7 +414,7 @@ static const struct vgic_register_region vgic_v3_dist_registers[] = {
static const struct vgic_register_region vgic_v3_rdbase_registers[] = { static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
REGISTER_DESC_WITH_LENGTH(GICR_CTLR, REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
vgic_mmio_read_raz, vgic_mmio_write_wi, 4, vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
VGIC_ACCESS_32bit), VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_IIDR, REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4, vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
...@@ -227,10 +423,10 @@ static const struct vgic_register_region vgic_v3_rdbase_registers[] = { ...@@ -227,10 +423,10 @@ static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8, vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER, REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
vgic_mmio_read_raz, vgic_mmio_write_wi, 8, vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER, REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
vgic_mmio_read_raz, vgic_mmio_write_wi, 8, vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
REGISTER_DESC_WITH_LENGTH(GICR_IDREGS, REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48, vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
...@@ -285,24 +481,18 @@ unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev) ...@@ -285,24 +481,18 @@ unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address) int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
{ {
int nr_vcpus = atomic_read(&kvm->online_vcpus);
struct kvm_vcpu *vcpu; struct kvm_vcpu *vcpu;
struct vgic_io_device *devices;
int c, ret = 0; int c, ret = 0;
devices = kmalloc(sizeof(struct vgic_io_device) * nr_vcpus * 2,
GFP_KERNEL);
if (!devices)
return -ENOMEM;
kvm_for_each_vcpu(c, vcpu, kvm) { kvm_for_each_vcpu(c, vcpu, kvm) {
gpa_t rd_base = redist_base_address + c * SZ_64K * 2; gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
gpa_t sgi_base = rd_base + SZ_64K; gpa_t sgi_base = rd_base + SZ_64K;
struct vgic_io_device *rd_dev = &devices[c * 2]; struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
struct vgic_io_device *sgi_dev = &devices[c * 2 + 1]; struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops); kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
rd_dev->base_addr = rd_base; rd_dev->base_addr = rd_base;
rd_dev->iodev_type = IODEV_REDIST;
rd_dev->regions = vgic_v3_rdbase_registers; rd_dev->regions = vgic_v3_rdbase_registers;
rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers); rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
rd_dev->redist_vcpu = vcpu; rd_dev->redist_vcpu = vcpu;
...@@ -317,6 +507,7 @@ int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address) ...@@ -317,6 +507,7 @@ int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops); kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
sgi_dev->base_addr = sgi_base; sgi_dev->base_addr = sgi_base;
sgi_dev->iodev_type = IODEV_REDIST;
sgi_dev->regions = vgic_v3_sgibase_registers; sgi_dev->regions = vgic_v3_sgibase_registers;
sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers); sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
sgi_dev->redist_vcpu = vcpu; sgi_dev->redist_vcpu = vcpu;
...@@ -335,14 +526,15 @@ int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address) ...@@ -335,14 +526,15 @@ int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
if (ret) { if (ret) {
/* The current c failed, so we start with the previous one. */ /* The current c failed, so we start with the previous one. */
for (c--; c >= 0; c--) { for (c--; c >= 0; c--) {
struct vgic_cpu *vgic_cpu;
vcpu = kvm_get_vcpu(kvm, c);
vgic_cpu = &vcpu->arch.vgic_cpu;
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
&devices[c * 2].dev); &vgic_cpu->rd_iodev.dev);
kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
&devices[c * 2 + 1].dev); &vgic_cpu->sgi_iodev.dev);
} }
kfree(devices);
} else {
kvm->arch.vgic.redist_iodevs = devices;
} }
return ret; return ret;
...@@ -451,5 +643,6 @@ void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg) ...@@ -451,5 +643,6 @@ void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
irq->pending = true; irq->pending = true;
vgic_queue_irq_unlock(vcpu->kvm, irq); vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -56,6 +56,8 @@ unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu, ...@@ -56,6 +56,8 @@ unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
if (irq->enabled) if (irq->enabled)
value |= (1U << i); value |= (1U << i);
vgic_put_irq(vcpu->kvm, irq);
} }
return value; return value;
...@@ -74,6 +76,8 @@ void vgic_mmio_write_senable(struct kvm_vcpu *vcpu, ...@@ -74,6 +76,8 @@ void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
spin_lock(&irq->irq_lock); spin_lock(&irq->irq_lock);
irq->enabled = true; irq->enabled = true;
vgic_queue_irq_unlock(vcpu->kvm, irq); vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -92,6 +96,7 @@ void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu, ...@@ -92,6 +96,7 @@ void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
irq->enabled = false; irq->enabled = false;
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -108,6 +113,8 @@ unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu, ...@@ -108,6 +113,8 @@ unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
if (irq->pending) if (irq->pending)
value |= (1U << i); value |= (1U << i);
vgic_put_irq(vcpu->kvm, irq);
} }
return value; return value;
...@@ -129,6 +136,7 @@ void vgic_mmio_write_spending(struct kvm_vcpu *vcpu, ...@@ -129,6 +136,7 @@ void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
irq->soft_pending = true; irq->soft_pending = true;
vgic_queue_irq_unlock(vcpu->kvm, irq); vgic_queue_irq_unlock(vcpu->kvm, irq);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -152,6 +160,7 @@ void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu, ...@@ -152,6 +160,7 @@ void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
} }
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -168,6 +177,8 @@ unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu, ...@@ -168,6 +177,8 @@ unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
if (irq->active) if (irq->active)
value |= (1U << i); value |= (1U << i);
vgic_put_irq(vcpu->kvm, irq);
} }
return value; return value;
...@@ -242,6 +253,7 @@ void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, ...@@ -242,6 +253,7 @@ void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
for_each_set_bit(i, &val, len * 8) { for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
vgic_mmio_change_active(vcpu, irq, false); vgic_mmio_change_active(vcpu, irq, false);
vgic_put_irq(vcpu->kvm, irq);
} }
vgic_change_active_finish(vcpu, intid); vgic_change_active_finish(vcpu, intid);
} }
...@@ -257,6 +269,7 @@ void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, ...@@ -257,6 +269,7 @@ void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
for_each_set_bit(i, &val, len * 8) { for_each_set_bit(i, &val, len * 8) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
vgic_mmio_change_active(vcpu, irq, true); vgic_mmio_change_active(vcpu, irq, true);
vgic_put_irq(vcpu->kvm, irq);
} }
vgic_change_active_finish(vcpu, intid); vgic_change_active_finish(vcpu, intid);
} }
...@@ -272,6 +285,8 @@ unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu, ...@@ -272,6 +285,8 @@ unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
val |= (u64)irq->priority << (i * 8); val |= (u64)irq->priority << (i * 8);
vgic_put_irq(vcpu->kvm, irq);
} }
return val; return val;
...@@ -298,6 +313,8 @@ void vgic_mmio_write_priority(struct kvm_vcpu *vcpu, ...@@ -298,6 +313,8 @@ void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
/* Narrow the priority range to what we actually support */ /* Narrow the priority range to what we actually support */
irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS); irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -313,6 +330,8 @@ unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu, ...@@ -313,6 +330,8 @@ unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
if (irq->config == VGIC_CONFIG_EDGE) if (irq->config == VGIC_CONFIG_EDGE)
value |= (2U << (i * 2)); value |= (2U << (i * 2));
vgic_put_irq(vcpu->kvm, irq);
} }
return value; return value;
...@@ -326,7 +345,7 @@ void vgic_mmio_write_config(struct kvm_vcpu *vcpu, ...@@ -326,7 +345,7 @@ void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
int i; int i;
for (i = 0; i < len * 4; i++) { for (i = 0; i < len * 4; i++) {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); struct vgic_irq *irq;
/* /*
* The configuration cannot be changed for SGIs in general, * The configuration cannot be changed for SGIs in general,
...@@ -337,14 +356,18 @@ void vgic_mmio_write_config(struct kvm_vcpu *vcpu, ...@@ -337,14 +356,18 @@ void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
if (intid + i < VGIC_NR_PRIVATE_IRQS) if (intid + i < VGIC_NR_PRIVATE_IRQS)
continue; continue;
irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
spin_lock(&irq->irq_lock); spin_lock(&irq->irq_lock);
if (test_bit(i * 2 + 1, &val)) { if (test_bit(i * 2 + 1, &val)) {
irq->config = VGIC_CONFIG_EDGE; irq->config = VGIC_CONFIG_EDGE;
} else { } else {
irq->config = VGIC_CONFIG_LEVEL; irq->config = VGIC_CONFIG_LEVEL;
irq->pending = irq->line_level | irq->soft_pending; irq->pending = irq->line_level | irq->soft_pending;
} }
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -450,8 +473,7 @@ static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, ...@@ -450,8 +473,7 @@ static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
{ {
struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
const struct vgic_register_region *region; const struct vgic_register_region *region;
struct kvm_vcpu *r_vcpu; unsigned long data = 0;
unsigned long data;
region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
addr - iodev->base_addr); addr - iodev->base_addr);
...@@ -460,8 +482,21 @@ static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, ...@@ -460,8 +482,21 @@ static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
return 0; return 0;
} }
r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu; switch (iodev->iodev_type) {
data = region->read(r_vcpu, addr, len); case IODEV_CPUIF:
data = region->read(vcpu, addr, len);
break;
case IODEV_DIST:
data = region->read(vcpu, addr, len);
break;
case IODEV_REDIST:
data = region->read(iodev->redist_vcpu, addr, len);
break;
case IODEV_ITS:
data = region->its_read(vcpu->kvm, iodev->its, addr, len);
break;
}
vgic_data_host_to_mmio_bus(val, len, data); vgic_data_host_to_mmio_bus(val, len, data);
return 0; return 0;
} }
...@@ -471,7 +506,6 @@ static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, ...@@ -471,7 +506,6 @@ static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
{ {
struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
const struct vgic_register_region *region; const struct vgic_register_region *region;
struct kvm_vcpu *r_vcpu;
unsigned long data = vgic_data_mmio_bus_to_host(val, len); unsigned long data = vgic_data_mmio_bus_to_host(val, len);
region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
...@@ -482,8 +516,21 @@ static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, ...@@ -482,8 +516,21 @@ static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
if (!check_region(region, addr, len)) if (!check_region(region, addr, len))
return 0; return 0;
r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu; switch (iodev->iodev_type) {
region->write(r_vcpu, addr, len, data); case IODEV_CPUIF:
region->write(vcpu, addr, len, data);
break;
case IODEV_DIST:
region->write(vcpu, addr, len, data);
break;
case IODEV_REDIST:
region->write(iodev->redist_vcpu, addr, len, data);
break;
case IODEV_ITS:
region->its_write(vcpu->kvm, iodev->its, addr, len, data);
break;
}
return 0; return 0;
} }
...@@ -513,6 +560,7 @@ int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address, ...@@ -513,6 +560,7 @@ int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
} }
io_device->base_addr = dist_base_address; io_device->base_addr = dist_base_address;
io_device->iodev_type = IODEV_DIST;
io_device->redist_vcpu = NULL; io_device->redist_vcpu = NULL;
mutex_lock(&kvm->slots_lock); mutex_lock(&kvm->slots_lock);
......
...@@ -21,10 +21,19 @@ struct vgic_register_region { ...@@ -21,10 +21,19 @@ struct vgic_register_region {
unsigned int len; unsigned int len;
unsigned int bits_per_irq; unsigned int bits_per_irq;
unsigned int access_flags; unsigned int access_flags;
union {
unsigned long (*read)(struct kvm_vcpu *vcpu, gpa_t addr, unsigned long (*read)(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len); unsigned int len);
void (*write)(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long (*its_read)(struct kvm *kvm, struct vgic_its *its,
gpa_t addr, unsigned int len);
};
union {
void (*write)(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len, unsigned long val);
void (*its_write)(struct kvm *kvm, struct vgic_its *its,
gpa_t addr, unsigned int len,
unsigned long val); unsigned long val);
};
}; };
extern struct kvm_io_device_ops kvm_io_gic_ops; extern struct kvm_io_device_ops kvm_io_gic_ops;
...@@ -87,6 +96,12 @@ unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len); ...@@ -87,6 +96,12 @@ unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len);
void vgic_data_host_to_mmio_bus(void *buf, unsigned int len, void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
unsigned long data); unsigned long data);
unsigned long extract_bytes(unsigned long data, unsigned int offset,
unsigned int num);
u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
unsigned long val);
unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu, unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len); gpa_t addr, unsigned int len);
...@@ -147,4 +162,12 @@ unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev); ...@@ -147,4 +162,12 @@ unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev);
unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev); unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev);
#ifdef CONFIG_KVM_ARM_VGIC_V3
u64 vgic_sanitise_outer_cacheability(u64 reg);
u64 vgic_sanitise_inner_cacheability(u64 reg);
u64 vgic_sanitise_shareability(u64 reg);
u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
u64 (*sanitise_fn)(u64));
#endif
#endif #endif
...@@ -124,6 +124,7 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu) ...@@ -124,6 +124,7 @@ void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu)
} }
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -332,20 +333,25 @@ int vgic_v2_probe(const struct gic_kvm_info *info) ...@@ -332,20 +333,25 @@ int vgic_v2_probe(const struct gic_kvm_info *info)
vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR); vtr = readl_relaxed(kvm_vgic_global_state.vctrl_base + GICH_VTR);
kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1; kvm_vgic_global_state.nr_lr = (vtr & 0x3f) + 1;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device\n");
iounmap(kvm_vgic_global_state.vctrl_base);
return ret;
}
ret = create_hyp_io_mappings(kvm_vgic_global_state.vctrl_base, ret = create_hyp_io_mappings(kvm_vgic_global_state.vctrl_base,
kvm_vgic_global_state.vctrl_base + kvm_vgic_global_state.vctrl_base +
resource_size(&info->vctrl), resource_size(&info->vctrl),
info->vctrl.start); info->vctrl.start);
if (ret) { if (ret) {
kvm_err("Cannot map VCTRL into hyp\n"); kvm_err("Cannot map VCTRL into hyp\n");
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
iounmap(kvm_vgic_global_state.vctrl_base); iounmap(kvm_vgic_global_state.vctrl_base);
return ret; return ret;
} }
kvm_vgic_global_state.can_emulate_gicv2 = true; kvm_vgic_global_state.can_emulate_gicv2 = true;
kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
kvm_vgic_global_state.vcpu_base = info->vcpu.start; kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.type = VGIC_V2; kvm_vgic_global_state.type = VGIC_V2;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS; kvm_vgic_global_state.max_gic_vcpus = VGIC_V2_MAX_CPUS;
......
...@@ -81,6 +81,8 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) ...@@ -81,6 +81,8 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
else else
intid = val & GICH_LR_VIRTUALID; intid = val & GICH_LR_VIRTUALID;
irq = vgic_get_irq(vcpu->kvm, vcpu, intid); irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
if (!irq) /* An LPI could have been unmapped. */
continue;
spin_lock(&irq->irq_lock); spin_lock(&irq->irq_lock);
...@@ -113,6 +115,7 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) ...@@ -113,6 +115,7 @@ void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
} }
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
} }
} }
...@@ -190,6 +193,11 @@ void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) ...@@ -190,6 +193,11 @@ void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
} }
#define INITIAL_PENDBASER_VALUE \
(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
void vgic_v3_enable(struct kvm_vcpu *vcpu) void vgic_v3_enable(struct kvm_vcpu *vcpu)
{ {
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
...@@ -207,10 +215,12 @@ void vgic_v3_enable(struct kvm_vcpu *vcpu) ...@@ -207,10 +215,12 @@ void vgic_v3_enable(struct kvm_vcpu *vcpu)
* way, so we force SRE to 1 to demonstrate this to the guest. * way, so we force SRE to 1 to demonstrate this to the guest.
* This goes with the spec allowing the value to be RAO/WI. * This goes with the spec allowing the value to be RAO/WI.
*/ */
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
vgic_v3->vgic_sre = ICC_SRE_EL1_SRE; vgic_v3->vgic_sre = ICC_SRE_EL1_SRE;
else vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
} else {
vgic_v3->vgic_sre = 0; vgic_v3->vgic_sre = 0;
}
/* Get the show on the road... */ /* Get the show on the road... */
vgic_v3->vgic_hcr = ICH_HCR_EN; vgic_v3->vgic_hcr = ICH_HCR_EN;
...@@ -296,6 +306,7 @@ int vgic_v3_map_resources(struct kvm *kvm) ...@@ -296,6 +306,7 @@ int vgic_v3_map_resources(struct kvm *kvm)
int vgic_v3_probe(const struct gic_kvm_info *info) int vgic_v3_probe(const struct gic_kvm_info *info)
{ {
u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2); u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
int ret;
/* /*
* The ListRegs field is 5 bits, but there is a architectural * The ListRegs field is 5 bits, but there is a architectural
...@@ -319,12 +330,22 @@ int vgic_v3_probe(const struct gic_kvm_info *info) ...@@ -319,12 +330,22 @@ int vgic_v3_probe(const struct gic_kvm_info *info)
} else { } else {
kvm_vgic_global_state.vcpu_base = info->vcpu.start; kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.can_emulate_gicv2 = true; kvm_vgic_global_state.can_emulate_gicv2 = true;
kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device.\n");
return ret;
}
kvm_info("vgic-v2@%llx\n", info->vcpu.start); kvm_info("vgic-v2@%llx\n", info->vcpu.start);
} }
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
if (ret) {
kvm_err("Cannot register GICv3 KVM device.\n");
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
return ret;
}
if (kvm_vgic_global_state.vcpu_base == 0) if (kvm_vgic_global_state.vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n"); kvm_info("disabling GICv2 emulation\n");
kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
kvm_vgic_global_state.vctrl_base = NULL; kvm_vgic_global_state.vctrl_base = NULL;
kvm_vgic_global_state.type = VGIC_V3; kvm_vgic_global_state.type = VGIC_V3;
......
...@@ -33,10 +33,17 @@ struct vgic_global __section(.hyp.text) kvm_vgic_global_state; ...@@ -33,10 +33,17 @@ struct vgic_global __section(.hyp.text) kvm_vgic_global_state;
/* /*
* Locking order is always: * Locking order is always:
* its->cmd_lock (mutex)
* its->its_lock (mutex)
* vgic_cpu->ap_list_lock * vgic_cpu->ap_list_lock
* kvm->lpi_list_lock
* vgic_irq->irq_lock * vgic_irq->irq_lock
* *
* (that is, always take the ap_list_lock before the struct vgic_irq lock). * If you need to take multiple locks, always take the upper lock first,
* then the lower ones, e.g. first take the its_lock, then the irq_lock.
* If you are already holding a lock and need to take a higher one, you
* have to drop the lower ranking lock first and re-aquire it after having
* taken the upper one.
* *
* When taking more than one ap_list_lock at the same time, always take the * When taking more than one ap_list_lock at the same time, always take the
* lowest numbered VCPU's ap_list_lock first, so: * lowest numbered VCPU's ap_list_lock first, so:
...@@ -45,6 +52,41 @@ struct vgic_global __section(.hyp.text) kvm_vgic_global_state; ...@@ -45,6 +52,41 @@ struct vgic_global __section(.hyp.text) kvm_vgic_global_state;
* spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); * spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
*/ */
/*
* Iterate over the VM's list of mapped LPIs to find the one with a
* matching interrupt ID and return a reference to the IRQ structure.
*/
static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct vgic_irq *irq = NULL;
spin_lock(&dist->lpi_list_lock);
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
if (irq->intid != intid)
continue;
/*
* This increases the refcount, the caller is expected to
* call vgic_put_irq() later once it's finished with the IRQ.
*/
vgic_get_irq_kref(irq);
goto out_unlock;
}
irq = NULL;
out_unlock:
spin_unlock(&dist->lpi_list_lock);
return irq;
}
/*
* This looks up the virtual interrupt ID to get the corresponding
* struct vgic_irq. It also increases the refcount, so any caller is expected
* to call vgic_put_irq() once it's finished with this IRQ.
*/
struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
u32 intid) u32 intid)
{ {
...@@ -56,14 +98,43 @@ struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, ...@@ -56,14 +98,43 @@ struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
if (intid <= VGIC_MAX_SPI) if (intid <= VGIC_MAX_SPI)
return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
/* LPIs are not yet covered */ /* LPIs */
if (intid >= VGIC_MIN_LPI) if (intid >= VGIC_MIN_LPI)
return NULL; return vgic_get_lpi(kvm, intid);
WARN(1, "Looking up struct vgic_irq for reserved INTID"); WARN(1, "Looking up struct vgic_irq for reserved INTID");
return NULL; return NULL;
} }
/*
* We can't do anything in here, because we lack the kvm pointer to
* lock and remove the item from the lpi_list. So we keep this function
* empty and use the return value of kref_put() to trigger the freeing.
*/
static void vgic_irq_release(struct kref *ref)
{
}
void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
{
struct vgic_dist *dist;
if (irq->intid < VGIC_MIN_LPI)
return;
if (!kref_put(&irq->refcount, vgic_irq_release))
return;
dist = &kvm->arch.vgic;
spin_lock(&dist->lpi_list_lock);
list_del(&irq->lpi_list);
dist->lpi_list_count--;
spin_unlock(&dist->lpi_list_lock);
kfree(irq);
}
/** /**
* kvm_vgic_target_oracle - compute the target vcpu for an irq * kvm_vgic_target_oracle - compute the target vcpu for an irq
* *
...@@ -236,6 +307,11 @@ bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq) ...@@ -236,6 +307,11 @@ bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq)
goto retry; goto retry;
} }
/*
* Grab a reference to the irq to reflect the fact that it is
* now in the ap_list.
*/
vgic_get_irq_kref(irq);
list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
irq->vcpu = vcpu; irq->vcpu = vcpu;
...@@ -269,14 +345,17 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, ...@@ -269,14 +345,17 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
if (!irq) if (!irq)
return -EINVAL; return -EINVAL;
if (irq->hw != mapped_irq) if (irq->hw != mapped_irq) {
vgic_put_irq(kvm, irq);
return -EINVAL; return -EINVAL;
}
spin_lock(&irq->irq_lock); spin_lock(&irq->irq_lock);
if (!vgic_validate_injection(irq, level)) { if (!vgic_validate_injection(irq, level)) {
/* Nothing to see here, move along... */ /* Nothing to see here, move along... */
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(kvm, irq);
return 0; return 0;
} }
...@@ -288,6 +367,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, ...@@ -288,6 +367,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
} }
vgic_queue_irq_unlock(kvm, irq); vgic_queue_irq_unlock(kvm, irq);
vgic_put_irq(kvm, irq);
return 0; return 0;
} }
...@@ -330,25 +410,28 @@ int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, u32 virt_irq, u32 phys_irq) ...@@ -330,25 +410,28 @@ int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, u32 virt_irq, u32 phys_irq)
irq->hwintid = phys_irq; irq->hwintid = phys_irq;
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
return 0; return 0;
} }
int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq) int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int virt_irq)
{ {
struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, virt_irq); struct vgic_irq *irq;
BUG_ON(!irq);
if (!vgic_initialized(vcpu->kvm)) if (!vgic_initialized(vcpu->kvm))
return -EAGAIN; return -EAGAIN;
irq = vgic_get_irq(vcpu->kvm, vcpu, virt_irq);
BUG_ON(!irq);
spin_lock(&irq->irq_lock); spin_lock(&irq->irq_lock);
irq->hw = false; irq->hw = false;
irq->hwintid = 0; irq->hwintid = 0;
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
return 0; return 0;
} }
...@@ -386,6 +469,15 @@ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) ...@@ -386,6 +469,15 @@ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
list_del(&irq->ap_list); list_del(&irq->ap_list);
irq->vcpu = NULL; irq->vcpu = NULL;
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
/*
* This vgic_put_irq call matches the
* vgic_get_irq_kref in vgic_queue_irq_unlock,
* where we added the LPI to the ap_list. As
* we remove the irq from the list, we drop
* also drop the refcount.
*/
vgic_put_irq(vcpu->kvm, irq);
continue; continue;
} }
...@@ -614,6 +706,15 @@ bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq) ...@@ -614,6 +706,15 @@ bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int virt_irq)
spin_lock(&irq->irq_lock); spin_lock(&irq->irq_lock);
map_is_active = irq->hw && irq->active; map_is_active = irq->hw && irq->active;
spin_unlock(&irq->irq_lock); spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
return map_is_active; return map_is_active;
} }
int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi)
{
if (vgic_has_its(kvm))
return vgic_its_inject_msi(kvm, msi);
else
return -ENODEV;
}
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
#define INTERRUPT_ID_BITS_SPIS 10 #define INTERRUPT_ID_BITS_SPIS 10
#define INTERRUPT_ID_BITS_ITS 16
#define VGIC_PRI_BITS 5 #define VGIC_PRI_BITS 5
#define vgic_irq_is_sgi(intid) ((intid) < VGIC_NR_SGIS) #define vgic_irq_is_sgi(intid) ((intid) < VGIC_NR_SGIS)
...@@ -38,9 +39,13 @@ struct vgic_vmcr { ...@@ -38,9 +39,13 @@ struct vgic_vmcr {
struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
u32 intid); u32 intid);
void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq);
bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq); bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq);
void vgic_kick_vcpus(struct kvm *kvm); void vgic_kick_vcpus(struct kvm *kvm);
int vgic_check_ioaddr(struct kvm *kvm, phys_addr_t *ioaddr,
phys_addr_t addr, phys_addr_t alignment);
void vgic_v2_process_maintenance(struct kvm_vcpu *vcpu); void vgic_v2_process_maintenance(struct kvm_vcpu *vcpu);
void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu); void vgic_v2_fold_lr_state(struct kvm_vcpu *vcpu);
void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr); void vgic_v2_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr);
...@@ -59,6 +64,14 @@ int vgic_v2_map_resources(struct kvm *kvm); ...@@ -59,6 +64,14 @@ int vgic_v2_map_resources(struct kvm *kvm);
int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address, int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
enum vgic_type); enum vgic_type);
static inline void vgic_get_irq_kref(struct vgic_irq *irq)
{
if (irq->intid < VGIC_MIN_LPI)
return;
kref_get(&irq->refcount);
}
#ifdef CONFIG_KVM_ARM_VGIC_V3 #ifdef CONFIG_KVM_ARM_VGIC_V3
void vgic_v3_process_maintenance(struct kvm_vcpu *vcpu); void vgic_v3_process_maintenance(struct kvm_vcpu *vcpu);
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu); void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu);
...@@ -71,6 +84,10 @@ void vgic_v3_enable(struct kvm_vcpu *vcpu); ...@@ -71,6 +84,10 @@ void vgic_v3_enable(struct kvm_vcpu *vcpu);
int vgic_v3_probe(const struct gic_kvm_info *info); int vgic_v3_probe(const struct gic_kvm_info *info);
int vgic_v3_map_resources(struct kvm *kvm); int vgic_v3_map_resources(struct kvm *kvm);
int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t dist_base_address); int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t dist_base_address);
bool vgic_has_its(struct kvm *kvm);
int kvm_vgic_register_its_device(void);
void vgic_enable_lpis(struct kvm_vcpu *vcpu);
int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi);
#else #else
static inline void vgic_v3_process_maintenance(struct kvm_vcpu *vcpu) static inline void vgic_v3_process_maintenance(struct kvm_vcpu *vcpu)
{ {
...@@ -122,9 +139,28 @@ static inline int vgic_register_redist_iodevs(struct kvm *kvm, ...@@ -122,9 +139,28 @@ static inline int vgic_register_redist_iodevs(struct kvm *kvm,
{ {
return -ENODEV; return -ENODEV;
} }
static inline bool vgic_has_its(struct kvm *kvm)
{
return false;
}
static inline int kvm_vgic_register_its_device(void)
{
return -ENODEV;
}
static inline void vgic_enable_lpis(struct kvm_vcpu *vcpu)
{
}
static inline int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
{
return -ENODEV;
}
#endif #endif
void kvm_register_vgic_device(unsigned long type); int kvm_register_vgic_device(unsigned long type);
int vgic_lazy_init(struct kvm *kvm); int vgic_lazy_init(struct kvm *kvm);
int vgic_init(struct kvm *kvm); int vgic_init(struct kvm *kvm);
......
...@@ -3545,6 +3545,30 @@ int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, ...@@ -3545,6 +3545,30 @@ int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
return r; return r;
} }
struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
gpa_t addr)
{
struct kvm_io_bus *bus;
int dev_idx, srcu_idx;
struct kvm_io_device *iodev = NULL;
srcu_idx = srcu_read_lock(&kvm->srcu);
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
if (dev_idx < 0)
goto out_unlock;
iodev = bus->range[dev_idx].dev;
out_unlock:
srcu_read_unlock(&kvm->srcu, srcu_idx);
return iodev;
}
EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
static struct notifier_block kvm_cpu_notifier = { static struct notifier_block kvm_cpu_notifier = {
.notifier_call = kvm_cpu_hotplug, .notifier_call = kvm_cpu_hotplug,
}; };
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment