Commit 9fc4eb64 authored by Dave Jones's avatar Dave Jones Committed by Linus Torvalds

[PATCH] large x86 setup cleanup.

Patrick Mochel did a great job here at splitting up some of the larger
messy parts of arch/i386/kernel/setup.c, and introduced a nice abstraction
which gives us a much nicer way to ensure we can add workarounds for vendor
specific bugs / features without polluting other vendor code paths.

Mark Haverkamp also brought this up to date for merging in my tree circa
2.5.14, and asides from 1-2 now fixed small thinkos, there haven't been
any problems.

This also features a workaround for an errata item on stepping C0 of
the Intel Pentium 4 Xeon, which isn't in your tree yet, where we must
disable the hardware prefetcher to ensure sane operation.
parent a59212fb
......@@ -2,7 +2,7 @@
# Makefile for the linux kernel.
#
EXTRA_TARGETS := head.o init_task.o
EXTRA_TARGETS := first_rule kernel.o head.o init_task.o
O_TARGET := kernel.o
......@@ -14,6 +14,7 @@ obj-y := process.o semaphore.o signal.o entry.o traps.o irq.o vm86.o \
bootflag.o
obj-$(CONFIG_MCA) += mca.o
obj-$(CONFIG_EISA) += eisa.o
obj-$(CONFIG_MTRR) += mtrr.o
obj-$(CONFIG_X86_MSR) += msr.o
obj-$(CONFIG_X86_CPUID) += cpuid.o
......@@ -31,6 +32,10 @@ obj-y += setup-visws.o
obj-$(CONFIG_X86_VISWS_APIC) += visws_apic.o
endif
EXTRA_AFLAGS := -traditional
EXTRA_AFLAGS := -traditional
kernel-subdir-y := cpu
subdir-y := $(kernel-subdir-y)
obj-y += $(foreach dir,$(kernel-subdir-y),$(dir)/$(dir).o)
include $(TOPDIR)/Rules.make
O_TARGET := cpu.o
obj-y += amd.o
obj-y += cyrix.o
obj-y += centaur.o
obj-y += transmeta.o
obj-y += intel.o
obj-y += rise.o
obj-y += nexgen.o
obj-y += umc.o
obj-y += common.o
obj-y += proc.o
include $(TOPDIR)/Rules.make
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/processor.h>
#include "cpu.h"
/*
* B step AMD K6 before B 9730xxxx have hardware bugs that can cause
* misexecution of code under Linux. Owners of such processors should
* contact AMD for precise details and a CPU swap.
*
* See http://www.multimania.com/poulot/k6bug.html
* http://www.amd.com/K6/k6docs/revgd.html
*
* The following test is erm.. interesting. AMD neglected to up
* the chip setting when fixing the bug but they also tweaked some
* performance at the same time..
*/
extern void vide(void);
__asm__(".align 4\nvide: ret");
static void __init init_amd(struct cpuinfo_x86 *c)
{
u32 l, h;
int mbytes = max_mapnr >> (20-PAGE_SHIFT);
int r;
/*
* FIXME: We should handle the K5 here. Set up the write
* range and also turn on MSR 83 bits 4 and 31 (write alloc,
* no bus pipeline)
*/
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, c->x86_capability);
r = get_model_name(c);
switch(c->x86)
{
case 5:
if( c->x86_model < 6 )
{
/* Based on AMD doc 20734R - June 2000 */
if ( c->x86_model == 0 ) {
clear_bit(X86_FEATURE_APIC, c->x86_capability);
set_bit(X86_FEATURE_PGE, c->x86_capability);
}
break;
}
if ( c->x86_model == 6 && c->x86_mask == 1 ) {
const int K6_BUG_LOOP = 1000000;
int n;
void (*f_vide)(void);
unsigned long d, d2;
printk(KERN_INFO "AMD K6 stepping B detected - ");
/*
* It looks like AMD fixed the 2.6.2 bug and improved indirect
* calls at the same time.
*/
n = K6_BUG_LOOP;
f_vide = vide;
rdtscl(d);
while (n--)
f_vide();
rdtscl(d2);
d = d2-d;
/* Knock these two lines out if it debugs out ok */
printk(KERN_INFO "K6 BUG %ld %d (Report these if test report is incorrect)\n", d, 20*K6_BUG_LOOP);
printk(KERN_INFO "AMD K6 stepping B detected - ");
/* -- cut here -- */
if (d > 20*K6_BUG_LOOP)
printk("system stability may be impaired when more than 32 MB are used.\n");
else
printk("probably OK (after B9730xxxx).\n");
printk(KERN_INFO "Please see http://www.mygale.com/~poulot/k6bug.html\n");
}
/* K6 with old style WHCR */
if (c->x86_model < 8 ||
(c->x86_model== 8 && c->x86_mask < 8)) {
/* We can only write allocate on the low 508Mb */
if(mbytes>508)
mbytes=508;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0x0000FFFF)==0) {
unsigned long flags;
l=(1<<0)|((mbytes/4)<<1);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
printk(KERN_INFO "Enabling old style K6 write allocation for %d Mb\n",
mbytes);
}
break;
}
if ((c->x86_model == 8 && c->x86_mask >7) ||
c->x86_model == 9 || c->x86_model == 13) {
/* The more serious chips .. */
if(mbytes>4092)
mbytes=4092;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0xFFFF0000)==0) {
unsigned long flags;
l=((mbytes>>2)<<22)|(1<<16);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
printk(KERN_INFO "Enabling new style K6 write allocation for %d Mb\n",
mbytes);
}
/* Set MTRR capability flag if appropriate */
if (c->x86_model == 13 || c->x86_model == 9 ||
(c->x86_model == 8 && c->x86_mask >= 8))
set_bit(X86_FEATURE_K6_MTRR, c->x86_capability);
break;
}
break;
case 6: /* An Athlon/Duron */
/* Bit 15 of Athlon specific MSR 15, needs to be 0
* to enable SSE on Palomino/Morgan CPU's.
* If the BIOS didn't enable it already, enable it
* here.
*/
if (c->x86_model == 6 || c->x86_model == 7) {
if (!test_bit(X86_FEATURE_XMM, c->x86_capability)) {
printk(KERN_INFO "Enabling disabled K7/SSE Support.\n");
rdmsr(MSR_K7_HWCR, l, h);
l &= ~0x00008000;
wrmsr(MSR_K7_HWCR, l, h);
set_bit(X86_FEATURE_XMM, c->x86_capability);
}
}
break;
}
display_cacheinfo(c);
// return r;
}
static void amd_identify(struct cpuinfo_x86 * c)
{
u32 xlvl;
if (have_cpuid_p()) {
generic_identify(c);
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
if ( (xlvl & 0xffff0000) == 0x80000000 ) {
if ( xlvl >= 0x80000001 )
c->x86_capability[1] = cpuid_edx(0x80000001);
if ( xlvl >= 0x80000004 )
get_model_name(c); /* Default name */
}
}
}
static unsigned int amd_size_cache(struct cpuinfo_x86 * c, unsigned int size)
{
/* AMD errata T13 (order #21922) */
if ((c->x86 == 6)) {
if (c->x86_model == 3 && c->x86_mask == 0) /* Duron Rev A0 */
size = 64;
if (c->x86_model == 4 &&
(c->x86_mask==0 || c->x86_mask==1)) /* Tbird rev A1/A2 */
size = 256;
}
return size;
}
static struct cpu_dev amd_cpu_dev __initdata = {
c_vendor: "AMD",
c_ident: { "AuthenticAMD" },
c_models: {
{ X86_VENDOR_AMD, 4,
{
[3] "486 DX/2",
[7] "486 DX/2-WB",
[8] "486 DX/4",
[9] "486 DX/4-WB",
[14] "Am5x86-WT",
[15] "Am5x86-WB"
}
},
},
c_init: init_amd,
c_identify: amd_identify,
c_size_cache: amd_size_cache,
};
int __init amd_init_cpu(void)
{
cpu_devs[X86_VENDOR_AMD] = &amd_cpu_dev;
return 0;
}
//early_arch_initcall(amd_init_cpu);
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include "cpu.h"
#ifdef CONFIG_X86_OOSTORE
static u32 __init power2(u32 x)
{
u32 s=1;
while(s<=x)
s<<=1;
return s>>=1;
}
/*
* Set up an actual MCR
*/
static void __init centaur_mcr_insert(int reg, u32 base, u32 size, int key)
{
u32 lo, hi;
hi = base & ~0xFFF;
lo = ~(size-1); /* Size is a power of 2 so this makes a mask */
lo &= ~0xFFF; /* Remove the ctrl value bits */
lo |= key; /* Attribute we wish to set */
wrmsr(reg+MSR_IDT_MCR0, lo, hi);
mtrr_centaur_report_mcr(reg, lo, hi); /* Tell the mtrr driver */
}
/*
* Figure what we can cover with MCR's
*
* Shortcut: We know you can't put 4Gig of RAM on a winchip
*/
static u32 __init ramtop(void) /* 16388 */
{
int i;
u32 top = 0;
u32 clip = 0xFFFFFFFFUL;
for (i = 0; i < e820.nr_map; i++) {
unsigned long start, end;
if (e820.map[i].addr > 0xFFFFFFFFUL)
continue;
/*
* Don't MCR over reserved space. Ignore the ISA hole
* we frob around that catastrophy already
*/
if (e820.map[i].type == E820_RESERVED)
{
if(e820.map[i].addr >= 0x100000UL && e820.map[i].addr < clip)
clip = e820.map[i].addr;
continue;
}
start = e820.map[i].addr;
end = e820.map[i].addr + e820.map[i].size;
if (start >= end)
continue;
if (end > top)
top = end;
}
/* Everything below 'top' should be RAM except for the ISA hole.
Because of the limited MCR's we want to map NV/ACPI into our
MCR range for gunk in RAM
Clip might cause us to MCR insufficient RAM but that is an
acceptable failure mode and should only bite obscure boxes with
a VESA hole at 15Mb
The second case Clip sometimes kicks in is when the EBDA is marked
as reserved. Again we fail safe with reasonable results
*/
if(top>clip)
top=clip;
return top;
}
/*
* Compute a set of MCR's to give maximum coverage
*/
static int __init centaur_mcr_compute(int nr, int key)
{
u32 mem = ramtop();
u32 root = power2(mem);
u32 base = root;
u32 top = root;
u32 floor = 0;
int ct = 0;
while(ct<nr)
{
u32 fspace = 0;
/*
* Find the largest block we will fill going upwards
*/
u32 high = power2(mem-top);
/*
* Find the largest block we will fill going downwards
*/
u32 low = base/2;
/*
* Don't fill below 1Mb going downwards as there
* is an ISA hole in the way.
*/
if(base <= 1024*1024)
low = 0;
/*
* See how much space we could cover by filling below
* the ISA hole
*/
if(floor == 0)
fspace = 512*1024;
else if(floor ==512*1024)
fspace = 128*1024;
/* And forget ROM space */
/*
* Now install the largest coverage we get
*/
if(fspace > high && fspace > low)
{
centaur_mcr_insert(ct, floor, fspace, key);
floor += fspace;
}
else if(high > low)
{
centaur_mcr_insert(ct, top, high, key);
top += high;
}
else if(low > 0)
{
base -= low;
centaur_mcr_insert(ct, base, low, key);
}
else break;
ct++;
}
/*
* We loaded ct values. We now need to set the mask. The caller
* must do this bit.
*/
return ct;
}
static void __init centaur_create_optimal_mcr(void)
{
int i;
/*
* Allocate up to 6 mcrs to mark as much of ram as possible
* as write combining and weak write ordered.
*
* To experiment with: Linux never uses stack operations for
* mmio spaces so we could globally enable stack operation wc
*
* Load the registers with type 31 - full write combining, all
* writes weakly ordered.
*/
int used = centaur_mcr_compute(6, 31);
/*
* Wipe unused MCRs
*/
for(i=used;i<8;i++)
wrmsr(MSR_IDT_MCR0+i, 0, 0);
}
static void __init winchip2_create_optimal_mcr(void)
{
u32 lo, hi;
int i;
/*
* Allocate up to 6 mcrs to mark as much of ram as possible
* as write combining, weak store ordered.
*
* Load the registers with type 25
* 8 - weak write ordering
* 16 - weak read ordering
* 1 - write combining
*/
int used = centaur_mcr_compute(6, 25);
/*
* Mark the registers we are using.
*/
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
for(i=0;i<used;i++)
lo|=1<<(9+i);
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
/*
* Wipe unused MCRs
*/
for(i=used;i<8;i++)
wrmsr(MSR_IDT_MCR0+i, 0, 0);
}
/*
* Handle the MCR key on the Winchip 2.
*/
static void __init winchip2_unprotect_mcr(void)
{
u32 lo, hi;
u32 key;
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
lo&=~0x1C0; /* blank bits 8-6 */
key = (lo>>17) & 7;
lo |= key<<6; /* replace with unlock key */
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
}
static void __init winchip2_protect_mcr(void)
{
u32 lo, hi;
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
lo&=~0x1C0; /* blank bits 8-6 */
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
}
#endif
static void __init init_centaur(struct cpuinfo_x86 *c)
{
enum {
ECX8=1<<1,
EIERRINT=1<<2,
DPM=1<<3,
DMCE=1<<4,
DSTPCLK=1<<5,
ELINEAR=1<<6,
DSMC=1<<7,
DTLOCK=1<<8,
EDCTLB=1<<8,
EMMX=1<<9,
DPDC=1<<11,
EBRPRED=1<<12,
DIC=1<<13,
DDC=1<<14,
DNA=1<<15,
ERETSTK=1<<16,
E2MMX=1<<19,
EAMD3D=1<<20,
};
char *name;
u32 fcr_set=0;
u32 fcr_clr=0;
u32 lo,hi,newlo;
u32 aa,bb,cc,dd;
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, c->x86_capability);
switch (c->x86) {
case 5:
switch(c->x86_model) {
case 4:
name="C6";
fcr_set=ECX8|DSMC|EDCTLB|EMMX|ERETSTK;
fcr_clr=DPDC;
printk(KERN_NOTICE "Disabling bugged TSC.\n");
clear_bit(X86_FEATURE_TSC, c->x86_capability);
#ifdef CONFIG_X86_OOSTORE
centaur_create_optimal_mcr();
/* Enable
write combining on non-stack, non-string
write combining on string, all types
weak write ordering
The C6 original lacks weak read order
Note 0x120 is write only on Winchip 1 */
wrmsr(MSR_IDT_MCR_CTRL, 0x01F0001F, 0);
#endif
break;
case 8:
switch(c->x86_mask) {
default:
name="2";
break;
case 7 ... 9:
name="2A";
break;
case 10 ... 15:
name="2B";
break;
}
fcr_set=ECX8|DSMC|DTLOCK|EMMX|EBRPRED|ERETSTK|E2MMX|EAMD3D;
fcr_clr=DPDC;
#ifdef CONFIG_X86_OOSTORE
winchip2_unprotect_mcr();
winchip2_create_optimal_mcr();
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
/* Enable
write combining on non-stack, non-string
write combining on string, all types
weak write ordering
*/
lo|=31;
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
winchip2_protect_mcr();
#endif
break;
case 9:
name="3";
fcr_set=ECX8|DSMC|DTLOCK|EMMX|EBRPRED|ERETSTK|E2MMX|EAMD3D;
fcr_clr=DPDC;
#ifdef CONFIG_X86_OOSTORE
winchip2_unprotect_mcr();
winchip2_create_optimal_mcr();
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
/* Enable
write combining on non-stack, non-string
write combining on string, all types
weak write ordering
*/
lo|=31;
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
winchip2_protect_mcr();
#endif
break;
case 10:
name="4";
/* no info on the WC4 yet */
break;
default:
name="??";
}
rdmsr(MSR_IDT_FCR1, lo, hi);
newlo=(lo|fcr_set) & (~fcr_clr);
if (newlo!=lo) {
printk(KERN_INFO "Centaur FCR was 0x%X now 0x%X\n", lo, newlo );
wrmsr(MSR_IDT_FCR1, newlo, hi );
} else {
printk(KERN_INFO "Centaur FCR is 0x%X\n",lo);
}
/* Emulate MTRRs using Centaur's MCR. */
set_bit(X86_FEATURE_CENTAUR_MCR, c->x86_capability);
/* Report CX8 */
set_bit(X86_FEATURE_CX8, c->x86_capability);
/* Set 3DNow! on Winchip 2 and above. */
if (c->x86_model >=8)
set_bit(X86_FEATURE_3DNOW, c->x86_capability);
/* See if we can find out some more. */
if ( cpuid_eax(0x80000000) >= 0x80000005 ) {
/* Yes, we can. */
cpuid(0x80000005,&aa,&bb,&cc,&dd);
/* Add L1 data and code cache sizes. */
c->x86_cache_size = (cc>>24)+(dd>>24);
}
sprintf( c->x86_model_id, "WinChip %s", name );
break;
case 6:
switch (c->x86_model) {
case 6 ... 8: /* Cyrix III family */
rdmsr (MSR_VIA_FCR, lo, hi);
lo |= (1<<1 | 1<<7); /* Report CX8 & enable PGE */
wrmsr (MSR_VIA_FCR, lo, hi);
set_bit(X86_FEATURE_CX8, c->x86_capability);
set_bit(X86_FEATURE_3DNOW, c->x86_capability);
get_model_name(c);
display_cacheinfo(c);
break;
}
break;
}
}
static unsigned int centaur_size_cache(struct cpuinfo_x86 * c, unsigned int size)
{
/* VIA C3 CPUs (670-68F) need further shifting. */
if ((c->x86 == 6) && ((c->x86_model == 7) || (c->x86_model == 8)))
size >>= 8;
return size;
}
static struct cpu_dev centaur_cpu_dev __initdata = {
c_vendor: "Centaur",
c_ident: { "CentaurHauls" },
c_init: init_centaur,
c_size_cache: centaur_size_cache,
};
int __init centaur_init_cpu(void)
{
cpu_devs[X86_VENDOR_CENTAUR] = &centaur_cpu_dev;
return 0;
}
//early_arch_initcall(centaur_init_cpu);
/*
* Enhanced CPU type detection by Mike Jagdis, Patrick St. Jean
* and Martin Mares, November 1997.
*
* Force Cyrix 6x86(MX) and M II processors to report MTRR capability
* and Cyrix "coma bug" recognition by
* Zoltn Bszrmnyi <zboszor@mail.externet.hu> February 1999.
*
* Force Centaur C6 processors to report MTRR capability.
* Bart Hartgers <bart@etpmod.phys.tue.nl>, May 1999.
*
* Intel Mobile Pentium II detection fix. Sean Gilley, June 1999.
*
* IDT Winchip tweaks, misc clean ups.
* Dave Jones <davej@suse.de>, August 1999
*
* Better detection of Centaur/IDT WinChip models.
* Bart Hartgers <bart@etpmod.phys.tue.nl>, August 1999.
*
* Cleaned up cache-detection code
* Dave Jones <davej@suse.de>, October 1999
*
* Added proper L2 cache detection for Coppermine
* Dragan Stancevic <visitor@valinux.com>, October 1999
*
* Added the original array for capability flags but forgot to credit
* myself :) (~1998) Fixed/cleaned up some cpu_model_info and other stuff
* Jauder Ho <jauderho@carumba.com>, January 2000
*
* Detection for Celeron coppermine, identify_cpu() overhauled,
* and a few other clean ups.
* Dave Jones <davej@suse.de>, April 2000
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
*
* Added proper Cascades CPU and L2 cache detection for Cascades
* and 8-way type cache happy bunch from Intel:^)
* Dragan Stancevic <visitor@valinux.com>, May 2000
*
* Forward port AMD Duron errata T13 from 2.2.17pre
* Dave Jones <davej@suse.de>, August 2000
*
* Forward port lots of fixes/improvements from 2.2.18pre
* Cyrix III, Pentium IV support.
* Dave Jones <davej@suse.de>, October 2000
*
* Massive cleanup of CPU detection and bug handling;
* Transmeta CPU detection,
* H. Peter Anvin <hpa@zytor.com>, November 2000
*
* VIA C3 Support.
* Dave Jones <davej@suse.de>, March 2001
*
* AMD Athlon/Duron/Thunderbird bluesmoke support.
* Dave Jones <davej@suse.de>, April 2001.
*
* CacheSize bug workaround updates for AMD, Intel & VIA Cyrix.
* Dave Jones <davej@suse.de>, September, October 2001.
*
*/
#include <linux/init.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <asm/semaphore.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include "cpu.h"
static int cachesize_override __initdata = -1;
static int disable_x86_fxsr __initdata = 0;
struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
static struct cpu_dev default_cpu;
static struct cpu_dev * this_cpu = &default_cpu;
extern void mcheck_init(struct cpuinfo_x86 *c);
static void default_init(struct cpuinfo_x86 * c)
{
/* Not much we can do here... */
/* Check if at least it has cpuid */
if (c->cpuid_level == -1) {
/* No cpuid. It must be an ancient CPU */
if (c->x86 == 4)
strcpy(c->x86_model_id, "486");
else if (c->x86 == 3)
strcpy(c->x86_model_id, "386");
}
}
static struct cpu_dev default_cpu = {
c_init: default_init,
};
static int __init cachesize_setup(char *str)
{
get_option (&str, &cachesize_override);
return 1;
}
__setup("cachesize=", cachesize_setup);
#ifndef CONFIG_X86_TSC
static int tsc_disable __initdata = 0;
static int __init tsc_setup(char *str)
{
tsc_disable = 1;
return 1;
}
__setup("notsc", tsc_setup);
#endif
int __init get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
char *p, *q;
if (cpuid_eax(0x80000000) < 0x80000004)
return 0;
v = (unsigned int *) c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
/* Intel chips right-justify this string for some dumb reason;
undo that brain damage */
p = q = &c->x86_model_id[0];
while ( *p == ' ' )
p++;
if ( p != q ) {
while ( *p )
*q++ = *p++;
while ( q <= &c->x86_model_id[48] )
*q++ = '\0'; /* Zero-pad the rest */
}
return 1;
}
void __init display_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, ecx, edx, l2size;
n = cpuid_eax(0x80000000);
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
c->x86_cache_size=(ecx>>24)+(edx>>24);
}
if (n < 0x80000006) /* Some chips just has a large L1. */
return;
ecx = cpuid_ecx(0x80000006);
l2size = ecx >> 16;
/* do processor-specific cache resizing */
if (this_cpu->c_size_cache)
l2size = this_cpu->c_size_cache(c,l2size);
/* Allow user to override all this if necessary. */
if (cachesize_override != -1)
l2size = cachesize_override;
if ( l2size == 0 )
return; /* Again, no L2 cache is possible */
c->x86_cache_size = l2size;
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
l2size, ecx & 0xFF);
}
/* Naming convention should be: <Name> [(<Codename>)] */
/* This table only is used unless init_<vendor>() below doesn't set it; */
/* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
/* Look up CPU names by table lookup. */
static char __init *table_lookup_model(struct cpuinfo_x86 *c)
{
struct cpu_model_info *info;
if ( c->x86_model >= 16 )
return NULL; /* Range check */
if (!this_cpu)
return NULL;
info = this_cpu->c_models;
while (info && info->family) {
if (info->family == c->x86)
return info->model_names[c->x86_model];
info++;
}
return NULL; /* Not found */
}
void __init get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
int i;
for (i = 0; i < X86_VENDOR_NUM; i++) {
if (cpu_devs[i]) {
if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
(cpu_devs[i]->c_ident[1] &&
!strcmp(v,cpu_devs[i]->c_ident[1]))) {
c->x86_vendor = i;
this_cpu = cpu_devs[i];
break;
}
}
}
}
static int __init x86_fxsr_setup(char * s)
{
disable_x86_fxsr = 1;
return 1;
}
__setup("nofxsr", x86_fxsr_setup);
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(u32 flag)
{
u32 f1, f2;
asm("pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0,%1\n\t"
"xorl %2,%0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
int __init have_cpuid_p(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
void __init generic_identify(struct cpuinfo_x86 * c)
{
u32 tfms;
int junk;
if (have_cpuid_p()) {
/* Get vendor name */
cpuid(0x00000000, &c->cpuid_level,
(int *)&c->x86_vendor_id[0],
(int *)&c->x86_vendor_id[8],
(int *)&c->x86_vendor_id[4]);
get_cpu_vendor(c);
/* Initialize the standard set of capabilities */
/* Note that the vendor-specific code below might override */
/* Intel-defined flags: level 0x00000001 */
if ( c->cpuid_level >= 0x00000001 ) {
u32 capability;
cpuid(0x00000001, &tfms, &junk, &junk, &capability);
c->x86_capability[0] = capability;
c->x86 = (tfms >> 8) & 15;
c->x86_model = (tfms >> 4) & 15;
c->x86_mask = tfms & 15;
} else {
/* Have CPUID level 0 only - unheard of */
c->x86 = 4;
}
}
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
void __init identify_cpu(struct cpuinfo_x86 *c)
{
int i;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->cpuid_level = -1; /* CPUID not detected */
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
memset(&c->x86_capability, 0, sizeof c->x86_capability);
if (!have_cpuid_p()) {
/* First of all, decide if this is a 486 or higher */
/* It's a 486 if we can modify the AC flag */
if ( flag_is_changeable_p(X86_EFLAGS_AC) )
c->x86 = 4;
else
c->x86 = 3;
}
if (this_cpu->c_identify)
this_cpu->c_identify(c);
else
generic_identify(c);
printk(KERN_DEBUG "CPU: Before vendor init, caps: %08lx %08lx %08lx, vendor = %d\n",
c->x86_capability[0],
c->x86_capability[1],
c->x86_capability[2],
c->x86_vendor);
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
if (this_cpu->c_init)
this_cpu->c_init(c);
printk(KERN_DEBUG "CPU: After vendor init, caps: %08lx %08lx %08lx %08lx\n",
c->x86_capability[0],
c->x86_capability[1],
c->x86_capability[2],
c->x86_capability[3]);
/*
* The vendor-specific functions might have changed features. Now
* we do "generic changes."
*/
/* TSC disabled? */
#ifndef CONFIG_X86_TSC
if ( tsc_disable )
clear_bit(X86_FEATURE_TSC, c->x86_capability);
#endif
/* FXSR disabled? */
if (disable_x86_fxsr) {
clear_bit(X86_FEATURE_FXSR, c->x86_capability);
clear_bit(X86_FEATURE_XMM, c->x86_capability);
}
/* Init Machine Check Exception if available. */
mcheck_init(c);
/* If the model name is still unset, do table lookup. */
if ( !c->x86_model_id[0] ) {
char *p;
p = table_lookup_model(c);
if ( p )
strcpy(c->x86_model_id, p);
else
/* Last resort... */
sprintf(c->x86_model_id, "%02x/%02x",
c->x86_vendor, c->x86_model);
}
/* Now the feature flags better reflect actual CPU features! */
printk(KERN_DEBUG "CPU: After generic, caps: %08lx %08lx %08lx %08lx\n",
c->x86_capability[0],
c->x86_capability[1],
c->x86_capability[2],
c->x86_capability[3]);
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if ( c != &boot_cpu_data ) {
/* AND the already accumulated flags with these */
for ( i = 0 ; i < NCAPINTS ; i++ )
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
}
printk(KERN_DEBUG "CPU: Common caps: %08lx %08lx %08lx %08lx\n",
boot_cpu_data.x86_capability[0],
boot_cpu_data.x86_capability[1],
boot_cpu_data.x86_capability[2],
boot_cpu_data.x86_capability[3]);
}
/*
* Perform early boot up checks for a valid TSC. See arch/i386/kernel/time.c
*/
void __init dodgy_tsc(void)
{
get_cpu_vendor(&boot_cpu_data);
if (( boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX ) ||
( boot_cpu_data.x86_vendor == X86_VENDOR_NSC ))
cpu_devs[X86_VENDOR_CYRIX]->c_init(&boot_cpu_data);
}
void __init print_cpu_info(struct cpuinfo_x86 *c)
{
char *vendor = NULL;
if (c->x86_vendor < X86_VENDOR_NUM)
vendor = this_cpu->c_vendor;
else if (c->cpuid_level >= 0)
vendor = c->x86_vendor_id;
if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
printk("%s ", vendor);
if (!c->x86_model_id[0])
printk("%d86", c->x86);
else
printk("%s", c->x86_model_id);
if (c->x86_mask || c->cpuid_level >= 0)
printk(" stepping %02x\n", c->x86_mask);
else
printk("\n");
}
unsigned long cpu_initialized __initdata = 0;
/* This is hacky. :)
* We're emulating future behavior.
* In the future, the cpu-specific init functions will be called implicitly
* via the magic of initcalls.
* They will insert themselves into the cpu_devs structure.
* Then, when cpu_init() is called, we can just iterate over that array.
*/
extern int intel_cpu_init(void);
extern int cyrix_init_cpu(void);
extern int nsc_init_cpu(void);
extern int amd_init_cpu(void);
extern int centaur_init_cpu(void);
extern int transmeta_init_cpu(void);
extern int rise_init_cpu(void);
extern int nexgen_init_cpu(void);
extern int umc_init_cpu(void);
void __init early_cpu_init(void)
{
intel_cpu_init();
cyrix_init_cpu();
nsc_init_cpu();
amd_init_cpu();
centaur_init_cpu();
transmeta_init_cpu();
rise_init_cpu();
nexgen_init_cpu();
umc_init_cpu();
}
/*
* cpu_init() initializes state that is per-CPU. Some data is already
* initialized (naturally) in the bootstrap process, such as the GDT
* and IDT. We reload them nevertheless, this function acts as a
* 'CPU state barrier', nothing should get across.
*/
void __init cpu_init (void)
{
int nr = smp_processor_id();
struct tss_struct * t = &init_tss[nr];
if (test_and_set_bit(nr, &cpu_initialized)) {
printk(KERN_WARNING "CPU#%d already initialized!\n", nr);
for (;;) __sti();
}
printk(KERN_INFO "Initializing CPU#%d\n", nr);
if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
#ifndef CONFIG_X86_TSC
if (tsc_disable && cpu_has_tsc) {
printk(KERN_NOTICE "Disabling TSC...\n");
/**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
set_in_cr4(X86_CR4_TSD);
}
#endif
__asm__ __volatile__("lgdt %0": "=m" (gdt_descr));
__asm__ __volatile__("lidt %0": "=m" (idt_descr));
/*
* Delete NT
*/
__asm__("pushfl ; andl $0xffffbfff,(%esp) ; popfl");
/*
* set up and load the per-CPU TSS and LDT
*/
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
if(current->mm)
BUG();
enter_lazy_tlb(&init_mm, current, nr);
t->esp0 = current->thread.esp0;
set_tss_desc(nr,t);
gdt_table[__TSS(nr)].b &= 0xfffffdff;
load_TR(nr);
load_LDT(&init_mm.context);
/* Clear %fs and %gs. */
asm volatile ("xorl %eax, %eax; movl %eax, %fs; movl %eax, %gs");
/* Clear all 6 debug registers: */
#define CD(register) __asm__("movl %0,%%db" #register ::"r"(0) );
CD(0); CD(1); CD(2); CD(3); /* no db4 and db5 */; CD(6); CD(7);
#undef CD
/*
* Force FPU initialization:
*/
clear_thread_flag(TIF_USEDFPU);
current->used_math = 0;
stts();
}
struct cpu_model_info {
int vendor;
int family;
char *model_names[16];
};
/* attempt to consolidate cpu attributes */
struct cpu_dev {
char * c_vendor;
/* some have two possibilities for cpuid string */
char * c_ident[2];
struct cpu_model_info c_models[4];
void (*c_init)(struct cpuinfo_x86 * c);
void (*c_identify)(struct cpuinfo_x86 * c);
unsigned int (*c_size_cache)(struct cpuinfo_x86 * c, unsigned int size);
};
extern struct cpu_dev * cpu_devs [X86_VENDOR_NUM];
extern int get_model_name(struct cpuinfo_x86 *c);
extern void display_cacheinfo(struct cpuinfo_x86 *c);
extern void generic_identify(struct cpuinfo_x86 * c);
extern int have_cpuid_p(void);
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci_ids.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/processor.h>
#include "cpu.h"
/*
* Read NSC/Cyrix DEVID registers (DIR) to get more detailed info. about the CPU
*/
void __init do_cyrix_devid(unsigned char *dir0, unsigned char *dir1)
{
unsigned char ccr2, ccr3;
unsigned long flags;
/* we test for DEVID by checking whether CCR3 is writable */
local_irq_save(flags);
ccr3 = getCx86(CX86_CCR3);
setCx86(CX86_CCR3, ccr3 ^ 0x80);
getCx86(0xc0); /* dummy to change bus */
if (getCx86(CX86_CCR3) == ccr3) { /* no DEVID regs. */
ccr2 = getCx86(CX86_CCR2);
setCx86(CX86_CCR2, ccr2 ^ 0x04);
getCx86(0xc0); /* dummy */
if (getCx86(CX86_CCR2) == ccr2) /* old Cx486SLC/DLC */
*dir0 = 0xfd;
else { /* Cx486S A step */
setCx86(CX86_CCR2, ccr2);
*dir0 = 0xfe;
}
}
else {
setCx86(CX86_CCR3, ccr3); /* restore CCR3 */
/* read DIR0 and DIR1 CPU registers */
*dir0 = getCx86(CX86_DIR0);
*dir1 = getCx86(CX86_DIR1);
}
local_irq_restore(flags);
}
/*
* Cx86_dir0_msb is a HACK needed by check_cx686_cpuid/slop in bugs.h in
* order to identify the Cyrix CPU model after we're out of setup.c
*
* Actually since bugs.h doesnt even reference this perhaps someone should
* fix the documentation ???
*/
static unsigned char Cx86_dir0_msb __initdata = 0;
static char Cx86_model[][9] __initdata = {
"Cx486", "Cx486", "5x86 ", "6x86", "MediaGX ", "6x86MX ",
"M II ", "Unknown"
};
static char Cx486_name[][5] __initdata = {
"SLC", "DLC", "SLC2", "DLC2", "SRx", "DRx",
"SRx2", "DRx2"
};
static char Cx486S_name[][4] __initdata = {
"S", "S2", "Se", "S2e"
};
static char Cx486D_name[][4] __initdata = {
"DX", "DX2", "?", "?", "?", "DX4"
};
static char Cx86_cb[] __initdata = "?.5x Core/Bus Clock";
static char cyrix_model_mult1[] __initdata = "12??43";
static char cyrix_model_mult2[] __initdata = "12233445";
/*
* Reset the slow-loop (SLOP) bit on the 686(L) which is set by some old
* BIOSes for compatability with DOS games. This makes the udelay loop
* work correctly, and improves performance.
*
* FIXME: our newer udelay uses the tsc. We dont need to frob with SLOP
*/
extern void calibrate_delay(void) __init;
static void __init check_cx686_slop(struct cpuinfo_x86 *c)
{
unsigned long flags;
if (Cx86_dir0_msb == 3) {
unsigned char ccr3, ccr5;
local_irq_save(flags);
ccr3 = getCx86(CX86_CCR3);
setCx86(CX86_CCR3, (ccr3 & 0x0f) | 0x10); /* enable MAPEN */
ccr5 = getCx86(CX86_CCR5);
if (ccr5 & 2)
setCx86(CX86_CCR5, ccr5 & 0xfd); /* reset SLOP */
setCx86(CX86_CCR3, ccr3); /* disable MAPEN */
local_irq_restore(flags);
if (ccr5 & 2) { /* possible wrong calibration done */
printk(KERN_INFO "Recalibrating delay loop with SLOP bit reset\n");
calibrate_delay();
c->loops_per_jiffy = loops_per_jiffy;
}
}
}
static void __init init_cyrix(struct cpuinfo_x86 *c)
{
unsigned char dir0, dir0_msn, dir0_lsn, dir1 = 0;
char *buf = c->x86_model_id;
const char *p = NULL;
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, c->x86_capability);
/* Cyrix used bit 24 in extended (AMD) CPUID for Cyrix MMX extensions */
if ( test_bit(1*32+24, c->x86_capability) ) {
clear_bit(1*32+24, c->x86_capability);
set_bit(X86_FEATURE_CXMMX, c->x86_capability);
}
do_cyrix_devid(&dir0, &dir1);
check_cx686_slop(c);
Cx86_dir0_msb = dir0_msn = dir0 >> 4; /* identifies CPU "family" */
dir0_lsn = dir0 & 0xf; /* model or clock multiplier */
/* common case step number/rev -- exceptions handled below */
c->x86_model = (dir1 >> 4) + 1;
c->x86_mask = dir1 & 0xf;
/* Now cook; the original recipe is by Channing Corn, from Cyrix.
* We do the same thing for each generation: we work out
* the model, multiplier and stepping. Black magic included,
* to make the silicon step/rev numbers match the printed ones.
*/
switch (dir0_msn) {
unsigned char tmp;
case 0: /* Cx486SLC/DLC/SRx/DRx */
p = Cx486_name[dir0_lsn & 7];
break;
case 1: /* Cx486S/DX/DX2/DX4 */
p = (dir0_lsn & 8) ? Cx486D_name[dir0_lsn & 5]
: Cx486S_name[dir0_lsn & 3];
break;
case 2: /* 5x86 */
Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5];
p = Cx86_cb+2;
break;
case 3: /* 6x86/6x86L */
Cx86_cb[1] = ' ';
Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5];
if (dir1 > 0x21) { /* 686L */
Cx86_cb[0] = 'L';
p = Cx86_cb;
(c->x86_model)++;
} else /* 686 */
p = Cx86_cb+1;
/* Emulate MTRRs using Cyrix's ARRs. */
set_bit(X86_FEATURE_CYRIX_ARR, c->x86_capability);
/* 6x86's contain this bug */
c->coma_bug = 1;
break;
case 4: /* MediaGX/GXm */
#ifdef CONFIG_PCI
/* It isn't really a PCI quirk directly, but the cure is the
same. The MediaGX has deep magic SMM stuff that handles the
SB emulation. It thows away the fifo on disable_dma() which
is wrong and ruins the audio.
Bug2: VSA1 has a wrap bug so that using maximum sized DMA
causes bad things. According to NatSemi VSA2 has another
bug to do with 'hlt'. I've not seen any boards using VSA2
and X doesn't seem to support it either so who cares 8).
VSA1 we work around however.
*/
printk(KERN_INFO "Working around Cyrix MediaGX virtual DMA bugs.\n");
isa_dma_bridge_buggy = 2;
#endif
c->x86_cache_size=16; /* Yep 16K integrated cache thats it */
/* GXm supports extended cpuid levels 'ala' AMD */
if (c->cpuid_level == 2) {
/* Enable Natsemi MMX extensions */
setCx86(CX86_CCR7, getCx86(CX86_CCR7) | 1);
get_model_name(c); /* get CPU marketing name */
/*
* The 5510/5520 companion chips have a funky PIT
* that breaks the TSC synchronizing, so turn it off
*/
if(pci_find_device(PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5510, NULL) ||
pci_find_device(PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5520, NULL))
clear_bit(X86_FEATURE_TSC, c->x86_capability);
return;
}
else { /* MediaGX */
Cx86_cb[2] = (dir0_lsn & 1) ? '3' : '4';
p = Cx86_cb+2;
c->x86_model = (dir1 & 0x20) ? 1 : 2;
#ifndef CONFIG_CS5520
clear_bit(X86_FEATURE_TSC, c->x86_capability);
#endif
}
break;
case 5: /* 6x86MX/M II */
if (dir1 > 7)
{
dir0_msn++; /* M II */
/* Enable MMX extensions (App note 108) */
setCx86(CX86_CCR7, getCx86(CX86_CCR7)|1);
}
else
{
c->coma_bug = 1; /* 6x86MX, it has the bug. */
}
tmp = (!(dir0_lsn & 7) || dir0_lsn & 1) ? 2 : 0;
Cx86_cb[tmp] = cyrix_model_mult2[dir0_lsn & 7];
p = Cx86_cb+tmp;
if (((dir1 & 0x0f) > 4) || ((dir1 & 0xf0) == 0x20))
(c->x86_model)++;
/* Emulate MTRRs using Cyrix's ARRs. */
set_bit(X86_FEATURE_CYRIX_ARR, c->x86_capability);
break;
case 0xf: /* Cyrix 486 without DEVID registers */
switch (dir0_lsn) {
case 0xd: /* either a 486SLC or DLC w/o DEVID */
dir0_msn = 0;
p = Cx486_name[(c->hard_math) ? 1 : 0];
break;
case 0xe: /* a 486S A step */
dir0_msn = 0;
p = Cx486S_name[0];
break;
}
break;
default: /* unknown (shouldn't happen, we know everyone ;-) */
dir0_msn = 7;
break;
}
strcpy(buf, Cx86_model[dir0_msn & 7]);
if (p) strcat(buf, p);
return;
}
/*
* Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
* by the fact that they preserve the flags across the division of 5/2.
* PII and PPro exhibit this behavior too, but they have cpuid available.
*/
/*
* Perform the Cyrix 5/2 test. A Cyrix won't change
* the flags, while other 486 chips will.
*/
static inline int test_cyrix_52div(void)
{
unsigned int test;
__asm__ __volatile__(
"sahf\n\t" /* clear flags (%eax = 0x0005) */
"div %b2\n\t" /* divide 5 by 2 */
"lahf" /* store flags into %ah */
: "=a" (test)
: "0" (5), "q" (2)
: "cc");
/* AH is 0x02 on Cyrix after the divide.. */
return (unsigned char) (test >> 8) == 0x02;
}
static void cyrix_identify(struct cpuinfo_x86 * c)
{
/* Detect Cyrix with disabled CPUID */
if ( c->x86 == 4 && test_cyrix_52div() ) {
unsigned char dir0, dir1;
strcpy(c->x86_vendor_id, "CyrixInstead");
c->x86_vendor = X86_VENDOR_CYRIX;
/* Actually enable cpuid on the older cyrix */
/* Retrieve CPU revisions */
do_cyrix_devid(&dir0, &dir1);
dir0>>=4;
/* Check it is an affected model */
if (dir0 == 5 || dir0 == 3)
{
unsigned char ccr3, ccr4;
unsigned long flags;
printk(KERN_INFO "Enabling CPUID on Cyrix processor.\n");
local_irq_save(flags);
ccr3 = getCx86(CX86_CCR3);
setCx86(CX86_CCR3, (ccr3 & 0x0f) | 0x10); /* enable MAPEN */
ccr4 = getCx86(CX86_CCR4);
setCx86(CX86_CCR4, ccr4 | 0x80); /* enable cpuid */
setCx86(CX86_CCR3, ccr3); /* disable MAPEN */
local_irq_restore(flags);
}
}
generic_identify(c);
}
static struct cpu_dev cyrix_cpu_dev __initdata = {
c_vendor: "Cyrix",
c_ident: { "CyrixInstead" },
c_init: init_cyrix,
c_identify: cyrix_identify,
};
int __init cyrix_init_cpu(void)
{
cpu_devs[X86_VENDOR_CYRIX] = &cyrix_cpu_dev;
return 0;
}
//early_arch_initcall(cyrix_init_cpu);
static struct cpu_dev nsc_cpu_dev __initdata = {
c_vendor: "NSC",
c_ident: { "Geode by NSC" },
c_init: init_cyrix,
c_identify: generic_identify,
};
int __init nsc_init_cpu(void)
{
cpu_devs[X86_VENDOR_NSC] = &nsc_cpu_dev;
return 0;
}
//early_arch_initcall(nsc_init_cpu);
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/smp.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
#include <asm/msr.h>
#include "cpu.h"
static int disable_x86_serial_nr __initdata = 1;
static int disable_P4_HT __initdata = 0;
extern int trap_init_f00f_bug(void);
/*
* Early probe support logic for ppro memory erratum #50
*
* This is called before we do cpu ident work
*/
int __init ppro_with_ram_bug(void)
{
char vendor_id[16];
int ident;
/* Must have CPUID */
if(!have_cpuid_p())
return 0;
if(cpuid_eax(0)<1)
return 0;
/* Must be Intel */
cpuid(0, &ident,
(int *)&vendor_id[0],
(int *)&vendor_id[8],
(int *)&vendor_id[4]);
if(memcmp(vendor_id, "IntelInside", 12))
return 0;
ident = cpuid_eax(1);
/* Model 6 */
if(((ident>>8)&15)!=6)
return 0;
/* Pentium Pro */
if(((ident>>4)&15)!=1)
return 0;
if((ident&15) < 8)
{
printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
return 1;
}
printk(KERN_INFO "Your Pentium Pro seems ok.\n");
return 0;
}
static void __init squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
if( test_bit(X86_FEATURE_PN, c->x86_capability) &&
disable_x86_serial_nr ) {
/* Disable processor serial number */
unsigned long lo,hi;
rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
lo |= 0x200000;
wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
printk(KERN_NOTICE "CPU serial number disabled.\n");
clear_bit(X86_FEATURE_PN, c->x86_capability);
/* Disabling the serial number may affect the cpuid level */
c->cpuid_level = cpuid_eax(0);
}
}
static int __init x86_serial_nr_setup(char *s)
{
disable_x86_serial_nr = 0;
return 1;
}
__setup("serialnumber", x86_serial_nr_setup);
static int __init P4_disable_ht(char *s)
{
disable_P4_HT = 1;
return 1;
}
__setup("noht", P4_disable_ht);
static void __init init_intel(struct cpuinfo_x86 *c)
{
char *p = NULL;
unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
#ifdef CONFIG_X86_F00F_BUG
/*
* All current models of Pentium and Pentium with MMX technology CPUs
* have the F0 0F bug, which lets nonpriviledged users lock up the system.
* Note that the workaround only should be initialized once...
*/
c->f00f_bug = 0;
if ( c->x86 == 5 ) {
static int f00f_workaround_enabled = 0;
c->f00f_bug = 1;
if ( !f00f_workaround_enabled ) {
trap_init_f00f_bug();
printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
f00f_workaround_enabled = 1;
}
}
#endif
if (c->cpuid_level > 1) {
/* supports eax=2 call */
int i, j, n;
int regs[4];
unsigned char *dp = (unsigned char *)regs;
/* Number of times to iterate */
n = cpuid_eax(2) & 0xFF;
for ( i = 0 ; i < n ; i++ ) {
cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
/* If bit 31 is set, this is an unknown format */
for ( j = 0 ; j < 3 ; j++ ) {
if ( regs[j] < 0 ) regs[j] = 0;
}
/* Byte 0 is level count, not a descriptor */
for ( j = 1 ; j < 16 ; j++ ) {
unsigned char des = dp[j];
unsigned char dl, dh;
unsigned int cs;
dh = des >> 4;
dl = des & 0x0F;
/* Black magic... */
switch ( dh )
{
case 0:
switch ( dl ) {
case 6:
/* L1 I cache */
l1i += 8;
break;
case 8:
/* L1 I cache */
l1i += 16;
break;
case 10:
/* L1 D cache */
l1d += 8;
break;
case 12:
/* L1 D cache */
l1d += 16;
break;
default:;
/* TLB, or unknown */
}
break;
case 2:
if ( dl ) {
/* L3 cache */
cs = (dl-1) << 9;
l3 += cs;
}
break;
case 4:
if ( c->x86 > 6 && dl ) {
/* P4 family */
/* L3 cache */
cs = 128 << (dl-1);
l3 += cs;
break;
}
/* else same as 8 - fall through */
case 8:
if ( dl ) {
/* L2 cache */
cs = 128 << (dl-1);
l2 += cs;
}
break;
case 6:
if (dl > 5) {
/* L1 D cache */
cs = 8<<(dl-6);
l1d += cs;
}
break;
case 7:
if ( dl >= 8 )
{
/* L2 cache */
cs = 64<<(dl-8);
l2 += cs;
} else {
/* L0 I cache, count as L1 */
cs = dl ? (16 << (dl-1)) : 12;
l1i += cs;
}
break;
default:
/* TLB, or something else we don't know about */
break;
}
}
}
if ( l1i || l1d )
printk(KERN_INFO "CPU: L1 I cache: %dK, L1 D cache: %dK\n",
l1i, l1d);
if ( l2 )
printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
if ( l3 )
printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
/*
* This assumes the L3 cache is shared; it typically lives in
* the northbridge. The L1 caches are included by the L2
* cache, and so should not be included for the purpose of
* SMP switching weights.
*/
c->x86_cache_size = l2 ? l2 : (l1i+l1d);
}
/* SEP CPUID bug: Pentium Pro reports SEP but doesn't have it */
if ( c->x86 == 6 && c->x86_model < 3 && c->x86_mask < 3 )
clear_bit(X86_FEATURE_SEP, c->x86_capability);
/* Names for the Pentium II/Celeron processors
detectable only by also checking the cache size.
Dixon is NOT a Celeron. */
if (c->x86 == 6) {
switch (c->x86_model) {
case 5:
if (l2 == 0)
p = "Celeron (Covington)";
if (l2 == 256)
p = "Mobile Pentium II (Dixon)";
break;
case 6:
if (l2 == 128)
p = "Celeron (Mendocino)";
break;
case 8:
if (l2 == 128)
p = "Celeron (Coppermine)";
break;
}
}
if ( p )
strcpy(c->x86_model_id, p);
#ifdef CONFIG_SMP
if (test_bit(X86_FEATURE_HT, c->x86_capability) && !disable_P4_HT) {
extern int phys_proc_id[NR_CPUS];
u32 eax, ebx, ecx, edx;
int index_lsb, index_msb, tmp;
int initial_apic_id;
int cpu = smp_processor_id();
cpuid(1, &eax, &ebx, &ecx, &edx);
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
} else if (smp_num_siblings > 1 ) {
index_lsb = 0;
index_msb = 31;
/*
* At this point we only support two siblings per
* processor package.
*/
#define NR_SIBLINGS 2
if (smp_num_siblings != NR_SIBLINGS) {
printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
smp_num_siblings = 1;
goto too_many_siblings;
}
tmp = smp_num_siblings;
while ((tmp & 1) == 0) {
tmp >>=1 ;
index_lsb++;
}
tmp = smp_num_siblings;
while ((tmp & 0x80000000 ) == 0) {
tmp <<=1 ;
index_msb--;
}
if (index_lsb != index_msb )
index_msb++;
initial_apic_id = ebx >> 24 & 0xff;
phys_proc_id[cpu] = initial_apic_id >> index_msb;
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
phys_proc_id[cpu]);
}
}
too_many_siblings:
if (disable_P4_HT)
clear_bit(X86_FEATURE_HT, &c->x86_capability);
#endif
/* Disable the PN if appropriate */
squash_the_stupid_serial_number(c);
}
static unsigned int intel_size_cache(struct cpuinfo_x86 * c, unsigned int size)
{
/* Intel PIII Tualatin. This comes in two flavours.
* One has 256kb of cache, the other 512. We have no way
* to determine which, so we use a boottime override
* for the 512kb model, and assume 256 otherwise.
*/
if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
size = 256;
return size;
}
static struct cpu_dev intel_cpu_dev __initdata = {
c_vendor: "Intel",
c_ident: { "GenuineIntel" },
c_models: {
{ X86_VENDOR_INTEL, 4,
{
[0] "486 DX-25/33",
[1] "486 DX-50",
[2] "486 SX",
[3] "486 DX/2",
[4] "486 SL",
[5] "486 SX/2",
[7] "486 DX/2-WB",
[8] "486 DX/4",
[9] "486 DX/4-WB"
}
},
{ X86_VENDOR_INTEL, 5,
{
[0] "Pentium 60/66 A-step",
[1] "Pentium 60/66",
[2] "Pentium 75 - 200",
[3] "OverDrive PODP5V83",
[4] "Pentium MMX",
[7] "Mobile Pentium 75 - 200",
[8] "Mobile Pentium MMX"
}
},
},
c_init: init_intel,
c_identify: generic_identify,
c_size_cache: intel_size_cache,
};
__init int intel_cpu_init(void)
{
cpu_devs[X86_VENDOR_INTEL] = &intel_cpu_dev;
return 0;
}
// arch_initcall(intel_cpu_init);
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/string.h>
#include <asm/processor.h>
#include "cpu.h"
/*
* Detect a NexGen CPU running without BIOS hypercode new enough
* to have CPUID. (Thanks to Herbert Oppmann)
*/
static int __init deep_magic_nexgen_probe(void)
{
int ret;
__asm__ __volatile__ (
" movw $0x5555, %%ax\n"
" xorw %%dx,%%dx\n"
" movw $2, %%cx\n"
" divw %%cx\n"
" movl $0, %%eax\n"
" jnz 1f\n"
" movl $1, %%eax\n"
"1:\n"
: "=a" (ret) : : "cx", "dx" );
return ret;
}
static void __init init_nexgen(struct cpuinfo_x86 * c)
{
c->x86_cache_size = 256; /* A few had 1 MB... */
}
static void nexgen_identify(struct cpuinfo_x86 * c)
{
/* Detect NexGen with old hypercode */
if ( deep_magic_nexgen_probe() ) {
strcpy(c->x86_vendor_id, "NexGenDriven");
}
generic_identify(c);
}
static struct cpu_dev nexgen_cpu_dev __initdata = {
c_vendor: "Nexgen",
c_ident: { "NexGenDriven" },
c_models: {
{ X86_VENDOR_NEXGEN,5, { [1] "Nx586" } },
},
c_init: init_nexgen,
c_identify: nexgen_identify,
};
int __init nexgen_init_cpu(void)
{
cpu_devs[X86_VENDOR_NEXGEN] = &nexgen_cpu_dev;
return 0;
}
//early_arch_initcall(nexgen_init_cpu);
#include <linux/smp.h>
#include <linux/timex.h>
#include <linux/string.h>
#include <asm/semaphore.h>
#include <linux/seq_file.h>
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
/*
* These flag bits must match the definitions in <asm/cpufeature.h>.
* NULL means this bit is undefined or reserved; either way it doesn't
* have meaning as far as Linux is concerned. Note that it's important
* to realize there is a difference between this table and CPUID -- if
* applications want to get the raw CPUID data, they should access
* /dev/cpu/<cpu_nr>/cpuid instead.
*/
static char *x86_cap_flags[] = {
/* Intel-defined */
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
"fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
/* AMD-defined */
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "mp", NULL, NULL, "mmxext", NULL,
NULL, NULL, NULL, NULL, NULL, "lm", "3dnowext", "3dnow",
/* Transmeta-defined */
"recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Other (Linux-defined) */
"cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
struct cpuinfo_x86 *c = v;
int i, n = c - cpu_data;
int fpu_exception;
#ifdef CONFIG_SMP
if (!(cpu_online_map & (1<<n)))
return 0;
#endif
seq_printf(m, "processor\t: %d\n"
"vendor_id\t: %s\n"
"cpu family\t: %d\n"
"model\t\t: %d\n"
"model name\t: %s\n",
n,
c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
c->x86,
c->x86_model,
c->x86_model_id[0] ? c->x86_model_id : "unknown");
if (c->x86_mask || c->cpuid_level >= 0)
seq_printf(m, "stepping\t: %d\n", c->x86_mask);
else
seq_printf(m, "stepping\t: unknown\n");
if ( test_bit(X86_FEATURE_TSC, &c->x86_capability) ) {
seq_printf(m, "cpu MHz\t\t: %lu.%03lu\n",
cpu_khz / 1000, (cpu_khz % 1000));
}
/* Cache size */
if (c->x86_cache_size >= 0)
seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
/* We use exception 16 if we have hardware math and we've either seen it or the CPU claims it is internal */
fpu_exception = c->hard_math && (ignore_irq13 || cpu_has_fpu);
seq_printf(m, "fdiv_bug\t: %s\n"
"hlt_bug\t\t: %s\n"
"f00f_bug\t: %s\n"
"coma_bug\t: %s\n"
"fpu\t\t: %s\n"
"fpu_exception\t: %s\n"
"cpuid level\t: %d\n"
"wp\t\t: %s\n"
"flags\t\t:",
c->fdiv_bug ? "yes" : "no",
c->hlt_works_ok ? "no" : "yes",
c->f00f_bug ? "yes" : "no",
c->coma_bug ? "yes" : "no",
c->hard_math ? "yes" : "no",
fpu_exception ? "yes" : "no",
c->cpuid_level,
c->wp_works_ok ? "yes" : "no");
for ( i = 0 ; i < 32*NCAPINTS ; i++ )
if ( test_bit(i, &c->x86_capability) &&
x86_cap_flags[i] != NULL )
seq_printf(m, " %s", x86_cap_flags[i]);
seq_printf(m, "\nbogomips\t: %lu.%02lu\n\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
start: c_start,
next: c_next,
stop: c_stop,
show: show_cpuinfo,
};
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/processor.h>
#include "cpu.h"
static void __init init_rise(struct cpuinfo_x86 *c)
{
printk("CPU: Rise iDragon");
if (c->x86_model > 2)
printk(" II");
printk("\n");
/* Unhide possibly hidden capability flags
The mp6 iDragon family don't have MSRs.
We switch on extra features with this cpuid weirdness: */
__asm__ (
"movl $0x6363452a, %%eax\n\t"
"movl $0x3231206c, %%ecx\n\t"
"movl $0x2a32313a, %%edx\n\t"
"cpuid\n\t"
"movl $0x63634523, %%eax\n\t"
"movl $0x32315f6c, %%ecx\n\t"
"movl $0x2333313a, %%edx\n\t"
"cpuid\n\t" : : : "eax", "ebx", "ecx", "edx"
);
set_bit(X86_FEATURE_CX8, c->x86_capability);
}
static struct cpu_dev rise_cpu_dev __initdata = {
c_vendor: "Rise",
c_ident: { "RiseRiseRise" },
c_models: {
{ X86_VENDOR_RISE, 5,
{
[0] "iDragon",
[2] "iDragon",
[8] "iDragon II",
[9] "iDragon II"
}
},
},
c_init: init_rise,
};
int __init rise_init_cpu(void)
{
cpu_devs[X86_VENDOR_RISE] = &rise_cpu_dev;
return 0;
}
//early_arch_initcall(rise_init_cpu);
#include <linux/kernel.h>
#include <linux/init.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include "cpu.h"
static void __init init_transmeta(struct cpuinfo_x86 *c)
{
unsigned int cap_mask, uk, max, dummy;
unsigned int cms_rev1, cms_rev2;
unsigned int cpu_rev, cpu_freq, cpu_flags;
char cpu_info[65];
get_model_name(c); /* Same as AMD/Cyrix */
display_cacheinfo(c);
/* Print CMS and CPU revision */
max = cpuid_eax(0x80860000);
if ( max >= 0x80860001 ) {
cpuid(0x80860001, &dummy, &cpu_rev, &cpu_freq, &cpu_flags);
printk(KERN_INFO "CPU: Processor revision %u.%u.%u.%u, %u MHz\n",
(cpu_rev >> 24) & 0xff,
(cpu_rev >> 16) & 0xff,
(cpu_rev >> 8) & 0xff,
cpu_rev & 0xff,
cpu_freq);
}
if ( max >= 0x80860002 ) {
cpuid(0x80860002, &dummy, &cms_rev1, &cms_rev2, &dummy);
printk(KERN_INFO "CPU: Code Morphing Software revision %u.%u.%u-%u-%u\n",
(cms_rev1 >> 24) & 0xff,
(cms_rev1 >> 16) & 0xff,
(cms_rev1 >> 8) & 0xff,
cms_rev1 & 0xff,
cms_rev2);
}
if ( max >= 0x80860006 ) {
cpuid(0x80860003,
(void *)&cpu_info[0],
(void *)&cpu_info[4],
(void *)&cpu_info[8],
(void *)&cpu_info[12]);
cpuid(0x80860004,
(void *)&cpu_info[16],
(void *)&cpu_info[20],
(void *)&cpu_info[24],
(void *)&cpu_info[28]);
cpuid(0x80860005,
(void *)&cpu_info[32],
(void *)&cpu_info[36],
(void *)&cpu_info[40],
(void *)&cpu_info[44]);
cpuid(0x80860006,
(void *)&cpu_info[48],
(void *)&cpu_info[52],
(void *)&cpu_info[56],
(void *)&cpu_info[60]);
cpu_info[64] = '\0';
printk(KERN_INFO "CPU: %s\n", cpu_info);
}
/* Unhide possibly hidden capability flags */
rdmsr(0x80860004, cap_mask, uk);
wrmsr(0x80860004, ~0, uk);
c->x86_capability[0] = cpuid_edx(0x00000001);
wrmsr(0x80860004, cap_mask, uk);
}
static void transmeta_identify(struct cpuinfo_x86 * c)
{
u32 xlvl;
generic_identify(c);
/* Transmeta-defined flags: level 0x80860001 */
xlvl = cpuid_eax(0x80860000);
if ( (xlvl & 0xffff0000) == 0x80860000 ) {
if ( xlvl >= 0x80860001 )
c->x86_capability[2] = cpuid_edx(0x80860001);
}
}
static struct cpu_dev transmeta_cpu_dev __initdata = {
c_vendor: "Transmeta",
c_ident: { "GenuineTMx86", "TransmetaCPU" },
c_init: init_transmeta,
c_identify: transmeta_identify,
};
int __init transmeta_init_cpu(void)
{
cpu_devs[X86_VENDOR_TRANSMETA] = &transmeta_cpu_dev;
return 0;
}
//early_arch_initcall(transmeta_init_cpu);
#include <linux/kernel.h>
#include <linux/init.h>
#include <asm/processor.h>
#include "cpu.h"
/* UMC chips appear to be only either 386 or 486, so no special init takes place.
*/
static void __init init_umc(struct cpuinfo_x86 * c)
{
}
static struct cpu_dev umc_cpu_dev __initdata = {
c_vendor: "UMC",
c_ident: { "UMC UMC UMC" },
c_models: {
{ X86_VENDOR_UMC, 4,
{
[1] "U5D",
[2] "U5S",
}
},
},
c_init: init_umc,
};
int __init umc_init_cpu(void)
{
cpu_devs[X86_VENDOR_UMC] = &umc_cpu_dev;
return 0;
}
//early_arch_initcall(umc_init_cpu);
......@@ -3,73 +3,16 @@
*
* Copyright (C) 1995 Linus Torvalds
*
* Enhanced CPU type detection by Mike Jagdis, Patrick St. Jean
* and Martin Mares, November 1997.
*
* Force Cyrix 6x86(MX) and M II processors to report MTRR capability
* and Cyrix "coma bug" recognition by
* Zoltn Bszrmnyi <zboszor@mail.externet.hu> February 1999.
*
* Force Centaur C6 processors to report MTRR capability.
* Bart Hartgers <bart@etpmod.phys.tue.nl>, May 1999.
*
* Intel Mobile Pentium II detection fix. Sean Gilley, June 1999.
*
* IDT Winchip tweaks, misc clean ups.
* Dave Jones <davej@suse.de>, August 1999
*
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
*
* Better detection of Centaur/IDT WinChip models.
* Bart Hartgers <bart@etpmod.phys.tue.nl>, August 1999.
*
* Memory region support
* David Parsons <orc@pell.chi.il.us>, July-August 1999
*
* Cleaned up cache-detection code
* Dave Jones <davej@suse.de>, October 1999
*
* Added proper L2 cache detection for Coppermine
* Dragan Stancevic <visitor@valinux.com>, October 1999
*
* Added the original array for capability flags but forgot to credit
* myself :) (~1998) Fixed/cleaned up some cpu_model_info and other stuff
* Jauder Ho <jauderho@carumba.com>, January 2000
*
* Detection for Celeron coppermine, identify_cpu() overhauled,
* and a few other clean ups.
* Dave Jones <davej@suse.de>, April 2000
*
* Pentium III FXSR, SSE support
* General FPU state handling cleanups
* Gareth Hughes <gareth@valinux.com>, May 2000
*
* Added proper Cascades CPU and L2 cache detection for Cascades
* and 8-way type cache happy bunch from Intel:^)
* Dragan Stancevic <visitor@valinux.com>, May 2000
*
* Forward port AMD Duron errata T13 from 2.2.17pre
* Dave Jones <davej@suse.de>, August 2000
*
* Forward port lots of fixes/improvements from 2.2.18pre
* Cyrix III, Pentium IV support.
* Dave Jones <davej@suse.de>, October 2000
*
* Massive cleanup of CPU detection and bug handling;
* Transmeta CPU detection,
* H. Peter Anvin <hpa@zytor.com>, November 2000
*
* Added E820 sanitization routine (removes overlapping memory regions);
* Brian Moyle <bmoyle@mvista.com>, February 2001
*
* VIA C3 Support.
* Dave Jones <davej@suse.de>, March 2001
*
* AMD Athlon/Duron/Thunderbird bluesmoke support.
* Dave Jones <davej@suse.de>, April 2001.
*
* CacheSize bug workaround updates for AMD, Intel & VIA Cyrix.
* Dave Jones <davej@suse.de>, September, October 2001.
* Moved CPU detection code to cpu/${cpu}.c
* Patrick Mochel <mochel@osdl.org>, March 2002
*
*/
......@@ -77,45 +20,21 @@
* This file handles the architecture-dependent parts of initialization
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/acpi.h>
#include <linux/apm_bios.h>
#ifdef CONFIG_BLK_DEV_RAM
#include <linux/blk.h>
#endif
#include <linux/highmem.h>
#include <linux/bootmem.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/seq_file.h>
#include <linux/console.h>
#include <asm/processor.h>
#include <asm/mtrr.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/cobalt.h>
#include <asm/msr.h>
#include <asm/desc.h>
#include <linux/highmem.h>
#include <asm/e820.h>
#include <asm/dma.h>
#include <asm/mpspec.h>
#include <asm/mmu_context.h>
/*
* Machine setup..
......@@ -126,11 +45,7 @@ struct cpuinfo_x86 boot_cpu_data = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
unsigned long mmu_cr4_features;
/*
* Bus types ..
*/
int MCA_bus;
/* for MCA, but anyone else can use it if they want */
unsigned int machine_id;
unsigned int machine_submodel_id;
......@@ -158,20 +73,15 @@ struct e820map e820;
unsigned char aux_device_present;
extern void mcheck_init(struct cpuinfo_x86 *c);
extern void early_cpu_init(void);
extern void dmi_scan_machine(void);
extern int root_mountflags;
extern char _text, _etext, _edata, _end;
extern int blk_nohighio;
void __init visws_get_board_type_and_rev(void);
static int disable_x86_serial_nr __initdata = 1;
static int disable_x86_fxsr __initdata = 0;
unsigned long saved_videomode;
extern unsigned long saved_videomode;
/*
* This is set up by the setup-routine at boot-time
*/
......@@ -297,6 +207,22 @@ static void __init probe_roms(void)
}
}
static void __init limit_regions (unsigned long long size)
{
int i;
unsigned long long current_size = 0;
for (i = 0; i < e820.nr_map; i++) {
if (e820.map[i].type == E820_RAM) {
current_size += e820.map[i].size;
if (current_size >= size) {
e820.map[i].size -= current_size-size;
e820.nr_map = i + 1;
return;
}
}
}
}
static void __init add_memory_region(unsigned long long start,
unsigned long long size, int type)
{
......@@ -598,7 +524,7 @@ static void __init parse_mem_cmdline (char ** cmdline_p)
{
char c = ' ', *to = command_line, *from = COMMAND_LINE;
int len = 0;
int usermem = 0;
int userdef = 0;
/* Save unparsed command line copy for /proc/cmdline */
memcpy(saved_command_line, COMMAND_LINE, COMMAND_LINE_SIZE);
......@@ -621,32 +547,24 @@ static void __init parse_mem_cmdline (char ** cmdline_p)
} else if (!memcmp(from+4, "exactmap", 8)) {
from += 8+4;
e820.nr_map = 0;
usermem = 1;
userdef = 1;
} else {
/* If the user specifies memory size, we
* blow away any automatically generated
* size
* limit the BIOS-provided memory map to
* that size. exactmap can be used to specify
* the exact map. mem=number can be used to
* trim the existing memory map.
*/
unsigned long long start_at, mem_size;
if (usermem == 0) {
/* first time in: zap the whitelist
* and reinitialize it with the
* standard low-memory region.
*/
e820.nr_map = 0;
usermem = 1;
add_memory_region(0, LOWMEMSIZE(), E820_RAM);
}
mem_size = memparse(from+4, &from);
if (*from == '@')
if (*from == '@') {
start_at = memparse(from+1, &from);
else {
start_at = HIGH_MEMORY;
mem_size -= HIGH_MEMORY;
usermem=0;
add_memory_region(start_at, mem_size, E820_RAM);
} else {
limit_regions(mem_size);
userdef=1;
}
add_memory_region(start_at, mem_size, E820_RAM);
}
}
/*
......@@ -666,7 +584,7 @@ static void __init parse_mem_cmdline (char ** cmdline_p)
}
*to = '\0';
*cmdline_p = command_line;
if (usermem) {
if (userdef) {
printk(KERN_INFO "user-defined physical RAM map:\n");
print_memory_map("user");
}
......@@ -678,6 +596,8 @@ void __init setup_arch(char **cmdline_p)
unsigned long start_pfn, max_low_pfn;
int i;
early_cpu_init();
#ifdef CONFIG_VISWS
visws_get_board_type_and_rev();
#endif
......@@ -977,27 +897,6 @@ void __init setup_arch(char **cmdline_p)
dmi_scan_machine();
}
static int cachesize_override __initdata = -1;
static int __init cachesize_setup(char *str)
{
get_option (&str, &cachesize_override);
return 1;
}
__setup("cachesize=", cachesize_setup);
#ifndef CONFIG_X86_TSC
static int tsc_disable __initdata = 0;
static int __init tsc_setup(char *str)
{
tsc_disable = 1;
return 1;
}
__setup("notsc", tsc_setup);
#endif
static int __init highio_setup(char *str)
{
printk("i386: disabling HIGHMEM block I/O\n");
......@@ -1006,1938 +905,6 @@ static int __init highio_setup(char *str)
}
__setup("nohighio", highio_setup);
static int __init get_model_name(struct cpuinfo_x86 *c)
{
unsigned int *v;
char *p, *q;
if (cpuid_eax(0x80000000) < 0x80000004)
return 0;
v = (unsigned int *) c->x86_model_id;
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
c->x86_model_id[48] = 0;
/* Intel chips right-justify this string for some dumb reason;
undo that brain damage */
p = q = &c->x86_model_id[0];
while ( *p == ' ' )
p++;
if ( p != q ) {
while ( *p )
*q++ = *p++;
while ( q <= &c->x86_model_id[48] )
*q++ = '\0'; /* Zero-pad the rest */
}
return 1;
}
static void __init display_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int n, dummy, ecx, edx, l2size;
n = cpuid_eax(0x80000000);
if (n >= 0x80000005) {
cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
c->x86_cache_size=(ecx>>24)+(edx>>24);
}
if (n < 0x80000006) /* Some chips just has a large L1. */
return;
ecx = cpuid_ecx(0x80000006);
l2size = ecx >> 16;
/* AMD errata T13 (order #21922) */
if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
if (c->x86_model == 3 && c->x86_mask == 0) /* Duron Rev A0 */
l2size = 64;
if (c->x86_model == 4 &&
(c->x86_mask==0 || c->x86_mask==1)) /* Tbird rev A1/A2 */
l2size = 256;
}
/* Intel PIII Tualatin. This comes in two flavours.
* One has 256kb of cache, the other 512. We have no way
* to determine which, so we use a boottime override
* for the 512kb model, and assume 256 otherwise.
*/
if ((c->x86_vendor == X86_VENDOR_INTEL) && (c->x86 == 6) &&
(c->x86_model == 11) && (l2size == 0))
l2size = 256;
/* VIA C3 CPUs (670-68F) need further shifting. */
if (c->x86_vendor == X86_VENDOR_CENTAUR && (c->x86 == 6) &&
((c->x86_model == 7) || (c->x86_model == 8))) {
l2size = l2size >> 8;
}
/* Allow user to override all this if necessary. */
if (cachesize_override != -1)
l2size = cachesize_override;
if ( l2size == 0 )
return; /* Again, no L2 cache is possible */
c->x86_cache_size = l2size;
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
l2size, ecx & 0xFF);
}
/*
* B step AMD K6 before B 9730xxxx have hardware bugs that can cause
* misexecution of code under Linux. Owners of such processors should
* contact AMD for precise details and a CPU swap.
*
* See http://www.multimania.com/poulot/k6bug.html
* http://www.amd.com/K6/k6docs/revgd.html
*
* The following test is erm.. interesting. AMD neglected to up
* the chip setting when fixing the bug but they also tweaked some
* performance at the same time..
*/
extern void vide(void);
__asm__(".align 4\nvide: ret");
static int __init init_amd(struct cpuinfo_x86 *c)
{
u32 l, h;
int mbytes = max_mapnr >> (20-PAGE_SHIFT);
int r;
/*
* FIXME: We should handle the K5 here. Set up the write
* range and also turn on MSR 83 bits 4 and 31 (write alloc,
* no bus pipeline)
*/
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, c->x86_capability);
r = get_model_name(c);
switch(c->x86)
{
case 5:
if( c->x86_model < 6 )
{
/* Based on AMD doc 20734R - June 2000 */
if ( c->x86_model == 0 ) {
clear_bit(X86_FEATURE_APIC, c->x86_capability);
set_bit(X86_FEATURE_PGE, c->x86_capability);
}
break;
}
if ( c->x86_model == 6 && c->x86_mask == 1 ) {
const int K6_BUG_LOOP = 1000000;
int n;
void (*f_vide)(void);
unsigned long d, d2;
printk(KERN_INFO "AMD K6 stepping B detected - ");
/*
* It looks like AMD fixed the 2.6.2 bug and improved indirect
* calls at the same time.
*/
n = K6_BUG_LOOP;
f_vide = vide;
rdtscl(d);
while (n--)
f_vide();
rdtscl(d2);
d = d2-d;
/* Knock these two lines out if it debugs out ok */
printk(KERN_INFO "K6 BUG %ld %d (Report these if test report is incorrect)\n", d, 20*K6_BUG_LOOP);
printk(KERN_INFO "AMD K6 stepping B detected - ");
/* -- cut here -- */
if (d > 20*K6_BUG_LOOP)
printk("system stability may be impaired when more than 32 MB are used.\n");
else
printk("probably OK (after B9730xxxx).\n");
printk(KERN_INFO "Please see http://www.mygale.com/~poulot/k6bug.html\n");
}
/* K6 with old style WHCR */
if (c->x86_model < 8 ||
(c->x86_model== 8 && c->x86_mask < 8)) {
/* We can only write allocate on the low 508Mb */
if(mbytes>508)
mbytes=508;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0x0000FFFF)==0) {
unsigned long flags;
l=(1<<0)|((mbytes/4)<<1);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
printk(KERN_INFO "Enabling old style K6 write allocation for %d Mb\n",
mbytes);
}
break;
}
if ((c->x86_model == 8 && c->x86_mask >7) ||
c->x86_model == 9 || c->x86_model == 13) {
/* The more serious chips .. */
if(mbytes>4092)
mbytes=4092;
rdmsr(MSR_K6_WHCR, l, h);
if ((l&0xFFFF0000)==0) {
unsigned long flags;
l=((mbytes>>2)<<22)|(1<<16);
local_irq_save(flags);
wbinvd();
wrmsr(MSR_K6_WHCR, l, h);
local_irq_restore(flags);
printk(KERN_INFO "Enabling new style K6 write allocation for %d Mb\n",
mbytes);
}
/* Set MTRR capability flag if appropriate */
if (c->x86_model == 13 || c->x86_model == 9 ||
(c->x86_model == 8 && c->x86_mask >= 8))
set_bit(X86_FEATURE_K6_MTRR, c->x86_capability);
break;
}
break;
case 6: /* An Athlon/Duron */
/* Bit 15 of Athlon specific MSR 15, needs to be 0
* to enable SSE on Palomino/Morgan CPU's.
* If the BIOS didn't enable it already, enable it
* here.
*/
if (c->x86_model == 6 || c->x86_model == 7) {
if (!cpu_has(c, X86_FEATURE_XMM)) {
printk(KERN_INFO "Enabling disabled K7/SSE Support.\n");
rdmsr(MSR_K7_HWCR, l, h);
l &= ~0x00008000;
wrmsr(MSR_K7_HWCR, l, h);
set_bit(X86_FEATURE_XMM, c->x86_capability);
}
}
break;
}
display_cacheinfo(c);
return r;
}
/*
* Read NSC/Cyrix DEVID registers (DIR) to get more detailed info. about the CPU
*/
static void __init do_cyrix_devid(unsigned char *dir0, unsigned char *dir1)
{
unsigned char ccr2, ccr3;
unsigned long flags;
/* we test for DEVID by checking whether CCR3 is writable */
local_irq_save(flags);
ccr3 = getCx86(CX86_CCR3);
setCx86(CX86_CCR3, ccr3 ^ 0x80);
getCx86(0xc0); /* dummy to change bus */
if (getCx86(CX86_CCR3) == ccr3) { /* no DEVID regs. */
ccr2 = getCx86(CX86_CCR2);
setCx86(CX86_CCR2, ccr2 ^ 0x04);
getCx86(0xc0); /* dummy */
if (getCx86(CX86_CCR2) == ccr2) /* old Cx486SLC/DLC */
*dir0 = 0xfd;
else { /* Cx486S A step */
setCx86(CX86_CCR2, ccr2);
*dir0 = 0xfe;
}
}
else {
setCx86(CX86_CCR3, ccr3); /* restore CCR3 */
/* read DIR0 and DIR1 CPU registers */
*dir0 = getCx86(CX86_DIR0);
*dir1 = getCx86(CX86_DIR1);
}
local_irq_restore(flags);
}
/*
* Cx86_dir0_msb is a HACK needed by check_cx686_cpuid/slop in bugs.h in
* order to identify the Cyrix CPU model after we're out of setup.c
*
* Actually since bugs.h doesnt even reference this perhaps someone should
* fix the documentation ???
*/
static unsigned char Cx86_dir0_msb __initdata = 0;
static char Cx86_model[][9] __initdata = {
"Cx486", "Cx486", "5x86 ", "6x86", "MediaGX ", "6x86MX ",
"M II ", "Unknown"
};
static char Cx486_name[][5] __initdata = {
"SLC", "DLC", "SLC2", "DLC2", "SRx", "DRx",
"SRx2", "DRx2"
};
static char Cx486S_name[][4] __initdata = {
"S", "S2", "Se", "S2e"
};
static char Cx486D_name[][4] __initdata = {
"DX", "DX2", "?", "?", "?", "DX4"
};
static char Cx86_cb[] __initdata = "?.5x Core/Bus Clock";
static char cyrix_model_mult1[] __initdata = "12??43";
static char cyrix_model_mult2[] __initdata = "12233445";
/*
* Reset the slow-loop (SLOP) bit on the 686(L) which is set by some old
* BIOSes for compatability with DOS games. This makes the udelay loop
* work correctly, and improves performance.
*
* FIXME: our newer udelay uses the tsc. We dont need to frob with SLOP
*/
extern void calibrate_delay(void) __init;
static void __init check_cx686_slop(struct cpuinfo_x86 *c)
{
unsigned long flags;
if (Cx86_dir0_msb == 3) {
unsigned char ccr3, ccr5;
local_irq_save(flags);
ccr3 = getCx86(CX86_CCR3);
setCx86(CX86_CCR3, (ccr3 & 0x0f) | 0x10); /* enable MAPEN */
ccr5 = getCx86(CX86_CCR5);
if (ccr5 & 2)
setCx86(CX86_CCR5, ccr5 & 0xfd); /* reset SLOP */
setCx86(CX86_CCR3, ccr3); /* disable MAPEN */
local_irq_restore(flags);
if (ccr5 & 2) { /* possible wrong calibration done */
printk(KERN_INFO "Recalibrating delay loop with SLOP bit reset\n");
calibrate_delay();
c->loops_per_jiffy = loops_per_jiffy;
}
}
}
static void __init init_cyrix(struct cpuinfo_x86 *c)
{
unsigned char dir0, dir0_msn, dir0_lsn, dir1 = 0;
char *buf = c->x86_model_id;
const char *p = NULL;
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, c->x86_capability);
/* Cyrix used bit 24 in extended (AMD) CPUID for Cyrix MMX extensions */
if ( test_bit(1*32+24, c->x86_capability) ) {
clear_bit(1*32+24, c->x86_capability);
set_bit(X86_FEATURE_CXMMX, c->x86_capability);
}
do_cyrix_devid(&dir0, &dir1);
check_cx686_slop(c);
Cx86_dir0_msb = dir0_msn = dir0 >> 4; /* identifies CPU "family" */
dir0_lsn = dir0 & 0xf; /* model or clock multiplier */
/* common case step number/rev -- exceptions handled below */
c->x86_model = (dir1 >> 4) + 1;
c->x86_mask = dir1 & 0xf;
/* Now cook; the original recipe is by Channing Corn, from Cyrix.
* We do the same thing for each generation: we work out
* the model, multiplier and stepping. Black magic included,
* to make the silicon step/rev numbers match the printed ones.
*/
switch (dir0_msn) {
unsigned char tmp;
case 0: /* Cx486SLC/DLC/SRx/DRx */
p = Cx486_name[dir0_lsn & 7];
break;
case 1: /* Cx486S/DX/DX2/DX4 */
p = (dir0_lsn & 8) ? Cx486D_name[dir0_lsn & 5]
: Cx486S_name[dir0_lsn & 3];
break;
case 2: /* 5x86 */
Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5];
p = Cx86_cb+2;
break;
case 3: /* 6x86/6x86L */
Cx86_cb[1] = ' ';
Cx86_cb[2] = cyrix_model_mult1[dir0_lsn & 5];
if (dir1 > 0x21) { /* 686L */
Cx86_cb[0] = 'L';
p = Cx86_cb;
(c->x86_model)++;
} else /* 686 */
p = Cx86_cb+1;
/* Emulate MTRRs using Cyrix's ARRs. */
set_bit(X86_FEATURE_CYRIX_ARR, c->x86_capability);
/* 6x86's contain this bug */
c->coma_bug = 1;
break;
case 4: /* MediaGX/GXm */
#ifdef CONFIG_PCI
/* It isn't really a PCI quirk directly, but the cure is the
same. The MediaGX has deep magic SMM stuff that handles the
SB emulation. It thows away the fifo on disable_dma() which
is wrong and ruins the audio.
Bug2: VSA1 has a wrap bug so that using maximum sized DMA
causes bad things. According to NatSemi VSA2 has another
bug to do with 'hlt'. I've not seen any boards using VSA2
and X doesn't seem to support it either so who cares 8).
VSA1 we work around however.
*/
printk(KERN_INFO "Working around Cyrix MediaGX virtual DMA bugs.\n");
isa_dma_bridge_buggy = 2;
#endif
c->x86_cache_size=16; /* Yep 16K integrated cache thats it */
/* GXm supports extended cpuid levels 'ala' AMD */
if (c->cpuid_level == 2) {
/* Enable Natsemi MMX extensions */
setCx86(CX86_CCR7, getCx86(CX86_CCR7) | 1);
get_model_name(c); /* get CPU marketing name */
/*
* The 5510/5520 companion chips have a funky PIT
* that breaks the TSC synchronizing, so turn it off
*/
if(pci_find_device(PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5510, NULL) ||
pci_find_device(PCI_VENDOR_ID_CYRIX, PCI_DEVICE_ID_CYRIX_5520, NULL))
clear_bit(X86_FEATURE_TSC, c->x86_capability);
return;
}
else { /* MediaGX */
Cx86_cb[2] = (dir0_lsn & 1) ? '3' : '4';
p = Cx86_cb+2;
c->x86_model = (dir1 & 0x20) ? 1 : 2;
#ifndef CONFIG_CS5520
clear_bit(X86_FEATURE_TSC, c->x86_capability);
#endif
}
break;
case 5: /* 6x86MX/M II */
if (dir1 > 7)
{
dir0_msn++; /* M II */
/* Enable MMX extensions (App note 108) */
setCx86(CX86_CCR7, getCx86(CX86_CCR7)|1);
}
else
{
c->coma_bug = 1; /* 6x86MX, it has the bug. */
}
tmp = (!(dir0_lsn & 7) || dir0_lsn & 1) ? 2 : 0;
Cx86_cb[tmp] = cyrix_model_mult2[dir0_lsn & 7];
p = Cx86_cb+tmp;
if (((dir1 & 0x0f) > 4) || ((dir1 & 0xf0) == 0x20))
(c->x86_model)++;
/* Emulate MTRRs using Cyrix's ARRs. */
set_bit(X86_FEATURE_CYRIX_ARR, c->x86_capability);
break;
case 0xf: /* Cyrix 486 without DEVID registers */
switch (dir0_lsn) {
case 0xd: /* either a 486SLC or DLC w/o DEVID */
dir0_msn = 0;
p = Cx486_name[(c->hard_math) ? 1 : 0];
break;
case 0xe: /* a 486S A step */
dir0_msn = 0;
p = Cx486S_name[0];
break;
}
break;
default: /* unknown (shouldn't happen, we know everyone ;-) */
dir0_msn = 7;
break;
}
strcpy(buf, Cx86_model[dir0_msn & 7]);
if (p) strcat(buf, p);
return;
}
#ifdef CONFIG_X86_OOSTORE
static u32 __init power2(u32 x)
{
u32 s=1;
while(s<=x)
s<<=1;
return s>>=1;
}
/*
* Set up an actual MCR
*/
static void __init winchip_mcr_insert(int reg, u32 base, u32 size, int key)
{
u32 lo, hi;
hi = base & ~0xFFF;
lo = ~(size-1); /* Size is a power of 2 so this makes a mask */
lo &= ~0xFFF; /* Remove the ctrl value bits */
lo |= key; /* Attribute we wish to set */
wrmsr(reg+MSR_IDT_MCR0, lo, hi);
mtrr_centaur_report_mcr(reg, lo, hi); /* Tell the mtrr driver */
}
/*
* Figure what we can cover with MCR's
*
* Shortcut: We know you can't put 4Gig of RAM on a winchip
*/
static u32 __init ramtop(void) /* 16388 */
{
int i;
u32 top = 0;
u32 clip = 0xFFFFFFFFUL;
for (i = 0; i < e820.nr_map; i++) {
unsigned long start, end;
if (e820.map[i].addr > 0xFFFFFFFFUL)
continue;
/*
* Don't MCR over reserved space. Ignore the ISA hole
* we frob around that catastrophy already
*/
if (e820.map[i].type == E820_RESERVED)
{
if(e820.map[i].addr >= 0x100000UL && e820.map[i].addr < clip)
clip = e820.map[i].addr;
continue;
}
start = e820.map[i].addr;
end = e820.map[i].addr + e820.map[i].size;
if (start >= end)
continue;
if (end > top)
top = end;
}
/* Everything below 'top' should be RAM except for the ISA hole.
Because of the limited MCR's we want to map NV/ACPI into our
MCR range for gunk in RAM
Clip might cause us to MCR insufficient RAM but that is an
acceptable failure mode and should only bite obscure boxes with
a VESA hole at 15Mb
The second case Clip sometimes kicks in is when the EBDA is marked
as reserved. Again we fail safe with reasonable results
*/
if(top>clip)
top=clip;
return top;
}
/*
* Compute a set of MCR's to give maximum coverage
*/
static int __init winchip_mcr_compute(int nr, int key)
{
u32 mem = ramtop();
u32 root = power2(mem);
u32 base = root;
u32 top = root;
u32 floor = 0;
int ct = 0;
while(ct<nr)
{
u32 fspace = 0;
/*
* Find the largest block we will fill going upwards
*/
u32 high = power2(mem-top);
/*
* Find the largest block we will fill going downwards
*/
u32 low = base/2;
/*
* Don't fill below 1Mb going downwards as there
* is an ISA hole in the way.
*/
if(base <= 1024*1024)
low = 0;
/*
* See how much space we could cover by filling below
* the ISA hole
*/
if(floor == 0)
fspace = 512*1024;
else if(floor ==512*1024)
fspace = 128*1024;
/* And forget ROM space */
/*
* Now install the largest coverage we get
*/
if(fspace > high && fspace > low)
{
winchip_mcr_insert(ct, floor, fspace, key);
floor += fspace;
}
else if(high > low)
{
winchip_mcr_insert(ct, top, high, key);
top += high;
}
else if(low > 0)
{
base -= low;
winchip_mcr_insert(ct, base, low, key);
}
else break;
ct++;
}
/*
* We loaded ct values. We now need to set the mask. The caller
* must do this bit.
*/
return ct;
}
static void __init winchip_create_optimal_mcr(void)
{
int i;
/*
* Allocate up to 6 mcrs to mark as much of ram as possible
* as write combining and weak write ordered.
*
* To experiment with: Linux never uses stack operations for
* mmio spaces so we could globally enable stack operation wc
*
* Load the registers with type 31 - full write combining, all
* writes weakly ordered.
*/
int used = winchip_mcr_compute(6, 31);
/*
* Wipe unused MCRs
*/
for(i=used;i<8;i++)
wrmsr(MSR_IDT_MCR0+i, 0, 0);
}
static void __init winchip2_create_optimal_mcr(void)
{
u32 lo, hi;
int i;
/*
* Allocate up to 6 mcrs to mark as much of ram as possible
* as write combining, weak store ordered.
*
* Load the registers with type 25
* 8 - weak write ordering
* 16 - weak read ordering
* 1 - write combining
*/
int used = winchip_mcr_compute(6, 25);
/*
* Mark the registers we are using.
*/
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
for(i=0;i<used;i++)
lo|=1<<(9+i);
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
/*
* Wipe unused MCRs
*/
for(i=used;i<8;i++)
wrmsr(MSR_IDT_MCR0+i, 0, 0);
}
/*
* Handle the MCR key on the Winchip 2.
*/
static void __init winchip2_unprotect_mcr(void)
{
u32 lo, hi;
u32 key;
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
lo&=~0x1C0; /* blank bits 8-6 */
key = (lo>>17) & 7;
lo |= key<<6; /* replace with unlock key */
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
}
static void __init winchip2_protect_mcr(void)
{
u32 lo, hi;
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
lo&=~0x1C0; /* blank bits 8-6 */
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
}
#endif
static void __init init_centaur(struct cpuinfo_x86 *c)
{
enum {
ECX8=1<<1,
EIERRINT=1<<2,
DPM=1<<3,
DMCE=1<<4,
DSTPCLK=1<<5,
ELINEAR=1<<6,
DSMC=1<<7,
DTLOCK=1<<8,
EDCTLB=1<<8,
EMMX=1<<9,
DPDC=1<<11,
EBRPRED=1<<12,
DIC=1<<13,
DDC=1<<14,
DNA=1<<15,
ERETSTK=1<<16,
E2MMX=1<<19,
EAMD3D=1<<20,
};
char *name;
u32 fcr_set=0;
u32 fcr_clr=0;
u32 lo,hi,newlo;
u32 aa,bb,cc,dd;
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
clear_bit(0*32+31, c->x86_capability);
switch (c->x86) {
case 5:
switch(c->x86_model) {
case 4:
name="C6";
fcr_set=ECX8|DSMC|EDCTLB|EMMX|ERETSTK;
fcr_clr=DPDC;
printk(KERN_NOTICE "Disabling bugged TSC.\n");
clear_bit(X86_FEATURE_TSC, c->x86_capability);
#ifdef CONFIG_X86_OOSTORE
winchip_create_optimal_mcr();
/* Enable
write combining on non-stack, non-string
write combining on string, all types
weak write ordering
The C6 original lacks weak read order
Note 0x120 is write only on Winchip 1 */
wrmsr(MSR_IDT_MCR_CTRL, 0x01F0001F, 0);
#endif
break;
case 8:
switch(c->x86_mask) {
default:
name="2";
break;
case 7 ... 9:
name="2A";
break;
case 10 ... 15:
name="2B";
break;
}
fcr_set=ECX8|DSMC|DTLOCK|EMMX|EBRPRED|ERETSTK|E2MMX|EAMD3D;
fcr_clr=DPDC;
#ifdef CONFIG_X86_OOSTORE
winchip2_unprotect_mcr();
winchip2_create_optimal_mcr();
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
/* Enable
write combining on non-stack, non-string
write combining on string, all types
weak write ordering
*/
lo|=31;
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
winchip2_protect_mcr();
#endif
break;
case 9:
name="3";
fcr_set=ECX8|DSMC|DTLOCK|EMMX|EBRPRED|ERETSTK|E2MMX|EAMD3D;
fcr_clr=DPDC;
#ifdef CONFIG_X86_OOSTORE
winchip2_unprotect_mcr();
winchip2_create_optimal_mcr();
rdmsr(MSR_IDT_MCR_CTRL, lo, hi);
/* Enable
write combining on non-stack, non-string
write combining on string, all types
weak write ordering
*/
lo|=31;
wrmsr(MSR_IDT_MCR_CTRL, lo, hi);
winchip2_protect_mcr();
#endif
break;
case 10:
name="4";
/* no info on the WC4 yet */
break;
default:
name="??";
}
rdmsr(MSR_IDT_FCR1, lo, hi);
newlo=(lo|fcr_set) & (~fcr_clr);
if (newlo!=lo) {
printk(KERN_INFO "Centaur FCR was 0x%X now 0x%X\n", lo, newlo );
wrmsr(MSR_IDT_FCR1, newlo, hi );
} else {
printk(KERN_INFO "Centaur FCR is 0x%X\n",lo);
}
/* Emulate MTRRs using Centaur's MCR. */
set_bit(X86_FEATURE_CENTAUR_MCR, c->x86_capability);
/* Report CX8 */
set_bit(X86_FEATURE_CX8, c->x86_capability);
/* Set 3DNow! on Winchip 2 and above. */
if (c->x86_model >=8)
set_bit(X86_FEATURE_3DNOW, c->x86_capability);
/* See if we can find out some more. */
if ( cpuid_eax(0x80000000) >= 0x80000005 ) {
/* Yes, we can. */
cpuid(0x80000005,&aa,&bb,&cc,&dd);
/* Add L1 data and code cache sizes. */
c->x86_cache_size = (cc>>24)+(dd>>24);
}
sprintf( c->x86_model_id, "WinChip %s", name );
break;
case 6:
switch (c->x86_model) {
case 6 ... 8: /* Cyrix III family */
rdmsr (MSR_VIA_FCR, lo, hi);
lo |= (1<<1 | 1<<7); /* Report CX8 & enable PGE */
wrmsr (MSR_VIA_FCR, lo, hi);
set_bit(X86_FEATURE_CX8, c->x86_capability);
set_bit(X86_FEATURE_3DNOW, c->x86_capability);
get_model_name(c);
display_cacheinfo(c);
break;
}
break;
}
}
static void __init init_transmeta(struct cpuinfo_x86 *c)
{
unsigned int cap_mask, uk, max, dummy;
unsigned int cms_rev1, cms_rev2;
unsigned int cpu_rev, cpu_freq, cpu_flags;
char cpu_info[65];
get_model_name(c); /* Same as AMD/Cyrix */
display_cacheinfo(c);
/* Print CMS and CPU revision */
max = cpuid_eax(0x80860000);
if ( max >= 0x80860001 ) {
cpuid(0x80860001, &dummy, &cpu_rev, &cpu_freq, &cpu_flags);
printk(KERN_INFO "CPU: Processor revision %u.%u.%u.%u, %u MHz\n",
(cpu_rev >> 24) & 0xff,
(cpu_rev >> 16) & 0xff,
(cpu_rev >> 8) & 0xff,
cpu_rev & 0xff,
cpu_freq);
}
if ( max >= 0x80860002 ) {
cpuid(0x80860002, &dummy, &cms_rev1, &cms_rev2, &dummy);
printk(KERN_INFO "CPU: Code Morphing Software revision %u.%u.%u-%u-%u\n",
(cms_rev1 >> 24) & 0xff,
(cms_rev1 >> 16) & 0xff,
(cms_rev1 >> 8) & 0xff,
cms_rev1 & 0xff,
cms_rev2);
}
if ( max >= 0x80860006 ) {
cpuid(0x80860003,
(void *)&cpu_info[0],
(void *)&cpu_info[4],
(void *)&cpu_info[8],
(void *)&cpu_info[12]);
cpuid(0x80860004,
(void *)&cpu_info[16],
(void *)&cpu_info[20],
(void *)&cpu_info[24],
(void *)&cpu_info[28]);
cpuid(0x80860005,
(void *)&cpu_info[32],
(void *)&cpu_info[36],
(void *)&cpu_info[40],
(void *)&cpu_info[44]);
cpuid(0x80860006,
(void *)&cpu_info[48],
(void *)&cpu_info[52],
(void *)&cpu_info[56],
(void *)&cpu_info[60]);
cpu_info[64] = '\0';
printk(KERN_INFO "CPU: %s\n", cpu_info);
}
/* Unhide possibly hidden capability flags */
rdmsr(0x80860004, cap_mask, uk);
wrmsr(0x80860004, ~0, uk);
c->x86_capability[0] = cpuid_edx(0x00000001);
wrmsr(0x80860004, cap_mask, uk);
}
static void __init init_rise(struct cpuinfo_x86 *c)
{
printk("CPU: Rise iDragon");
if (c->x86_model > 2)
printk(" II");
printk("\n");
/* Unhide possibly hidden capability flags
The mp6 iDragon family don't have MSRs.
We switch on extra features with this cpuid weirdness: */
__asm__ (
"movl $0x6363452a, %%eax\n\t"
"movl $0x3231206c, %%ecx\n\t"
"movl $0x2a32313a, %%edx\n\t"
"cpuid\n\t"
"movl $0x63634523, %%eax\n\t"
"movl $0x32315f6c, %%ecx\n\t"
"movl $0x2333313a, %%edx\n\t"
"cpuid\n\t" : : : "eax", "ebx", "ecx", "edx"
);
set_bit(X86_FEATURE_CX8, c->x86_capability);
}
extern void trap_init_f00f_bug(void);
static void __init init_intel(struct cpuinfo_x86 *c)
{
char *p = NULL;
unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
#ifdef CONFIG_X86_F00F_BUG
/*
* All current models of Pentium and Pentium with MMX technology CPUs
* have the F0 0F bug, which lets nonpriviledged users lock up the system.
* Note that the workaround only should be initialized once...
*/
c->f00f_bug = 0;
if ( c->x86 == 5 ) {
static int f00f_workaround_enabled = 0;
c->f00f_bug = 1;
if ( !f00f_workaround_enabled ) {
trap_init_f00f_bug();
printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
f00f_workaround_enabled = 1;
}
}
#endif
if (c->cpuid_level > 1) {
/* supports eax=2 call */
int i, j, n;
int regs[4];
unsigned char *dp = (unsigned char *)regs;
/* Number of times to iterate */
n = cpuid_eax(2) & 0xFF;
for ( i = 0 ; i < n ; i++ ) {
cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
/* If bit 31 is set, this is an unknown format */
for ( j = 0 ; j < 3 ; j++ ) {
if ( regs[j] < 0 ) regs[j] = 0;
}
/* Byte 0 is level count, not a descriptor */
for ( j = 1 ; j < 16 ; j++ ) {
unsigned char des = dp[j];
unsigned char dl, dh;
unsigned int cs;
dh = des >> 4;
dl = des & 0x0F;
/* Black magic... */
switch ( dh )
{
case 0:
switch ( dl ) {
case 6:
/* L1 I cache */
l1i += 8;
break;
case 8:
/* L1 I cache */
l1i += 16;
break;
case 10:
/* L1 D cache */
l1d += 8;
break;
case 12:
/* L1 D cache */
l1d += 16;
break;
default:;
/* TLB, or unknown */
}
break;
case 2:
if ( dl ) {
/* L3 cache */
cs = (dl-1) << 9;
l3 += cs;
}
break;
case 4:
if ( c->x86 > 6 && dl ) {
/* P4 family */
/* L3 cache */
cs = 128 << (dl-1);
l3 += cs;
break;
}
/* else same as 8 - fall through */
case 8:
if ( dl ) {
/* L2 cache */
cs = 128 << (dl-1);
l2 += cs;
}
break;
case 6:
if (dl > 5) {
/* L1 D cache */
cs = 8<<(dl-6);
l1d += cs;
}
break;
case 7:
if ( dl >= 8 )
{
/* L2 cache */
cs = 64<<(dl-8);
l2 += cs;
} else {
/* L0 I cache, count as L1 */
cs = dl ? (16 << (dl-1)) : 12;
l1i += cs;
}
break;
default:
/* TLB, or something else we don't know about */
break;
}
}
}
if ( l1i || l1d )
printk(KERN_INFO "CPU: L1 I cache: %dK, L1 D cache: %dK\n",
l1i, l1d);
if ( l2 )
printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
if ( l3 )
printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
/*
* This assumes the L3 cache is shared; it typically lives in
* the northbridge. The L1 caches are included by the L2
* cache, and so should not be included for the purpose of
* SMP switching weights.
*/
c->x86_cache_size = l2 ? l2 : (l1i+l1d);
}
/* SEP CPUID bug: Pentium Pro reports SEP but doesn't have it */
if ( c->x86 == 6 && c->x86_model < 3 && c->x86_mask < 3 )
clear_bit(X86_FEATURE_SEP, c->x86_capability);
/* Names for the Pentium II/Celeron processors
detectable only by also checking the cache size.
Dixon is NOT a Celeron. */
if (c->x86 == 6) {
switch (c->x86_model) {
case 5:
if (l2 == 0)
p = "Celeron (Covington)";
if (l2 == 256)
p = "Mobile Pentium II (Dixon)";
break;
case 6:
if (l2 == 128)
p = "Celeron (Mendocino)";
break;
case 8:
if (l2 == 128)
p = "Celeron (Coppermine)";
break;
}
}
if ( p )
strcpy(c->x86_model_id, p);
#ifdef CONFIG_SMP
if (cpu_has(c, X86_FEATURE_HT)) {
extern int phys_proc_id[NR_CPUS];
u32 eax, ebx, ecx, edx;
int index_lsb, index_msb, tmp;
int initial_apic_id;
int cpu = smp_processor_id();
cpuid(1, &eax, &ebx, &ecx, &edx);
smp_num_siblings = (ebx & 0xff0000) >> 16;
if (smp_num_siblings == 1) {
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
} else if (smp_num_siblings > 1 ) {
index_lsb = 0;
index_msb = 31;
/*
* At this point we only support two siblings per
* processor package.
*/
#define NR_SIBLINGS 2
if (smp_num_siblings != NR_SIBLINGS) {
printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
smp_num_siblings = 1;
goto too_many_siblings;
}
tmp = smp_num_siblings;
while ((tmp & 1) == 0) {
tmp >>=1 ;
index_lsb++;
}
tmp = smp_num_siblings;
while ((tmp & 0x80000000 ) == 0) {
tmp <<=1 ;
index_msb--;
}
if (index_lsb != index_msb )
index_msb++;
initial_apic_id = ebx >> 24 & 0xff;
phys_proc_id[cpu] = initial_apic_id >> index_msb;
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
phys_proc_id[cpu]);
}
}
too_many_siblings:
#endif
}
void __init get_cpu_vendor(struct cpuinfo_x86 *c)
{
char *v = c->x86_vendor_id;
if (!strcmp(v, "GenuineIntel"))
c->x86_vendor = X86_VENDOR_INTEL;
else if (!strcmp(v, "AuthenticAMD"))
c->x86_vendor = X86_VENDOR_AMD;
else if (!strcmp(v, "CyrixInstead"))
c->x86_vendor = X86_VENDOR_CYRIX;
else if (!strcmp(v, "Geode by NSC"))
c->x86_vendor = X86_VENDOR_NSC;
else if (!strcmp(v, "UMC UMC UMC "))
c->x86_vendor = X86_VENDOR_UMC;
else if (!strcmp(v, "CentaurHauls"))
c->x86_vendor = X86_VENDOR_CENTAUR;
else if (!strcmp(v, "NexGenDriven"))
c->x86_vendor = X86_VENDOR_NEXGEN;
else if (!strcmp(v, "RiseRiseRise"))
c->x86_vendor = X86_VENDOR_RISE;
else if (!strcmp(v, "GenuineTMx86") ||
!strcmp(v, "TransmetaCPU"))
c->x86_vendor = X86_VENDOR_TRANSMETA;
else
c->x86_vendor = X86_VENDOR_UNKNOWN;
}
struct cpu_model_info {
int vendor;
int family;
char *model_names[16];
};
/* Naming convention should be: <Name> [(<Codename>)] */
/* This table only is used unless init_<vendor>() below doesn't set it; */
/* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
static struct cpu_model_info cpu_models[] __initdata = {
{ X86_VENDOR_INTEL, 4,
{ "486 DX-25/33", "486 DX-50", "486 SX", "486 DX/2", "486 SL",
"486 SX/2", NULL, "486 DX/2-WB", "486 DX/4", "486 DX/4-WB", NULL,
NULL, NULL, NULL, NULL, NULL }},
{ X86_VENDOR_INTEL, 5,
{ "Pentium 60/66 A-step", "Pentium 60/66", "Pentium 75 - 200",
"OverDrive PODP5V83", "Pentium MMX", NULL, NULL,
"Mobile Pentium 75 - 200", "Mobile Pentium MMX", NULL, NULL, NULL,
NULL, NULL, NULL, NULL }},
{ X86_VENDOR_INTEL, 6,
{ "Pentium Pro A-step", "Pentium Pro", NULL, "Pentium II (Klamath)",
NULL, "Pentium II (Deschutes)", "Mobile Pentium II",
"Pentium III (Katmai)", "Pentium III (Coppermine)", NULL,
"Pentium III (Cascades)", NULL, NULL, NULL, NULL }},
{ X86_VENDOR_AMD, 4,
{ NULL, NULL, NULL, "486 DX/2", NULL, NULL, NULL, "486 DX/2-WB",
"486 DX/4", "486 DX/4-WB", NULL, NULL, NULL, NULL, "Am5x86-WT",
"Am5x86-WB" }},
{ X86_VENDOR_AMD, 5, /* Is this this really necessary?? */
{ "K5/SSA5", "K5",
"K5", "K5", NULL, NULL,
"K6", "K6", "K6-2",
"K6-3", NULL, NULL, NULL, NULL, NULL, NULL }},
{ X86_VENDOR_AMD, 6, /* Is this this really necessary?? */
{ "Athlon", "Athlon",
"Athlon", NULL, "Athlon", NULL,
NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL }},
{ X86_VENDOR_UMC, 4,
{ NULL, "U5D", "U5S", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL }},
{ X86_VENDOR_NEXGEN, 5,
{ "Nx586", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL }},
{ X86_VENDOR_RISE, 5,
{ "iDragon", NULL, "iDragon", NULL, NULL, NULL, NULL,
NULL, "iDragon II", "iDragon II", NULL, NULL, NULL, NULL, NULL, NULL }},
};
/* Look up CPU names by table lookup. */
static char __init *table_lookup_model(struct cpuinfo_x86 *c)
{
struct cpu_model_info *info = cpu_models;
int i;
if ( c->x86_model >= 16 )
return NULL; /* Range check */
for ( i = 0 ; i < sizeof(cpu_models)/sizeof(struct cpu_model_info) ; i++ ) {
if ( info->vendor == c->x86_vendor &&
info->family == c->x86 ) {
return info->model_names[c->x86_model];
}
info++;
}
return NULL; /* Not found */
}
/*
* Detect a NexGen CPU running without BIOS hypercode new enough
* to have CPUID. (Thanks to Herbert Oppmann)
*/
static int __init deep_magic_nexgen_probe(void)
{
int ret;
__asm__ __volatile__ (
" movw $0x5555, %%ax\n"
" xorw %%dx,%%dx\n"
" movw $2, %%cx\n"
" divw %%cx\n"
" movl $0, %%eax\n"
" jnz 1f\n"
" movl $1, %%eax\n"
"1:\n"
: "=a" (ret) : : "cx", "dx" );
return ret;
}
static void __init squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
/* Disable processor serial number */
unsigned long lo,hi;
rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
lo |= 0x200000;
wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
printk(KERN_NOTICE "CPU serial number disabled.\n");
clear_bit(X86_FEATURE_PN, c->x86_capability);
/* Disabling the serial number may affect the cpuid level */
c->cpuid_level = cpuid_eax(0);
}
}
static int __init x86_serial_nr_setup(char *s)
{
disable_x86_serial_nr = 0;
return 1;
}
__setup("serialnumber", x86_serial_nr_setup);
static int __init x86_fxsr_setup(char * s)
{
disable_x86_fxsr = 1;
return 1;
}
__setup("nofxsr", x86_fxsr_setup);
/* Standard macro to see if a specific flag is changeable */
static inline int flag_is_changeable_p(u32 flag)
{
u32 f1, f2;
asm("pushfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"movl %0,%1\n\t"
"xorl %2,%0\n\t"
"pushl %0\n\t"
"popfl\n\t"
"pushfl\n\t"
"popl %0\n\t"
"popfl\n\t"
: "=&r" (f1), "=&r" (f2)
: "ir" (flag));
return ((f1^f2) & flag) != 0;
}
/* Probe for the CPUID instruction */
static int __init have_cpuid_p(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
/*
* Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
* by the fact that they preserve the flags across the division of 5/2.
* PII and PPro exhibit this behavior too, but they have cpuid available.
*/
/*
* Perform the Cyrix 5/2 test. A Cyrix won't change
* the flags, while other 486 chips will.
*/
static inline int test_cyrix_52div(void)
{
unsigned int test;
__asm__ __volatile__(
"sahf\n\t" /* clear flags (%eax = 0x0005) */
"div %b2\n\t" /* divide 5 by 2 */
"lahf" /* store flags into %ah */
: "=a" (test)
: "0" (5), "q" (2)
: "cc");
/* AH is 0x02 on Cyrix after the divide.. */
return (unsigned char) (test >> 8) == 0x02;
}
/* Try to detect a CPU with disabled CPUID, and if so, enable. This routine
may also be used to detect non-CPUID processors and fill in some of
the information manually. */
static int __init id_and_try_enable_cpuid(struct cpuinfo_x86 *c)
{
/* First of all, decide if this is a 486 or higher */
/* It's a 486 if we can modify the AC flag */
if ( flag_is_changeable_p(X86_EFLAGS_AC) )
c->x86 = 4;
else
c->x86 = 3;
/* Detect Cyrix with disabled CPUID */
if ( c->x86 == 4 && test_cyrix_52div() ) {
unsigned char dir0, dir1;
strcpy(c->x86_vendor_id, "CyrixInstead");
c->x86_vendor = X86_VENDOR_CYRIX;
/* Actually enable cpuid on the older cyrix */
/* Retrieve CPU revisions */
do_cyrix_devid(&dir0, &dir1);
dir0>>=4;
/* Check it is an affected model */
if (dir0 == 5 || dir0 == 3)
{
unsigned char ccr3, ccr4;
unsigned long flags;
printk(KERN_INFO "Enabling CPUID on Cyrix processor.\n");
local_irq_save(flags);
ccr3 = getCx86(CX86_CCR3);
setCx86(CX86_CCR3, (ccr3 & 0x0f) | 0x10); /* enable MAPEN */
ccr4 = getCx86(CX86_CCR4);
setCx86(CX86_CCR4, ccr4 | 0x80); /* enable cpuid */
setCx86(CX86_CCR3, ccr3); /* disable MAPEN */
local_irq_restore(flags);
}
} else
/* Detect NexGen with old hypercode */
if ( deep_magic_nexgen_probe() ) {
strcpy(c->x86_vendor_id, "NexGenDriven");
}
return have_cpuid_p(); /* Check to see if CPUID now enabled? */
}
/*
* This does the hard work of actually picking apart the CPU stuff...
*/
void __init identify_cpu(struct cpuinfo_x86 *c)
{
int junk, i;
u32 xlvl, tfms;
c->loops_per_jiffy = loops_per_jiffy;
c->x86_cache_size = -1;
c->x86_vendor = X86_VENDOR_UNKNOWN;
c->cpuid_level = -1; /* CPUID not detected */
c->x86_model = c->x86_mask = 0; /* So far unknown... */
c->x86_vendor_id[0] = '\0'; /* Unset */
c->x86_model_id[0] = '\0'; /* Unset */
memset(&c->x86_capability, 0, sizeof c->x86_capability);
if ( !have_cpuid_p() && !id_and_try_enable_cpuid(c) ) {
/* CPU doesn't have CPUID */
/* If there are any capabilities, they're vendor-specific */
/* enable_cpuid() would have set c->x86 for us. */
} else {
/* CPU does have CPUID */
/* Get vendor name */
cpuid(0x00000000, &c->cpuid_level,
(int *)&c->x86_vendor_id[0],
(int *)&c->x86_vendor_id[8],
(int *)&c->x86_vendor_id[4]);
get_cpu_vendor(c);
/* Initialize the standard set of capabilities */
/* Note that the vendor-specific code below might override */
/* Intel-defined flags: level 0x00000001 */
if ( c->cpuid_level >= 0x00000001 ) {
u32 capability;
cpuid(0x00000001, &tfms, &junk, &junk, &capability);
c->x86_capability[0] = capability;
c->x86 = (tfms >> 8) & 15;
c->x86_model = (tfms >> 4) & 15;
c->x86_mask = tfms & 15;
} else {
/* Have CPUID level 0 only - unheard of */
c->x86 = 4;
}
/* AMD-defined flags: level 0x80000001 */
xlvl = cpuid_eax(0x80000000);
if ( (xlvl & 0xffff0000) == 0x80000000 ) {
if ( xlvl >= 0x80000001 )
c->x86_capability[1] = cpuid_edx(0x80000001);
if ( xlvl >= 0x80000004 )
get_model_name(c); /* Default name */
}
/* Transmeta-defined flags: level 0x80860001 */
xlvl = cpuid_eax(0x80860000);
if ( (xlvl & 0xffff0000) == 0x80860000 ) {
if ( xlvl >= 0x80860001 )
c->x86_capability[2] = cpuid_edx(0x80860001);
}
}
printk(KERN_DEBUG "CPU: Before vendor init, caps: %08lx %08lx %08lx, vendor = %d\n",
c->x86_capability[0],
c->x86_capability[1],
c->x86_capability[2],
c->x86_vendor);
/*
* Vendor-specific initialization. In this section we
* canonicalize the feature flags, meaning if there are
* features a certain CPU supports which CPUID doesn't
* tell us, CPUID claiming incorrect flags, or other bugs,
* we handle them here.
*
* At the end of this section, c->x86_capability better
* indicate the features this CPU genuinely supports!
*/
switch ( c->x86_vendor ) {
case X86_VENDOR_AMD:
init_amd(c);
break;
case X86_VENDOR_CENTAUR:
init_centaur(c);
break;
case X86_VENDOR_CYRIX:
init_cyrix(c);
break;
case X86_VENDOR_INTEL:
init_intel(c);
break;
case X86_VENDOR_NEXGEN:
c->x86_cache_size = 256; /* A few had 1 MB... */
break;
case X86_VENDOR_NSC:
init_cyrix(c);
break;
case X86_VENDOR_RISE:
init_rise(c);
break;
case X86_VENDOR_TRANSMETA:
init_transmeta(c);
break;
case X86_VENDOR_UNKNOWN:
default:
/* Not much we can do here... */
/* Check if at least it has cpuid */
if (c->cpuid_level == -1)
{
/* No cpuid. It must be an ancient CPU */
if (c->x86 == 4)
strcpy(c->x86_model_id, "486");
else if (c->x86 == 3)
strcpy(c->x86_model_id, "386");
}
break;
}
printk(KERN_DEBUG "CPU: After vendor init, caps: %08lx %08lx %08lx %08lx\n",
c->x86_capability[0],
c->x86_capability[1],
c->x86_capability[2],
c->x86_capability[3]);
/*
* The vendor-specific functions might have changed features. Now
* we do "generic changes."
*/
/* TSC disabled? */
#ifndef CONFIG_X86_TSC
if ( tsc_disable )
clear_bit(X86_FEATURE_TSC, c->x86_capability);
#endif
/* FXSR disabled? */
if (disable_x86_fxsr) {
clear_bit(X86_FEATURE_FXSR, c->x86_capability);
clear_bit(X86_FEATURE_XMM, c->x86_capability);
}
/* Disable the PN if appropriate */
squash_the_stupid_serial_number(c);
/* Init Machine Check Exception if available. */
mcheck_init(c);
/* If the model name is still unset, do table lookup. */
if ( !c->x86_model_id[0] ) {
char *p;
p = table_lookup_model(c);
if ( p )
strcpy(c->x86_model_id, p);
else
/* Last resort... */
sprintf(c->x86_model_id, "%02x/%02x",
c->x86_vendor, c->x86_model);
}
/* Now the feature flags better reflect actual CPU features! */
printk(KERN_DEBUG "CPU: After generic, caps: %08lx %08lx %08lx %08lx\n",
c->x86_capability[0],
c->x86_capability[1],
c->x86_capability[2],
c->x86_capability[3]);
/*
* On SMP, boot_cpu_data holds the common feature set between
* all CPUs; so make sure that we indicate which features are
* common between the CPUs. The first time this routine gets
* executed, c == &boot_cpu_data.
*/
if ( c != &boot_cpu_data ) {
/* AND the already accumulated flags with these */
for ( i = 0 ; i < NCAPINTS ; i++ )
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
}
printk(KERN_DEBUG "CPU: Common caps: %08lx %08lx %08lx %08lx\n",
boot_cpu_data.x86_capability[0],
boot_cpu_data.x86_capability[1],
boot_cpu_data.x86_capability[2],
boot_cpu_data.x86_capability[3]);
}
/*
* Perform early boot up checks for a valid TSC. See arch/i386/kernel/time.c
*/
void __init dodgy_tsc(void)
{
get_cpu_vendor(&boot_cpu_data);
if (( boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX ) ||
( boot_cpu_data.x86_vendor == X86_VENDOR_NSC ))
init_cyrix(&boot_cpu_data);
}
/* These need to match <asm/processor.h> */
static char *cpu_vendor_names[] __initdata = {
"Intel", "Cyrix", "AMD", "UMC", "NexGen", "Centaur", "Rise", "Transmeta", "NSC" };
void __init print_cpu_info(struct cpuinfo_x86 *c)
{
char *vendor = NULL;
if (c->x86_vendor < sizeof(cpu_vendor_names)/sizeof(char *))
vendor = cpu_vendor_names[c->x86_vendor];
else if (c->cpuid_level >= 0)
vendor = c->x86_vendor_id;
if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
printk("%s ", vendor);
if (!c->x86_model_id[0])
printk("%d86", c->x86);
else
printk("%s", c->x86_model_id);
if (c->x86_mask || c->cpuid_level >= 0)
printk(" stepping %02x\n", c->x86_mask);
else
printk("\n");
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
/*
* These flag bits must match the definitions in <asm/cpufeature.h>.
* NULL means this bit is undefined or reserved; either way it doesn't
* have meaning as far as Linux is concerned. Note that it's important
* to realize there is a difference between this table and CPUID -- if
* applications want to get the raw CPUID data, they should access
* /dev/cpu/<cpu_nr>/cpuid instead.
*/
static char *x86_cap_flags[] = {
/* Intel-defined */
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
"fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
/* AMD-defined */
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, "mp", NULL, NULL, "mmxext", NULL,
NULL, NULL, NULL, NULL, NULL, "lm", "3dnowext", "3dnow",
/* Transmeta-defined */
"recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
/* Other (Linux-defined) */
"cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr", NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
struct cpuinfo_x86 *c = v;
int i, n = c - cpu_data;
int fpu_exception;
#ifdef CONFIG_SMP
if (!(cpu_online_map & (1<<n)))
return 0;
#endif
seq_printf(m, "processor\t: %d\n"
"vendor_id\t: %s\n"
"cpu family\t: %d\n"
"model\t\t: %d\n"
"model name\t: %s\n",
n,
c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
c->x86,
c->x86_model,
c->x86_model_id[0] ? c->x86_model_id : "unknown");
if (c->x86_mask || c->cpuid_level >= 0)
seq_printf(m, "stepping\t: %d\n", c->x86_mask);
else
seq_printf(m, "stepping\t: unknown\n");
if ( cpu_has(c, X86_FEATURE_TSC) ) {
seq_printf(m, "cpu MHz\t\t: %lu.%03lu\n",
cpu_khz / 1000, (cpu_khz % 1000));
}
/* Cache size */
if (c->x86_cache_size >= 0)
seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
/* We use exception 16 if we have hardware math and we've either seen it or the CPU claims it is internal */
fpu_exception = c->hard_math && (ignore_irq13 || cpu_has_fpu);
seq_printf(m, "fdiv_bug\t: %s\n"
"hlt_bug\t\t: %s\n"
"f00f_bug\t: %s\n"
"coma_bug\t: %s\n"
"fpu\t\t: %s\n"
"fpu_exception\t: %s\n"
"cpuid level\t: %d\n"
"wp\t\t: %s\n"
"flags\t\t:",
c->fdiv_bug ? "yes" : "no",
c->hlt_works_ok ? "no" : "yes",
c->f00f_bug ? "yes" : "no",
c->coma_bug ? "yes" : "no",
c->hard_math ? "yes" : "no",
fpu_exception ? "yes" : "no",
c->cpuid_level,
c->wp_works_ok ? "yes" : "no");
for ( i = 0 ; i < 32*NCAPINTS ; i++ )
if ( test_bit(i, c->x86_capability) &&
x86_cap_flags[i] != NULL )
seq_printf(m, " %s", x86_cap_flags[i]);
seq_printf(m, "\nbogomips\t: %lu.%02lu\n\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
start: c_start,
next: c_next,
stop: c_stop,
show: show_cpuinfo,
};
unsigned long cpu_initialized __initdata = 0;
/*
* cpu_init() initializes state that is per-CPU. Some data is already
* initialized (naturally) in the bootstrap process, such as the GDT
* and IDT. We reload them nevertheless, this function acts as a
* 'CPU state barrier', nothing should get across.
*/
void __init cpu_init (void)
{
int nr = smp_processor_id();
struct tss_struct * t = &init_tss[nr];
if (test_and_set_bit(nr, &cpu_initialized)) {
printk(KERN_WARNING "CPU#%d already initialized!\n", nr);
for (;;) __sti();
}
printk(KERN_INFO "Initializing CPU#%d\n", nr);
if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
#ifndef CONFIG_X86_TSC
if (tsc_disable && cpu_has_tsc) {
printk(KERN_NOTICE "Disabling TSC...\n");
/**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
set_in_cr4(X86_CR4_TSD);
}
#endif
__asm__ __volatile__("lgdt %0": "=m" (gdt_descr));
__asm__ __volatile__("lidt %0": "=m" (idt_descr));
/*
* Delete NT
*/
__asm__("pushfl ; andl $0xffffbfff,(%esp) ; popfl");
/*
* set up and load the per-CPU TSS and LDT
*/
atomic_inc(&init_mm.mm_count);
current->active_mm = &init_mm;
if(current->mm)
BUG();
enter_lazy_tlb(&init_mm, current, nr);
t->esp0 = current->thread.esp0;
set_tss_desc(nr,t);
gdt_table[__TSS(nr)].b &= 0xfffffdff;
load_TR(nr);
load_LDT(&init_mm.context);
/* Clear %fs and %gs. */
asm volatile ("xorl %eax, %eax; movl %eax, %fs; movl %eax, %gs");
/* Clear all 6 debug registers: */
#define CD(register) __asm__("movl %0,%%db" #register ::"r"(0) );
CD(0); CD(1); CD(2); CD(3); /* no db4 and db5 */; CD(6); CD(7);
#undef CD
/*
* Force FPU initialization:
*/
clear_thread_flag(TIF_USEDFPU);
current->used_math = 0;
stts();
}
/*
* Early probe support logic for ppro memory erratum #50
*
* This is called before we do cpu ident work
*/
int __init ppro_with_ram_bug(void)
{
char vendor_id[16];
int ident;
/* Must have CPUID */
if(!have_cpuid_p())
return 0;
if(cpuid_eax(0)<1)
return 0;
/* Must be Intel */
cpuid(0, &ident,
(int *)&vendor_id[0],
(int *)&vendor_id[8],
(int *)&vendor_id[4]);
if(memcmp(vendor_id, "IntelInside", 12))
return 0;
ident = cpuid_eax(1);
/* Model 6 */
if(((ident>>8)&15)!=6)
return 0;
/* Pentium Pro */
if(((ident>>4)&15)!=1)
return 0;
if((ident&15) < 8)
{
printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
return 1;
}
printk(KERN_INFO "Your Pentium Pro seems ok.\n");
return 0;
}
/*
* Local Variables:
* mode:c
......
......@@ -60,6 +60,7 @@ struct cpuinfo_x86 {
#define X86_VENDOR_RISE 6
#define X86_VENDOR_TRANSMETA 7
#define X86_VENDOR_NSC 8
#define X86_VENDOR_NUM 9
#define X86_VENDOR_UNKNOWN 0xff
/*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment