Commit aba0eb84 authored by Benjamin Herrenschmidt's avatar Benjamin Herrenschmidt

Merge branch 'eeh' into next

parents 7230c564 3780444c
......@@ -31,6 +31,9 @@ struct dev_archdata {
#ifdef CONFIG_SWIOTLB
dma_addr_t max_direct_dma_addr;
#endif
#ifdef CONFIG_EEH
struct eeh_dev *edev;
#endif
};
struct pdev_archdata {
......
/*
* eeh.h
* Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
* Copyright 2001-2012 IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -31,44 +31,105 @@ struct device_node;
#ifdef CONFIG_EEH
extern int eeh_subsystem_enabled;
/*
* The struct is used to trace EEH state for the associated
* PCI device node or PCI device. In future, it might
* represent PE as well so that the EEH device to form
* another tree except the currently existing tree of PCI
* buses and PCI devices
*/
#define EEH_MODE_SUPPORTED (1<<0) /* EEH supported on the device */
#define EEH_MODE_NOCHECK (1<<1) /* EEH check should be skipped */
#define EEH_MODE_ISOLATED (1<<2) /* The device has been isolated */
#define EEH_MODE_RECOVERING (1<<3) /* Recovering the device */
#define EEH_MODE_IRQ_DISABLED (1<<4) /* Interrupt disabled */
struct eeh_dev {
int mode; /* EEH mode */
int class_code; /* Class code of the device */
int config_addr; /* Config address */
int pe_config_addr; /* PE config address */
int check_count; /* Times of ignored error */
int freeze_count; /* Times of froze up */
int false_positives; /* Times of reported #ff's */
u32 config_space[16]; /* Saved PCI config space */
struct pci_controller *phb; /* Associated PHB */
struct device_node *dn; /* Associated device node */
struct pci_dev *pdev; /* Associated PCI device */
};
static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev)
{
return edev->dn;
}
static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
{
return edev->pdev;
}
/* Values for eeh_mode bits in device_node */
#define EEH_MODE_SUPPORTED (1<<0)
#define EEH_MODE_NOCHECK (1<<1)
#define EEH_MODE_ISOLATED (1<<2)
#define EEH_MODE_RECOVERING (1<<3)
#define EEH_MODE_IRQ_DISABLED (1<<4)
/*
* The struct is used to trace the registered EEH operation
* callback functions. Actually, those operation callback
* functions are heavily platform dependent. That means the
* platform should register its own EEH operation callback
* functions before any EEH further operations.
*/
#define EEH_OPT_DISABLE 0 /* EEH disable */
#define EEH_OPT_ENABLE 1 /* EEH enable */
#define EEH_OPT_THAW_MMIO 2 /* MMIO enable */
#define EEH_OPT_THAW_DMA 3 /* DMA enable */
#define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */
#define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */
#define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */
#define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */
#define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */
#define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */
#define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */
#define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */
#define EEH_RESET_HOT 1 /* Hot reset */
#define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */
#define EEH_LOG_TEMP 1 /* EEH temporary error log */
#define EEH_LOG_PERM 2 /* EEH permanent error log */
struct eeh_ops {
char *name;
int (*init)(void);
int (*set_option)(struct device_node *dn, int option);
int (*get_pe_addr)(struct device_node *dn);
int (*get_state)(struct device_node *dn, int *state);
int (*reset)(struct device_node *dn, int option);
int (*wait_state)(struct device_node *dn, int max_wait);
int (*get_log)(struct device_node *dn, int severity, char *drv_log, unsigned long len);
int (*configure_bridge)(struct device_node *dn);
int (*read_config)(struct device_node *dn, int where, int size, u32 *val);
int (*write_config)(struct device_node *dn, int where, int size, u32 val);
};
extern struct eeh_ops *eeh_ops;
extern int eeh_subsystem_enabled;
/* Max number of EEH freezes allowed before we consider the device
* to be permanently disabled. */
/*
* Max number of EEH freezes allowed before we consider the device
* to be permanently disabled.
*/
#define EEH_MAX_ALLOWED_FREEZES 5
void * __devinit eeh_dev_init(struct device_node *dn, void *data);
void __devinit eeh_dev_phb_init_dynamic(struct pci_controller *phb);
void __init eeh_dev_phb_init(void);
void __init eeh_init(void);
#ifdef CONFIG_PPC_PSERIES
int __init eeh_pseries_init(void);
#endif
int __init eeh_ops_register(struct eeh_ops *ops);
int __exit eeh_ops_unregister(const char *name);
unsigned long eeh_check_failure(const volatile void __iomem *token,
unsigned long val);
int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev);
void __init pci_addr_cache_build(void);
/**
* eeh_add_device_early
* eeh_add_device_late
*
* Perform eeh initialization for devices added after boot.
* Call eeh_add_device_early before doing any i/o to the
* device (including config space i/o). Call eeh_add_device_late
* to finish the eeh setup for this device.
*/
void eeh_add_device_tree_early(struct device_node *);
void eeh_add_device_tree_late(struct pci_bus *);
/**
* eeh_remove_device_recursive - undo EEH for device & children.
* @dev: pci device to be removed
*
* As above, this removes the device; it also removes child
* pci devices as well.
*/
void eeh_remove_bus_device(struct pci_dev *);
/**
......@@ -87,8 +148,25 @@ void eeh_remove_bus_device(struct pci_dev *);
#define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8))
#else /* !CONFIG_EEH */
static inline void *eeh_dev_init(struct device_node *dn, void *data)
{
return NULL;
}
static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
static inline void eeh_dev_phb_init(void) { }
static inline void eeh_init(void) { }
#ifdef CONFIG_PPC_PSERIES
static inline int eeh_pseries_init(void)
{
return 0;
}
#endif /* CONFIG_PPC_PSERIES */
static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
return val;
......
/*
* eeh_event.h
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
......@@ -22,32 +20,19 @@
#define ASM_POWERPC_EEH_EVENT_H
#ifdef __KERNEL__
/** EEH event -- structure holding pci controller data that describes
* a change in the isolation status of a PCI slot. A pointer
* to this struct is passed as the data pointer in a notify callback.
/*
* structure holding pci controller data that describes a
* change in the isolation status of a PCI slot. A pointer
* to this struct is passed as the data pointer in a notify
* callback.
*/
struct eeh_event {
struct list_head list;
struct device_node *dn; /* struct device node */
struct pci_dev *dev; /* affected device */
struct list_head list; /* to form event queue */
struct eeh_dev *edev; /* EEH device */
};
/**
* eeh_send_failure_event - generate a PCI error event
* @dev pci device
*
* This routine builds a PCI error event which will be delivered
* to all listeners on the eeh_notifier_chain.
*
* This routine can be called within an interrupt context;
* the actual event will be delivered in a normal context
* (from a workqueue).
*/
int eeh_send_failure_event (struct device_node *dn,
struct pci_dev *dev);
/* Main recovery function */
struct pci_dn * handle_eeh_events (struct eeh_event *);
int eeh_send_failure_event(struct eeh_dev *edev);
struct eeh_dev *handle_eeh_events(struct eeh_event *);
#endif /* __KERNEL__ */
#endif /* ASM_POWERPC_EEH_EVENT_H */
......@@ -47,92 +47,21 @@ extern int rtas_setup_phb(struct pci_controller *phb);
extern unsigned long pci_probe_only;
/* ---- EEH internal-use-only related routines ---- */
#ifdef CONFIG_EEH
void pci_addr_cache_build(void);
void pci_addr_cache_insert_device(struct pci_dev *dev);
void pci_addr_cache_remove_device(struct pci_dev *dev);
void pci_addr_cache_build(void);
struct pci_dev *pci_get_device_by_addr(unsigned long addr);
/**
* eeh_slot_error_detail -- record and EEH error condition to the log
* @pdn: pci device node
* @severity: EEH_LOG_TEMP_FAILURE or EEH_LOG_PERM_FAILURE
*
* Obtains the EEH error details from the RTAS subsystem,
* and then logs these details with the RTAS error log system.
*/
#define EEH_LOG_TEMP_FAILURE 1
#define EEH_LOG_PERM_FAILURE 2
void eeh_slot_error_detail (struct pci_dn *pdn, int severity);
/**
* rtas_pci_enable - enable IO transfers for this slot
* @pdn: pci device node
* @function: either EEH_THAW_MMIO or EEH_THAW_DMA
*
* Enable I/O transfers to this slot
*/
#define EEH_THAW_MMIO 2
#define EEH_THAW_DMA 3
int rtas_pci_enable(struct pci_dn *pdn, int function);
/**
* rtas_set_slot_reset -- unfreeze a frozen slot
* @pdn: pci device node
*
* Clear the EEH-frozen condition on a slot. This routine
* does this by asserting the PCI #RST line for 1/8th of
* a second; this routine will sleep while the adapter is
* being reset.
*
* Returns a non-zero value if the reset failed.
*/
int rtas_set_slot_reset (struct pci_dn *);
int eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs);
/**
* eeh_restore_bars - Restore device configuration info.
* @pdn: pci device node
*
* A reset of a PCI device will clear out its config space.
* This routines will restore the config space for this
* device, and is children, to values previously obtained
* from the firmware.
*/
void eeh_restore_bars(struct pci_dn *);
/**
* rtas_configure_bridge -- firmware initialization of pci bridge
* @pdn: pci device node
*
* Ask the firmware to configure all PCI bridges devices
* located behind the indicated node. Required after a
* pci device reset. Does essentially the same hing as
* eeh_restore_bars, but for brdges, and lets firmware
* do the work.
*/
void rtas_configure_bridge(struct pci_dn *);
struct pci_dev *pci_addr_cache_get_device(unsigned long addr);
void eeh_slot_error_detail(struct eeh_dev *edev, int severity);
int eeh_pci_enable(struct eeh_dev *edev, int function);
int eeh_reset_pe(struct eeh_dev *);
void eeh_restore_bars(struct eeh_dev *);
int rtas_write_config(struct pci_dn *, int where, int size, u32 val);
int rtas_read_config(struct pci_dn *, int where, int size, u32 *val);
/**
* eeh_mark_slot -- set mode flags for pertition endpoint
* @pdn: pci device node
*
* mark and clear slots: find "partition endpoint" PE and set or
* clear the flags for each subnode of the PE.
*/
void eeh_mark_slot (struct device_node *dn, int mode_flag);
void eeh_clear_slot (struct device_node *dn, int mode_flag);
/**
* find_device_pe -- Find the associated "Partiationable Endpoint" PE
* @pdn: pci device node
*/
struct device_node * find_device_pe(struct device_node *dn);
void eeh_mark_slot(struct device_node *dn, int mode_flag);
void eeh_clear_slot(struct device_node *dn, int mode_flag);
struct device_node *eeh_find_device_pe(struct device_node *dn);
void eeh_sysfs_add_device(struct pci_dev *pdev);
void eeh_sysfs_remove_device(struct pci_dev *pdev);
......
......@@ -21,12 +21,13 @@
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/atomic.h>
#include <asm/errno.h>
#include <asm/topology.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
#include <linux/atomic.h>
#include <asm/eeh.h>
#ifdef CONFIG_PPC_OF_PLATFORM_PCI
......@@ -66,6 +67,9 @@ static int __devinit of_pci_phb_probe(struct platform_device *dev)
/* Init pci_dn data structures */
pci_devs_phb_init_dynamic(phb);
/* Create EEH devices for the PHB */
eeh_dev_phb_init_dynamic(phb);
/* Register devices with EEH */
#ifdef CONFIG_EEH
if (dev->dev.of_node->child)
......
......@@ -275,6 +275,9 @@ void __init find_and_init_phbs(void)
of_node_put(root);
pci_devs_phb_init();
/* Create EEH devices for all PHBs */
eeh_dev_phb_init();
/*
* pci_probe_only and pci_assign_all_buses can be set via properties
* in chosen.
......
......@@ -6,7 +6,8 @@ obj-y := lpar.o hvCall.o nvram.o reconfig.o \
firmware.o power.o dlpar.o mobility.o
obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_SCANLOG) += scanlog.o
obj-$(CONFIG_EEH) += eeh.o eeh_cache.o eeh_driver.o eeh_event.o eeh_sysfs.o
obj-$(CONFIG_EEH) += eeh.o eeh_dev.o eeh_cache.o eeh_driver.o \
eeh_event.o eeh_sysfs.o eeh_pseries.o
obj-$(CONFIG_KEXEC) += kexec.o
obj-$(CONFIG_PCI) += pci.o pci_dlpar.o
obj-$(CONFIG_PSERIES_MSI) += msi.o
......
/*
* eeh.c
* Copyright IBM Corporation 2001, 2005, 2006
* Copyright Dave Engebretsen & Todd Inglett 2001
* Copyright Linas Vepstas 2005, 2006
* Copyright 2001-2012 IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
......@@ -22,7 +22,7 @@
*/
#include <linux/delay.h>
#include <linux/sched.h> /* for init_mm */
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/pci.h>
......@@ -86,16 +86,8 @@
/* Time to wait for a PCI slot to report status, in milliseconds */
#define PCI_BUS_RESET_WAIT_MSEC (60*1000)
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;
static int ibm_get_config_addr_info;
static int ibm_get_config_addr_info2;
static int ibm_configure_bridge;
static int ibm_configure_pe;
/* Platform dependent EEH operations */
struct eeh_ops *eeh_ops = NULL;
int eeh_subsystem_enabled;
EXPORT_SYMBOL(eeh_subsystem_enabled);
......@@ -103,14 +95,6 @@ EXPORT_SYMBOL(eeh_subsystem_enabled);
/* Lock to avoid races due to multiple reports of an error */
static DEFINE_RAW_SPINLOCK(confirm_error_lock);
/* Buffer for reporting slot-error-detail rtas calls. Its here
* in BSS, and not dynamically alloced, so that it ends up in
* RMO where RTAS can access it.
*/
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;
/* Buffer for reporting pci register dumps. Its here in BSS, and
* not dynamically alloced, so that it ends up in RMO where RTAS
* can access it.
......@@ -118,74 +102,50 @@ static int eeh_error_buf_size;
#define EEH_PCI_REGS_LOG_LEN 4096
static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
/* System monitoring statistics */
static unsigned long no_device;
static unsigned long no_dn;
static unsigned long no_cfg_addr;
static unsigned long ignored_check;
static unsigned long total_mmio_ffs;
static unsigned long false_positives;
static unsigned long slot_resets;
#define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
/* --------------------------------------------------------------- */
/* Below lies the EEH event infrastructure */
/*
* The struct is used to maintain the EEH global statistic
* information. Besides, the EEH global statistics will be
* exported to user space through procfs
*/
struct eeh_stats {
u64 no_device; /* PCI device not found */
u64 no_dn; /* OF node not found */
u64 no_cfg_addr; /* Config address not found */
u64 ignored_check; /* EEH check skipped */
u64 total_mmio_ffs; /* Total EEH checks */
u64 false_positives; /* Unnecessary EEH checks */
u64 slot_resets; /* PE reset */
};
static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
char *driver_log, size_t loglen)
{
int config_addr;
unsigned long flags;
int rc;
static struct eeh_stats eeh_stats;
/* Log the error with the rtas logger */
spin_lock_irqsave(&slot_errbuf_lock, flags);
memset(slot_errbuf, 0, eeh_error_buf_size);
/* Use PE configuration address, if present */
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
rc = rtas_call(ibm_slot_error_detail,
8, 1, NULL, config_addr,
BUID_HI(pdn->phb->buid),
BUID_LO(pdn->phb->buid),
virt_to_phys(driver_log), loglen,
virt_to_phys(slot_errbuf),
eeh_error_buf_size,
severity);
if (rc == 0)
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
}
#define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
/**
* gather_pci_data - copy assorted PCI config space registers to buff
* @pdn: device to report data for
* eeh_gather_pci_data - Copy assorted PCI config space registers to buff
* @edev: device to report data for
* @buf: point to buffer in which to log
* @len: amount of room in buffer
*
* This routine captures assorted PCI configuration space data,
* and puts them into a buffer for RTAS error logging.
*/
static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len)
{
struct pci_dev *dev = pdn->pcidev;
struct device_node *dn = eeh_dev_to_of_node(edev);
struct pci_dev *dev = eeh_dev_to_pci_dev(edev);
u32 cfg;
int cap, i;
int n = 0;
n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name);
rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
......@@ -196,11 +156,11 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
/* Gather bridge-specific registers */
if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
}
......@@ -208,11 +168,11 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
/* Dump out the PCI-X command and status regs */
cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
if (cap) {
rtas_read_config(pdn, cap, 4, &cfg);
eeh_ops->read_config(dn, cap, 4, &cfg);
n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
rtas_read_config(pdn, cap+4, 4, &cfg);
eeh_ops->read_config(dn, cap+4, 4, &cfg);
n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
}
......@@ -225,7 +185,7 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
"EEH: PCI-E capabilities and status follow:\n");
for (i=0; i<=8; i++) {
rtas_read_config(pdn, cap+4*i, 4, &cfg);
eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
}
......@@ -237,7 +197,7 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
"EEH: PCI-E AER capability register set follows:\n");
for (i=0; i<14; i++) {
rtas_read_config(pdn, cap+4*i, 4, &cfg);
eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
}
......@@ -246,111 +206,46 @@ static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
/* Gather status on devices under the bridge */
if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
struct device_node *dn;
struct device_node *child;
for_each_child_of_node(pdn->node, dn) {
pdn = PCI_DN(dn);
if (pdn)
n += gather_pci_data(pdn, buf+n, len-n);
for_each_child_of_node(dn, child) {
if (of_node_to_eeh_dev(child))
n += eeh_gather_pci_data(of_node_to_eeh_dev(child), buf+n, len-n);
}
}
return n;
}
void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
{
size_t loglen = 0;
pci_regs_buf[0] = 0;
rtas_pci_enable(pdn, EEH_THAW_MMIO);
rtas_configure_bridge(pdn);
eeh_restore_bars(pdn);
loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
}
/**
* read_slot_reset_state - Read the reset state of a device node's slot
* @dn: device node to read
* @rets: array to return results in
*/
static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
{
int token, outputs;
int config_addr;
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
token = ibm_read_slot_reset_state2;
outputs = 4;
} else {
token = ibm_read_slot_reset_state;
rets[2] = 0; /* fake PE Unavailable info */
outputs = 3;
}
/* Use PE configuration address, if present */
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
return rtas_call(token, 3, outputs, rets, config_addr,
BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
}
/**
* eeh_wait_for_slot_status - returns error status of slot
* @pdn pci device node
* @max_wait_msecs maximum number to millisecs to wait
* eeh_slot_error_detail - Generate combined log including driver log and error log
* @edev: device to report error log for
* @severity: temporary or permanent error log
*
* Return negative value if a permanent error, else return
* Partition Endpoint (PE) status value.
*
* If @max_wait_msecs is positive, then this routine will
* sleep until a valid status can be obtained, or until
* the max allowed wait time is exceeded, in which case
* a -2 is returned.
* This routine should be called to generate the combined log, which
* is comprised of driver log and error log. The driver log is figured
* out from the config space of the corresponding PCI device, while
* the error log is fetched through platform dependent function call.
*/
int
eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
void eeh_slot_error_detail(struct eeh_dev *edev, int severity)
{
int rc;
int rets[3];
int mwait;
while (1) {
rc = read_slot_reset_state(pdn, rets);
if (rc) return rc;
if (rets[1] == 0) return -1; /* EEH is not supported */
if (rets[0] != 5) return rets[0]; /* return actual status */
if (rets[2] == 0) return -1; /* permanently unavailable */
if (max_wait_msecs <= 0) break;
size_t loglen = 0;
pci_regs_buf[0] = 0;
mwait = rets[2];
if (mwait <= 0) {
printk (KERN_WARNING
"EEH: Firmware returned bad wait value=%d\n", mwait);
mwait = 1000;
} else if (mwait > 300*1000) {
printk (KERN_WARNING
"EEH: Firmware is taking too long, time=%d\n", mwait);
mwait = 300*1000;
}
max_wait_msecs -= mwait;
msleep (mwait);
}
eeh_pci_enable(edev, EEH_OPT_THAW_MMIO);
eeh_ops->configure_bridge(eeh_dev_to_of_node(edev));
eeh_restore_bars(edev);
loglen = eeh_gather_pci_data(edev, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
return -2;
eeh_ops->get_log(eeh_dev_to_of_node(edev), severity, pci_regs_buf, loglen);
}
/**
* eeh_token_to_phys - convert EEH address token to phys address
* @token i/o token, should be address in the form 0xA....
* eeh_token_to_phys - Convert EEH address token to phys address
* @token: I/O token, should be address in the form 0xA....
*
* This routine should be called to convert virtual I/O address
* to physical one.
*/
static inline unsigned long eeh_token_to_phys(unsigned long token)
{
......@@ -366,35 +261,42 @@ static inline unsigned long eeh_token_to_phys(unsigned long token)
}
/**
* Return the "partitionable endpoint" (pe) under which this device lies
* eeh_find_device_pe - Retrieve the PE for the given device
* @dn: device node
*
* Return the PE under which this device lies
*/
struct device_node * find_device_pe(struct device_node *dn)
struct device_node *eeh_find_device_pe(struct device_node *dn)
{
while ((dn->parent) && PCI_DN(dn->parent) &&
(PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
while (dn->parent && of_node_to_eeh_dev(dn->parent) &&
(of_node_to_eeh_dev(dn->parent)->mode & EEH_MODE_SUPPORTED)) {
dn = dn->parent;
}
return dn;
}
/** Mark all devices that are children of this device as failed.
/**
* __eeh_mark_slot - Mark all child devices as failed
* @parent: parent device
* @mode_flag: failure flag
*
* Mark all devices that are children of this device as failed.
* Mark the device driver too, so that it can see the failure
* immediately; this is critical, since some drivers poll
* status registers in interrupts ... If a driver is polling,
* and the slot is frozen, then the driver can deadlock in
* an interrupt context, which is bad.
*/
static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
{
struct device_node *dn;
for_each_child_of_node(parent, dn) {
if (PCI_DN(dn)) {
if (of_node_to_eeh_dev(dn)) {
/* Mark the pci device driver too */
struct pci_dev *dev = PCI_DN(dn)->pcidev;
struct pci_dev *dev = of_node_to_eeh_dev(dn)->pdev;
PCI_DN(dn)->eeh_mode |= mode_flag;
of_node_to_eeh_dev(dn)->mode |= mode_flag;
if (dev && dev->driver)
dev->error_state = pci_channel_io_frozen;
......@@ -404,92 +306,81 @@ static void __eeh_mark_slot(struct device_node *parent, int mode_flag)
}
}
void eeh_mark_slot (struct device_node *dn, int mode_flag)
/**
* eeh_mark_slot - Mark the indicated device and its children as failed
* @dn: parent device
* @mode_flag: failure flag
*
* Mark the indicated device and its child devices as failed.
* The device drivers are marked as failed as well.
*/
void eeh_mark_slot(struct device_node *dn, int mode_flag)
{
struct pci_dev *dev;
dn = find_device_pe (dn);
dn = eeh_find_device_pe(dn);
/* Back up one, since config addrs might be shared */
if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
if (!pcibios_find_pci_bus(dn) && of_node_to_eeh_dev(dn->parent))
dn = dn->parent;
PCI_DN(dn)->eeh_mode |= mode_flag;
of_node_to_eeh_dev(dn)->mode |= mode_flag;
/* Mark the pci device too */
dev = PCI_DN(dn)->pcidev;
dev = of_node_to_eeh_dev(dn)->pdev;
if (dev)
dev->error_state = pci_channel_io_frozen;
__eeh_mark_slot(dn, mode_flag);
}
/**
* __eeh_clear_slot - Clear failure flag for the child devices
* @parent: parent device
* @mode_flag: flag to be cleared
*
* Clear failure flag for the child devices.
*/
static void __eeh_clear_slot(struct device_node *parent, int mode_flag)
{
struct device_node *dn;
for_each_child_of_node(parent, dn) {
if (PCI_DN(dn)) {
PCI_DN(dn)->eeh_mode &= ~mode_flag;
PCI_DN(dn)->eeh_check_count = 0;
if (of_node_to_eeh_dev(dn)) {
of_node_to_eeh_dev(dn)->mode &= ~mode_flag;
of_node_to_eeh_dev(dn)->check_count = 0;
__eeh_clear_slot(dn, mode_flag);
}
}
}
void eeh_clear_slot (struct device_node *dn, int mode_flag)
/**
* eeh_clear_slot - Clear failure flag for the indicated device and its children
* @dn: parent device
* @mode_flag: flag to be cleared
*
* Clear failure flag for the indicated device and its children.
*/
void eeh_clear_slot(struct device_node *dn, int mode_flag)
{
unsigned long flags;
raw_spin_lock_irqsave(&confirm_error_lock, flags);
dn = find_device_pe (dn);
dn = eeh_find_device_pe(dn);
/* Back up one, since config addrs might be shared */
if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
if (!pcibios_find_pci_bus(dn) && of_node_to_eeh_dev(dn->parent))
dn = dn->parent;
PCI_DN(dn)->eeh_mode &= ~mode_flag;
PCI_DN(dn)->eeh_check_count = 0;
of_node_to_eeh_dev(dn)->mode &= ~mode_flag;
of_node_to_eeh_dev(dn)->check_count = 0;
__eeh_clear_slot(dn, mode_flag);
raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
}
void __eeh_set_pe_freset(struct device_node *parent, unsigned int *freset)
{
struct device_node *dn;
for_each_child_of_node(parent, dn) {
if (PCI_DN(dn)) {
struct pci_dev *dev = PCI_DN(dn)->pcidev;
if (dev && dev->driver)
*freset |= dev->needs_freset;
__eeh_set_pe_freset(dn, freset);
}
}
}
void eeh_set_pe_freset(struct device_node *dn, unsigned int *freset)
{
struct pci_dev *dev;
dn = find_device_pe(dn);
/* Back up one, since config addrs might be shared */
if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
dn = dn->parent;
dev = PCI_DN(dn)->pcidev;
if (dev)
*freset |= dev->needs_freset;
__eeh_set_pe_freset(dn, freset);
}
/**
* eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
* @dn device node
* @dev pci device, if known
* eeh_dn_check_failure - Check if all 1's data is due to EEH slot freeze
* @dn: device node
* @dev: pci device, if known
*
* Check for an EEH failure for the given device node. Call this
* routine if the result of a read was all 0xff's and you want to
......@@ -504,35 +395,34 @@ void eeh_set_pe_freset(struct device_node *dn, unsigned int *freset)
int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
{
int ret;
int rets[3];
unsigned long flags;
struct pci_dn *pdn;
struct eeh_dev *edev;
int rc = 0;
const char *location;
total_mmio_ffs++;
eeh_stats.total_mmio_ffs++;
if (!eeh_subsystem_enabled)
return 0;
if (!dn) {
no_dn++;
eeh_stats.no_dn++;
return 0;
}
dn = find_device_pe(dn);
pdn = PCI_DN(dn);
dn = eeh_find_device_pe(dn);
edev = of_node_to_eeh_dev(dn);
/* Access to IO BARs might get this far and still not want checking. */
if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
pdn->eeh_mode & EEH_MODE_NOCHECK) {
ignored_check++;
if (!(edev->mode & EEH_MODE_SUPPORTED) ||
edev->mode & EEH_MODE_NOCHECK) {
eeh_stats.ignored_check++;
pr_debug("EEH: Ignored check (%x) for %s %s\n",
pdn->eeh_mode, eeh_pci_name(dev), dn->full_name);
edev->mode, eeh_pci_name(dev), dn->full_name);
return 0;
}
if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
no_cfg_addr++;
if (!edev->config_addr && !edev->pe_config_addr) {
eeh_stats.no_cfg_addr++;
return 0;
}
......@@ -544,15 +434,15 @@ int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
*/
raw_spin_lock_irqsave(&confirm_error_lock, flags);
rc = 1;
if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
pdn->eeh_check_count ++;
if (pdn->eeh_check_count % EEH_MAX_FAILS == 0) {
if (edev->mode & EEH_MODE_ISOLATED) {
edev->check_count++;
if (edev->check_count % EEH_MAX_FAILS == 0) {
location = of_get_property(dn, "ibm,loc-code", NULL);
printk (KERN_ERR "EEH: %d reads ignored for recovering device at "
printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
"location=%s driver=%s pci addr=%s\n",
pdn->eeh_check_count, location,
edev->check_count, location,
eeh_driver_name(dev), eeh_pci_name(dev));
printk (KERN_ERR "EEH: Might be infinite loop in %s driver\n",
printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
eeh_driver_name(dev));
dump_stack();
}
......@@ -566,58 +456,39 @@ int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
* function zero of a multi-function device.
* In any case they must share a common PHB.
*/
ret = read_slot_reset_state(pdn, rets);
/* If the call to firmware failed, punt */
if (ret != 0) {
printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
ret, dn->full_name);
false_positives++;
pdn->eeh_false_positives ++;
rc = 0;
goto dn_unlock;
}
ret = eeh_ops->get_state(dn, NULL);
/* Note that config-io to empty slots may fail;
* they are empty when they don't have children. */
if ((rets[0] == 5) && (rets[2] == 0) && (dn->child == NULL)) {
false_positives++;
pdn->eeh_false_positives ++;
rc = 0;
goto dn_unlock;
}
/* If EEH is not supported on this device, punt. */
if (rets[1] != 1) {
printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
ret, dn->full_name);
false_positives++;
pdn->eeh_false_positives ++;
rc = 0;
goto dn_unlock;
}
/* If not the kind of error we know about, punt. */
if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
false_positives++;
pdn->eeh_false_positives ++;
* they are empty when they don't have children.
* We will punt with the following conditions: Failure to get
* PE's state, EEH not support and Permanently unavailable
* state, PE is in good state.
*/
if ((ret < 0) ||
(ret == EEH_STATE_NOT_SUPPORT) ||
(ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
(EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
eeh_stats.false_positives++;
edev->false_positives ++;
rc = 0;
goto dn_unlock;
}
slot_resets++;
eeh_stats.slot_resets++;
/* Avoid repeated reports of this failure, including problems
* with other functions on this device, and functions under
* bridges. */
eeh_mark_slot (dn, EEH_MODE_ISOLATED);
* bridges.
*/
eeh_mark_slot(dn, EEH_MODE_ISOLATED);
raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
eeh_send_failure_event (dn, dev);
eeh_send_failure_event(edev);
/* Most EEH events are due to device driver bugs. Having
* a stack trace will help the device-driver authors figure
* out what happened. So print that out. */
* out what happened. So print that out.
*/
dump_stack();
return 1;
......@@ -629,9 +500,9 @@ int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
/**
* eeh_check_failure - check if all 1's data is due to EEH slot freeze
* @token i/o token, should be address in the form 0xA....
* @val value, should be all 1's (XXX why do we need this arg??)
* eeh_check_failure - Check if all 1's data is due to EEH slot freeze
* @token: I/O token, should be address in the form 0xA....
* @val: value, should be all 1's (XXX why do we need this arg??)
*
* Check for an EEH failure at the given token address. Call this
* routine if the result of a read was all 0xff's and you want to
......@@ -648,14 +519,14 @@ unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned lon
/* Finding the phys addr + pci device; this is pretty quick. */
addr = eeh_token_to_phys((unsigned long __force) token);
dev = pci_get_device_by_addr(addr);
dev = pci_addr_cache_get_device(addr);
if (!dev) {
no_device++;
eeh_stats.no_device++;
return val;
}
dn = pci_device_to_OF_node(dev);
eeh_dn_check_failure (dn, dev);
eeh_dn_check_failure(dn, dev);
pci_dev_put(dev);
return val;
......@@ -663,93 +534,33 @@ unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned lon
EXPORT_SYMBOL(eeh_check_failure);
/* ------------------------------------------------------------- */
/* The code below deals with error recovery */
/**
* rtas_pci_enable - enable MMIO or DMA transfers for this slot
* @pdn pci device node
* eeh_pci_enable - Enable MMIO or DMA transfers for this slot
* @edev: pci device node
*
* This routine should be called to reenable frozen MMIO or DMA
* so that it would work correctly again. It's useful while doing
* recovery or log collection on the indicated device.
*/
int
rtas_pci_enable(struct pci_dn *pdn, int function)
int eeh_pci_enable(struct eeh_dev *edev, int function)
{
int config_addr;
int rc;
struct device_node *dn = eeh_dev_to_of_node(edev);
/* Use PE configuration address, if present */
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
config_addr,
BUID_HI(pdn->phb->buid),
BUID_LO(pdn->phb->buid),
function);
rc = eeh_ops->set_option(dn, function);
if (rc)
printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
function, rc, pdn->node->full_name);
function, rc, dn->full_name);
rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
if ((rc == 4) && (function == EEH_THAW_MMIO))
rc = eeh_ops->wait_state(dn, PCI_BUS_RESET_WAIT_MSEC);
if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) &&
(function == EEH_OPT_THAW_MMIO))
return 0;
return rc;
}
/**
* rtas_pci_slot_reset - raises/lowers the pci #RST line
* @pdn pci device node
* @state: 1/0 to raise/lower the #RST
*
* Clear the EEH-frozen condition on a slot. This routine
* asserts the PCI #RST line if the 'state' argument is '1',
* and drops the #RST line if 'state is '0'. This routine is
* safe to call in an interrupt context.
*
*/
static void
rtas_pci_slot_reset(struct pci_dn *pdn, int state)
{
int config_addr;
int rc;
BUG_ON (pdn==NULL);
if (!pdn->phb) {
printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
pdn->node->full_name);
return;
}
/* Use PE configuration address, if present */
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
rc = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr,
BUID_HI(pdn->phb->buid),
BUID_LO(pdn->phb->buid),
state);
/* Fundamental-reset not supported on this PE, try hot-reset */
if (rc == -8 && state == 3) {
rc = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr,
BUID_HI(pdn->phb->buid),
BUID_LO(pdn->phb->buid), 1);
if (rc)
printk(KERN_WARNING
"EEH: Unable to reset the failed slot,"
" #RST=%d dn=%s\n",
rc, pdn->node->full_name);
}
}
/**
* pcibios_set_pcie_slot_reset - Set PCI-E reset state
* @dev: pci device struct
......@@ -757,21 +568,20 @@ rtas_pci_slot_reset(struct pci_dn *pdn, int state)
*
* Return value:
* 0 if success
**/
*/
int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
{
struct device_node *dn = pci_device_to_OF_node(dev);
struct pci_dn *pdn = PCI_DN(dn);
switch (state) {
case pcie_deassert_reset:
rtas_pci_slot_reset(pdn, 0);
eeh_ops->reset(dn, EEH_RESET_DEACTIVATE);
break;
case pcie_hot_reset:
rtas_pci_slot_reset(pdn, 1);
eeh_ops->reset(dn, EEH_RESET_HOT);
break;
case pcie_warm_reset:
rtas_pci_slot_reset(pdn, 3);
eeh_ops->reset(dn, EEH_RESET_FUNDAMENTAL);
break;
default:
return -EINVAL;
......@@ -781,13 +591,66 @@ int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state stat
}
/**
* rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
* @pdn: pci device node to be reset.
* __eeh_set_pe_freset - Check the required reset for child devices
* @parent: parent device
* @freset: return value
*
* Each device might have its preferred reset type: fundamental or
* hot reset. The routine is used to collect the information from
* the child devices so that they could be reset accordingly.
*/
void __eeh_set_pe_freset(struct device_node *parent, unsigned int *freset)
{
struct device_node *dn;
static void __rtas_set_slot_reset(struct pci_dn *pdn)
for_each_child_of_node(parent, dn) {
if (of_node_to_eeh_dev(dn)) {
struct pci_dev *dev = of_node_to_eeh_dev(dn)->pdev;
if (dev && dev->driver)
*freset |= dev->needs_freset;
__eeh_set_pe_freset(dn, freset);
}
}
}
/**
* eeh_set_pe_freset - Check the required reset for the indicated device and its children
* @dn: parent device
* @freset: return value
*
* Each device might have its preferred reset type: fundamental or
* hot reset. The routine is used to collected the information for
* the indicated device and its children so that the bunch of the
* devices could be reset properly.
*/
void eeh_set_pe_freset(struct device_node *dn, unsigned int *freset)
{
struct pci_dev *dev;
dn = eeh_find_device_pe(dn);
/* Back up one, since config addrs might be shared */
if (!pcibios_find_pci_bus(dn) && of_node_to_eeh_dev(dn->parent))
dn = dn->parent;
dev = of_node_to_eeh_dev(dn)->pdev;
if (dev)
*freset |= dev->needs_freset;
__eeh_set_pe_freset(dn, freset);
}
/**
* eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
* @edev: pci device node to be reset.
*
* Assert the PCI #RST line for 1/4 second.
*/
static void eeh_reset_pe_once(struct eeh_dev *edev)
{
unsigned int freset = 0;
struct device_node *dn = eeh_dev_to_of_node(edev);
/* Determine type of EEH reset required for
* Partitionable Endpoint, a hot-reset (1)
......@@ -795,58 +658,68 @@ static void __rtas_set_slot_reset(struct pci_dn *pdn)
* A fundamental reset required by any device under
* Partitionable Endpoint trumps hot-reset.
*/
eeh_set_pe_freset(pdn->node, &freset);
eeh_set_pe_freset(dn, &freset);
if (freset)
rtas_pci_slot_reset(pdn, 3);
eeh_ops->reset(dn, EEH_RESET_FUNDAMENTAL);
else
rtas_pci_slot_reset(pdn, 1);
eeh_ops->reset(dn, EEH_RESET_HOT);
/* The PCI bus requires that the reset be held high for at least
* a 100 milliseconds. We wait a bit longer 'just in case'. */
* a 100 milliseconds. We wait a bit longer 'just in case'.
*/
#define PCI_BUS_RST_HOLD_TIME_MSEC 250
msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
msleep(PCI_BUS_RST_HOLD_TIME_MSEC);
/* We might get hit with another EEH freeze as soon as the
* pci slot reset line is dropped. Make sure we don't miss
* these, and clear the flag now. */
eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
* these, and clear the flag now.
*/
eeh_clear_slot(dn, EEH_MODE_ISOLATED);
rtas_pci_slot_reset (pdn, 0);
eeh_ops->reset(dn, EEH_RESET_DEACTIVATE);
/* After a PCI slot has been reset, the PCI Express spec requires
* a 1.5 second idle time for the bus to stabilize, before starting
* up traffic. */
* up traffic.
*/
#define PCI_BUS_SETTLE_TIME_MSEC 1800
msleep (PCI_BUS_SETTLE_TIME_MSEC);
msleep(PCI_BUS_SETTLE_TIME_MSEC);
}
int rtas_set_slot_reset(struct pci_dn *pdn)
/**
* eeh_reset_pe - Reset the indicated PE
* @edev: PCI device associated EEH device
*
* This routine should be called to reset indicated device, including
* PE. A PE might include multiple PCI devices and sometimes PCI bridges
* might be involved as well.
*/
int eeh_reset_pe(struct eeh_dev *edev)
{
int i, rc;
struct device_node *dn = eeh_dev_to_of_node(edev);
/* Take three shots at resetting the bus */
for (i=0; i<3; i++) {
__rtas_set_slot_reset(pdn);
eeh_reset_pe_once(edev);
rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
if (rc == 0)
rc = eeh_ops->wait_state(dn, PCI_BUS_RESET_WAIT_MSEC);
if (rc == (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE))
return 0;
if (rc < 0) {
printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
pdn->node->full_name);
dn->full_name);
return -1;
}
printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
i+1, pdn->node->full_name, rc);
i+1, dn->full_name, rc);
}
return -1;
}
/* ------------------------------------------------------- */
/** Save and restore of PCI BARs
*
* Although firmware will set up BARs during boot, it doesn't
......@@ -856,181 +729,122 @@ int rtas_set_slot_reset(struct pci_dn *pdn)
*/
/**
* __restore_bars - Restore the Base Address Registers
* @pdn: pci device node
* eeh_restore_one_device_bars - Restore the Base Address Registers for one device
* @edev: PCI device associated EEH device
*
* Loads the PCI configuration space base address registers,
* the expansion ROM base address, the latency timer, and etc.
* from the saved values in the device node.
*/
static inline void __restore_bars (struct pci_dn *pdn)
static inline void eeh_restore_one_device_bars(struct eeh_dev *edev)
{
int i;
u32 cmd;
struct device_node *dn = eeh_dev_to_of_node(edev);
if (!edev->phb)
return;
if (NULL==pdn->phb) return;
for (i=4; i<10; i++) {
rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
}
/* 12 == Expansion ROM Address */
rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
#define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
SAVED_BYTE(PCI_CACHE_LINE_SIZE));
rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
SAVED_BYTE(PCI_LATENCY_TIMER));
/* max latency, min grant, interrupt pin and line */
rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
/* Restore PERR & SERR bits, some devices require it,
don't touch the other command bits */
rtas_read_config(pdn, PCI_COMMAND, 4, &cmd);
if (pdn->config_space[1] & PCI_COMMAND_PARITY)
* don't touch the other command bits
*/
eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
if (edev->config_space[1] & PCI_COMMAND_PARITY)
cmd |= PCI_COMMAND_PARITY;
else
cmd &= ~PCI_COMMAND_PARITY;
if (pdn->config_space[1] & PCI_COMMAND_SERR)
if (edev->config_space[1] & PCI_COMMAND_SERR)
cmd |= PCI_COMMAND_SERR;
else
cmd &= ~PCI_COMMAND_SERR;
rtas_write_config(pdn, PCI_COMMAND, 4, cmd);
eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
}
/**
* eeh_restore_bars - restore the PCI config space info
* eeh_restore_bars - Restore the PCI config space info
* @edev: EEH device
*
* This routine performs a recursive walk to the children
* of this device as well.
*/
void eeh_restore_bars(struct pci_dn *pdn)
void eeh_restore_bars(struct eeh_dev *edev)
{
struct device_node *dn;
if (!pdn)
if (!edev)
return;
if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
__restore_bars (pdn);
if ((edev->mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(edev->class_code))
eeh_restore_one_device_bars(edev);
for_each_child_of_node(pdn->node, dn)
eeh_restore_bars (PCI_DN(dn));
for_each_child_of_node(eeh_dev_to_of_node(edev), dn)
eeh_restore_bars(of_node_to_eeh_dev(dn));
}
/**
* eeh_save_bars - save device bars
* eeh_save_bars - Save device bars
* @edev: PCI device associated EEH device
*
* Save the values of the device bars. Unlike the restore
* routine, this routine is *not* recursive. This is because
* PCI devices are added individually; but, for the restore,
* an entire slot is reset at a time.
*/
static void eeh_save_bars(struct pci_dn *pdn)
static void eeh_save_bars(struct eeh_dev *edev)
{
int i;
struct device_node *dn;
if (!pdn )
if (!edev)
return;
dn = eeh_dev_to_of_node(edev);
for (i = 0; i < 16; i++)
rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
}
void
rtas_configure_bridge(struct pci_dn *pdn)
{
int config_addr;
int rc;
int token;
/* Use PE configuration address, if present */
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
/* Use new configure-pe function, if supported */
if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE)
token = ibm_configure_pe;
else
token = ibm_configure_bridge;
rc = rtas_call(token, 3, 1, NULL,
config_addr,
BUID_HI(pdn->phb->buid),
BUID_LO(pdn->phb->buid));
if (rc) {
printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
rc, pdn->node->full_name);
}
}
/* ------------------------------------------------------------- */
/* The code below deals with enabling EEH for devices during the
* early boot sequence. EEH must be enabled before any PCI probing
* can be done.
/**
* eeh_early_enable - Early enable EEH on the indicated device
* @dn: device node
* @data: BUID
*
* Enable EEH functionality on the specified PCI device. The function
* is expected to be called before real PCI probing is done. However,
* the PHBs have been initialized at this point.
*/
#define EEH_ENABLE 1
struct eeh_early_enable_info {
unsigned int buid_hi;
unsigned int buid_lo;
};
static int get_pe_addr (int config_addr,
struct eeh_early_enable_info *info)
static void *eeh_early_enable(struct device_node *dn, void *data)
{
unsigned int rets[3];
int ret;
/* Use latest config-addr token on power6 */
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
/* Make sure we have a PE in hand */
ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
config_addr, info->buid_hi, info->buid_lo, 1);
if (ret || (rets[0]==0))
return 0;
ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
config_addr, info->buid_hi, info->buid_lo, 0);
if (ret)
return 0;
return rets[0];
}
/* Use older config-addr token on power5 */
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
config_addr, info->buid_hi, info->buid_lo, 0);
if (ret)
return 0;
return rets[0];
}
return 0;
}
/* Enable eeh for the given device node. */
static void *early_enable_eeh(struct device_node *dn, void *data)
{
unsigned int rets[3];
struct eeh_early_enable_info *info = data;
int ret;
const u32 *class_code = of_get_property(dn, "class-code", NULL);
const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
const u32 *device_id = of_get_property(dn, "device-id", NULL);
const u32 *regs;
int enable;
struct pci_dn *pdn = PCI_DN(dn);
struct eeh_dev *edev = of_node_to_eeh_dev(dn);
pdn->class_code = 0;
pdn->eeh_mode = 0;
pdn->eeh_check_count = 0;
pdn->eeh_freeze_count = 0;
pdn->eeh_false_positives = 0;
edev->class_code = 0;
edev->mode = 0;
edev->check_count = 0;
edev->freeze_count = 0;
edev->false_positives = 0;
if (!of_device_is_available(dn))
return NULL;
......@@ -1041,54 +855,56 @@ static void *early_enable_eeh(struct device_node *dn, void *data)
/* There is nothing to check on PCI to ISA bridges */
if (dn->type && !strcmp(dn->type, "isa")) {
pdn->eeh_mode |= EEH_MODE_NOCHECK;
edev->mode |= EEH_MODE_NOCHECK;
return NULL;
}
pdn->class_code = *class_code;
edev->class_code = *class_code;
/* Ok... see if this device supports EEH. Some do, some don't,
* and the only way to find out is to check each and every one. */
* and the only way to find out is to check each and every one.
*/
regs = of_get_property(dn, "reg", NULL);
if (regs) {
/* First register entry is addr (00BBSS00) */
/* Try to enable eeh */
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
regs[0], info->buid_hi, info->buid_lo,
EEH_ENABLE);
ret = eeh_ops->set_option(dn, EEH_OPT_ENABLE);
enable = 0;
if (ret == 0) {
pdn->eeh_config_addr = regs[0];
edev->config_addr = regs[0];
/* If the newer, better, ibm,get-config-addr-info is supported,
* then use that instead. */
pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
* then use that instead.
*/
edev->pe_config_addr = eeh_ops->get_pe_addr(dn);
/* Some older systems (Power4) allow the
* ibm,set-eeh-option call to succeed even on nodes
* where EEH is not supported. Verify support
* explicitly. */
ret = read_slot_reset_state(pdn, rets);
if ((ret == 0) && (rets[1] == 1))
* explicitly.
*/
ret = eeh_ops->get_state(dn, NULL);
if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
enable = 1;
}
if (enable) {
eeh_subsystem_enabled = 1;
pdn->eeh_mode |= EEH_MODE_SUPPORTED;
edev->mode |= EEH_MODE_SUPPORTED;
pr_debug("EEH: %s: eeh enabled, config=%x pe_config=%x\n",
dn->full_name, pdn->eeh_config_addr,
pdn->eeh_pe_config_addr);
dn->full_name, edev->config_addr,
edev->pe_config_addr);
} else {
/* This device doesn't support EEH, but it may have an
* EEH parent, in which case we mark it as supported. */
if (dn->parent && PCI_DN(dn->parent)
&& (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
* EEH parent, in which case we mark it as supported.
*/
if (dn->parent && of_node_to_eeh_dev(dn->parent) &&
(of_node_to_eeh_dev(dn->parent)->mode & EEH_MODE_SUPPORTED)) {
/* Parent supports EEH. */
pdn->eeh_mode |= EEH_MODE_SUPPORTED;
pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
edev->mode |= EEH_MODE_SUPPORTED;
edev->config_addr = of_node_to_eeh_dev(dn->parent)->config_addr;
return NULL;
}
}
......@@ -1097,11 +913,63 @@ static void *early_enable_eeh(struct device_node *dn, void *data)
dn->full_name);
}
eeh_save_bars(pdn);
eeh_save_bars(edev);
return NULL;
}
/*
/**
* eeh_ops_register - Register platform dependent EEH operations
* @ops: platform dependent EEH operations
*
* Register the platform dependent EEH operation callback
* functions. The platform should call this function before
* any other EEH operations.
*/
int __init eeh_ops_register(struct eeh_ops *ops)
{
if (!ops->name) {
pr_warning("%s: Invalid EEH ops name for %p\n",
__func__, ops);
return -EINVAL;
}
if (eeh_ops && eeh_ops != ops) {
pr_warning("%s: EEH ops of platform %s already existing (%s)\n",
__func__, eeh_ops->name, ops->name);
return -EEXIST;
}
eeh_ops = ops;
return 0;
}
/**
* eeh_ops_unregister - Unreigster platform dependent EEH operations
* @name: name of EEH platform operations
*
* Unregister the platform dependent EEH operation callback
* functions.
*/
int __exit eeh_ops_unregister(const char *name)
{
if (!name || !strlen(name)) {
pr_warning("%s: Invalid EEH ops name\n",
__func__);
return -EINVAL;
}
if (eeh_ops && !strcmp(eeh_ops->name, name)) {
eeh_ops = NULL;
return 0;
}
return -EEXIST;
}
/**
* eeh_init - EEH initialization
*
* Initialize EEH by trying to enable it for all of the adapters in the system.
* As a side effect we can determine here if eeh is supported at all.
* Note that we leave EEH on so failed config cycles won't cause a machine
......@@ -1117,50 +985,35 @@ static void *early_enable_eeh(struct device_node *dn, void *data)
void __init eeh_init(void)
{
struct device_node *phb, *np;
struct eeh_early_enable_info info;
int ret;
/* call platform initialization function */
if (!eeh_ops) {
pr_warning("%s: Platform EEH operation not found\n",
__func__);
return;
} else if ((ret = eeh_ops->init())) {
pr_warning("%s: Failed to call platform init function (%d)\n",
__func__, ret);
return;
}
raw_spin_lock_init(&confirm_error_lock);
spin_lock_init(&slot_errbuf_lock);
np = of_find_node_by_path("/rtas");
if (np == NULL)
return;
ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
ibm_configure_pe = rtas_token("ibm,configure-pe");
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
return;
eeh_error_buf_size = rtas_token("rtas-error-log-max");
if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
eeh_error_buf_size = 1024;
}
if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
"buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
}
/* Enable EEH for all adapters. Note that eeh requires buid's */
for (phb = of_find_node_by_name(NULL, "pci"); phb;
phb = of_find_node_by_name(phb, "pci")) {
unsigned long buid;
buid = get_phb_buid(phb);
if (buid == 0 || PCI_DN(phb) == NULL)
if (buid == 0 || !of_node_to_eeh_dev(phb))
continue;
info.buid_lo = BUID_LO(buid);
info.buid_hi = BUID_HI(buid);
traverse_pci_devices(phb, early_enable_eeh, &info);
traverse_pci_devices(phb, eeh_early_enable, NULL);
}
if (eeh_subsystem_enabled)
......@@ -1170,7 +1023,7 @@ void __init eeh_init(void)
}
/**
* eeh_add_device_early - enable EEH for the indicated device_node
* eeh_add_device_early - Enable EEH for the indicated device_node
* @dn: device node for which to set up EEH
*
* This routine must be used to perform EEH initialization for PCI
......@@ -1184,21 +1037,26 @@ void __init eeh_init(void)
static void eeh_add_device_early(struct device_node *dn)
{
struct pci_controller *phb;
struct eeh_early_enable_info info;
if (!dn || !PCI_DN(dn))
if (!dn || !of_node_to_eeh_dev(dn))
return;
phb = PCI_DN(dn)->phb;
phb = of_node_to_eeh_dev(dn)->phb;
/* USB Bus children of PCI devices will not have BUID's */
if (NULL == phb || 0 == phb->buid)
return;
info.buid_hi = BUID_HI(phb->buid);
info.buid_lo = BUID_LO(phb->buid);
early_enable_eeh(dn, &info);
eeh_early_enable(dn, NULL);
}
/**
* eeh_add_device_tree_early - Enable EEH for the indicated device
* @dn: device node
*
* This routine must be used to perform EEH initialization for the
* indicated PCI device that was added after system boot (e.g.
* hotplug, dlpar).
*/
void eeh_add_device_tree_early(struct device_node *dn)
{
struct device_node *sib;
......@@ -1210,7 +1068,7 @@ void eeh_add_device_tree_early(struct device_node *dn)
EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
/**
* eeh_add_device_late - perform EEH initialization for the indicated pci device
* eeh_add_device_late - Perform EEH initialization for the indicated pci device
* @dev: pci device for which to set up EEH
*
* This routine must be used to complete EEH initialization for PCI
......@@ -1219,7 +1077,7 @@ EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
static void eeh_add_device_late(struct pci_dev *dev)
{
struct device_node *dn;
struct pci_dn *pdn;
struct eeh_dev *edev;
if (!dev || !eeh_subsystem_enabled)
return;
......@@ -1227,20 +1085,29 @@ static void eeh_add_device_late(struct pci_dev *dev)
pr_debug("EEH: Adding device %s\n", pci_name(dev));
dn = pci_device_to_OF_node(dev);
pdn = PCI_DN(dn);
if (pdn->pcidev == dev) {
edev = pci_dev_to_eeh_dev(dev);
if (edev->pdev == dev) {
pr_debug("EEH: Already referenced !\n");
return;
}
WARN_ON(pdn->pcidev);
WARN_ON(edev->pdev);
pci_dev_get (dev);
pdn->pcidev = dev;
pci_dev_get(dev);
edev->pdev = dev;
dev->dev.archdata.edev = edev;
pci_addr_cache_insert_device(dev);
eeh_sysfs_add_device(dev);
}
/**
* eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
* @bus: PCI bus
*
* This routine must be used to perform EEH initialization for PCI
* devices which are attached to the indicated PCI bus. The PCI bus
* is added after system boot through hotplug or dlpar.
*/
void eeh_add_device_tree_late(struct pci_bus *bus)
{
struct pci_dev *dev;
......@@ -1257,7 +1124,7 @@ void eeh_add_device_tree_late(struct pci_bus *bus)
EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
/**
* eeh_remove_device - undo EEH setup for the indicated pci device
* eeh_remove_device - Undo EEH setup for the indicated pci device
* @dev: pci device to be removed
*
* This routine should be called when a device is removed from
......@@ -1268,25 +1135,35 @@ EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
*/
static void eeh_remove_device(struct pci_dev *dev)
{
struct device_node *dn;
struct eeh_dev *edev;
if (!dev || !eeh_subsystem_enabled)
return;
edev = pci_dev_to_eeh_dev(dev);
/* Unregister the device with the EEH/PCI address search system */
pr_debug("EEH: Removing device %s\n", pci_name(dev));
dn = pci_device_to_OF_node(dev);
if (PCI_DN(dn)->pcidev == NULL) {
if (!edev || !edev->pdev) {
pr_debug("EEH: Not referenced !\n");
return;
}
PCI_DN(dn)->pcidev = NULL;
pci_dev_put (dev);
edev->pdev = NULL;
dev->dev.archdata.edev = NULL;
pci_dev_put(dev);
pci_addr_cache_remove_device(dev);
eeh_sysfs_remove_device(dev);
}
/**
* eeh_remove_bus_device - Undo EEH setup for the indicated PCI device
* @dev: PCI device
*
* This routine must be called when a device is removed from the
* running system through hotplug or dlpar. The corresponding
* PCI address cache will be removed.
*/
void eeh_remove_bus_device(struct pci_dev *dev)
{
struct pci_bus *bus = dev->subordinate;
......@@ -1305,21 +1182,24 @@ static int proc_eeh_show(struct seq_file *m, void *v)
{
if (0 == eeh_subsystem_enabled) {
seq_printf(m, "EEH Subsystem is globally disabled\n");
seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
} else {
seq_printf(m, "EEH Subsystem is enabled\n");
seq_printf(m,
"no device=%ld\n"
"no device node=%ld\n"
"no config address=%ld\n"
"check not wanted=%ld\n"
"eeh_total_mmio_ffs=%ld\n"
"eeh_false_positives=%ld\n"
"eeh_slot_resets=%ld\n",
no_device, no_dn, no_cfg_addr,
ignored_check, total_mmio_ffs,
false_positives,
slot_resets);
"no device=%llu\n"
"no device node=%llu\n"
"no config address=%llu\n"
"check not wanted=%llu\n"
"eeh_total_mmio_ffs=%llu\n"
"eeh_false_positives=%llu\n"
"eeh_slot_resets=%llu\n",
eeh_stats.no_device,
eeh_stats.no_dn,
eeh_stats.no_cfg_addr,
eeh_stats.ignored_check,
eeh_stats.total_mmio_ffs,
eeh_stats.false_positives,
eeh_stats.slot_resets);
}
return 0;
......
/*
* eeh_cache.c
* PCI address cache; allows the lookup of PCI devices based on I/O address
*
* Copyright IBM Corporation 2004
......@@ -47,8 +46,7 @@
* than any hash algo I could think of for this problem, even
* with the penalty of slow pointer chases for d-cache misses).
*/
struct pci_io_addr_range
{
struct pci_io_addr_range {
struct rb_node rb_node;
unsigned long addr_lo;
unsigned long addr_hi;
......@@ -56,13 +54,12 @@ struct pci_io_addr_range
unsigned int flags;
};
static struct pci_io_addr_cache
{
static struct pci_io_addr_cache {
struct rb_root rb_root;
spinlock_t piar_lock;
} pci_io_addr_cache_root;
static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
static inline struct pci_dev *__pci_addr_cache_get_device(unsigned long addr)
{
struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
......@@ -86,7 +83,7 @@ static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
}
/**
* pci_get_device_by_addr - Get device, given only address
* pci_addr_cache_get_device - Get device, given only address
* @addr: mmio (PIO) phys address or i/o port number
*
* Given an mmio phys address, or a port number, find a pci device
......@@ -95,13 +92,13 @@ static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
* from zero (that is, they do *not* have pci_io_addr added in).
* It is safe to call this function within an interrupt.
*/
struct pci_dev *pci_get_device_by_addr(unsigned long addr)
struct pci_dev *pci_addr_cache_get_device(unsigned long addr)
{
struct pci_dev *dev;
unsigned long flags;
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
dev = __pci_get_device_by_addr(addr);
dev = __pci_addr_cache_get_device(addr);
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
return dev;
}
......@@ -166,7 +163,7 @@ pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
#ifdef DEBUG
printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
alo, ahi, pci_name (dev));
alo, ahi, pci_name(dev));
#endif
rb_link_node(&piar->rb_node, parent, p);
......@@ -178,7 +175,7 @@ pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
static void __pci_addr_cache_insert_device(struct pci_dev *dev)
{
struct device_node *dn;
struct pci_dn *pdn;
struct eeh_dev *edev;
int i;
dn = pci_device_to_OF_node(dev);
......@@ -187,13 +184,19 @@ static void __pci_addr_cache_insert_device(struct pci_dev *dev)
return;
}
edev = of_node_to_eeh_dev(dn);
if (!edev) {
pr_warning("PCI: no EEH dev found for dn=%s\n",
dn->full_name);
return;
}
/* Skip any devices for which EEH is not enabled. */
pdn = PCI_DN(dn);
if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
pdn->eeh_mode & EEH_MODE_NOCHECK) {
if (!(edev->mode & EEH_MODE_SUPPORTED) ||
edev->mode & EEH_MODE_NOCHECK) {
#ifdef DEBUG
printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
pci_name(dev), pdn->node->full_name);
pr_info("PCI: skip building address cache for=%s - %s\n",
pci_name(dev), dn->full_name);
#endif
return;
}
......@@ -284,6 +287,7 @@ void pci_addr_cache_remove_device(struct pci_dev *dev)
void __init pci_addr_cache_build(void)
{
struct device_node *dn;
struct eeh_dev *edev;
struct pci_dev *dev = NULL;
spin_lock_init(&pci_io_addr_cache_root.piar_lock);
......@@ -294,8 +298,14 @@ void __init pci_addr_cache_build(void)
dn = pci_device_to_OF_node(dev);
if (!dn)
continue;
edev = of_node_to_eeh_dev(dn);
if (!edev)
continue;
pci_dev_get(dev); /* matching put is in eeh_remove_device() */
PCI_DN(dn)->pcidev = dev;
dev->dev.archdata.edev = edev;
edev->pdev = dev;
eeh_sysfs_add_device(dev);
}
......
/*
* The file intends to implement dynamic creation of EEH device, which will
* be bound with OF node and PCI device simutaneously. The EEH devices would
* be foundamental information for EEH core components to work proerly. Besides,
* We have to support multiple situations where dynamic creation of EEH device
* is required:
*
* 1) Before PCI emunation starts, we need create EEH devices according to the
* PCI sensitive OF nodes.
* 2) When PCI emunation is done, we need do the binding between PCI device and
* the associated EEH device.
* 3) DR (Dynamic Reconfiguration) would create PCI sensitive OF node. EEH device
* will be created while PCI sensitive OF node is detected from DR.
* 4) PCI hotplug needs redoing the binding between PCI device and EEH device. If
* PHB is newly inserted, we also need create EEH devices accordingly.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
/**
* eeh_dev_init - Create EEH device according to OF node
* @dn: device node
* @data: PHB
*
* It will create EEH device according to the given OF node. The function
* might be called by PCI emunation, DR, PHB hotplug.
*/
void * __devinit eeh_dev_init(struct device_node *dn, void *data)
{
struct pci_controller *phb = data;
struct eeh_dev *edev;
/* Allocate EEH device */
edev = zalloc_maybe_bootmem(sizeof(*edev), GFP_KERNEL);
if (!edev) {
pr_warning("%s: out of memory\n", __func__);
return NULL;
}
/* Associate EEH device with OF node */
dn->edev = edev;
edev->dn = dn;
edev->phb = phb;
return NULL;
}
/**
* eeh_dev_phb_init_dynamic - Create EEH devices for devices included in PHB
* @phb: PHB
*
* Scan the PHB OF node and its child association, then create the
* EEH devices accordingly
*/
void __devinit eeh_dev_phb_init_dynamic(struct pci_controller *phb)
{
struct device_node *dn = phb->dn;
/* EEH device for PHB */
eeh_dev_init(dn, phb);
/* EEH devices for children OF nodes */
traverse_pci_devices(dn, eeh_dev_init, phb);
}
/**
* eeh_dev_phb_init - Create EEH devices for devices included in existing PHBs
*
* Scan all the existing PHBs and create EEH devices for their OF
* nodes and their children OF nodes
*/
void __init eeh_dev_phb_init(void)
{
struct pci_controller *phb, *tmp;
list_for_each_entry_safe(phb, tmp, &hose_list, list_node)
eeh_dev_phb_init_dynamic(phb);
}
......@@ -33,8 +33,14 @@
#include <asm/prom.h>
#include <asm/rtas.h>
static inline const char * pcid_name (struct pci_dev *pdev)
/**
* eeh_pcid_name - Retrieve name of PCI device driver
* @pdev: PCI device
*
* This routine is used to retrieve the name of PCI device driver
* if that's valid.
*/
static inline const char *eeh_pcid_name(struct pci_dev *pdev)
{
if (pdev && pdev->dev.driver)
return pdev->dev.driver->name;
......@@ -64,11 +70,18 @@ static void print_device_node_tree(struct pci_dn *pdn, int dent)
#endif
/**
* eeh_disable_irq - disable interrupt for the recovering device
* eeh_disable_irq - Disable interrupt for the recovering device
* @dev: PCI device
*
* This routine must be called when reporting temporary or permanent
* error to the particular PCI device to disable interrupt of that
* device. If the device has enabled MSI or MSI-X interrupt, we needn't
* do real work because EEH should freeze DMA transfers for those PCI
* devices encountering EEH errors, which includes MSI or MSI-X.
*/
static void eeh_disable_irq(struct pci_dev *dev)
{
struct device_node *dn = pci_device_to_OF_node(dev);
struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
/* Don't disable MSI and MSI-X interrupts. They are
* effectively disabled by the DMA Stopped state
......@@ -80,32 +93,36 @@ static void eeh_disable_irq(struct pci_dev *dev)
if (!irq_has_action(dev->irq))
return;
PCI_DN(dn)->eeh_mode |= EEH_MODE_IRQ_DISABLED;
edev->mode |= EEH_MODE_IRQ_DISABLED;
disable_irq_nosync(dev->irq);
}
/**
* eeh_enable_irq - enable interrupt for the recovering device
* eeh_enable_irq - Enable interrupt for the recovering device
* @dev: PCI device
*
* This routine must be called to enable interrupt while failed
* device could be resumed.
*/
static void eeh_enable_irq(struct pci_dev *dev)
{
struct device_node *dn = pci_device_to_OF_node(dev);
struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
if ((PCI_DN(dn)->eeh_mode) & EEH_MODE_IRQ_DISABLED) {
PCI_DN(dn)->eeh_mode &= ~EEH_MODE_IRQ_DISABLED;
if ((edev->mode) & EEH_MODE_IRQ_DISABLED) {
edev->mode &= ~EEH_MODE_IRQ_DISABLED;
enable_irq(dev->irq);
}
}
/* ------------------------------------------------------- */
/**
* eeh_report_error - report pci error to each device driver
* eeh_report_error - Report pci error to each device driver
* @dev: PCI device
* @userdata: return value
*
* Report an EEH error to each device driver, collect up and
* merge the device driver responses. Cumulative response
* passed back in "userdata".
*/
static int eeh_report_error(struct pci_dev *dev, void *userdata)
{
enum pci_ers_result rc, *res = userdata;
......@@ -122,7 +139,7 @@ static int eeh_report_error(struct pci_dev *dev, void *userdata)
!driver->err_handler->error_detected)
return 0;
rc = driver->err_handler->error_detected (dev, pci_channel_io_frozen);
rc = driver->err_handler->error_detected(dev, pci_channel_io_frozen);
/* A driver that needs a reset trumps all others */
if (rc == PCI_ERS_RESULT_NEED_RESET) *res = rc;
......@@ -132,13 +149,14 @@ static int eeh_report_error(struct pci_dev *dev, void *userdata)
}
/**
* eeh_report_mmio_enabled - tell drivers that MMIO has been enabled
* eeh_report_mmio_enabled - Tell drivers that MMIO has been enabled
* @dev: PCI device
* @userdata: return value
*
* Tells each device driver that IO ports, MMIO and config space I/O
* are now enabled. Collects up and merges the device driver responses.
* Cumulative response passed back in "userdata".
*/
static int eeh_report_mmio_enabled(struct pci_dev *dev, void *userdata)
{
enum pci_ers_result rc, *res = userdata;
......@@ -149,7 +167,7 @@ static int eeh_report_mmio_enabled(struct pci_dev *dev, void *userdata)
!driver->err_handler->mmio_enabled)
return 0;
rc = driver->err_handler->mmio_enabled (dev);
rc = driver->err_handler->mmio_enabled(dev);
/* A driver that needs a reset trumps all others */
if (rc == PCI_ERS_RESULT_NEED_RESET) *res = rc;
......@@ -159,9 +177,15 @@ static int eeh_report_mmio_enabled(struct pci_dev *dev, void *userdata)
}
/**
* eeh_report_reset - tell device that slot has been reset
* eeh_report_reset - Tell device that slot has been reset
* @dev: PCI device
* @userdata: return value
*
* This routine must be called while EEH tries to reset particular
* PCI device so that the associated PCI device driver could take
* some actions, usually to save data the driver needs so that the
* driver can work again while the device is recovered.
*/
static int eeh_report_reset(struct pci_dev *dev, void *userdata)
{
enum pci_ers_result rc, *res = userdata;
......@@ -188,9 +212,14 @@ static int eeh_report_reset(struct pci_dev *dev, void *userdata)
}
/**
* eeh_report_resume - tell device to resume normal operations
* eeh_report_resume - Tell device to resume normal operations
* @dev: PCI device
* @userdata: return value
*
* This routine must be called to notify the device driver that it
* could resume so that the device driver can do some initialization
* to make the recovered device work again.
*/
static int eeh_report_resume(struct pci_dev *dev, void *userdata)
{
struct pci_driver *driver = dev->driver;
......@@ -212,12 +241,13 @@ static int eeh_report_resume(struct pci_dev *dev, void *userdata)
}
/**
* eeh_report_failure - tell device driver that device is dead.
* eeh_report_failure - Tell device driver that device is dead.
* @dev: PCI device
* @userdata: return value
*
* This informs the device driver that the device is permanently
* dead, and that no further recovery attempts will be made on it.
*/
static int eeh_report_failure(struct pci_dev *dev, void *userdata)
{
struct pci_driver *driver = dev->driver;
......@@ -238,65 +268,46 @@ static int eeh_report_failure(struct pci_dev *dev, void *userdata)
return 0;
}
/* ------------------------------------------------------- */
/**
* handle_eeh_events -- reset a PCI device after hard lockup.
*
* pSeries systems will isolate a PCI slot if the PCI-Host
* bridge detects address or data parity errors, DMA's
* occurring to wild addresses (which usually happen due to
* bugs in device drivers or in PCI adapter firmware).
* Slot isolations also occur if #SERR, #PERR or other misc
* PCI-related errors are detected.
* eeh_reset_device - Perform actual reset of a pci slot
* @edev: PE associated EEH device
* @bus: PCI bus corresponding to the isolcated slot
*
* Recovery process consists of unplugging the device driver
* (which generated hotplug events to userspace), then issuing
* a PCI #RST to the device, then reconfiguring the PCI config
* space for all bridges & devices under this slot, and then
* finally restarting the device drivers (which cause a second
* set of hotplug events to go out to userspace).
* This routine must be called to do reset on the indicated PE.
* During the reset, udev might be invoked because those affected
* PCI devices will be removed and then added.
*/
/**
* eeh_reset_device() -- perform actual reset of a pci slot
* @bus: pointer to the pci bus structure corresponding
* to the isolated slot. A non-null value will
* cause all devices under the bus to be removed
* and then re-added.
* @pe_dn: pointer to a "Partionable Endpoint" device node.
* This is the top-level structure on which pci
* bus resets can be performed.
*/
static int eeh_reset_device (struct pci_dn *pe_dn, struct pci_bus *bus)
static int eeh_reset_device(struct eeh_dev *edev, struct pci_bus *bus)
{
struct device_node *dn;
int cnt, rc;
/* pcibios will clear the counter; save the value */
cnt = pe_dn->eeh_freeze_count;
cnt = edev->freeze_count;
if (bus)
pcibios_remove_pci_devices(bus);
/* Reset the pci controller. (Asserts RST#; resets config space).
* Reconfigure bridges and devices. Don't try to bring the system
* up if the reset failed for some reason. */
rc = rtas_set_slot_reset(pe_dn);
* up if the reset failed for some reason.
*/
rc = eeh_reset_pe(edev);
if (rc)
return rc;
/* Walk over all functions on this device. */
dn = pe_dn->node;
if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
dn = eeh_dev_to_of_node(edev);
if (!pcibios_find_pci_bus(dn) && of_node_to_eeh_dev(dn->parent))
dn = dn->parent->child;
while (dn) {
struct pci_dn *ppe = PCI_DN(dn);
struct eeh_dev *pedev = of_node_to_eeh_dev(dn);
/* On Power4, always true because eeh_pe_config_addr=0 */
if (pe_dn->eeh_pe_config_addr == ppe->eeh_pe_config_addr) {
rtas_configure_bridge(ppe);
eeh_restore_bars(ppe);
if (edev->pe_config_addr == pedev->pe_config_addr) {
eeh_ops->configure_bridge(dn);
eeh_restore_bars(pedev);
}
dn = dn->sibling;
}
......@@ -308,10 +319,10 @@ static int eeh_reset_device (struct pci_dn *pe_dn, struct pci_bus *bus)
* potentially weird things happen.
*/
if (bus) {
ssleep (5);
ssleep(5);
pcibios_add_pci_devices(bus);
}
pe_dn->eeh_freeze_count = cnt;
edev->freeze_count = cnt;
return 0;
}
......@@ -321,23 +332,39 @@ static int eeh_reset_device (struct pci_dn *pe_dn, struct pci_bus *bus)
*/
#define MAX_WAIT_FOR_RECOVERY 150
struct pci_dn * handle_eeh_events (struct eeh_event *event)
/**
* eeh_handle_event - Reset a PCI device after hard lockup.
* @event: EEH event
*
* While PHB detects address or data parity errors on particular PCI
* slot, the associated PE will be frozen. Besides, DMA's occurring
* to wild addresses (which usually happen due to bugs in device
* drivers or in PCI adapter firmware) can cause EEH error. #SERR,
* #PERR or other misc PCI-related errors also can trigger EEH errors.
*
* Recovery process consists of unplugging the device driver (which
* generated hotplug events to userspace), then issuing a PCI #RST to
* the device, then reconfiguring the PCI config space for all bridges
* & devices under this slot, and then finally restarting the device
* drivers (which cause a second set of hotplug events to go out to
* userspace).
*/
struct eeh_dev *handle_eeh_events(struct eeh_event *event)
{
struct device_node *frozen_dn;
struct pci_dn *frozen_pdn;
struct eeh_dev *frozen_edev;
struct pci_bus *frozen_bus;
int rc = 0;
enum pci_ers_result result = PCI_ERS_RESULT_NONE;
const char *location, *pci_str, *drv_str, *bus_pci_str, *bus_drv_str;
frozen_dn = find_device_pe(event->dn);
frozen_dn = eeh_find_device_pe(eeh_dev_to_of_node(event->edev));
if (!frozen_dn) {
location = of_get_property(event->dn, "ibm,loc-code", NULL);
location = of_get_property(eeh_dev_to_of_node(event->edev), "ibm,loc-code", NULL);
location = location ? location : "unknown";
printk(KERN_ERR "EEH: Error: Cannot find partition endpoint "
"for location=%s pci addr=%s\n",
location, eeh_pci_name(event->dev));
location, eeh_pci_name(eeh_dev_to_pci_dev(event->edev)));
return NULL;
}
......@@ -350,9 +377,10 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
* which was always an EADS pci bridge. In the new style,
* there might not be any EADS bridges, and even when there are,
* the firmware marks them as "EEH incapable". So another
* two-step is needed to find the pci bus.. */
* two-step is needed to find the pci bus..
*/
if (!frozen_bus)
frozen_bus = pcibios_find_pci_bus (frozen_dn->parent);
frozen_bus = pcibios_find_pci_bus(frozen_dn->parent);
if (!frozen_bus) {
printk(KERN_ERR "EEH: Cannot find PCI bus "
......@@ -361,22 +389,21 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
return NULL;
}
frozen_pdn = PCI_DN(frozen_dn);
frozen_pdn->eeh_freeze_count++;
pci_str = eeh_pci_name(event->dev);
drv_str = pcid_name(event->dev);
frozen_edev = of_node_to_eeh_dev(frozen_dn);
frozen_edev->freeze_count++;
pci_str = eeh_pci_name(eeh_dev_to_pci_dev(event->edev));
drv_str = eeh_pcid_name(eeh_dev_to_pci_dev(event->edev));
if (frozen_pdn->eeh_freeze_count > EEH_MAX_ALLOWED_FREEZES)
if (frozen_edev->freeze_count > EEH_MAX_ALLOWED_FREEZES)
goto excess_failures;
printk(KERN_WARNING
"EEH: This PCI device has failed %d times in the last hour:\n",
frozen_pdn->eeh_freeze_count);
frozen_edev->freeze_count);
if (frozen_pdn->pcidev) {
bus_pci_str = pci_name(frozen_pdn->pcidev);
bus_drv_str = pcid_name(frozen_pdn->pcidev);
if (frozen_edev->pdev) {
bus_pci_str = pci_name(frozen_edev->pdev);
bus_drv_str = eeh_pcid_name(frozen_edev->pdev);
printk(KERN_WARNING
"EEH: Bus location=%s driver=%s pci addr=%s\n",
location, bus_drv_str, bus_pci_str);
......@@ -395,9 +422,10 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
pci_walk_bus(frozen_bus, eeh_report_error, &result);
/* Get the current PCI slot state. This can take a long time,
* sometimes over 3 seconds for certain systems. */
rc = eeh_wait_for_slot_status (frozen_pdn, MAX_WAIT_FOR_RECOVERY*1000);
if (rc < 0) {
* sometimes over 3 seconds for certain systems.
*/
rc = eeh_ops->wait_state(eeh_dev_to_of_node(frozen_edev), MAX_WAIT_FOR_RECOVERY*1000);
if (rc < 0 || rc == EEH_STATE_NOT_SUPPORT) {
printk(KERN_WARNING "EEH: Permanent failure\n");
goto hard_fail;
}
......@@ -406,14 +434,14 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
* don't post the error log until after all dev drivers
* have been informed.
*/
eeh_slot_error_detail(frozen_pdn, EEH_LOG_TEMP_FAILURE);
eeh_slot_error_detail(frozen_edev, EEH_LOG_TEMP);
/* If all device drivers were EEH-unaware, then shut
* down all of the device drivers, and hope they
* go down willingly, without panicing the system.
*/
if (result == PCI_ERS_RESULT_NONE) {
rc = eeh_reset_device(frozen_pdn, frozen_bus);
rc = eeh_reset_device(frozen_edev, frozen_bus);
if (rc) {
printk(KERN_WARNING "EEH: Unable to reset, rc=%d\n", rc);
goto hard_fail;
......@@ -422,7 +450,7 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
/* If all devices reported they can proceed, then re-enable MMIO */
if (result == PCI_ERS_RESULT_CAN_RECOVER) {
rc = rtas_pci_enable(frozen_pdn, EEH_THAW_MMIO);
rc = eeh_pci_enable(frozen_edev, EEH_OPT_THAW_MMIO);
if (rc < 0)
goto hard_fail;
......@@ -436,7 +464,7 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
/* If all devices reported they can proceed, then re-enable DMA */
if (result == PCI_ERS_RESULT_CAN_RECOVER) {
rc = rtas_pci_enable(frozen_pdn, EEH_THAW_DMA);
rc = eeh_pci_enable(frozen_edev, EEH_OPT_THAW_DMA);
if (rc < 0)
goto hard_fail;
......@@ -454,7 +482,7 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
/* If any device called out for a reset, then reset the slot */
if (result == PCI_ERS_RESULT_NEED_RESET) {
rc = eeh_reset_device(frozen_pdn, NULL);
rc = eeh_reset_device(frozen_edev, NULL);
if (rc) {
printk(KERN_WARNING "EEH: Cannot reset, rc=%d\n", rc);
goto hard_fail;
......@@ -473,7 +501,7 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
/* Tell all device drivers that they can resume operations */
pci_walk_bus(frozen_bus, eeh_report_resume, NULL);
return frozen_pdn;
return frozen_edev;
excess_failures:
/*
......@@ -486,7 +514,7 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
"has failed %d times in the last hour "
"and has been permanently disabled.\n"
"Please try reseating this device or replacing it.\n",
location, drv_str, pci_str, frozen_pdn->eeh_freeze_count);
location, drv_str, pci_str, frozen_edev->freeze_count);
goto perm_error;
hard_fail:
......@@ -497,7 +525,7 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
location, drv_str, pci_str);
perm_error:
eeh_slot_error_detail(frozen_pdn, EEH_LOG_PERM_FAILURE);
eeh_slot_error_detail(frozen_edev, EEH_LOG_PERM);
/* Notify all devices that they're about to go down. */
pci_walk_bus(frozen_bus, eeh_report_failure, NULL);
......@@ -508,4 +536,3 @@ struct pci_dn * handle_eeh_events (struct eeh_event *event)
return NULL;
}
/* ---------- end of file ---------- */
/*
* eeh_event.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
......@@ -46,7 +44,7 @@ DECLARE_WORK(eeh_event_wq, eeh_thread_launcher);
DEFINE_MUTEX(eeh_event_mutex);
/**
* eeh_event_handler - dispatch EEH events.
* eeh_event_handler - Dispatch EEH events.
* @dummy - unused
*
* The detection of a frozen slot can occur inside an interrupt,
......@@ -59,9 +57,9 @@ static int eeh_event_handler(void * dummy)
{
unsigned long flags;
struct eeh_event *event;
struct pci_dn *pdn;
struct eeh_dev *edev;
daemonize ("eehd");
daemonize("eehd");
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&eeh_eventlist_lock, flags);
......@@ -79,31 +77,37 @@ static int eeh_event_handler(void * dummy)
/* Serialize processing of EEH events */
mutex_lock(&eeh_event_mutex);
eeh_mark_slot(event->dn, EEH_MODE_RECOVERING);
edev = event->edev;
eeh_mark_slot(eeh_dev_to_of_node(edev), EEH_MODE_RECOVERING);
printk(KERN_INFO "EEH: Detected PCI bus error on device %s\n",
eeh_pci_name(event->dev));
eeh_pci_name(edev->pdev));
edev = handle_eeh_events(event);
pdn = handle_eeh_events(event);
eeh_clear_slot(eeh_dev_to_of_node(edev), EEH_MODE_RECOVERING);
pci_dev_put(edev->pdev);
eeh_clear_slot(event->dn, EEH_MODE_RECOVERING);
pci_dev_put(event->dev);
kfree(event);
mutex_unlock(&eeh_event_mutex);
/* If there are no new errors after an hour, clear the counter. */
if (pdn && pdn->eeh_freeze_count>0) {
msleep_interruptible (3600*1000);
if (pdn->eeh_freeze_count>0)
pdn->eeh_freeze_count--;
if (edev && edev->freeze_count>0) {
msleep_interruptible(3600*1000);
if (edev->freeze_count>0)
edev->freeze_count--;
}
return 0;
}
/**
* eeh_thread_launcher
* eeh_thread_launcher - Start kernel thread to handle EEH events
* @dummy - unused
*
* This routine is called to start the kernel thread for processing
* EEH event.
*/
static void eeh_thread_launcher(struct work_struct *dummy)
{
......@@ -112,18 +116,18 @@ static void eeh_thread_launcher(struct work_struct *dummy)
}
/**
* eeh_send_failure_event - generate a PCI error event
* @dev pci device
* eeh_send_failure_event - Generate a PCI error event
* @edev: EEH device
*
* This routine can be called within an interrupt context;
* the actual event will be delivered in a normal context
* (from a workqueue).
*/
int eeh_send_failure_event (struct device_node *dn,
struct pci_dev *dev)
int eeh_send_failure_event(struct eeh_dev *edev)
{
unsigned long flags;
struct eeh_event *event;
struct device_node *dn = eeh_dev_to_of_node(edev);
const char *location;
if (!mem_init_done) {
......@@ -135,15 +139,14 @@ int eeh_send_failure_event (struct device_node *dn,
}
event = kmalloc(sizeof(*event), GFP_ATOMIC);
if (event == NULL) {
printk (KERN_ERR "EEH: out of memory, event not handled\n");
printk(KERN_ERR "EEH: out of memory, event not handled\n");
return 1;
}
if (dev)
pci_dev_get(dev);
if (edev->pdev)
pci_dev_get(edev->pdev);
event->dn = dn;
event->dev = dev;
event->edev = edev;
/* We may or may not be called in an interrupt context */
spin_lock_irqsave(&eeh_eventlist_lock, flags);
......@@ -154,5 +157,3 @@ int eeh_send_failure_event (struct device_node *dn,
return 0;
}
/********************** END OF FILE ******************************/
/*
* The file intends to implement the platform dependent EEH operations on pseries.
* Actually, the pseries platform is built based on RTAS heavily. That means the
* pseries platform dependent EEH operations will be built on RTAS calls. The functions
* are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
* been done.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
* Copyright IBM Corporation 2001, 2005, 2006
* Copyright Dave Engebretsen & Todd Inglett 2001
* Copyright Linas Vepstas 2005, 2006
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/rtas.h>
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;
static int ibm_get_config_addr_info;
static int ibm_get_config_addr_info2;
static int ibm_configure_bridge;
static int ibm_configure_pe;
/*
* Buffer for reporting slot-error-detail rtas calls. Its here
* in BSS, and not dynamically alloced, so that it ends up in
* RMO where RTAS can access it.
*/
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;
/**
* pseries_eeh_init - EEH platform dependent initialization
*
* EEH platform dependent initialization on pseries.
*/
static int pseries_eeh_init(void)
{
/* figure out EEH RTAS function call tokens */
ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
ibm_configure_pe = rtas_token("ibm,configure-pe");
ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
/* necessary sanity check */
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,set-eeh-option> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm, set-slot-reset> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,read-slot-reset-state2> and "
"<ibm,read-slot-reset-state> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,slot-error-detail> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_get_config_addr_info2 == RTAS_UNKNOWN_SERVICE &&
ibm_get_config_addr_info == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,get-config-addr-info2> and "
"<ibm,get-config-addr-info> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE &&
ibm_configure_bridge == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,configure-pe> and "
"<ibm,configure-bridge> invalid\n",
__func__);
return -EINVAL;
}
/* Initialize error log lock and size */
spin_lock_init(&slot_errbuf_lock);
eeh_error_buf_size = rtas_token("rtas-error-log-max");
if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: unknown EEH error log size\n",
__func__);
eeh_error_buf_size = 1024;
} else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
pr_warning("%s: EEH error log size %d exceeds the maximal %d\n",
__func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
}
return 0;
}
/**
* pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
* @dn: device node
* @option: operation to be issued
*
* The function is used to control the EEH functionality globally.
* Currently, following options are support according to PAPR:
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
*/
static int pseries_eeh_set_option(struct device_node *dn, int option)
{
int ret = 0;
struct eeh_dev *edev;
const u32 *reg;
int config_addr;
edev = of_node_to_eeh_dev(dn);
/*
* When we're enabling or disabling EEH functioality on
* the particular PE, the PE config address is possibly
* unavailable. Therefore, we have to figure it out from
* the FDT node.
*/
switch (option) {
case EEH_OPT_DISABLE:
case EEH_OPT_ENABLE:
reg = of_get_property(dn, "reg", NULL);
config_addr = reg[0];
break;
case EEH_OPT_THAW_MMIO:
case EEH_OPT_THAW_DMA:
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
break;
default:
pr_err("%s: Invalid option %d\n",
__func__, option);
return -EINVAL;
}
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), option);
return ret;
}
/**
* pseries_eeh_get_pe_addr - Retrieve PE address
* @dn: device node
*
* Retrieve the assocated PE address. Actually, there're 2 RTAS
* function calls dedicated for the purpose. We need implement
* it through the new function and then the old one. Besides,
* you should make sure the config address is figured out from
* FDT node before calling the function.
*
* It's notable that zero'ed return value means invalid PE config
* address.
*/
static int pseries_eeh_get_pe_addr(struct device_node *dn)
{
struct eeh_dev *edev;
int ret = 0;
int rets[3];
edev = of_node_to_eeh_dev(dn);
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
/*
* First of all, we need to make sure there has one PE
* associated with the device. Otherwise, PE address is
* meaningless.
*/
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
edev->config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), 1);
if (ret || (rets[0] == 0))
return 0;
/* Retrieve the associated PE config address */
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
edev->config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), 0);
if (ret) {
pr_warning("%s: Failed to get PE address for %s\n",
__func__, dn->full_name);
return 0;
}
return rets[0];
}
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
edev->config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), 0);
if (ret) {
pr_warning("%s: Failed to get PE address for %s\n",
__func__, dn->full_name);
return 0;
}
return rets[0];
}
return ret;
}
/**
* pseries_eeh_get_state - Retrieve PE state
* @dn: PE associated device node
* @state: return value
*
* Retrieve the state of the specified PE. On RTAS compliant
* pseries platform, there already has one dedicated RTAS function
* for the purpose. It's notable that the associated PE config address
* might be ready when calling the function. Therefore, endeavour to
* use the PE config address if possible. Further more, there're 2
* RTAS calls for the purpose, we need to try the new one and back
* to the old one if the new one couldn't work properly.
*/
static int pseries_eeh_get_state(struct device_node *dn, int *state)
{
struct eeh_dev *edev;
int config_addr;
int ret;
int rets[4];
int result;
/* Figure out PE config address if possible */
edev = of_node_to_eeh_dev(dn);
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid));
} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
/* Fake PE unavailable info */
rets[2] = 0;
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid));
} else {
return EEH_STATE_NOT_SUPPORT;
}
if (ret)
return ret;
/* Parse the result out */
result = 0;
if (rets[1]) {
switch(rets[0]) {
case 0:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
break;
case 1:
result |= EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
break;
case 2:
result &= ~EEH_STATE_RESET_ACTIVE;
result &= ~EEH_STATE_MMIO_ACTIVE;
result &= ~EEH_STATE_DMA_ACTIVE;
break;
case 4:
result &= ~EEH_STATE_RESET_ACTIVE;
result &= ~EEH_STATE_MMIO_ACTIVE;
result &= ~EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
break;
case 5:
if (rets[2]) {
if (state) *state = rets[2];
result = EEH_STATE_UNAVAILABLE;
} else {
result = EEH_STATE_NOT_SUPPORT;
}
default:
result = EEH_STATE_NOT_SUPPORT;
}
} else {
result = EEH_STATE_NOT_SUPPORT;
}
return result;
}
/**
* pseries_eeh_reset - Reset the specified PE
* @dn: PE associated device node
* @option: reset option
*
* Reset the specified PE
*/
static int pseries_eeh_reset(struct device_node *dn, int option)
{
struct eeh_dev *edev;
int config_addr;
int ret;
/* Figure out PE address */
edev = of_node_to_eeh_dev(dn);
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
/* Reset PE through RTAS call */
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), option);
/* If fundamental-reset not supported, try hot-reset */
if (option == EEH_RESET_FUNDAMENTAL &&
ret == -8) {
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), EEH_RESET_HOT);
}
return ret;
}
/**
* pseries_eeh_wait_state - Wait for PE state
* @dn: PE associated device node
* @max_wait: maximal period in microsecond
*
* Wait for the state of associated PE. It might take some time
* to retrieve the PE's state.
*/
static int pseries_eeh_wait_state(struct device_node *dn, int max_wait)
{
int ret;
int mwait;
/*
* According to PAPR, the state of PE might be temporarily
* unavailable. Under the circumstance, we have to wait
* for indicated time determined by firmware. The maximal
* wait time is 5 minutes, which is acquired from the original
* EEH implementation. Also, the original implementation
* also defined the minimal wait time as 1 second.
*/
#define EEH_STATE_MIN_WAIT_TIME (1000)
#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
while (1) {
ret = pseries_eeh_get_state(dn, &mwait);
/*
* If the PE's state is temporarily unavailable,
* we have to wait for the specified time. Otherwise,
* the PE's state will be returned immediately.
*/
if (ret != EEH_STATE_UNAVAILABLE)
return ret;
if (max_wait <= 0) {
pr_warning("%s: Timeout when getting PE's state (%d)\n",
__func__, max_wait);
return EEH_STATE_NOT_SUPPORT;
}
if (mwait <= 0) {
pr_warning("%s: Firmware returned bad wait value %d\n",
__func__, mwait);
mwait = EEH_STATE_MIN_WAIT_TIME;
} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
pr_warning("%s: Firmware returned too long wait value %d\n",
__func__, mwait);
mwait = EEH_STATE_MAX_WAIT_TIME;
}
max_wait -= mwait;
msleep(mwait);
}
return EEH_STATE_NOT_SUPPORT;
}
/**
* pseries_eeh_get_log - Retrieve error log
* @dn: device node
* @severity: temporary or permanent error log
* @drv_log: driver log to be combined with retrieved error log
* @len: length of driver log
*
* Retrieve the temporary or permanent error from the PE.
* Actually, the error will be retrieved through the dedicated
* RTAS call.
*/
static int pseries_eeh_get_log(struct device_node *dn, int severity, char *drv_log, unsigned long len)
{
struct eeh_dev *edev;
int config_addr;
unsigned long flags;
int ret;
edev = of_node_to_eeh_dev(dn);
spin_lock_irqsave(&slot_errbuf_lock, flags);
memset(slot_errbuf, 0, eeh_error_buf_size);
/* Figure out the PE address */
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
BUID_HI(edev->phb->buid), BUID_LO(edev->phb->buid),
virt_to_phys(drv_log), len,
virt_to_phys(slot_errbuf), eeh_error_buf_size,
severity);
if (!ret)
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
return ret;
}
/**
* pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
* @dn: PE associated device node
*
* The function will be called to reconfigure the bridges included
* in the specified PE so that the mulfunctional PE would be recovered
* again.
*/
static int pseries_eeh_configure_bridge(struct device_node *dn)
{
struct eeh_dev *edev;
int config_addr;
int ret;
/* Figure out the PE address */
edev = of_node_to_eeh_dev(dn);
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
/* Use new configure-pe function, if supported */
if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid));
} else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid));
} else {
return -EFAULT;
}
if (ret)
pr_warning("%s: Unable to configure bridge %d for %s\n",
__func__, ret, dn->full_name);
return ret;
}
/**
* pseries_eeh_read_config - Read PCI config space
* @dn: device node
* @where: PCI address
* @size: size to read
* @val: return value
*
* Read config space from the speicifed device
*/
static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val)
{
struct pci_dn *pdn;
pdn = PCI_DN(dn);
return rtas_read_config(pdn, where, size, val);
}
/**
* pseries_eeh_write_config - Write PCI config space
* @dn: device node
* @where: PCI address
* @size: size to write
* @val: value to be written
*
* Write config space to the specified device
*/
static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val)
{
struct pci_dn *pdn;
pdn = PCI_DN(dn);
return rtas_write_config(pdn, where, size, val);
}
static struct eeh_ops pseries_eeh_ops = {
.name = "pseries",
.init = pseries_eeh_init,
.set_option = pseries_eeh_set_option,
.get_pe_addr = pseries_eeh_get_pe_addr,
.get_state = pseries_eeh_get_state,
.reset = pseries_eeh_reset,
.wait_state = pseries_eeh_wait_state,
.get_log = pseries_eeh_get_log,
.configure_bridge = pseries_eeh_configure_bridge,
.read_config = pseries_eeh_read_config,
.write_config = pseries_eeh_write_config
};
/**
* eeh_pseries_init - Register platform dependent EEH operations
*
* EEH initialization on pseries platform. This function should be
* called before any EEH related functions.
*/
int __init eeh_pseries_init(void)
{
return eeh_ops_register(&pseries_eeh_ops);
}
......@@ -28,7 +28,7 @@
#include <asm/pci-bridge.h>
/**
* EEH_SHOW_ATTR -- create sysfs entry for eeh statistic
* EEH_SHOW_ATTR -- Create sysfs entry for eeh statistic
* @_name: name of file in sysfs directory
* @_memb: name of member in struct pci_dn to access
* @_format: printf format for display
......@@ -41,24 +41,21 @@ static ssize_t eeh_show_##_name(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct pci_dev *pdev = to_pci_dev(dev); \
struct device_node *dn = pci_device_to_OF_node(pdev); \
struct pci_dn *pdn; \
struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev); \
\
if (!dn || PCI_DN(dn) == NULL) \
if (!edev) \
return 0; \
\
pdn = PCI_DN(dn); \
return sprintf(buf, _format "\n", pdn->_memb); \
return sprintf(buf, _format "\n", edev->_memb); \
} \
static DEVICE_ATTR(_name, S_IRUGO, eeh_show_##_name, NULL);
EEH_SHOW_ATTR(eeh_mode, eeh_mode, "0x%x");
EEH_SHOW_ATTR(eeh_config_addr, eeh_config_addr, "0x%x");
EEH_SHOW_ATTR(eeh_pe_config_addr, eeh_pe_config_addr, "0x%x");
EEH_SHOW_ATTR(eeh_check_count, eeh_check_count, "%d");
EEH_SHOW_ATTR(eeh_freeze_count, eeh_freeze_count, "%d");
EEH_SHOW_ATTR(eeh_false_positives, eeh_false_positives, "%d");
EEH_SHOW_ATTR(eeh_mode, mode, "0x%x");
EEH_SHOW_ATTR(eeh_config_addr, config_addr, "0x%x");
EEH_SHOW_ATTR(eeh_pe_config_addr, pe_config_addr, "0x%x");
EEH_SHOW_ATTR(eeh_check_count, check_count, "%d" );
EEH_SHOW_ATTR(eeh_freeze_count, freeze_count, "%d" );
EEH_SHOW_ATTR(eeh_false_positives, false_positives, "%d" );
void eeh_sysfs_add_device(struct pci_dev *pdev)
{
......
......@@ -217,7 +217,7 @@ static struct device_node *find_pe_dn(struct pci_dev *dev, int *total)
if (!dn)
return NULL;
dn = find_device_pe(dn);
dn = eeh_find_device_pe(dn);
if (!dn)
return NULL;
......
......@@ -147,6 +147,9 @@ struct pci_controller * __devinit init_phb_dynamic(struct device_node *dn)
pci_devs_phb_init_dynamic(phb);
/* Create EEH devices for the PHB */
eeh_dev_phb_init_dynamic(phb);
if (dn->child)
eeh_add_device_tree_early(dn);
......
......@@ -260,8 +260,12 @@ static int pci_dn_reconfig_notifier(struct notifier_block *nb, unsigned long act
switch (action) {
case PSERIES_RECONFIG_ADD:
pci = np->parent->data;
if (pci)
if (pci) {
update_dn_pci_info(np, pci->phb);
/* Create EEH device for the OF node */
eeh_dev_init(np, pci->phb);
}
break;
default:
err = NOTIFY_DONE;
......@@ -381,6 +385,7 @@ static void __init pSeries_setup_arch(void)
/* Find and initialize PCI host bridges */
init_pci_config_tokens();
eeh_pseries_init();
find_and_init_phbs();
pSeries_reconfig_notifier_register(&pci_dn_reconfig_nb);
eeh_init();
......
......@@ -58,6 +58,9 @@ struct device_node {
struct kref kref;
unsigned long _flags;
void *data;
#if defined(CONFIG_EEH)
struct eeh_dev *edev;
#endif
#if defined(CONFIG_SPARC)
char *path_component_name;
unsigned int unique_id;
......@@ -72,6 +75,13 @@ struct of_phandle_args {
uint32_t args[MAX_PHANDLE_ARGS];
};
#if defined(CONFIG_EEH)
static inline struct eeh_dev *of_node_to_eeh_dev(struct device_node *dn)
{
return dn->edev;
}
#endif
#if defined(CONFIG_SPARC) || !defined(CONFIG_OF)
/* Dummy ref counting routines - to be implemented later */
static inline struct device_node *of_node_get(struct device_node *node)
......
......@@ -1647,6 +1647,13 @@ static inline void pci_set_bus_of_node(struct pci_bus *bus) { }
static inline void pci_release_bus_of_node(struct pci_bus *bus) { }
#endif /* CONFIG_OF */
#ifdef CONFIG_EEH
static inline struct eeh_dev *pci_dev_to_eeh_dev(struct pci_dev *pdev)
{
return pdev->dev.archdata.edev;
}
#endif
/**
* pci_find_upstream_pcie_bridge - find upstream PCIe-to-PCI bridge of a device
* @pdev: the PCI device
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment