Commit a2590d69 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'spi-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi

Pull spi updates from Mark Brown:
 "The main focus of this release from a framework point of view has been
  spi-mem where we've acquired support for a few new hardware features
  which enable better performance on suitable hardware.

  Otherwise mostly thanks to Arnd's cleanup efforts on old platforms
  we've removed several obsolete drivers which just about balance out
  the newer drivers we've added this cycle.

  Summary:

   - Allow drivers to flag if they are unidirectional.

   - Support for DTR mode and hardware acceleration of dummy cycles in
     spi-mem.

   - Support for Allwinder H616, Intel Lightning Mountain, nVidia Tegra
     QuadSPI, Realtek RTL838x and RTL839x.

   - Removal of obsolete EFM32, Txx9 and SIRF Prima and Atlas drivers"

* tag 'spi-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (76 commits)
  spi: Skip zero-length transfers in spi_transfer_one_message()
  spi: dw: Avoid stack content exposure
  spi: cadence-quadspi: Use spi_mem_dtr_supports_op()
  spi: spi-mem: add spi_mem_dtr_supports_op()
  spi: atmel-quadspi: Disable the QSPI IP at suspend()
  spi: pxa2xx: Add IDs for the controllers found on Intel Lynxpoint
  spi: pxa2xx: Fix the controller numbering for Wildcat Point
  spi: Change provied to provided in the file spi.h
  spi: mediatek: add set_cs_timing support
  spi: support CS timing for HW & SW mode
  spi: add power control when set_cs_timing
  spi: stm32: make spurious and overrun interrupts visible
  spi: stm32h7: replace private SPI_1HZ_NS with NSEC_PER_SEC
  spi: stm32: defer probe for reset
  spi: stm32: driver uses reset controller only at init
  spi: stm32h7: ensure message are smaller than max size
  spi: stm32: use bitfield macros
  spi: stm32: do not mandate cs_gpio
  spi: stm32: properly handle 0 byte transfer
  spi: clps711xx: remove redundant white-space
  ...
parents d6560052 eec262d1
...@@ -25,6 +25,7 @@ properties: ...@@ -25,6 +25,7 @@ properties:
- enum: - enum:
- allwinner,sun8i-r40-spi - allwinner,sun8i-r40-spi
- allwinner,sun50i-h6-spi - allwinner,sun50i-h6-spi
- allwinner,sun50i-h616-spi
- const: allwinner,sun8i-h3-spi - const: allwinner,sun8i-h3-spi
reg: reg:
......
...@@ -5,6 +5,7 @@ Required properties: ...@@ -5,6 +5,7 @@ Required properties:
Generic default - "cdns,qspi-nor". Generic default - "cdns,qspi-nor".
For TI 66AK2G SoC - "ti,k2g-qspi", "cdns,qspi-nor". For TI 66AK2G SoC - "ti,k2g-qspi", "cdns,qspi-nor".
For TI AM654 SoC - "ti,am654-ospi", "cdns,qspi-nor". For TI AM654 SoC - "ti,am654-ospi", "cdns,qspi-nor".
For Intel LGM SoC - "intel,lgm-qspi", "cdns,qspi-nor".
- reg : Contains two entries, each of which is a tuple consisting of a - reg : Contains two entries, each of which is a tuple consisting of a
physical address and length. The first entry is the address and physical address and length. The first entry is the address and
length of the controller register set. The second entry is the length of the controller register set. The second entry is the
......
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/nvidia,tegra210-quad.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Tegra Quad SPI Controller
maintainers:
- Thierry Reding <thierry.reding@gmail.com>
- Jonathan Hunter <jonathanh@nvidia.com>
allOf:
- $ref: "spi-controller.yaml#"
properties:
compatible:
enum:
- nvidia,tegra210-qspi
- nvidia,tegra186-qspi
- nvidia,tegra194-qspi
reg:
maxItems: 1
interrupts:
maxItems: 1
clock-names:
items:
- const: qspi
- const: qspi_out
clocks:
maxItems: 2
resets:
maxItems: 1
dmas:
maxItems: 2
dma-names:
items:
- const: rx
- const: tx
patternProperties:
"@[0-9a-f]+":
type: object
properties:
spi-rx-bus-width:
enum: [1, 2, 4]
spi-tx-bus-width:
enum: [1, 2, 4]
nvidia,tx-clk-tap-delay:
description:
Delays the clock going out to device with this tap value.
Tap value varies based on platform design trace lengths from Tegra
QSPI to corresponding slave device.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 31
nvidia,rx-clk-tap-delay:
description:
Delays the clock coming in from the device with this tap value.
Tap value varies based on platform design trace lengths from Tegra
QSPI to corresponding slave device.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 255
required:
- reg
required:
- compatible
- reg
- interrupts
- clock-names
- clocks
- resets
unevaluatedProperties: false
examples:
- |
#include <dt-bindings/clock/tegra210-car.h>
#include <dt-bindings/reset/tegra210-car.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
spi@70410000 {
compatible = "nvidia,tegra210-qspi";
reg = <0x70410000 0x1000>;
interrupts = <GIC_SPI 10 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&tegra_car TEGRA210_CLK_QSPI>,
<&tegra_car TEGRA210_CLK_QSPI_PM>;
clock-names = "qspi", "qspi_out";
resets = <&tegra_car 211>;
dmas = <&apbdma 5>, <&apbdma 5>;
dma-names = "rx", "tx";
flash@0 {
compatible = "spi-nor";
reg = <0>;
spi-max-frequency = <104000000>;
spi-tx-bus-width = <2>;
spi-rx-bus-width = <2>;
nvidia,tx-clk-tap-delay = <0>;
nvidia,rx-clk-tap-delay = <0>;
};
};
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/realtek,rtl-spi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Realtek RTL838x/RTL839x SPI controller
maintainers:
- Bert Vermeulen <bert@biot.com>
- Birger Koblitz <mail@birger-koblitz.de>
allOf:
- $ref: "spi-controller.yaml#"
properties:
compatible:
oneOf:
- const: realtek,rtl8380-spi
- const: realtek,rtl8382-spi
- const: realtek,rtl8391-spi
- const: realtek,rtl8392-spi
- const: realtek,rtl8393-spi
reg:
maxItems: 1
required:
- compatible
- reg
unevaluatedProperties: false
examples:
- |
spi: spi@1200 {
compatible = "realtek,rtl8382-spi";
reg = <0x1200 0x100>;
#address-cells = <1>;
#size-cells = <0>;
};
...@@ -47,6 +47,7 @@ properties: ...@@ -47,6 +47,7 @@ properties:
- renesas,msiof-r8a77980 # R-Car V3H - renesas,msiof-r8a77980 # R-Car V3H
- renesas,msiof-r8a77990 # R-Car E3 - renesas,msiof-r8a77990 # R-Car E3
- renesas,msiof-r8a77995 # R-Car D3 - renesas,msiof-r8a77995 # R-Car D3
- renesas,msiof-r8a779a0 # R-Car V3U
- const: renesas,rcar-gen3-msiof # generic R-Car Gen3 and RZ/G2 - const: renesas,rcar-gen3-msiof # generic R-Car Gen3 and RZ/G2
# compatible device # compatible device
- items: - items:
......
...@@ -152,8 +152,9 @@ patternProperties: ...@@ -152,8 +152,9 @@ patternProperties:
spi-rx-bus-width: spi-rx-bus-width:
description: description:
Bus width to the SPI bus used for read transfers. Bus width to the SPI bus used for read transfers.
If 0 is provided, then no RX will be possible on this device.
$ref: /schemas/types.yaml#/definitions/uint32 $ref: /schemas/types.yaml#/definitions/uint32
enum: [1, 2, 4, 8] enum: [0, 1, 2, 4, 8]
default: 1 default: 1
spi-rx-delay-us: spi-rx-delay-us:
...@@ -163,8 +164,9 @@ patternProperties: ...@@ -163,8 +164,9 @@ patternProperties:
spi-tx-bus-width: spi-tx-bus-width:
description: description:
Bus width to the SPI bus used for write transfers. Bus width to the SPI bus used for write transfers.
If 0 is provided, then no TX will be possible on this device.
$ref: /schemas/types.yaml#/definitions/uint32 $ref: /schemas/types.yaml#/definitions/uint32
enum: [1, 2, 4, 8] enum: [0, 1, 2, 4, 8]
default: 1 default: 1
spi-tx-delay-us: spi-tx-delay-us:
......
* CSR SiRFprimaII Serial Peripheral Interface
Required properties:
- compatible : Should be "sirf,prima2-spi", "sirf,prima2-usp"
or "sirf,atlas7-usp"
- reg : Offset and length of the register set for the device
- interrupts : Should contain SPI interrupt
- resets: phandle to the reset controller asserting this device in
reset
See ../reset/reset.txt for details.
- dmas : Must contain an entry for each entry in clock-names.
See ../dma/dma.txt for details.
- dma-names : Must include the following entries:
- rx
- tx
- clocks : Must contain an entry for each entry in clock-names.
See ../clocks/clock-bindings.txt for details.
- #address-cells: Number of cells required to define a chip select
address on the SPI bus. Should be set to 1.
- #size-cells: Should be zero.
Optional properties:
- spi-max-frequency: Specifies maximum SPI clock frequency,
Units - Hz. Definition as per
Documentation/devicetree/bindings/spi/spi-bus.txt
- cs-gpios: should specify GPIOs used for chipselects.
Example:
spi0: spi@b00d0000 {
compatible = "sirf,prima2-spi";
reg = <0xb00d0000 0x10000>;
interrupts = <15>;
dmas = <&dmac1 9>,
<&dmac1 4>;
dma-names = "rx", "tx";
#address-cells = <1>;
#size-cells = <0>;
clocks = <&clks 19>;
resets = <&rstc 26>;
};
...@@ -17537,6 +17537,14 @@ M: Laxman Dewangan <ldewangan@nvidia.com> ...@@ -17537,6 +17537,14 @@ M: Laxman Dewangan <ldewangan@nvidia.com>
S: Supported S: Supported
F: drivers/spi/spi-tegra* F: drivers/spi/spi-tegra*
TEGRA QUAD SPI DRIVER
M: Thierry Reding <thierry.reding@gmail.com>
M: Jonathan Hunter <jonathanh@nvidia.com>
M: Sowjanya Komatineni <skomatineni@nvidia.com>
L: linux-tegra@vger.kernel.org
S: Maintained
F: drivers/spi/spi-tegra210-quad.c
TEGRA VIDEO DRIVER TEGRA VIDEO DRIVER
M: Thierry Reding <thierry.reding@gmail.com> M: Thierry Reding <thierry.reding@gmail.com>
M: Jonathan Hunter <jonathanh@nvidia.com> M: Jonathan Hunter <jonathanh@nvidia.com>
......
...@@ -203,7 +203,7 @@ config SPI_CADENCE ...@@ -203,7 +203,7 @@ config SPI_CADENCE
config SPI_CADENCE_QUADSPI config SPI_CADENCE_QUADSPI
tristate "Cadence Quad SPI controller" tristate "Cadence Quad SPI controller"
depends on OF && (ARM || ARM64 || COMPILE_TEST) depends on OF && (ARM || ARM64 || X86 || COMPILE_TEST)
help help
Enable support for the Cadence Quad SPI Flash controller. Enable support for the Cadence Quad SPI Flash controller.
...@@ -292,13 +292,6 @@ config SPI_DLN2 ...@@ -292,13 +292,6 @@ config SPI_DLN2
This driver can also be built as a module. If so, the module This driver can also be built as a module. If so, the module
will be called spi-dln2. will be called spi-dln2.
config SPI_EFM32
tristate "EFM32 SPI controller"
depends on OF && ARM && (ARCH_EFM32 || COMPILE_TEST)
select SPI_BITBANG
help
Driver for the spi controller found on Energy Micro's EFM32 SoCs.
config SPI_EP93XX config SPI_EP93XX
tristate "Cirrus Logic EP93xx SPI controller" tristate "Cirrus Logic EP93xx SPI controller"
depends on ARCH_EP93XX || COMPILE_TEST depends on ARCH_EP93XX || COMPILE_TEST
...@@ -649,7 +642,7 @@ config SPI_RPCIF ...@@ -649,7 +642,7 @@ config SPI_RPCIF
tristate "Renesas RPC-IF SPI driver" tristate "Renesas RPC-IF SPI driver"
depends on RENESAS_RPCIF depends on RENESAS_RPCIF
help help
SPI driver for Renesas R-Car Gen3 RPC-IF. SPI driver for Renesas R-Car Gen3 or RZ/G2 RPC-IF.
config SPI_RSPI config SPI_RSPI
tristate "Renesas RSPI/QSPI controller" tristate "Renesas RSPI/QSPI controller"
...@@ -750,13 +743,6 @@ config SPI_SIFIVE ...@@ -750,13 +743,6 @@ config SPI_SIFIVE
help help
This exposes the SPI controller IP from SiFive. This exposes the SPI controller IP from SiFive.
config SPI_SIRF
tristate "CSR SiRFprimaII SPI controller"
depends on SIRF_DMA
select SPI_BITBANG
help
SPI driver for CSR SiRFprimaII SoCs
config SPI_SLAVE_MT27XX config SPI_SLAVE_MT27XX
tristate "MediaTek SPI slave device" tristate "MediaTek SPI slave device"
depends on ARCH_MEDIATEK || COMPILE_TEST depends on ARCH_MEDIATEK || COMPILE_TEST
...@@ -842,6 +828,15 @@ config SPI_MXS ...@@ -842,6 +828,15 @@ config SPI_MXS
help help
SPI driver for Freescale MXS devices. SPI driver for Freescale MXS devices.
config SPI_TEGRA210_QUAD
tristate "NVIDIA Tegra QSPI Controller"
depends on ARCH_TEGRA || COMPILE_TEST
depends on RESET_CONTROLLER
help
QSPI driver for NVIDIA Tegra QSPI Controller interface. This
controller is different from the SPI controller and is available
on Tegra SoCs starting from Tegra210.
config SPI_TEGRA114 config SPI_TEGRA114
tristate "NVIDIA Tegra114 SPI Controller" tristate "NVIDIA Tegra114 SPI Controller"
depends on (ARCH_TEGRA && TEGRA20_APB_DMA) || COMPILE_TEST depends on (ARCH_TEGRA && TEGRA20_APB_DMA) || COMPILE_TEST
...@@ -884,12 +879,6 @@ config SPI_TOPCLIFF_PCH ...@@ -884,12 +879,6 @@ config SPI_TOPCLIFF_PCH
This driver also supports the ML7213/ML7223/ML7831, a companion chip This driver also supports the ML7213/ML7223/ML7831, a companion chip
for the Atom E6xx series and compatible with the Intel EG20T PCH. for the Atom E6xx series and compatible with the Intel EG20T PCH.
config SPI_TXX9
tristate "Toshiba TXx9 SPI controller"
depends on GPIOLIB && (CPU_TX49XX || COMPILE_TEST)
help
SPI driver for Toshiba TXx9 MIPS SoCs
config SPI_UNIPHIER config SPI_UNIPHIER
tristate "Socionext UniPhier SPI Controller" tristate "Socionext UniPhier SPI Controller"
depends on (ARCH_UNIPHIER || COMPILE_TEST) && OF depends on (ARCH_UNIPHIER || COMPILE_TEST) && OF
......
...@@ -42,7 +42,6 @@ spi-dw-$(CONFIG_SPI_DW_DMA) += spi-dw-dma.o ...@@ -42,7 +42,6 @@ spi-dw-$(CONFIG_SPI_DW_DMA) += spi-dw-dma.o
obj-$(CONFIG_SPI_DW_BT1) += spi-dw-bt1.o obj-$(CONFIG_SPI_DW_BT1) += spi-dw-bt1.o
obj-$(CONFIG_SPI_DW_MMIO) += spi-dw-mmio.o obj-$(CONFIG_SPI_DW_MMIO) += spi-dw-mmio.o
obj-$(CONFIG_SPI_DW_PCI) += spi-dw-pci.o obj-$(CONFIG_SPI_DW_PCI) += spi-dw-pci.o
obj-$(CONFIG_SPI_EFM32) += spi-efm32.o
obj-$(CONFIG_SPI_EP93XX) += spi-ep93xx.o obj-$(CONFIG_SPI_EP93XX) += spi-ep93xx.o
obj-$(CONFIG_SPI_FALCON) += spi-falcon.o obj-$(CONFIG_SPI_FALCON) += spi-falcon.o
obj-$(CONFIG_SPI_FSI) += spi-fsi.o obj-$(CONFIG_SPI_FSI) += spi-fsi.o
...@@ -94,6 +93,7 @@ obj-$(CONFIG_SPI_QCOM_QSPI) += spi-qcom-qspi.o ...@@ -94,6 +93,7 @@ obj-$(CONFIG_SPI_QCOM_QSPI) += spi-qcom-qspi.o
obj-$(CONFIG_SPI_QUP) += spi-qup.o obj-$(CONFIG_SPI_QUP) += spi-qup.o
obj-$(CONFIG_SPI_ROCKCHIP) += spi-rockchip.o obj-$(CONFIG_SPI_ROCKCHIP) += spi-rockchip.o
obj-$(CONFIG_SPI_RB4XX) += spi-rb4xx.o obj-$(CONFIG_SPI_RB4XX) += spi-rb4xx.o
obj-$(CONFIG_MACH_REALTEK_RTL) += spi-realtek-rtl.o
obj-$(CONFIG_SPI_RPCIF) += spi-rpc-if.o obj-$(CONFIG_SPI_RPCIF) += spi-rpc-if.o
obj-$(CONFIG_SPI_RSPI) += spi-rspi.o obj-$(CONFIG_SPI_RSPI) += spi-rspi.o
obj-$(CONFIG_SPI_S3C24XX) += spi-s3c24xx-hw.o obj-$(CONFIG_SPI_S3C24XX) += spi-s3c24xx-hw.o
...@@ -105,7 +105,6 @@ obj-$(CONFIG_SPI_SH_HSPI) += spi-sh-hspi.o ...@@ -105,7 +105,6 @@ obj-$(CONFIG_SPI_SH_HSPI) += spi-sh-hspi.o
obj-$(CONFIG_SPI_SH_MSIOF) += spi-sh-msiof.o obj-$(CONFIG_SPI_SH_MSIOF) += spi-sh-msiof.o
obj-$(CONFIG_SPI_SH_SCI) += spi-sh-sci.o obj-$(CONFIG_SPI_SH_SCI) += spi-sh-sci.o
obj-$(CONFIG_SPI_SIFIVE) += spi-sifive.o obj-$(CONFIG_SPI_SIFIVE) += spi-sifive.o
obj-$(CONFIG_SPI_SIRF) += spi-sirf.o
obj-$(CONFIG_SPI_SLAVE_MT27XX) += spi-slave-mt27xx.o obj-$(CONFIG_SPI_SLAVE_MT27XX) += spi-slave-mt27xx.o
obj-$(CONFIG_SPI_SPRD) += spi-sprd.o obj-$(CONFIG_SPI_SPRD) += spi-sprd.o
obj-$(CONFIG_SPI_SPRD_ADI) += spi-sprd-adi.o obj-$(CONFIG_SPI_SPRD_ADI) += spi-sprd-adi.o
...@@ -115,6 +114,7 @@ obj-$(CONFIG_SPI_ST_SSC4) += spi-st-ssc4.o ...@@ -115,6 +114,7 @@ obj-$(CONFIG_SPI_ST_SSC4) += spi-st-ssc4.o
obj-$(CONFIG_SPI_SUN4I) += spi-sun4i.o obj-$(CONFIG_SPI_SUN4I) += spi-sun4i.o
obj-$(CONFIG_SPI_SUN6I) += spi-sun6i.o obj-$(CONFIG_SPI_SUN6I) += spi-sun6i.o
obj-$(CONFIG_SPI_SYNQUACER) += spi-synquacer.o obj-$(CONFIG_SPI_SYNQUACER) += spi-synquacer.o
obj-$(CONFIG_SPI_TEGRA210_QUAD) += spi-tegra210-quad.o
obj-$(CONFIG_SPI_TEGRA114) += spi-tegra114.o obj-$(CONFIG_SPI_TEGRA114) += spi-tegra114.o
obj-$(CONFIG_SPI_TEGRA20_SFLASH) += spi-tegra20-sflash.o obj-$(CONFIG_SPI_TEGRA20_SFLASH) += spi-tegra20-sflash.o
obj-$(CONFIG_SPI_TEGRA20_SLINK) += spi-tegra20-slink.o obj-$(CONFIG_SPI_TEGRA20_SLINK) += spi-tegra20-slink.o
...@@ -122,7 +122,6 @@ obj-$(CONFIG_SPI_TLE62X0) += spi-tle62x0.o ...@@ -122,7 +122,6 @@ obj-$(CONFIG_SPI_TLE62X0) += spi-tle62x0.o
spi-thunderx-objs := spi-cavium.o spi-cavium-thunderx.o spi-thunderx-objs := spi-cavium.o spi-cavium-thunderx.o
obj-$(CONFIG_SPI_THUNDERX) += spi-thunderx.o obj-$(CONFIG_SPI_THUNDERX) += spi-thunderx.o
obj-$(CONFIG_SPI_TOPCLIFF_PCH) += spi-topcliff-pch.o obj-$(CONFIG_SPI_TOPCLIFF_PCH) += spi-topcliff-pch.o
obj-$(CONFIG_SPI_TXX9) += spi-txx9.o
obj-$(CONFIG_SPI_UNIPHIER) += spi-uniphier.o obj-$(CONFIG_SPI_UNIPHIER) += spi-uniphier.o
obj-$(CONFIG_SPI_XCOMM) += spi-xcomm.o obj-$(CONFIG_SPI_XCOMM) += spi-xcomm.o
obj-$(CONFIG_SPI_XILINX) += spi-xilinx.o obj-$(CONFIG_SPI_XILINX) += spi-xilinx.o
......
...@@ -657,6 +657,7 @@ static int __maybe_unused atmel_qspi_suspend(struct device *dev) ...@@ -657,6 +657,7 @@ static int __maybe_unused atmel_qspi_suspend(struct device *dev)
struct spi_controller *ctrl = dev_get_drvdata(dev); struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
clk_disable_unprepare(aq->qspick); clk_disable_unprepare(aq->qspick);
clk_disable_unprepare(aq->pclk); clk_disable_unprepare(aq->pclk);
......
...@@ -1590,7 +1590,7 @@ static int atmel_spi_probe(struct platform_device *pdev) ...@@ -1590,7 +1590,7 @@ static int atmel_spi_probe(struct platform_device *pdev)
if (ret == 0) { if (ret == 0) {
as->use_dma = true; as->use_dma = true;
} else if (ret == -EPROBE_DEFER) { } else if (ret == -EPROBE_DEFER) {
return ret; goto out_unmap_regs;
} }
} else if (as->caps.has_pdc_support) { } else if (as->caps.has_pdc_support) {
as->use_pdc = true; as->use_pdc = true;
......
...@@ -26,7 +26,7 @@ ...@@ -26,7 +26,7 @@
#include <asm/mach-au1x00/au1550_spi.h> #include <asm/mach-au1x00/au1550_spi.h>
static unsigned usedma = 1; static unsigned int usedma = 1;
module_param(usedma, uint, 0644); module_param(usedma, uint, 0644);
/* /*
...@@ -43,9 +43,9 @@ struct au1550_spi { ...@@ -43,9 +43,9 @@ struct au1550_spi {
volatile psc_spi_t __iomem *regs; volatile psc_spi_t __iomem *regs;
int irq; int irq;
unsigned len; unsigned int len;
unsigned tx_count; unsigned int tx_count;
unsigned rx_count; unsigned int rx_count;
const u8 *tx; const u8 *tx;
u8 *rx; u8 *rx;
...@@ -56,14 +56,14 @@ struct au1550_spi { ...@@ -56,14 +56,14 @@ struct au1550_spi {
struct completion master_done; struct completion master_done;
unsigned usedma; unsigned int usedma;
u32 dma_tx_id; u32 dma_tx_id;
u32 dma_rx_id; u32 dma_rx_id;
u32 dma_tx_ch; u32 dma_tx_ch;
u32 dma_rx_ch; u32 dma_rx_ch;
u8 *dma_rx_tmpbuf; u8 *dma_rx_tmpbuf;
unsigned dma_rx_tmpbuf_size; unsigned int dma_rx_tmpbuf_size;
u32 dma_rx_tmpbuf_addr; u32 dma_rx_tmpbuf_addr;
struct spi_master *master; struct spi_master *master;
...@@ -74,8 +74,7 @@ struct au1550_spi { ...@@ -74,8 +74,7 @@ struct au1550_spi {
/* we use an 8-bit memory device for dma transfers to/from spi fifo */ /* we use an 8-bit memory device for dma transfers to/from spi fifo */
static dbdev_tab_t au1550_spi_mem_dbdev = static dbdev_tab_t au1550_spi_mem_dbdev = {
{
.dev_id = DBDMA_MEM_CHAN, .dev_id = DBDMA_MEM_CHAN,
.dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC, .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC,
.dev_tsize = 0, .dev_tsize = 0,
...@@ -99,7 +98,7 @@ static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw); ...@@ -99,7 +98,7 @@ static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw);
* BRG valid range is 4..63 * BRG valid range is 4..63
* DIV valid range is 0..3 * DIV valid range is 0..3
*/ */
static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz) static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned int speed_hz)
{ {
u32 mainclk_hz = hw->pdata->mainclk_hz; u32 mainclk_hz = hw->pdata->mainclk_hz;
u32 div, brg; u32 div, brg;
...@@ -161,7 +160,7 @@ static void au1550_spi_reset_fifos(struct au1550_spi *hw) ...@@ -161,7 +160,7 @@ static void au1550_spi_reset_fifos(struct au1550_spi *hw)
static void au1550_spi_chipsel(struct spi_device *spi, int value) static void au1550_spi_chipsel(struct spi_device *spi, int value)
{ {
struct au1550_spi *hw = spi_master_get_devdata(spi->master); struct au1550_spi *hw = spi_master_get_devdata(spi->master);
unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0; unsigned int cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
u32 cfg, stat; u32 cfg, stat;
switch (value) { switch (value) {
...@@ -221,7 +220,7 @@ static void au1550_spi_chipsel(struct spi_device *spi, int value) ...@@ -221,7 +220,7 @@ static void au1550_spi_chipsel(struct spi_device *spi, int value)
static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t) static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
{ {
struct au1550_spi *hw = spi_master_get_devdata(spi->master); struct au1550_spi *hw = spi_master_get_devdata(spi->master);
unsigned bpw, hz; unsigned int bpw, hz;
u32 cfg, stat; u32 cfg, stat;
if (t) { if (t) {
...@@ -276,7 +275,7 @@ static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t) ...@@ -276,7 +275,7 @@ static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
* spi master done event irq is not generated unless rx fifo is empty (emptied) * spi master done event irq is not generated unless rx fifo is empty (emptied)
* so we need rx tmp buffer to use for rx dma if user does not provide one * so we need rx tmp buffer to use for rx dma if user does not provide one
*/ */
static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size) static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned int size)
{ {
hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL); hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL);
if (!hw->dma_rx_tmpbuf) if (!hw->dma_rx_tmpbuf)
...@@ -399,10 +398,10 @@ static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t) ...@@ -399,10 +398,10 @@ static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t)
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
} }
/* unmap buffers if mapped above */ /* unmap buffers if mapped above */
if (t->rx_buf && t->rx_dma == 0 ) if (t->rx_buf && t->rx_dma == 0)
dma_unmap_single(hw->dev, dma_rx_addr, t->len, dma_unmap_single(hw->dev, dma_rx_addr, t->len,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
if (t->tx_buf && t->tx_dma == 0 ) if (t->tx_buf && t->tx_dma == 0)
dma_unmap_single(hw->dev, dma_tx_addr, t->len, dma_unmap_single(hw->dev, dma_tx_addr, t->len,
DMA_TO_DEVICE); DMA_TO_DEVICE);
...@@ -447,8 +446,8 @@ static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw) ...@@ -447,8 +446,8 @@ static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw)
"dma transfer: receive FIFO overflow!\n"); "dma transfer: receive FIFO overflow!\n");
else else
dev_err(hw->dev, dev_err(hw->dev,
"dma transfer: unexpected SPI error " "dma transfer: unexpected SPI error (event=0x%x stat=0x%x)!\n",
"(event=0x%x stat=0x%x)!\n", evnt, stat); evnt, stat);
complete(&hw->master_done); complete(&hw->master_done);
return IRQ_HANDLED; return IRQ_HANDLED;
...@@ -493,12 +492,12 @@ static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \ ...@@ -493,12 +492,12 @@ static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \
wmb(); /* drain writebuffer */ \ wmb(); /* drain writebuffer */ \
} }
AU1550_SPI_RX_WORD(8,0xff) AU1550_SPI_RX_WORD(8, 0xff)
AU1550_SPI_RX_WORD(16,0xffff) AU1550_SPI_RX_WORD(16, 0xffff)
AU1550_SPI_RX_WORD(32,0xffffff) AU1550_SPI_RX_WORD(32, 0xffffff)
AU1550_SPI_TX_WORD(8,0xff) AU1550_SPI_TX_WORD(8, 0xff)
AU1550_SPI_TX_WORD(16,0xffff) AU1550_SPI_TX_WORD(16, 0xffff)
AU1550_SPI_TX_WORD(32,0xffffff) AU1550_SPI_TX_WORD(32, 0xffffff)
static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t) static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t)
{ {
...@@ -567,8 +566,8 @@ static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw) ...@@ -567,8 +566,8 @@ static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
au1550_spi_mask_ack_all(hw); au1550_spi_mask_ack_all(hw);
au1550_spi_reset_fifos(hw); au1550_spi_reset_fifos(hw);
dev_err(hw->dev, dev_err(hw->dev,
"pio transfer: unexpected SPI error " "pio transfer: unexpected SPI error (event=0x%x stat=0x%x)!\n",
"(event=0x%x stat=0x%x)!\n", evnt, stat); evnt, stat);
complete(&hw->master_done); complete(&hw->master_done);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -636,12 +635,14 @@ static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw) ...@@ -636,12 +635,14 @@ static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
{ {
struct au1550_spi *hw = spi_master_get_devdata(spi->master); struct au1550_spi *hw = spi_master_get_devdata(spi->master);
return hw->txrx_bufs(spi, t); return hw->txrx_bufs(spi, t);
} }
static irqreturn_t au1550_spi_irq(int irq, void *dev) static irqreturn_t au1550_spi_irq(int irq, void *dev)
{ {
struct au1550_spi *hw = dev; struct au1550_spi *hw = dev;
return hw->irq_callback(hw); return hw->irq_callback(hw);
} }
...@@ -872,6 +873,7 @@ static int au1550_spi_probe(struct platform_device *pdev) ...@@ -872,6 +873,7 @@ static int au1550_spi_probe(struct platform_device *pdev)
{ {
int min_div = (2 << 0) * (2 * (4 + 1)); int min_div = (2 << 0) * (2 * (4 + 1));
int max_div = (2 << 3) * (2 * (63 + 1)); int max_div = (2 << 3) * (2 * (63 + 1));
master->max_speed_hz = hw->pdata->mainclk_hz / min_div; master->max_speed_hz = hw->pdata->mainclk_hz / min_div;
master->min_speed_hz = master->min_speed_hz =
hw->pdata->mainclk_hz / (max_div + 1) + 1; hw->pdata->mainclk_hz / (max_div + 1) + 1;
...@@ -972,8 +974,7 @@ static int __init au1550_spi_init(void) ...@@ -972,8 +974,7 @@ static int __init au1550_spi_init(void)
if (usedma) { if (usedma) {
ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev); ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev);
if (!ddma_memid) if (!ddma_memid)
printk(KERN_ERR "au1550-spi: cannot add memory" printk(KERN_ERR "au1550-spi: cannot add memory dbdma device\n");
"dbdma device\n");
} }
return platform_driver_register(&au1550_spi_drv); return platform_driver_register(&au1550_spi_drv);
} }
......
...@@ -881,7 +881,7 @@ static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi, ...@@ -881,7 +881,7 @@ static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
* when using flex mode we need to send * when using flex mode we need to send
* the upper address byte to bspi * the upper address byte to bspi
*/ */
if (bcm_qspi_bspi_ver_three(qspi) == false) { if (!bcm_qspi_bspi_ver_three(qspi)) {
addr = from & 0xff000000; addr = from & 0xff000000;
bcm_qspi_write(qspi, BSPI, bcm_qspi_write(qspi, BSPI,
BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr); BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
......
...@@ -386,7 +386,7 @@ static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id) ...@@ -386,7 +386,7 @@ static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
/* Transfer complete - reset SPI HW */ /* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(bs); bcm2835_spi_reset_hw(bs);
/* wake up the framework */ /* wake up the framework */
complete(&bs->ctlr->xfer_completion); spi_finalize_current_transfer(bs->ctlr);
} }
return IRQ_HANDLED; return IRQ_HANDLED;
...@@ -608,7 +608,7 @@ static void bcm2835_spi_dma_rx_done(void *data) ...@@ -608,7 +608,7 @@ static void bcm2835_spi_dma_rx_done(void *data)
bcm2835_spi_reset_hw(bs); bcm2835_spi_reset_hw(bs);
/* and mark as completed */; /* and mark as completed */;
complete(&ctlr->xfer_completion); spi_finalize_current_transfer(ctlr);
} }
/** /**
...@@ -640,7 +640,7 @@ static void bcm2835_spi_dma_tx_done(void *data) ...@@ -640,7 +640,7 @@ static void bcm2835_spi_dma_tx_done(void *data)
bcm2835_spi_undo_prologue(bs); bcm2835_spi_undo_prologue(bs);
bcm2835_spi_reset_hw(bs); bcm2835_spi_reset_hw(bs);
complete(&ctlr->xfer_completion); spi_finalize_current_transfer(ctlr);
} }
/** /**
...@@ -1307,6 +1307,8 @@ static int bcm2835_spi_probe(struct platform_device *pdev) ...@@ -1307,6 +1307,8 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk), return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
"could not get clk\n"); "could not get clk\n");
ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
bs->irq = platform_get_irq(pdev, 0); bs->irq = platform_get_irq(pdev, 0);
if (bs->irq <= 0) if (bs->irq <= 0)
return bs->irq ? bs->irq : -ENODEV; return bs->irq ? bs->irq : -ENODEV;
......
...@@ -254,7 +254,7 @@ static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id) ...@@ -254,7 +254,7 @@ static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
/* and if rx_len is 0 then disable interrupts and wake up completion */ /* and if rx_len is 0 then disable interrupts and wake up completion */
if (!bs->rx_len) { if (!bs->rx_len) {
bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]); bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
complete(&master->xfer_completion); spi_finalize_current_transfer(master);
} }
return IRQ_HANDLED; return IRQ_HANDLED;
......
...@@ -52,6 +52,7 @@ struct cqspi_flash_pdata { ...@@ -52,6 +52,7 @@ struct cqspi_flash_pdata {
u8 inst_width; u8 inst_width;
u8 addr_width; u8 addr_width;
u8 data_width; u8 data_width;
bool dtr;
u8 cs; u8 cs;
}; };
...@@ -75,6 +76,7 @@ struct cqspi_st { ...@@ -75,6 +76,7 @@ struct cqspi_st {
bool is_decoded_cs; bool is_decoded_cs;
u32 fifo_depth; u32 fifo_depth;
u32 fifo_width; u32 fifo_width;
u32 num_chipselect;
bool rclk_en; bool rclk_en;
u32 trigger_address; u32 trigger_address;
u32 wr_delay; u32 wr_delay;
...@@ -111,6 +113,8 @@ struct cqspi_driver_platdata { ...@@ -111,6 +113,8 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_DMA_MASK BIT(15) #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB 19 #define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
#define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
#define CQSPI_REG_CONFIG_IDLE_LSB 31 #define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
...@@ -173,6 +177,9 @@ struct cqspi_driver_platdata { ...@@ -173,6 +177,9 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
#define CQSPI_REG_IRQSTATUS 0x40 #define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44 #define CQSPI_REG_IRQMASK 0x44
...@@ -188,6 +195,7 @@ struct cqspi_driver_platdata { ...@@ -188,6 +195,7 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_CMDCTRL 0x90 #define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0) #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1) #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
...@@ -198,6 +206,7 @@ struct cqspi_driver_platdata { ...@@ -198,6 +206,7 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
#define CQSPI_REG_INDIRECTWR 0x70 #define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0) #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
...@@ -214,6 +223,14 @@ struct cqspi_driver_platdata { ...@@ -214,6 +223,14 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
#define CQSPI_REG_POLLING_STATUS 0xB0
#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
#define CQSPI_REG_OP_EXT_LOWER 0xE0
#define CQSPI_REG_OP_EXT_READ_LSB 24
#define CQSPI_REG_OP_EXT_WRITE_LSB 16
#define CQSPI_REG_OP_EXT_STIG_LSB 0
/* Interrupt status bits */ /* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR BIT(0) #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW BIT(1) #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
...@@ -288,6 +305,80 @@ static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata) ...@@ -288,6 +305,80 @@ static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
return rdreg; return rdreg;
} }
static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
{
unsigned int dummy_clk;
dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
if (dtr)
dummy_clk /= 2;
return dummy_clk;
}
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;
switch (op->data.buswidth) {
case 0:
break;
case 1:
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
break;
case 2:
f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
break;
case 4:
f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
/* Right now we only support 8-8-8 DTR mode. */
if (f_pdata->dtr) {
switch (op->cmd.buswidth) {
case 0:
break;
case 8:
f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
switch (op->addr.buswidth) {
case 0:
break;
case 8:
f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
switch (op->data.buswidth) {
case 0:
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int cqspi_wait_idle(struct cqspi_st *cqspi) static int cqspi_wait_idle(struct cqspi_st *cqspi)
{ {
const unsigned int poll_idle_retry = 3; const unsigned int poll_idle_retry = 3;
...@@ -345,19 +436,85 @@ static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg) ...@@ -345,19 +436,85 @@ static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
return cqspi_wait_idle(cqspi); return cqspi_wait_idle(cqspi);
} }
static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op,
unsigned int shift)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
u8 ext;
if (op->cmd.nbytes != 2)
return -EINVAL;
/* Opcode extension is the LSB. */
ext = op->cmd.opcode & 0xff;
reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
reg &= ~(0xff << shift);
reg |= ext << shift;
writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
return 0;
}
static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op, unsigned int shift,
bool enable)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
int ret;
reg = readl(reg_base + CQSPI_REG_CONFIG);
/*
* We enable dual byte opcode here. The callers have to set up the
* extension opcode based on which type of operation it is.
*/
if (enable) {
reg |= CQSPI_REG_CONFIG_DTR_PROTO;
reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
/* Set up command opcode extension. */
ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
if (ret)
return ret;
} else {
reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
}
writel(reg, reg_base + CQSPI_REG_CONFIG);
return cqspi_wait_idle(cqspi);
}
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata, static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
struct cqspi_st *cqspi = f_pdata->cqspi; struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase; void __iomem *reg_base = cqspi->iobase;
u8 *rxbuf = op->data.buf.in; u8 *rxbuf = op->data.buf.in;
u8 opcode = op->cmd.opcode; u8 opcode;
size_t n_rx = op->data.nbytes; size_t n_rx = op->data.nbytes;
unsigned int rdreg; unsigned int rdreg;
unsigned int reg; unsigned int reg;
unsigned int dummy_clk;
size_t read_len; size_t read_len;
int status; int status;
status = cqspi_set_protocol(f_pdata, op);
if (status)
return status;
status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
f_pdata->dtr);
if (status)
return status;
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) { if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
dev_err(&cqspi->pdev->dev, dev_err(&cqspi->pdev->dev,
"Invalid input argument, len %zu rxbuf 0x%p\n", "Invalid input argument, len %zu rxbuf 0x%p\n",
...@@ -365,11 +522,24 @@ static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata, ...@@ -365,11 +522,24 @@ static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
return -EINVAL; return -EINVAL;
} }
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
rdreg = cqspi_calc_rdreg(f_pdata); rdreg = cqspi_calc_rdreg(f_pdata);
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR); writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -EOPNOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
<< CQSPI_REG_CMDCTRL_DUMMY_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */ /* 0 means 1 byte. */
...@@ -401,12 +571,22 @@ static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata, ...@@ -401,12 +571,22 @@ static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
{ {
struct cqspi_st *cqspi = f_pdata->cqspi; struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase; void __iomem *reg_base = cqspi->iobase;
const u8 opcode = op->cmd.opcode; u8 opcode;
const u8 *txbuf = op->data.buf.out; const u8 *txbuf = op->data.buf.out;
size_t n_tx = op->data.nbytes; size_t n_tx = op->data.nbytes;
unsigned int reg; unsigned int reg;
unsigned int data; unsigned int data;
size_t write_len; size_t write_len;
int ret;
ret = cqspi_set_protocol(f_pdata, op);
if (ret)
return ret;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) { if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
dev_err(&cqspi->pdev->dev, dev_err(&cqspi->pdev->dev,
...@@ -415,6 +595,14 @@ static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata, ...@@ -415,6 +595,14 @@ static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
return -EINVAL; return -EINVAL;
} }
reg = cqspi_calc_rdreg(f_pdata);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (op->addr.nbytes) { if (op->addr.nbytes) {
...@@ -454,14 +642,27 @@ static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata, ...@@ -454,14 +642,27 @@ static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
void __iomem *reg_base = cqspi->iobase; void __iomem *reg_base = cqspi->iobase;
unsigned int dummy_clk = 0; unsigned int dummy_clk = 0;
unsigned int reg; unsigned int reg;
int ret;
u8 opcode;
reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB; ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
reg |= cqspi_calc_rdreg(f_pdata); reg |= cqspi_calc_rdreg(f_pdata);
/* Setup dummy clock cycles */ /* Setup dummy clock cycles */
dummy_clk = op->dummy.nbytes * 8; dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
dummy_clk = CQSPI_DUMMY_CLKS_MAX; return -EOPNOTSUPP;
if (dummy_clk) if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
...@@ -573,15 +774,43 @@ static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata, ...@@ -573,15 +774,43 @@ static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
unsigned int reg; unsigned int reg;
int ret;
struct cqspi_st *cqspi = f_pdata->cqspi; struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase; void __iomem *reg_base = cqspi->iobase;
u8 opcode;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
/* Set opcode. */ /* Set opcode. */
reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB; reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
writel(reg, reg_base + CQSPI_REG_WR_INSTR); writel(reg, reg_base + CQSPI_REG_WR_INSTR);
reg = cqspi_calc_rdreg(f_pdata); reg = cqspi_calc_rdreg(f_pdata);
writel(reg, reg_base + CQSPI_REG_RD_INSTR); writel(reg, reg_base + CQSPI_REG_RD_INSTR);
if (f_pdata->dtr) {
/*
* Some flashes like the cypress Semper flash expect a 4-byte
* dummy address with the Read SR command in DTR mode, but this
* controller does not support sending address with the Read SR
* command. So, disable write completion polling on the
* controller's side. spi-nor will take care of polling the
* status register.
*/
reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
}
reg = readl(reg_base + CQSPI_REG_SIZE); reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1); reg |= (op->addr.nbytes - 1);
...@@ -835,35 +1064,6 @@ static void cqspi_configure(struct cqspi_flash_pdata *f_pdata, ...@@ -835,35 +1064,6 @@ static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
cqspi_controller_enable(cqspi, 1); cqspi_controller_enable(cqspi, 1);
} }
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
if (op->data.dir == SPI_MEM_DATA_IN) {
switch (op->data.buswidth) {
case 1:
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
break;
case 2:
f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
break;
case 4:
f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
}
return 0;
}
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata, static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
...@@ -881,7 +1081,16 @@ static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata, ...@@ -881,7 +1081,16 @@ static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
if (ret) if (ret)
return ret; return ret;
if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) { /*
* Some flashes like the Cypress Semper flash expect a dummy 4-byte
* address (all 0s) with the read status register command in DTR mode.
* But this controller does not support sending dummy address bytes to
* the flash when it is polling the write completion register in DTR
* mode. So, we can not use direct mode when in DTR mode for writing
* data.
*/
if (!f_pdata->dtr && cqspi->use_direct_mode &&
((to + len) <= cqspi->ahb_size)) {
memcpy_toio(cqspi->ahb_base + to, buf, len); memcpy_toio(cqspi->ahb_base + to, buf, len);
return cqspi_wait_idle(cqspi); return cqspi_wait_idle(cqspi);
} }
...@@ -942,7 +1151,7 @@ static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata, ...@@ -942,7 +1151,7 @@ static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
dma_async_issue_pending(cqspi->rx_chan); dma_async_issue_pending(cqspi->rx_chan);
if (!wait_for_completion_timeout(&cqspi->rx_dma_complete, if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
msecs_to_jiffies(len))) { msecs_to_jiffies(max_t(size_t, len, 500)))) {
dmaengine_terminate_sync(cqspi->rx_chan); dmaengine_terminate_sync(cqspi->rx_chan);
dev_err(dev, "DMA wait_for_completion_timeout\n"); dev_err(dev, "DMA wait_for_completion_timeout\n");
ret = -ETIMEDOUT; ret = -ETIMEDOUT;
...@@ -1010,6 +1219,26 @@ static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) ...@@ -1010,6 +1219,26 @@ static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
return ret; return ret;
} }
static bool cqspi_supports_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
bool all_true, all_false;
all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
op->data.dtr;
all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
!op->data.dtr;
/* Mixed DTR modes not supported. */
if (!(all_true || all_false))
return false;
if (all_true)
return spi_mem_dtr_supports_op(mem, op);
else
return spi_mem_default_supports_op(mem, op);
}
static int cqspi_of_get_flash_pdata(struct platform_device *pdev, static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
struct cqspi_flash_pdata *f_pdata, struct cqspi_flash_pdata *f_pdata,
struct device_node *np) struct device_node *np)
...@@ -1070,6 +1299,9 @@ static int cqspi_of_get_pdata(struct cqspi_st *cqspi) ...@@ -1070,6 +1299,9 @@ static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
return -ENXIO; return -ENXIO;
} }
if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en"); cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
return 0; return 0;
...@@ -1101,10 +1333,12 @@ static void cqspi_controller_init(struct cqspi_st *cqspi) ...@@ -1101,10 +1333,12 @@ static void cqspi_controller_init(struct cqspi_st *cqspi)
writel(cqspi->fifo_depth * cqspi->fifo_width / 8, writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK); cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
/* Enable Direct Access Controller */ /* Disable direct access controller */
if (!cqspi->use_direct_mode) {
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL; reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
}
cqspi_controller_enable(cqspi, 1); cqspi_controller_enable(cqspi, 1);
} }
...@@ -1138,6 +1372,7 @@ static const char *cqspi_get_name(struct spi_mem *mem) ...@@ -1138,6 +1372,7 @@ static const char *cqspi_get_name(struct spi_mem *mem)
static const struct spi_controller_mem_ops cqspi_mem_ops = { static const struct spi_controller_mem_ops cqspi_mem_ops = {
.exec_op = cqspi_exec_mem_op, .exec_op = cqspi_exec_mem_op,
.get_name = cqspi_get_name, .get_name = cqspi_get_name,
.supports_op = cqspi_supports_mem_op,
}; };
static int cqspi_setup_flash(struct cqspi_st *cqspi) static int cqspi_setup_flash(struct cqspi_st *cqspi)
...@@ -1279,13 +1514,14 @@ static int cqspi_probe(struct platform_device *pdev) ...@@ -1279,13 +1514,14 @@ static int cqspi_probe(struct platform_device *pdev)
reset_control_deassert(rstc_ocp); reset_control_deassert(rstc_ocp);
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk); cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
master->max_speed_hz = cqspi->master_ref_clk_hz;
ddata = of_device_get_match_data(dev); ddata = of_device_get_match_data(dev);
if (ddata) { if (ddata) {
if (ddata->quirks & CQSPI_NEEDS_WR_DELAY) if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC, cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
cqspi->master_ref_clk_hz); cqspi->master_ref_clk_hz);
if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL) if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
master->mode_bits |= SPI_RX_OCTAL; master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
cqspi->use_direct_mode = true; cqspi->use_direct_mode = true;
} }
...@@ -1302,6 +1538,8 @@ static int cqspi_probe(struct platform_device *pdev) ...@@ -1302,6 +1538,8 @@ static int cqspi_probe(struct platform_device *pdev)
cqspi->current_cs = -1; cqspi->current_cs = -1;
cqspi->sclk = 0; cqspi->sclk = 0;
master->num_chipselect = cqspi->num_chipselect;
ret = cqspi_setup_flash(cqspi); ret = cqspi_setup_flash(cqspi);
if (ret) { if (ret) {
dev_err(dev, "failed to setup flash parameters %d\n", ret); dev_err(dev, "failed to setup flash parameters %d\n", ret);
...@@ -1390,6 +1628,10 @@ static const struct cqspi_driver_platdata am654_ospi = { ...@@ -1390,6 +1628,10 @@ static const struct cqspi_driver_platdata am654_ospi = {
.quirks = CQSPI_NEEDS_WR_DELAY, .quirks = CQSPI_NEEDS_WR_DELAY,
}; };
static const struct cqspi_driver_platdata intel_lgm_qspi = {
.quirks = CQSPI_DISABLE_DAC_MODE,
};
static const struct of_device_id cqspi_dt_ids[] = { static const struct of_device_id cqspi_dt_ids[] = {
{ {
.compatible = "cdns,qspi-nor", .compatible = "cdns,qspi-nor",
...@@ -1403,6 +1645,10 @@ static const struct of_device_id cqspi_dt_ids[] = { ...@@ -1403,6 +1645,10 @@ static const struct of_device_id cqspi_dt_ids[] = {
.compatible = "ti,am654-ospi", .compatible = "ti,am654-ospi",
.data = &am654_ospi, .data = &am654_ospi,
}, },
{
.compatible = "intel,lgm-qspi",
.data = &intel_lgm_qspi,
},
{ /* end of table */ } { /* end of table */ }
}; };
...@@ -1427,3 +1673,4 @@ MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>"); ...@@ -1427,3 +1673,4 @@ MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>"); MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>"); MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
...@@ -84,7 +84,7 @@ static void dw_spi_bt1_dirmap_copy_from_map(void *to, void __iomem *from, size_t ...@@ -84,7 +84,7 @@ static void dw_spi_bt1_dirmap_copy_from_map(void *to, void __iomem *from, size_t
if (shift) { if (shift) {
chunk = min_t(size_t, 4 - shift, len); chunk = min_t(size_t, 4 - shift, len);
data = readl_relaxed(from - shift); data = readl_relaxed(from - shift);
memcpy(to, &data + shift, chunk); memcpy(to, (char *)&data + shift, chunk);
from += chunk; from += chunk;
to += chunk; to += chunk;
len -= chunk; len -= chunk;
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2013 Uwe Kleine-Koenig for Pengutronix
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/platform_data/efm32-spi.h>
#include <linux/of.h>
#define DRIVER_NAME "efm32-spi"
#define MASK_VAL(mask, val) ((val << __ffs(mask)) & mask)
#define REG_CTRL 0x00
#define REG_CTRL_SYNC 0x0001
#define REG_CTRL_CLKPOL 0x0100
#define REG_CTRL_CLKPHA 0x0200
#define REG_CTRL_MSBF 0x0400
#define REG_CTRL_TXBIL 0x1000
#define REG_FRAME 0x04
#define REG_FRAME_DATABITS__MASK 0x000f
#define REG_FRAME_DATABITS(n) ((n) - 3)
#define REG_CMD 0x0c
#define REG_CMD_RXEN 0x0001
#define REG_CMD_RXDIS 0x0002
#define REG_CMD_TXEN 0x0004
#define REG_CMD_TXDIS 0x0008
#define REG_CMD_MASTEREN 0x0010
#define REG_STATUS 0x10
#define REG_STATUS_TXENS 0x0002
#define REG_STATUS_TXC 0x0020
#define REG_STATUS_TXBL 0x0040
#define REG_STATUS_RXDATAV 0x0080
#define REG_CLKDIV 0x14
#define REG_RXDATAX 0x18
#define REG_RXDATAX_RXDATA__MASK 0x01ff
#define REG_RXDATAX_PERR 0x4000
#define REG_RXDATAX_FERR 0x8000
#define REG_TXDATA 0x34
#define REG_IF 0x40
#define REG_IF_TXBL 0x0002
#define REG_IF_RXDATAV 0x0004
#define REG_IFS 0x44
#define REG_IFC 0x48
#define REG_IEN 0x4c
#define REG_ROUTE 0x54
#define REG_ROUTE_RXPEN 0x0001
#define REG_ROUTE_TXPEN 0x0002
#define REG_ROUTE_CLKPEN 0x0008
#define REG_ROUTE_LOCATION__MASK 0x0700
#define REG_ROUTE_LOCATION(n) MASK_VAL(REG_ROUTE_LOCATION__MASK, (n))
struct efm32_spi_ddata {
struct spi_bitbang bitbang;
spinlock_t lock;
struct clk *clk;
void __iomem *base;
unsigned int rxirq, txirq;
struct efm32_spi_pdata pdata;
/* irq data */
struct completion done;
const u8 *tx_buf;
u8 *rx_buf;
unsigned tx_len, rx_len;
};
#define ddata_to_dev(ddata) (&(ddata->bitbang.master->dev))
#define efm32_spi_vdbg(ddata, format, arg...) \
dev_vdbg(ddata_to_dev(ddata), format, ##arg)
static void efm32_spi_write32(struct efm32_spi_ddata *ddata,
u32 value, unsigned offset)
{
writel_relaxed(value, ddata->base + offset);
}
static u32 efm32_spi_read32(struct efm32_spi_ddata *ddata, unsigned offset)
{
return readl_relaxed(ddata->base + offset);
}
static int efm32_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct efm32_spi_ddata *ddata = spi_master_get_devdata(spi->master);
unsigned bpw = t->bits_per_word ?: spi->bits_per_word;
unsigned speed = t->speed_hz ?: spi->max_speed_hz;
unsigned long clkfreq = clk_get_rate(ddata->clk);
u32 clkdiv;
efm32_spi_write32(ddata, REG_CTRL_SYNC | REG_CTRL_MSBF |
(spi->mode & SPI_CPHA ? REG_CTRL_CLKPHA : 0) |
(spi->mode & SPI_CPOL ? REG_CTRL_CLKPOL : 0), REG_CTRL);
efm32_spi_write32(ddata,
REG_FRAME_DATABITS(bpw), REG_FRAME);
if (2 * speed >= clkfreq)
clkdiv = 0;
else
clkdiv = 64 * (DIV_ROUND_UP(2 * clkfreq, speed) - 4);
if (clkdiv > (1U << 21))
return -EINVAL;
efm32_spi_write32(ddata, clkdiv, REG_CLKDIV);
efm32_spi_write32(ddata, REG_CMD_MASTEREN, REG_CMD);
efm32_spi_write32(ddata, REG_CMD_RXEN | REG_CMD_TXEN, REG_CMD);
return 0;
}
static void efm32_spi_tx_u8(struct efm32_spi_ddata *ddata)
{
u8 val = 0;
if (ddata->tx_buf) {
val = *ddata->tx_buf;
ddata->tx_buf++;
}
ddata->tx_len--;
efm32_spi_write32(ddata, val, REG_TXDATA);
efm32_spi_vdbg(ddata, "%s: tx 0x%x\n", __func__, val);
}
static void efm32_spi_rx_u8(struct efm32_spi_ddata *ddata)
{
u32 rxdata = efm32_spi_read32(ddata, REG_RXDATAX);
efm32_spi_vdbg(ddata, "%s: rx 0x%x\n", __func__, rxdata);
if (ddata->rx_buf) {
*ddata->rx_buf = rxdata;
ddata->rx_buf++;
}
ddata->rx_len--;
}
static void efm32_spi_filltx(struct efm32_spi_ddata *ddata)
{
while (ddata->tx_len &&
ddata->tx_len + 2 > ddata->rx_len &&
efm32_spi_read32(ddata, REG_STATUS) & REG_STATUS_TXBL) {
efm32_spi_tx_u8(ddata);
}
}
static int efm32_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
{
struct efm32_spi_ddata *ddata = spi_master_get_devdata(spi->master);
int ret = -EBUSY;
spin_lock_irq(&ddata->lock);
if (ddata->tx_buf || ddata->rx_buf)
goto out_unlock;
ddata->tx_buf = t->tx_buf;
ddata->rx_buf = t->rx_buf;
ddata->tx_len = ddata->rx_len =
t->len * DIV_ROUND_UP(t->bits_per_word, 8);
efm32_spi_filltx(ddata);
reinit_completion(&ddata->done);
efm32_spi_write32(ddata, REG_IF_TXBL | REG_IF_RXDATAV, REG_IEN);
spin_unlock_irq(&ddata->lock);
wait_for_completion(&ddata->done);
spin_lock_irq(&ddata->lock);
ret = t->len - max(ddata->tx_len, ddata->rx_len);
efm32_spi_write32(ddata, 0, REG_IEN);
ddata->tx_buf = ddata->rx_buf = NULL;
out_unlock:
spin_unlock_irq(&ddata->lock);
return ret;
}
static irqreturn_t efm32_spi_rxirq(int irq, void *data)
{
struct efm32_spi_ddata *ddata = data;
irqreturn_t ret = IRQ_NONE;
spin_lock(&ddata->lock);
while (ddata->rx_len > 0 &&
efm32_spi_read32(ddata, REG_STATUS) &
REG_STATUS_RXDATAV) {
efm32_spi_rx_u8(ddata);
ret = IRQ_HANDLED;
}
if (!ddata->rx_len) {
u32 ien = efm32_spi_read32(ddata, REG_IEN);
ien &= ~REG_IF_RXDATAV;
efm32_spi_write32(ddata, ien, REG_IEN);
complete(&ddata->done);
}
spin_unlock(&ddata->lock);
return ret;
}
static irqreturn_t efm32_spi_txirq(int irq, void *data)
{
struct efm32_spi_ddata *ddata = data;
efm32_spi_vdbg(ddata,
"%s: txlen = %u, rxlen = %u, if=0x%08x, stat=0x%08x\n",
__func__, ddata->tx_len, ddata->rx_len,
efm32_spi_read32(ddata, REG_IF),
efm32_spi_read32(ddata, REG_STATUS));
spin_lock(&ddata->lock);
efm32_spi_filltx(ddata);
efm32_spi_vdbg(ddata, "%s: txlen = %u, rxlen = %u\n",
__func__, ddata->tx_len, ddata->rx_len);
if (!ddata->tx_len) {
u32 ien = efm32_spi_read32(ddata, REG_IEN);
ien &= ~REG_IF_TXBL;
efm32_spi_write32(ddata, ien, REG_IEN);
efm32_spi_vdbg(ddata, "disable TXBL\n");
}
spin_unlock(&ddata->lock);
return IRQ_HANDLED;
}
static u32 efm32_spi_get_configured_location(struct efm32_spi_ddata *ddata)
{
u32 reg = efm32_spi_read32(ddata, REG_ROUTE);
return (reg & REG_ROUTE_LOCATION__MASK) >> __ffs(REG_ROUTE_LOCATION__MASK);
}
static void efm32_spi_probe_dt(struct platform_device *pdev,
struct spi_master *master, struct efm32_spi_ddata *ddata)
{
struct device_node *np = pdev->dev.of_node;
u32 location;
int ret;
ret = of_property_read_u32(np, "energymicro,location", &location);
if (ret)
/* fall back to wrongly namespaced property */
ret = of_property_read_u32(np, "efm32,location", &location);
if (ret)
/* fall back to old and (wrongly) generic property "location" */
ret = of_property_read_u32(np, "location", &location);
if (!ret) {
dev_dbg(&pdev->dev, "using location %u\n", location);
} else {
/* default to location configured in hardware */
location = efm32_spi_get_configured_location(ddata);
dev_info(&pdev->dev, "fall back to location %u\n", location);
}
ddata->pdata.location = location;
}
static int efm32_spi_probe(struct platform_device *pdev)
{
struct efm32_spi_ddata *ddata;
struct resource *res;
int ret;
struct spi_master *master;
struct device_node *np = pdev->dev.of_node;
if (!np)
return -EINVAL;
master = spi_alloc_master(&pdev->dev, sizeof(*ddata));
if (!master) {
dev_dbg(&pdev->dev,
"failed to allocate spi master controller\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
master->dev.of_node = pdev->dev.of_node;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
master->use_gpio_descriptors = true;
ddata = spi_master_get_devdata(master);
ddata->bitbang.master = master;
ddata->bitbang.setup_transfer = efm32_spi_setup_transfer;
ddata->bitbang.txrx_bufs = efm32_spi_txrx_bufs;
spin_lock_init(&ddata->lock);
init_completion(&ddata->done);
ddata->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(ddata->clk)) {
ret = PTR_ERR(ddata->clk);
dev_err(&pdev->dev, "failed to get clock: %d\n", ret);
goto err;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENODEV;
dev_err(&pdev->dev, "failed to determine base address\n");
goto err;
}
if (resource_size(res) < 0x60) {
ret = -EINVAL;
dev_err(&pdev->dev, "memory resource too small\n");
goto err;
}
ddata->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ddata->base)) {
ret = PTR_ERR(ddata->base);
goto err;
}
ret = platform_get_irq(pdev, 0);
if (ret <= 0)
goto err;
ddata->rxirq = ret;
ret = platform_get_irq(pdev, 1);
if (ret <= 0)
ret = ddata->rxirq + 1;
ddata->txirq = ret;
ret = clk_prepare_enable(ddata->clk);
if (ret < 0) {
dev_err(&pdev->dev, "failed to enable clock (%d)\n", ret);
goto err;
}
efm32_spi_probe_dt(pdev, master, ddata);
efm32_spi_write32(ddata, 0, REG_IEN);
efm32_spi_write32(ddata, REG_ROUTE_TXPEN | REG_ROUTE_RXPEN |
REG_ROUTE_CLKPEN |
REG_ROUTE_LOCATION(ddata->pdata.location), REG_ROUTE);
ret = request_irq(ddata->rxirq, efm32_spi_rxirq,
0, DRIVER_NAME " rx", ddata);
if (ret) {
dev_err(&pdev->dev, "failed to register rxirq (%d)\n", ret);
goto err_disable_clk;
}
ret = request_irq(ddata->txirq, efm32_spi_txirq,
0, DRIVER_NAME " tx", ddata);
if (ret) {
dev_err(&pdev->dev, "failed to register txirq (%d)\n", ret);
goto err_free_rx_irq;
}
ret = spi_bitbang_start(&ddata->bitbang);
if (ret) {
dev_err(&pdev->dev, "spi_bitbang_start failed (%d)\n", ret);
free_irq(ddata->txirq, ddata);
err_free_rx_irq:
free_irq(ddata->rxirq, ddata);
err_disable_clk:
clk_disable_unprepare(ddata->clk);
err:
spi_master_put(master);
}
return ret;
}
static int efm32_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct efm32_spi_ddata *ddata = spi_master_get_devdata(master);
spi_bitbang_stop(&ddata->bitbang);
efm32_spi_write32(ddata, 0, REG_IEN);
free_irq(ddata->txirq, ddata);
free_irq(ddata->rxirq, ddata);
clk_disable_unprepare(ddata->clk);
spi_master_put(master);
return 0;
}
static const struct of_device_id efm32_spi_dt_ids[] = {
{
.compatible = "energymicro,efm32-spi",
}, {
/* doesn't follow the "vendor,device" scheme, don't use */
.compatible = "efm32,spi",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, efm32_spi_dt_ids);
static struct platform_driver efm32_spi_driver = {
.probe = efm32_spi_probe,
.remove = efm32_spi_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = efm32_spi_dt_ids,
},
};
module_platform_driver(efm32_spi_driver);
MODULE_AUTHOR("Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>");
MODULE_DESCRIPTION("EFM32 SPI driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
...@@ -695,7 +695,7 @@ static void fsl_spi_cs_control(struct spi_device *spi, bool on) ...@@ -695,7 +695,7 @@ static void fsl_spi_cs_control(struct spi_device *spi, bool on)
if (WARN_ON_ONCE(!pinfo->immr_spi_cs)) if (WARN_ON_ONCE(!pinfo->immr_spi_cs))
return; return;
iowrite32be(on ? SPI_BOOT_SEL_BIT : 0, pinfo->immr_spi_cs); iowrite32be(on ? 0 : SPI_BOOT_SEL_BIT, pinfo->immr_spi_cs);
} }
} }
......
...@@ -19,6 +19,8 @@ ...@@ -19,6 +19,8 @@
#define HISI_SFC_V3XX_VERSION (0x1f8) #define HISI_SFC_V3XX_VERSION (0x1f8)
#define HISI_SFC_V3XX_GLB_CFG (0x100)
#define HISI_SFC_V3XX_GLB_CFG_CS0_ADDR_MODE BIT(2)
#define HISI_SFC_V3XX_RAW_INT_STAT (0x120) #define HISI_SFC_V3XX_RAW_INT_STAT (0x120)
#define HISI_SFC_V3XX_INT_STAT (0x124) #define HISI_SFC_V3XX_INT_STAT (0x124)
#define HISI_SFC_V3XX_INT_MASK (0x128) #define HISI_SFC_V3XX_INT_MASK (0x128)
...@@ -75,6 +77,7 @@ struct hisi_sfc_v3xx_host { ...@@ -75,6 +77,7 @@ struct hisi_sfc_v3xx_host {
void __iomem *regbase; void __iomem *regbase;
int max_cmd_dword; int max_cmd_dword;
struct completion *completion; struct completion *completion;
u8 address_mode;
int irq; int irq;
}; };
...@@ -168,10 +171,18 @@ static int hisi_sfc_v3xx_adjust_op_size(struct spi_mem *mem, ...@@ -168,10 +171,18 @@ static int hisi_sfc_v3xx_adjust_op_size(struct spi_mem *mem,
static bool hisi_sfc_v3xx_supports_op(struct spi_mem *mem, static bool hisi_sfc_v3xx_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
struct spi_device *spi = mem->spi;
struct hisi_sfc_v3xx_host *host;
host = spi_controller_get_devdata(spi->master);
if (op->data.buswidth > 4 || op->dummy.buswidth > 4 || if (op->data.buswidth > 4 || op->dummy.buswidth > 4 ||
op->addr.buswidth > 4 || op->cmd.buswidth > 4) op->addr.buswidth > 4 || op->cmd.buswidth > 4)
return false; return false;
if (op->addr.nbytes != host->address_mode && op->addr.nbytes)
return false;
return spi_mem_default_supports_op(mem, op); return spi_mem_default_supports_op(mem, op);
} }
...@@ -416,7 +427,7 @@ static int hisi_sfc_v3xx_probe(struct platform_device *pdev) ...@@ -416,7 +427,7 @@ static int hisi_sfc_v3xx_probe(struct platform_device *pdev)
struct device *dev = &pdev->dev; struct device *dev = &pdev->dev;
struct hisi_sfc_v3xx_host *host; struct hisi_sfc_v3xx_host *host;
struct spi_controller *ctlr; struct spi_controller *ctlr;
u32 version; u32 version, glb_config;
int ret; int ret;
ctlr = spi_alloc_master(&pdev->dev, sizeof(*host)); ctlr = spi_alloc_master(&pdev->dev, sizeof(*host));
...@@ -463,16 +474,24 @@ static int hisi_sfc_v3xx_probe(struct platform_device *pdev) ...@@ -463,16 +474,24 @@ static int hisi_sfc_v3xx_probe(struct platform_device *pdev)
ctlr->num_chipselect = 1; ctlr->num_chipselect = 1;
ctlr->mem_ops = &hisi_sfc_v3xx_mem_ops; ctlr->mem_ops = &hisi_sfc_v3xx_mem_ops;
/*
* The address mode of the controller is either 3 or 4,
* which is indicated by the address mode bit in
* the global config register. The register is read only
* for the OS driver.
*/
glb_config = readl(host->regbase + HISI_SFC_V3XX_GLB_CFG);
if (glb_config & HISI_SFC_V3XX_GLB_CFG_CS0_ADDR_MODE)
host->address_mode = 4;
else
host->address_mode = 3;
version = readl(host->regbase + HISI_SFC_V3XX_VERSION); version = readl(host->regbase + HISI_SFC_V3XX_VERSION);
switch (version) { if (version >= 0x351)
case 0x351:
host->max_cmd_dword = 64; host->max_cmd_dword = 64;
break; else
default:
host->max_cmd_dword = 16; host->max_cmd_dword = 16;
break;
}
ret = devm_spi_register_controller(dev, ctlr); ret = devm_spi_register_controller(dev, ctlr);
if (ret) if (ret)
......
...@@ -1685,7 +1685,7 @@ static int spi_imx_probe(struct platform_device *pdev) ...@@ -1685,7 +1685,7 @@ static int spi_imx_probe(struct platform_device *pdev)
master->dev.of_node = pdev->dev.of_node; master->dev.of_node = pdev->dev.of_node;
ret = spi_bitbang_start(&spi_imx->bitbang); ret = spi_bitbang_start(&spi_imx->bitbang);
if (ret) { if (ret) {
dev_err(&pdev->dev, "bitbang start failed with %d\n", ret); dev_err_probe(&pdev->dev, ret, "bitbang start failed\n");
goto out_bitbang_start; goto out_bitbang_start;
} }
......
...@@ -137,7 +137,7 @@ static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) ...@@ -137,7 +137,7 @@ static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
return -ENOTSUPP; return -ENOTSUPP;
} }
bool spi_mem_default_supports_op(struct spi_mem *mem, static bool spi_mem_check_buswidth(struct spi_mem *mem,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
...@@ -156,13 +156,29 @@ bool spi_mem_default_supports_op(struct spi_mem *mem, ...@@ -156,13 +156,29 @@ bool spi_mem_default_supports_op(struct spi_mem *mem,
op->data.dir == SPI_MEM_DATA_OUT)) op->data.dir == SPI_MEM_DATA_OUT))
return false; return false;
return true;
}
bool spi_mem_dtr_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (op->cmd.nbytes != 2)
return false;
return spi_mem_check_buswidth(mem, op);
}
EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
bool spi_mem_default_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
return false; return false;
if (op->cmd.nbytes != 1) if (op->cmd.nbytes != 1)
return false; return false;
return true; return spi_mem_check_buswidth(mem, op);
} }
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
...@@ -354,6 +370,7 @@ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) ...@@ -354,6 +370,7 @@ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
xfers[xferpos].len = op->dummy.nbytes; xfers[xferpos].len = op->dummy.nbytes;
xfers[xferpos].tx_nbits = op->dummy.buswidth; xfers[xferpos].tx_nbits = op->dummy.buswidth;
xfers[xferpos].dummy_data = 1;
spi_message_add_tail(&xfers[xferpos], &msg); spi_message_add_tail(&xfers[xferpos], &msg);
xferpos++; xferpos++;
totalxferlen += op->dummy.nbytes; totalxferlen += op->dummy.nbytes;
......
...@@ -248,7 +248,9 @@ static int mpc52xx_spi_fsmstate_transfer(int irq, struct mpc52xx_spi *ms, ...@@ -248,7 +248,9 @@ static int mpc52xx_spi_fsmstate_transfer(int irq, struct mpc52xx_spi *ms,
ms->len--; ms->len--;
if (ms->len == 0) { if (ms->len == 0) {
ms->timestamp = get_tbl(); ms->timestamp = get_tbl();
ms->timestamp += ms->transfer->delay_usecs * tb_ticks_per_usec; if (ms->transfer->delay.unit == SPI_DELAY_UNIT_USECS)
ms->timestamp += ms->transfer->delay.value *
tb_ticks_per_usec;
ms->state = mpc52xx_spi_fsmstate_wait; ms->state = mpc52xx_spi_fsmstate_wait;
return FSM_CONTINUE; return FSM_CONTINUE;
} }
......
...@@ -287,7 +287,7 @@ static void mtk_spi_set_cs(struct spi_device *spi, bool enable) ...@@ -287,7 +287,7 @@ static void mtk_spi_set_cs(struct spi_device *spi, bool enable)
static void mtk_spi_prepare_transfer(struct spi_master *master, static void mtk_spi_prepare_transfer(struct spi_master *master,
struct spi_transfer *xfer) struct spi_transfer *xfer)
{ {
u32 spi_clk_hz, div, sck_time, cs_time, reg_val; u32 spi_clk_hz, div, sck_time, reg_val;
struct mtk_spi *mdata = spi_master_get_devdata(master); struct mtk_spi *mdata = spi_master_get_devdata(master);
spi_clk_hz = clk_get_rate(mdata->spi_clk); spi_clk_hz = clk_get_rate(mdata->spi_clk);
...@@ -297,32 +297,25 @@ static void mtk_spi_prepare_transfer(struct spi_master *master, ...@@ -297,32 +297,25 @@ static void mtk_spi_prepare_transfer(struct spi_master *master,
div = 1; div = 1;
sck_time = (div + 1) / 2; sck_time = (div + 1) / 2;
cs_time = sck_time * 2;
if (mdata->dev_comp->enhance_timing) { if (mdata->dev_comp->enhance_timing) {
reg_val = (((sck_time - 1) & 0xffff) reg_val = readl(mdata->base + SPI_CFG2_REG);
reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET);
reg_val |= (((sck_time - 1) & 0xffff)
<< SPI_CFG2_SCK_HIGH_OFFSET); << SPI_CFG2_SCK_HIGH_OFFSET);
reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET);
reg_val |= (((sck_time - 1) & 0xffff) reg_val |= (((sck_time - 1) & 0xffff)
<< SPI_CFG2_SCK_LOW_OFFSET); << SPI_CFG2_SCK_LOW_OFFSET);
writel(reg_val, mdata->base + SPI_CFG2_REG); writel(reg_val, mdata->base + SPI_CFG2_REG);
reg_val = (((cs_time - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
reg_val |= (((cs_time - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
writel(reg_val, mdata->base + SPI_CFG0_REG);
} else { } else {
reg_val = (((sck_time - 1) & 0xff) reg_val = readl(mdata->base + SPI_CFG0_REG);
reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET);
reg_val |= (((sck_time - 1) & 0xff)
<< SPI_CFG0_SCK_HIGH_OFFSET); << SPI_CFG0_SCK_HIGH_OFFSET);
reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET);
reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET); reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET);
reg_val |= (((cs_time - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
reg_val |= (((cs_time - 1) & 0xff) << SPI_CFG0_CS_SETUP_OFFSET);
writel(reg_val, mdata->base + SPI_CFG0_REG); writel(reg_val, mdata->base + SPI_CFG0_REG);
} }
reg_val = readl(mdata->base + SPI_CFG1_REG);
reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
reg_val |= (((cs_time - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
writel(reg_val, mdata->base + SPI_CFG1_REG);
} }
static void mtk_spi_setup_packet(struct spi_master *master) static void mtk_spi_setup_packet(struct spi_master *master)
...@@ -513,6 +506,52 @@ static bool mtk_spi_can_dma(struct spi_master *master, ...@@ -513,6 +506,52 @@ static bool mtk_spi_can_dma(struct spi_master *master,
(unsigned long)xfer->rx_buf % 4 == 0); (unsigned long)xfer->rx_buf % 4 == 0);
} }
static int mtk_spi_set_hw_cs_timing(struct spi_device *spi,
struct spi_delay *setup,
struct spi_delay *hold,
struct spi_delay *inactive)
{
struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
u16 setup_dly, hold_dly, inactive_dly;
u32 reg_val;
if ((setup && setup->unit != SPI_DELAY_UNIT_SCK) ||
(hold && hold->unit != SPI_DELAY_UNIT_SCK) ||
(inactive && inactive->unit != SPI_DELAY_UNIT_SCK)) {
dev_err(&spi->dev,
"Invalid delay unit, should be SPI_DELAY_UNIT_SCK\n");
return -EINVAL;
}
setup_dly = setup ? setup->value : 1;
hold_dly = hold ? hold->value : 1;
inactive_dly = inactive ? inactive->value : 1;
reg_val = readl(mdata->base + SPI_CFG0_REG);
if (mdata->dev_comp->enhance_timing) {
reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
reg_val |= (((hold_dly - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
reg_val |= (((setup_dly - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
} else {
reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET);
reg_val |= (((hold_dly - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET);
reg_val |= (((setup_dly - 1) & 0xff)
<< SPI_CFG0_CS_SETUP_OFFSET);
}
writel(reg_val, mdata->base + SPI_CFG0_REG);
reg_val = readl(mdata->base + SPI_CFG1_REG);
reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
reg_val |= (((inactive_dly - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
writel(reg_val, mdata->base + SPI_CFG1_REG);
return 0;
}
static int mtk_spi_setup(struct spi_device *spi) static int mtk_spi_setup(struct spi_device *spi)
{ {
struct mtk_spi *mdata = spi_master_get_devdata(spi->master); struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
...@@ -644,6 +683,7 @@ static int mtk_spi_probe(struct platform_device *pdev) ...@@ -644,6 +683,7 @@ static int mtk_spi_probe(struct platform_device *pdev)
master->transfer_one = mtk_spi_transfer_one; master->transfer_one = mtk_spi_transfer_one;
master->can_dma = mtk_spi_can_dma; master->can_dma = mtk_spi_can_dma;
master->setup = mtk_spi_setup; master->setup = mtk_spi_setup;
master->set_cs_timing = mtk_spi_set_hw_cs_timing;
of_id = of_match_node(mtk_spi_of_match, pdev->dev.of_node); of_id = of_match_node(mtk_spi_of_match, pdev->dev.of_node);
if (!of_id) { if (!of_id) {
......
...@@ -96,10 +96,16 @@ struct orion_spi { ...@@ -96,10 +96,16 @@ struct orion_spi {
struct clk *clk; struct clk *clk;
struct clk *axi_clk; struct clk *axi_clk;
const struct orion_spi_dev *devdata; const struct orion_spi_dev *devdata;
struct device *dev;
struct orion_child_options child[ORION_NUM_CHIPSELECTS]; struct orion_child_options child[ORION_NUM_CHIPSELECTS];
}; };
#ifdef CONFIG_PM
static int orion_spi_runtime_suspend(struct device *dev);
static int orion_spi_runtime_resume(struct device *dev);
#endif
static inline void __iomem *spi_reg(struct orion_spi *orion_spi, u32 reg) static inline void __iomem *spi_reg(struct orion_spi *orion_spi, u32 reg)
{ {
return orion_spi->base + reg; return orion_spi->base + reg;
...@@ -369,8 +375,15 @@ orion_spi_write_read_8bit(struct spi_device *spi, ...@@ -369,8 +375,15 @@ orion_spi_write_read_8bit(struct spi_device *spi,
{ {
void __iomem *tx_reg, *rx_reg, *int_reg; void __iomem *tx_reg, *rx_reg, *int_reg;
struct orion_spi *orion_spi; struct orion_spi *orion_spi;
bool cs_single_byte;
cs_single_byte = spi->mode & SPI_CS_WORD;
orion_spi = spi_master_get_devdata(spi->master); orion_spi = spi_master_get_devdata(spi->master);
if (cs_single_byte)
orion_spi_set_cs(spi, 0);
tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG); tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG);
rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG); rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG);
int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG); int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG);
...@@ -384,6 +397,11 @@ orion_spi_write_read_8bit(struct spi_device *spi, ...@@ -384,6 +397,11 @@ orion_spi_write_read_8bit(struct spi_device *spi,
writel(0, tx_reg); writel(0, tx_reg);
if (orion_spi_wait_till_ready(orion_spi) < 0) { if (orion_spi_wait_till_ready(orion_spi) < 0) {
if (cs_single_byte) {
orion_spi_set_cs(spi, 1);
/* Satisfy some SLIC devices requirements */
udelay(4);
}
dev_err(&spi->dev, "TXS timed out\n"); dev_err(&spi->dev, "TXS timed out\n");
return -1; return -1;
} }
...@@ -391,6 +409,12 @@ orion_spi_write_read_8bit(struct spi_device *spi, ...@@ -391,6 +409,12 @@ orion_spi_write_read_8bit(struct spi_device *spi,
if (rx_buf && *rx_buf) if (rx_buf && *rx_buf)
*(*rx_buf)++ = readl(rx_reg); *(*rx_buf)++ = readl(rx_reg);
if (cs_single_byte) {
orion_spi_set_cs(spi, 1);
/* Satisfy some SLIC devices requirements */
udelay(4);
}
return 1; return 1;
} }
...@@ -401,6 +425,11 @@ orion_spi_write_read_16bit(struct spi_device *spi, ...@@ -401,6 +425,11 @@ orion_spi_write_read_16bit(struct spi_device *spi,
void __iomem *tx_reg, *rx_reg, *int_reg; void __iomem *tx_reg, *rx_reg, *int_reg;
struct orion_spi *orion_spi; struct orion_spi *orion_spi;
if (spi->mode & SPI_CS_WORD) {
dev_err(&spi->dev, "SPI_CS_WORD is only supported for 8 bit words\n");
return -1;
}
orion_spi = spi_master_get_devdata(spi->master); orion_spi = spi_master_get_devdata(spi->master);
tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG); tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG);
rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG); rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG);
...@@ -440,12 +469,13 @@ orion_spi_write_read(struct spi_device *spi, struct spi_transfer *xfer) ...@@ -440,12 +469,13 @@ orion_spi_write_read(struct spi_device *spi, struct spi_transfer *xfer)
orion_spi = spi_master_get_devdata(spi->master); orion_spi = spi_master_get_devdata(spi->master);
/* /*
* Use SPI direct write mode if base address is available. Otherwise * Use SPI direct write mode if base address is available
* fall back to PIO mode for this transfer. * and SPI_CS_WORD flag is not set.
* Otherwise fall back to PIO mode for this transfer.
*/ */
vaddr = orion_spi->child[cs].direct_access.vaddr; vaddr = orion_spi->child[cs].direct_access.vaddr;
if (vaddr && xfer->tx_buf && word_len == 8) { if (vaddr && xfer->tx_buf && word_len == 8 && (spi->mode & SPI_CS_WORD) == 0) {
unsigned int cnt = count / 4; unsigned int cnt = count / 4;
unsigned int rem = count % 4; unsigned int rem = count % 4;
...@@ -507,7 +537,21 @@ static int orion_spi_transfer_one(struct spi_master *master, ...@@ -507,7 +537,21 @@ static int orion_spi_transfer_one(struct spi_master *master,
static int orion_spi_setup(struct spi_device *spi) static int orion_spi_setup(struct spi_device *spi)
{ {
return orion_spi_setup_transfer(spi, NULL); int ret;
#ifdef CONFIG_PM
struct orion_spi *orion_spi = spi_master_get_devdata(spi->master);
struct device *dev = orion_spi->dev;
orion_spi_runtime_resume(dev);
#endif
ret = orion_spi_setup_transfer(spi, NULL);
#ifdef CONFIG_PM
orion_spi_runtime_suspend(dev);
#endif
return ret;
} }
static int orion_spi_reset(struct orion_spi *orion_spi) static int orion_spi_reset(struct orion_spi *orion_spi)
...@@ -616,7 +660,7 @@ static int orion_spi_probe(struct platform_device *pdev) ...@@ -616,7 +660,7 @@ static int orion_spi_probe(struct platform_device *pdev)
} }
/* we support all 4 SPI modes and LSB first option */ /* we support all 4 SPI modes and LSB first option */
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST; master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST | SPI_CS_WORD;
master->set_cs = orion_spi_set_cs; master->set_cs = orion_spi_set_cs;
master->transfer_one = orion_spi_transfer_one; master->transfer_one = orion_spi_transfer_one;
master->num_chipselect = ORION_NUM_CHIPSELECTS; master->num_chipselect = ORION_NUM_CHIPSELECTS;
...@@ -630,6 +674,7 @@ static int orion_spi_probe(struct platform_device *pdev) ...@@ -630,6 +674,7 @@ static int orion_spi_probe(struct platform_device *pdev)
spi = spi_master_get_devdata(master); spi = spi_master_get_devdata(master);
spi->master = master; spi->master = master;
spi->dev = &pdev->dev;
of_id = of_match_device(orion_spi_of_match_table, &pdev->dev); of_id = of_match_device(orion_spi_of_match_table, &pdev->dev);
devdata = (of_id) ? of_id->data : &orion_spi_dev_data; devdata = (of_id) ? of_id->data : &orion_spi_dev_data;
......
...@@ -21,7 +21,8 @@ enum { ...@@ -21,7 +21,8 @@ enum {
PORT_BSW1, PORT_BSW1,
PORT_BSW2, PORT_BSW2,
PORT_CE4100, PORT_CE4100,
PORT_LPT, PORT_LPT0,
PORT_LPT1,
}; };
struct pxa_spi_info { struct pxa_spi_info {
...@@ -57,8 +58,10 @@ static struct dw_dma_slave bsw1_rx_param = { .src_id = 7 }; ...@@ -57,8 +58,10 @@ static struct dw_dma_slave bsw1_rx_param = { .src_id = 7 };
static struct dw_dma_slave bsw2_tx_param = { .dst_id = 8 }; static struct dw_dma_slave bsw2_tx_param = { .dst_id = 8 };
static struct dw_dma_slave bsw2_rx_param = { .src_id = 9 }; static struct dw_dma_slave bsw2_rx_param = { .src_id = 9 };
static struct dw_dma_slave lpt_tx_param = { .dst_id = 0 }; static struct dw_dma_slave lpt1_tx_param = { .dst_id = 0 };
static struct dw_dma_slave lpt_rx_param = { .src_id = 1 }; static struct dw_dma_slave lpt1_rx_param = { .src_id = 1 };
static struct dw_dma_slave lpt0_tx_param = { .dst_id = 2 };
static struct dw_dma_slave lpt0_rx_param = { .src_id = 3 };
static bool lpss_dma_filter(struct dma_chan *chan, void *param) static bool lpss_dma_filter(struct dma_chan *chan, void *param)
{ {
...@@ -185,12 +188,19 @@ static struct pxa_spi_info spi_info_configs[] = { ...@@ -185,12 +188,19 @@ static struct pxa_spi_info spi_info_configs[] = {
.num_chipselect = 1, .num_chipselect = 1,
.max_clk_rate = 50000000, .max_clk_rate = 50000000,
}, },
[PORT_LPT] = { [PORT_LPT0] = {
.type = LPSS_LPT_SSP, .type = LPSS_LPT_SSP,
.port_id = 0, .port_id = 0,
.setup = lpss_spi_setup, .setup = lpss_spi_setup,
.tx_param = &lpt_tx_param, .tx_param = &lpt0_tx_param,
.rx_param = &lpt_rx_param, .rx_param = &lpt0_rx_param,
},
[PORT_LPT1] = {
.type = LPSS_LPT_SSP,
.port_id = 1,
.setup = lpss_spi_setup,
.tx_param = &lpt1_tx_param,
.rx_param = &lpt1_rx_param,
}, },
}; };
...@@ -285,8 +295,11 @@ static const struct pci_device_id pxa2xx_spi_pci_devices[] = { ...@@ -285,8 +295,11 @@ static const struct pci_device_id pxa2xx_spi_pci_devices[] = {
{ PCI_VDEVICE(INTEL, 0x2290), PORT_BSW1 }, { PCI_VDEVICE(INTEL, 0x2290), PORT_BSW1 },
{ PCI_VDEVICE(INTEL, 0x22ac), PORT_BSW2 }, { PCI_VDEVICE(INTEL, 0x22ac), PORT_BSW2 },
{ PCI_VDEVICE(INTEL, 0x2e6a), PORT_CE4100 }, { PCI_VDEVICE(INTEL, 0x2e6a), PORT_CE4100 },
{ PCI_VDEVICE(INTEL, 0x9ce6), PORT_LPT }, { PCI_VDEVICE(INTEL, 0x9c65), PORT_LPT0 },
{ }, { PCI_VDEVICE(INTEL, 0x9c66), PORT_LPT1 },
{ PCI_VDEVICE(INTEL, 0x9ce5), PORT_LPT0 },
{ PCI_VDEVICE(INTEL, 0x9ce6), PORT_LPT1 },
{ }
}; };
MODULE_DEVICE_TABLE(pci, pxa2xx_spi_pci_devices); MODULE_DEVICE_TABLE(pci, pxa2xx_spi_pci_devices);
......
...@@ -1492,6 +1492,10 @@ static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { ...@@ -1492,6 +1492,10 @@ static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP }, { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP }, { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP }, { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
/* ADL-P */
{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
/* APL */ /* APL */
{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
......
...@@ -511,8 +511,7 @@ static int qcom_qspi_probe(struct platform_device *pdev) ...@@ -511,8 +511,7 @@ static int qcom_qspi_probe(struct platform_device *pdev)
ret = platform_get_irq(pdev, 0); ret = platform_get_irq(pdev, 0);
if (ret < 0) if (ret < 0)
return ret; return ret;
ret = devm_request_irq(dev, ret, qcom_qspi_irq, ret = devm_request_irq(dev, ret, qcom_qspi_irq, 0, dev_name(dev), ctrl);
IRQF_TRIGGER_HIGH, dev_name(dev), ctrl);
if (ret) { if (ret) {
dev_err(dev, "Failed to request irq %d\n", ret); dev_err(dev, "Failed to request irq %d\n", ret);
return ret; return ret;
......
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>
#include <linux/spi/spi.h>
struct rtspi {
void __iomem *base;
};
/* SPI Flash Configuration Register */
#define RTL_SPI_SFCR 0x00
#define RTL_SPI_SFCR_RBO BIT(28)
#define RTL_SPI_SFCR_WBO BIT(27)
/* SPI Flash Control and Status Register */
#define RTL_SPI_SFCSR 0x08
#define RTL_SPI_SFCSR_CSB0 BIT(31)
#define RTL_SPI_SFCSR_CSB1 BIT(30)
#define RTL_SPI_SFCSR_RDY BIT(27)
#define RTL_SPI_SFCSR_CS BIT(24)
#define RTL_SPI_SFCSR_LEN_MASK ~(0x03 << 28)
#define RTL_SPI_SFCSR_LEN1 (0x00 << 28)
#define RTL_SPI_SFCSR_LEN4 (0x03 << 28)
/* SPI Flash Data Register */
#define RTL_SPI_SFDR 0x0c
#define REG(x) (rtspi->base + x)
static void rt_set_cs(struct spi_device *spi, bool active)
{
struct rtspi *rtspi = spi_controller_get_devdata(spi->controller);
u32 value;
/* CS0 bit is active low */
value = readl(REG(RTL_SPI_SFCSR));
if (active)
value |= RTL_SPI_SFCSR_CSB0;
else
value &= ~RTL_SPI_SFCSR_CSB0;
writel(value, REG(RTL_SPI_SFCSR));
}
static void set_size(struct rtspi *rtspi, int size)
{
u32 value;
value = readl(REG(RTL_SPI_SFCSR));
value &= RTL_SPI_SFCSR_LEN_MASK;
if (size == 4)
value |= RTL_SPI_SFCSR_LEN4;
else if (size == 1)
value |= RTL_SPI_SFCSR_LEN1;
writel(value, REG(RTL_SPI_SFCSR));
}
static inline void wait_ready(struct rtspi *rtspi)
{
while (!(readl(REG(RTL_SPI_SFCSR)) & RTL_SPI_SFCSR_RDY))
cpu_relax();
}
static void send4(struct rtspi *rtspi, const u32 *buf)
{
wait_ready(rtspi);
set_size(rtspi, 4);
writel(*buf, REG(RTL_SPI_SFDR));
}
static void send1(struct rtspi *rtspi, const u8 *buf)
{
wait_ready(rtspi);
set_size(rtspi, 1);
writel(buf[0] << 24, REG(RTL_SPI_SFDR));
}
static void rcv4(struct rtspi *rtspi, u32 *buf)
{
wait_ready(rtspi);
set_size(rtspi, 4);
*buf = readl(REG(RTL_SPI_SFDR));
}
static void rcv1(struct rtspi *rtspi, u8 *buf)
{
wait_ready(rtspi);
set_size(rtspi, 1);
*buf = readl(REG(RTL_SPI_SFDR)) >> 24;
}
static int transfer_one(struct spi_controller *ctrl, struct spi_device *spi,
struct spi_transfer *xfer)
{
struct rtspi *rtspi = spi_controller_get_devdata(ctrl);
void *rx_buf;
const void *tx_buf;
int cnt;
tx_buf = xfer->tx_buf;
rx_buf = xfer->rx_buf;
cnt = xfer->len;
if (tx_buf) {
while (cnt >= 4) {
send4(rtspi, tx_buf);
tx_buf += 4;
cnt -= 4;
}
while (cnt) {
send1(rtspi, tx_buf);
tx_buf++;
cnt--;
}
} else if (rx_buf) {
while (cnt >= 4) {
rcv4(rtspi, rx_buf);
rx_buf += 4;
cnt -= 4;
}
while (cnt) {
rcv1(rtspi, rx_buf);
rx_buf++;
cnt--;
}
}
spi_finalize_current_transfer(ctrl);
return 0;
}
static void init_hw(struct rtspi *rtspi)
{
u32 value;
/* Turn on big-endian byte ordering */
value = readl(REG(RTL_SPI_SFCR));
value |= RTL_SPI_SFCR_RBO | RTL_SPI_SFCR_WBO;
writel(value, REG(RTL_SPI_SFCR));
value = readl(REG(RTL_SPI_SFCSR));
/* Permanently disable CS1, since it's never used */
value |= RTL_SPI_SFCSR_CSB1;
/* Select CS0 for use */
value &= RTL_SPI_SFCSR_CS;
writel(value, REG(RTL_SPI_SFCSR));
}
static int realtek_rtl_spi_probe(struct platform_device *pdev)
{
struct spi_controller *ctrl;
struct rtspi *rtspi;
int err;
ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(*rtspi));
if (!ctrl) {
dev_err(&pdev->dev, "Error allocating SPI controller\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, ctrl);
rtspi = spi_controller_get_devdata(ctrl);
rtspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(rtspi->base)) {
dev_err(&pdev->dev, "Could not map SPI register address");
return -ENOMEM;
}
init_hw(rtspi);
ctrl->dev.of_node = pdev->dev.of_node;
ctrl->flags = SPI_CONTROLLER_HALF_DUPLEX;
ctrl->set_cs = rt_set_cs;
ctrl->transfer_one = transfer_one;
err = devm_spi_register_controller(&pdev->dev, ctrl);
if (err) {
dev_err(&pdev->dev, "Could not register SPI controller\n");
return -ENODEV;
}
return 0;
}
static const struct of_device_id realtek_rtl_spi_of_ids[] = {
{ .compatible = "realtek,rtl8380-spi" },
{ .compatible = "realtek,rtl8382-spi" },
{ .compatible = "realtek,rtl8391-spi" },
{ .compatible = "realtek,rtl8392-spi" },
{ .compatible = "realtek,rtl8393-spi" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, realtek_rtl_spi_of_ids);
static struct platform_driver realtek_rtl_spi_driver = {
.probe = realtek_rtl_spi_probe,
.driver = {
.name = "realtek-rtl-spi",
.of_match_table = realtek_rtl_spi_of_ids,
},
};
module_platform_driver(realtek_rtl_spi_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Bert Vermeulen <bert@biot.com>");
MODULE_DESCRIPTION("Realtek RTL SPI driver");
...@@ -566,7 +566,7 @@ static int rockchip_spi_slave_abort(struct spi_controller *ctlr) ...@@ -566,7 +566,7 @@ static int rockchip_spi_slave_abort(struct spi_controller *ctlr)
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
rs->slave_abort = true; rs->slave_abort = true;
complete(&ctlr->xfer_completion); spi_finalize_current_transfer(ctlr);
return 0; return 0;
} }
......
...@@ -176,15 +176,14 @@ static int rpcif_spi_remove(struct platform_device *pdev) ...@@ -176,15 +176,14 @@ static int rpcif_spi_remove(struct platform_device *pdev)
return 0; return 0;
} }
#ifdef CONFIG_PM_SLEEP static int __maybe_unused rpcif_spi_suspend(struct device *dev)
static int rpcif_spi_suspend(struct device *dev)
{ {
struct spi_controller *ctlr = dev_get_drvdata(dev); struct spi_controller *ctlr = dev_get_drvdata(dev);
return spi_controller_suspend(ctlr); return spi_controller_suspend(ctlr);
} }
static int rpcif_spi_resume(struct device *dev) static int __maybe_unused rpcif_spi_resume(struct device *dev)
{ {
struct spi_controller *ctlr = dev_get_drvdata(dev); struct spi_controller *ctlr = dev_get_drvdata(dev);
...@@ -192,17 +191,15 @@ static int rpcif_spi_resume(struct device *dev) ...@@ -192,17 +191,15 @@ static int rpcif_spi_resume(struct device *dev)
} }
static SIMPLE_DEV_PM_OPS(rpcif_spi_pm_ops, rpcif_spi_suspend, rpcif_spi_resume); static SIMPLE_DEV_PM_OPS(rpcif_spi_pm_ops, rpcif_spi_suspend, rpcif_spi_resume);
#define DEV_PM_OPS (&rpcif_spi_pm_ops)
#else
#define DEV_PM_OPS NULL
#endif
static struct platform_driver rpcif_spi_driver = { static struct platform_driver rpcif_spi_driver = {
.probe = rpcif_spi_probe, .probe = rpcif_spi_probe,
.remove = rpcif_spi_remove, .remove = rpcif_spi_remove,
.driver = { .driver = {
.name = "rpc-if-spi", .name = "rpc-if-spi",
.pm = DEV_PM_OPS, #ifdef CONFIG_PM_SLEEP
.pm = &rpcif_spi_pm_ops,
#endif
}, },
}; };
module_platform_driver(rpcif_spi_driver); module_platform_driver(rpcif_spi_driver);
......
...@@ -259,11 +259,13 @@ static const u32 sh_msiof_spi_div_array[] = { ...@@ -259,11 +259,13 @@ static const u32 sh_msiof_spi_div_array[] = {
}; };
static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
unsigned long parent_rate, u32 spi_hz) struct spi_transfer *t)
{ {
unsigned long parent_rate = clk_get_rate(p->clk);
unsigned int div_pow = p->min_div_pow;
u32 spi_hz = t->speed_hz;
unsigned long div; unsigned long div;
u32 brps, scr; u32 brps, scr;
unsigned int div_pow = p->min_div_pow;
if (!spi_hz || !parent_rate) { if (!spi_hz || !parent_rate) {
WARN(1, "Invalid clock rate parameters %lu and %u\n", WARN(1, "Invalid clock rate parameters %lu and %u\n",
...@@ -292,6 +294,8 @@ static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, ...@@ -292,6 +294,8 @@ static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
brps = 32; brps = 32;
} }
t->effective_speed_hz = parent_rate / (brps << div_pow);
scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps); scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
sh_msiof_write(p, SITSCR, scr); sh_msiof_write(p, SITSCR, scr);
if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
...@@ -923,7 +927,7 @@ static int sh_msiof_transfer_one(struct spi_controller *ctlr, ...@@ -923,7 +927,7 @@ static int sh_msiof_transfer_one(struct spi_controller *ctlr,
/* setup clocks (clock already enabled in chipselect()) */ /* setup clocks (clock already enabled in chipselect()) */
if (!spi_controller_is_slave(p->ctlr)) if (!spi_controller_is_slave(p->ctlr))
sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); sh_msiof_spi_set_clk_regs(p, t);
while (ctlr->dma_tx && len > 15) { while (ctlr->dma_tx && len > 15) {
/* /*
...@@ -1258,6 +1262,7 @@ static int sh_msiof_spi_probe(struct platform_device *pdev) ...@@ -1258,6 +1262,7 @@ static int sh_msiof_spi_probe(struct platform_device *pdev)
const struct sh_msiof_chipdata *chipdata; const struct sh_msiof_chipdata *chipdata;
struct sh_msiof_spi_info *info; struct sh_msiof_spi_info *info;
struct sh_msiof_spi_priv *p; struct sh_msiof_spi_priv *p;
unsigned long clksrc;
int i; int i;
int ret; int ret;
...@@ -1333,6 +1338,9 @@ static int sh_msiof_spi_probe(struct platform_device *pdev) ...@@ -1333,6 +1338,9 @@ static int sh_msiof_spi_probe(struct platform_device *pdev)
/* init controller code */ /* init controller code */
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
clksrc = clk_get_rate(p->clk);
ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
ctlr->flags = chipdata->ctlr_flags; ctlr->flags = chipdata->ctlr_flags;
ctlr->bus_num = pdev->id; ctlr->bus_num = pdev->id;
ctlr->num_chipselect = p->info->num_chipselect; ctlr->num_chipselect = p->info->num_chipselect;
......
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SPI bus driver for CSR SiRFprimaII
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/reset.h>
#define DRIVER_NAME "sirfsoc_spi"
/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE BIT(16)
#define SIRFSOC_SPI_CMD_MODE BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
#define SIRFSOC_SPI_TRAN_MSB BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE BIT(0)
#define SIRFSOC_SPI_TX_DONE BIT(1)
#define SIRFSOC_SPI_RX_OFLOW BIT(2)
#define SIRFSOC_SPI_TX_UFLOW BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA BIT(4)
#define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
#define SIRFSOC_SPI_FRM_END BIT(10)
/* TX RX enable */
#define SIRFSOC_SPI_RX_EN BIT(0)
#define SIRFSOC_SPI_TX_EN BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN BIT(2)
#define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET BIT(0)
#define SIRFSOC_SPI_FIFO_START BIT(1)
/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
/* USP related */
#define SIRFSOC_USP_SYNC_MODE BIT(0)
#define SIRFSOC_USP_SLV_MODE BIT(1)
#define SIRFSOC_USP_LSB BIT(4)
#define SIRFSOC_USP_EN BIT(5)
#define SIRFSOC_USP_RXD_FALLING_EDGE BIT(6)
#define SIRFSOC_USP_TXD_FALLING_EDGE BIT(7)
#define SIRFSOC_USP_CS_HIGH_VALID BIT(9)
#define SIRFSOC_USP_SCLK_IDLE_STAT BIT(11)
#define SIRFSOC_USP_TFS_IO_MODE BIT(14)
#define SIRFSOC_USP_TFS_IO_INPUT BIT(19)
#define SIRFSOC_USP_RXD_DELAY_LEN_MASK 0xFF
#define SIRFSOC_USP_TXD_DELAY_LEN_MASK 0xFF
#define SIRFSOC_USP_RXD_DELAY_OFFSET 0
#define SIRFSOC_USP_TXD_DELAY_OFFSET 8
#define SIRFSOC_USP_RXD_DELAY_LEN 1
#define SIRFSOC_USP_TXD_DELAY_LEN 1
#define SIRFSOC_USP_CLK_DIVISOR_OFFSET 21
#define SIRFSOC_USP_CLK_DIVISOR_MASK 0x3FF
#define SIRFSOC_USP_CLK_10_11_MASK 0x3
#define SIRFSOC_USP_CLK_10_11_OFFSET 30
#define SIRFSOC_USP_CLK_12_15_MASK 0xF
#define SIRFSOC_USP_CLK_12_15_OFFSET 24
#define SIRFSOC_USP_TX_DATA_OFFSET 0
#define SIRFSOC_USP_TX_SYNC_OFFSET 8
#define SIRFSOC_USP_TX_FRAME_OFFSET 16
#define SIRFSOC_USP_TX_SHIFTER_OFFSET 24
#define SIRFSOC_USP_TX_DATA_MASK 0xFF
#define SIRFSOC_USP_TX_SYNC_MASK 0xFF
#define SIRFSOC_USP_TX_FRAME_MASK 0xFF
#define SIRFSOC_USP_TX_SHIFTER_MASK 0x1F
#define SIRFSOC_USP_RX_DATA_OFFSET 0
#define SIRFSOC_USP_RX_FRAME_OFFSET 8
#define SIRFSOC_USP_RX_SHIFTER_OFFSET 16
#define SIRFSOC_USP_RX_DATA_MASK 0xFF
#define SIRFSOC_USP_RX_FRAME_MASK 0xFF
#define SIRFSOC_USP_RX_SHIFTER_MASK 0x1F
#define SIRFSOC_USP_CS_HIGH_VALUE BIT(1)
#define SIRFSOC_SPI_FIFO_SC_OFFSET 0
#define SIRFSOC_SPI_FIFO_LC_OFFSET 10
#define SIRFSOC_SPI_FIFO_HC_OFFSET 20
#define SIRFSOC_SPI_FIFO_FULL_MASK(s) (1 << ((s)->fifo_full_offset))
#define SIRFSOC_SPI_FIFO_EMPTY_MASK(s) (1 << ((s)->fifo_full_offset + 1))
#define SIRFSOC_SPI_FIFO_THD_MASK(s) ((s)->fifo_size - 1)
#define SIRFSOC_SPI_FIFO_THD_OFFSET 2
#define SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(s, val) \
((val) & (s)->fifo_level_chk_mask)
enum sirf_spi_type {
SIRF_REAL_SPI,
SIRF_USP_SPI_P2,
SIRF_USP_SPI_A7,
};
/*
* only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
* due to the limitation of dma controller
*/
#define ALIGNED(x) (!((u32)x & 0x3))
#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
#define SIRFSOC_MAX_CMD_BYTES 4
#define SIRFSOC_SPI_DEFAULT_FRQ 1000000
struct sirf_spi_register {
/*SPI and USP-SPI common*/
u32 tx_rx_en;
u32 int_en;
u32 int_st;
u32 tx_dma_io_ctrl;
u32 tx_dma_io_len;
u32 txfifo_ctrl;
u32 txfifo_level_chk;
u32 txfifo_op;
u32 txfifo_st;
u32 txfifo_data;
u32 rx_dma_io_ctrl;
u32 rx_dma_io_len;
u32 rxfifo_ctrl;
u32 rxfifo_level_chk;
u32 rxfifo_op;
u32 rxfifo_st;
u32 rxfifo_data;
/*SPI self*/
u32 spi_ctrl;
u32 spi_cmd;
u32 spi_dummy_delay_ctrl;
/*USP-SPI self*/
u32 usp_mode1;
u32 usp_mode2;
u32 usp_tx_frame_ctrl;
u32 usp_rx_frame_ctrl;
u32 usp_pin_io_data;
u32 usp_risc_dsp_mode;
u32 usp_async_param_reg;
u32 usp_irda_x_mode_div;
u32 usp_sm_cfg;
u32 usp_int_en_clr;
};
static const struct sirf_spi_register real_spi_register = {
.tx_rx_en = 0x8,
.int_en = 0xc,
.int_st = 0x10,
.tx_dma_io_ctrl = 0x100,
.tx_dma_io_len = 0x104,
.txfifo_ctrl = 0x108,
.txfifo_level_chk = 0x10c,
.txfifo_op = 0x110,
.txfifo_st = 0x114,
.txfifo_data = 0x118,
.rx_dma_io_ctrl = 0x120,
.rx_dma_io_len = 0x124,
.rxfifo_ctrl = 0x128,
.rxfifo_level_chk = 0x12c,
.rxfifo_op = 0x130,
.rxfifo_st = 0x134,
.rxfifo_data = 0x138,
.spi_ctrl = 0x0,
.spi_cmd = 0x4,
.spi_dummy_delay_ctrl = 0x144,
};
static const struct sirf_spi_register usp_spi_register = {
.tx_rx_en = 0x10,
.int_en = 0x14,
.int_st = 0x18,
.tx_dma_io_ctrl = 0x100,
.tx_dma_io_len = 0x104,
.txfifo_ctrl = 0x108,
.txfifo_level_chk = 0x10c,
.txfifo_op = 0x110,
.txfifo_st = 0x114,
.txfifo_data = 0x118,
.rx_dma_io_ctrl = 0x120,
.rx_dma_io_len = 0x124,
.rxfifo_ctrl = 0x128,
.rxfifo_level_chk = 0x12c,
.rxfifo_op = 0x130,
.rxfifo_st = 0x134,
.rxfifo_data = 0x138,
.usp_mode1 = 0x0,
.usp_mode2 = 0x4,
.usp_tx_frame_ctrl = 0x8,
.usp_rx_frame_ctrl = 0xc,
.usp_pin_io_data = 0x1c,
.usp_risc_dsp_mode = 0x20,
.usp_async_param_reg = 0x24,
.usp_irda_x_mode_div = 0x28,
.usp_sm_cfg = 0x2c,
.usp_int_en_clr = 0x140,
};
struct sirfsoc_spi {
struct spi_bitbang bitbang;
struct completion rx_done;
struct completion tx_done;
void __iomem *base;
u32 ctrl_freq; /* SPI controller clock speed */
struct clk *clk;
/* rx & tx bufs from the spi_transfer */
const void *tx;
void *rx;
/* place received word into rx buffer */
void (*rx_word) (struct sirfsoc_spi *);
/* get word from tx buffer for sending */
void (*tx_word) (struct sirfsoc_spi *);
/* number of words left to be tranmitted/received */
unsigned int left_tx_word;
unsigned int left_rx_word;
/* rx & tx DMA channels */
struct dma_chan *rx_chan;
struct dma_chan *tx_chan;
dma_addr_t src_start;
dma_addr_t dst_start;
int word_width; /* in bytes */
/*
* if tx size is not more than 4 and rx size is NULL, use
* command model
*/
bool tx_by_cmd;
bool hw_cs;
enum sirf_spi_type type;
const struct sirf_spi_register *regs;
unsigned int fifo_size;
/* fifo empty offset is (fifo full offset + 1)*/
unsigned int fifo_full_offset;
/* fifo_level_chk_mask is (fifo_size/4 - 1) */
unsigned int fifo_level_chk_mask;
unsigned int dat_max_frm_len;
};
struct sirf_spi_comp_data {
const struct sirf_spi_register *regs;
enum sirf_spi_type type;
unsigned int dat_max_frm_len;
unsigned int fifo_size;
void (*hwinit)(struct sirfsoc_spi *sspi);
};
static void sirfsoc_usp_hwinit(struct sirfsoc_spi *sspi)
{
/* reset USP and let USP can operate */
writel(readl(sspi->base + sspi->regs->usp_mode1) &
~SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
writel(readl(sspi->base + sspi->regs->usp_mode1) |
SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
}
static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
u32 data;
u8 *rx = sspi->rx;
data = readl(sspi->base + sspi->regs->rxfifo_data);
if (rx) {
*rx++ = (u8) data;
sspi->rx = rx;
}
sspi->left_rx_word--;
}
static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u8 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + sspi->regs->txfifo_data);
sspi->left_tx_word--;
}
static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
u32 data;
u16 *rx = sspi->rx;
data = readl(sspi->base + sspi->regs->rxfifo_data);
if (rx) {
*rx++ = (u16) data;
sspi->rx = rx;
}
sspi->left_rx_word--;
}
static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u16 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + sspi->regs->txfifo_data);
sspi->left_tx_word--;
}
static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
u32 data;
u32 *rx = sspi->rx;
data = readl(sspi->base + sspi->regs->rxfifo_data);
if (rx) {
*rx++ = (u32) data;
sspi->rx = rx;
}
sspi->left_rx_word--;
}
static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u32 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + sspi->regs->txfifo_data);
sspi->left_tx_word--;
}
static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
struct sirfsoc_spi *sspi = dev_id;
u32 spi_stat;
spi_stat = readl(sspi->base + sspi->regs->int_st);
if (sspi->tx_by_cmd && sspi->type == SIRF_REAL_SPI
&& (spi_stat & SIRFSOC_SPI_FRM_END)) {
complete(&sspi->tx_done);
writel(0x0, sspi->base + sspi->regs->int_en);
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
return IRQ_HANDLED;
}
/* Error Conditions */
if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
spi_stat & SIRFSOC_SPI_TX_UFLOW) {
complete(&sspi->tx_done);
complete(&sspi->rx_done);
switch (sspi->type) {
case SIRF_REAL_SPI:
case SIRF_USP_SPI_P2:
writel(0x0, sspi->base + sspi->regs->int_en);
break;
case SIRF_USP_SPI_A7:
writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
break;
}
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
return IRQ_HANDLED;
}
if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
complete(&sspi->tx_done);
while (!(readl(sspi->base + sspi->regs->int_st) &
SIRFSOC_SPI_RX_IO_DMA))
cpu_relax();
complete(&sspi->rx_done);
switch (sspi->type) {
case SIRF_REAL_SPI:
case SIRF_USP_SPI_P2:
writel(0x0, sspi->base + sspi->regs->int_en);
break;
case SIRF_USP_SPI_A7:
writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
break;
}
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
return IRQ_HANDLED;
}
static void spi_sirfsoc_dma_fini_callback(void *data)
{
struct completion *dma_complete = data;
complete(dma_complete);
}
static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
int timeout = t->len * 10;
u32 cmd;
sspi = spi_master_get_devdata(spi->master);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
memcpy(&cmd, sspi->tx, t->len);
if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
cmd = cpu_to_be32(cmd) >>
((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
if (sspi->word_width == 2 && t->len == 4 &&
(!(spi->mode & SPI_LSB_FIRST)))
cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
writel(cmd, sspi->base + sspi->regs->spi_cmd);
writel(SIRFSOC_SPI_FRM_END_INT_EN,
sspi->base + sspi->regs->int_en);
writel(SIRFSOC_SPI_CMD_TX_EN,
sspi->base + sspi->regs->tx_rx_en);
if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
dev_err(&spi->dev, "cmd transfer timeout\n");
return;
}
sspi->left_rx_word -= t->len;
}
static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
struct dma_async_tx_descriptor *rx_desc, *tx_desc;
int timeout = t->len * 10;
sspi = spi_master_get_devdata(spi->master);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
switch (sspi->type) {
case SIRF_REAL_SPI:
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->txfifo_op);
writel(0, sspi->base + sspi->regs->int_en);
break;
case SIRF_USP_SPI_P2:
writel(0x0, sspi->base + sspi->regs->rxfifo_op);
writel(0x0, sspi->base + sspi->regs->txfifo_op);
writel(0, sspi->base + sspi->regs->int_en);
break;
case SIRF_USP_SPI_A7:
writel(0x0, sspi->base + sspi->regs->rxfifo_op);
writel(0x0, sspi->base + sspi->regs->txfifo_op);
writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
break;
}
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
if (sspi->left_tx_word < sspi->dat_max_frm_len) {
switch (sspi->type) {
case SIRF_REAL_SPI:
writel(readl(sspi->base + sspi->regs->spi_ctrl) |
SIRFSOC_SPI_ENA_AUTO_CLR |
SIRFSOC_SPI_MUL_DAT_MODE,
sspi->base + sspi->regs->spi_ctrl);
writel(sspi->left_tx_word - 1,
sspi->base + sspi->regs->tx_dma_io_len);
writel(sspi->left_tx_word - 1,
sspi->base + sspi->regs->rx_dma_io_len);
break;
case SIRF_USP_SPI_P2:
case SIRF_USP_SPI_A7:
/*USP simulate SPI, tx/rx_dma_io_len indicates bytes*/
writel(sspi->left_tx_word * sspi->word_width,
sspi->base + sspi->regs->tx_dma_io_len);
writel(sspi->left_tx_word * sspi->word_width,
sspi->base + sspi->regs->rx_dma_io_len);
break;
}
} else {
if (sspi->type == SIRF_REAL_SPI)
writel(readl(sspi->base + sspi->regs->spi_ctrl),
sspi->base + sspi->regs->spi_ctrl);
writel(0, sspi->base + sspi->regs->tx_dma_io_len);
writel(0, sspi->base + sspi->regs->rx_dma_io_len);
}
sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
(t->tx_buf != t->rx_buf) ?
DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
sspi->dst_start, t->len, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
rx_desc->callback = spi_sirfsoc_dma_fini_callback;
rx_desc->callback_param = &sspi->rx_done;
sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
(t->tx_buf != t->rx_buf) ?
DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
sspi->src_start, t->len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
tx_desc->callback = spi_sirfsoc_dma_fini_callback;
tx_desc->callback_param = &sspi->tx_done;
dmaengine_submit(tx_desc);
dmaengine_submit(rx_desc);
dma_async_issue_pending(sspi->tx_chan);
dma_async_issue_pending(sspi->rx_chan);
writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
sspi->base + sspi->regs->tx_rx_en);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7) {
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->txfifo_op);
}
if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
dev_err(&spi->dev, "transfer timeout\n");
dmaengine_terminate_all(sspi->rx_chan);
} else
sspi->left_rx_word = 0;
/*
* we only wait tx-done event if transferring by DMA. for PIO,
* we get rx data by writing tx data, so if rx is done, tx has
* done earlier
*/
if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
dev_err(&spi->dev, "transfer timeout\n");
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7)
writel(0, sspi->base + sspi->regs->tx_rx_en);
dmaengine_terminate_all(sspi->tx_chan);
}
dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
/* TX, RX FIFO stop */
writel(0, sspi->base + sspi->regs->rxfifo_op);
writel(0, sspi->base + sspi->regs->txfifo_op);
if (sspi->left_tx_word >= sspi->dat_max_frm_len)
writel(0, sspi->base + sspi->regs->tx_rx_en);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7)
writel(0, sspi->base + sspi->regs->tx_rx_en);
}
static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
int timeout = t->len * 10;
unsigned int data_units;
sspi = spi_master_get_devdata(spi->master);
do {
writel(SIRFSOC_SPI_FIFO_RESET,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_RESET,
sspi->base + sspi->regs->txfifo_op);
switch (sspi->type) {
case SIRF_USP_SPI_P2:
writel(0x0, sspi->base + sspi->regs->rxfifo_op);
writel(0x0, sspi->base + sspi->regs->txfifo_op);
writel(0, sspi->base + sspi->regs->int_en);
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
writel(min((sspi->left_tx_word * sspi->word_width),
sspi->fifo_size),
sspi->base + sspi->regs->tx_dma_io_len);
writel(min((sspi->left_rx_word * sspi->word_width),
sspi->fifo_size),
sspi->base + sspi->regs->rx_dma_io_len);
break;
case SIRF_USP_SPI_A7:
writel(0x0, sspi->base + sspi->regs->rxfifo_op);
writel(0x0, sspi->base + sspi->regs->txfifo_op);
writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
writel(min((sspi->left_tx_word * sspi->word_width),
sspi->fifo_size),
sspi->base + sspi->regs->tx_dma_io_len);
writel(min((sspi->left_rx_word * sspi->word_width),
sspi->fifo_size),
sspi->base + sspi->regs->rx_dma_io_len);
break;
case SIRF_REAL_SPI:
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->txfifo_op);
writel(0, sspi->base + sspi->regs->int_en);
writel(readl(sspi->base + sspi->regs->int_st),
sspi->base + sspi->regs->int_st);
writel(readl(sspi->base + sspi->regs->spi_ctrl) |
SIRFSOC_SPI_MUL_DAT_MODE |
SIRFSOC_SPI_ENA_AUTO_CLR,
sspi->base + sspi->regs->spi_ctrl);
data_units = sspi->fifo_size / sspi->word_width;
writel(min(sspi->left_tx_word, data_units) - 1,
sspi->base + sspi->regs->tx_dma_io_len);
writel(min(sspi->left_rx_word, data_units) - 1,
sspi->base + sspi->regs->rx_dma_io_len);
break;
}
while (!((readl(sspi->base + sspi->regs->txfifo_st)
& SIRFSOC_SPI_FIFO_FULL_MASK(sspi))) &&
sspi->left_tx_word)
sspi->tx_word(sspi);
writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
SIRFSOC_SPI_TX_UFLOW_INT_EN |
SIRFSOC_SPI_RX_OFLOW_INT_EN |
SIRFSOC_SPI_RX_IO_DMA_INT_EN,
sspi->base + sspi->regs->int_en);
writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
sspi->base + sspi->regs->tx_rx_en);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7) {
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + sspi->regs->txfifo_op);
}
if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
dev_err(&spi->dev, "transfer timeout\n");
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7)
writel(0, sspi->base + sspi->regs->tx_rx_en);
break;
}
while (!((readl(sspi->base + sspi->regs->rxfifo_st)
& SIRFSOC_SPI_FIFO_EMPTY_MASK(sspi))) &&
sspi->left_rx_word)
sspi->rx_word(sspi);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7)
writel(0, sspi->base + sspi->regs->tx_rx_en);
writel(0, sspi->base + sspi->regs->rxfifo_op);
writel(0, sspi->base + sspi->regs->txfifo_op);
} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
}
static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
sspi = spi_master_get_devdata(spi->master);
sspi->tx = t->tx_buf;
sspi->rx = t->rx_buf;
sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
reinit_completion(&sspi->rx_done);
reinit_completion(&sspi->tx_done);
/*
* in the transfer, if transfer data using command register with rx_buf
* null, just fill command data into command register and wait for its
* completion.
*/
if (sspi->type == SIRF_REAL_SPI && sspi->tx_by_cmd)
spi_sirfsoc_cmd_transfer(spi, t);
else if (IS_DMA_VALID(t))
spi_sirfsoc_dma_transfer(spi, t);
else
spi_sirfsoc_pio_transfer(spi, t);
return t->len - sspi->left_rx_word * sspi->word_width;
}
static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
if (sspi->hw_cs) {
u32 regval;
switch (sspi->type) {
case SIRF_REAL_SPI:
regval = readl(sspi->base + sspi->regs->spi_ctrl);
switch (value) {
case BITBANG_CS_ACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval |= SIRFSOC_SPI_CS_IO_OUT;
else
regval &= ~SIRFSOC_SPI_CS_IO_OUT;
break;
case BITBANG_CS_INACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval &= ~SIRFSOC_SPI_CS_IO_OUT;
else
regval |= SIRFSOC_SPI_CS_IO_OUT;
break;
}
writel(regval, sspi->base + sspi->regs->spi_ctrl);
break;
case SIRF_USP_SPI_P2:
case SIRF_USP_SPI_A7:
regval = readl(sspi->base +
sspi->regs->usp_pin_io_data);
switch (value) {
case BITBANG_CS_ACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval |= SIRFSOC_USP_CS_HIGH_VALUE;
else
regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
break;
case BITBANG_CS_INACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
else
regval |= SIRFSOC_USP_CS_HIGH_VALUE;
break;
}
writel(regval,
sspi->base + sspi->regs->usp_pin_io_data);
break;
}
} else {
switch (value) {
case BITBANG_CS_ACTIVE:
gpio_direction_output(spi->cs_gpio,
spi->mode & SPI_CS_HIGH ? 1 : 0);
break;
case BITBANG_CS_INACTIVE:
gpio_direction_output(spi->cs_gpio,
spi->mode & SPI_CS_HIGH ? 0 : 1);
break;
}
}
}
static int spi_sirfsoc_config_mode(struct spi_device *spi)
{
struct sirfsoc_spi *sspi;
u32 regval, usp_mode1;
sspi = spi_master_get_devdata(spi->master);
regval = readl(sspi->base + sspi->regs->spi_ctrl);
usp_mode1 = readl(sspi->base + sspi->regs->usp_mode1);
if (!(spi->mode & SPI_CS_HIGH)) {
regval |= SIRFSOC_SPI_CS_IDLE_STAT;
usp_mode1 &= ~SIRFSOC_USP_CS_HIGH_VALID;
} else {
regval &= ~SIRFSOC_SPI_CS_IDLE_STAT;
usp_mode1 |= SIRFSOC_USP_CS_HIGH_VALID;
}
if (!(spi->mode & SPI_LSB_FIRST)) {
regval |= SIRFSOC_SPI_TRAN_MSB;
usp_mode1 &= ~SIRFSOC_USP_LSB;
} else {
regval &= ~SIRFSOC_SPI_TRAN_MSB;
usp_mode1 |= SIRFSOC_USP_LSB;
}
if (spi->mode & SPI_CPOL) {
regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
usp_mode1 |= SIRFSOC_USP_SCLK_IDLE_STAT;
} else {
regval &= ~SIRFSOC_SPI_CLK_IDLE_STAT;
usp_mode1 &= ~SIRFSOC_USP_SCLK_IDLE_STAT;
}
/*
* Data should be driven at least 1/2 cycle before the fetch edge
* to make sure that data gets stable at the fetch edge.
*/
if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
(!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) {
regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
usp_mode1 |= (SIRFSOC_USP_TXD_FALLING_EDGE |
SIRFSOC_USP_RXD_FALLING_EDGE);
} else {
regval |= SIRFSOC_SPI_DRV_POS_EDGE;
usp_mode1 &= ~(SIRFSOC_USP_RXD_FALLING_EDGE |
SIRFSOC_USP_TXD_FALLING_EDGE);
}
writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
SIRFSOC_SPI_FIFO_SC_OFFSET) |
(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
SIRFSOC_SPI_FIFO_LC_OFFSET) |
(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
SIRFSOC_SPI_FIFO_HC_OFFSET),
sspi->base + sspi->regs->txfifo_level_chk);
writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
SIRFSOC_SPI_FIFO_SC_OFFSET) |
(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
SIRFSOC_SPI_FIFO_LC_OFFSET) |
(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
SIRFSOC_SPI_FIFO_HC_OFFSET),
sspi->base + sspi->regs->rxfifo_level_chk);
/*
* it should never set to hardware cs mode because in hardware cs mode,
* cs signal can't controlled by driver.
*/
switch (sspi->type) {
case SIRF_REAL_SPI:
regval |= SIRFSOC_SPI_CS_IO_MODE;
writel(regval, sspi->base + sspi->regs->spi_ctrl);
break;
case SIRF_USP_SPI_P2:
case SIRF_USP_SPI_A7:
usp_mode1 |= SIRFSOC_USP_SYNC_MODE;
usp_mode1 |= SIRFSOC_USP_TFS_IO_MODE;
usp_mode1 &= ~SIRFSOC_USP_TFS_IO_INPUT;
writel(usp_mode1, sspi->base + sspi->regs->usp_mode1);
break;
}
return 0;
}
static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
u8 bits_per_word = 0;
int hz = 0;
u32 regval, txfifo_ctrl, rxfifo_ctrl, tx_frm_ctl, rx_frm_ctl, usp_mode2;
sspi = spi_master_get_devdata(spi->master);
bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
usp_mode2 = regval = (sspi->ctrl_freq / (2 * hz)) - 1;
if (regval > 0xFFFF || regval < 0) {
dev_err(&spi->dev, "Speed %d not supported\n", hz);
return -EINVAL;
}
switch (bits_per_word) {
case 8:
regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
sspi->rx_word = spi_sirfsoc_rx_word_u8;
sspi->tx_word = spi_sirfsoc_tx_word_u8;
break;
case 12:
case 16:
regval |= (bits_per_word == 12) ?
SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
sspi->rx_word = spi_sirfsoc_rx_word_u16;
sspi->tx_word = spi_sirfsoc_tx_word_u16;
break;
case 32:
regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
sspi->rx_word = spi_sirfsoc_rx_word_u32;
sspi->tx_word = spi_sirfsoc_tx_word_u32;
break;
default:
dev_err(&spi->dev, "bpw %d not supported\n", bits_per_word);
return -EINVAL;
}
sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
txfifo_ctrl = (((sspi->fifo_size / 2) &
SIRFSOC_SPI_FIFO_THD_MASK(sspi))
<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
(sspi->word_width >> 1);
rxfifo_ctrl = (((sspi->fifo_size / 2) &
SIRFSOC_SPI_FIFO_THD_MASK(sspi))
<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
(sspi->word_width >> 1);
writel(txfifo_ctrl, sspi->base + sspi->regs->txfifo_ctrl);
writel(rxfifo_ctrl, sspi->base + sspi->regs->rxfifo_ctrl);
if (sspi->type == SIRF_USP_SPI_P2 ||
sspi->type == SIRF_USP_SPI_A7) {
tx_frm_ctl = 0;
tx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_TX_DATA_MASK)
<< SIRFSOC_USP_TX_DATA_OFFSET;
tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
- 1) & SIRFSOC_USP_TX_SYNC_MASK) <<
SIRFSOC_USP_TX_SYNC_OFFSET;
tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
+ 2 - 1) & SIRFSOC_USP_TX_FRAME_MASK) <<
SIRFSOC_USP_TX_FRAME_OFFSET;
tx_frm_ctl |= ((bits_per_word - 1) &
SIRFSOC_USP_TX_SHIFTER_MASK) <<
SIRFSOC_USP_TX_SHIFTER_OFFSET;
rx_frm_ctl = 0;
rx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_RX_DATA_MASK)
<< SIRFSOC_USP_RX_DATA_OFFSET;
rx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_RXD_DELAY_LEN
+ 2 - 1) & SIRFSOC_USP_RX_FRAME_MASK) <<
SIRFSOC_USP_RX_FRAME_OFFSET;
rx_frm_ctl |= ((bits_per_word - 1)
& SIRFSOC_USP_RX_SHIFTER_MASK) <<
SIRFSOC_USP_RX_SHIFTER_OFFSET;
writel(tx_frm_ctl | (((usp_mode2 >> 10) &
SIRFSOC_USP_CLK_10_11_MASK) <<
SIRFSOC_USP_CLK_10_11_OFFSET),
sspi->base + sspi->regs->usp_tx_frame_ctrl);
writel(rx_frm_ctl | (((usp_mode2 >> 12) &
SIRFSOC_USP_CLK_12_15_MASK) <<
SIRFSOC_USP_CLK_12_15_OFFSET),
sspi->base + sspi->regs->usp_rx_frame_ctrl);
writel(readl(sspi->base + sspi->regs->usp_mode2) |
((usp_mode2 & SIRFSOC_USP_CLK_DIVISOR_MASK) <<
SIRFSOC_USP_CLK_DIVISOR_OFFSET) |
(SIRFSOC_USP_RXD_DELAY_LEN <<
SIRFSOC_USP_RXD_DELAY_OFFSET) |
(SIRFSOC_USP_TXD_DELAY_LEN <<
SIRFSOC_USP_TXD_DELAY_OFFSET),
sspi->base + sspi->regs->usp_mode2);
}
if (sspi->type == SIRF_REAL_SPI)
writel(regval, sspi->base + sspi->regs->spi_ctrl);
spi_sirfsoc_config_mode(spi);
if (sspi->type == SIRF_REAL_SPI) {
if (t && t->tx_buf && !t->rx_buf &&
(t->len <= SIRFSOC_MAX_CMD_BYTES)) {
sspi->tx_by_cmd = true;
writel(readl(sspi->base + sspi->regs->spi_ctrl) |
(SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
SIRFSOC_SPI_CMD_MODE),
sspi->base + sspi->regs->spi_ctrl);
} else {
sspi->tx_by_cmd = false;
writel(readl(sspi->base + sspi->regs->spi_ctrl) &
~SIRFSOC_SPI_CMD_MODE,
sspi->base + sspi->regs->spi_ctrl);
}
}
if (IS_DMA_VALID(t)) {
/* Enable DMA mode for RX, TX */
writel(0, sspi->base + sspi->regs->tx_dma_io_ctrl);
writel(SIRFSOC_SPI_RX_DMA_FLUSH,
sspi->base + sspi->regs->rx_dma_io_ctrl);
} else {
/* Enable IO mode for RX, TX */
writel(SIRFSOC_SPI_IO_MODE_SEL,
sspi->base + sspi->regs->tx_dma_io_ctrl);
writel(SIRFSOC_SPI_IO_MODE_SEL,
sspi->base + sspi->regs->rx_dma_io_ctrl);
}
return 0;
}
static int spi_sirfsoc_setup(struct spi_device *spi)
{
struct sirfsoc_spi *sspi;
int ret = 0;
sspi = spi_master_get_devdata(spi->master);
if (spi->cs_gpio == -ENOENT)
sspi->hw_cs = true;
else {
sspi->hw_cs = false;
if (!spi_get_ctldata(spi)) {
void *cs = kmalloc(sizeof(int), GFP_KERNEL);
if (!cs) {
ret = -ENOMEM;
goto exit;
}
ret = gpio_is_valid(spi->cs_gpio);
if (!ret) {
dev_err(&spi->dev, "no valid gpio\n");
ret = -ENOENT;
goto exit;
}
ret = gpio_request(spi->cs_gpio, DRIVER_NAME);
if (ret) {
dev_err(&spi->dev, "failed to request gpio\n");
goto exit;
}
spi_set_ctldata(spi, cs);
}
}
spi_sirfsoc_config_mode(spi);
spi_sirfsoc_chipselect(spi, BITBANG_CS_INACTIVE);
exit:
return ret;
}
static void spi_sirfsoc_cleanup(struct spi_device *spi)
{
if (spi_get_ctldata(spi)) {
gpio_free(spi->cs_gpio);
kfree(spi_get_ctldata(spi));
}
}
static const struct sirf_spi_comp_data sirf_real_spi = {
.regs = &real_spi_register,
.type = SIRF_REAL_SPI,
.dat_max_frm_len = 64 * 1024,
.fifo_size = 256,
};
static const struct sirf_spi_comp_data sirf_usp_spi_p2 = {
.regs = &usp_spi_register,
.type = SIRF_USP_SPI_P2,
.dat_max_frm_len = 1024 * 1024,
.fifo_size = 128,
.hwinit = sirfsoc_usp_hwinit,
};
static const struct sirf_spi_comp_data sirf_usp_spi_a7 = {
.regs = &usp_spi_register,
.type = SIRF_USP_SPI_A7,
.dat_max_frm_len = 1024 * 1024,
.fifo_size = 512,
.hwinit = sirfsoc_usp_hwinit,
};
static const struct of_device_id spi_sirfsoc_of_match[] = {
{ .compatible = "sirf,prima2-spi", .data = &sirf_real_spi},
{ .compatible = "sirf,prima2-usp-spi", .data = &sirf_usp_spi_p2},
{ .compatible = "sirf,atlas7-usp-spi", .data = &sirf_usp_spi_a7},
{}
};
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
static int spi_sirfsoc_probe(struct platform_device *pdev)
{
struct sirfsoc_spi *sspi;
struct spi_master *master;
const struct sirf_spi_comp_data *spi_comp_data;
int irq;
int ret;
const struct of_device_id *match;
ret = device_reset(&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "SPI reset failed!\n");
return ret;
}
master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
if (!master) {
dev_err(&pdev->dev, "Unable to allocate SPI master\n");
return -ENOMEM;
}
match = of_match_node(spi_sirfsoc_of_match, pdev->dev.of_node);
platform_set_drvdata(pdev, master);
sspi = spi_master_get_devdata(master);
sspi->fifo_full_offset = ilog2(sspi->fifo_size);
spi_comp_data = match->data;
sspi->regs = spi_comp_data->regs;
sspi->type = spi_comp_data->type;
sspi->fifo_level_chk_mask = (sspi->fifo_size / 4) - 1;
sspi->dat_max_frm_len = spi_comp_data->dat_max_frm_len;
sspi->fifo_size = spi_comp_data->fifo_size;
sspi->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(sspi->base)) {
ret = PTR_ERR(sspi->base);
goto free_master;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto free_master;
}
ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
DRIVER_NAME, sspi);
if (ret)
goto free_master;
sspi->bitbang.master = master;
sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
sspi->bitbang.master->setup = spi_sirfsoc_setup;
sspi->bitbang.master->cleanup = spi_sirfsoc_cleanup;
master->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
master->max_speed_hz = SIRFSOC_SPI_DEFAULT_FRQ;
master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
/* request DMA channels */
sspi->rx_chan = dma_request_chan(&pdev->dev, "rx");
if (IS_ERR(sspi->rx_chan)) {
dev_err(&pdev->dev, "can not allocate rx dma channel\n");
ret = PTR_ERR(sspi->rx_chan);
goto free_master;
}
sspi->tx_chan = dma_request_chan(&pdev->dev, "tx");
if (IS_ERR(sspi->tx_chan)) {
dev_err(&pdev->dev, "can not allocate tx dma channel\n");
ret = PTR_ERR(sspi->tx_chan);
goto free_rx_dma;
}
sspi->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(sspi->clk)) {
ret = PTR_ERR(sspi->clk);
goto free_tx_dma;
}
clk_prepare_enable(sspi->clk);
if (spi_comp_data->hwinit)
spi_comp_data->hwinit(sspi);
sspi->ctrl_freq = clk_get_rate(sspi->clk);
init_completion(&sspi->rx_done);
init_completion(&sspi->tx_done);
ret = spi_bitbang_start(&sspi->bitbang);
if (ret)
goto free_clk;
dev_info(&pdev->dev, "registered, bus number = %d\n", master->bus_num);
return 0;
free_clk:
clk_disable_unprepare(sspi->clk);
clk_put(sspi->clk);
free_tx_dma:
dma_release_channel(sspi->tx_chan);
free_rx_dma:
dma_release_channel(sspi->rx_chan);
free_master:
spi_master_put(master);
return ret;
}
static int spi_sirfsoc_remove(struct platform_device *pdev)
{
struct spi_master *master;
struct sirfsoc_spi *sspi;
master = platform_get_drvdata(pdev);
sspi = spi_master_get_devdata(master);
spi_bitbang_stop(&sspi->bitbang);
clk_disable_unprepare(sspi->clk);
clk_put(sspi->clk);
dma_release_channel(sspi->rx_chan);
dma_release_channel(sspi->tx_chan);
spi_master_put(master);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int spi_sirfsoc_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
int ret;
ret = spi_master_suspend(master);
if (ret)
return ret;
clk_disable(sspi->clk);
return 0;
}
static int spi_sirfsoc_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
clk_enable(sspi->clk);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
spi_sirfsoc_resume);
static struct platform_driver spi_sirfsoc_driver = {
.driver = {
.name = DRIVER_NAME,
.pm = &spi_sirfsoc_pm_ops,
.of_match_table = spi_sirfsoc_of_match,
},
.probe = spi_sirfsoc_probe,
.remove = spi_sirfsoc_remove,
};
module_platform_driver(spi_sirfsoc_driver);
MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
MODULE_AUTHOR("Qipan Li <Qipan.Li@csr.com>");
MODULE_LICENSE("GPL v2");
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
// Copyright (C) 2017, STMicroelectronics - All Rights Reserved // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
#include <linux/bitfield.h>
#include <linux/debugfs.h> #include <linux/debugfs.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/delay.h> #include <linux/delay.h>
...@@ -94,27 +95,22 @@ ...@@ -94,27 +95,22 @@
#define STM32H7_SPI_CR1_SSI BIT(12) #define STM32H7_SPI_CR1_SSI BIT(12)
/* STM32H7_SPI_CR2 bit fields */ /* STM32H7_SPI_CR2 bit fields */
#define STM32H7_SPI_CR2_TSIZE_SHIFT 0
#define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
#define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0)
/* STM32H7_SPI_CFG1 bit fields */ /* STM32H7_SPI_CFG1 bit fields */
#define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
#define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
#define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
#define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
#define STM32H7_SPI_CFG1_RXDMAEN BIT(14) #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
#define STM32H7_SPI_CFG1_TXDMAEN BIT(15) #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
#define STM32H7_SPI_CFG1_MBR_SHIFT 28
#define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
#define STM32H7_SPI_CFG1_MBR_SHIFT 28
#define STM32H7_SPI_CFG1_MBR_MIN 0 #define STM32H7_SPI_CFG1_MBR_MIN 0
#define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
/* STM32H7_SPI_CFG2 bit fields */ /* STM32H7_SPI_CFG2 bit fields */
#define STM32H7_SPI_CFG2_MIDI_SHIFT 4
#define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
#define STM32H7_SPI_CFG2_COMM_SHIFT 17
#define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
#define STM32H7_SPI_CFG2_SP_SHIFT 19
#define STM32H7_SPI_CFG2_SP GENMASK(21, 19) #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
#define STM32H7_SPI_CFG2_MASTER BIT(22) #define STM32H7_SPI_CFG2_MASTER BIT(22)
#define STM32H7_SPI_CFG2_LSBFRST BIT(23) #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
...@@ -140,7 +136,6 @@ ...@@ -140,7 +136,6 @@
#define STM32H7_SPI_SR_OVR BIT(6) #define STM32H7_SPI_SR_OVR BIT(6)
#define STM32H7_SPI_SR_MODF BIT(9) #define STM32H7_SPI_SR_MODF BIT(9)
#define STM32H7_SPI_SR_SUSP BIT(11) #define STM32H7_SPI_SR_SUSP BIT(11)
#define STM32H7_SPI_SR_RXPLVL_SHIFT 13
#define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
#define STM32H7_SPI_SR_RXWNE BIT(15) #define STM32H7_SPI_SR_RXWNE BIT(15)
...@@ -167,8 +162,6 @@ ...@@ -167,8 +162,6 @@
#define SPI_3WIRE_TX 3 #define SPI_3WIRE_TX 3
#define SPI_3WIRE_RX 4 #define SPI_3WIRE_RX 4
#define SPI_1HZ_NS 1000000000
/* /*
* use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
* without fifo buffers. * without fifo buffers.
...@@ -268,7 +261,6 @@ struct stm32_spi_cfg { ...@@ -268,7 +261,6 @@ struct stm32_spi_cfg {
* @base: virtual memory area * @base: virtual memory area
* @clk: hw kernel clock feeding the SPI clock generator * @clk: hw kernel clock feeding the SPI clock generator
* @clk_rate: rate of the hw kernel clock feeding the SPI clock generator * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
* @rst: SPI controller reset line
* @lock: prevent I/O concurrent access * @lock: prevent I/O concurrent access
* @irq: SPI controller interrupt line * @irq: SPI controller interrupt line
* @fifo_size: size of the embedded fifo in bytes * @fifo_size: size of the embedded fifo in bytes
...@@ -294,7 +286,6 @@ struct stm32_spi { ...@@ -294,7 +286,6 @@ struct stm32_spi {
void __iomem *base; void __iomem *base;
struct clk *clk; struct clk *clk;
u32 clk_rate; u32 clk_rate;
struct reset_control *rst;
spinlock_t lock; /* prevent I/O concurrent access */ spinlock_t lock; /* prevent I/O concurrent access */
int irq; int irq;
unsigned int fifo_size; unsigned int fifo_size;
...@@ -417,9 +408,7 @@ static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi) ...@@ -417,9 +408,7 @@ static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >> max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
STM32H7_SPI_CFG1_DSIZE_SHIFT;
max_bpw += 1;
spin_unlock_irqrestore(&spi->lock, flags); spin_unlock_irqrestore(&spi->lock, flags);
...@@ -473,34 +462,14 @@ static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz, ...@@ -473,34 +462,14 @@ static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
*/ */
static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
{ {
u32 fthlv, half_fifo, packet; u32 packet, bpw;
/* data packet should not exceed 1/2 of fifo space */ /* data packet should not exceed 1/2 of fifo space */
half_fifo = (spi->fifo_size / 2); packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
/* data_packet should not exceed transfer length */
if (half_fifo > xfer_len)
packet = xfer_len;
else
packet = half_fifo;
if (spi->cur_bpw <= 8)
fthlv = packet;
else if (spi->cur_bpw <= 16)
fthlv = packet / 2;
else
fthlv = packet / 4;
/* align packet size with data registers access */ /* align packet size with data registers access */
if (spi->cur_bpw > 8) bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
fthlv += (fthlv % 2) ? 1 : 0; return DIV_ROUND_UP(packet, bpw);
else
fthlv += (fthlv % 4) ? (4 - (fthlv % 4)) : 0;
if (!fthlv)
fthlv = 1;
return fthlv;
} }
/** /**
...@@ -607,8 +576,7 @@ static void stm32f4_spi_read_rx(struct stm32_spi *spi) ...@@ -607,8 +576,7 @@ static void stm32f4_spi_read_rx(struct stm32_spi *spi)
static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush) static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
{ {
u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
STM32H7_SPI_SR_RXPLVL_SHIFT;
while ((spi->rx_len > 0) && while ((spi->rx_len > 0) &&
((sr & STM32H7_SPI_SR_RXP) || ((sr & STM32H7_SPI_SR_RXP) ||
...@@ -635,8 +603,7 @@ static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush) ...@@ -635,8 +603,7 @@ static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
} }
sr = readl_relaxed(spi->base + STM32H7_SPI_SR); sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
STM32H7_SPI_SR_RXPLVL_SHIFT;
} }
dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__, dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
...@@ -928,7 +895,7 @@ static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) ...@@ -928,7 +895,7 @@ static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
mask |= STM32H7_SPI_SR_RXP; mask |= STM32H7_SPI_SR_RXP;
if (!(sr & mask)) { if (!(sr & mask)) {
dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
sr, ier); sr, ier);
spin_unlock_irqrestore(&spi->lock, flags); spin_unlock_irqrestore(&spi->lock, flags);
return IRQ_NONE; return IRQ_NONE;
...@@ -956,14 +923,7 @@ static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id) ...@@ -956,14 +923,7 @@ static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
} }
if (sr & STM32H7_SPI_SR_OVR) { if (sr & STM32H7_SPI_SR_OVR) {
dev_warn(spi->dev, "Overrun: received value discarded\n"); dev_err(spi->dev, "Overrun: RX data lost\n");
if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
stm32h7_spi_read_rxfifo(spi, false);
/*
* If overrun is detected while using DMA, it means that
* something went wrong, so stop the current transfer
*/
if (spi->cur_usedma)
end = true; end = true;
} }
...@@ -1028,10 +988,24 @@ static int stm32_spi_prepare_msg(struct spi_master *master, ...@@ -1028,10 +988,24 @@ static int stm32_spi_prepare_msg(struct spi_master *master,
clrb |= spi->cfg->regs->lsb_first.mask; clrb |= spi->cfg->regs->lsb_first.mask;
dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
spi_dev->mode & SPI_CPOL, !!(spi_dev->mode & SPI_CPOL),
spi_dev->mode & SPI_CPHA, !!(spi_dev->mode & SPI_CPHA),
spi_dev->mode & SPI_LSB_FIRST, !!(spi_dev->mode & SPI_LSB_FIRST),
spi_dev->mode & SPI_CS_HIGH); !!(spi_dev->mode & SPI_CS_HIGH));
/* On STM32H7, messages should not exceed a maximum size setted
* afterward via the set_number_of_data function. In order to
* ensure that, split large messages into several messages
*/
if (spi->cfg->set_number_of_data) {
int ret;
ret = spi_split_transfers_maxsize(master, msg,
STM32H7_SPI_TSIZE_MAX,
GFP_KERNEL | GFP_DMA);
if (ret)
return ret;
}
spin_lock_irqsave(&spi->lock, flags); spin_lock_irqsave(&spi->lock, flags);
...@@ -1405,15 +1379,13 @@ static void stm32h7_spi_set_bpw(struct stm32_spi *spi) ...@@ -1405,15 +1379,13 @@ static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
bpw = spi->cur_bpw - 1; bpw = spi->cur_bpw - 1;
cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) & cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
STM32H7_SPI_CFG1_DSIZE;
spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
fthlv = spi->cur_fthlv - 1; fthlv = spi->cur_fthlv - 1;
cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) & cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
STM32H7_SPI_CFG1_FTHLV;
writel_relaxed( writel_relaxed(
(readl_relaxed(spi->base + STM32H7_SPI_CFG1) & (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
...@@ -1431,8 +1403,7 @@ static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv) ...@@ -1431,8 +1403,7 @@ static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
u32 clrb = 0, setb = 0; u32 clrb = 0, setb = 0;
clrb |= spi->cfg->regs->br.mask; clrb |= spi->cfg->regs->br.mask;
setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) & setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
spi->cfg->regs->br.mask;
writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
~clrb) | setb, ~clrb) | setb,
...@@ -1523,8 +1494,7 @@ static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type) ...@@ -1523,8 +1494,7 @@ static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
} }
cfg2_clrb |= STM32H7_SPI_CFG2_COMM; cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) & cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
STM32H7_SPI_CFG2_COMM;
writel_relaxed( writel_relaxed(
(readl_relaxed(spi->base + STM32H7_SPI_CFG2) & (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
...@@ -1546,15 +1516,16 @@ static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) ...@@ -1546,15 +1516,16 @@ static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
if ((len > 1) && (spi->cur_midi > 0)) { if ((len > 1) && (spi->cur_midi > 0)) {
u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed); u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns), u32 midi = min_t(u32,
(u32)STM32H7_SPI_CFG2_MIDI >> DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
STM32H7_SPI_CFG2_MIDI_SHIFT); FIELD_GET(STM32H7_SPI_CFG2_MIDI,
STM32H7_SPI_CFG2_MIDI));
dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
sck_period_ns, midi, midi * sck_period_ns); sck_period_ns, midi, midi * sck_period_ns);
cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) & cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
STM32H7_SPI_CFG2_MIDI;
} }
writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
...@@ -1569,14 +1540,8 @@ static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len) ...@@ -1569,14 +1540,8 @@ static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
*/ */
static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
{ {
u32 cr2_clrb = 0, cr2_setb = 0; if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
STM32H7_SPI_CR2_TSIZE_SHIFT)) {
cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
~cr2_clrb) | cr2_setb,
spi->base + STM32H7_SPI_CR2); spi->base + STM32H7_SPI_CR2);
} else { } else {
return -EMSGSIZE; return -EMSGSIZE;
...@@ -1677,6 +1642,10 @@ static int stm32_spi_transfer_one(struct spi_master *master, ...@@ -1677,6 +1642,10 @@ static int stm32_spi_transfer_one(struct spi_master *master,
struct stm32_spi *spi = spi_master_get_devdata(master); struct stm32_spi *spi = spi_master_get_devdata(master);
int ret; int ret;
/* Don't do anything on 0 bytes transfers */
if (transfer->len == 0)
return 0;
spi->tx_buf = transfer->tx_buf; spi->tx_buf = transfer->tx_buf;
spi->rx_buf = transfer->rx_buf; spi->rx_buf = transfer->rx_buf;
spi->tx_len = spi->tx_buf ? transfer->len : 0; spi->tx_len = spi->tx_buf ? transfer->len : 0;
...@@ -1831,6 +1800,7 @@ static int stm32_spi_probe(struct platform_device *pdev) ...@@ -1831,6 +1800,7 @@ static int stm32_spi_probe(struct platform_device *pdev)
struct spi_master *master; struct spi_master *master;
struct stm32_spi *spi; struct stm32_spi *spi;
struct resource *res; struct resource *res;
struct reset_control *rst;
int ret; int ret;
master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
...@@ -1892,11 +1862,17 @@ static int stm32_spi_probe(struct platform_device *pdev) ...@@ -1892,11 +1862,17 @@ static int stm32_spi_probe(struct platform_device *pdev)
goto err_clk_disable; goto err_clk_disable;
} }
spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
if (!IS_ERR(spi->rst)) { if (rst) {
reset_control_assert(spi->rst); if (IS_ERR(rst)) {
ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
"failed to get reset\n");
goto err_clk_disable;
}
reset_control_assert(rst);
udelay(2); udelay(2);
reset_control_deassert(spi->rst); reset_control_deassert(rst);
} }
if (spi->cfg->has_fifo) if (spi->cfg->has_fifo)
...@@ -1960,12 +1936,6 @@ static int stm32_spi_probe(struct platform_device *pdev) ...@@ -1960,12 +1936,6 @@ static int stm32_spi_probe(struct platform_device *pdev)
goto err_pm_disable; goto err_pm_disable;
} }
if (!master->cs_gpiods) {
dev_err(&pdev->dev, "no CS gpios available\n");
ret = -EINVAL;
goto err_pm_disable;
}
dev_info(&pdev->dev, "driver initialized\n"); dev_info(&pdev->dev, "driver initialized\n");
return 0; return 0;
......
...@@ -490,6 +490,10 @@ static void synquacer_spi_set_cs(struct spi_device *spi, bool enable) ...@@ -490,6 +490,10 @@ static void synquacer_spi_set_cs(struct spi_device *spi, bool enable)
val &= ~(SYNQUACER_HSSPI_DMPSEL_CS_MASK << val &= ~(SYNQUACER_HSSPI_DMPSEL_CS_MASK <<
SYNQUACER_HSSPI_DMPSEL_CS_SHIFT); SYNQUACER_HSSPI_DMPSEL_CS_SHIFT);
val |= spi->chip_select << SYNQUACER_HSSPI_DMPSEL_CS_SHIFT; val |= spi->chip_select << SYNQUACER_HSSPI_DMPSEL_CS_SHIFT;
if (!enable)
val |= SYNQUACER_HSSPI_DMSTOP_STOP;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART); writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
} }
......
// SPDX-License-Identifier: GPL-2.0-only
//
// Copyright (C) 2020 NVIDIA CORPORATION.
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
#define QSPI_COMMAND1 0x000
#define QSPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
#define QSPI_PACKED BIT(5)
#define QSPI_INTERFACE_WIDTH_MASK (0x03 << 7)
#define QSPI_INTERFACE_WIDTH(x) (((x) & 0x03) << 7)
#define QSPI_INTERFACE_WIDTH_SINGLE QSPI_INTERFACE_WIDTH(0)
#define QSPI_INTERFACE_WIDTH_DUAL QSPI_INTERFACE_WIDTH(1)
#define QSPI_INTERFACE_WIDTH_QUAD QSPI_INTERFACE_WIDTH(2)
#define QSPI_SDR_DDR_SEL BIT(9)
#define QSPI_TX_EN BIT(11)
#define QSPI_RX_EN BIT(12)
#define QSPI_CS_SW_VAL BIT(20)
#define QSPI_CS_SW_HW BIT(21)
#define QSPI_CONTROL_MODE_0 (0 << 28)
#define QSPI_CONTROL_MODE_3 (3 << 28)
#define QSPI_CONTROL_MODE_MASK (3 << 28)
#define QSPI_M_S BIT(30)
#define QSPI_PIO BIT(31)
#define QSPI_COMMAND2 0x004
#define QSPI_TX_TAP_DELAY(x) (((x) & 0x3f) << 10)
#define QSPI_RX_TAP_DELAY(x) (((x) & 0xff) << 0)
#define QSPI_CS_TIMING1 0x008
#define QSPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
#define QSPI_CS_TIMING2 0x00c
#define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1f) << 0)
#define CS_ACTIVE_BETWEEN_PACKETS_0 BIT(5)
#define QSPI_TRANS_STATUS 0x010
#define QSPI_BLK_CNT(val) (((val) >> 0) & 0xffff)
#define QSPI_RDY BIT(30)
#define QSPI_FIFO_STATUS 0x014
#define QSPI_RX_FIFO_EMPTY BIT(0)
#define QSPI_RX_FIFO_FULL BIT(1)
#define QSPI_TX_FIFO_EMPTY BIT(2)
#define QSPI_TX_FIFO_FULL BIT(3)
#define QSPI_RX_FIFO_UNF BIT(4)
#define QSPI_RX_FIFO_OVF BIT(5)
#define QSPI_TX_FIFO_UNF BIT(6)
#define QSPI_TX_FIFO_OVF BIT(7)
#define QSPI_ERR BIT(8)
#define QSPI_TX_FIFO_FLUSH BIT(14)
#define QSPI_RX_FIFO_FLUSH BIT(15)
#define QSPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7f)
#define QSPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7f)
#define QSPI_FIFO_ERROR (QSPI_RX_FIFO_UNF | \
QSPI_RX_FIFO_OVF | \
QSPI_TX_FIFO_UNF | \
QSPI_TX_FIFO_OVF)
#define QSPI_FIFO_EMPTY (QSPI_RX_FIFO_EMPTY | \
QSPI_TX_FIFO_EMPTY)
#define QSPI_TX_DATA 0x018
#define QSPI_RX_DATA 0x01c
#define QSPI_DMA_CTL 0x020
#define QSPI_TX_TRIG(n) (((n) & 0x3) << 15)
#define QSPI_TX_TRIG_1 QSPI_TX_TRIG(0)
#define QSPI_TX_TRIG_4 QSPI_TX_TRIG(1)
#define QSPI_TX_TRIG_8 QSPI_TX_TRIG(2)
#define QSPI_TX_TRIG_16 QSPI_TX_TRIG(3)
#define QSPI_RX_TRIG(n) (((n) & 0x3) << 19)
#define QSPI_RX_TRIG_1 QSPI_RX_TRIG(0)
#define QSPI_RX_TRIG_4 QSPI_RX_TRIG(1)
#define QSPI_RX_TRIG_8 QSPI_RX_TRIG(2)
#define QSPI_RX_TRIG_16 QSPI_RX_TRIG(3)
#define QSPI_DMA_EN BIT(31)
#define QSPI_DMA_BLK 0x024
#define QSPI_DMA_BLK_SET(x) (((x) & 0xffff) << 0)
#define QSPI_TX_FIFO 0x108
#define QSPI_RX_FIFO 0x188
#define QSPI_FIFO_DEPTH 64
#define QSPI_INTR_MASK 0x18c
#define QSPI_INTR_RX_FIFO_UNF_MASK BIT(25)
#define QSPI_INTR_RX_FIFO_OVF_MASK BIT(26)
#define QSPI_INTR_TX_FIFO_UNF_MASK BIT(27)
#define QSPI_INTR_TX_FIFO_OVF_MASK BIT(28)
#define QSPI_INTR_RDY_MASK BIT(29)
#define QSPI_INTR_RX_TX_FIFO_ERR (QSPI_INTR_RX_FIFO_UNF_MASK | \
QSPI_INTR_RX_FIFO_OVF_MASK | \
QSPI_INTR_TX_FIFO_UNF_MASK | \
QSPI_INTR_TX_FIFO_OVF_MASK)
#define QSPI_MISC_REG 0x194
#define QSPI_NUM_DUMMY_CYCLE(x) (((x) & 0xff) << 0)
#define QSPI_DUMMY_CYCLES_MAX 0xff
#define DATA_DIR_TX BIT(0)
#define DATA_DIR_RX BIT(1)
#define QSPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
#define DEFAULT_QSPI_DMA_BUF_LEN (64 * 1024)
struct tegra_qspi_client_data {
int tx_clk_tap_delay;
int rx_clk_tap_delay;
};
struct tegra_qspi {
struct device *dev;
struct spi_master *master;
/* lock to protect data accessed by irq */
spinlock_t lock;
struct clk *clk;
struct reset_control *rst;
void __iomem *base;
phys_addr_t phys;
unsigned int irq;
u32 cur_speed;
unsigned int cur_pos;
unsigned int words_per_32bit;
unsigned int bytes_per_word;
unsigned int curr_dma_words;
unsigned int cur_direction;
unsigned int cur_rx_pos;
unsigned int cur_tx_pos;
unsigned int dma_buf_size;
unsigned int max_buf_size;
bool is_curr_dma_xfer;
struct completion rx_dma_complete;
struct completion tx_dma_complete;
u32 tx_status;
u32 rx_status;
u32 status_reg;
bool is_packed;
bool use_dma;
u32 command1_reg;
u32 dma_control_reg;
u32 def_command1_reg;
u32 def_command2_reg;
u32 spi_cs_timing1;
u32 spi_cs_timing2;
u8 dummy_cycles;
struct completion xfer_completion;
struct spi_transfer *curr_xfer;
struct dma_chan *rx_dma_chan;
u32 *rx_dma_buf;
dma_addr_t rx_dma_phys;
struct dma_async_tx_descriptor *rx_dma_desc;
struct dma_chan *tx_dma_chan;
u32 *tx_dma_buf;
dma_addr_t tx_dma_phys;
struct dma_async_tx_descriptor *tx_dma_desc;
};
static inline u32 tegra_qspi_readl(struct tegra_qspi *tqspi, unsigned long offset)
{
return readl(tqspi->base + offset);
}
static inline void tegra_qspi_writel(struct tegra_qspi *tqspi, u32 value, unsigned long offset)
{
writel(value, tqspi->base + offset);
/* read back register to make sure that register writes completed */
if (offset != QSPI_TX_FIFO)
readl(tqspi->base + QSPI_COMMAND1);
}
static void tegra_qspi_mask_clear_irq(struct tegra_qspi *tqspi)
{
u32 value;
/* write 1 to clear status register */
value = tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS);
tegra_qspi_writel(tqspi, value, QSPI_TRANS_STATUS);
value = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
if (!(value & QSPI_INTR_RDY_MASK)) {
value |= (QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
tegra_qspi_writel(tqspi, value, QSPI_INTR_MASK);
}
/* clear fifo status error if any */
value = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if (value & QSPI_ERR)
tegra_qspi_writel(tqspi, QSPI_ERR | QSPI_FIFO_ERROR, QSPI_FIFO_STATUS);
}
static unsigned int
tegra_qspi_calculate_curr_xfer_param(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int max_word, max_len, total_fifo_words;
unsigned int remain_len = t->len - tqspi->cur_pos;
unsigned int bits_per_word = t->bits_per_word;
tqspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
/*
* Tegra QSPI controller supports packed or unpacked mode transfers.
* Packed mode is used for data transfers using 8, 16, or 32 bits per
* word with a minimum transfer of 1 word and for all other transfers
* unpacked mode will be used.
*/
if ((bits_per_word == 8 || bits_per_word == 16 ||
bits_per_word == 32) && t->len > 3) {
tqspi->is_packed = true;
tqspi->words_per_32bit = 32 / bits_per_word;
} else {
tqspi->is_packed = false;
tqspi->words_per_32bit = 1;
}
if (tqspi->is_packed) {
max_len = min(remain_len, tqspi->max_buf_size);
tqspi->curr_dma_words = max_len / tqspi->bytes_per_word;
total_fifo_words = (max_len + 3) / 4;
} else {
max_word = (remain_len - 1) / tqspi->bytes_per_word + 1;
max_word = min(max_word, tqspi->max_buf_size / 4);
tqspi->curr_dma_words = max_word;
total_fifo_words = max_word;
}
return total_fifo_words;
}
static unsigned int
tegra_qspi_fill_tx_fifo_from_client_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int written_words, fifo_words_left, count;
unsigned int len, tx_empty_count, max_n_32bit, i;
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
u32 fifo_status;
fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
tx_empty_count = QSPI_TX_FIFO_EMPTY_COUNT(fifo_status);
if (tqspi->is_packed) {
fifo_words_left = tx_empty_count * tqspi->words_per_32bit;
written_words = min(fifo_words_left, tqspi->curr_dma_words);
len = written_words * tqspi->bytes_per_word;
max_n_32bit = DIV_ROUND_UP(len, 4);
for (count = 0; count < max_n_32bit; count++) {
u32 x = 0;
for (i = 0; (i < 4) && len; i++, len--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
}
tqspi->cur_tx_pos += written_words * tqspi->bytes_per_word;
} else {
unsigned int write_bytes;
u8 bytes_per_word = tqspi->bytes_per_word;
max_n_32bit = min(tqspi->curr_dma_words, tx_empty_count);
written_words = max_n_32bit;
len = written_words * tqspi->bytes_per_word;
if (len > t->len - tqspi->cur_pos)
len = t->len - tqspi->cur_pos;
write_bytes = len;
for (count = 0; count < max_n_32bit; count++) {
u32 x = 0;
for (i = 0; len && (i < bytes_per_word); i++, len--)
x |= (u32)(*tx_buf++) << (i * 8);
tegra_qspi_writel(tqspi, x, QSPI_TX_FIFO);
}
tqspi->cur_tx_pos += write_bytes;
}
return written_words;
}
static unsigned int
tegra_qspi_read_rx_fifo_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
unsigned int len, rx_full_count, count, i;
unsigned int read_words = 0;
u32 fifo_status, x;
fifo_status = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
rx_full_count = QSPI_RX_FIFO_FULL_COUNT(fifo_status);
if (tqspi->is_packed) {
len = tqspi->curr_dma_words * tqspi->bytes_per_word;
for (count = 0; count < rx_full_count; count++) {
x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO);
for (i = 0; len && (i < 4); i++, len--)
*rx_buf++ = (x >> i * 8) & 0xff;
}
read_words += tqspi->curr_dma_words;
tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
u8 bytes_per_word = tqspi->bytes_per_word;
unsigned int read_bytes;
len = rx_full_count * bytes_per_word;
if (len > t->len - tqspi->cur_pos)
len = t->len - tqspi->cur_pos;
read_bytes = len;
for (count = 0; count < rx_full_count; count++) {
x = tegra_qspi_readl(tqspi, QSPI_RX_FIFO) & rx_mask;
for (i = 0; len && (i < bytes_per_word); i++, len--)
*rx_buf++ = (x >> (i * 8)) & 0xff;
}
read_words += rx_full_count;
tqspi->cur_rx_pos += read_bytes;
}
return read_words;
}
static void
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
dma_sync_single_for_cpu(tqspi->dev, tqspi->tx_dma_phys,
tqspi->dma_buf_size, DMA_TO_DEVICE);
/*
* In packed mode, each word in FIFO may contain multiple packets
* based on bits per word. So all bytes in each FIFO word are valid.
*
* In unpacked mode, each word in FIFO contains single packet and
* based on bits per word any remaining bits in FIFO word will be
* ignored by the hardware and are invalid bits.
*/
if (tqspi->is_packed) {
tqspi->cur_tx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
unsigned int i, count, consume, write_bytes;
/*
* Fill tx_dma_buf to contain single packet in each word based
* on bits per word from SPI core tx_buf.
*/
consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
if (consume > t->len - tqspi->cur_pos)
consume = t->len - tqspi->cur_pos;
write_bytes = consume;
for (count = 0; count < tqspi->curr_dma_words; count++) {
u32 x = 0;
for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
x |= (u32)(*tx_buf++) << (i * 8);
tqspi->tx_dma_buf[count] = x;
}
tqspi->cur_tx_pos += write_bytes;
}
dma_sync_single_for_device(tqspi->dev, tqspi->tx_dma_phys,
tqspi->dma_buf_size, DMA_TO_DEVICE);
}
static void
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
dma_sync_single_for_cpu(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size, DMA_FROM_DEVICE);
if (tqspi->is_packed) {
tqspi->cur_rx_pos += tqspi->curr_dma_words * tqspi->bytes_per_word;
} else {
unsigned char *rx_buf = t->rx_buf + tqspi->cur_rx_pos;
u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
unsigned int i, count, consume, read_bytes;
/*
* Each FIFO word contains single data packet.
* Skip invalid bits in each FIFO word based on bits per word
* and align bytes while filling in SPI core rx_buf.
*/
consume = tqspi->curr_dma_words * tqspi->bytes_per_word;
if (consume > t->len - tqspi->cur_pos)
consume = t->len - tqspi->cur_pos;
read_bytes = consume;
for (count = 0; count < tqspi->curr_dma_words; count++) {
u32 x = tqspi->rx_dma_buf[count] & rx_mask;
for (i = 0; consume && (i < tqspi->bytes_per_word); i++, consume--)
*rx_buf++ = (x >> (i * 8)) & 0xff;
}
tqspi->cur_rx_pos += read_bytes;
}
dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size, DMA_FROM_DEVICE);
}
static void tegra_qspi_dma_complete(void *args)
{
struct completion *dma_complete = args;
complete(dma_complete);
}
static int tegra_qspi_start_tx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
{
dma_addr_t tx_dma_phys;
reinit_completion(&tqspi->tx_dma_complete);
if (tqspi->is_packed)
tx_dma_phys = t->tx_dma;
else
tx_dma_phys = tqspi->tx_dma_phys;
tqspi->tx_dma_desc = dmaengine_prep_slave_single(tqspi->tx_dma_chan, tx_dma_phys,
len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tqspi->tx_dma_desc) {
dev_err(tqspi->dev, "Unable to get TX descriptor\n");
return -EIO;
}
tqspi->tx_dma_desc->callback = tegra_qspi_dma_complete;
tqspi->tx_dma_desc->callback_param = &tqspi->tx_dma_complete;
dmaengine_submit(tqspi->tx_dma_desc);
dma_async_issue_pending(tqspi->tx_dma_chan);
return 0;
}
static int tegra_qspi_start_rx_dma(struct tegra_qspi *tqspi, struct spi_transfer *t, int len)
{
dma_addr_t rx_dma_phys;
reinit_completion(&tqspi->rx_dma_complete);
if (tqspi->is_packed)
rx_dma_phys = t->rx_dma;
else
rx_dma_phys = tqspi->rx_dma_phys;
tqspi->rx_dma_desc = dmaengine_prep_slave_single(tqspi->rx_dma_chan, rx_dma_phys,
len, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tqspi->rx_dma_desc) {
dev_err(tqspi->dev, "Unable to get RX descriptor\n");
return -EIO;
}
tqspi->rx_dma_desc->callback = tegra_qspi_dma_complete;
tqspi->rx_dma_desc->callback_param = &tqspi->rx_dma_complete;
dmaengine_submit(tqspi->rx_dma_desc);
dma_async_issue_pending(tqspi->rx_dma_chan);
return 0;
}
static int tegra_qspi_flush_fifos(struct tegra_qspi *tqspi, bool atomic)
{
void __iomem *addr = tqspi->base + QSPI_FIFO_STATUS;
u32 val;
val = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if ((val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY)
return 0;
val |= QSPI_RX_FIFO_FLUSH | QSPI_TX_FIFO_FLUSH;
tegra_qspi_writel(tqspi, val, QSPI_FIFO_STATUS);
if (!atomic)
return readl_relaxed_poll_timeout(addr, val,
(val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
1000, 1000000);
return readl_relaxed_poll_timeout_atomic(addr, val,
(val & QSPI_FIFO_EMPTY) == QSPI_FIFO_EMPTY,
1000, 1000000);
}
static void tegra_qspi_unmask_irq(struct tegra_qspi *tqspi)
{
u32 intr_mask;
intr_mask = tegra_qspi_readl(tqspi, QSPI_INTR_MASK);
intr_mask &= ~(QSPI_INTR_RDY_MASK | QSPI_INTR_RX_TX_FIFO_ERR);
tegra_qspi_writel(tqspi, intr_mask, QSPI_INTR_MASK);
}
static int tegra_qspi_dma_map_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
u8 *tx_buf = (u8 *)t->tx_buf + tqspi->cur_tx_pos;
u8 *rx_buf = (u8 *)t->rx_buf + tqspi->cur_rx_pos;
unsigned int len;
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
if (t->tx_buf) {
t->tx_dma = dma_map_single(tqspi->dev, (void *)tx_buf, len, DMA_TO_DEVICE);
if (dma_mapping_error(tqspi->dev, t->tx_dma))
return -ENOMEM;
}
if (t->rx_buf) {
t->rx_dma = dma_map_single(tqspi->dev, (void *)rx_buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(tqspi->dev, t->rx_dma)) {
dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
return -ENOMEM;
}
}
return 0;
}
static void tegra_qspi_dma_unmap_xfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
unsigned int len;
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
dma_unmap_single(tqspi->dev, t->tx_dma, len, DMA_TO_DEVICE);
dma_unmap_single(tqspi->dev, t->rx_dma, len, DMA_FROM_DEVICE);
}
static int tegra_qspi_start_dma_based_transfer(struct tegra_qspi *tqspi, struct spi_transfer *t)
{
struct dma_slave_config dma_sconfig = { 0 };
unsigned int len;
u8 dma_burst;
int ret = 0;
u32 val;
if (tqspi->is_packed) {
ret = tegra_qspi_dma_map_xfer(tqspi, t);
if (ret < 0)
return ret;
}
val = QSPI_DMA_BLK_SET(tqspi->curr_dma_words - 1);
tegra_qspi_writel(tqspi, val, QSPI_DMA_BLK);
tegra_qspi_unmask_irq(tqspi);
if (tqspi->is_packed)
len = DIV_ROUND_UP(tqspi->curr_dma_words * tqspi->bytes_per_word, 4) * 4;
else
len = tqspi->curr_dma_words * 4;
/* set attention level based on length of transfer */
val = 0;
if (len & 0xf) {
val |= QSPI_TX_TRIG_1 | QSPI_RX_TRIG_1;
dma_burst = 1;
} else if (((len) >> 4) & 0x1) {
val |= QSPI_TX_TRIG_4 | QSPI_RX_TRIG_4;
dma_burst = 4;
} else {
val |= QSPI_TX_TRIG_8 | QSPI_RX_TRIG_8;
dma_burst = 8;
}
tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
tqspi->dma_control_reg = val;
dma_sconfig.device_fc = true;
if (tqspi->cur_direction & DATA_DIR_TX) {
dma_sconfig.dst_addr = tqspi->phys + QSPI_TX_FIFO;
dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_sconfig.dst_maxburst = dma_burst;
ret = dmaengine_slave_config(tqspi->tx_dma_chan, &dma_sconfig);
if (ret < 0) {
dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
return ret;
}
tegra_qspi_copy_client_txbuf_to_qspi_txbuf(tqspi, t);
ret = tegra_qspi_start_tx_dma(tqspi, t, len);
if (ret < 0) {
dev_err(tqspi->dev, "failed to starting TX DMA: %d\n", ret);
return ret;
}
}
if (tqspi->cur_direction & DATA_DIR_RX) {
dma_sconfig.src_addr = tqspi->phys + QSPI_RX_FIFO;
dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_sconfig.src_maxburst = dma_burst;
ret = dmaengine_slave_config(tqspi->rx_dma_chan, &dma_sconfig);
if (ret < 0) {
dev_err(tqspi->dev, "failed DMA slave config: %d\n", ret);
return ret;
}
dma_sync_single_for_device(tqspi->dev, tqspi->rx_dma_phys,
tqspi->dma_buf_size,
DMA_FROM_DEVICE);
ret = tegra_qspi_start_rx_dma(tqspi, t, len);
if (ret < 0) {
dev_err(tqspi->dev, "failed to start RX DMA: %d\n", ret);
if (tqspi->cur_direction & DATA_DIR_TX)
dmaengine_terminate_all(tqspi->tx_dma_chan);
return ret;
}
}
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tqspi->is_curr_dma_xfer = true;
tqspi->dma_control_reg = val;
val |= QSPI_DMA_EN;
tegra_qspi_writel(tqspi, val, QSPI_DMA_CTL);
return ret;
}
static int tegra_qspi_start_cpu_based_transfer(struct tegra_qspi *qspi, struct spi_transfer *t)
{
u32 val;
unsigned int cur_words;
if (qspi->cur_direction & DATA_DIR_TX)
cur_words = tegra_qspi_fill_tx_fifo_from_client_txbuf(qspi, t);
else
cur_words = qspi->curr_dma_words;
val = QSPI_DMA_BLK_SET(cur_words - 1);
tegra_qspi_writel(qspi, val, QSPI_DMA_BLK);
tegra_qspi_unmask_irq(qspi);
qspi->is_curr_dma_xfer = false;
val = qspi->command1_reg;
val |= QSPI_PIO;
tegra_qspi_writel(qspi, val, QSPI_COMMAND1);
return 0;
}
static void tegra_qspi_deinit_dma(struct tegra_qspi *tqspi)
{
if (tqspi->tx_dma_buf) {
dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
tqspi->tx_dma_buf, tqspi->tx_dma_phys);
tqspi->tx_dma_buf = NULL;
}
if (tqspi->tx_dma_chan) {
dma_release_channel(tqspi->tx_dma_chan);
tqspi->tx_dma_chan = NULL;
}
if (tqspi->rx_dma_buf) {
dma_free_coherent(tqspi->dev, tqspi->dma_buf_size,
tqspi->rx_dma_buf, tqspi->rx_dma_phys);
tqspi->rx_dma_buf = NULL;
}
if (tqspi->rx_dma_chan) {
dma_release_channel(tqspi->rx_dma_chan);
tqspi->rx_dma_chan = NULL;
}
}
static int tegra_qspi_init_dma(struct tegra_qspi *tqspi)
{
struct dma_chan *dma_chan;
dma_addr_t dma_phys;
u32 *dma_buf;
int err;
dma_chan = dma_request_chan(tqspi->dev, "rx");
if (IS_ERR(dma_chan)) {
err = PTR_ERR(dma_chan);
goto err_out;
}
tqspi->rx_dma_chan = dma_chan;
dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
if (!dma_buf) {
err = -ENOMEM;
goto err_out;
}
tqspi->rx_dma_buf = dma_buf;
tqspi->rx_dma_phys = dma_phys;
dma_chan = dma_request_chan(tqspi->dev, "tx");
if (IS_ERR(dma_chan)) {
err = PTR_ERR(dma_chan);
goto err_out;
}
tqspi->tx_dma_chan = dma_chan;
dma_buf = dma_alloc_coherent(tqspi->dev, tqspi->dma_buf_size, &dma_phys, GFP_KERNEL);
if (!dma_buf) {
err = -ENOMEM;
goto err_out;
}
tqspi->tx_dma_buf = dma_buf;
tqspi->tx_dma_phys = dma_phys;
tqspi->use_dma = true;
return 0;
err_out:
tegra_qspi_deinit_dma(tqspi);
if (err != -EPROBE_DEFER) {
dev_err(tqspi->dev, "cannot use DMA: %d\n", err);
dev_err(tqspi->dev, "falling back to PIO\n");
return 0;
}
return err;
}
static u32 tegra_qspi_setup_transfer_one(struct spi_device *spi, struct spi_transfer *t,
bool is_first_of_msg)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
struct tegra_qspi_client_data *cdata = spi->controller_data;
u32 command1, command2, speed = t->speed_hz;
u8 bits_per_word = t->bits_per_word;
u32 tx_tap = 0, rx_tap = 0;
int req_mode;
if (speed != tqspi->cur_speed) {
clk_set_rate(tqspi->clk, speed);
tqspi->cur_speed = speed;
}
tqspi->cur_pos = 0;
tqspi->cur_rx_pos = 0;
tqspi->cur_tx_pos = 0;
tqspi->curr_xfer = t;
if (is_first_of_msg) {
tegra_qspi_mask_clear_irq(tqspi);
command1 = tqspi->def_command1_reg;
command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
command1 &= ~QSPI_CONTROL_MODE_MASK;
req_mode = spi->mode & 0x3;
if (req_mode == SPI_MODE_3)
command1 |= QSPI_CONTROL_MODE_3;
else
command1 |= QSPI_CONTROL_MODE_0;
if (spi->mode & SPI_CS_HIGH)
command1 |= QSPI_CS_SW_VAL;
else
command1 &= ~QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
if (cdata && cdata->tx_clk_tap_delay)
tx_tap = cdata->tx_clk_tap_delay;
if (cdata && cdata->rx_clk_tap_delay)
rx_tap = cdata->rx_clk_tap_delay;
command2 = QSPI_TX_TAP_DELAY(tx_tap) | QSPI_RX_TAP_DELAY(rx_tap);
if (command2 != tqspi->def_command2_reg)
tegra_qspi_writel(tqspi, command2, QSPI_COMMAND2);
} else {
command1 = tqspi->command1_reg;
command1 &= ~QSPI_BIT_LENGTH(~0);
command1 |= QSPI_BIT_LENGTH(bits_per_word - 1);
}
command1 &= ~QSPI_SDR_DDR_SEL;
return command1;
}
static int tegra_qspi_start_transfer_one(struct spi_device *spi,
struct spi_transfer *t, u32 command1)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
unsigned int total_fifo_words;
u8 bus_width = 0;
int ret;
total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
command1 &= ~QSPI_PACKED;
if (tqspi->is_packed)
command1 |= QSPI_PACKED;
tegra_qspi_writel(tqspi, command1, QSPI_COMMAND1);
tqspi->cur_direction = 0;
command1 &= ~(QSPI_TX_EN | QSPI_RX_EN);
if (t->rx_buf) {
command1 |= QSPI_RX_EN;
tqspi->cur_direction |= DATA_DIR_RX;
bus_width = t->rx_nbits;
}
if (t->tx_buf) {
command1 |= QSPI_TX_EN;
tqspi->cur_direction |= DATA_DIR_TX;
bus_width = t->tx_nbits;
}
command1 &= ~QSPI_INTERFACE_WIDTH_MASK;
if (bus_width == SPI_NBITS_QUAD)
command1 |= QSPI_INTERFACE_WIDTH_QUAD;
else if (bus_width == SPI_NBITS_DUAL)
command1 |= QSPI_INTERFACE_WIDTH_DUAL;
else
command1 |= QSPI_INTERFACE_WIDTH_SINGLE;
tqspi->command1_reg = command1;
tegra_qspi_writel(tqspi, QSPI_NUM_DUMMY_CYCLE(tqspi->dummy_cycles), QSPI_MISC_REG);
ret = tegra_qspi_flush_fifos(tqspi, false);
if (ret < 0)
return ret;
if (tqspi->use_dma && total_fifo_words > QSPI_FIFO_DEPTH)
ret = tegra_qspi_start_dma_based_transfer(tqspi, t);
else
ret = tegra_qspi_start_cpu_based_transfer(tqspi, t);
return ret;
}
static struct tegra_qspi_client_data *tegra_qspi_parse_cdata_dt(struct spi_device *spi)
{
struct tegra_qspi_client_data *cdata;
struct device_node *slave_np = spi->dev.of_node;
cdata = kzalloc(sizeof(*cdata), GFP_KERNEL);
if (!cdata)
return NULL;
of_property_read_u32(slave_np, "nvidia,tx-clk-tap-delay",
&cdata->tx_clk_tap_delay);
of_property_read_u32(slave_np, "nvidia,rx-clk-tap-delay",
&cdata->rx_clk_tap_delay);
return cdata;
}
static void tegra_qspi_cleanup(struct spi_device *spi)
{
struct tegra_qspi_client_data *cdata = spi->controller_data;
spi->controller_data = NULL;
kfree(cdata);
}
static int tegra_qspi_setup(struct spi_device *spi)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
struct tegra_qspi_client_data *cdata = spi->controller_data;
unsigned long flags;
u32 val;
int ret;
ret = pm_runtime_resume_and_get(tqspi->dev);
if (ret < 0) {
dev_err(tqspi->dev, "failed to get runtime PM: %d\n", ret);
return ret;
}
if (!cdata) {
cdata = tegra_qspi_parse_cdata_dt(spi);
spi->controller_data = cdata;
}
spin_lock_irqsave(&tqspi->lock, flags);
/* keep default cs state to inactive */
val = tqspi->def_command1_reg;
if (spi->mode & SPI_CS_HIGH)
val &= ~QSPI_CS_SW_VAL;
else
val |= QSPI_CS_SW_VAL;
tqspi->def_command1_reg = val;
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
spin_unlock_irqrestore(&tqspi->lock, flags);
pm_runtime_put(tqspi->dev);
return 0;
}
static void tegra_qspi_dump_regs(struct tegra_qspi *tqspi)
{
dev_dbg(tqspi->dev, "============ QSPI REGISTER DUMP ============\n");
dev_dbg(tqspi->dev, "Command1: 0x%08x | Command2: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_COMMAND1),
tegra_qspi_readl(tqspi, QSPI_COMMAND2));
dev_dbg(tqspi->dev, "DMA_CTL: 0x%08x | DMA_BLK: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_DMA_CTL),
tegra_qspi_readl(tqspi, QSPI_DMA_BLK));
dev_dbg(tqspi->dev, "INTR_MASK: 0x%08x | MISC: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_INTR_MASK),
tegra_qspi_readl(tqspi, QSPI_MISC_REG));
dev_dbg(tqspi->dev, "TRANS_STAT: 0x%08x | FIFO_STATUS: 0x%08x\n",
tegra_qspi_readl(tqspi, QSPI_TRANS_STATUS),
tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS));
}
static void tegra_qspi_handle_error(struct tegra_qspi *tqspi)
{
dev_err(tqspi->dev, "error in transfer, fifo status 0x%08x\n", tqspi->status_reg);
tegra_qspi_dump_regs(tqspi);
tegra_qspi_flush_fifos(tqspi, true);
reset_control_assert(tqspi->rst);
udelay(2);
reset_control_deassert(tqspi->rst);
}
static void tegra_qspi_transfer_end(struct spi_device *spi)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(spi->master);
int cs_val = (spi->mode & SPI_CS_HIGH) ? 0 : 1;
if (cs_val)
tqspi->command1_reg |= QSPI_CS_SW_VAL;
else
tqspi->command1_reg &= ~QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
}
static int tegra_qspi_transfer_one_message(struct spi_master *master, struct spi_message *msg)
{
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
struct spi_transfer *transfer;
bool is_first_msg = true;
int ret;
msg->status = 0;
msg->actual_length = 0;
tqspi->tx_status = 0;
tqspi->rx_status = 0;
list_for_each_entry(transfer, &msg->transfers, transfer_list) {
struct spi_transfer *xfer = transfer;
u8 dummy_bytes = 0;
u32 cmd1;
tqspi->dummy_cycles = 0;
/*
* Tegra QSPI hardware supports dummy bytes transfer after actual transfer
* bytes based on programmed dummy clock cycles in the QSPI_MISC register.
* So, check if the next transfer is dummy data transfer and program dummy
* clock cycles along with the current transfer and skip next transfer.
*/
if (!list_is_last(&xfer->transfer_list, &msg->transfers)) {
struct spi_transfer *next_xfer;
next_xfer = list_next_entry(xfer, transfer_list);
if (next_xfer->dummy_data) {
u32 dummy_cycles = next_xfer->len * 8 / next_xfer->tx_nbits;
if (dummy_cycles <= QSPI_DUMMY_CYCLES_MAX) {
tqspi->dummy_cycles = dummy_cycles;
dummy_bytes = next_xfer->len;
transfer = next_xfer;
}
}
}
reinit_completion(&tqspi->xfer_completion);
cmd1 = tegra_qspi_setup_transfer_one(spi, xfer, is_first_msg);
ret = tegra_qspi_start_transfer_one(spi, xfer, cmd1);
if (ret < 0) {
dev_err(tqspi->dev, "failed to start transfer: %d\n", ret);
goto complete_xfer;
}
is_first_msg = false;
ret = wait_for_completion_timeout(&tqspi->xfer_completion,
QSPI_DMA_TIMEOUT);
if (WARN_ON(ret == 0)) {
dev_err(tqspi->dev, "transfer timeout: %d\n", ret);
if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_TX))
dmaengine_terminate_all(tqspi->tx_dma_chan);
if (tqspi->is_curr_dma_xfer && (tqspi->cur_direction & DATA_DIR_RX))
dmaengine_terminate_all(tqspi->rx_dma_chan);
tegra_qspi_handle_error(tqspi);
ret = -EIO;
goto complete_xfer;
}
if (tqspi->tx_status || tqspi->rx_status) {
tegra_qspi_handle_error(tqspi);
ret = -EIO;
goto complete_xfer;
}
msg->actual_length += xfer->len + dummy_bytes;
complete_xfer:
if (ret < 0) {
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
goto exit;
}
if (list_is_last(&xfer->transfer_list, &msg->transfers)) {
/* de-activate CS after last transfer only when cs_change is not set */
if (!xfer->cs_change) {
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
} else if (xfer->cs_change) {
/* de-activated CS between the transfers only when cs_change is set */
tegra_qspi_transfer_end(spi);
spi_transfer_delay_exec(xfer);
}
}
ret = 0;
exit:
msg->status = ret;
spi_finalize_current_message(master);
return ret;
}
static irqreturn_t handle_cpu_based_xfer(struct tegra_qspi *tqspi)
{
struct spi_transfer *t = tqspi->curr_xfer;
unsigned long flags;
spin_lock_irqsave(&tqspi->lock, flags);
if (tqspi->tx_status || tqspi->rx_status) {
tegra_qspi_handle_error(tqspi);
complete(&tqspi->xfer_completion);
goto exit;
}
if (tqspi->cur_direction & DATA_DIR_RX)
tegra_qspi_read_rx_fifo_to_client_rxbuf(tqspi, t);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->cur_pos = tqspi->cur_tx_pos;
else
tqspi->cur_pos = tqspi->cur_rx_pos;
if (tqspi->cur_pos == t->len) {
complete(&tqspi->xfer_completion);
goto exit;
}
tegra_qspi_calculate_curr_xfer_param(tqspi, t);
tegra_qspi_start_cpu_based_transfer(tqspi, t);
exit:
spin_unlock_irqrestore(&tqspi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t handle_dma_based_xfer(struct tegra_qspi *tqspi)
{
struct spi_transfer *t = tqspi->curr_xfer;
unsigned int total_fifo_words;
unsigned long flags;
long wait_status;
int err = 0;
if (tqspi->cur_direction & DATA_DIR_TX) {
if (tqspi->tx_status) {
dmaengine_terminate_all(tqspi->tx_dma_chan);
err += 1;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tqspi->tx_dma_complete, QSPI_DMA_TIMEOUT);
if (wait_status <= 0) {
dmaengine_terminate_all(tqspi->tx_dma_chan);
dev_err(tqspi->dev, "failed TX DMA transfer\n");
err += 1;
}
}
}
if (tqspi->cur_direction & DATA_DIR_RX) {
if (tqspi->rx_status) {
dmaengine_terminate_all(tqspi->rx_dma_chan);
err += 2;
} else {
wait_status = wait_for_completion_interruptible_timeout(
&tqspi->rx_dma_complete, QSPI_DMA_TIMEOUT);
if (wait_status <= 0) {
dmaengine_terminate_all(tqspi->rx_dma_chan);
dev_err(tqspi->dev, "failed RX DMA transfer\n");
err += 2;
}
}
}
spin_lock_irqsave(&tqspi->lock, flags);
if (err) {
tegra_qspi_dma_unmap_xfer(tqspi, t);
tegra_qspi_handle_error(tqspi);
complete(&tqspi->xfer_completion);
goto exit;
}
if (tqspi->cur_direction & DATA_DIR_RX)
tegra_qspi_copy_qspi_rxbuf_to_client_rxbuf(tqspi, t);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->cur_pos = tqspi->cur_tx_pos;
else
tqspi->cur_pos = tqspi->cur_rx_pos;
if (tqspi->cur_pos == t->len) {
tegra_qspi_dma_unmap_xfer(tqspi, t);
complete(&tqspi->xfer_completion);
goto exit;
}
tegra_qspi_dma_unmap_xfer(tqspi, t);
/* continue transfer in current message */
total_fifo_words = tegra_qspi_calculate_curr_xfer_param(tqspi, t);
if (total_fifo_words > QSPI_FIFO_DEPTH)
err = tegra_qspi_start_dma_based_transfer(tqspi, t);
else
err = tegra_qspi_start_cpu_based_transfer(tqspi, t);
exit:
spin_unlock_irqrestore(&tqspi->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t tegra_qspi_isr_thread(int irq, void *context_data)
{
struct tegra_qspi *tqspi = context_data;
tqspi->status_reg = tegra_qspi_readl(tqspi, QSPI_FIFO_STATUS);
if (tqspi->cur_direction & DATA_DIR_TX)
tqspi->tx_status = tqspi->status_reg & (QSPI_TX_FIFO_UNF | QSPI_TX_FIFO_OVF);
if (tqspi->cur_direction & DATA_DIR_RX)
tqspi->rx_status = tqspi->status_reg & (QSPI_RX_FIFO_OVF | QSPI_RX_FIFO_UNF);
tegra_qspi_mask_clear_irq(tqspi);
if (!tqspi->is_curr_dma_xfer)
return handle_cpu_based_xfer(tqspi);
return handle_dma_based_xfer(tqspi);
}
static const struct of_device_id tegra_qspi_of_match[] = {
{ .compatible = "nvidia,tegra210-qspi", },
{ .compatible = "nvidia,tegra186-qspi", },
{ .compatible = "nvidia,tegra194-qspi", },
{}
};
MODULE_DEVICE_TABLE(of, tegra_qspi_of_match);
static int tegra_qspi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct tegra_qspi *tqspi;
struct resource *r;
int ret, qspi_irq;
int bus_num;
master = devm_spi_alloc_master(&pdev->dev, sizeof(*tqspi));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
tqspi = spi_master_get_devdata(master);
master->mode_bits = SPI_MODE_0 | SPI_MODE_3 | SPI_CS_HIGH |
SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD;
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
master->setup = tegra_qspi_setup;
master->cleanup = tegra_qspi_cleanup;
master->transfer_one_message = tegra_qspi_transfer_one_message;
master->num_chipselect = 1;
master->auto_runtime_pm = true;
bus_num = of_alias_get_id(pdev->dev.of_node, "spi");
if (bus_num >= 0)
master->bus_num = bus_num;
tqspi->master = master;
tqspi->dev = &pdev->dev;
spin_lock_init(&tqspi->lock);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tqspi->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(tqspi->base))
return PTR_ERR(tqspi->base);
tqspi->phys = r->start;
qspi_irq = platform_get_irq(pdev, 0);
tqspi->irq = qspi_irq;
tqspi->clk = devm_clk_get(&pdev->dev, "qspi");
if (IS_ERR(tqspi->clk)) {
ret = PTR_ERR(tqspi->clk);
dev_err(&pdev->dev, "failed to get clock: %d\n", ret);
return ret;
}
tqspi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(tqspi->rst)) {
ret = PTR_ERR(tqspi->rst);
dev_err(&pdev->dev, "failed to get reset control: %d\n", ret);
return ret;
}
tqspi->max_buf_size = QSPI_FIFO_DEPTH << 2;
tqspi->dma_buf_size = DEFAULT_QSPI_DMA_BUF_LEN;
ret = tegra_qspi_init_dma(tqspi);
if (ret < 0)
return ret;
if (tqspi->use_dma)
tqspi->max_buf_size = tqspi->dma_buf_size;
init_completion(&tqspi->tx_dma_complete);
init_completion(&tqspi->rx_dma_complete);
init_completion(&tqspi->xfer_completion);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to get runtime PM: %d\n", ret);
goto exit_pm_disable;
}
reset_control_assert(tqspi->rst);
udelay(2);
reset_control_deassert(tqspi->rst);
tqspi->def_command1_reg = QSPI_M_S | QSPI_CS_SW_HW | QSPI_CS_SW_VAL;
tegra_qspi_writel(tqspi, tqspi->def_command1_reg, QSPI_COMMAND1);
tqspi->spi_cs_timing1 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING1);
tqspi->spi_cs_timing2 = tegra_qspi_readl(tqspi, QSPI_CS_TIMING2);
tqspi->def_command2_reg = tegra_qspi_readl(tqspi, QSPI_COMMAND2);
pm_runtime_put(&pdev->dev);
ret = request_threaded_irq(tqspi->irq, NULL,
tegra_qspi_isr_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), tqspi);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", tqspi->irq, ret);
goto exit_pm_disable;
}
master->dev.of_node = pdev->dev.of_node;
ret = spi_register_master(master);
if (ret < 0) {
dev_err(&pdev->dev, "failed to register master: %d\n", ret);
goto exit_free_irq;
}
return 0;
exit_free_irq:
free_irq(qspi_irq, tqspi);
exit_pm_disable:
pm_runtime_disable(&pdev->dev);
tegra_qspi_deinit_dma(tqspi);
return ret;
}
static int tegra_qspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
spi_unregister_master(master);
free_irq(tqspi->irq, tqspi);
pm_runtime_disable(&pdev->dev);
tegra_qspi_deinit_dma(tqspi);
return 0;
}
static int __maybe_unused tegra_qspi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
return spi_master_suspend(master);
}
static int __maybe_unused tegra_qspi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "failed to get runtime PM: %d\n", ret);
return ret;
}
tegra_qspi_writel(tqspi, tqspi->command1_reg, QSPI_COMMAND1);
tegra_qspi_writel(tqspi, tqspi->def_command2_reg, QSPI_COMMAND2);
pm_runtime_put(dev);
return spi_master_resume(master);
}
static int __maybe_unused tegra_qspi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
/* flush all write which are in PPSB queue by reading back */
tegra_qspi_readl(tqspi, QSPI_COMMAND1);
clk_disable_unprepare(tqspi->clk);
return 0;
}
static int __maybe_unused tegra_qspi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct tegra_qspi *tqspi = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(tqspi->clk);
if (ret < 0)
dev_err(tqspi->dev, "failed to enable clock: %d\n", ret);
return ret;
}
static const struct dev_pm_ops tegra_qspi_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_qspi_runtime_suspend, tegra_qspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(tegra_qspi_suspend, tegra_qspi_resume)
};
static struct platform_driver tegra_qspi_driver = {
.driver = {
.name = "tegra-qspi",
.pm = &tegra_qspi_pm_ops,
.of_match_table = tegra_qspi_of_match,
},
.probe = tegra_qspi_probe,
.remove = tegra_qspi_remove,
};
module_platform_driver(tegra_qspi_driver);
MODULE_ALIAS("platform:qspi-tegra");
MODULE_DESCRIPTION("NVIDIA Tegra QSPI Controller Driver");
MODULE_AUTHOR("Sowjanya Komatineni <skomatineni@nvidia.com>");
MODULE_LICENSE("GPL v2");
/*
* TXx9 SPI controller driver.
*
* Based on linux/arch/mips/tx4938/toshiba_rbtx4938/spi_txx9.c
* Copyright (C) 2000-2001 Toshiba Corporation
*
* 2003-2005 (c) MontaVista Software, Inc. This file is licensed under the
* terms of the GNU General Public License version 2. This program is
* licensed "as is" without any warranty of any kind, whether express
* or implied.
*
* Support for TX4938 in 2.6 - Manish Lachwani (mlachwani@mvista.com)
*
* Convert to generic SPI framework - Atsushi Nemoto (anemo@mba.ocn.ne.jp)
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/spi/spi.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/gpio/machine.h>
#include <linux/gpio/consumer.h>
#define SPI_FIFO_SIZE 4
#define SPI_MAX_DIVIDER 0xff /* Max. value for SPCR1.SER */
#define SPI_MIN_DIVIDER 1 /* Min. value for SPCR1.SER */
#define TXx9_SPMCR 0x00
#define TXx9_SPCR0 0x04
#define TXx9_SPCR1 0x08
#define TXx9_SPFS 0x0c
#define TXx9_SPSR 0x14
#define TXx9_SPDR 0x18
/* SPMCR : SPI Master Control */
#define TXx9_SPMCR_OPMODE 0xc0
#define TXx9_SPMCR_CONFIG 0x40
#define TXx9_SPMCR_ACTIVE 0x80
#define TXx9_SPMCR_SPSTP 0x02
#define TXx9_SPMCR_BCLR 0x01
/* SPCR0 : SPI Control 0 */
#define TXx9_SPCR0_TXIFL_MASK 0xc000
#define TXx9_SPCR0_RXIFL_MASK 0x3000
#define TXx9_SPCR0_SIDIE 0x0800
#define TXx9_SPCR0_SOEIE 0x0400
#define TXx9_SPCR0_RBSIE 0x0200
#define TXx9_SPCR0_TBSIE 0x0100
#define TXx9_SPCR0_IFSPSE 0x0010
#define TXx9_SPCR0_SBOS 0x0004
#define TXx9_SPCR0_SPHA 0x0002
#define TXx9_SPCR0_SPOL 0x0001
/* SPSR : SPI Status */
#define TXx9_SPSR_TBSI 0x8000
#define TXx9_SPSR_RBSI 0x4000
#define TXx9_SPSR_TBS_MASK 0x3800
#define TXx9_SPSR_RBS_MASK 0x0700
#define TXx9_SPSR_SPOE 0x0080
#define TXx9_SPSR_IFSD 0x0008
#define TXx9_SPSR_SIDLE 0x0004
#define TXx9_SPSR_STRDY 0x0002
#define TXx9_SPSR_SRRDY 0x0001
struct txx9spi {
struct work_struct work;
spinlock_t lock; /* protect 'queue' */
struct list_head queue;
wait_queue_head_t waitq;
void __iomem *membase;
int baseclk;
struct clk *clk;
struct gpio_desc *last_chipselect;
int last_chipselect_val;
};
static u32 txx9spi_rd(struct txx9spi *c, int reg)
{
return __raw_readl(c->membase + reg);
}
static void txx9spi_wr(struct txx9spi *c, u32 val, int reg)
{
__raw_writel(val, c->membase + reg);
}
static void txx9spi_cs_func(struct spi_device *spi, struct txx9spi *c,
int on, unsigned int cs_delay)
{
/*
* The GPIO descriptor will track polarity inversion inside
* gpiolib.
*/
if (on) {
/* deselect the chip with cs_change hint in last transfer */
if (c->last_chipselect)
gpiod_set_value(c->last_chipselect,
!c->last_chipselect_val);
c->last_chipselect = spi->cs_gpiod;
c->last_chipselect_val = on;
} else {
c->last_chipselect = NULL;
ndelay(cs_delay); /* CS Hold Time */
}
gpiod_set_value(spi->cs_gpiod, on);
ndelay(cs_delay); /* CS Setup Time / CS Recovery Time */
}
static int txx9spi_setup(struct spi_device *spi)
{
struct txx9spi *c = spi_master_get_devdata(spi->master);
if (!spi->max_speed_hz)
return -EINVAL;
/* deselect chip */
spin_lock(&c->lock);
txx9spi_cs_func(spi, c, 0, (NSEC_PER_SEC / 2) / spi->max_speed_hz);
spin_unlock(&c->lock);
return 0;
}
static irqreturn_t txx9spi_interrupt(int irq, void *dev_id)
{
struct txx9spi *c = dev_id;
/* disable rx intr */
txx9spi_wr(c, txx9spi_rd(c, TXx9_SPCR0) & ~TXx9_SPCR0_RBSIE,
TXx9_SPCR0);
wake_up(&c->waitq);
return IRQ_HANDLED;
}
static void txx9spi_work_one(struct txx9spi *c, struct spi_message *m)
{
struct spi_device *spi = m->spi;
struct spi_transfer *t;
unsigned int cs_delay;
unsigned int cs_change = 1;
int status = 0;
u32 mcr;
u32 prev_speed_hz = 0;
u8 prev_bits_per_word = 0;
/* CS setup/hold/recovery time in nsec */
cs_delay = 100 + (NSEC_PER_SEC / 2) / spi->max_speed_hz;
mcr = txx9spi_rd(c, TXx9_SPMCR);
if (unlikely((mcr & TXx9_SPMCR_OPMODE) == TXx9_SPMCR_ACTIVE)) {
dev_err(&spi->dev, "Bad mode.\n");
status = -EIO;
goto exit;
}
mcr &= ~(TXx9_SPMCR_OPMODE | TXx9_SPMCR_SPSTP | TXx9_SPMCR_BCLR);
/* enter config mode */
txx9spi_wr(c, mcr | TXx9_SPMCR_CONFIG | TXx9_SPMCR_BCLR, TXx9_SPMCR);
txx9spi_wr(c, TXx9_SPCR0_SBOS
| ((spi->mode & SPI_CPOL) ? TXx9_SPCR0_SPOL : 0)
| ((spi->mode & SPI_CPHA) ? TXx9_SPCR0_SPHA : 0)
| 0x08,
TXx9_SPCR0);
list_for_each_entry(t, &m->transfers, transfer_list) {
const void *txbuf = t->tx_buf;
void *rxbuf = t->rx_buf;
u32 data;
unsigned int len = t->len;
unsigned int wsize;
u32 speed_hz = t->speed_hz;
u8 bits_per_word = t->bits_per_word;
wsize = bits_per_word >> 3; /* in bytes */
if (prev_speed_hz != speed_hz
|| prev_bits_per_word != bits_per_word) {
int n = DIV_ROUND_UP(c->baseclk, speed_hz) - 1;
n = clamp(n, SPI_MIN_DIVIDER, SPI_MAX_DIVIDER);
/* enter config mode */
txx9spi_wr(c, mcr | TXx9_SPMCR_CONFIG | TXx9_SPMCR_BCLR,
TXx9_SPMCR);
txx9spi_wr(c, (n << 8) | bits_per_word, TXx9_SPCR1);
/* enter active mode */
txx9spi_wr(c, mcr | TXx9_SPMCR_ACTIVE, TXx9_SPMCR);
prev_speed_hz = speed_hz;
prev_bits_per_word = bits_per_word;
}
if (cs_change)
txx9spi_cs_func(spi, c, 1, cs_delay);
cs_change = t->cs_change;
while (len) {
unsigned int count = SPI_FIFO_SIZE;
int i;
u32 cr0;
if (len < count * wsize)
count = len / wsize;
/* now tx must be idle... */
while (!(txx9spi_rd(c, TXx9_SPSR) & TXx9_SPSR_SIDLE))
cpu_relax();
cr0 = txx9spi_rd(c, TXx9_SPCR0);
cr0 &= ~TXx9_SPCR0_RXIFL_MASK;
cr0 |= (count - 1) << 12;
/* enable rx intr */
cr0 |= TXx9_SPCR0_RBSIE;
txx9spi_wr(c, cr0, TXx9_SPCR0);
/* send */
for (i = 0; i < count; i++) {
if (txbuf) {
data = (wsize == 1)
? *(const u8 *)txbuf
: *(const u16 *)txbuf;
txx9spi_wr(c, data, TXx9_SPDR);
txbuf += wsize;
} else
txx9spi_wr(c, 0, TXx9_SPDR);
}
/* wait all rx data */
wait_event(c->waitq,
txx9spi_rd(c, TXx9_SPSR) & TXx9_SPSR_RBSI);
/* receive */
for (i = 0; i < count; i++) {
data = txx9spi_rd(c, TXx9_SPDR);
if (rxbuf) {
if (wsize == 1)
*(u8 *)rxbuf = data;
else
*(u16 *)rxbuf = data;
rxbuf += wsize;
}
}
len -= count * wsize;
}
m->actual_length += t->len;
spi_transfer_delay_exec(t);
if (!cs_change)
continue;
if (t->transfer_list.next == &m->transfers)
break;
/* sometimes a short mid-message deselect of the chip
* may be needed to terminate a mode or command
*/
txx9spi_cs_func(spi, c, 0, cs_delay);
}
exit:
m->status = status;
if (m->complete)
m->complete(m->context);
/* normally deactivate chipselect ... unless no error and
* cs_change has hinted that the next message will probably
* be for this chip too.
*/
if (!(status == 0 && cs_change))
txx9spi_cs_func(spi, c, 0, cs_delay);
/* enter config mode */
txx9spi_wr(c, mcr | TXx9_SPMCR_CONFIG | TXx9_SPMCR_BCLR, TXx9_SPMCR);
}
static void txx9spi_work(struct work_struct *work)
{
struct txx9spi *c = container_of(work, struct txx9spi, work);
unsigned long flags;
spin_lock_irqsave(&c->lock, flags);
while (!list_empty(&c->queue)) {
struct spi_message *m;
m = container_of(c->queue.next, struct spi_message, queue);
list_del_init(&m->queue);
spin_unlock_irqrestore(&c->lock, flags);
txx9spi_work_one(c, m);
spin_lock_irqsave(&c->lock, flags);
}
spin_unlock_irqrestore(&c->lock, flags);
}
static int txx9spi_transfer(struct spi_device *spi, struct spi_message *m)
{
struct spi_master *master = spi->master;
struct txx9spi *c = spi_master_get_devdata(master);
struct spi_transfer *t;
unsigned long flags;
m->actual_length = 0;
/* check each transfer's parameters */
list_for_each_entry(t, &m->transfers, transfer_list) {
if (!t->tx_buf && !t->rx_buf && t->len)
return -EINVAL;
}
spin_lock_irqsave(&c->lock, flags);
list_add_tail(&m->queue, &c->queue);
schedule_work(&c->work);
spin_unlock_irqrestore(&c->lock, flags);
return 0;
}
/*
* Chip select uses GPIO only, further the driver is using the chip select
* numer (from the device tree "reg" property, and this can only come from
* device tree since this i MIPS and there is no way to pass platform data) as
* the GPIO number. As the platform has only one GPIO controller (the txx9 GPIO
* chip) it is thus using the chip select number as an offset into that chip.
* This chip has a maximum of 16 GPIOs 0..15 and this is what all platforms
* register.
*
* We modernized this behaviour by explicitly converting that offset to an
* offset on the GPIO chip using a GPIO descriptor machine table of the same
* size as the txx9 GPIO chip with a 1-to-1 mapping of chip select to GPIO
* offset.
*
* This is admittedly a hack, but it is countering the hack of using "reg" to
* contain a GPIO offset when it should be using "cs-gpios" as the SPI bindings
* state.
*/
static struct gpiod_lookup_table txx9spi_cs_gpio_table = {
.dev_id = "spi0",
.table = {
GPIO_LOOKUP_IDX("TXx9", 0, "cs", 0, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 1, "cs", 1, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 2, "cs", 2, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 3, "cs", 3, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 4, "cs", 4, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 5, "cs", 5, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 6, "cs", 6, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 7, "cs", 7, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 8, "cs", 8, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 9, "cs", 9, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 10, "cs", 10, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 11, "cs", 11, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 12, "cs", 12, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 13, "cs", 13, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 14, "cs", 14, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 15, "cs", 15, GPIO_ACTIVE_LOW),
{ },
},
};
static int txx9spi_probe(struct platform_device *dev)
{
struct spi_master *master;
struct txx9spi *c;
struct resource *res;
int ret = -ENODEV;
u32 mcr;
int irq;
master = spi_alloc_master(&dev->dev, sizeof(*c));
if (!master)
return ret;
c = spi_master_get_devdata(master);
platform_set_drvdata(dev, master);
INIT_WORK(&c->work, txx9spi_work);
spin_lock_init(&c->lock);
INIT_LIST_HEAD(&c->queue);
init_waitqueue_head(&c->waitq);
c->clk = devm_clk_get(&dev->dev, "spi-baseclk");
if (IS_ERR(c->clk)) {
ret = PTR_ERR(c->clk);
c->clk = NULL;
goto exit;
}
ret = clk_prepare_enable(c->clk);
if (ret) {
c->clk = NULL;
goto exit;
}
c->baseclk = clk_get_rate(c->clk);
master->min_speed_hz = DIV_ROUND_UP(c->baseclk, SPI_MAX_DIVIDER + 1);
master->max_speed_hz = c->baseclk / (SPI_MIN_DIVIDER + 1);
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
c->membase = devm_ioremap_resource(&dev->dev, res);
if (IS_ERR(c->membase))
goto exit_busy;
/* enter config mode */
mcr = txx9spi_rd(c, TXx9_SPMCR);
mcr &= ~(TXx9_SPMCR_OPMODE | TXx9_SPMCR_SPSTP | TXx9_SPMCR_BCLR);
txx9spi_wr(c, mcr | TXx9_SPMCR_CONFIG | TXx9_SPMCR_BCLR, TXx9_SPMCR);
irq = platform_get_irq(dev, 0);
if (irq < 0)
goto exit_busy;
ret = devm_request_irq(&dev->dev, irq, txx9spi_interrupt, 0,
"spi_txx9", c);
if (ret)
goto exit;
c->last_chipselect = NULL;
dev_info(&dev->dev, "at %#llx, irq %d, %dMHz\n",
(unsigned long long)res->start, irq,
(c->baseclk + 500000) / 1000000);
gpiod_add_lookup_table(&txx9spi_cs_gpio_table);
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CS_HIGH | SPI_CPOL | SPI_CPHA;
master->bus_num = dev->id;
master->setup = txx9spi_setup;
master->transfer = txx9spi_transfer;
master->num_chipselect = (u16)UINT_MAX; /* any GPIO numbers */
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
master->use_gpio_descriptors = true;
ret = devm_spi_register_master(&dev->dev, master);
if (ret)
goto exit;
return 0;
exit_busy:
ret = -EBUSY;
exit:
clk_disable_unprepare(c->clk);
spi_master_put(master);
return ret;
}
static int txx9spi_remove(struct platform_device *dev)
{
struct spi_master *master = platform_get_drvdata(dev);
struct txx9spi *c = spi_master_get_devdata(master);
flush_work(&c->work);
clk_disable_unprepare(c->clk);
return 0;
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:spi_txx9");
static struct platform_driver txx9spi_driver = {
.probe = txx9spi_probe,
.remove = txx9spi_remove,
.driver = {
.name = "spi_txx9",
},
};
static int __init txx9spi_init(void)
{
return platform_driver_register(&txx9spi_driver);
}
subsys_initcall(txx9spi_init);
static void __exit txx9spi_exit(void)
{
platform_driver_unregister(&txx9spi_driver);
}
module_exit(txx9spi_exit);
MODULE_DESCRIPTION("TXx9 SPI Driver");
MODULE_LICENSE("GPL");
...@@ -810,7 +810,8 @@ static void spi_set_cs(struct spi_device *spi, bool enable) ...@@ -810,7 +810,8 @@ static void spi_set_cs(struct spi_device *spi, bool enable)
spi->controller->last_cs_enable = enable; spi->controller->last_cs_enable = enable;
spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
if (!spi->controller->set_cs_timing) { if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
!spi->controller->set_cs_timing) {
if (enable1) if (enable1)
spi_delay_exec(&spi->controller->cs_setup, NULL); spi_delay_exec(&spi->controller->cs_setup, NULL);
else else
...@@ -841,7 +842,8 @@ static void spi_set_cs(struct spi_device *spi, bool enable) ...@@ -841,7 +842,8 @@ static void spi_set_cs(struct spi_device *spi, bool enable)
spi->controller->set_cs(spi, !enable); spi->controller->set_cs(spi, !enable);
} }
if (!spi->controller->set_cs_timing) { if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
!spi->controller->set_cs_timing) {
if (!enable1) if (!enable1)
spi_delay_exec(&spi->controller->cs_inactive, NULL); spi_delay_exec(&spi->controller->cs_inactive, NULL);
} }
...@@ -1267,7 +1269,7 @@ static int spi_transfer_one_message(struct spi_controller *ctlr, ...@@ -1267,7 +1269,7 @@ static int spi_transfer_one_message(struct spi_controller *ctlr,
ptp_read_system_prets(xfer->ptp_sts); ptp_read_system_prets(xfer->ptp_sts);
} }
if (xfer->tx_buf || xfer->rx_buf) { if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
reinit_completion(&ctlr->xfer_completion); reinit_completion(&ctlr->xfer_completion);
fallback_pio: fallback_pio:
...@@ -1945,6 +1947,9 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, ...@@ -1945,6 +1947,9 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
/* Device DUAL/QUAD mode */ /* Device DUAL/QUAD mode */
if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
switch (value) { switch (value) {
case 0:
spi->mode |= SPI_NO_TX;
break;
case 1: case 1:
break; break;
case 2: case 2:
...@@ -1966,6 +1971,9 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, ...@@ -1966,6 +1971,9 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
switch (value) { switch (value) {
case 0:
spi->mode |= SPI_NO_RX;
break;
case 1: case 1:
break; break;
case 2: case 2:
...@@ -3333,12 +3341,16 @@ int spi_setup(struct spi_device *spi) ...@@ -3333,12 +3341,16 @@ int spi_setup(struct spi_device *spi)
unsigned bad_bits, ugly_bits; unsigned bad_bits, ugly_bits;
int status; int status;
/* check mode to prevent that DUAL and QUAD set at the same time /*
* check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
* are set at the same time
*/ */
if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || if ((hweight_long(spi->mode &
((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
(hweight_long(spi->mode &
(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
dev_err(&spi->dev, dev_err(&spi->dev,
"setup: can not select dual and quad at the same time\n"); "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
return -EINVAL; return -EINVAL;
} }
/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
...@@ -3352,7 +3364,8 @@ int spi_setup(struct spi_device *spi) ...@@ -3352,7 +3364,8 @@ int spi_setup(struct spi_device *spi)
* SPI_CS_WORD has a fallback software implementation, * SPI_CS_WORD has a fallback software implementation,
* so it is ignored here. * so it is ignored here.
*/ */
bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
SPI_NO_TX | SPI_NO_RX);
/* nothing prevents from working with active-high CS in case if it /* nothing prevents from working with active-high CS in case if it
* is driven by GPIO. * is driven by GPIO.
*/ */
...@@ -3449,11 +3462,31 @@ EXPORT_SYMBOL_GPL(spi_setup); ...@@ -3449,11 +3462,31 @@ EXPORT_SYMBOL_GPL(spi_setup);
int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
struct spi_delay *hold, struct spi_delay *inactive) struct spi_delay *hold, struct spi_delay *inactive)
{ {
struct device *parent = spi->controller->dev.parent;
size_t len; size_t len;
int status;
if (spi->controller->set_cs_timing &&
!(spi->cs_gpiod || gpio_is_valid(spi->cs_gpio))) {
if (spi->controller->auto_runtime_pm) {
status = pm_runtime_get_sync(parent);
if (status < 0) {
pm_runtime_put_noidle(parent);
dev_err(&spi->controller->dev, "Failed to power device: %d\n",
status);
return status;
}
if (spi->controller->set_cs_timing) status = spi->controller->set_cs_timing(spi, setup,
hold, inactive);
pm_runtime_mark_last_busy(parent);
pm_runtime_put_autosuspend(parent);
return status;
} else {
return spi->controller->set_cs_timing(spi, setup, hold, return spi->controller->set_cs_timing(spi, setup, hold,
inactive); inactive);
}
}
if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
(hold && hold->unit == SPI_DELAY_UNIT_SCK) || (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
...@@ -3615,6 +3648,8 @@ static int __spi_validate(struct spi_device *spi, struct spi_message *message) ...@@ -3615,6 +3648,8 @@ static int __spi_validate(struct spi_device *spi, struct spi_message *message)
* 2. check tx/rx_nbits match the mode in spi_device * 2. check tx/rx_nbits match the mode in spi_device
*/ */
if (xfer->tx_buf) { if (xfer->tx_buf) {
if (spi->mode & SPI_NO_TX)
return -EINVAL;
if (xfer->tx_nbits != SPI_NBITS_SINGLE && if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
xfer->tx_nbits != SPI_NBITS_DUAL && xfer->tx_nbits != SPI_NBITS_DUAL &&
xfer->tx_nbits != SPI_NBITS_QUAD) xfer->tx_nbits != SPI_NBITS_QUAD)
...@@ -3628,6 +3663,8 @@ static int __spi_validate(struct spi_device *spi, struct spi_message *message) ...@@ -3628,6 +3663,8 @@ static int __spi_validate(struct spi_device *spi, struct spi_message *message)
} }
/* check transfer rx_nbits */ /* check transfer rx_nbits */
if (xfer->rx_buf) { if (xfer->rx_buf) {
if (spi->mode & SPI_NO_RX)
return -EINVAL;
if (xfer->rx_nbits != SPI_NBITS_SINGLE && if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
xfer->rx_nbits != SPI_NBITS_DUAL && xfer->rx_nbits != SPI_NBITS_DUAL &&
xfer->rx_nbits != SPI_NBITS_QUAD) xfer->rx_nbits != SPI_NBITS_QUAD)
......
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_PLATFORM_DATA_EFM32_SPI_H__
#define __LINUX_PLATFORM_DATA_EFM32_SPI_H__
#include <linux/types.h>
/**
* struct efm32_spi_pdata
* @location: pinmux location for the I/O pins (to be written to the ROUTE
* register)
*/
struct efm32_spi_pdata {
u8 location;
};
#endif /* ifndef __LINUX_PLATFORM_DATA_EFM32_SPI_H__ */
...@@ -311,6 +311,9 @@ void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, ...@@ -311,6 +311,9 @@ void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
bool spi_mem_default_supports_op(struct spi_mem *mem, bool spi_mem_default_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op); const struct spi_mem_op *op);
bool spi_mem_dtr_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op);
#else #else
static inline int static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
...@@ -334,6 +337,12 @@ bool spi_mem_default_supports_op(struct spi_mem *mem, ...@@ -334,6 +337,12 @@ bool spi_mem_default_supports_op(struct spi_mem *mem,
return false; return false;
} }
static inline
bool spi_mem_dtr_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
return false;
}
#endif /* CONFIG_SPI_MEM */ #endif /* CONFIG_SPI_MEM */
int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op); int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#ifndef __LINUX_SPI_H #ifndef __LINUX_SPI_H
#define __LINUX_SPI_H #define __LINUX_SPI_H
#include <linux/bits.h>
#include <linux/device.h> #include <linux/device.h>
#include <linux/mod_devicetable.h> #include <linux/mod_devicetable.h>
#include <linux/slab.h> #include <linux/slab.h>
...@@ -15,6 +16,8 @@ ...@@ -15,6 +16,8 @@
#include <linux/gpio/consumer.h> #include <linux/gpio/consumer.h>
#include <linux/ptp_clock_kernel.h> #include <linux/ptp_clock_kernel.h>
#include <uapi/linux/spi/spi.h>
struct dma_chan; struct dma_chan;
struct property_entry; struct property_entry;
struct spi_controller; struct spi_controller;
...@@ -164,28 +167,19 @@ struct spi_device { ...@@ -164,28 +167,19 @@ struct spi_device {
u8 chip_select; u8 chip_select;
u8 bits_per_word; u8 bits_per_word;
bool rt; bool rt;
#define SPI_NO_TX BIT(31) /* no transmit wire */
#define SPI_NO_RX BIT(30) /* no receive wire */
/*
* All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
* The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
* which is defined in 'include/uapi/linux/spi/spi.h'.
* The bits defined here are from bit 31 downwards, while in
* SPI_MODE_USER_MASK are from 0 upwards.
* These bits must not overlap. A static assert check should make sure of that.
* If adding extra bits, make sure to decrease the bit index below as well.
*/
#define SPI_MODE_KERNEL_MASK (~(BIT(30) - 1))
u32 mode; u32 mode;
#define SPI_CPHA 0x01 /* clock phase */
#define SPI_CPOL 0x02 /* clock polarity */
#define SPI_MODE_0 (0|0) /* (original MicroWire) */
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_MODE_X_MASK (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04 /* chipselect active high? */
#define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
#define SPI_3WIRE 0x10 /* SI/SO signals shared */
#define SPI_LOOP 0x20 /* loopback mode */
#define SPI_NO_CS 0x40 /* 1 dev/bus, no chipselect */
#define SPI_READY 0x80 /* slave pulls low to pause */
#define SPI_TX_DUAL 0x100 /* transmit with 2 wires */
#define SPI_TX_QUAD 0x200 /* transmit with 4 wires */
#define SPI_RX_DUAL 0x400 /* receive with 2 wires */
#define SPI_RX_QUAD 0x800 /* receive with 4 wires */
#define SPI_CS_WORD 0x1000 /* toggle cs after each word */
#define SPI_TX_OCTAL 0x2000 /* transmit with 8 wires */
#define SPI_RX_OCTAL 0x4000 /* receive with 8 wires */
#define SPI_3WIRE_HIZ 0x8000 /* high impedance turnaround */
int irq; int irq;
void *controller_state; void *controller_state;
void *controller_data; void *controller_data;
...@@ -208,6 +202,10 @@ struct spi_device { ...@@ -208,6 +202,10 @@ struct spi_device {
*/ */
}; };
/* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
"SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
static inline struct spi_device *to_spi_device(struct device *dev) static inline struct spi_device *to_spi_device(struct device *dev)
{ {
return dev ? container_of(dev, struct spi_device, dev) : NULL; return dev ? container_of(dev, struct spi_device, dev) : NULL;
...@@ -624,7 +622,7 @@ struct spi_controller { ...@@ -624,7 +622,7 @@ struct spi_controller {
/* /*
* These hooks are for drivers that use a generic implementation * These hooks are for drivers that use a generic implementation
* of transfer_one_message() provied by the core. * of transfer_one_message() provided by the core.
*/ */
void (*set_cs)(struct spi_device *spi, bool enable); void (*set_cs)(struct spi_device *spi, bool enable);
int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi, int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
...@@ -827,6 +825,7 @@ extern void spi_res_release(struct spi_controller *ctlr, ...@@ -827,6 +825,7 @@ extern void spi_res_release(struct spi_controller *ctlr,
* transfer. If 0 the default (from @spi_device) is used. * transfer. If 0 the default (from @spi_device) is used.
* @bits_per_word: select a bits_per_word other than the device default * @bits_per_word: select a bits_per_word other than the device default
* for this transfer. If 0 the default (from @spi_device) is used. * for this transfer. If 0 the default (from @spi_device) is used.
* @dummy_data: indicates transfer is dummy bytes transfer.
* @cs_change: affects chipselect after this transfer completes * @cs_change: affects chipselect after this transfer completes
* @cs_change_delay: delay between cs deassert and assert when * @cs_change_delay: delay between cs deassert and assert when
* @cs_change is set and @spi_transfer is not the last in @spi_message * @cs_change is set and @spi_transfer is not the last in @spi_message
...@@ -939,6 +938,7 @@ struct spi_transfer { ...@@ -939,6 +938,7 @@ struct spi_transfer {
struct sg_table tx_sg; struct sg_table tx_sg;
struct sg_table rx_sg; struct sg_table rx_sg;
unsigned dummy_data:1;
unsigned cs_change:1; unsigned cs_change:1;
unsigned tx_nbits:3; unsigned tx_nbits:3;
unsigned rx_nbits:3; unsigned rx_nbits:3;
......
/* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */
#ifndef _UAPI_SPI_H
#define _UAPI_SPI_H
#include <linux/const.h>
#define SPI_CPHA _BITUL(0) /* clock phase */
#define SPI_CPOL _BITUL(1) /* clock polarity */
#define SPI_MODE_0 (0|0) /* (original MicroWire) */
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_MODE_X_MASK (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH _BITUL(2) /* chipselect active high? */
#define SPI_LSB_FIRST _BITUL(3) /* per-word bits-on-wire */
#define SPI_3WIRE _BITUL(4) /* SI/SO signals shared */
#define SPI_LOOP _BITUL(5) /* loopback mode */
#define SPI_NO_CS _BITUL(6) /* 1 dev/bus, no chipselect */
#define SPI_READY _BITUL(7) /* slave pulls low to pause */
#define SPI_TX_DUAL _BITUL(8) /* transmit with 2 wires */
#define SPI_TX_QUAD _BITUL(9) /* transmit with 4 wires */
#define SPI_RX_DUAL _BITUL(10) /* receive with 2 wires */
#define SPI_RX_QUAD _BITUL(11) /* receive with 4 wires */
#define SPI_CS_WORD _BITUL(12) /* toggle cs after each word */
#define SPI_TX_OCTAL _BITUL(13) /* transmit with 8 wires */
#define SPI_RX_OCTAL _BITUL(14) /* receive with 8 wires */
#define SPI_3WIRE_HIZ _BITUL(15) /* high impedance turnaround */
/*
* All the bits defined above should be covered by SPI_MODE_USER_MASK.
* The SPI_MODE_USER_MASK has the SPI_MODE_KERNEL_MASK counterpart in
* 'include/linux/spi/spi.h'. The bits defined here are from bit 0 upwards
* while in SPI_MODE_KERNEL_MASK they are from the other end downwards.
* These bits must not overlap. A static assert check should make sure of that.
* If adding extra bits, make sure to increase the bit index below as well.
*/
#define SPI_MODE_USER_MASK (_BITUL(16) - 1)
#endif /* _UAPI_SPI_H */
...@@ -25,35 +25,7 @@ ...@@ -25,35 +25,7 @@
#include <linux/types.h> #include <linux/types.h>
#include <linux/ioctl.h> #include <linux/ioctl.h>
#include <linux/spi/spi.h>
/* User space versions of kernel symbols for SPI clocking modes,
* matching <linux/spi/spi.h>
*/
#define SPI_CPHA 0x01
#define SPI_CPOL 0x02
#define SPI_MODE_0 (0|0)
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04
#define SPI_LSB_FIRST 0x08
#define SPI_3WIRE 0x10
#define SPI_LOOP 0x20
#define SPI_NO_CS 0x40
#define SPI_READY 0x80
#define SPI_TX_DUAL 0x100
#define SPI_TX_QUAD 0x200
#define SPI_RX_DUAL 0x400
#define SPI_RX_QUAD 0x800
#define SPI_CS_WORD 0x1000
#define SPI_TX_OCTAL 0x2000
#define SPI_RX_OCTAL 0x4000
#define SPI_3WIRE_HIZ 0x8000
/*---------------------------------------------------------------------------*/
/* IOCTL commands */ /* IOCTL commands */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment