Commit 9d05c1fe authored by Anup Patel's avatar Anup Patel Committed by Anup Patel

RISC-V: KVM: Implement stage2 page table programming

This patch implements all required functions for programming
the stage2 page table for each Guest/VM.

At high-level, the flow of stage2 related functions is similar
from KVM ARM/ARM64 implementation but the stage2 page table
format is quite different for KVM RISC-V.

[jiangyifei: stage2 dirty log support]
Signed-off-by: default avatarYifei Jiang <jiangyifei@huawei.com>
Signed-off-by: default avatarAnup Patel <anup.patel@wdc.com>
Acked-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
Reviewed-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
Acked-by: default avatarPalmer Dabbelt <palmerdabbelt@google.com>
parent fd7bb4a2
......@@ -70,6 +70,13 @@ struct kvm_mmio_decode {
int return_handled;
};
#define KVM_MMU_PAGE_CACHE_NR_OBJS 32
struct kvm_mmu_page_cache {
int nobjs;
void *objects[KVM_MMU_PAGE_CACHE_NR_OBJS];
};
struct kvm_cpu_trap {
unsigned long sepc;
unsigned long scause;
......@@ -171,6 +178,9 @@ struct kvm_vcpu_arch {
/* MMIO instruction details */
struct kvm_mmio_decode mmio_decode;
/* Cache pages needed to program page tables with spinlock held */
struct kvm_mmu_page_cache mmu_page_cache;
/* VCPU power-off state */
bool power_off;
......@@ -198,6 +208,8 @@ void kvm_riscv_stage2_flush_cache(struct kvm_vcpu *vcpu);
int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm);
void kvm_riscv_stage2_free_pgd(struct kvm *kvm);
void kvm_riscv_stage2_update_hgatp(struct kvm_vcpu *vcpu);
void kvm_riscv_stage2_mode_detect(void);
unsigned long kvm_riscv_stage2_mode(void);
void kvm_riscv_stage2_vmid_detect(void);
unsigned long kvm_riscv_stage2_vmid_bits(void);
......
......@@ -23,6 +23,7 @@ config KVM
select PREEMPT_NOTIFIERS
select ANON_INODES
select KVM_MMIO
select KVM_GENERIC_DIRTYLOG_READ_PROTECT
select HAVE_KVM_VCPU_ASYNC_IOCTL
select HAVE_KVM_EVENTFD
select SRCU
......
......@@ -64,6 +64,8 @@ void kvm_arch_hardware_disable(void)
int kvm_arch_init(void *opaque)
{
const char *str;
if (!riscv_isa_extension_available(NULL, h)) {
kvm_info("hypervisor extension not available\n");
return -ENODEV;
......@@ -79,10 +81,27 @@ int kvm_arch_init(void *opaque)
return -ENODEV;
}
kvm_riscv_stage2_mode_detect();
kvm_riscv_stage2_vmid_detect();
kvm_info("hypervisor extension available\n");
switch (kvm_riscv_stage2_mode()) {
case HGATP_MODE_SV32X4:
str = "Sv32x4";
break;
case HGATP_MODE_SV39X4:
str = "Sv39x4";
break;
case HGATP_MODE_SV48X4:
str = "Sv48x4";
break;
default:
return -ENODEV;
}
kvm_info("using %s G-stage page table format\n", str);
kvm_info("VMID %ld bits available\n", kvm_riscv_stage2_vmid_bits());
return 0;
......
......@@ -15,13 +15,421 @@
#include <linux/vmalloc.h>
#include <linux/kvm_host.h>
#include <linux/sched/signal.h>
#include <asm/csr.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/sbi.h>
#ifdef CONFIG_64BIT
static unsigned long stage2_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
static unsigned long stage2_pgd_levels = 3;
#define stage2_index_bits 9
#else
static unsigned long stage2_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
static unsigned long stage2_pgd_levels = 2;
#define stage2_index_bits 10
#endif
#define stage2_pgd_xbits 2
#define stage2_pgd_size (1UL << (HGATP_PAGE_SHIFT + stage2_pgd_xbits))
#define stage2_gpa_bits (HGATP_PAGE_SHIFT + \
(stage2_pgd_levels * stage2_index_bits) + \
stage2_pgd_xbits)
#define stage2_gpa_size ((gpa_t)(1ULL << stage2_gpa_bits))
#define stage2_pte_leaf(__ptep) \
(pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
static inline unsigned long stage2_pte_index(gpa_t addr, u32 level)
{
unsigned long mask;
unsigned long shift = HGATP_PAGE_SHIFT + (stage2_index_bits * level);
if (level == (stage2_pgd_levels - 1))
mask = (PTRS_PER_PTE * (1UL << stage2_pgd_xbits)) - 1;
else
mask = PTRS_PER_PTE - 1;
return (addr >> shift) & mask;
}
static inline unsigned long stage2_pte_page_vaddr(pte_t pte)
{
return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT);
}
static int stage2_page_size_to_level(unsigned long page_size, u32 *out_level)
{
u32 i;
unsigned long psz = 1UL << 12;
for (i = 0; i < stage2_pgd_levels; i++) {
if (page_size == (psz << (i * stage2_index_bits))) {
*out_level = i;
return 0;
}
}
return -EINVAL;
}
static int stage2_level_to_page_size(u32 level, unsigned long *out_pgsize)
{
if (stage2_pgd_levels < level)
return -EINVAL;
*out_pgsize = 1UL << (12 + (level * stage2_index_bits));
return 0;
}
static int stage2_cache_topup(struct kvm_mmu_page_cache *pcache,
int min, int max)
{
void *page;
BUG_ON(max > KVM_MMU_PAGE_CACHE_NR_OBJS);
if (pcache->nobjs >= min)
return 0;
while (pcache->nobjs < max) {
page = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
if (!page)
return -ENOMEM;
pcache->objects[pcache->nobjs++] = page;
}
return 0;
}
static void stage2_cache_flush(struct kvm_mmu_page_cache *pcache)
{
while (pcache && pcache->nobjs)
free_page((unsigned long)pcache->objects[--pcache->nobjs]);
}
static void *stage2_cache_alloc(struct kvm_mmu_page_cache *pcache)
{
void *p;
if (!pcache)
return NULL;
BUG_ON(!pcache->nobjs);
p = pcache->objects[--pcache->nobjs];
return p;
}
static bool stage2_get_leaf_entry(struct kvm *kvm, gpa_t addr,
pte_t **ptepp, u32 *ptep_level)
{
pte_t *ptep;
u32 current_level = stage2_pgd_levels - 1;
*ptep_level = current_level;
ptep = (pte_t *)kvm->arch.pgd;
ptep = &ptep[stage2_pte_index(addr, current_level)];
while (ptep && pte_val(*ptep)) {
if (stage2_pte_leaf(ptep)) {
*ptep_level = current_level;
*ptepp = ptep;
return true;
}
if (current_level) {
current_level--;
*ptep_level = current_level;
ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
ptep = &ptep[stage2_pte_index(addr, current_level)];
} else {
ptep = NULL;
}
}
return false;
}
static void stage2_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
{
struct cpumask hmask;
unsigned long size = PAGE_SIZE;
struct kvm_vmid *vmid = &kvm->arch.vmid;
if (stage2_level_to_page_size(level, &size))
return;
addr &= ~(size - 1);
/*
* TODO: Instead of cpu_online_mask, we should only target CPUs
* where the Guest/VM is running.
*/
preempt_disable();
riscv_cpuid_to_hartid_mask(cpu_online_mask, &hmask);
sbi_remote_hfence_gvma_vmid(cpumask_bits(&hmask), addr, size,
READ_ONCE(vmid->vmid));
preempt_enable();
}
static int stage2_set_pte(struct kvm *kvm, u32 level,
struct kvm_mmu_page_cache *pcache,
gpa_t addr, const pte_t *new_pte)
{
u32 current_level = stage2_pgd_levels - 1;
pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
pte_t *ptep = &next_ptep[stage2_pte_index(addr, current_level)];
if (current_level < level)
return -EINVAL;
while (current_level != level) {
if (stage2_pte_leaf(ptep))
return -EEXIST;
if (!pte_val(*ptep)) {
next_ptep = stage2_cache_alloc(pcache);
if (!next_ptep)
return -ENOMEM;
*ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
__pgprot(_PAGE_TABLE));
} else {
if (stage2_pte_leaf(ptep))
return -EEXIST;
next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
}
current_level--;
ptep = &next_ptep[stage2_pte_index(addr, current_level)];
}
*ptep = *new_pte;
if (stage2_pte_leaf(ptep))
stage2_remote_tlb_flush(kvm, current_level, addr);
return 0;
}
static int stage2_map_page(struct kvm *kvm,
struct kvm_mmu_page_cache *pcache,
gpa_t gpa, phys_addr_t hpa,
unsigned long page_size,
bool page_rdonly, bool page_exec)
{
int ret;
u32 level = 0;
pte_t new_pte;
pgprot_t prot;
ret = stage2_page_size_to_level(page_size, &level);
if (ret)
return ret;
/*
* A RISC-V implementation can choose to either:
* 1) Update 'A' and 'D' PTE bits in hardware
* 2) Generate page fault when 'A' and/or 'D' bits are not set
* PTE so that software can update these bits.
*
* We support both options mentioned above. To achieve this, we
* always set 'A' and 'D' PTE bits at time of creating stage2
* mapping. To support KVM dirty page logging with both options
* mentioned above, we will write-protect stage2 PTEs to track
* dirty pages.
*/
if (page_exec) {
if (page_rdonly)
prot = PAGE_READ_EXEC;
else
prot = PAGE_WRITE_EXEC;
} else {
if (page_rdonly)
prot = PAGE_READ;
else
prot = PAGE_WRITE;
}
new_pte = pfn_pte(PFN_DOWN(hpa), prot);
new_pte = pte_mkdirty(new_pte);
return stage2_set_pte(kvm, level, pcache, gpa, &new_pte);
}
enum stage2_op {
STAGE2_OP_NOP = 0, /* Nothing */
STAGE2_OP_CLEAR, /* Clear/Unmap */
STAGE2_OP_WP, /* Write-protect */
};
static void stage2_op_pte(struct kvm *kvm, gpa_t addr,
pte_t *ptep, u32 ptep_level, enum stage2_op op)
{
int i, ret;
pte_t *next_ptep;
u32 next_ptep_level;
unsigned long next_page_size, page_size;
ret = stage2_level_to_page_size(ptep_level, &page_size);
if (ret)
return;
BUG_ON(addr & (page_size - 1));
if (!pte_val(*ptep))
return;
if (ptep_level && !stage2_pte_leaf(ptep)) {
next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
next_ptep_level = ptep_level - 1;
ret = stage2_level_to_page_size(next_ptep_level,
&next_page_size);
if (ret)
return;
if (op == STAGE2_OP_CLEAR)
set_pte(ptep, __pte(0));
for (i = 0; i < PTRS_PER_PTE; i++)
stage2_op_pte(kvm, addr + i * next_page_size,
&next_ptep[i], next_ptep_level, op);
if (op == STAGE2_OP_CLEAR)
put_page(virt_to_page(next_ptep));
} else {
if (op == STAGE2_OP_CLEAR)
set_pte(ptep, __pte(0));
else if (op == STAGE2_OP_WP)
set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
stage2_remote_tlb_flush(kvm, ptep_level, addr);
}
}
static void stage2_unmap_range(struct kvm *kvm, gpa_t start, gpa_t size)
{
int ret;
pte_t *ptep;
u32 ptep_level;
bool found_leaf;
unsigned long page_size;
gpa_t addr = start, end = start + size;
while (addr < end) {
found_leaf = stage2_get_leaf_entry(kvm, addr,
&ptep, &ptep_level);
ret = stage2_level_to_page_size(ptep_level, &page_size);
if (ret)
break;
if (!found_leaf)
goto next;
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
stage2_op_pte(kvm, addr, ptep,
ptep_level, STAGE2_OP_CLEAR);
next:
addr += page_size;
}
}
static void stage2_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
{
int ret;
pte_t *ptep;
u32 ptep_level;
bool found_leaf;
gpa_t addr = start;
unsigned long page_size;
while (addr < end) {
found_leaf = stage2_get_leaf_entry(kvm, addr,
&ptep, &ptep_level);
ret = stage2_level_to_page_size(ptep_level, &page_size);
if (ret)
break;
if (!found_leaf)
goto next;
if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
stage2_op_pte(kvm, addr, ptep,
ptep_level, STAGE2_OP_WP);
next:
addr += page_size;
}
}
static void stage2_wp_memory_region(struct kvm *kvm, int slot)
{
struct kvm_memslots *slots = kvm_memslots(kvm);
struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
stage2_wp_range(kvm, start, end);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm);
}
static int stage2_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
unsigned long size, bool writable)
{
pte_t pte;
int ret = 0;
unsigned long pfn;
phys_addr_t addr, end;
struct kvm_mmu_page_cache pcache = { 0, };
end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
pfn = __phys_to_pfn(hpa);
for (addr = gpa; addr < end; addr += PAGE_SIZE) {
pte = pfn_pte(pfn, PAGE_KERNEL);
if (!writable)
pte = pte_wrprotect(pte);
ret = stage2_cache_topup(&pcache,
stage2_pgd_levels,
KVM_MMU_PAGE_CACHE_NR_OBJS);
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
ret = stage2_set_pte(kvm, 0, &pcache, addr, &pte);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
pfn++;
}
out:
stage2_cache_flush(&pcache);
return ret;
}
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset,
unsigned long mask)
{
phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
stage2_wp_range(kvm, start, end);
}
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
kvm_flush_remote_tlbs(kvm);
}
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
{
}
......@@ -32,7 +440,7 @@ void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
/* TODO: */
kvm_riscv_stage2_free_pgd(kvm);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
......@@ -46,7 +454,13 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
const struct kvm_memory_slot *new,
enum kvm_mr_change change)
{
/* TODO: */
/*
* At this point memslot has been committed and there is an
* allocated dirty_bitmap[], dirty pages will be tracked while
* the memory slot is write protected.
*/
if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
stage2_wp_memory_region(kvm, mem->slot);
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
......@@ -54,35 +468,255 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem,
enum kvm_mr_change change)
{
/* TODO: */
return 0;
hva_t hva = mem->userspace_addr;
hva_t reg_end = hva + mem->memory_size;
bool writable = !(mem->flags & KVM_MEM_READONLY);
int ret = 0;
if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
change != KVM_MR_FLAGS_ONLY)
return 0;
/*
* Prevent userspace from creating a memory region outside of the GPA
* space addressable by the KVM guest GPA space.
*/
if ((memslot->base_gfn + memslot->npages) >=
(stage2_gpa_size >> PAGE_SHIFT))
return -EFAULT;
mmap_read_lock(current->mm);
/*
* A memory region could potentially cover multiple VMAs, and
* any holes between them, so iterate over all of them to find
* out if we can map any of them right now.
*
* +--------------------------------------------+
* +---------------+----------------+ +----------------+
* | : VMA 1 | VMA 2 | | VMA 3 : |
* +---------------+----------------+ +----------------+
* | memory region |
* +--------------------------------------------+
*/
do {
struct vm_area_struct *vma = find_vma(current->mm, hva);
hva_t vm_start, vm_end;
if (!vma || vma->vm_start >= reg_end)
break;
/*
* Mapping a read-only VMA is only allowed if the
* memory region is configured as read-only.
*/
if (writable && !(vma->vm_flags & VM_WRITE)) {
ret = -EPERM;
break;
}
/* Take the intersection of this VMA with the memory region */
vm_start = max(hva, vma->vm_start);
vm_end = min(reg_end, vma->vm_end);
if (vma->vm_flags & VM_PFNMAP) {
gpa_t gpa = mem->guest_phys_addr +
(vm_start - mem->userspace_addr);
phys_addr_t pa;
pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
pa += vm_start - vma->vm_start;
/* IO region dirty page logging not allowed */
if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
ret = -EINVAL;
goto out;
}
ret = stage2_ioremap(kvm, gpa, pa,
vm_end - vm_start, writable);
if (ret)
break;
}
hva = vm_end;
} while (hva < reg_end);
if (change == KVM_MR_FLAGS_ONLY)
goto out;
spin_lock(&kvm->mmu_lock);
if (ret)
stage2_unmap_range(kvm, mem->guest_phys_addr,
mem->memory_size);
spin_unlock(&kvm->mmu_lock);
out:
mmap_read_unlock(current->mm);
return ret;
}
int kvm_riscv_stage2_map(struct kvm_vcpu *vcpu,
struct kvm_memory_slot *memslot,
gpa_t gpa, unsigned long hva, bool is_write)
{
/* TODO: */
return 0;
int ret;
kvm_pfn_t hfn;
bool writeable;
short vma_pageshift;
gfn_t gfn = gpa >> PAGE_SHIFT;
struct vm_area_struct *vma;
struct kvm *kvm = vcpu->kvm;
struct kvm_mmu_page_cache *pcache = &vcpu->arch.mmu_page_cache;
bool logging = (memslot->dirty_bitmap &&
!(memslot->flags & KVM_MEM_READONLY)) ? true : false;
unsigned long vma_pagesize;
mmap_read_lock(current->mm);
vma = find_vma_intersection(current->mm, hva, hva + 1);
if (unlikely(!vma)) {
kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
mmap_read_unlock(current->mm);
return -EFAULT;
}
if (is_vm_hugetlb_page(vma))
vma_pageshift = huge_page_shift(hstate_vma(vma));
else
vma_pageshift = PAGE_SHIFT;
vma_pagesize = 1ULL << vma_pageshift;
if (logging || (vma->vm_flags & VM_PFNMAP))
vma_pagesize = PAGE_SIZE;
if (vma_pagesize == PMD_SIZE || vma_pagesize == PGDIR_SIZE)
gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
mmap_read_unlock(current->mm);
if (vma_pagesize != PGDIR_SIZE &&
vma_pagesize != PMD_SIZE &&
vma_pagesize != PAGE_SIZE) {
kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
return -EFAULT;
}
/* We need minimum second+third level pages */
ret = stage2_cache_topup(pcache, stage2_pgd_levels,
KVM_MMU_PAGE_CACHE_NR_OBJS);
if (ret) {
kvm_err("Failed to topup stage2 cache\n");
return ret;
}
hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writeable);
if (hfn == KVM_PFN_ERR_HWPOISON) {
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
vma_pageshift, current);
return 0;
}
if (is_error_noslot_pfn(hfn))
return -EFAULT;
/*
* If logging is active then we allow writable pages only
* for write faults.
*/
if (logging && !is_write)
writeable = false;
spin_lock(&kvm->mmu_lock);
if (writeable) {
kvm_set_pfn_dirty(hfn);
mark_page_dirty(kvm, gfn);
ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, false, true);
} else {
ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
vma_pagesize, true, true);
}
if (ret)
kvm_err("Failed to map in stage2\n");
spin_unlock(&kvm->mmu_lock);
kvm_set_pfn_accessed(hfn);
kvm_release_pfn_clean(hfn);
return ret;
}
void kvm_riscv_stage2_flush_cache(struct kvm_vcpu *vcpu)
{
/* TODO: */
stage2_cache_flush(&vcpu->arch.mmu_page_cache);
}
int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm)
{
/* TODO: */
struct page *pgd_page;
if (kvm->arch.pgd != NULL) {
kvm_err("kvm_arch already initialized?\n");
return -EINVAL;
}
pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
get_order(stage2_pgd_size));
if (!pgd_page)
return -ENOMEM;
kvm->arch.pgd = page_to_virt(pgd_page);
kvm->arch.pgd_phys = page_to_phys(pgd_page);
return 0;
}
void kvm_riscv_stage2_free_pgd(struct kvm *kvm)
{
/* TODO: */
void *pgd = NULL;
spin_lock(&kvm->mmu_lock);
if (kvm->arch.pgd) {
stage2_unmap_range(kvm, 0UL, stage2_gpa_size);
pgd = READ_ONCE(kvm->arch.pgd);
kvm->arch.pgd = NULL;
kvm->arch.pgd_phys = 0;
}
spin_unlock(&kvm->mmu_lock);
if (pgd)
free_pages((unsigned long)pgd, get_order(stage2_pgd_size));
}
void kvm_riscv_stage2_update_hgatp(struct kvm_vcpu *vcpu)
{
/* TODO: */
unsigned long hgatp = stage2_mode;
struct kvm_arch *k = &vcpu->kvm->arch;
hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) &
HGATP_VMID_MASK;
hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
csr_write(CSR_HGATP, hgatp);
if (!kvm_riscv_stage2_vmid_bits())
__kvm_riscv_hfence_gvma_all();
}
void kvm_riscv_stage2_mode_detect(void)
{
#ifdef CONFIG_64BIT
/* Try Sv48x4 stage2 mode */
csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
stage2_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
stage2_pgd_levels = 4;
}
csr_write(CSR_HGATP, 0);
__kvm_riscv_hfence_gvma_all();
#endif
}
unsigned long kvm_riscv_stage2_mode(void)
{
return stage2_mode >> HGATP_MODE_SHIFT;
}
......@@ -27,12 +27,6 @@ const struct kvm_stats_header kvm_vm_stats_header = {
sizeof(kvm_vm_stats_desc),
};
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
/* TODO: To be added later. */
return -EOPNOTSUPP;
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
int r;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment