Commit 9b8a11e8 authored by Bjorn Andersson's avatar Bjorn Andersson Committed by Andy Gross

soc: qcom: Introduce QMI encoder/decoder

Add the helper library for encoding and decoding QMI encoded messages.
The implementation is taken from lib/qmi_encdec.c of the Qualcomm kernel
(msm-3.18).

Modifications has been made to the public API, source buffers has been
made const and the debug-logging part was omitted, for now.
Acked-by: default avatarChris Lew <clew@codeaurora.org>
Tested-by: default avatarChris Lew <clew@codeaurora.org>
Tested-by: default avatarSrinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: default avatarBjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: default avatarAndy Gross <andy.gross@linaro.org>
parent 29ff62f7
......@@ -35,6 +35,15 @@ config QCOM_PM
modes. It interface with various system drivers to put the cores in
low power modes.
config QCOM_QMI_HELPERS
tristate
depends on ARCH_QCOM
help
Helper library for handling QMI encoded messages. QMI encoded
messages are used in communication between the majority of QRTR
clients and this helpers provide the common functionality needed for
doing this from a kernel driver.
config QCOM_RMTFS_MEM
tristate "Qualcomm Remote Filesystem memory driver"
depends on ARCH_QCOM
......
......@@ -3,6 +3,8 @@ obj-$(CONFIG_QCOM_GLINK_SSR) += glink_ssr.o
obj-$(CONFIG_QCOM_GSBI) += qcom_gsbi.o
obj-$(CONFIG_QCOM_MDT_LOADER) += mdt_loader.o
obj-$(CONFIG_QCOM_PM) += spm.o
obj-$(CONFIG_QCOM_QMI_HELPERS) += qmi_helpers.o
qmi_helpers-y += qmi_encdec.o
obj-$(CONFIG_QCOM_RMTFS_MEM) += rmtfs_mem.o
obj-$(CONFIG_QCOM_SMD_RPM) += smd-rpm.o
obj-$(CONFIG_QCOM_SMEM) += smem.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2017 Linaro Ltd.
*/
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/soc/qcom/qmi.h>
#define QMI_ENCDEC_ENCODE_TLV(type, length, p_dst) do { \
*p_dst++ = type; \
*p_dst++ = ((u8)((length) & 0xFF)); \
*p_dst++ = ((u8)(((length) >> 8) & 0xFF)); \
} while (0)
#define QMI_ENCDEC_DECODE_TLV(p_type, p_length, p_src) do { \
*p_type = (u8)*p_src++; \
*p_length = (u8)*p_src++; \
*p_length |= ((u8)*p_src) << 8; \
} while (0)
#define QMI_ENCDEC_ENCODE_N_BYTES(p_dst, p_src, size) \
do { \
memcpy(p_dst, p_src, size); \
p_dst = (u8 *)p_dst + size; \
p_src = (u8 *)p_src + size; \
} while (0)
#define QMI_ENCDEC_DECODE_N_BYTES(p_dst, p_src, size) \
do { \
memcpy(p_dst, p_src, size); \
p_dst = (u8 *)p_dst + size; \
p_src = (u8 *)p_src + size; \
} while (0)
#define UPDATE_ENCODE_VARIABLES(temp_si, buf_dst, \
encoded_bytes, tlv_len, encode_tlv, rc) \
do { \
buf_dst = (u8 *)buf_dst + rc; \
encoded_bytes += rc; \
tlv_len += rc; \
temp_si = temp_si + 1; \
encode_tlv = 1; \
} while (0)
#define UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc) \
do { \
buf_src = (u8 *)buf_src + rc; \
decoded_bytes += rc; \
} while (0)
#define TLV_LEN_SIZE sizeof(u16)
#define TLV_TYPE_SIZE sizeof(u8)
#define OPTIONAL_TLV_TYPE_START 0x10
static int qmi_encode(struct qmi_elem_info *ei_array, void *out_buf,
const void *in_c_struct, u32 out_buf_len,
int enc_level);
static int qmi_decode(struct qmi_elem_info *ei_array, void *out_c_struct,
const void *in_buf, u32 in_buf_len, int dec_level);
/**
* skip_to_next_elem() - Skip to next element in the structure to be encoded
* @ei_array: Struct info describing the element to be skipped.
* @level: Depth level of encoding/decoding to identify nested structures.
*
* This function is used while encoding optional elements. If the flag
* corresponding to an optional element is not set, then encoding the
* optional element can be skipped. This function can be used to perform
* that operation.
*
* Return: struct info of the next element that can be encoded.
*/
static struct qmi_elem_info *skip_to_next_elem(struct qmi_elem_info *ei_array,
int level)
{
struct qmi_elem_info *temp_ei = ei_array;
u8 tlv_type;
if (level > 1) {
temp_ei = temp_ei + 1;
} else {
do {
tlv_type = temp_ei->tlv_type;
temp_ei = temp_ei + 1;
} while (tlv_type == temp_ei->tlv_type);
}
return temp_ei;
}
/**
* qmi_calc_min_msg_len() - Calculate the minimum length of a QMI message
* @ei_array: Struct info array describing the structure.
* @level: Level to identify the depth of the nested structures.
*
* Return: Expected minimum length of the QMI message or 0 on error.
*/
static int qmi_calc_min_msg_len(struct qmi_elem_info *ei_array,
int level)
{
int min_msg_len = 0;
struct qmi_elem_info *temp_ei = ei_array;
if (!ei_array)
return min_msg_len;
while (temp_ei->data_type != QMI_EOTI) {
/* Optional elements do not count in minimum length */
if (temp_ei->data_type == QMI_OPT_FLAG) {
temp_ei = skip_to_next_elem(temp_ei, level);
continue;
}
if (temp_ei->data_type == QMI_DATA_LEN) {
min_msg_len += (temp_ei->elem_size == sizeof(u8) ?
sizeof(u8) : sizeof(u16));
temp_ei++;
continue;
} else if (temp_ei->data_type == QMI_STRUCT) {
min_msg_len += qmi_calc_min_msg_len(temp_ei->ei_array,
(level + 1));
temp_ei++;
} else if (temp_ei->data_type == QMI_STRING) {
if (level > 1)
min_msg_len += temp_ei->elem_len <= U8_MAX ?
sizeof(u8) : sizeof(u16);
min_msg_len += temp_ei->elem_len * temp_ei->elem_size;
temp_ei++;
} else {
min_msg_len += (temp_ei->elem_len * temp_ei->elem_size);
temp_ei++;
}
/*
* Type & Length info. not prepended for elements in the
* nested structure.
*/
if (level == 1)
min_msg_len += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
}
return min_msg_len;
}
/**
* qmi_encode_basic_elem() - Encodes elements of basic/primary data type
* @buf_dst: Buffer to store the encoded information.
* @buf_src: Buffer containing the elements to be encoded.
* @elem_len: Number of elements, in the buf_src, to be encoded.
* @elem_size: Size of a single instance of the element to be encoded.
*
* This function encodes the "elem_len" number of data elements, each of
* size "elem_size" bytes from the source buffer "buf_src" and stores the
* encoded information in the destination buffer "buf_dst". The elements are
* of primary data type which include u8 - u64 or similar. This
* function returns the number of bytes of encoded information.
*
* Return: The number of bytes of encoded information.
*/
static int qmi_encode_basic_elem(void *buf_dst, const void *buf_src,
u32 elem_len, u32 elem_size)
{
u32 i, rc = 0;
for (i = 0; i < elem_len; i++) {
QMI_ENCDEC_ENCODE_N_BYTES(buf_dst, buf_src, elem_size);
rc += elem_size;
}
return rc;
}
/**
* qmi_encode_struct_elem() - Encodes elements of struct data type
* @ei_array: Struct info array descibing the struct element.
* @buf_dst: Buffer to store the encoded information.
* @buf_src: Buffer containing the elements to be encoded.
* @elem_len: Number of elements, in the buf_src, to be encoded.
* @out_buf_len: Available space in the encode buffer.
* @enc_level: Depth of the nested structure from the main structure.
*
* This function encodes the "elem_len" number of struct elements, each of
* size "ei_array->elem_size" bytes from the source buffer "buf_src" and
* stores the encoded information in the destination buffer "buf_dst". The
* elements are of struct data type which includes any C structure. This
* function returns the number of bytes of encoded information.
*
* Return: The number of bytes of encoded information on success or negative
* errno on error.
*/
static int qmi_encode_struct_elem(struct qmi_elem_info *ei_array,
void *buf_dst, const void *buf_src,
u32 elem_len, u32 out_buf_len,
int enc_level)
{
int i, rc, encoded_bytes = 0;
struct qmi_elem_info *temp_ei = ei_array;
for (i = 0; i < elem_len; i++) {
rc = qmi_encode(temp_ei->ei_array, buf_dst, buf_src,
out_buf_len - encoded_bytes, enc_level);
if (rc < 0) {
pr_err("%s: STRUCT Encode failure\n", __func__);
return rc;
}
buf_dst = buf_dst + rc;
buf_src = buf_src + temp_ei->elem_size;
encoded_bytes += rc;
}
return encoded_bytes;
}
/**
* qmi_encode_string_elem() - Encodes elements of string data type
* @ei_array: Struct info array descibing the string element.
* @buf_dst: Buffer to store the encoded information.
* @buf_src: Buffer containing the elements to be encoded.
* @out_buf_len: Available space in the encode buffer.
* @enc_level: Depth of the string element from the main structure.
*
* This function encodes a string element of maximum length "ei_array->elem_len"
* bytes from the source buffer "buf_src" and stores the encoded information in
* the destination buffer "buf_dst". This function returns the number of bytes
* of encoded information.
*
* Return: The number of bytes of encoded information on success or negative
* errno on error.
*/
static int qmi_encode_string_elem(struct qmi_elem_info *ei_array,
void *buf_dst, const void *buf_src,
u32 out_buf_len, int enc_level)
{
int rc;
int encoded_bytes = 0;
struct qmi_elem_info *temp_ei = ei_array;
u32 string_len = 0;
u32 string_len_sz = 0;
string_len = strlen(buf_src);
string_len_sz = temp_ei->elem_len <= U8_MAX ?
sizeof(u8) : sizeof(u16);
if (string_len > temp_ei->elem_len) {
pr_err("%s: String to be encoded is longer - %d > %d\n",
__func__, string_len, temp_ei->elem_len);
return -EINVAL;
}
if (enc_level == 1) {
if (string_len + TLV_LEN_SIZE + TLV_TYPE_SIZE >
out_buf_len) {
pr_err("%s: Output len %d > Out Buf len %d\n",
__func__, string_len, out_buf_len);
return -ETOOSMALL;
}
} else {
if (string_len + string_len_sz > out_buf_len) {
pr_err("%s: Output len %d > Out Buf len %d\n",
__func__, string_len, out_buf_len);
return -ETOOSMALL;
}
rc = qmi_encode_basic_elem(buf_dst, &string_len,
1, string_len_sz);
encoded_bytes += rc;
}
rc = qmi_encode_basic_elem(buf_dst + encoded_bytes, buf_src,
string_len, temp_ei->elem_size);
encoded_bytes += rc;
return encoded_bytes;
}
/**
* qmi_encode() - Core Encode Function
* @ei_array: Struct info array describing the structure to be encoded.
* @out_buf: Buffer to hold the encoded QMI message.
* @in_c_struct: Pointer to the C structure to be encoded.
* @out_buf_len: Available space in the encode buffer.
* @enc_level: Encode level to indicate the depth of the nested structure,
* within the main structure, being encoded.
*
* Return: The number of bytes of encoded information on success or negative
* errno on error.
*/
static int qmi_encode(struct qmi_elem_info *ei_array, void *out_buf,
const void *in_c_struct, u32 out_buf_len,
int enc_level)
{
struct qmi_elem_info *temp_ei = ei_array;
u8 opt_flag_value = 0;
u32 data_len_value = 0, data_len_sz;
u8 *buf_dst = (u8 *)out_buf;
u8 *tlv_pointer;
u32 tlv_len;
u8 tlv_type;
u32 encoded_bytes = 0;
const void *buf_src;
int encode_tlv = 0;
int rc;
if (!ei_array)
return 0;
tlv_pointer = buf_dst;
tlv_len = 0;
if (enc_level == 1)
buf_dst = buf_dst + (TLV_LEN_SIZE + TLV_TYPE_SIZE);
while (temp_ei->data_type != QMI_EOTI) {
buf_src = in_c_struct + temp_ei->offset;
tlv_type = temp_ei->tlv_type;
if (temp_ei->array_type == NO_ARRAY) {
data_len_value = 1;
} else if (temp_ei->array_type == STATIC_ARRAY) {
data_len_value = temp_ei->elem_len;
} else if (data_len_value <= 0 ||
temp_ei->elem_len < data_len_value) {
pr_err("%s: Invalid data length\n", __func__);
return -EINVAL;
}
switch (temp_ei->data_type) {
case QMI_OPT_FLAG:
rc = qmi_encode_basic_elem(&opt_flag_value, buf_src,
1, sizeof(u8));
if (opt_flag_value)
temp_ei = temp_ei + 1;
else
temp_ei = skip_to_next_elem(temp_ei, enc_level);
break;
case QMI_DATA_LEN:
memcpy(&data_len_value, buf_src, temp_ei->elem_size);
data_len_sz = temp_ei->elem_size == sizeof(u8) ?
sizeof(u8) : sizeof(u16);
/* Check to avoid out of range buffer access */
if ((data_len_sz + encoded_bytes + TLV_LEN_SIZE +
TLV_TYPE_SIZE) > out_buf_len) {
pr_err("%s: Too Small Buffer @DATA_LEN\n",
__func__);
return -ETOOSMALL;
}
rc = qmi_encode_basic_elem(buf_dst, &data_len_value,
1, data_len_sz);
UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst,
encoded_bytes, tlv_len,
encode_tlv, rc);
if (!data_len_value)
temp_ei = skip_to_next_elem(temp_ei, enc_level);
else
encode_tlv = 0;
break;
case QMI_UNSIGNED_1_BYTE:
case QMI_UNSIGNED_2_BYTE:
case QMI_UNSIGNED_4_BYTE:
case QMI_UNSIGNED_8_BYTE:
case QMI_SIGNED_2_BYTE_ENUM:
case QMI_SIGNED_4_BYTE_ENUM:
/* Check to avoid out of range buffer access */
if (((data_len_value * temp_ei->elem_size) +
encoded_bytes + TLV_LEN_SIZE + TLV_TYPE_SIZE) >
out_buf_len) {
pr_err("%s: Too Small Buffer @data_type:%d\n",
__func__, temp_ei->data_type);
return -ETOOSMALL;
}
rc = qmi_encode_basic_elem(buf_dst, buf_src,
data_len_value,
temp_ei->elem_size);
UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst,
encoded_bytes, tlv_len,
encode_tlv, rc);
break;
case QMI_STRUCT:
rc = qmi_encode_struct_elem(temp_ei, buf_dst, buf_src,
data_len_value,
out_buf_len - encoded_bytes,
enc_level + 1);
if (rc < 0)
return rc;
UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst,
encoded_bytes, tlv_len,
encode_tlv, rc);
break;
case QMI_STRING:
rc = qmi_encode_string_elem(temp_ei, buf_dst, buf_src,
out_buf_len - encoded_bytes,
enc_level);
if (rc < 0)
return rc;
UPDATE_ENCODE_VARIABLES(temp_ei, buf_dst,
encoded_bytes, tlv_len,
encode_tlv, rc);
break;
default:
pr_err("%s: Unrecognized data type\n", __func__);
return -EINVAL;
}
if (encode_tlv && enc_level == 1) {
QMI_ENCDEC_ENCODE_TLV(tlv_type, tlv_len, tlv_pointer);
encoded_bytes += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
tlv_pointer = buf_dst;
tlv_len = 0;
buf_dst = buf_dst + TLV_LEN_SIZE + TLV_TYPE_SIZE;
encode_tlv = 0;
}
}
return encoded_bytes;
}
/**
* qmi_decode_basic_elem() - Decodes elements of basic/primary data type
* @buf_dst: Buffer to store the decoded element.
* @buf_src: Buffer containing the elements in QMI wire format.
* @elem_len: Number of elements to be decoded.
* @elem_size: Size of a single instance of the element to be decoded.
*
* This function decodes the "elem_len" number of elements in QMI wire format,
* each of size "elem_size" bytes from the source buffer "buf_src" and stores
* the decoded elements in the destination buffer "buf_dst". The elements are
* of primary data type which include u8 - u64 or similar. This
* function returns the number of bytes of decoded information.
*
* Return: The total size of the decoded data elements, in bytes.
*/
static int qmi_decode_basic_elem(void *buf_dst, const void *buf_src,
u32 elem_len, u32 elem_size)
{
u32 i, rc = 0;
for (i = 0; i < elem_len; i++) {
QMI_ENCDEC_DECODE_N_BYTES(buf_dst, buf_src, elem_size);
rc += elem_size;
}
return rc;
}
/**
* qmi_decode_struct_elem() - Decodes elements of struct data type
* @ei_array: Struct info array descibing the struct element.
* @buf_dst: Buffer to store the decoded element.
* @buf_src: Buffer containing the elements in QMI wire format.
* @elem_len: Number of elements to be decoded.
* @tlv_len: Total size of the encoded inforation corresponding to
* this struct element.
* @dec_level: Depth of the nested structure from the main structure.
*
* This function decodes the "elem_len" number of elements in QMI wire format,
* each of size "(tlv_len/elem_len)" bytes from the source buffer "buf_src"
* and stores the decoded elements in the destination buffer "buf_dst". The
* elements are of struct data type which includes any C structure. This
* function returns the number of bytes of decoded information.
*
* Return: The total size of the decoded data elements on success, negative
* errno on error.
*/
static int qmi_decode_struct_elem(struct qmi_elem_info *ei_array,
void *buf_dst, const void *buf_src,
u32 elem_len, u32 tlv_len,
int dec_level)
{
int i, rc, decoded_bytes = 0;
struct qmi_elem_info *temp_ei = ei_array;
for (i = 0; i < elem_len && decoded_bytes < tlv_len; i++) {
rc = qmi_decode(temp_ei->ei_array, buf_dst, buf_src,
tlv_len - decoded_bytes, dec_level);
if (rc < 0)
return rc;
buf_src = buf_src + rc;
buf_dst = buf_dst + temp_ei->elem_size;
decoded_bytes += rc;
}
if ((dec_level <= 2 && decoded_bytes != tlv_len) ||
(dec_level > 2 && (i < elem_len || decoded_bytes > tlv_len))) {
pr_err("%s: Fault in decoding: dl(%d), db(%d), tl(%d), i(%d), el(%d)\n",
__func__, dec_level, decoded_bytes, tlv_len,
i, elem_len);
return -EFAULT;
}
return decoded_bytes;
}
/**
* qmi_decode_string_elem() - Decodes elements of string data type
* @ei_array: Struct info array descibing the string element.
* @buf_dst: Buffer to store the decoded element.
* @buf_src: Buffer containing the elements in QMI wire format.
* @tlv_len: Total size of the encoded inforation corresponding to
* this string element.
* @dec_level: Depth of the string element from the main structure.
*
* This function decodes the string element of maximum length
* "ei_array->elem_len" from the source buffer "buf_src" and puts it into
* the destination buffer "buf_dst". This function returns number of bytes
* decoded from the input buffer.
*
* Return: The total size of the decoded data elements on success, negative
* errno on error.
*/
static int qmi_decode_string_elem(struct qmi_elem_info *ei_array,
void *buf_dst, const void *buf_src,
u32 tlv_len, int dec_level)
{
int rc;
int decoded_bytes = 0;
u32 string_len = 0;
u32 string_len_sz = 0;
struct qmi_elem_info *temp_ei = ei_array;
if (dec_level == 1) {
string_len = tlv_len;
} else {
string_len_sz = temp_ei->elem_len <= U8_MAX ?
sizeof(u8) : sizeof(u16);
rc = qmi_decode_basic_elem(&string_len, buf_src,
1, string_len_sz);
decoded_bytes += rc;
}
if (string_len > temp_ei->elem_len) {
pr_err("%s: String len %d > Max Len %d\n",
__func__, string_len, temp_ei->elem_len);
return -ETOOSMALL;
} else if (string_len > tlv_len) {
pr_err("%s: String len %d > Input Buffer Len %d\n",
__func__, string_len, tlv_len);
return -EFAULT;
}
rc = qmi_decode_basic_elem(buf_dst, buf_src + decoded_bytes,
string_len, temp_ei->elem_size);
*((char *)buf_dst + string_len) = '\0';
decoded_bytes += rc;
return decoded_bytes;
}
/**
* find_ei() - Find element info corresponding to TLV Type
* @ei_array: Struct info array of the message being decoded.
* @type: TLV Type of the element being searched.
*
* Every element that got encoded in the QMI message will have a type
* information associated with it. While decoding the QMI message,
* this function is used to find the struct info regarding the element
* that corresponds to the type being decoded.
*
* Return: Pointer to struct info, if found
*/
static struct qmi_elem_info *find_ei(struct qmi_elem_info *ei_array,
u32 type)
{
struct qmi_elem_info *temp_ei = ei_array;
while (temp_ei->data_type != QMI_EOTI) {
if (temp_ei->tlv_type == (u8)type)
return temp_ei;
temp_ei = temp_ei + 1;
}
return NULL;
}
/**
* qmi_decode() - Core Decode Function
* @ei_array: Struct info array describing the structure to be decoded.
* @out_c_struct: Buffer to hold the decoded C struct
* @in_buf: Buffer containing the QMI message to be decoded
* @in_buf_len: Length of the QMI message to be decoded
* @dec_level: Decode level to indicate the depth of the nested structure,
* within the main structure, being decoded
*
* Return: The number of bytes of decoded information on success, negative
* errno on error.
*/
static int qmi_decode(struct qmi_elem_info *ei_array, void *out_c_struct,
const void *in_buf, u32 in_buf_len,
int dec_level)
{
struct qmi_elem_info *temp_ei = ei_array;
u8 opt_flag_value = 1;
u32 data_len_value = 0, data_len_sz = 0;
u8 *buf_dst = out_c_struct;
const u8 *tlv_pointer;
u32 tlv_len = 0;
u32 tlv_type;
u32 decoded_bytes = 0;
const void *buf_src = in_buf;
int rc;
while (decoded_bytes < in_buf_len) {
if (dec_level >= 2 && temp_ei->data_type == QMI_EOTI)
return decoded_bytes;
if (dec_level == 1) {
tlv_pointer = buf_src;
QMI_ENCDEC_DECODE_TLV(&tlv_type,
&tlv_len, tlv_pointer);
buf_src += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
decoded_bytes += (TLV_TYPE_SIZE + TLV_LEN_SIZE);
temp_ei = find_ei(ei_array, tlv_type);
if (!temp_ei && tlv_type < OPTIONAL_TLV_TYPE_START) {
pr_err("%s: Inval element info\n", __func__);
return -EINVAL;
} else if (!temp_ei) {
UPDATE_DECODE_VARIABLES(buf_src,
decoded_bytes, tlv_len);
continue;
}
} else {
/*
* No length information for elements in nested
* structures. So use remaining decodable buffer space.
*/
tlv_len = in_buf_len - decoded_bytes;
}
buf_dst = out_c_struct + temp_ei->offset;
if (temp_ei->data_type == QMI_OPT_FLAG) {
memcpy(buf_dst, &opt_flag_value, sizeof(u8));
temp_ei = temp_ei + 1;
buf_dst = out_c_struct + temp_ei->offset;
}
if (temp_ei->data_type == QMI_DATA_LEN) {
data_len_sz = temp_ei->elem_size == sizeof(u8) ?
sizeof(u8) : sizeof(u16);
rc = qmi_decode_basic_elem(&data_len_value, buf_src,
1, data_len_sz);
memcpy(buf_dst, &data_len_value, sizeof(u32));
temp_ei = temp_ei + 1;
buf_dst = out_c_struct + temp_ei->offset;
tlv_len -= data_len_sz;
UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc);
}
if (temp_ei->array_type == NO_ARRAY) {
data_len_value = 1;
} else if (temp_ei->array_type == STATIC_ARRAY) {
data_len_value = temp_ei->elem_len;
} else if (data_len_value > temp_ei->elem_len) {
pr_err("%s: Data len %d > max spec %d\n",
__func__, data_len_value, temp_ei->elem_len);
return -ETOOSMALL;
}
switch (temp_ei->data_type) {
case QMI_UNSIGNED_1_BYTE:
case QMI_UNSIGNED_2_BYTE:
case QMI_UNSIGNED_4_BYTE:
case QMI_UNSIGNED_8_BYTE:
case QMI_SIGNED_2_BYTE_ENUM:
case QMI_SIGNED_4_BYTE_ENUM:
rc = qmi_decode_basic_elem(buf_dst, buf_src,
data_len_value,
temp_ei->elem_size);
UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc);
break;
case QMI_STRUCT:
rc = qmi_decode_struct_elem(temp_ei, buf_dst, buf_src,
data_len_value, tlv_len,
dec_level + 1);
if (rc < 0)
return rc;
UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc);
break;
case QMI_STRING:
rc = qmi_decode_string_elem(temp_ei, buf_dst, buf_src,
tlv_len, dec_level);
if (rc < 0)
return rc;
UPDATE_DECODE_VARIABLES(buf_src, decoded_bytes, rc);
break;
default:
pr_err("%s: Unrecognized data type\n", __func__);
return -EINVAL;
}
temp_ei = temp_ei + 1;
}
return decoded_bytes;
}
/**
* qmi_encode_message() - Encode C structure as QMI encoded message
* @type: Type of QMI message
* @msg_id: Message ID of the message
* @len: Passed as max length of the message, updated to actual size
* @txn_id: Transaction ID
* @ei: QMI message descriptor
* @c_struct: Reference to structure to encode
*
* Return: Buffer with encoded message, or negative ERR_PTR() on error
*/
void *qmi_encode_message(int type, unsigned int msg_id, size_t *len,
unsigned int txn_id, struct qmi_elem_info *ei,
const void *c_struct)
{
struct qmi_header *hdr;
ssize_t msglen = 0;
void *msg;
int ret;
/* Check the possibility of a zero length QMI message */
if (!c_struct) {
ret = qmi_calc_min_msg_len(ei, 1);
if (ret) {
pr_err("%s: Calc. len %d != 0, but NULL c_struct\n",
__func__, ret);
return ERR_PTR(-EINVAL);
}
}
msg = kzalloc(sizeof(*hdr) + *len, GFP_KERNEL);
if (!msg)
return ERR_PTR(-ENOMEM);
/* Encode message, if we have a message */
if (c_struct) {
msglen = qmi_encode(ei, msg + sizeof(*hdr), c_struct, *len, 1);
if (msglen < 0) {
kfree(msg);
return ERR_PTR(msglen);
}
}
hdr = msg;
hdr->type = type;
hdr->txn_id = txn_id;
hdr->msg_id = msg_id;
hdr->msg_len = msglen;
*len = sizeof(*hdr) + msglen;
return msg;
}
EXPORT_SYMBOL(qmi_encode_message);
/**
* qmi_decode_message() - Decode QMI encoded message to C structure
* @buf: Buffer with encoded message
* @len: Amount of data in @buf
* @ei: QMI message descriptor
* @c_struct: Reference to structure to decode into
*
* Return: The number of bytes of decoded information on success, negative
* errno on error.
*/
int qmi_decode_message(const void *buf, size_t len,
struct qmi_elem_info *ei, void *c_struct)
{
if (!ei)
return -EINVAL;
if (!c_struct || !buf || !len)
return -EINVAL;
return qmi_decode(ei, c_struct, buf + sizeof(struct qmi_header),
len - sizeof(struct qmi_header), 1);
}
EXPORT_SYMBOL(qmi_decode_message);
/* Common header in all QMI responses */
struct qmi_elem_info qmi_response_type_v01_ei[] = {
{
.data_type = QMI_SIGNED_2_BYTE_ENUM,
.elem_len = 1,
.elem_size = sizeof(u16),
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
.offset = offsetof(struct qmi_response_type_v01, result),
.ei_array = NULL,
},
{
.data_type = QMI_SIGNED_2_BYTE_ENUM,
.elem_len = 1,
.elem_size = sizeof(u16),
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
.offset = offsetof(struct qmi_response_type_v01, error),
.ei_array = NULL,
},
{
.data_type = QMI_EOTI,
.elem_len = 0,
.elem_size = 0,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
.offset = 0,
.ei_array = NULL,
},
};
EXPORT_SYMBOL(qmi_response_type_v01_ei);
MODULE_DESCRIPTION("QMI encoder/decoder helper");
MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
* Copyright (c) 2017, Linaro Ltd.
*/
#ifndef __QMI_HELPERS_H__
#define __QMI_HELPERS_H__
#include <linux/types.h>
/**
* qmi_header - wireformat header of QMI messages
* @type: type of message
* @txn_id: transaction id
* @msg_id: message id
* @msg_len: length of message payload following header
*/
struct qmi_header {
u8 type;
u16 txn_id;
u16 msg_id;
u16 msg_len;
} __packed;
#define QMI_REQUEST 0
#define QMI_RESPONSE 2
#define QMI_INDICATION 4
#define QMI_COMMON_TLV_TYPE 0
enum qmi_elem_type {
QMI_EOTI,
QMI_OPT_FLAG,
QMI_DATA_LEN,
QMI_UNSIGNED_1_BYTE,
QMI_UNSIGNED_2_BYTE,
QMI_UNSIGNED_4_BYTE,
QMI_UNSIGNED_8_BYTE,
QMI_SIGNED_2_BYTE_ENUM,
QMI_SIGNED_4_BYTE_ENUM,
QMI_STRUCT,
QMI_STRING,
};
enum qmi_array_type {
NO_ARRAY,
STATIC_ARRAY,
VAR_LEN_ARRAY,
};
/**
* struct qmi_elem_info - describes how to encode a single QMI element
* @data_type: Data type of this element.
* @elem_len: Array length of this element, if an array.
* @elem_size: Size of a single instance of this data type.
* @array_type: Array type of this element.
* @tlv_type: QMI message specific type to identify which element
* is present in an incoming message.
* @offset: Specifies the offset of the first instance of this
* element in the data structure.
* @ei_array: Null-terminated array of @qmi_elem_info to describe nested
* structures.
*/
struct qmi_elem_info {
enum qmi_elem_type data_type;
u32 elem_len;
u32 elem_size;
enum qmi_array_type array_type;
u8 tlv_type;
u32 offset;
struct qmi_elem_info *ei_array;
};
#define QMI_RESULT_SUCCESS_V01 0
#define QMI_RESULT_FAILURE_V01 1
#define QMI_ERR_NONE_V01 0
#define QMI_ERR_MALFORMED_MSG_V01 1
#define QMI_ERR_NO_MEMORY_V01 2
#define QMI_ERR_INTERNAL_V01 3
#define QMI_ERR_CLIENT_IDS_EXHAUSTED_V01 5
#define QMI_ERR_INVALID_ID_V01 41
#define QMI_ERR_ENCODING_V01 58
#define QMI_ERR_INCOMPATIBLE_STATE_V01 90
#define QMI_ERR_NOT_SUPPORTED_V01 94
/**
* qmi_response_type_v01 - common response header (decoded)
* @result: result of the transaction
* @error: error value, when @result is QMI_RESULT_FAILURE_V01
*/
struct qmi_response_type_v01 {
u16 result;
u16 error;
};
extern struct qmi_elem_info qmi_response_type_v01_ei[];
void *qmi_encode_message(int type, unsigned int msg_id, size_t *len,
unsigned int txn_id, struct qmi_elem_info *ei,
const void *c_struct);
int qmi_decode_message(const void *buf, size_t len,
struct qmi_elem_info *ei, void *c_struct);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment