Commit acceba59 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'i2c/for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux

Pull i2c updates from Wolfram Sang:
 "Features:

   - new drivers: Renesas EMEV2, register based MUX, NXP LPC2xxx
   - core: scans DT and assigns wakeup interrupts.  no driver changes needed.
   - core: some refcouting issues fixed and better API for that
   - core: new helper function for best effort block read emulation
   - slave framework: proper DT bindings and userspace instantiation
   - some bigger work for xiic, pxa, omap drivers

  .. and quite a number of smaller driver fixes, cleanups, improvements"

* 'i2c/for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: (65 commits)
  i2c: mux: reg Change ioread endianness for readback
  i2c: mux: reg: fix compilation warnings
  i2c: mux: reg: simplify register size checking
  i2c: muxes: fix leaked i2c adapter device node references
  i2c: allow specifying separate wakeup interrupt in device tree
  of/irq: export of_get_irq_byname()
  i2c: xgene-slimpro: dma_mapping_error() doesn't return an error code
  i2c: Replace I2C_CROS_EC_TUNNEL dependency
  eeprom: at24: use i2c_smbus_read_i2c_block_data_or_emulated
  i2c: core: Add support for best effort block read emulation
  i2c: lpc2k: add driver
  i2c: mux: Add register-based mux i2c-mux-reg
  i2c: dt: describe generic bindings
  i2c: slave: print warning if slave flag not set
  i2c: support 10 bit and slave addresses in sysfs 'new_device'
  i2c: take address space into account when checking for used addresses
  i2c: apply DT flags when probing
  i2c: make address check indpendent from client struct
  i2c: rename address check functions
  i2c: apply address offset for slaves, too
  ...
parents c1917615 5a73882f
...@@ -2,7 +2,11 @@ Binding for the Cadence I2C controller ...@@ -2,7 +2,11 @@ Binding for the Cadence I2C controller
Required properties: Required properties:
- reg: Physical base address and size of the controller's register area. - reg: Physical base address and size of the controller's register area.
- compatible: Compatibility string. Must be 'cdns,i2c-r1p10'. - compatible: Should contain one of:
* "cdns,i2c-r1p10"
Note: Use this when cadence i2c controller version 1.0 is used.
* "cdns,i2c-r1p14"
Note: Use this when cadence i2c controller version 1.4 is used.
- clocks: Input clock specifier. Refer to common clock bindings. - clocks: Input clock specifier. Refer to common clock bindings.
- interrupts: Interrupt specifier. Refer to interrupt bindings. - interrupts: Interrupt specifier. Refer to interrupt bindings.
- #address-cells: Should be 1. - #address-cells: Should be 1.
......
Device tree configuration for Renesas EMEV2 IIC controller
Required properties:
- compatible : "renesas,iic-emev2"
- reg : address start and address range size of device
- interrupts : specifier for the IIC controller interrupt
- clocks : phandle to the IP core SCLK
- clock-names : must be "sclk"
- #address-cells : should be <1>
- #size-cells : should be <0>
Example:
iic0: i2c@e0070000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "renesas,iic-emev2";
reg = <0xe0070000 0x28>;
interrupts = <0 32 IRQ_TYPE_EDGE_RISING>;
clocks = <&iic0_sclk>;
clock-names = "sclk";
};
NXP I2C controller for LPC2xxx/178x/18xx/43xx
Required properties:
- compatible: must be "nxp,lpc1788-i2c"
- reg: physical address and length of the device registers
- interrupts: a single interrupt specifier
- clocks: clock for the device
- #address-cells: should be <1>
- #size-cells: should be <0>
Optional properties:
- clock-frequency: the desired I2C bus clock frequency in Hz; in
absence of this property the default value is used (100 kHz).
Example:
i2c0: i2c@400a1000 {
compatible = "nxp,lpc1788-i2c";
reg = <0x400a1000 0x1000>;
interrupts = <18>;
clocks = <&ccu1 CLK_APB1_I2C0>;
#address-cells = <1>;
#size-cells = <0>;
};
&i2c0 {
clock-frequency = <400000>;
lm75@48 {
compatible = "nxp,lm75";
reg = <0x48>;
};
};
Register-based I2C Bus Mux
This binding describes an I2C bus multiplexer that uses a single register
to route the I2C signals.
Required properties:
- compatible: i2c-mux-reg
- i2c-parent: The phandle of the I2C bus that this multiplexer's master-side
port is connected to.
* Standard I2C mux properties. See mux.txt in this directory.
* I2C child bus nodes. See mux.txt in this directory.
Optional properties:
- reg: this pair of <offset size> specifies the register to control the mux.
The <offset size> depends on its parent node. It can be any memory-mapped
address. The size must be either 1, 2, or 4 bytes. If reg is omitted, the
resource of this device will be used.
- little-endian: The existence indicates the register is in little endian.
- big-endian: The existence indicates the register is in big endian.
If both little-endian and big-endian are omitted, the endianness of the
CPU will be used.
- write-only: The existence indicates the register is write-only.
- idle-state: value to set the muxer to when idle. When no value is
given, it defaults to the last value used.
Whenever an access is made to a device on a child bus, the value set
in the revelant node's reg property will be output to the register.
If an idle state is defined, using the idle-state (optional) property,
whenever an access is not being made to a device on a child bus, the
register will be set according to the idle value.
If an idle state is not defined, the most recently used value will be
left programmed into the register.
Example of a mux on PCIe card, the host is a powerpc SoC (big endian):
i2c-mux {
/* the <offset size> depends on the address translation
* of the parent device. If omitted, device resource
* will be used instead. The size is to determine
* whether iowrite32, iowrite16, or iowrite8 will be used.
*/
reg = <0x6028 0x4>;
little-endian; /* little endian register on PCIe */
compatible = "i2c-mux-reg";
#address-cells = <1>;
#size-cells = <0>;
i2c-parent = <&i2c1>;
i2c@0 {
reg = <0>;
#address-cells = <1>;
#size-cells = <0>;
si5338: clock-generator@70 {
compatible = "silabs,si5338";
reg = <0x70>;
/* other stuff */
};
};
i2c@1 {
/* data is written using iowrite32 */
reg = <1>;
#address-cells = <1>;
#size-cells = <0>;
si5338: clock-generator@70 {
compatible = "silabs,si5338";
reg = <0x70>;
/* other stuff */
};
};
};
Generic device tree bindings for I2C busses
===========================================
This document describes generic bindings which can be used to describe I2C
busses in a device tree.
Required properties
-------------------
- #address-cells - should be <1>. Read more about addresses below.
- #size-cells - should be <0>.
- compatible - name of I2C bus controller following generic names
recommended practice.
For other required properties e.g. to describe register sets,
clocks, etc. check the binding documentation of the specific driver.
The cells properties above define that an address of children of an I2C bus
are described by a single value. This is usually a 7 bit address. However,
flags can be attached to the address. I2C_TEN_BIT_ADDRESS is used to mark a 10
bit address. It is needed to avoid the ambiguity between e.g. a 7 bit address
of 0x50 and a 10 bit address of 0x050 which, in theory, can be on the same bus.
Another flag is I2C_OWN_SLAVE_ADDRESS to mark addresses on which we listen to
be devices ourselves.
Optional properties
-------------------
These properties may not be supported by all drivers. However, if a driver
wants to support one of the below features, it should adapt the bindings below.
- clock-frequency - frequency of bus clock in Hz.
- wakeup-source - device can be used as a wakeup source.
- interrupts - interrupts used by the device.
- interrupt-names - "irq" and "wakeup" names are recognized by I2C core,
other names are left to individual drivers.
Binding may contain optional "interrupts" property, describing interrupts
used by the device. I2C core will assign "irq" interrupt (or the very first
interrupt if not using interrupt names) as primary interrupt for the slave.
Also, if device is marked as a wakeup source, I2C core will set up "wakeup"
interrupt for the device. If "wakeup" interrupt name is not present in the
binding, then primary interrupt will be used as wakeup interrupt.
...@@ -95,6 +95,8 @@ stm,m41t00 Serial Access TIMEKEEPER ...@@ -95,6 +95,8 @@ stm,m41t00 Serial Access TIMEKEEPER
stm,m41t62 Serial real-time clock (RTC) with alarm stm,m41t62 Serial real-time clock (RTC) with alarm
stm,m41t80 M41T80 - SERIAL ACCESS RTC WITH ALARMS stm,m41t80 M41T80 - SERIAL ACCESS RTC WITH ALARMS
taos,tsl2550 Ambient Light Sensor with SMBUS/Two Wire Serial Interface taos,tsl2550 Ambient Light Sensor with SMBUS/Two Wire Serial Interface
ti,ads7828 8-Channels, 12-bit ADC
ti,ads7830 8-Channels, 8-bit ADC
ti,tsc2003 I2C Touch-Screen Controller ti,tsc2003 I2C Touch-Screen Controller
ti,tmp102 Low Power Digital Temperature Sensor with SMBUS/Two Wire Serial Interface ti,tmp102 Low Power Digital Temperature Sensor with SMBUS/Two Wire Serial Interface
ti,tmp103 Low Power Digital Temperature Sensor with SMBUS/Two Wire Serial Interface ti,tmp103 Low Power Digital Temperature Sensor with SMBUS/Two Wire Serial Interface
......
...@@ -20,6 +20,7 @@ It currently supports the following devices: ...@@ -20,6 +20,7 @@ It currently supports the following devices:
* (type=5) Analog Devices evaluation boards: ADM1025, ADM1030, ADM1031 * (type=5) Analog Devices evaluation boards: ADM1025, ADM1030, ADM1031
* (type=6) Barco LPT->DVI (K5800236) adapter * (type=6) Barco LPT->DVI (K5800236) adapter
* (type=7) One For All JP1 parallel port adapter * (type=7) One For All JP1 parallel port adapter
* (type=8) VCT-jig
These devices use different pinout configurations, so you have to tell These devices use different pinout configurations, so you have to tell
the driver what you have, using the type module parameter. There is no the driver what you have, using the type module parameter. There is no
......
...@@ -31,10 +31,13 @@ User manual ...@@ -31,10 +31,13 @@ User manual
=========== ===========
I2C slave backends behave like standard I2C clients. So, you can instantiate I2C slave backends behave like standard I2C clients. So, you can instantiate
them as described in the document 'instantiating-devices'. A quick example for them as described in the document 'instantiating-devices'. The only difference
instantiating the slave-eeprom driver from userspace at address 0x64 on bus 1: is that i2c slave backends have their own address space. So, you have to add
0x1000 to the address you would originally request. An example for
instantiating the slave-eeprom driver from userspace at the 7 bit address 0x64
on bus 1:
# echo slave-24c02 0x64 > /sys/bus/i2c/devices/i2c-1/new_device # echo slave-24c02 0x1064 > /sys/bus/i2c/devices/i2c-1/new_device
Each backend should come with separate documentation to describe its specific Each backend should come with separate documentation to describe its specific
behaviour and setup. behaviour and setup.
......
...@@ -2,6 +2,10 @@ The I2C protocol knows about two kinds of device addresses: normal 7 bit ...@@ -2,6 +2,10 @@ The I2C protocol knows about two kinds of device addresses: normal 7 bit
addresses, and an extended set of 10 bit addresses. The sets of addresses addresses, and an extended set of 10 bit addresses. The sets of addresses
do not intersect: the 7 bit address 0x10 is not the same as the 10 bit do not intersect: the 7 bit address 0x10 is not the same as the 10 bit
address 0x10 (though a single device could respond to both of them). address 0x10 (though a single device could respond to both of them).
To avoid ambiguity, the user sees 10 bit addresses mapped to a different
address space, namely 0xa000-0xa3ff. The leading 0xa (= 10) represents the
10 bit mode. This is used for creating device names in sysfs. It is also
needed when instantiating 10 bit devices via the new_device file in sysfs.
I2C messages to and from 10-bit address devices have a different format. I2C messages to and from 10-bit address devices have a different format.
See the I2C specification for the details. See the I2C specification for the details.
......
...@@ -28,6 +28,8 @@ ...@@ -28,6 +28,8 @@
#define USIBU1_RSTCTRL 0x0ac #define USIBU1_RSTCTRL 0x0ac
#define USIBU2_RSTCTRL 0x0b0 #define USIBU2_RSTCTRL 0x0b0
#define USIBU3_RSTCTRL 0x0b4 #define USIBU3_RSTCTRL 0x0b4
#define IIC0_RSTCTRL 0x0dc
#define IIC1_RSTCTRL 0x0e0
#define STI_RSTCTRL 0x124 #define STI_RSTCTRL 0x124
#define STI_CLKSEL 0x688 #define STI_CLKSEL 0x688
...@@ -66,6 +68,10 @@ static void __init emev2_smu_init(void) ...@@ -66,6 +68,10 @@ static void __init emev2_smu_init(void)
emev2_smu_write(2, USIBU1_RSTCTRL); emev2_smu_write(2, USIBU1_RSTCTRL);
emev2_smu_write(2, USIBU2_RSTCTRL); emev2_smu_write(2, USIBU2_RSTCTRL);
emev2_smu_write(2, USIBU3_RSTCTRL); emev2_smu_write(2, USIBU3_RSTCTRL);
/* deassert reset for IIC0->IIC1 */
emev2_smu_write(1, IIC0_RSTCTRL);
emev2_smu_write(1, IIC1_RSTCTRL);
} }
static void __init emev2_smu_clkdiv_init(struct device_node *np) static void __init emev2_smu_clkdiv_init(struct device_node *np)
......
...@@ -526,6 +526,13 @@ config I2C_EG20T ...@@ -526,6 +526,13 @@ config I2C_EG20T
ML7213/ML7223/ML7831 is companion chip for Intel Atom E6xx series. ML7213/ML7223/ML7831 is companion chip for Intel Atom E6xx series.
ML7213/ML7223/ML7831 is completely compatible for Intel EG20T PCH. ML7213/ML7223/ML7831 is completely compatible for Intel EG20T PCH.
config I2C_EMEV2
tristate "EMMA Mobile series I2C adapter"
depends on HAVE_CLK
help
If you say yes to this option, support will be included for the
I2C interface on the Renesas Electronics EM/EV family of processors.
config I2C_EXYNOS5 config I2C_EXYNOS5
tristate "Exynos5 high-speed I2C driver" tristate "Exynos5 high-speed I2C driver"
depends on ARCH_EXYNOS && OF depends on ARCH_EXYNOS && OF
...@@ -612,6 +619,16 @@ config I2C_KEMPLD ...@@ -612,6 +619,16 @@ config I2C_KEMPLD
This driver can also be built as a module. If so, the module This driver can also be built as a module. If so, the module
will be called i2c-kempld. will be called i2c-kempld.
config I2C_LPC2K
tristate "I2C bus support for NXP LPC2K/LPC178x/18xx/43xx"
depends on OF && (ARCH_LPC18XX || COMPILE_TEST)
help
This driver supports the I2C interface found several NXP
devices including LPC2xxx, LPC178x/7x and LPC18xx/43xx.
This driver can also be built as a module. If so, the module
will be called i2c-lpc2k.
config I2C_MESON config I2C_MESON
tristate "Amlogic Meson I2C controller" tristate "Amlogic Meson I2C controller"
depends on ARCH_MESON depends on ARCH_MESON
...@@ -1123,7 +1140,7 @@ config I2C_SIBYTE ...@@ -1123,7 +1140,7 @@ config I2C_SIBYTE
config I2C_CROS_EC_TUNNEL config I2C_CROS_EC_TUNNEL
tristate "ChromeOS EC tunnel I2C bus" tristate "ChromeOS EC tunnel I2C bus"
depends on CROS_EC_PROTO depends on MFD_CROS_EC
help help
If you say yes here you get an I2C bus that will tunnel i2c commands If you say yes here you get an I2C bus that will tunnel i2c commands
through to the other side of the ChromeOS EC to the i2c bus through to the other side of the ChromeOS EC to the i2c bus
......
...@@ -48,6 +48,7 @@ i2c-designware-pci-objs := i2c-designware-pcidrv.o ...@@ -48,6 +48,7 @@ i2c-designware-pci-objs := i2c-designware-pcidrv.o
obj-$(CONFIG_I2C_DIGICOLOR) += i2c-digicolor.o obj-$(CONFIG_I2C_DIGICOLOR) += i2c-digicolor.o
obj-$(CONFIG_I2C_EFM32) += i2c-efm32.o obj-$(CONFIG_I2C_EFM32) += i2c-efm32.o
obj-$(CONFIG_I2C_EG20T) += i2c-eg20t.o obj-$(CONFIG_I2C_EG20T) += i2c-eg20t.o
obj-$(CONFIG_I2C_EMEV2) += i2c-emev2.o
obj-$(CONFIG_I2C_EXYNOS5) += i2c-exynos5.o obj-$(CONFIG_I2C_EXYNOS5) += i2c-exynos5.o
obj-$(CONFIG_I2C_GPIO) += i2c-gpio.o obj-$(CONFIG_I2C_GPIO) += i2c-gpio.o
obj-$(CONFIG_I2C_HIGHLANDER) += i2c-highlander.o obj-$(CONFIG_I2C_HIGHLANDER) += i2c-highlander.o
...@@ -58,6 +59,7 @@ obj-$(CONFIG_I2C_IMX) += i2c-imx.o ...@@ -58,6 +59,7 @@ obj-$(CONFIG_I2C_IMX) += i2c-imx.o
obj-$(CONFIG_I2C_IOP3XX) += i2c-iop3xx.o obj-$(CONFIG_I2C_IOP3XX) += i2c-iop3xx.o
obj-$(CONFIG_I2C_JZ4780) += i2c-jz4780.o obj-$(CONFIG_I2C_JZ4780) += i2c-jz4780.o
obj-$(CONFIG_I2C_KEMPLD) += i2c-kempld.o obj-$(CONFIG_I2C_KEMPLD) += i2c-kempld.o
obj-$(CONFIG_I2C_LPC2K) += i2c-lpc2k.o
obj-$(CONFIG_I2C_MESON) += i2c-meson.o obj-$(CONFIG_I2C_MESON) += i2c-meson.o
obj-$(CONFIG_I2C_MPC) += i2c-mpc.o obj-$(CONFIG_I2C_MPC) += i2c-mpc.o
obj-$(CONFIG_I2C_MT65XX) += i2c-mt65xx.o obj-$(CONFIG_I2C_MT65XX) += i2c-mt65xx.o
......
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include <linux/io.h> #include <linux/io.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/of.h>
/* Register offsets for the I2C device. */ /* Register offsets for the I2C device. */
#define CDNS_I2C_CR_OFFSET 0x00 /* Control Register, RW */ #define CDNS_I2C_CR_OFFSET 0x00 /* Control Register, RW */
...@@ -113,6 +114,8 @@ ...@@ -113,6 +114,8 @@
#define CDNS_I2C_TIMEOUT_MAX 0xFF #define CDNS_I2C_TIMEOUT_MAX 0xFF
#define CDNS_I2C_BROKEN_HOLD_BIT BIT(0)
#define cdns_i2c_readreg(offset) readl_relaxed(id->membase + offset) #define cdns_i2c_readreg(offset) readl_relaxed(id->membase + offset)
#define cdns_i2c_writereg(val, offset) writel_relaxed(val, id->membase + offset) #define cdns_i2c_writereg(val, offset) writel_relaxed(val, id->membase + offset)
...@@ -135,6 +138,7 @@ ...@@ -135,6 +138,7 @@
* @bus_hold_flag: Flag used in repeated start for clearing HOLD bit * @bus_hold_flag: Flag used in repeated start for clearing HOLD bit
* @clk: Pointer to struct clk * @clk: Pointer to struct clk
* @clk_rate_change_nb: Notifier block for clock rate changes * @clk_rate_change_nb: Notifier block for clock rate changes
* @quirks: flag for broken hold bit usage in r1p10
*/ */
struct cdns_i2c { struct cdns_i2c {
void __iomem *membase; void __iomem *membase;
...@@ -154,6 +158,11 @@ struct cdns_i2c { ...@@ -154,6 +158,11 @@ struct cdns_i2c {
unsigned int bus_hold_flag; unsigned int bus_hold_flag;
struct clk *clk; struct clk *clk;
struct notifier_block clk_rate_change_nb; struct notifier_block clk_rate_change_nb;
u32 quirks;
};
struct cdns_platform_data {
u32 quirks;
}; };
#define to_cdns_i2c(_nb) container_of(_nb, struct cdns_i2c, \ #define to_cdns_i2c(_nb) container_of(_nb, struct cdns_i2c, \
...@@ -172,6 +181,12 @@ static void cdns_i2c_clear_bus_hold(struct cdns_i2c *id) ...@@ -172,6 +181,12 @@ static void cdns_i2c_clear_bus_hold(struct cdns_i2c *id)
cdns_i2c_writereg(reg & ~CDNS_I2C_CR_HOLD, CDNS_I2C_CR_OFFSET); cdns_i2c_writereg(reg & ~CDNS_I2C_CR_HOLD, CDNS_I2C_CR_OFFSET);
} }
static inline bool cdns_is_holdquirk(struct cdns_i2c *id, bool hold_wrkaround)
{
return (hold_wrkaround &&
(id->curr_recv_count == CDNS_I2C_FIFO_DEPTH + 1));
}
/** /**
* cdns_i2c_isr - Interrupt handler for the I2C device * cdns_i2c_isr - Interrupt handler for the I2C device
* @irq: irq number for the I2C device * @irq: irq number for the I2C device
...@@ -186,6 +201,7 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr) ...@@ -186,6 +201,7 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr)
{ {
unsigned int isr_status, avail_bytes, updatetx; unsigned int isr_status, avail_bytes, updatetx;
unsigned int bytes_to_send; unsigned int bytes_to_send;
bool hold_quirk;
struct cdns_i2c *id = ptr; struct cdns_i2c *id = ptr;
/* Signal completion only after everything is updated */ /* Signal completion only after everything is updated */
int done_flag = 0; int done_flag = 0;
...@@ -208,6 +224,8 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr) ...@@ -208,6 +224,8 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr)
if (id->recv_count > id->curr_recv_count) if (id->recv_count > id->curr_recv_count)
updatetx = 1; updatetx = 1;
hold_quirk = (id->quirks & CDNS_I2C_BROKEN_HOLD_BIT) && updatetx;
/* When receiving, handle data interrupt and completion interrupt */ /* When receiving, handle data interrupt and completion interrupt */
if (id->p_recv_buf && if (id->p_recv_buf &&
((isr_status & CDNS_I2C_IXR_COMP) || ((isr_status & CDNS_I2C_IXR_COMP) ||
...@@ -229,8 +247,7 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr) ...@@ -229,8 +247,7 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr)
id->recv_count--; id->recv_count--;
id->curr_recv_count--; id->curr_recv_count--;
if (updatetx && if (cdns_is_holdquirk(id, hold_quirk))
(id->curr_recv_count == CDNS_I2C_FIFO_DEPTH + 1))
break; break;
} }
...@@ -241,8 +258,7 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr) ...@@ -241,8 +258,7 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr)
* maintain transfer size non-zero while performing a large * maintain transfer size non-zero while performing a large
* receive operation. * receive operation.
*/ */
if (updatetx && if (cdns_is_holdquirk(id, hold_quirk)) {
(id->curr_recv_count == CDNS_I2C_FIFO_DEPTH + 1)) {
/* wait while fifo is full */ /* wait while fifo is full */
while (cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET) != while (cdns_i2c_readreg(CDNS_I2C_XFER_SIZE_OFFSET) !=
(id->curr_recv_count - CDNS_I2C_FIFO_DEPTH)) (id->curr_recv_count - CDNS_I2C_FIFO_DEPTH))
...@@ -264,6 +280,22 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr) ...@@ -264,6 +280,22 @@ static irqreturn_t cdns_i2c_isr(int irq, void *ptr)
CDNS_I2C_XFER_SIZE_OFFSET); CDNS_I2C_XFER_SIZE_OFFSET);
id->curr_recv_count = id->recv_count; id->curr_recv_count = id->recv_count;
} }
} else if (id->recv_count && !hold_quirk &&
!id->curr_recv_count) {
/* Set the slave address in address register*/
cdns_i2c_writereg(id->p_msg->addr & CDNS_I2C_ADDR_MASK,
CDNS_I2C_ADDR_OFFSET);
if (id->recv_count > CDNS_I2C_TRANSFER_SIZE) {
cdns_i2c_writereg(CDNS_I2C_TRANSFER_SIZE,
CDNS_I2C_XFER_SIZE_OFFSET);
id->curr_recv_count = CDNS_I2C_TRANSFER_SIZE;
} else {
cdns_i2c_writereg(id->recv_count,
CDNS_I2C_XFER_SIZE_OFFSET);
id->curr_recv_count = id->recv_count;
}
} }
/* Clear hold (if not repeated start) and signal completion */ /* Clear hold (if not repeated start) and signal completion */
...@@ -535,11 +567,13 @@ static int cdns_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, ...@@ -535,11 +567,13 @@ static int cdns_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
int ret, count; int ret, count;
u32 reg; u32 reg;
struct cdns_i2c *id = adap->algo_data; struct cdns_i2c *id = adap->algo_data;
bool hold_quirk;
/* Check if the bus is free */ /* Check if the bus is free */
if (cdns_i2c_readreg(CDNS_I2C_SR_OFFSET) & CDNS_I2C_SR_BA) if (cdns_i2c_readreg(CDNS_I2C_SR_OFFSET) & CDNS_I2C_SR_BA)
return -EAGAIN; return -EAGAIN;
hold_quirk = !!(id->quirks & CDNS_I2C_BROKEN_HOLD_BIT);
/* /*
* Set the flag to one when multiple messages are to be * Set the flag to one when multiple messages are to be
* processed with a repeated start. * processed with a repeated start.
...@@ -552,7 +586,7 @@ static int cdns_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, ...@@ -552,7 +586,7 @@ static int cdns_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
* followed by any other message, an error is returned * followed by any other message, an error is returned
* indicating that this sequence is not supported. * indicating that this sequence is not supported.
*/ */
for (count = 0; count < num - 1; count++) { for (count = 0; (count < num - 1 && hold_quirk); count++) {
if (msgs[count].flags & I2C_M_RD) { if (msgs[count].flags & I2C_M_RD) {
dev_warn(adap->dev.parent, dev_warn(adap->dev.parent,
"Can't do repeated start after a receive message\n"); "Can't do repeated start after a receive message\n");
...@@ -815,6 +849,17 @@ static int __maybe_unused cdns_i2c_resume(struct device *_dev) ...@@ -815,6 +849,17 @@ static int __maybe_unused cdns_i2c_resume(struct device *_dev)
static SIMPLE_DEV_PM_OPS(cdns_i2c_dev_pm_ops, cdns_i2c_suspend, static SIMPLE_DEV_PM_OPS(cdns_i2c_dev_pm_ops, cdns_i2c_suspend,
cdns_i2c_resume); cdns_i2c_resume);
static const struct cdns_platform_data r1p10_i2c_def = {
.quirks = CDNS_I2C_BROKEN_HOLD_BIT,
};
static const struct of_device_id cdns_i2c_of_match[] = {
{ .compatible = "cdns,i2c-r1p10", .data = &r1p10_i2c_def },
{ .compatible = "cdns,i2c-r1p14",},
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, cdns_i2c_of_match);
/** /**
* cdns_i2c_probe - Platform registration call * cdns_i2c_probe - Platform registration call
* @pdev: Handle to the platform device structure * @pdev: Handle to the platform device structure
...@@ -830,6 +875,7 @@ static int cdns_i2c_probe(struct platform_device *pdev) ...@@ -830,6 +875,7 @@ static int cdns_i2c_probe(struct platform_device *pdev)
struct resource *r_mem; struct resource *r_mem;
struct cdns_i2c *id; struct cdns_i2c *id;
int ret; int ret;
const struct of_device_id *match;
id = devm_kzalloc(&pdev->dev, sizeof(*id), GFP_KERNEL); id = devm_kzalloc(&pdev->dev, sizeof(*id), GFP_KERNEL);
if (!id) if (!id)
...@@ -837,6 +883,12 @@ static int cdns_i2c_probe(struct platform_device *pdev) ...@@ -837,6 +883,12 @@ static int cdns_i2c_probe(struct platform_device *pdev)
platform_set_drvdata(pdev, id); platform_set_drvdata(pdev, id);
match = of_match_node(cdns_i2c_of_match, pdev->dev.of_node);
if (match && match->data) {
const struct cdns_platform_data *data = match->data;
id->quirks = data->quirks;
}
r_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); r_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
id->membase = devm_ioremap_resource(&pdev->dev, r_mem); id->membase = devm_ioremap_resource(&pdev->dev, r_mem);
if (IS_ERR(id->membase)) if (IS_ERR(id->membase))
...@@ -844,6 +896,7 @@ static int cdns_i2c_probe(struct platform_device *pdev) ...@@ -844,6 +896,7 @@ static int cdns_i2c_probe(struct platform_device *pdev)
id->irq = platform_get_irq(pdev, 0); id->irq = platform_get_irq(pdev, 0);
id->adap.owner = THIS_MODULE;
id->adap.dev.of_node = pdev->dev.of_node; id->adap.dev.of_node = pdev->dev.of_node;
id->adap.algo = &cdns_i2c_algo; id->adap.algo = &cdns_i2c_algo;
id->adap.timeout = CDNS_I2C_TIMEOUT; id->adap.timeout = CDNS_I2C_TIMEOUT;
...@@ -935,12 +988,6 @@ static int cdns_i2c_remove(struct platform_device *pdev) ...@@ -935,12 +988,6 @@ static int cdns_i2c_remove(struct platform_device *pdev)
return 0; return 0;
} }
static const struct of_device_id cdns_i2c_of_match[] = {
{ .compatible = "cdns,i2c-r1p10", },
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, cdns_i2c_of_match);
static struct platform_driver cdns_i2c_drv = { static struct platform_driver cdns_i2c_drv = {
.driver = { .driver = {
.name = DRIVER_NAME, .name = DRIVER_NAME,
......
...@@ -777,8 +777,7 @@ irqreturn_t i2c_dw_isr(int this_irq, void *dev_id) ...@@ -777,8 +777,7 @@ irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
enabled = dw_readl(dev, DW_IC_ENABLE); enabled = dw_readl(dev, DW_IC_ENABLE);
stat = dw_readl(dev, DW_IC_RAW_INTR_STAT); stat = dw_readl(dev, DW_IC_RAW_INTR_STAT);
dev_dbg(dev->dev, "%s: %s enabled= 0x%x stat=0x%x\n", __func__, dev_dbg(dev->dev, "%s: enabled=%#x stat=%#x\n", __func__, enabled, stat);
dev->adapter.name, enabled, stat);
if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY)) if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
return IRQ_NONE; return IRQ_NONE;
......
...@@ -260,8 +260,8 @@ static int i2c_dw_pci_probe(struct pci_dev *pdev, ...@@ -260,8 +260,8 @@ static int i2c_dw_pci_probe(struct pci_dev *pdev,
snprintf(adap->name, sizeof(adap->name), "i2c-designware-pci"); snprintf(adap->name, sizeof(adap->name), "i2c-designware-pci");
r = devm_request_irq(&pdev->dev, pdev->irq, i2c_dw_isr, IRQF_SHARED, r = devm_request_irq(&pdev->dev, pdev->irq, i2c_dw_isr,
adap->name, dev); IRQF_SHARED | IRQF_COND_SUSPEND, adap->name, dev);
if (r) { if (r) {
dev_err(&pdev->dev, "failure requesting irq %i\n", dev->irq); dev_err(&pdev->dev, "failure requesting irq %i\n", dev->irq);
return r; return r;
......
/*
* I2C driver for the Renesas EMEV2 SoC
*
* Copyright (C) 2015 Wolfram Sang <wsa@sang-engineering.com>
* Copyright 2013 Codethink Ltd.
* Copyright 2010-2015 Renesas Electronics Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
/* I2C Registers */
#define I2C_OFS_IICACT0 0x00 /* start */
#define I2C_OFS_IIC0 0x04 /* shift */
#define I2C_OFS_IICC0 0x08 /* control */
#define I2C_OFS_SVA0 0x0c /* slave address */
#define I2C_OFS_IICCL0 0x10 /* clock select */
#define I2C_OFS_IICX0 0x14 /* extension */
#define I2C_OFS_IICS0 0x18 /* status */
#define I2C_OFS_IICSE0 0x1c /* status For emulation */
#define I2C_OFS_IICF0 0x20 /* IIC flag */
/* I2C IICACT0 Masks */
#define I2C_BIT_IICE0 0x0001
/* I2C IICC0 Masks */
#define I2C_BIT_LREL0 0x0040
#define I2C_BIT_WREL0 0x0020
#define I2C_BIT_SPIE0 0x0010
#define I2C_BIT_WTIM0 0x0008
#define I2C_BIT_ACKE0 0x0004
#define I2C_BIT_STT0 0x0002
#define I2C_BIT_SPT0 0x0001
/* I2C IICCL0 Masks */
#define I2C_BIT_SMC0 0x0008
#define I2C_BIT_DFC0 0x0004
/* I2C IICSE0 Masks */
#define I2C_BIT_MSTS0 0x0080
#define I2C_BIT_ALD0 0x0040
#define I2C_BIT_EXC0 0x0020
#define I2C_BIT_COI0 0x0010
#define I2C_BIT_TRC0 0x0008
#define I2C_BIT_ACKD0 0x0004
#define I2C_BIT_STD0 0x0002
#define I2C_BIT_SPD0 0x0001
/* I2C IICF0 Masks */
#define I2C_BIT_STCF 0x0080
#define I2C_BIT_IICBSY 0x0040
#define I2C_BIT_STCEN 0x0002
#define I2C_BIT_IICRSV 0x0001
struct em_i2c_device {
void __iomem *base;
struct i2c_adapter adap;
struct completion msg_done;
struct clk *sclk;
};
static inline void em_clear_set_bit(struct em_i2c_device *priv, u8 clear, u8 set, u8 reg)
{
writeb((readb(priv->base + reg) & ~clear) | set, priv->base + reg);
}
static int em_i2c_wait_for_event(struct em_i2c_device *priv)
{
unsigned long time_left;
int status;
reinit_completion(&priv->msg_done);
time_left = wait_for_completion_timeout(&priv->msg_done, priv->adap.timeout);
if (!time_left)
return -ETIMEDOUT;
status = readb(priv->base + I2C_OFS_IICSE0);
return status & I2C_BIT_ALD0 ? -EAGAIN : status;
}
static void em_i2c_stop(struct em_i2c_device *priv)
{
/* Send Stop condition */
em_clear_set_bit(priv, 0, I2C_BIT_SPT0 | I2C_BIT_SPIE0, I2C_OFS_IICC0);
/* Wait for stop condition */
em_i2c_wait_for_event(priv);
}
static void em_i2c_reset(struct i2c_adapter *adap)
{
struct em_i2c_device *priv = i2c_get_adapdata(adap);
int retr;
/* If I2C active */
if (readb(priv->base + I2C_OFS_IICACT0) & I2C_BIT_IICE0) {
/* Disable I2C operation */
writeb(0, priv->base + I2C_OFS_IICACT0);
retr = 1000;
while (readb(priv->base + I2C_OFS_IICACT0) == 1 && retr)
retr--;
WARN_ON(retr == 0);
}
/* Transfer mode set */
writeb(I2C_BIT_DFC0, priv->base + I2C_OFS_IICCL0);
/* Can Issue start without detecting a stop, Reservation disabled. */
writeb(I2C_BIT_STCEN | I2C_BIT_IICRSV, priv->base + I2C_OFS_IICF0);
/* I2C enable, 9 bit interrupt mode */
writeb(I2C_BIT_WTIM0, priv->base + I2C_OFS_IICC0);
/* Enable I2C operation */
writeb(I2C_BIT_IICE0, priv->base + I2C_OFS_IICACT0);
retr = 1000;
while (readb(priv->base + I2C_OFS_IICACT0) == 0 && retr)
retr--;
WARN_ON(retr == 0);
}
static int __em_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
int stop)
{
struct em_i2c_device *priv = i2c_get_adapdata(adap);
int count, status, read = !!(msg->flags & I2C_M_RD);
/* Send start condition */
em_clear_set_bit(priv, 0, I2C_BIT_ACKE0 | I2C_BIT_WTIM0, I2C_OFS_IICC0);
em_clear_set_bit(priv, 0, I2C_BIT_STT0, I2C_OFS_IICC0);
/* Send slave address and R/W type */
writeb((msg->addr << 1) | read, priv->base + I2C_OFS_IIC0);
/* Wait for transaction */
status = em_i2c_wait_for_event(priv);
if (status < 0)
goto out_reset;
/* Received NACK (result of setting slave address and R/W) */
if (!(status & I2C_BIT_ACKD0)) {
em_i2c_stop(priv);
goto out;
}
/* Extra setup for read transactions */
if (read) {
/* 8 bit interrupt mode */
em_clear_set_bit(priv, I2C_BIT_WTIM0, I2C_BIT_ACKE0, I2C_OFS_IICC0);
em_clear_set_bit(priv, I2C_BIT_WTIM0, I2C_BIT_WREL0, I2C_OFS_IICC0);
/* Wait for transaction */
status = em_i2c_wait_for_event(priv);
if (status < 0)
goto out_reset;
}
/* Send / receive data */
for (count = 0; count < msg->len; count++) {
if (read) { /* Read transaction */
msg->buf[count] = readb(priv->base + I2C_OFS_IIC0);
em_clear_set_bit(priv, 0, I2C_BIT_WREL0, I2C_OFS_IICC0);
} else { /* Write transaction */
/* Received NACK */
if (!(status & I2C_BIT_ACKD0)) {
em_i2c_stop(priv);
goto out;
}
/* Write data */
writeb(msg->buf[count], priv->base + I2C_OFS_IIC0);
}
/* Wait for R/W transaction */
status = em_i2c_wait_for_event(priv);
if (status < 0)
goto out_reset;
}
if (stop)
em_i2c_stop(priv);
return count;
out_reset:
em_i2c_reset(adap);
out:
return status < 0 ? status : -ENXIO;
}
static int em_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num)
{
struct em_i2c_device *priv = i2c_get_adapdata(adap);
int ret, i;
if (readb(priv->base + I2C_OFS_IICF0) & I2C_BIT_IICBSY)
return -EAGAIN;
for (i = 0; i < num; i++) {
ret = __em_i2c_xfer(adap, &msgs[i], (i == (num - 1)));
if (ret < 0)
return ret;
}
/* I2C transfer completed */
return num;
}
static irqreturn_t em_i2c_irq_handler(int this_irq, void *dev_id)
{
struct em_i2c_device *priv = dev_id;
complete(&priv->msg_done);
return IRQ_HANDLED;
}
static u32 em_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static struct i2c_algorithm em_i2c_algo = {
.master_xfer = em_i2c_xfer,
.functionality = em_i2c_func,
};
static int em_i2c_probe(struct platform_device *pdev)
{
struct em_i2c_device *priv;
struct resource *r;
int irq, ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
strlcpy(priv->adap.name, "EMEV2 I2C", sizeof(priv->adap.name));
priv->sclk = devm_clk_get(&pdev->dev, "sclk");
if (IS_ERR(priv->sclk))
return PTR_ERR(priv->sclk);
clk_prepare_enable(priv->sclk);
priv->adap.timeout = msecs_to_jiffies(100);
priv->adap.retries = 5;
priv->adap.dev.parent = &pdev->dev;
priv->adap.algo = &em_i2c_algo;
priv->adap.owner = THIS_MODULE;
priv->adap.dev.of_node = pdev->dev.of_node;
init_completion(&priv->msg_done);
platform_set_drvdata(pdev, priv);
i2c_set_adapdata(&priv->adap, priv);
em_i2c_reset(&priv->adap);
irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(&pdev->dev, irq, em_i2c_irq_handler, 0,
"em_i2c", priv);
if (ret)
goto err_clk;
ret = i2c_add_adapter(&priv->adap);
if (ret)
goto err_clk;
dev_info(&pdev->dev, "Added i2c controller %d, irq %d\n", priv->adap.nr, irq);
return 0;
err_clk:
clk_disable_unprepare(priv->sclk);
return ret;
}
static int em_i2c_remove(struct platform_device *dev)
{
struct em_i2c_device *priv = platform_get_drvdata(dev);
i2c_del_adapter(&priv->adap);
clk_disable_unprepare(priv->sclk);
return 0;
}
static const struct of_device_id em_i2c_ids[] = {
{ .compatible = "renesas,iic-emev2", },
{ }
};
static struct platform_driver em_i2c_driver = {
.probe = em_i2c_probe,
.remove = em_i2c_remove,
.driver = {
.name = "em-i2c",
.of_match_table = em_i2c_ids,
}
};
module_platform_driver(em_i2c_driver);
MODULE_DESCRIPTION("EMEV2 I2C bus driver");
MODULE_AUTHOR("Ian Molton and Wolfram Sang <wsa@sang-engineering.com>");
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(of, em_i2c_ids);
/*
* Copyright (C) 2011 NXP Semiconductors
*
* Code portions referenced from the i2x-pxa and i2c-pnx drivers
*
* Make SMBus byte and word transactions work on LPC178x/7x
* Copyright (c) 2012
* Alexander Potashev, Emcraft Systems, aspotashev@emcraft.com
* Anton Protopopov, Emcraft Systems, antonp@emcraft.com
*
* Copyright (C) 2015 Joachim Eastwood <manabian@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/time.h>
/* LPC24xx register offsets and bits */
#define LPC24XX_I2CONSET 0x00
#define LPC24XX_I2STAT 0x04
#define LPC24XX_I2DAT 0x08
#define LPC24XX_I2ADDR 0x0c
#define LPC24XX_I2SCLH 0x10
#define LPC24XX_I2SCLL 0x14
#define LPC24XX_I2CONCLR 0x18
#define LPC24XX_AA BIT(2)
#define LPC24XX_SI BIT(3)
#define LPC24XX_STO BIT(4)
#define LPC24XX_STA BIT(5)
#define LPC24XX_I2EN BIT(6)
#define LPC24XX_STO_AA (LPC24XX_STO | LPC24XX_AA)
#define LPC24XX_CLEAR_ALL (LPC24XX_AA | LPC24XX_SI | LPC24XX_STO | \
LPC24XX_STA | LPC24XX_I2EN)
/* I2C SCL clock has different duty cycle depending on mode */
#define I2C_STD_MODE_DUTY 46
#define I2C_FAST_MODE_DUTY 36
#define I2C_FAST_MODE_PLUS_DUTY 38
/*
* 26 possible I2C status codes, but codes applicable only
* to master are listed here and used in this driver
*/
enum {
M_BUS_ERROR = 0x00,
M_START = 0x08,
M_REPSTART = 0x10,
MX_ADDR_W_ACK = 0x18,
MX_ADDR_W_NACK = 0x20,
MX_DATA_W_ACK = 0x28,
MX_DATA_W_NACK = 0x30,
M_DATA_ARB_LOST = 0x38,
MR_ADDR_R_ACK = 0x40,
MR_ADDR_R_NACK = 0x48,
MR_DATA_R_ACK = 0x50,
MR_DATA_R_NACK = 0x58,
M_I2C_IDLE = 0xf8,
};
struct lpc2k_i2c {
void __iomem *base;
struct clk *clk;
int irq;
wait_queue_head_t wait;
struct i2c_adapter adap;
struct i2c_msg *msg;
int msg_idx;
int msg_status;
int is_last;
};
static void i2c_lpc2k_reset(struct lpc2k_i2c *i2c)
{
/* Will force clear all statuses */
writel(LPC24XX_CLEAR_ALL, i2c->base + LPC24XX_I2CONCLR);
writel(0, i2c->base + LPC24XX_I2ADDR);
writel(LPC24XX_I2EN, i2c->base + LPC24XX_I2CONSET);
}
static int i2c_lpc2k_clear_arb(struct lpc2k_i2c *i2c)
{
unsigned long timeout = jiffies + msecs_to_jiffies(1000);
/*
* If the transfer needs to abort for some reason, we'll try to
* force a stop condition to clear any pending bus conditions
*/
writel(LPC24XX_STO, i2c->base + LPC24XX_I2CONSET);
/* Wait for status change */
while (readl(i2c->base + LPC24XX_I2STAT) != M_I2C_IDLE) {
if (time_after(jiffies, timeout)) {
/* Bus was not idle, try to reset adapter */
i2c_lpc2k_reset(i2c);
return -EBUSY;
}
cpu_relax();
}
return 0;
}
static void i2c_lpc2k_pump_msg(struct lpc2k_i2c *i2c)
{
unsigned char data;
u32 status;
/*
* I2C in the LPC2xxx series is basically a state machine.
* Just run through the steps based on the current status.
*/
status = readl(i2c->base + LPC24XX_I2STAT);
switch (status) {
case M_START:
case M_REPSTART:
/* Start bit was just sent out, send out addr and dir */
data = i2c->msg->addr << 1;
if (i2c->msg->flags & I2C_M_RD)
data |= 1;
writel(data, i2c->base + LPC24XX_I2DAT);
writel(LPC24XX_STA, i2c->base + LPC24XX_I2CONCLR);
break;
case MX_ADDR_W_ACK:
case MX_DATA_W_ACK:
/*
* Address or data was sent out with an ACK. If there is more
* data to send, send it now
*/
if (i2c->msg_idx < i2c->msg->len) {
writel(i2c->msg->buf[i2c->msg_idx],
i2c->base + LPC24XX_I2DAT);
} else if (i2c->is_last) {
/* Last message, send stop */
writel(LPC24XX_STO_AA, i2c->base + LPC24XX_I2CONSET);
writel(LPC24XX_SI, i2c->base + LPC24XX_I2CONCLR);
i2c->msg_status = 0;
disable_irq_nosync(i2c->irq);
} else {
i2c->msg_status = 0;
disable_irq_nosync(i2c->irq);
}
i2c->msg_idx++;
break;
case MR_ADDR_R_ACK:
/* Receive first byte from slave */
if (i2c->msg->len == 1) {
/* Last byte, return NACK */
writel(LPC24XX_AA, i2c->base + LPC24XX_I2CONCLR);
} else {
/* Not last byte, return ACK */
writel(LPC24XX_AA, i2c->base + LPC24XX_I2CONSET);
}
writel(LPC24XX_STA, i2c->base + LPC24XX_I2CONCLR);
break;
case MR_DATA_R_NACK:
/*
* The I2C shows NACK status on reads, so we need to accept
* the NACK as an ACK here. This should be ok, as the real
* BACK would of been caught on the address write.
*/
case MR_DATA_R_ACK:
/* Data was received */
if (i2c->msg_idx < i2c->msg->len) {
i2c->msg->buf[i2c->msg_idx] =
readl(i2c->base + LPC24XX_I2DAT);
}
/* If transfer is done, send STOP */
if (i2c->msg_idx >= i2c->msg->len - 1 && i2c->is_last) {
writel(LPC24XX_STO_AA, i2c->base + LPC24XX_I2CONSET);
writel(LPC24XX_SI, i2c->base + LPC24XX_I2CONCLR);
i2c->msg_status = 0;
}
/* Message is done */
if (i2c->msg_idx >= i2c->msg->len - 1) {
i2c->msg_status = 0;
disable_irq_nosync(i2c->irq);
}
/*
* One pre-last data input, send NACK to tell the slave that
* this is going to be the last data byte to be transferred.
*/
if (i2c->msg_idx >= i2c->msg->len - 2) {
/* One byte left to receive - NACK */
writel(LPC24XX_AA, i2c->base + LPC24XX_I2CONCLR);
} else {
/* More than one byte left to receive - ACK */
writel(LPC24XX_AA, i2c->base + LPC24XX_I2CONSET);
}
writel(LPC24XX_STA, i2c->base + LPC24XX_I2CONCLR);
i2c->msg_idx++;
break;
case MX_ADDR_W_NACK:
case MX_DATA_W_NACK:
case MR_ADDR_R_NACK:
/* NACK processing is done */
writel(LPC24XX_STO_AA, i2c->base + LPC24XX_I2CONSET);
i2c->msg_status = -ENXIO;
disable_irq_nosync(i2c->irq);
break;
case M_DATA_ARB_LOST:
/* Arbitration lost */
i2c->msg_status = -EAGAIN;
/* Release the I2C bus */
writel(LPC24XX_STA | LPC24XX_STO, i2c->base + LPC24XX_I2CONCLR);
disable_irq_nosync(i2c->irq);
break;
default:
/* Unexpected statuses */
i2c->msg_status = -EIO;
disable_irq_nosync(i2c->irq);
break;
}
/* Exit on failure or all bytes transferred */
if (i2c->msg_status != -EBUSY)
wake_up(&i2c->wait);
/*
* If `msg_status` is zero, then `lpc2k_process_msg()`
* is responsible for clearing the SI flag.
*/
if (i2c->msg_status != 0)
writel(LPC24XX_SI, i2c->base + LPC24XX_I2CONCLR);
}
static int lpc2k_process_msg(struct lpc2k_i2c *i2c, int msgidx)
{
/* A new transfer is kicked off by initiating a start condition */
if (!msgidx) {
writel(LPC24XX_STA, i2c->base + LPC24XX_I2CONSET);
} else {
/*
* A multi-message I2C transfer continues where the
* previous I2C transfer left off and uses the
* current condition of the I2C adapter.
*/
if (unlikely(i2c->msg->flags & I2C_M_NOSTART)) {
WARN_ON(i2c->msg->len == 0);
if (!(i2c->msg->flags & I2C_M_RD)) {
/* Start transmit of data */
writel(i2c->msg->buf[0],
i2c->base + LPC24XX_I2DAT);
i2c->msg_idx++;
}
} else {
/* Start or repeated start */
writel(LPC24XX_STA, i2c->base + LPC24XX_I2CONSET);
}
writel(LPC24XX_SI, i2c->base + LPC24XX_I2CONCLR);
}
enable_irq(i2c->irq);
/* Wait for transfer completion */
if (wait_event_timeout(i2c->wait, i2c->msg_status != -EBUSY,
msecs_to_jiffies(1000)) == 0) {
disable_irq_nosync(i2c->irq);
return -ETIMEDOUT;
}
return i2c->msg_status;
}
static int i2c_lpc2k_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
int msg_num)
{
struct lpc2k_i2c *i2c = i2c_get_adapdata(adap);
int ret, i;
u32 stat;
/* Check for bus idle condition */
stat = readl(i2c->base + LPC24XX_I2STAT);
if (stat != M_I2C_IDLE) {
/* Something is holding the bus, try to clear it */
return i2c_lpc2k_clear_arb(i2c);
}
/* Process a single message at a time */
for (i = 0; i < msg_num; i++) {
/* Save message pointer and current message data index */
i2c->msg = &msgs[i];
i2c->msg_idx = 0;
i2c->msg_status = -EBUSY;
i2c->is_last = (i == (msg_num - 1));
ret = lpc2k_process_msg(i2c, i);
if (ret)
return ret;
}
return msg_num;
}
static irqreturn_t i2c_lpc2k_handler(int irq, void *dev_id)
{
struct lpc2k_i2c *i2c = dev_id;
if (readl(i2c->base + LPC24XX_I2CONSET) & LPC24XX_SI) {
i2c_lpc2k_pump_msg(i2c);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static u32 i2c_lpc2k_functionality(struct i2c_adapter *adap)
{
/* Only emulated SMBus for now */
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm i2c_lpc2k_algorithm = {
.master_xfer = i2c_lpc2k_xfer,
.functionality = i2c_lpc2k_functionality,
};
static int i2c_lpc2k_probe(struct platform_device *pdev)
{
struct lpc2k_i2c *i2c;
struct resource *res;
u32 bus_clk_rate;
u32 scl_high;
u32 clkrate;
int ret;
i2c = devm_kzalloc(&pdev->dev, sizeof(*i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
i2c->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(i2c->base))
return PTR_ERR(i2c->base);
i2c->irq = platform_get_irq(pdev, 0);
if (i2c->irq < 0) {
dev_err(&pdev->dev, "can't get interrupt resource\n");
return i2c->irq;
}
init_waitqueue_head(&i2c->wait);
i2c->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(i2c->clk)) {
dev_err(&pdev->dev, "error getting clock\n");
return PTR_ERR(i2c->clk);
}
ret = clk_prepare_enable(i2c->clk);
if (ret) {
dev_err(&pdev->dev, "unable to enable clock.\n");
return ret;
}
ret = devm_request_irq(&pdev->dev, i2c->irq, i2c_lpc2k_handler, 0,
dev_name(&pdev->dev), i2c);
if (ret < 0) {
dev_err(&pdev->dev, "can't request interrupt.\n");
goto fail_clk;
}
disable_irq_nosync(i2c->irq);
/* Place controller is a known state */
i2c_lpc2k_reset(i2c);
ret = of_property_read_u32(pdev->dev.of_node, "clock-frequency",
&bus_clk_rate);
if (ret)
bus_clk_rate = 100000; /* 100 kHz default clock rate */
clkrate = clk_get_rate(i2c->clk);
if (clkrate == 0) {
dev_err(&pdev->dev, "can't get I2C base clock\n");
ret = -EINVAL;
goto fail_clk;
}
/* Setup I2C dividers to generate clock with proper duty cycle */
clkrate = clkrate / bus_clk_rate;
if (bus_clk_rate <= 100000)
scl_high = (clkrate * I2C_STD_MODE_DUTY) / 100;
else if (bus_clk_rate <= 400000)
scl_high = (clkrate * I2C_FAST_MODE_DUTY) / 100;
else
scl_high = (clkrate * I2C_FAST_MODE_PLUS_DUTY) / 100;
writel(scl_high, i2c->base + LPC24XX_I2SCLH);
writel(clkrate - scl_high, i2c->base + LPC24XX_I2SCLL);
platform_set_drvdata(pdev, i2c);
i2c_set_adapdata(&i2c->adap, i2c);
i2c->adap.owner = THIS_MODULE;
strlcpy(i2c->adap.name, "LPC2K I2C adapter", sizeof(i2c->adap.name));
i2c->adap.algo = &i2c_lpc2k_algorithm;
i2c->adap.dev.parent = &pdev->dev;
i2c->adap.dev.of_node = pdev->dev.of_node;
ret = i2c_add_adapter(&i2c->adap);
if (ret < 0) {
dev_err(&pdev->dev, "failed to add adapter!\n");
goto fail_clk;
}
dev_info(&pdev->dev, "LPC2K I2C adapter\n");
return 0;
fail_clk:
clk_disable_unprepare(i2c->clk);
return ret;
}
static int i2c_lpc2k_remove(struct platform_device *dev)
{
struct lpc2k_i2c *i2c = platform_get_drvdata(dev);
i2c_del_adapter(&i2c->adap);
clk_disable_unprepare(i2c->clk);
return 0;
}
#ifdef CONFIG_PM
static int i2c_lpc2k_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct lpc2k_i2c *i2c = platform_get_drvdata(pdev);
clk_disable(i2c->clk);
return 0;
}
static int i2c_lpc2k_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct lpc2k_i2c *i2c = platform_get_drvdata(pdev);
clk_enable(i2c->clk);
i2c_lpc2k_reset(i2c);
return 0;
}
static const struct dev_pm_ops i2c_lpc2k_dev_pm_ops = {
.suspend_noirq = i2c_lpc2k_suspend,
.resume_noirq = i2c_lpc2k_resume,
};
#define I2C_LPC2K_DEV_PM_OPS (&i2c_lpc2k_dev_pm_ops)
#else
#define I2C_LPC2K_DEV_PM_OPS NULL
#endif
static const struct of_device_id lpc2k_i2c_match[] = {
{ .compatible = "nxp,lpc1788-i2c" },
{},
};
MODULE_DEVICE_TABLE(of, lpc2k_i2c_match);
static struct platform_driver i2c_lpc2k_driver = {
.probe = i2c_lpc2k_probe,
.remove = i2c_lpc2k_remove,
.driver = {
.name = "lpc2k-i2c",
.pm = I2C_LPC2K_DEV_PM_OPS,
.of_match_table = lpc2k_i2c_match,
},
};
module_platform_driver(i2c_lpc2k_driver);
MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
MODULE_DESCRIPTION("I2C driver for LPC2xxx devices");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:lpc2k-i2c");
...@@ -59,6 +59,7 @@ ...@@ -59,6 +59,7 @@
#define I2C_DMA_START_EN 0x0001 #define I2C_DMA_START_EN 0x0001
#define I2C_DMA_INT_FLAG_NONE 0x0000 #define I2C_DMA_INT_FLAG_NONE 0x0000
#define I2C_DMA_CLR_FLAG 0x0000 #define I2C_DMA_CLR_FLAG 0x0000
#define I2C_DMA_HARD_RST 0x0002
#define I2C_DEFAULT_SPEED 100000 /* hz */ #define I2C_DEFAULT_SPEED 100000 /* hz */
#define MAX_FS_MODE_SPEED 400000 #define MAX_FS_MODE_SPEED 400000
...@@ -81,6 +82,7 @@ enum DMA_REGS_OFFSET { ...@@ -81,6 +82,7 @@ enum DMA_REGS_OFFSET {
OFFSET_INT_FLAG = 0x0, OFFSET_INT_FLAG = 0x0,
OFFSET_INT_EN = 0x04, OFFSET_INT_EN = 0x04,
OFFSET_EN = 0x08, OFFSET_EN = 0x08,
OFFSET_RST = 0x0c,
OFFSET_CON = 0x18, OFFSET_CON = 0x18,
OFFSET_TX_MEM_ADDR = 0x1c, OFFSET_TX_MEM_ADDR = 0x1c,
OFFSET_RX_MEM_ADDR = 0x20, OFFSET_RX_MEM_ADDR = 0x20,
...@@ -262,6 +264,10 @@ static void mtk_i2c_init_hw(struct mtk_i2c *i2c) ...@@ -262,6 +264,10 @@ static void mtk_i2c_init_hw(struct mtk_i2c *i2c)
I2C_CONTROL_CLK_EXT_EN | I2C_CONTROL_DMA_EN; I2C_CONTROL_CLK_EXT_EN | I2C_CONTROL_DMA_EN;
writew(control_reg, i2c->base + OFFSET_CONTROL); writew(control_reg, i2c->base + OFFSET_CONTROL);
writew(I2C_DELAY_LEN, i2c->base + OFFSET_DELAY_LEN); writew(I2C_DELAY_LEN, i2c->base + OFFSET_DELAY_LEN);
writel(I2C_DMA_HARD_RST, i2c->pdmabase + OFFSET_RST);
udelay(50);
writel(I2C_DMA_CLR_FLAG, i2c->pdmabase + OFFSET_RST);
} }
/* /*
...@@ -551,14 +557,21 @@ static irqreturn_t mtk_i2c_irq(int irqno, void *dev_id) ...@@ -551,14 +557,21 @@ static irqreturn_t mtk_i2c_irq(int irqno, void *dev_id)
{ {
struct mtk_i2c *i2c = dev_id; struct mtk_i2c *i2c = dev_id;
u16 restart_flag = 0; u16 restart_flag = 0;
u16 intr_stat;
if (i2c->dev_comp->auto_restart) if (i2c->dev_comp->auto_restart)
restart_flag = I2C_RS_TRANSFER; restart_flag = I2C_RS_TRANSFER;
i2c->irq_stat = readw(i2c->base + OFFSET_INTR_STAT); intr_stat = readw(i2c->base + OFFSET_INTR_STAT);
writew(restart_flag | I2C_HS_NACKERR | I2C_ACKERR writew(intr_stat, i2c->base + OFFSET_INTR_STAT);
| I2C_TRANSAC_COMP, i2c->base + OFFSET_INTR_STAT);
/*
* when occurs ack error, i2c controller generate two interrupts
* first is the ack error interrupt, then the complete interrupt
* i2c->irq_stat need keep the two interrupt value.
*/
i2c->irq_stat |= intr_stat;
if (i2c->irq_stat & (I2C_TRANSAC_COMP | restart_flag))
complete(&i2c->msg_complete); complete(&i2c->msg_complete);
return IRQ_HANDLED; return IRQ_HANDLED;
......
...@@ -270,35 +270,35 @@ static const u8 reg_map_ip_v2[] = { ...@@ -270,35 +270,35 @@ static const u8 reg_map_ip_v2[] = {
[OMAP_I2C_IP_V2_IRQENABLE_CLR] = 0x30, [OMAP_I2C_IP_V2_IRQENABLE_CLR] = 0x30,
}; };
static inline void omap_i2c_write_reg(struct omap_i2c_dev *i2c_dev, static inline void omap_i2c_write_reg(struct omap_i2c_dev *omap,
int reg, u16 val) int reg, u16 val)
{ {
writew_relaxed(val, i2c_dev->base + writew_relaxed(val, omap->base +
(i2c_dev->regs[reg] << i2c_dev->reg_shift)); (omap->regs[reg] << omap->reg_shift));
} }
static inline u16 omap_i2c_read_reg(struct omap_i2c_dev *i2c_dev, int reg) static inline u16 omap_i2c_read_reg(struct omap_i2c_dev *omap, int reg)
{ {
return readw_relaxed(i2c_dev->base + return readw_relaxed(omap->base +
(i2c_dev->regs[reg] << i2c_dev->reg_shift)); (omap->regs[reg] << omap->reg_shift));
} }
static void __omap_i2c_init(struct omap_i2c_dev *dev) static void __omap_i2c_init(struct omap_i2c_dev *omap)
{ {
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, 0); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, 0);
/* Setup clock prescaler to obtain approx 12MHz I2C module clock: */ /* Setup clock prescaler to obtain approx 12MHz I2C module clock: */
omap_i2c_write_reg(dev, OMAP_I2C_PSC_REG, dev->pscstate); omap_i2c_write_reg(omap, OMAP_I2C_PSC_REG, omap->pscstate);
/* SCL low and high time values */ /* SCL low and high time values */
omap_i2c_write_reg(dev, OMAP_I2C_SCLL_REG, dev->scllstate); omap_i2c_write_reg(omap, OMAP_I2C_SCLL_REG, omap->scllstate);
omap_i2c_write_reg(dev, OMAP_I2C_SCLH_REG, dev->sclhstate); omap_i2c_write_reg(omap, OMAP_I2C_SCLH_REG, omap->sclhstate);
if (dev->rev >= OMAP_I2C_REV_ON_3430_3530) if (omap->rev >= OMAP_I2C_REV_ON_3430_3530)
omap_i2c_write_reg(dev, OMAP_I2C_WE_REG, dev->westate); omap_i2c_write_reg(omap, OMAP_I2C_WE_REG, omap->westate);
/* Take the I2C module out of reset: */ /* Take the I2C module out of reset: */
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, OMAP_I2C_CON_EN); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, OMAP_I2C_CON_EN);
/* /*
* NOTE: right after setting CON_EN, STAT_BB could be 0 while the * NOTE: right after setting CON_EN, STAT_BB could be 0 while the
...@@ -310,32 +310,32 @@ static void __omap_i2c_init(struct omap_i2c_dev *dev) ...@@ -310,32 +310,32 @@ static void __omap_i2c_init(struct omap_i2c_dev *dev)
* Don't write to this register if the IE state is 0 as it can * Don't write to this register if the IE state is 0 as it can
* cause deadlock. * cause deadlock.
*/ */
if (dev->iestate) if (omap->iestate)
omap_i2c_write_reg(dev, OMAP_I2C_IE_REG, dev->iestate); omap_i2c_write_reg(omap, OMAP_I2C_IE_REG, omap->iestate);
} }
static int omap_i2c_reset(struct omap_i2c_dev *dev) static int omap_i2c_reset(struct omap_i2c_dev *omap)
{ {
unsigned long timeout; unsigned long timeout;
u16 sysc; u16 sysc;
if (dev->rev >= OMAP_I2C_OMAP1_REV_2) { if (omap->rev >= OMAP_I2C_OMAP1_REV_2) {
sysc = omap_i2c_read_reg(dev, OMAP_I2C_SYSC_REG); sysc = omap_i2c_read_reg(omap, OMAP_I2C_SYSC_REG);
/* Disable I2C controller before soft reset */ /* Disable I2C controller before soft reset */
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, omap_i2c_write_reg(omap, OMAP_I2C_CON_REG,
omap_i2c_read_reg(dev, OMAP_I2C_CON_REG) & omap_i2c_read_reg(omap, OMAP_I2C_CON_REG) &
~(OMAP_I2C_CON_EN)); ~(OMAP_I2C_CON_EN));
omap_i2c_write_reg(dev, OMAP_I2C_SYSC_REG, SYSC_SOFTRESET_MASK); omap_i2c_write_reg(omap, OMAP_I2C_SYSC_REG, SYSC_SOFTRESET_MASK);
/* For some reason we need to set the EN bit before the /* For some reason we need to set the EN bit before the
* reset done bit gets set. */ * reset done bit gets set. */
timeout = jiffies + OMAP_I2C_TIMEOUT; timeout = jiffies + OMAP_I2C_TIMEOUT;
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, OMAP_I2C_CON_EN); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, OMAP_I2C_CON_EN);
while (!(omap_i2c_read_reg(dev, OMAP_I2C_SYSS_REG) & while (!(omap_i2c_read_reg(omap, OMAP_I2C_SYSS_REG) &
SYSS_RESETDONE_MASK)) { SYSS_RESETDONE_MASK)) {
if (time_after(jiffies, timeout)) { if (time_after(jiffies, timeout)) {
dev_warn(dev->dev, "timeout waiting " dev_warn(omap->dev, "timeout waiting "
"for controller reset\n"); "for controller reset\n");
return -ETIMEDOUT; return -ETIMEDOUT;
} }
...@@ -343,18 +343,18 @@ static int omap_i2c_reset(struct omap_i2c_dev *dev) ...@@ -343,18 +343,18 @@ static int omap_i2c_reset(struct omap_i2c_dev *dev)
} }
/* SYSC register is cleared by the reset; rewrite it */ /* SYSC register is cleared by the reset; rewrite it */
omap_i2c_write_reg(dev, OMAP_I2C_SYSC_REG, sysc); omap_i2c_write_reg(omap, OMAP_I2C_SYSC_REG, sysc);
if (dev->rev > OMAP_I2C_REV_ON_3430_3530) { if (omap->rev > OMAP_I2C_REV_ON_3430_3530) {
/* Schedule I2C-bus monitoring on the next transfer */ /* Schedule I2C-bus monitoring on the next transfer */
dev->bb_valid = 0; omap->bb_valid = 0;
} }
} }
return 0; return 0;
} }
static int omap_i2c_init(struct omap_i2c_dev *dev) static int omap_i2c_init(struct omap_i2c_dev *omap)
{ {
u16 psc = 0, scll = 0, sclh = 0; u16 psc = 0, scll = 0, sclh = 0;
u16 fsscll = 0, fssclh = 0, hsscll = 0, hssclh = 0; u16 fsscll = 0, fssclh = 0, hsscll = 0, hssclh = 0;
...@@ -362,23 +362,23 @@ static int omap_i2c_init(struct omap_i2c_dev *dev) ...@@ -362,23 +362,23 @@ static int omap_i2c_init(struct omap_i2c_dev *dev)
unsigned long internal_clk = 0; unsigned long internal_clk = 0;
struct clk *fclk; struct clk *fclk;
if (dev->rev >= OMAP_I2C_REV_ON_3430_3530) { if (omap->rev >= OMAP_I2C_REV_ON_3430_3530) {
/* /*
* Enabling all wakup sources to stop I2C freezing on * Enabling all wakup sources to stop I2C freezing on
* WFI instruction. * WFI instruction.
* REVISIT: Some wkup sources might not be needed. * REVISIT: Some wkup sources might not be needed.
*/ */
dev->westate = OMAP_I2C_WE_ALL; omap->westate = OMAP_I2C_WE_ALL;
} }
if (dev->flags & OMAP_I2C_FLAG_ALWAYS_ARMXOR_CLK) { if (omap->flags & OMAP_I2C_FLAG_ALWAYS_ARMXOR_CLK) {
/* /*
* The I2C functional clock is the armxor_ck, so there's * The I2C functional clock is the armxor_ck, so there's
* no need to get "armxor_ck" separately. Now, if OMAP2420 * no need to get "armxor_ck" separately. Now, if OMAP2420
* always returns 12MHz for the functional clock, we can * always returns 12MHz for the functional clock, we can
* do this bit unconditionally. * do this bit unconditionally.
*/ */
fclk = clk_get(dev->dev, "fck"); fclk = clk_get(omap->dev, "fck");
fclk_rate = clk_get_rate(fclk); fclk_rate = clk_get_rate(fclk);
clk_put(fclk); clk_put(fclk);
...@@ -395,7 +395,7 @@ static int omap_i2c_init(struct omap_i2c_dev *dev) ...@@ -395,7 +395,7 @@ static int omap_i2c_init(struct omap_i2c_dev *dev)
psc = fclk_rate / 12000000; psc = fclk_rate / 12000000;
} }
if (!(dev->flags & OMAP_I2C_FLAG_SIMPLE_CLOCK)) { if (!(omap->flags & OMAP_I2C_FLAG_SIMPLE_CLOCK)) {
/* /*
* HSI2C controller internal clk rate should be 19.2 Mhz for * HSI2C controller internal clk rate should be 19.2 Mhz for
...@@ -403,14 +403,14 @@ static int omap_i2c_init(struct omap_i2c_dev *dev) ...@@ -403,14 +403,14 @@ static int omap_i2c_init(struct omap_i2c_dev *dev)
* to get longer filter period for better noise suppression. * to get longer filter period for better noise suppression.
* The filter is iclk (fclk for HS) period. * The filter is iclk (fclk for HS) period.
*/ */
if (dev->speed > 400 || if (omap->speed > 400 ||
dev->flags & OMAP_I2C_FLAG_FORCE_19200_INT_CLK) omap->flags & OMAP_I2C_FLAG_FORCE_19200_INT_CLK)
internal_clk = 19200; internal_clk = 19200;
else if (dev->speed > 100) else if (omap->speed > 100)
internal_clk = 9600; internal_clk = 9600;
else else
internal_clk = 4000; internal_clk = 4000;
fclk = clk_get(dev->dev, "fck"); fclk = clk_get(omap->dev, "fck");
fclk_rate = clk_get_rate(fclk) / 1000; fclk_rate = clk_get_rate(fclk) / 1000;
clk_put(fclk); clk_put(fclk);
...@@ -419,7 +419,7 @@ static int omap_i2c_init(struct omap_i2c_dev *dev) ...@@ -419,7 +419,7 @@ static int omap_i2c_init(struct omap_i2c_dev *dev)
psc = psc - 1; psc = psc - 1;
/* If configured for High Speed */ /* If configured for High Speed */
if (dev->speed > 400) { if (omap->speed > 400) {
unsigned long scl; unsigned long scl;
/* For first phase of HS mode */ /* For first phase of HS mode */
...@@ -428,20 +428,20 @@ static int omap_i2c_init(struct omap_i2c_dev *dev) ...@@ -428,20 +428,20 @@ static int omap_i2c_init(struct omap_i2c_dev *dev)
fssclh = (scl / 3) - 5; fssclh = (scl / 3) - 5;
/* For second phase of HS mode */ /* For second phase of HS mode */
scl = fclk_rate / dev->speed; scl = fclk_rate / omap->speed;
hsscll = scl - (scl / 3) - 7; hsscll = scl - (scl / 3) - 7;
hssclh = (scl / 3) - 5; hssclh = (scl / 3) - 5;
} else if (dev->speed > 100) { } else if (omap->speed > 100) {
unsigned long scl; unsigned long scl;
/* Fast mode */ /* Fast mode */
scl = internal_clk / dev->speed; scl = internal_clk / omap->speed;
fsscll = scl - (scl / 3) - 7; fsscll = scl - (scl / 3) - 7;
fssclh = (scl / 3) - 5; fssclh = (scl / 3) - 5;
} else { } else {
/* Standard mode */ /* Standard mode */
fsscll = internal_clk / (dev->speed * 2) - 7; fsscll = internal_clk / (omap->speed * 2) - 7;
fssclh = internal_clk / (dev->speed * 2) - 5; fssclh = internal_clk / (omap->speed * 2) - 5;
} }
scll = (hsscll << OMAP_I2C_SCLL_HSSCLL) | fsscll; scll = (hsscll << OMAP_I2C_SCLL_HSSCLL) | fsscll;
sclh = (hssclh << OMAP_I2C_SCLH_HSSCLH) | fssclh; sclh = (hssclh << OMAP_I2C_SCLH_HSSCLH) | fssclh;
...@@ -450,25 +450,25 @@ static int omap_i2c_init(struct omap_i2c_dev *dev) ...@@ -450,25 +450,25 @@ static int omap_i2c_init(struct omap_i2c_dev *dev)
fclk_rate /= (psc + 1) * 1000; fclk_rate /= (psc + 1) * 1000;
if (psc > 2) if (psc > 2)
psc = 2; psc = 2;
scll = fclk_rate / (dev->speed * 2) - 7 + psc; scll = fclk_rate / (omap->speed * 2) - 7 + psc;
sclh = fclk_rate / (dev->speed * 2) - 7 + psc; sclh = fclk_rate / (omap->speed * 2) - 7 + psc;
} }
dev->iestate = (OMAP_I2C_IE_XRDY | OMAP_I2C_IE_RRDY | omap->iestate = (OMAP_I2C_IE_XRDY | OMAP_I2C_IE_RRDY |
OMAP_I2C_IE_ARDY | OMAP_I2C_IE_NACK | OMAP_I2C_IE_ARDY | OMAP_I2C_IE_NACK |
OMAP_I2C_IE_AL) | ((dev->fifo_size) ? OMAP_I2C_IE_AL) | ((omap->fifo_size) ?
(OMAP_I2C_IE_RDR | OMAP_I2C_IE_XDR) : 0); (OMAP_I2C_IE_RDR | OMAP_I2C_IE_XDR) : 0);
dev->pscstate = psc; omap->pscstate = psc;
dev->scllstate = scll; omap->scllstate = scll;
dev->sclhstate = sclh; omap->sclhstate = sclh;
if (dev->rev <= OMAP_I2C_REV_ON_3430_3530) { if (omap->rev <= OMAP_I2C_REV_ON_3430_3530) {
/* Not implemented */ /* Not implemented */
dev->bb_valid = 1; omap->bb_valid = 1;
} }
__omap_i2c_init(dev); __omap_i2c_init(omap);
return 0; return 0;
} }
...@@ -476,14 +476,14 @@ static int omap_i2c_init(struct omap_i2c_dev *dev) ...@@ -476,14 +476,14 @@ static int omap_i2c_init(struct omap_i2c_dev *dev)
/* /*
* Waiting on Bus Busy * Waiting on Bus Busy
*/ */
static int omap_i2c_wait_for_bb(struct omap_i2c_dev *dev) static int omap_i2c_wait_for_bb(struct omap_i2c_dev *omap)
{ {
unsigned long timeout; unsigned long timeout;
timeout = jiffies + OMAP_I2C_TIMEOUT; timeout = jiffies + OMAP_I2C_TIMEOUT;
while (omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG) & OMAP_I2C_STAT_BB) { while (omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG) & OMAP_I2C_STAT_BB) {
if (time_after(jiffies, timeout)) if (time_after(jiffies, timeout))
return i2c_recover_bus(&dev->adapter); return i2c_recover_bus(&omap->adapter);
msleep(1); msleep(1);
} }
...@@ -518,19 +518,19 @@ static int omap_i2c_wait_for_bb(struct omap_i2c_dev *dev) ...@@ -518,19 +518,19 @@ static int omap_i2c_wait_for_bb(struct omap_i2c_dev *dev)
* 3. Any transfer started in the middle of another master's transfer * 3. Any transfer started in the middle of another master's transfer
* results in unpredictable results and data corruption * results in unpredictable results and data corruption
*/ */
static int omap_i2c_wait_for_bb_valid(struct omap_i2c_dev *dev) static int omap_i2c_wait_for_bb_valid(struct omap_i2c_dev *omap)
{ {
unsigned long bus_free_timeout = 0; unsigned long bus_free_timeout = 0;
unsigned long timeout; unsigned long timeout;
int bus_free = 0; int bus_free = 0;
u16 stat, systest; u16 stat, systest;
if (dev->bb_valid) if (omap->bb_valid)
return 0; return 0;
timeout = jiffies + OMAP_I2C_TIMEOUT; timeout = jiffies + OMAP_I2C_TIMEOUT;
while (1) { while (1) {
stat = omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG); stat = omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
/* /*
* We will see BB or BF event in a case IP had detected any * We will see BB or BF event in a case IP had detected any
* activity on the I2C bus. Now IP correctly tracks the bus * activity on the I2C bus. Now IP correctly tracks the bus
...@@ -543,7 +543,7 @@ static int omap_i2c_wait_for_bb_valid(struct omap_i2c_dev *dev) ...@@ -543,7 +543,7 @@ static int omap_i2c_wait_for_bb_valid(struct omap_i2c_dev *dev)
* Otherwise, we must look signals on the bus to make * Otherwise, we must look signals on the bus to make
* the right decision. * the right decision.
*/ */
systest = omap_i2c_read_reg(dev, OMAP_I2C_SYSTEST_REG); systest = omap_i2c_read_reg(omap, OMAP_I2C_SYSTEST_REG);
if ((systest & OMAP_I2C_SYSTEST_SCL_I_FUNC) && if ((systest & OMAP_I2C_SYSTEST_SCL_I_FUNC) &&
(systest & OMAP_I2C_SYSTEST_SDA_I_FUNC)) { (systest & OMAP_I2C_SYSTEST_SDA_I_FUNC)) {
if (!bus_free) { if (!bus_free) {
...@@ -564,22 +564,22 @@ static int omap_i2c_wait_for_bb_valid(struct omap_i2c_dev *dev) ...@@ -564,22 +564,22 @@ static int omap_i2c_wait_for_bb_valid(struct omap_i2c_dev *dev)
} }
if (time_after(jiffies, timeout)) { if (time_after(jiffies, timeout)) {
dev_warn(dev->dev, "timeout waiting for bus ready\n"); dev_warn(omap->dev, "timeout waiting for bus ready\n");
return -ETIMEDOUT; return -ETIMEDOUT;
} }
msleep(1); msleep(1);
} }
dev->bb_valid = 1; omap->bb_valid = 1;
return 0; return 0;
} }
static void omap_i2c_resize_fifo(struct omap_i2c_dev *dev, u8 size, bool is_rx) static void omap_i2c_resize_fifo(struct omap_i2c_dev *omap, u8 size, bool is_rx)
{ {
u16 buf; u16 buf;
if (dev->flags & OMAP_I2C_FLAG_NO_FIFO) if (omap->flags & OMAP_I2C_FLAG_NO_FIFO)
return; return;
/* /*
...@@ -589,29 +589,29 @@ static void omap_i2c_resize_fifo(struct omap_i2c_dev *dev, u8 size, bool is_rx) ...@@ -589,29 +589,29 @@ static void omap_i2c_resize_fifo(struct omap_i2c_dev *dev, u8 size, bool is_rx)
* then we might use draining feature to transfer the remaining bytes. * then we might use draining feature to transfer the remaining bytes.
*/ */
dev->threshold = clamp(size, (u8) 1, dev->fifo_size); omap->threshold = clamp(size, (u8) 1, omap->fifo_size);
buf = omap_i2c_read_reg(dev, OMAP_I2C_BUF_REG); buf = omap_i2c_read_reg(omap, OMAP_I2C_BUF_REG);
if (is_rx) { if (is_rx) {
/* Clear RX Threshold */ /* Clear RX Threshold */
buf &= ~(0x3f << 8); buf &= ~(0x3f << 8);
buf |= ((dev->threshold - 1) << 8) | OMAP_I2C_BUF_RXFIF_CLR; buf |= ((omap->threshold - 1) << 8) | OMAP_I2C_BUF_RXFIF_CLR;
} else { } else {
/* Clear TX Threshold */ /* Clear TX Threshold */
buf &= ~0x3f; buf &= ~0x3f;
buf |= (dev->threshold - 1) | OMAP_I2C_BUF_TXFIF_CLR; buf |= (omap->threshold - 1) | OMAP_I2C_BUF_TXFIF_CLR;
} }
omap_i2c_write_reg(dev, OMAP_I2C_BUF_REG, buf); omap_i2c_write_reg(omap, OMAP_I2C_BUF_REG, buf);
if (dev->rev < OMAP_I2C_REV_ON_3630) if (omap->rev < OMAP_I2C_REV_ON_3630)
dev->b_hw = 1; /* Enable hardware fixes */ omap->b_hw = 1; /* Enable hardware fixes */
/* calculate wakeup latency constraint for MPU */ /* calculate wakeup latency constraint for MPU */
if (dev->set_mpu_wkup_lat != NULL) if (omap->set_mpu_wkup_lat != NULL)
dev->latency = (1000000 * dev->threshold) / omap->latency = (1000000 * omap->threshold) /
(1000 * dev->speed / 8); (1000 * omap->speed / 8);
} }
/* /*
...@@ -620,42 +620,42 @@ static void omap_i2c_resize_fifo(struct omap_i2c_dev *dev, u8 size, bool is_rx) ...@@ -620,42 +620,42 @@ static void omap_i2c_resize_fifo(struct omap_i2c_dev *dev, u8 size, bool is_rx)
static int omap_i2c_xfer_msg(struct i2c_adapter *adap, static int omap_i2c_xfer_msg(struct i2c_adapter *adap,
struct i2c_msg *msg, int stop) struct i2c_msg *msg, int stop)
{ {
struct omap_i2c_dev *dev = i2c_get_adapdata(adap); struct omap_i2c_dev *omap = i2c_get_adapdata(adap);
unsigned long timeout; unsigned long timeout;
u16 w; u16 w;
dev_dbg(dev->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n", dev_dbg(omap->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
msg->addr, msg->len, msg->flags, stop); msg->addr, msg->len, msg->flags, stop);
if (msg->len == 0) if (msg->len == 0)
return -EINVAL; return -EINVAL;
dev->receiver = !!(msg->flags & I2C_M_RD); omap->receiver = !!(msg->flags & I2C_M_RD);
omap_i2c_resize_fifo(dev, msg->len, dev->receiver); omap_i2c_resize_fifo(omap, msg->len, omap->receiver);
omap_i2c_write_reg(dev, OMAP_I2C_SA_REG, msg->addr); omap_i2c_write_reg(omap, OMAP_I2C_SA_REG, msg->addr);
/* REVISIT: Could the STB bit of I2C_CON be used with probing? */ /* REVISIT: Could the STB bit of I2C_CON be used with probing? */
dev->buf = msg->buf; omap->buf = msg->buf;
dev->buf_len = msg->len; omap->buf_len = msg->len;
/* make sure writes to dev->buf_len are ordered */ /* make sure writes to omap->buf_len are ordered */
barrier(); barrier();
omap_i2c_write_reg(dev, OMAP_I2C_CNT_REG, dev->buf_len); omap_i2c_write_reg(omap, OMAP_I2C_CNT_REG, omap->buf_len);
/* Clear the FIFO Buffers */ /* Clear the FIFO Buffers */
w = omap_i2c_read_reg(dev, OMAP_I2C_BUF_REG); w = omap_i2c_read_reg(omap, OMAP_I2C_BUF_REG);
w |= OMAP_I2C_BUF_RXFIF_CLR | OMAP_I2C_BUF_TXFIF_CLR; w |= OMAP_I2C_BUF_RXFIF_CLR | OMAP_I2C_BUF_TXFIF_CLR;
omap_i2c_write_reg(dev, OMAP_I2C_BUF_REG, w); omap_i2c_write_reg(omap, OMAP_I2C_BUF_REG, w);
reinit_completion(&dev->cmd_complete); reinit_completion(&omap->cmd_complete);
dev->cmd_err = 0; omap->cmd_err = 0;
w = OMAP_I2C_CON_EN | OMAP_I2C_CON_MST | OMAP_I2C_CON_STT; w = OMAP_I2C_CON_EN | OMAP_I2C_CON_MST | OMAP_I2C_CON_STT;
/* High speed configuration */ /* High speed configuration */
if (dev->speed > 400) if (omap->speed > 400)
w |= OMAP_I2C_CON_OPMODE_HS; w |= OMAP_I2C_CON_OPMODE_HS;
if (msg->flags & I2C_M_STOP) if (msg->flags & I2C_M_STOP)
...@@ -665,27 +665,27 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap, ...@@ -665,27 +665,27 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap,
if (!(msg->flags & I2C_M_RD)) if (!(msg->flags & I2C_M_RD))
w |= OMAP_I2C_CON_TRX; w |= OMAP_I2C_CON_TRX;
if (!dev->b_hw && stop) if (!omap->b_hw && stop)
w |= OMAP_I2C_CON_STP; w |= OMAP_I2C_CON_STP;
/* /*
* NOTE: STAT_BB bit could became 1 here if another master occupy * NOTE: STAT_BB bit could became 1 here if another master occupy
* the bus. IP successfully complete transfer when the bus will be * the bus. IP successfully complete transfer when the bus will be
* free again (BB reset to 0). * free again (BB reset to 0).
*/ */
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, w); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, w);
/* /*
* Don't write stt and stp together on some hardware. * Don't write stt and stp together on some hardware.
*/ */
if (dev->b_hw && stop) { if (omap->b_hw && stop) {
unsigned long delay = jiffies + OMAP_I2C_TIMEOUT; unsigned long delay = jiffies + OMAP_I2C_TIMEOUT;
u16 con = omap_i2c_read_reg(dev, OMAP_I2C_CON_REG); u16 con = omap_i2c_read_reg(omap, OMAP_I2C_CON_REG);
while (con & OMAP_I2C_CON_STT) { while (con & OMAP_I2C_CON_STT) {
con = omap_i2c_read_reg(dev, OMAP_I2C_CON_REG); con = omap_i2c_read_reg(omap, OMAP_I2C_CON_REG);
/* Let the user know if i2c is in a bad state */ /* Let the user know if i2c is in a bad state */
if (time_after(jiffies, delay)) { if (time_after(jiffies, delay)) {
dev_err(dev->dev, "controller timed out " dev_err(omap->dev, "controller timed out "
"waiting for start condition to finish\n"); "waiting for start condition to finish\n");
return -ETIMEDOUT; return -ETIMEDOUT;
} }
...@@ -694,42 +694,42 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap, ...@@ -694,42 +694,42 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap,
w |= OMAP_I2C_CON_STP; w |= OMAP_I2C_CON_STP;
w &= ~OMAP_I2C_CON_STT; w &= ~OMAP_I2C_CON_STT;
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, w); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, w);
} }
/* /*
* REVISIT: We should abort the transfer on signals, but the bus goes * REVISIT: We should abort the transfer on signals, but the bus goes
* into arbitration and we're currently unable to recover from it. * into arbitration and we're currently unable to recover from it.
*/ */
timeout = wait_for_completion_timeout(&dev->cmd_complete, timeout = wait_for_completion_timeout(&omap->cmd_complete,
OMAP_I2C_TIMEOUT); OMAP_I2C_TIMEOUT);
if (timeout == 0) { if (timeout == 0) {
dev_err(dev->dev, "controller timed out\n"); dev_err(omap->dev, "controller timed out\n");
omap_i2c_reset(dev); omap_i2c_reset(omap);
__omap_i2c_init(dev); __omap_i2c_init(omap);
return -ETIMEDOUT; return -ETIMEDOUT;
} }
if (likely(!dev->cmd_err)) if (likely(!omap->cmd_err))
return 0; return 0;
/* We have an error */ /* We have an error */
if (dev->cmd_err & (OMAP_I2C_STAT_ROVR | OMAP_I2C_STAT_XUDF)) { if (omap->cmd_err & (OMAP_I2C_STAT_ROVR | OMAP_I2C_STAT_XUDF)) {
omap_i2c_reset(dev); omap_i2c_reset(omap);
__omap_i2c_init(dev); __omap_i2c_init(omap);
return -EIO; return -EIO;
} }
if (dev->cmd_err & OMAP_I2C_STAT_AL) if (omap->cmd_err & OMAP_I2C_STAT_AL)
return -EAGAIN; return -EAGAIN;
if (dev->cmd_err & OMAP_I2C_STAT_NACK) { if (omap->cmd_err & OMAP_I2C_STAT_NACK) {
if (msg->flags & I2C_M_IGNORE_NAK) if (msg->flags & I2C_M_IGNORE_NAK)
return 0; return 0;
w = omap_i2c_read_reg(dev, OMAP_I2C_CON_REG); w = omap_i2c_read_reg(omap, OMAP_I2C_CON_REG);
w |= OMAP_I2C_CON_STP; w |= OMAP_I2C_CON_STP;
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, w); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, w);
return -EREMOTEIO; return -EREMOTEIO;
} }
return -EIO; return -EIO;
...@@ -743,24 +743,24 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap, ...@@ -743,24 +743,24 @@ static int omap_i2c_xfer_msg(struct i2c_adapter *adap,
static int static int
omap_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) omap_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{ {
struct omap_i2c_dev *dev = i2c_get_adapdata(adap); struct omap_i2c_dev *omap = i2c_get_adapdata(adap);
int i; int i;
int r; int r;
r = pm_runtime_get_sync(dev->dev); r = pm_runtime_get_sync(omap->dev);
if (r < 0) if (r < 0)
goto out; goto out;
r = omap_i2c_wait_for_bb_valid(dev); r = omap_i2c_wait_for_bb_valid(omap);
if (r < 0) if (r < 0)
goto out; goto out;
r = omap_i2c_wait_for_bb(dev); r = omap_i2c_wait_for_bb(omap);
if (r < 0) if (r < 0)
goto out; goto out;
if (dev->set_mpu_wkup_lat != NULL) if (omap->set_mpu_wkup_lat != NULL)
dev->set_mpu_wkup_lat(dev->dev, dev->latency); omap->set_mpu_wkup_lat(omap->dev, omap->latency);
for (i = 0; i < num; i++) { for (i = 0; i < num; i++) {
r = omap_i2c_xfer_msg(adap, &msgs[i], (i == (num - 1))); r = omap_i2c_xfer_msg(adap, &msgs[i], (i == (num - 1)));
...@@ -771,14 +771,14 @@ omap_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) ...@@ -771,14 +771,14 @@ omap_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
if (r == 0) if (r == 0)
r = num; r = num;
omap_i2c_wait_for_bb(dev); omap_i2c_wait_for_bb(omap);
if (dev->set_mpu_wkup_lat != NULL) if (omap->set_mpu_wkup_lat != NULL)
dev->set_mpu_wkup_lat(dev->dev, -1); omap->set_mpu_wkup_lat(omap->dev, -1);
out: out:
pm_runtime_mark_last_busy(dev->dev); pm_runtime_mark_last_busy(omap->dev);
pm_runtime_put_autosuspend(dev->dev); pm_runtime_put_autosuspend(omap->dev);
return r; return r;
} }
...@@ -790,19 +790,19 @@ omap_i2c_func(struct i2c_adapter *adap) ...@@ -790,19 +790,19 @@ omap_i2c_func(struct i2c_adapter *adap)
} }
static inline void static inline void
omap_i2c_complete_cmd(struct omap_i2c_dev *dev, u16 err) omap_i2c_complete_cmd(struct omap_i2c_dev *omap, u16 err)
{ {
dev->cmd_err |= err; omap->cmd_err |= err;
complete(&dev->cmd_complete); complete(&omap->cmd_complete);
} }
static inline void static inline void
omap_i2c_ack_stat(struct omap_i2c_dev *dev, u16 stat) omap_i2c_ack_stat(struct omap_i2c_dev *omap, u16 stat)
{ {
omap_i2c_write_reg(dev, OMAP_I2C_STAT_REG, stat); omap_i2c_write_reg(omap, OMAP_I2C_STAT_REG, stat);
} }
static inline void i2c_omap_errata_i207(struct omap_i2c_dev *dev, u16 stat) static inline void i2c_omap_errata_i207(struct omap_i2c_dev *omap, u16 stat)
{ {
/* /*
* I2C Errata(Errata Nos. OMAP2: 1.67, OMAP3: 1.8) * I2C Errata(Errata Nos. OMAP2: 1.67, OMAP3: 1.8)
...@@ -813,17 +813,17 @@ static inline void i2c_omap_errata_i207(struct omap_i2c_dev *dev, u16 stat) ...@@ -813,17 +813,17 @@ static inline void i2c_omap_errata_i207(struct omap_i2c_dev *dev, u16 stat)
*/ */
if (stat & OMAP_I2C_STAT_RDR) { if (stat & OMAP_I2C_STAT_RDR) {
/* Step 1: If RDR is set, clear it */ /* Step 1: If RDR is set, clear it */
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_RDR); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_RDR);
/* Step 2: */ /* Step 2: */
if (!(omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG) if (!(omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG)
& OMAP_I2C_STAT_BB)) { & OMAP_I2C_STAT_BB)) {
/* Step 3: */ /* Step 3: */
if (omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG) if (omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG)
& OMAP_I2C_STAT_RDR) { & OMAP_I2C_STAT_RDR) {
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_RDR); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_RDR);
dev_dbg(dev->dev, "RDR when bus is busy.\n"); dev_dbg(omap->dev, "RDR when bus is busy.\n");
} }
} }
...@@ -836,50 +836,50 @@ static inline void i2c_omap_errata_i207(struct omap_i2c_dev *dev, u16 stat) ...@@ -836,50 +836,50 @@ static inline void i2c_omap_errata_i207(struct omap_i2c_dev *dev, u16 stat)
static irqreturn_t static irqreturn_t
omap_i2c_omap1_isr(int this_irq, void *dev_id) omap_i2c_omap1_isr(int this_irq, void *dev_id)
{ {
struct omap_i2c_dev *dev = dev_id; struct omap_i2c_dev *omap = dev_id;
u16 iv, w; u16 iv, w;
if (pm_runtime_suspended(dev->dev)) if (pm_runtime_suspended(omap->dev))
return IRQ_NONE; return IRQ_NONE;
iv = omap_i2c_read_reg(dev, OMAP_I2C_IV_REG); iv = omap_i2c_read_reg(omap, OMAP_I2C_IV_REG);
switch (iv) { switch (iv) {
case 0x00: /* None */ case 0x00: /* None */
break; break;
case 0x01: /* Arbitration lost */ case 0x01: /* Arbitration lost */
dev_err(dev->dev, "Arbitration lost\n"); dev_err(omap->dev, "Arbitration lost\n");
omap_i2c_complete_cmd(dev, OMAP_I2C_STAT_AL); omap_i2c_complete_cmd(omap, OMAP_I2C_STAT_AL);
break; break;
case 0x02: /* No acknowledgement */ case 0x02: /* No acknowledgement */
omap_i2c_complete_cmd(dev, OMAP_I2C_STAT_NACK); omap_i2c_complete_cmd(omap, OMAP_I2C_STAT_NACK);
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, OMAP_I2C_CON_STP); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, OMAP_I2C_CON_STP);
break; break;
case 0x03: /* Register access ready */ case 0x03: /* Register access ready */
omap_i2c_complete_cmd(dev, 0); omap_i2c_complete_cmd(omap, 0);
break; break;
case 0x04: /* Receive data ready */ case 0x04: /* Receive data ready */
if (dev->buf_len) { if (omap->buf_len) {
w = omap_i2c_read_reg(dev, OMAP_I2C_DATA_REG); w = omap_i2c_read_reg(omap, OMAP_I2C_DATA_REG);
*dev->buf++ = w; *omap->buf++ = w;
dev->buf_len--; omap->buf_len--;
if (dev->buf_len) { if (omap->buf_len) {
*dev->buf++ = w >> 8; *omap->buf++ = w >> 8;
dev->buf_len--; omap->buf_len--;
} }
} else } else
dev_err(dev->dev, "RRDY IRQ while no data requested\n"); dev_err(omap->dev, "RRDY IRQ while no data requested\n");
break; break;
case 0x05: /* Transmit data ready */ case 0x05: /* Transmit data ready */
if (dev->buf_len) { if (omap->buf_len) {
w = *dev->buf++; w = *omap->buf++;
dev->buf_len--; omap->buf_len--;
if (dev->buf_len) { if (omap->buf_len) {
w |= *dev->buf++ << 8; w |= *omap->buf++ << 8;
dev->buf_len--; omap->buf_len--;
} }
omap_i2c_write_reg(dev, OMAP_I2C_DATA_REG, w); omap_i2c_write_reg(omap, OMAP_I2C_DATA_REG, w);
} else } else
dev_err(dev->dev, "XRDY IRQ while no data to send\n"); dev_err(omap->dev, "XRDY IRQ while no data to send\n");
break; break;
default: default:
return IRQ_NONE; return IRQ_NONE;
...@@ -896,28 +896,28 @@ omap_i2c_omap1_isr(int this_irq, void *dev_id) ...@@ -896,28 +896,28 @@ omap_i2c_omap1_isr(int this_irq, void *dev_id)
* data to DATA_REG. Otherwise some data bytes can be lost while transferring * data to DATA_REG. Otherwise some data bytes can be lost while transferring
* them from the memory to the I2C interface. * them from the memory to the I2C interface.
*/ */
static int errata_omap3_i462(struct omap_i2c_dev *dev) static int errata_omap3_i462(struct omap_i2c_dev *omap)
{ {
unsigned long timeout = 10000; unsigned long timeout = 10000;
u16 stat; u16 stat;
do { do {
stat = omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG); stat = omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
if (stat & OMAP_I2C_STAT_XUDF) if (stat & OMAP_I2C_STAT_XUDF)
break; break;
if (stat & (OMAP_I2C_STAT_NACK | OMAP_I2C_STAT_AL)) { if (stat & (OMAP_I2C_STAT_NACK | OMAP_I2C_STAT_AL)) {
omap_i2c_ack_stat(dev, (OMAP_I2C_STAT_XRDY | omap_i2c_ack_stat(omap, (OMAP_I2C_STAT_XRDY |
OMAP_I2C_STAT_XDR)); OMAP_I2C_STAT_XDR));
if (stat & OMAP_I2C_STAT_NACK) { if (stat & OMAP_I2C_STAT_NACK) {
dev->cmd_err |= OMAP_I2C_STAT_NACK; omap->cmd_err |= OMAP_I2C_STAT_NACK;
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_NACK); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_NACK);
} }
if (stat & OMAP_I2C_STAT_AL) { if (stat & OMAP_I2C_STAT_AL) {
dev_err(dev->dev, "Arbitration lost\n"); dev_err(omap->dev, "Arbitration lost\n");
dev->cmd_err |= OMAP_I2C_STAT_AL; omap->cmd_err |= OMAP_I2C_STAT_AL;
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_AL); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_AL);
} }
return -EIO; return -EIO;
...@@ -927,61 +927,61 @@ static int errata_omap3_i462(struct omap_i2c_dev *dev) ...@@ -927,61 +927,61 @@ static int errata_omap3_i462(struct omap_i2c_dev *dev)
} while (--timeout); } while (--timeout);
if (!timeout) { if (!timeout) {
dev_err(dev->dev, "timeout waiting on XUDF bit\n"); dev_err(omap->dev, "timeout waiting on XUDF bit\n");
return 0; return 0;
} }
return 0; return 0;
} }
static void omap_i2c_receive_data(struct omap_i2c_dev *dev, u8 num_bytes, static void omap_i2c_receive_data(struct omap_i2c_dev *omap, u8 num_bytes,
bool is_rdr) bool is_rdr)
{ {
u16 w; u16 w;
while (num_bytes--) { while (num_bytes--) {
w = omap_i2c_read_reg(dev, OMAP_I2C_DATA_REG); w = omap_i2c_read_reg(omap, OMAP_I2C_DATA_REG);
*dev->buf++ = w; *omap->buf++ = w;
dev->buf_len--; omap->buf_len--;
/* /*
* Data reg in 2430, omap3 and * Data reg in 2430, omap3 and
* omap4 is 8 bit wide * omap4 is 8 bit wide
*/ */
if (dev->flags & OMAP_I2C_FLAG_16BIT_DATA_REG) { if (omap->flags & OMAP_I2C_FLAG_16BIT_DATA_REG) {
*dev->buf++ = w >> 8; *omap->buf++ = w >> 8;
dev->buf_len--; omap->buf_len--;
} }
} }
} }
static int omap_i2c_transmit_data(struct omap_i2c_dev *dev, u8 num_bytes, static int omap_i2c_transmit_data(struct omap_i2c_dev *omap, u8 num_bytes,
bool is_xdr) bool is_xdr)
{ {
u16 w; u16 w;
while (num_bytes--) { while (num_bytes--) {
w = *dev->buf++; w = *omap->buf++;
dev->buf_len--; omap->buf_len--;
/* /*
* Data reg in 2430, omap3 and * Data reg in 2430, omap3 and
* omap4 is 8 bit wide * omap4 is 8 bit wide
*/ */
if (dev->flags & OMAP_I2C_FLAG_16BIT_DATA_REG) { if (omap->flags & OMAP_I2C_FLAG_16BIT_DATA_REG) {
w |= *dev->buf++ << 8; w |= *omap->buf++ << 8;
dev->buf_len--; omap->buf_len--;
} }
if (dev->errata & I2C_OMAP_ERRATA_I462) { if (omap->errata & I2C_OMAP_ERRATA_I462) {
int ret; int ret;
ret = errata_omap3_i462(dev); ret = errata_omap3_i462(omap);
if (ret < 0) if (ret < 0)
return ret; return ret;
} }
omap_i2c_write_reg(dev, OMAP_I2C_DATA_REG, w); omap_i2c_write_reg(omap, OMAP_I2C_DATA_REG, w);
} }
return 0; return 0;
...@@ -990,19 +990,19 @@ static int omap_i2c_transmit_data(struct omap_i2c_dev *dev, u8 num_bytes, ...@@ -990,19 +990,19 @@ static int omap_i2c_transmit_data(struct omap_i2c_dev *dev, u8 num_bytes,
static irqreturn_t static irqreturn_t
omap_i2c_isr(int irq, void *dev_id) omap_i2c_isr(int irq, void *dev_id)
{ {
struct omap_i2c_dev *dev = dev_id; struct omap_i2c_dev *omap = dev_id;
irqreturn_t ret = IRQ_HANDLED; irqreturn_t ret = IRQ_HANDLED;
u16 mask; u16 mask;
u16 stat; u16 stat;
spin_lock(&dev->lock); spin_lock(&omap->lock);
mask = omap_i2c_read_reg(dev, OMAP_I2C_IE_REG); mask = omap_i2c_read_reg(omap, OMAP_I2C_IE_REG);
stat = omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG); stat = omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
if (stat & mask) if (stat & mask)
ret = IRQ_WAKE_THREAD; ret = IRQ_WAKE_THREAD;
spin_unlock(&dev->lock); spin_unlock(&omap->lock);
return ret; return ret;
} }
...@@ -1010,20 +1010,20 @@ omap_i2c_isr(int irq, void *dev_id) ...@@ -1010,20 +1010,20 @@ omap_i2c_isr(int irq, void *dev_id)
static irqreturn_t static irqreturn_t
omap_i2c_isr_thread(int this_irq, void *dev_id) omap_i2c_isr_thread(int this_irq, void *dev_id)
{ {
struct omap_i2c_dev *dev = dev_id; struct omap_i2c_dev *omap = dev_id;
unsigned long flags; unsigned long flags;
u16 bits; u16 bits;
u16 stat; u16 stat;
int err = 0, count = 0; int err = 0, count = 0;
spin_lock_irqsave(&dev->lock, flags); spin_lock_irqsave(&omap->lock, flags);
do { do {
bits = omap_i2c_read_reg(dev, OMAP_I2C_IE_REG); bits = omap_i2c_read_reg(omap, OMAP_I2C_IE_REG);
stat = omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG); stat = omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
stat &= bits; stat &= bits;
/* If we're in receiver mode, ignore XDR/XRDY */ /* If we're in receiver mode, ignore XDR/XRDY */
if (dev->receiver) if (omap->receiver)
stat &= ~(OMAP_I2C_STAT_XDR | OMAP_I2C_STAT_XRDY); stat &= ~(OMAP_I2C_STAT_XDR | OMAP_I2C_STAT_XRDY);
else else
stat &= ~(OMAP_I2C_STAT_RDR | OMAP_I2C_STAT_RRDY); stat &= ~(OMAP_I2C_STAT_RDR | OMAP_I2C_STAT_RRDY);
...@@ -1033,32 +1033,32 @@ omap_i2c_isr_thread(int this_irq, void *dev_id) ...@@ -1033,32 +1033,32 @@ omap_i2c_isr_thread(int this_irq, void *dev_id)
goto out; goto out;
} }
dev_dbg(dev->dev, "IRQ (ISR = 0x%04x)\n", stat); dev_dbg(omap->dev, "IRQ (ISR = 0x%04x)\n", stat);
if (count++ == 100) { if (count++ == 100) {
dev_warn(dev->dev, "Too much work in one IRQ\n"); dev_warn(omap->dev, "Too much work in one IRQ\n");
break; break;
} }
if (stat & OMAP_I2C_STAT_NACK) { if (stat & OMAP_I2C_STAT_NACK) {
err |= OMAP_I2C_STAT_NACK; err |= OMAP_I2C_STAT_NACK;
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_NACK); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_NACK);
} }
if (stat & OMAP_I2C_STAT_AL) { if (stat & OMAP_I2C_STAT_AL) {
dev_err(dev->dev, "Arbitration lost\n"); dev_err(omap->dev, "Arbitration lost\n");
err |= OMAP_I2C_STAT_AL; err |= OMAP_I2C_STAT_AL;
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_AL); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_AL);
} }
/* /*
* ProDB0017052: Clear ARDY bit twice * ProDB0017052: Clear ARDY bit twice
*/ */
if (stat & OMAP_I2C_STAT_ARDY) if (stat & OMAP_I2C_STAT_ARDY)
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_ARDY); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_ARDY);
if (stat & (OMAP_I2C_STAT_ARDY | OMAP_I2C_STAT_NACK | if (stat & (OMAP_I2C_STAT_ARDY | OMAP_I2C_STAT_NACK |
OMAP_I2C_STAT_AL)) { OMAP_I2C_STAT_AL)) {
omap_i2c_ack_stat(dev, (OMAP_I2C_STAT_RRDY | omap_i2c_ack_stat(omap, (OMAP_I2C_STAT_RRDY |
OMAP_I2C_STAT_RDR | OMAP_I2C_STAT_RDR |
OMAP_I2C_STAT_XRDY | OMAP_I2C_STAT_XRDY |
OMAP_I2C_STAT_XDR | OMAP_I2C_STAT_XDR |
...@@ -1069,28 +1069,28 @@ omap_i2c_isr_thread(int this_irq, void *dev_id) ...@@ -1069,28 +1069,28 @@ omap_i2c_isr_thread(int this_irq, void *dev_id)
if (stat & OMAP_I2C_STAT_RDR) { if (stat & OMAP_I2C_STAT_RDR) {
u8 num_bytes = 1; u8 num_bytes = 1;
if (dev->fifo_size) if (omap->fifo_size)
num_bytes = dev->buf_len; num_bytes = omap->buf_len;
if (dev->errata & I2C_OMAP_ERRATA_I207) { if (omap->errata & I2C_OMAP_ERRATA_I207) {
i2c_omap_errata_i207(dev, stat); i2c_omap_errata_i207(omap, stat);
num_bytes = (omap_i2c_read_reg(dev, num_bytes = (omap_i2c_read_reg(omap,
OMAP_I2C_BUFSTAT_REG) >> 8) & 0x3F; OMAP_I2C_BUFSTAT_REG) >> 8) & 0x3F;
} }
omap_i2c_receive_data(dev, num_bytes, true); omap_i2c_receive_data(omap, num_bytes, true);
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_RDR); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_RDR);
continue; continue;
} }
if (stat & OMAP_I2C_STAT_RRDY) { if (stat & OMAP_I2C_STAT_RRDY) {
u8 num_bytes = 1; u8 num_bytes = 1;
if (dev->threshold) if (omap->threshold)
num_bytes = dev->threshold; num_bytes = omap->threshold;
omap_i2c_receive_data(dev, num_bytes, false); omap_i2c_receive_data(omap, num_bytes, false);
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_RRDY); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_RRDY);
continue; continue;
} }
...@@ -1098,14 +1098,14 @@ omap_i2c_isr_thread(int this_irq, void *dev_id) ...@@ -1098,14 +1098,14 @@ omap_i2c_isr_thread(int this_irq, void *dev_id)
u8 num_bytes = 1; u8 num_bytes = 1;
int ret; int ret;
if (dev->fifo_size) if (omap->fifo_size)
num_bytes = dev->buf_len; num_bytes = omap->buf_len;
ret = omap_i2c_transmit_data(dev, num_bytes, true); ret = omap_i2c_transmit_data(omap, num_bytes, true);
if (ret < 0) if (ret < 0)
break; break;
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_XDR); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_XDR);
continue; continue;
} }
...@@ -1113,36 +1113,36 @@ omap_i2c_isr_thread(int this_irq, void *dev_id) ...@@ -1113,36 +1113,36 @@ omap_i2c_isr_thread(int this_irq, void *dev_id)
u8 num_bytes = 1; u8 num_bytes = 1;
int ret; int ret;
if (dev->threshold) if (omap->threshold)
num_bytes = dev->threshold; num_bytes = omap->threshold;
ret = omap_i2c_transmit_data(dev, num_bytes, false); ret = omap_i2c_transmit_data(omap, num_bytes, false);
if (ret < 0) if (ret < 0)
break; break;
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_XRDY); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_XRDY);
continue; continue;
} }
if (stat & OMAP_I2C_STAT_ROVR) { if (stat & OMAP_I2C_STAT_ROVR) {
dev_err(dev->dev, "Receive overrun\n"); dev_err(omap->dev, "Receive overrun\n");
err |= OMAP_I2C_STAT_ROVR; err |= OMAP_I2C_STAT_ROVR;
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_ROVR); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_ROVR);
break; break;
} }
if (stat & OMAP_I2C_STAT_XUDF) { if (stat & OMAP_I2C_STAT_XUDF) {
dev_err(dev->dev, "Transmit underflow\n"); dev_err(omap->dev, "Transmit underflow\n");
err |= OMAP_I2C_STAT_XUDF; err |= OMAP_I2C_STAT_XUDF;
omap_i2c_ack_stat(dev, OMAP_I2C_STAT_XUDF); omap_i2c_ack_stat(omap, OMAP_I2C_STAT_XUDF);
break; break;
} }
} while (stat); } while (stat);
omap_i2c_complete_cmd(dev, err); omap_i2c_complete_cmd(omap, err);
out: out:
spin_unlock_irqrestore(&dev->lock, flags); spin_unlock_irqrestore(&omap->lock, flags);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -1284,7 +1284,7 @@ static struct i2c_bus_recovery_info omap_i2c_bus_recovery_info = { ...@@ -1284,7 +1284,7 @@ static struct i2c_bus_recovery_info omap_i2c_bus_recovery_info = {
static int static int
omap_i2c_probe(struct platform_device *pdev) omap_i2c_probe(struct platform_device *pdev)
{ {
struct omap_i2c_dev *dev; struct omap_i2c_dev *omap;
struct i2c_adapter *adap; struct i2c_adapter *adap;
struct resource *mem; struct resource *mem;
const struct omap_i2c_bus_platform_data *pdata = const struct omap_i2c_bus_platform_data *pdata =
...@@ -1302,46 +1302,46 @@ omap_i2c_probe(struct platform_device *pdev) ...@@ -1302,46 +1302,46 @@ omap_i2c_probe(struct platform_device *pdev)
return irq; return irq;
} }
dev = devm_kzalloc(&pdev->dev, sizeof(struct omap_i2c_dev), GFP_KERNEL); omap = devm_kzalloc(&pdev->dev, sizeof(struct omap_i2c_dev), GFP_KERNEL);
if (!dev) if (!omap)
return -ENOMEM; return -ENOMEM;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev->base = devm_ioremap_resource(&pdev->dev, mem); omap->base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(dev->base)) if (IS_ERR(omap->base))
return PTR_ERR(dev->base); return PTR_ERR(omap->base);
match = of_match_device(of_match_ptr(omap_i2c_of_match), &pdev->dev); match = of_match_device(of_match_ptr(omap_i2c_of_match), &pdev->dev);
if (match) { if (match) {
u32 freq = 100000; /* default to 100000 Hz */ u32 freq = 100000; /* default to 100000 Hz */
pdata = match->data; pdata = match->data;
dev->flags = pdata->flags; omap->flags = pdata->flags;
of_property_read_u32(node, "clock-frequency", &freq); of_property_read_u32(node, "clock-frequency", &freq);
/* convert DT freq value in Hz into kHz for speed */ /* convert DT freq value in Hz into kHz for speed */
dev->speed = freq / 1000; omap->speed = freq / 1000;
} else if (pdata != NULL) { } else if (pdata != NULL) {
dev->speed = pdata->clkrate; omap->speed = pdata->clkrate;
dev->flags = pdata->flags; omap->flags = pdata->flags;
dev->set_mpu_wkup_lat = pdata->set_mpu_wkup_lat; omap->set_mpu_wkup_lat = pdata->set_mpu_wkup_lat;
} }
dev->dev = &pdev->dev; omap->dev = &pdev->dev;
dev->irq = irq; omap->irq = irq;
spin_lock_init(&dev->lock); spin_lock_init(&omap->lock);
platform_set_drvdata(pdev, dev); platform_set_drvdata(pdev, omap);
init_completion(&dev->cmd_complete); init_completion(&omap->cmd_complete);
dev->reg_shift = (dev->flags >> OMAP_I2C_FLAG_BUS_SHIFT__SHIFT) & 3; omap->reg_shift = (omap->flags >> OMAP_I2C_FLAG_BUS_SHIFT__SHIFT) & 3;
pm_runtime_enable(dev->dev); pm_runtime_enable(omap->dev);
pm_runtime_set_autosuspend_delay(dev->dev, OMAP_I2C_PM_TIMEOUT); pm_runtime_set_autosuspend_delay(omap->dev, OMAP_I2C_PM_TIMEOUT);
pm_runtime_use_autosuspend(dev->dev); pm_runtime_use_autosuspend(omap->dev);
r = pm_runtime_get_sync(dev->dev); r = pm_runtime_get_sync(omap->dev);
if (r < 0) if (r < 0)
goto err_free_mem; goto err_free_mem;
...@@ -1351,42 +1351,42 @@ omap_i2c_probe(struct platform_device *pdev) ...@@ -1351,42 +1351,42 @@ omap_i2c_probe(struct platform_device *pdev)
* Also since the omap_i2c_read_reg uses reg_map_ip_* a * Also since the omap_i2c_read_reg uses reg_map_ip_* a
* readw_relaxed is done. * readw_relaxed is done.
*/ */
rev = readw_relaxed(dev->base + 0x04); rev = readw_relaxed(omap->base + 0x04);
dev->scheme = OMAP_I2C_SCHEME(rev); omap->scheme = OMAP_I2C_SCHEME(rev);
switch (dev->scheme) { switch (omap->scheme) {
case OMAP_I2C_SCHEME_0: case OMAP_I2C_SCHEME_0:
dev->regs = (u8 *)reg_map_ip_v1; omap->regs = (u8 *)reg_map_ip_v1;
dev->rev = omap_i2c_read_reg(dev, OMAP_I2C_REV_REG); omap->rev = omap_i2c_read_reg(omap, OMAP_I2C_REV_REG);
minor = OMAP_I2C_REV_SCHEME_0_MAJOR(dev->rev); minor = OMAP_I2C_REV_SCHEME_0_MAJOR(omap->rev);
major = OMAP_I2C_REV_SCHEME_0_MAJOR(dev->rev); major = OMAP_I2C_REV_SCHEME_0_MAJOR(omap->rev);
break; break;
case OMAP_I2C_SCHEME_1: case OMAP_I2C_SCHEME_1:
/* FALLTHROUGH */ /* FALLTHROUGH */
default: default:
dev->regs = (u8 *)reg_map_ip_v2; omap->regs = (u8 *)reg_map_ip_v2;
rev = (rev << 16) | rev = (rev << 16) |
omap_i2c_read_reg(dev, OMAP_I2C_IP_V2_REVNB_LO); omap_i2c_read_reg(omap, OMAP_I2C_IP_V2_REVNB_LO);
minor = OMAP_I2C_REV_SCHEME_1_MINOR(rev); minor = OMAP_I2C_REV_SCHEME_1_MINOR(rev);
major = OMAP_I2C_REV_SCHEME_1_MAJOR(rev); major = OMAP_I2C_REV_SCHEME_1_MAJOR(rev);
dev->rev = rev; omap->rev = rev;
} }
dev->errata = 0; omap->errata = 0;
if (dev->rev >= OMAP_I2C_REV_ON_2430 && if (omap->rev >= OMAP_I2C_REV_ON_2430 &&
dev->rev < OMAP_I2C_REV_ON_4430_PLUS) omap->rev < OMAP_I2C_REV_ON_4430_PLUS)
dev->errata |= I2C_OMAP_ERRATA_I207; omap->errata |= I2C_OMAP_ERRATA_I207;
if (dev->rev <= OMAP_I2C_REV_ON_3430_3530) if (omap->rev <= OMAP_I2C_REV_ON_3430_3530)
dev->errata |= I2C_OMAP_ERRATA_I462; omap->errata |= I2C_OMAP_ERRATA_I462;
if (!(dev->flags & OMAP_I2C_FLAG_NO_FIFO)) { if (!(omap->flags & OMAP_I2C_FLAG_NO_FIFO)) {
u16 s; u16 s;
/* Set up the fifo size - Get total size */ /* Set up the fifo size - Get total size */
s = (omap_i2c_read_reg(dev, OMAP_I2C_BUFSTAT_REG) >> 14) & 0x3; s = (omap_i2c_read_reg(omap, OMAP_I2C_BUFSTAT_REG) >> 14) & 0x3;
dev->fifo_size = 0x8 << s; omap->fifo_size = 0x8 << s;
/* /*
* Set up notification threshold as half the total available * Set up notification threshold as half the total available
...@@ -1394,36 +1394,36 @@ omap_i2c_probe(struct platform_device *pdev) ...@@ -1394,36 +1394,36 @@ omap_i2c_probe(struct platform_device *pdev)
* call back latencies. * call back latencies.
*/ */
dev->fifo_size = (dev->fifo_size / 2); omap->fifo_size = (omap->fifo_size / 2);
if (dev->rev < OMAP_I2C_REV_ON_3630) if (omap->rev < OMAP_I2C_REV_ON_3630)
dev->b_hw = 1; /* Enable hardware fixes */ omap->b_hw = 1; /* Enable hardware fixes */
/* calculate wakeup latency constraint for MPU */ /* calculate wakeup latency constraint for MPU */
if (dev->set_mpu_wkup_lat != NULL) if (omap->set_mpu_wkup_lat != NULL)
dev->latency = (1000000 * dev->fifo_size) / omap->latency = (1000000 * omap->fifo_size) /
(1000 * dev->speed / 8); (1000 * omap->speed / 8);
} }
/* reset ASAP, clearing any IRQs */ /* reset ASAP, clearing any IRQs */
omap_i2c_init(dev); omap_i2c_init(omap);
if (dev->rev < OMAP_I2C_OMAP1_REV_2) if (omap->rev < OMAP_I2C_OMAP1_REV_2)
r = devm_request_irq(&pdev->dev, dev->irq, omap_i2c_omap1_isr, r = devm_request_irq(&pdev->dev, omap->irq, omap_i2c_omap1_isr,
IRQF_NO_SUSPEND, pdev->name, dev); IRQF_NO_SUSPEND, pdev->name, omap);
else else
r = devm_request_threaded_irq(&pdev->dev, dev->irq, r = devm_request_threaded_irq(&pdev->dev, omap->irq,
omap_i2c_isr, omap_i2c_isr_thread, omap_i2c_isr, omap_i2c_isr_thread,
IRQF_NO_SUSPEND | IRQF_ONESHOT, IRQF_NO_SUSPEND | IRQF_ONESHOT,
pdev->name, dev); pdev->name, omap);
if (r) { if (r) {
dev_err(dev->dev, "failure requesting irq %i\n", dev->irq); dev_err(omap->dev, "failure requesting irq %i\n", omap->irq);
goto err_unuse_clocks; goto err_unuse_clocks;
} }
adap = &dev->adapter; adap = &omap->adapter;
i2c_set_adapdata(adap, dev); i2c_set_adapdata(adap, omap);
adap->owner = THIS_MODULE; adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_DEPRECATED; adap->class = I2C_CLASS_DEPRECATED;
strlcpy(adap->name, "OMAP I2C adapter", sizeof(adap->name)); strlcpy(adap->name, "OMAP I2C adapter", sizeof(adap->name));
...@@ -1436,21 +1436,21 @@ omap_i2c_probe(struct platform_device *pdev) ...@@ -1436,21 +1436,21 @@ omap_i2c_probe(struct platform_device *pdev)
adap->nr = pdev->id; adap->nr = pdev->id;
r = i2c_add_numbered_adapter(adap); r = i2c_add_numbered_adapter(adap);
if (r) { if (r) {
dev_err(dev->dev, "failure adding adapter\n"); dev_err(omap->dev, "failure adding adapter\n");
goto err_unuse_clocks; goto err_unuse_clocks;
} }
dev_info(dev->dev, "bus %d rev%d.%d at %d kHz\n", adap->nr, dev_info(omap->dev, "bus %d rev%d.%d at %d kHz\n", adap->nr,
major, minor, dev->speed); major, minor, omap->speed);
pm_runtime_mark_last_busy(dev->dev); pm_runtime_mark_last_busy(omap->dev);
pm_runtime_put_autosuspend(dev->dev); pm_runtime_put_autosuspend(omap->dev);
return 0; return 0;
err_unuse_clocks: err_unuse_clocks:
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, 0); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, 0);
pm_runtime_put(dev->dev); pm_runtime_put(omap->dev);
pm_runtime_disable(&pdev->dev); pm_runtime_disable(&pdev->dev);
err_free_mem: err_free_mem:
...@@ -1459,16 +1459,16 @@ omap_i2c_probe(struct platform_device *pdev) ...@@ -1459,16 +1459,16 @@ omap_i2c_probe(struct platform_device *pdev)
static int omap_i2c_remove(struct platform_device *pdev) static int omap_i2c_remove(struct platform_device *pdev)
{ {
struct omap_i2c_dev *dev = platform_get_drvdata(pdev); struct omap_i2c_dev *omap = platform_get_drvdata(pdev);
int ret; int ret;
i2c_del_adapter(&dev->adapter); i2c_del_adapter(&omap->adapter);
ret = pm_runtime_get_sync(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) if (ret < 0)
return ret; return ret;
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG, 0); omap_i2c_write_reg(omap, OMAP_I2C_CON_REG, 0);
pm_runtime_put(&pdev->dev); pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev); pm_runtime_disable(&pdev->dev);
return 0; return 0;
} }
...@@ -1476,24 +1476,23 @@ static int omap_i2c_remove(struct platform_device *pdev) ...@@ -1476,24 +1476,23 @@ static int omap_i2c_remove(struct platform_device *pdev)
#ifdef CONFIG_PM #ifdef CONFIG_PM
static int omap_i2c_runtime_suspend(struct device *dev) static int omap_i2c_runtime_suspend(struct device *dev)
{ {
struct platform_device *pdev = to_platform_device(dev); struct omap_i2c_dev *omap = dev_get_drvdata(dev);
struct omap_i2c_dev *_dev = platform_get_drvdata(pdev);
_dev->iestate = omap_i2c_read_reg(_dev, OMAP_I2C_IE_REG); omap->iestate = omap_i2c_read_reg(omap, OMAP_I2C_IE_REG);
if (_dev->scheme == OMAP_I2C_SCHEME_0) if (omap->scheme == OMAP_I2C_SCHEME_0)
omap_i2c_write_reg(_dev, OMAP_I2C_IE_REG, 0); omap_i2c_write_reg(omap, OMAP_I2C_IE_REG, 0);
else else
omap_i2c_write_reg(_dev, OMAP_I2C_IP_V2_IRQENABLE_CLR, omap_i2c_write_reg(omap, OMAP_I2C_IP_V2_IRQENABLE_CLR,
OMAP_I2C_IP_V2_INTERRUPTS_MASK); OMAP_I2C_IP_V2_INTERRUPTS_MASK);
if (_dev->rev < OMAP_I2C_OMAP1_REV_2) { if (omap->rev < OMAP_I2C_OMAP1_REV_2) {
omap_i2c_read_reg(_dev, OMAP_I2C_IV_REG); /* Read clears */ omap_i2c_read_reg(omap, OMAP_I2C_IV_REG); /* Read clears */
} else { } else {
omap_i2c_write_reg(_dev, OMAP_I2C_STAT_REG, _dev->iestate); omap_i2c_write_reg(omap, OMAP_I2C_STAT_REG, omap->iestate);
/* Flush posted write */ /* Flush posted write */
omap_i2c_read_reg(_dev, OMAP_I2C_STAT_REG); omap_i2c_read_reg(omap, OMAP_I2C_STAT_REG);
} }
pinctrl_pm_select_sleep_state(dev); pinctrl_pm_select_sleep_state(dev);
...@@ -1503,15 +1502,14 @@ static int omap_i2c_runtime_suspend(struct device *dev) ...@@ -1503,15 +1502,14 @@ static int omap_i2c_runtime_suspend(struct device *dev)
static int omap_i2c_runtime_resume(struct device *dev) static int omap_i2c_runtime_resume(struct device *dev)
{ {
struct platform_device *pdev = to_platform_device(dev); struct omap_i2c_dev *omap = dev_get_drvdata(dev);
struct omap_i2c_dev *_dev = platform_get_drvdata(pdev);
pinctrl_pm_select_default_state(dev); pinctrl_pm_select_default_state(dev);
if (!_dev->regs) if (!omap->regs)
return 0; return 0;
__omap_i2c_init(_dev); __omap_i2c_init(omap);
return 0; return 0;
} }
......
...@@ -20,6 +20,8 @@ ...@@ -20,6 +20,8 @@
GNU General Public License for more details. GNU General Public License for more details.
* ------------------------------------------------------------------------ */ * ------------------------------------------------------------------------ */
#define pr_fmt(fmt) "i2c-parport: " fmt
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/init.h> #include <linux/init.h>
...@@ -176,26 +178,24 @@ static void i2c_parport_attach(struct parport *port) ...@@ -176,26 +178,24 @@ static void i2c_parport_attach(struct parport *port)
break; break;
} }
if (i == MAX_DEVICE) { if (i == MAX_DEVICE) {
pr_debug("i2c-parport: Not using parport%d.\n", port->number); pr_debug("Not using parport%d.\n", port->number);
return; return;
} }
adapter = kzalloc(sizeof(struct i2c_par), GFP_KERNEL); adapter = kzalloc(sizeof(struct i2c_par), GFP_KERNEL);
if (adapter == NULL) { if (!adapter)
printk(KERN_ERR "i2c-parport: Failed to kzalloc\n");
return; return;
}
memset(&i2c_parport_cb, 0, sizeof(i2c_parport_cb)); memset(&i2c_parport_cb, 0, sizeof(i2c_parport_cb));
i2c_parport_cb.flags = PARPORT_FLAG_EXCL; i2c_parport_cb.flags = PARPORT_FLAG_EXCL;
i2c_parport_cb.irq_func = i2c_parport_irq; i2c_parport_cb.irq_func = i2c_parport_irq;
i2c_parport_cb.private = adapter; i2c_parport_cb.private = adapter;
pr_debug("i2c-parport: attaching to %s\n", port->name); pr_debug("attaching to %s\n", port->name);
parport_disable_irq(port); parport_disable_irq(port);
adapter->pdev = parport_register_dev_model(port, "i2c-parport", adapter->pdev = parport_register_dev_model(port, "i2c-parport",
&i2c_parport_cb, i); &i2c_parport_cb, i);
if (!adapter->pdev) { if (!adapter->pdev) {
printk(KERN_ERR "i2c-parport: Unable to register with parport\n"); pr_err("Unable to register with parport\n");
goto err_free; goto err_free;
} }
...@@ -215,7 +215,8 @@ static void i2c_parport_attach(struct parport *port) ...@@ -215,7 +215,8 @@ static void i2c_parport_attach(struct parport *port)
adapter->adapter.dev.parent = port->physport->dev; adapter->adapter.dev.parent = port->physport->dev;
if (parport_claim_or_block(adapter->pdev) < 0) { if (parport_claim_or_block(adapter->pdev) < 0) {
printk(KERN_ERR "i2c-parport: Could not claim parallel port\n"); dev_err(&adapter->pdev->dev,
"Could not claim parallel port\n");
goto err_unregister; goto err_unregister;
} }
...@@ -230,7 +231,7 @@ static void i2c_parport_attach(struct parport *port) ...@@ -230,7 +231,7 @@ static void i2c_parport_attach(struct parport *port)
} }
if (i2c_bit_add_bus(&adapter->adapter) < 0) { if (i2c_bit_add_bus(&adapter->adapter) < 0) {
printk(KERN_ERR "i2c-parport: Unable to register with I2C\n"); dev_err(&adapter->pdev->dev, "Unable to register with I2C\n");
goto err_unregister; goto err_unregister;
} }
...@@ -242,8 +243,8 @@ static void i2c_parport_attach(struct parport *port) ...@@ -242,8 +243,8 @@ static void i2c_parport_attach(struct parport *port)
if (adapter->ara) if (adapter->ara)
parport_enable_irq(port); parport_enable_irq(port);
else else
printk(KERN_WARNING "i2c-parport: Failed to register " dev_warn(&adapter->pdev->dev,
"ARA client\n"); "Failed to register ARA client\n");
} }
/* Add the new adapter to the list */ /* Add the new adapter to the list */
...@@ -298,12 +299,12 @@ static struct parport_driver i2c_parport_driver = { ...@@ -298,12 +299,12 @@ static struct parport_driver i2c_parport_driver = {
static int __init i2c_parport_init(void) static int __init i2c_parport_init(void)
{ {
if (type < 0) { if (type < 0) {
printk(KERN_WARNING "i2c-parport: adapter type unspecified\n"); pr_warn("adapter type unspecified\n");
return -ENODEV; return -ENODEV;
} }
if (type >= ARRAY_SIZE(adapter_parm)) { if (type >= ARRAY_SIZE(adapter_parm)) {
printk(KERN_WARNING "i2c-parport: invalid type (%d)\n", type); pr_warn("invalid type (%d)\n", type);
return -ENODEV; return -ENODEV;
} }
......
...@@ -89,6 +89,13 @@ static const struct adapter_parm adapter_parm[] = { ...@@ -89,6 +89,13 @@ static const struct adapter_parm adapter_parm[] = {
.getsda = { 0x80, PORT_STAT, 1 }, .getsda = { 0x80, PORT_STAT, 1 },
.init = { 0x04, PORT_DATA, 1 }, .init = { 0x04, PORT_DATA, 1 },
}, },
/* type 8: VCT-jig */
{
.setsda = { 0x04, PORT_DATA, 1 },
.setscl = { 0x01, PORT_DATA, 1 },
.getsda = { 0x40, PORT_STAT, 0 },
.getscl = { 0x80, PORT_STAT, 1 },
},
}; };
static int type = -1; static int type = -1;
...@@ -103,4 +110,5 @@ MODULE_PARM_DESC(type, ...@@ -103,4 +110,5 @@ MODULE_PARM_DESC(type,
" 5 = ADM1025, ADM1030 and ADM1031 evaluation boards\n" " 5 = ADM1025, ADM1030 and ADM1031 evaluation boards\n"
" 6 = Barco LPT->DVI (K5800236) adapter\n" " 6 = Barco LPT->DVI (K5800236) adapter\n"
" 7 = One For All JP1 parallel port adapter\n" " 7 = One For All JP1 parallel port adapter\n"
" 8 = VCT-jig\n"
); );
...@@ -132,6 +132,7 @@ struct pxa_i2c { ...@@ -132,6 +132,7 @@ struct pxa_i2c {
unsigned int msg_idx; unsigned int msg_idx;
unsigned int msg_ptr; unsigned int msg_ptr;
unsigned int slave_addr; unsigned int slave_addr;
unsigned int req_slave_addr;
struct i2c_adapter adap; struct i2c_adapter adap;
struct clk *clk; struct clk *clk;
...@@ -253,15 +254,20 @@ static void i2c_pxa_show_state(struct pxa_i2c *i2c, int lno, const char *fname) ...@@ -253,15 +254,20 @@ static void i2c_pxa_show_state(struct pxa_i2c *i2c, int lno, const char *fname)
static void i2c_pxa_scream_blue_murder(struct pxa_i2c *i2c, const char *why) static void i2c_pxa_scream_blue_murder(struct pxa_i2c *i2c, const char *why)
{ {
unsigned int i; unsigned int i;
printk(KERN_ERR "i2c: error: %s\n", why); struct device *dev = &i2c->adap.dev;
printk(KERN_ERR "i2c: msg_num: %d msg_idx: %d msg_ptr: %d\n",
dev_err(dev, "slave_0x%x error: %s\n",
i2c->req_slave_addr >> 1, why);
dev_err(dev, "msg_num: %d msg_idx: %d msg_ptr: %d\n",
i2c->msg_num, i2c->msg_idx, i2c->msg_ptr); i2c->msg_num, i2c->msg_idx, i2c->msg_ptr);
printk(KERN_ERR "i2c: ICR: %08x ISR: %08x\n", dev_err(dev, "IBMR: %08x IDBR: %08x ICR: %08x ISR: %08x\n",
readl(_ICR(i2c)), readl(_ISR(i2c))); readl(_IBMR(i2c)), readl(_IDBR(i2c)), readl(_ICR(i2c)),
printk(KERN_DEBUG "i2c: log: "); readl(_ISR(i2c)));
dev_dbg(dev, "log: ");
for (i = 0; i < i2c->irqlogidx; i++) for (i = 0; i < i2c->irqlogidx; i++)
printk("[%08x:%08x] ", i2c->isrlog[i], i2c->icrlog[i]); pr_debug("[%08x:%08x] ", i2c->isrlog[i], i2c->icrlog[i]);
printk("\n");
pr_debug("\n");
} }
#else /* ifdef DEBUG */ #else /* ifdef DEBUG */
...@@ -459,7 +465,7 @@ static void i2c_pxa_reset(struct pxa_i2c *i2c) ...@@ -459,7 +465,7 @@ static void i2c_pxa_reset(struct pxa_i2c *i2c)
writel(I2C_ISR_INIT, _ISR(i2c)); writel(I2C_ISR_INIT, _ISR(i2c));
writel(readl(_ICR(i2c)) & ~ICR_UR, _ICR(i2c)); writel(readl(_ICR(i2c)) & ~ICR_UR, _ICR(i2c));
if (i2c->reg_isar) if (i2c->reg_isar && IS_ENABLED(CONFIG_I2C_PXA_SLAVE))
writel(i2c->slave_addr, _ISAR(i2c)); writel(i2c->slave_addr, _ISAR(i2c));
/* set control register values */ /* set control register values */
...@@ -638,6 +644,7 @@ static inline void i2c_pxa_start_message(struct pxa_i2c *i2c) ...@@ -638,6 +644,7 @@ static inline void i2c_pxa_start_message(struct pxa_i2c *i2c)
* Step 1: target slave address into IDBR * Step 1: target slave address into IDBR
*/ */
writel(i2c_pxa_addr_byte(i2c->msg), _IDBR(i2c)); writel(i2c_pxa_addr_byte(i2c->msg), _IDBR(i2c));
i2c->req_slave_addr = i2c_pxa_addr_byte(i2c->msg);
/* /*
* Step 2: initiate the write. * Step 2: initiate the write.
...@@ -745,8 +752,10 @@ static int i2c_pxa_do_pio_xfer(struct pxa_i2c *i2c, ...@@ -745,8 +752,10 @@ static int i2c_pxa_do_pio_xfer(struct pxa_i2c *i2c,
ret = i2c->msg_idx; ret = i2c->msg_idx;
out: out:
if (timeout == 0) if (timeout == 0) {
i2c_pxa_scream_blue_murder(i2c, "timeout"); i2c_pxa_scream_blue_murder(i2c, "timeout");
ret = I2C_RETRY;
}
return ret; return ret;
} }
...@@ -949,6 +958,7 @@ static void i2c_pxa_irq_txempty(struct pxa_i2c *i2c, u32 isr) ...@@ -949,6 +958,7 @@ static void i2c_pxa_irq_txempty(struct pxa_i2c *i2c, u32 isr)
* Write the next address. * Write the next address.
*/ */
writel(i2c_pxa_addr_byte(i2c->msg), _IDBR(i2c)); writel(i2c_pxa_addr_byte(i2c->msg), _IDBR(i2c));
i2c->req_slave_addr = i2c_pxa_addr_byte(i2c->msg);
/* /*
* And trigger a repeated start, and send the byte. * And trigger a repeated start, and send the byte.
...@@ -1114,7 +1124,9 @@ static int i2c_pxa_probe_dt(struct platform_device *pdev, struct pxa_i2c *i2c, ...@@ -1114,7 +1124,9 @@ static int i2c_pxa_probe_dt(struct platform_device *pdev, struct pxa_i2c *i2c,
i2c->use_pio = 1; i2c->use_pio = 1;
if (of_get_property(np, "mrvl,i2c-fast-mode", NULL)) if (of_get_property(np, "mrvl,i2c-fast-mode", NULL))
i2c->fast_mode = 1; i2c->fast_mode = 1;
*i2c_types = (u32)(of_id->data);
*i2c_types = (enum pxa_i2c_types)(of_id->data);
return 0; return 0;
} }
...@@ -1146,10 +1158,19 @@ static int i2c_pxa_probe(struct platform_device *dev) ...@@ -1146,10 +1158,19 @@ static int i2c_pxa_probe(struct platform_device *dev)
struct resource *res = NULL; struct resource *res = NULL;
int ret, irq; int ret, irq;
i2c = kzalloc(sizeof(struct pxa_i2c), GFP_KERNEL); i2c = devm_kzalloc(&dev->dev, sizeof(struct pxa_i2c), GFP_KERNEL);
if (!i2c) { if (!i2c)
ret = -ENOMEM; return -ENOMEM;
goto emalloc;
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
i2c->reg_base = devm_ioremap_resource(&dev->dev, res);
if (IS_ERR(i2c->reg_base))
return PTR_ERR(i2c->reg_base);
irq = platform_get_irq(dev, 0);
if (irq < 0) {
dev_err(&dev->dev, "no irq resource: %d\n", irq);
return irq;
} }
/* Default adapter num to device id; i2c_pxa_probe_dt can override. */ /* Default adapter num to device id; i2c_pxa_probe_dt can override. */
...@@ -1159,19 +1180,7 @@ static int i2c_pxa_probe(struct platform_device *dev) ...@@ -1159,19 +1180,7 @@ static int i2c_pxa_probe(struct platform_device *dev)
if (ret > 0) if (ret > 0)
ret = i2c_pxa_probe_pdata(dev, i2c, &i2c_type); ret = i2c_pxa_probe_pdata(dev, i2c, &i2c_type);
if (ret < 0) if (ret < 0)
goto eclk; return ret;
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
irq = platform_get_irq(dev, 0);
if (res == NULL || irq < 0) {
ret = -ENODEV;
goto eclk;
}
if (!request_mem_region(res->start, resource_size(res), res->name)) {
ret = -ENOMEM;
goto eclk;
}
i2c->adap.owner = THIS_MODULE; i2c->adap.owner = THIS_MODULE;
i2c->adap.retries = 5; i2c->adap.retries = 5;
...@@ -1181,16 +1190,10 @@ static int i2c_pxa_probe(struct platform_device *dev) ...@@ -1181,16 +1190,10 @@ static int i2c_pxa_probe(struct platform_device *dev)
strlcpy(i2c->adap.name, "pxa_i2c-i2c", sizeof(i2c->adap.name)); strlcpy(i2c->adap.name, "pxa_i2c-i2c", sizeof(i2c->adap.name));
i2c->clk = clk_get(&dev->dev, NULL); i2c->clk = devm_clk_get(&dev->dev, NULL);
if (IS_ERR(i2c->clk)) { if (IS_ERR(i2c->clk)) {
ret = PTR_ERR(i2c->clk); dev_err(&dev->dev, "failed to get the clk: %ld\n", PTR_ERR(i2c->clk));
goto eclk; return PTR_ERR(i2c->clk);
}
i2c->reg_base = ioremap(res->start, resource_size(res));
if (!i2c->reg_base) {
ret = -EIO;
goto eremap;
} }
i2c->reg_ibmr = i2c->reg_base + pxa_reg_layout[i2c_type].ibmr; i2c->reg_ibmr = i2c->reg_base + pxa_reg_layout[i2c_type].ibmr;
...@@ -1232,11 +1235,14 @@ static int i2c_pxa_probe(struct platform_device *dev) ...@@ -1232,11 +1235,14 @@ static int i2c_pxa_probe(struct platform_device *dev)
i2c->adap.algo = &i2c_pxa_pio_algorithm; i2c->adap.algo = &i2c_pxa_pio_algorithm;
} else { } else {
i2c->adap.algo = &i2c_pxa_algorithm; i2c->adap.algo = &i2c_pxa_algorithm;
ret = request_irq(irq, i2c_pxa_handler, IRQF_SHARED, ret = devm_request_irq(&dev->dev, irq, i2c_pxa_handler,
IRQF_SHARED | IRQF_NO_SUSPEND,
dev_name(&dev->dev), i2c); dev_name(&dev->dev), i2c);
if (ret) if (ret) {
dev_err(&dev->dev, "failed to request irq: %d\n", ret);
goto ereqirq; goto ereqirq;
} }
}
i2c_pxa_reset(i2c); i2c_pxa_reset(i2c);
...@@ -1248,33 +1254,22 @@ static int i2c_pxa_probe(struct platform_device *dev) ...@@ -1248,33 +1254,22 @@ static int i2c_pxa_probe(struct platform_device *dev)
ret = i2c_add_numbered_adapter(&i2c->adap); ret = i2c_add_numbered_adapter(&i2c->adap);
if (ret < 0) { if (ret < 0) {
printk(KERN_INFO "I2C: Failed to add bus\n"); dev_err(&dev->dev, "failed to add bus: %d\n", ret);
goto eadapt; goto ereqirq;
} }
platform_set_drvdata(dev, i2c); platform_set_drvdata(dev, i2c);
#ifdef CONFIG_I2C_PXA_SLAVE #ifdef CONFIG_I2C_PXA_SLAVE
printk(KERN_INFO "I2C: %s: PXA I2C adapter, slave address %d\n", dev_info(&i2c->adap.dev, " PXA I2C adapter, slave address %d\n",
dev_name(&i2c->adap.dev), i2c->slave_addr); i2c->slave_addr);
#else #else
printk(KERN_INFO "I2C: %s: PXA I2C adapter\n", dev_info(&i2c->adap.dev, " PXA I2C adapter\n");
dev_name(&i2c->adap.dev));
#endif #endif
return 0; return 0;
eadapt:
if (!i2c->use_pio)
free_irq(irq, i2c);
ereqirq: ereqirq:
clk_disable_unprepare(i2c->clk); clk_disable_unprepare(i2c->clk);
iounmap(i2c->reg_base);
eremap:
clk_put(i2c->clk);
eclk:
kfree(i2c);
emalloc:
release_mem_region(res->start, resource_size(res));
return ret; return ret;
} }
...@@ -1283,15 +1278,8 @@ static int i2c_pxa_remove(struct platform_device *dev) ...@@ -1283,15 +1278,8 @@ static int i2c_pxa_remove(struct platform_device *dev)
struct pxa_i2c *i2c = platform_get_drvdata(dev); struct pxa_i2c *i2c = platform_get_drvdata(dev);
i2c_del_adapter(&i2c->adap); i2c_del_adapter(&i2c->adap);
if (!i2c->use_pio)
free_irq(i2c->irq, i2c);
clk_disable_unprepare(i2c->clk); clk_disable_unprepare(i2c->clk);
clk_put(i2c->clk);
iounmap(i2c->reg_base);
release_mem_region(i2c->iobase, i2c->iosize);
kfree(i2c);
return 0; return 0;
} }
......
...@@ -100,6 +100,12 @@ ...@@ -100,6 +100,12 @@
#define I2C_HEADER_CONTINUE_XFER (1<<15) #define I2C_HEADER_CONTINUE_XFER (1<<15)
#define I2C_HEADER_MASTER_ADDR_SHIFT 12 #define I2C_HEADER_MASTER_ADDR_SHIFT 12
#define I2C_HEADER_SLAVE_ADDR_SHIFT 1 #define I2C_HEADER_SLAVE_ADDR_SHIFT 1
#define I2C_CONFIG_LOAD 0x08C
#define I2C_MSTR_CONFIG_LOAD (1 << 0)
#define I2C_SLV_CONFIG_LOAD (1 << 1)
#define I2C_TIMEOUT_CONFIG_LOAD (1 << 2)
/* /*
* msg_end_type: The bus control which need to be send at end of transfer. * msg_end_type: The bus control which need to be send at end of transfer.
* @MSG_END_STOP: Send stop pulse at end of transfer. * @MSG_END_STOP: Send stop pulse at end of transfer.
...@@ -121,6 +127,8 @@ enum msg_end_type { ...@@ -121,6 +127,8 @@ enum msg_end_type {
* @has_single_clk_source: The i2c controller has single clock source. Tegra30 * @has_single_clk_source: The i2c controller has single clock source. Tegra30
* and earlier Socs has two clock sources i.e. div-clk and * and earlier Socs has two clock sources i.e. div-clk and
* fast-clk. * fast-clk.
* @has_config_load_reg: Has the config load register to load the new
* configuration.
* @clk_divisor_hs_mode: Clock divisor in HS mode. * @clk_divisor_hs_mode: Clock divisor in HS mode.
* @clk_divisor_std_fast_mode: Clock divisor in standard/fast mode. It is * @clk_divisor_std_fast_mode: Clock divisor in standard/fast mode. It is
* applicable if there is no fast clock source i.e. single clock * applicable if there is no fast clock source i.e. single clock
...@@ -131,8 +139,10 @@ struct tegra_i2c_hw_feature { ...@@ -131,8 +139,10 @@ struct tegra_i2c_hw_feature {
bool has_continue_xfer_support; bool has_continue_xfer_support;
bool has_per_pkt_xfer_complete_irq; bool has_per_pkt_xfer_complete_irq;
bool has_single_clk_source; bool has_single_clk_source;
bool has_config_load_reg;
int clk_divisor_hs_mode; int clk_divisor_hs_mode;
int clk_divisor_std_fast_mode; int clk_divisor_std_fast_mode;
u16 clk_divisor_fast_plus_mode;
}; };
/** /**
...@@ -172,6 +182,7 @@ struct tegra_i2c_dev { ...@@ -172,6 +182,7 @@ struct tegra_i2c_dev {
size_t msg_buf_remaining; size_t msg_buf_remaining;
int msg_read; int msg_read;
u32 bus_clk_rate; u32 bus_clk_rate;
u16 clk_divisor_non_hs_mode;
bool is_suspended; bool is_suspended;
}; };
...@@ -410,6 +421,7 @@ static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev) ...@@ -410,6 +421,7 @@ static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
u32 val; u32 val;
int err = 0; int err = 0;
u32 clk_divisor; u32 clk_divisor;
unsigned long timeout = jiffies + HZ;
err = tegra_i2c_clock_enable(i2c_dev); err = tegra_i2c_clock_enable(i2c_dev);
if (err < 0) { if (err < 0) {
...@@ -431,7 +443,7 @@ static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev) ...@@ -431,7 +443,7 @@ static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
/* Make sure clock divisor programmed correctly */ /* Make sure clock divisor programmed correctly */
clk_divisor = i2c_dev->hw->clk_divisor_hs_mode; clk_divisor = i2c_dev->hw->clk_divisor_hs_mode;
clk_divisor |= i2c_dev->hw->clk_divisor_std_fast_mode << clk_divisor |= i2c_dev->clk_divisor_non_hs_mode <<
I2C_CLK_DIVISOR_STD_FAST_MODE_SHIFT; I2C_CLK_DIVISOR_STD_FAST_MODE_SHIFT;
i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR); i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
...@@ -451,6 +463,18 @@ static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev) ...@@ -451,6 +463,18 @@ static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
if (tegra_i2c_flush_fifos(i2c_dev)) if (tegra_i2c_flush_fifos(i2c_dev))
err = -ETIMEDOUT; err = -ETIMEDOUT;
if (i2c_dev->hw->has_config_load_reg) {
i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
while (i2c_readl(i2c_dev, I2C_CONFIG_LOAD) != 0) {
if (time_after(jiffies, timeout)) {
dev_warn(i2c_dev->dev,
"timeout waiting for config load\n");
return -ETIMEDOUT;
}
msleep(1);
}
}
tegra_i2c_clock_disable(i2c_dev); tegra_i2c_clock_disable(i2c_dev);
if (i2c_dev->irq_disabled) { if (i2c_dev->irq_disabled) {
...@@ -681,6 +705,8 @@ static const struct tegra_i2c_hw_feature tegra20_i2c_hw = { ...@@ -681,6 +705,8 @@ static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
.has_single_clk_source = false, .has_single_clk_source = false,
.clk_divisor_hs_mode = 3, .clk_divisor_hs_mode = 3,
.clk_divisor_std_fast_mode = 0, .clk_divisor_std_fast_mode = 0,
.clk_divisor_fast_plus_mode = 0,
.has_config_load_reg = false,
}; };
static const struct tegra_i2c_hw_feature tegra30_i2c_hw = { static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
...@@ -689,6 +715,8 @@ static const struct tegra_i2c_hw_feature tegra30_i2c_hw = { ...@@ -689,6 +715,8 @@ static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
.has_single_clk_source = false, .has_single_clk_source = false,
.clk_divisor_hs_mode = 3, .clk_divisor_hs_mode = 3,
.clk_divisor_std_fast_mode = 0, .clk_divisor_std_fast_mode = 0,
.clk_divisor_fast_plus_mode = 0,
.has_config_load_reg = false,
}; };
static const struct tegra_i2c_hw_feature tegra114_i2c_hw = { static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
...@@ -697,10 +725,23 @@ static const struct tegra_i2c_hw_feature tegra114_i2c_hw = { ...@@ -697,10 +725,23 @@ static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
.has_single_clk_source = true, .has_single_clk_source = true,
.clk_divisor_hs_mode = 1, .clk_divisor_hs_mode = 1,
.clk_divisor_std_fast_mode = 0x19, .clk_divisor_std_fast_mode = 0x19,
.clk_divisor_fast_plus_mode = 0x10,
.has_config_load_reg = false,
};
static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
.has_continue_xfer_support = true,
.has_per_pkt_xfer_complete_irq = true,
.has_single_clk_source = true,
.clk_divisor_hs_mode = 1,
.clk_divisor_std_fast_mode = 0x19,
.clk_divisor_fast_plus_mode = 0x10,
.has_config_load_reg = true,
}; };
/* Match table for of_platform binding */ /* Match table for of_platform binding */
static const struct of_device_id tegra_i2c_of_match[] = { static const struct of_device_id tegra_i2c_of_match[] = {
{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, }, { .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, }, { .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, }, { .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
...@@ -793,7 +834,14 @@ static int tegra_i2c_probe(struct platform_device *pdev) ...@@ -793,7 +834,14 @@ static int tegra_i2c_probe(struct platform_device *pdev)
} }
} }
clk_multiplier *= (i2c_dev->hw->clk_divisor_std_fast_mode + 1); i2c_dev->clk_divisor_non_hs_mode =
i2c_dev->hw->clk_divisor_std_fast_mode;
if (i2c_dev->hw->clk_divisor_fast_plus_mode &&
(i2c_dev->bus_clk_rate == 1000000))
i2c_dev->clk_divisor_non_hs_mode =
i2c_dev->hw->clk_divisor_fast_plus_mode;
clk_multiplier *= (i2c_dev->clk_divisor_non_hs_mode + 1);
ret = clk_set_rate(i2c_dev->div_clk, ret = clk_set_rate(i2c_dev->div_clk,
i2c_dev->bus_clk_rate * clk_multiplier); i2c_dev->bus_clk_rate * clk_multiplier);
if (ret) { if (ret) {
......
...@@ -392,8 +392,8 @@ static int vprbrd_i2c_probe(struct platform_device *pdev) ...@@ -392,8 +392,8 @@ static int vprbrd_i2c_probe(struct platform_device *pdev)
0x0000, 0x0000, &vb_i2c->bus_freq_param, 1, 0x0000, 0x0000, &vb_i2c->bus_freq_param, 1,
VPRBRD_USB_TIMEOUT_MS); VPRBRD_USB_TIMEOUT_MS);
if (ret != 1) { if (ret != 1) {
dev_err(&pdev->dev, dev_err(&pdev->dev, "failure setting i2c_bus_freq to %d\n",
"failure setting i2c_bus_freq to %d\n", i2c_bus_freq); i2c_bus_freq);
return -EIO; return -EIO;
} }
} else { } else {
......
...@@ -198,10 +198,10 @@ static int slimpro_i2c_blkrd(struct slimpro_i2c_dev *ctx, u32 chip, u32 addr, ...@@ -198,10 +198,10 @@ static int slimpro_i2c_blkrd(struct slimpro_i2c_dev *ctx, u32 chip, u32 addr,
int rc; int rc;
paddr = dma_map_single(ctx->dev, ctx->dma_buffer, readlen, DMA_FROM_DEVICE); paddr = dma_map_single(ctx->dev, ctx->dma_buffer, readlen, DMA_FROM_DEVICE);
rc = dma_mapping_error(ctx->dev, paddr); if (dma_mapping_error(ctx->dev, paddr)) {
if (rc) {
dev_err(&ctx->adapter.dev, "Error in mapping dma buffer %p\n", dev_err(&ctx->adapter.dev, "Error in mapping dma buffer %p\n",
ctx->dma_buffer); ctx->dma_buffer);
rc = -ENOMEM;
goto err; goto err;
} }
...@@ -241,10 +241,10 @@ static int slimpro_i2c_blkwr(struct slimpro_i2c_dev *ctx, u32 chip, ...@@ -241,10 +241,10 @@ static int slimpro_i2c_blkwr(struct slimpro_i2c_dev *ctx, u32 chip,
memcpy(ctx->dma_buffer, data, writelen); memcpy(ctx->dma_buffer, data, writelen);
paddr = dma_map_single(ctx->dev, ctx->dma_buffer, writelen, paddr = dma_map_single(ctx->dev, ctx->dma_buffer, writelen,
DMA_TO_DEVICE); DMA_TO_DEVICE);
rc = dma_mapping_error(ctx->dev, paddr); if (dma_mapping_error(ctx->dev, paddr)) {
if (rc) {
dev_err(&ctx->adapter.dev, "Error in mapping dma buffer %p\n", dev_err(&ctx->adapter.dev, "Error in mapping dma buffer %p\n",
ctx->dma_buffer); ctx->dma_buffer);
rc = -ENOMEM;
goto err; goto err;
} }
......
...@@ -283,7 +283,7 @@ static void xiic_reinit(struct xiic_i2c *i2c) ...@@ -283,7 +283,7 @@ static void xiic_reinit(struct xiic_i2c *i2c)
/* Enable interrupts */ /* Enable interrupts */
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK); xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK);
xiic_irq_clr_en(i2c, XIIC_INTR_AAS_MASK | XIIC_INTR_ARB_LOST_MASK); xiic_irq_clr_en(i2c, XIIC_INTR_ARB_LOST_MASK);
} }
static void xiic_deinit(struct xiic_i2c *i2c) static void xiic_deinit(struct xiic_i2c *i2c)
...@@ -358,8 +358,9 @@ static void xiic_wakeup(struct xiic_i2c *i2c, int code) ...@@ -358,8 +358,9 @@ static void xiic_wakeup(struct xiic_i2c *i2c, int code)
wake_up(&i2c->wait); wake_up(&i2c->wait);
} }
static void xiic_process(struct xiic_i2c *i2c) static irqreturn_t xiic_process(int irq, void *dev_id)
{ {
struct xiic_i2c *i2c = dev_id;
u32 pend, isr, ier; u32 pend, isr, ier;
u32 clr = 0; u32 clr = 0;
...@@ -368,6 +369,7 @@ static void xiic_process(struct xiic_i2c *i2c) ...@@ -368,6 +369,7 @@ static void xiic_process(struct xiic_i2c *i2c)
* To find which interrupts are pending; AND interrupts pending with * To find which interrupts are pending; AND interrupts pending with
* interrupts masked. * interrupts masked.
*/ */
spin_lock(&i2c->lock);
isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET); isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET);
ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET); ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET);
pend = isr & ier; pend = isr & ier;
...@@ -378,11 +380,6 @@ static void xiic_process(struct xiic_i2c *i2c) ...@@ -378,11 +380,6 @@ static void xiic_process(struct xiic_i2c *i2c)
__func__, xiic_getreg8(i2c, XIIC_SR_REG_OFFSET), __func__, xiic_getreg8(i2c, XIIC_SR_REG_OFFSET),
i2c->tx_msg, i2c->nmsgs); i2c->tx_msg, i2c->nmsgs);
/* Do not processes a devices interrupts if the device has no
* interrupts pending
*/
if (!pend)
return;
/* Service requesting interrupt */ /* Service requesting interrupt */
if ((pend & XIIC_INTR_ARB_LOST_MASK) || if ((pend & XIIC_INTR_ARB_LOST_MASK) ||
...@@ -402,13 +399,15 @@ static void xiic_process(struct xiic_i2c *i2c) ...@@ -402,13 +399,15 @@ static void xiic_process(struct xiic_i2c *i2c)
*/ */
xiic_reinit(i2c); xiic_reinit(i2c);
if (i2c->rx_msg)
xiic_wakeup(i2c, STATE_ERROR);
if (i2c->tx_msg) if (i2c->tx_msg)
xiic_wakeup(i2c, STATE_ERROR); xiic_wakeup(i2c, STATE_ERROR);
}
} else if (pend & XIIC_INTR_RX_FULL_MASK) { if (pend & XIIC_INTR_RX_FULL_MASK) {
/* Receive register/FIFO is full */ /* Receive register/FIFO is full */
clr = XIIC_INTR_RX_FULL_MASK; clr |= XIIC_INTR_RX_FULL_MASK;
if (!i2c->rx_msg) { if (!i2c->rx_msg) {
dev_dbg(i2c->adap.dev.parent, dev_dbg(i2c->adap.dev.parent,
"%s unexpexted RX IRQ\n", __func__); "%s unexpexted RX IRQ\n", __func__);
...@@ -441,9 +440,10 @@ static void xiic_process(struct xiic_i2c *i2c) ...@@ -441,9 +440,10 @@ static void xiic_process(struct xiic_i2c *i2c)
__xiic_start_xfer(i2c); __xiic_start_xfer(i2c);
} }
} }
} else if (pend & XIIC_INTR_BNB_MASK) { }
if (pend & XIIC_INTR_BNB_MASK) {
/* IIC bus has transitioned to not busy */ /* IIC bus has transitioned to not busy */
clr = XIIC_INTR_BNB_MASK; clr |= XIIC_INTR_BNB_MASK;
/* The bus is not busy, disable BusNotBusy interrupt */ /* The bus is not busy, disable BusNotBusy interrupt */
xiic_irq_dis(i2c, XIIC_INTR_BNB_MASK); xiic_irq_dis(i2c, XIIC_INTR_BNB_MASK);
...@@ -456,12 +456,12 @@ static void xiic_process(struct xiic_i2c *i2c) ...@@ -456,12 +456,12 @@ static void xiic_process(struct xiic_i2c *i2c)
xiic_wakeup(i2c, STATE_DONE); xiic_wakeup(i2c, STATE_DONE);
else else
xiic_wakeup(i2c, STATE_ERROR); xiic_wakeup(i2c, STATE_ERROR);
}
} else if (pend & (XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK)) { if (pend & (XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK)) {
/* Transmit register/FIFO is empty or ½ empty */ /* Transmit register/FIFO is empty or ½ empty */
clr = pend & clr |= (pend &
(XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK); (XIIC_INTR_TX_EMPTY_MASK | XIIC_INTR_TX_HALF_MASK));
if (!i2c->tx_msg) { if (!i2c->tx_msg) {
dev_dbg(i2c->adap.dev.parent, dev_dbg(i2c->adap.dev.parent,
...@@ -492,16 +492,13 @@ static void xiic_process(struct xiic_i2c *i2c) ...@@ -492,16 +492,13 @@ static void xiic_process(struct xiic_i2c *i2c)
* make sure to disable tx half * make sure to disable tx half
*/ */
xiic_irq_dis(i2c, XIIC_INTR_TX_HALF_MASK); xiic_irq_dis(i2c, XIIC_INTR_TX_HALF_MASK);
} else {
/* got IRQ which is not acked */
dev_err(i2c->adap.dev.parent, "%s Got unexpected IRQ\n",
__func__);
clr = pend;
} }
out: out:
dev_dbg(i2c->adap.dev.parent, "%s clr: 0x%x\n", __func__, clr); dev_dbg(i2c->adap.dev.parent, "%s clr: 0x%x\n", __func__, clr);
xiic_setreg32(i2c, XIIC_IISR_OFFSET, clr); xiic_setreg32(i2c, XIIC_IISR_OFFSET, clr);
spin_unlock(&i2c->lock);
return IRQ_HANDLED;
} }
static int xiic_bus_busy(struct xiic_i2c *i2c) static int xiic_bus_busy(struct xiic_i2c *i2c)
...@@ -525,7 +522,7 @@ static int xiic_busy(struct xiic_i2c *i2c) ...@@ -525,7 +522,7 @@ static int xiic_busy(struct xiic_i2c *i2c)
*/ */
err = xiic_bus_busy(i2c); err = xiic_bus_busy(i2c);
while (err && tries--) { while (err && tries--) {
mdelay(1); msleep(1);
err = xiic_bus_busy(i2c); err = xiic_bus_busy(i2c);
} }
...@@ -602,19 +599,21 @@ static void xiic_start_send(struct xiic_i2c *i2c) ...@@ -602,19 +599,21 @@ static void xiic_start_send(struct xiic_i2c *i2c)
static irqreturn_t xiic_isr(int irq, void *dev_id) static irqreturn_t xiic_isr(int irq, void *dev_id)
{ {
struct xiic_i2c *i2c = dev_id; struct xiic_i2c *i2c = dev_id;
u32 pend, isr, ier;
spin_lock(&i2c->lock); irqreturn_t ret = IRQ_NONE;
/* disable interrupts globally */ /* Do not processes a devices interrupts if the device has no
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, 0); * interrupts pending
*/
dev_dbg(i2c->adap.dev.parent, "%s entry\n", __func__); dev_dbg(i2c->adap.dev.parent, "%s entry\n", __func__);
xiic_process(i2c); isr = xiic_getreg32(i2c, XIIC_IISR_OFFSET);
ier = xiic_getreg32(i2c, XIIC_IIER_OFFSET);
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK); pend = isr & ier;
spin_unlock(&i2c->lock); if (pend)
ret = IRQ_WAKE_THREAD;
return IRQ_HANDLED; return ret;
} }
static void __xiic_start_xfer(struct xiic_i2c *i2c) static void __xiic_start_xfer(struct xiic_i2c *i2c)
...@@ -663,16 +662,8 @@ static void __xiic_start_xfer(struct xiic_i2c *i2c) ...@@ -663,16 +662,8 @@ static void __xiic_start_xfer(struct xiic_i2c *i2c)
static void xiic_start_xfer(struct xiic_i2c *i2c) static void xiic_start_xfer(struct xiic_i2c *i2c)
{ {
unsigned long flags;
spin_lock_irqsave(&i2c->lock, flags);
xiic_reinit(i2c);
/* disable interrupts globally */
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, 0);
spin_unlock_irqrestore(&i2c->lock, flags);
__xiic_start_xfer(i2c); __xiic_start_xfer(i2c);
xiic_setreg32(i2c, XIIC_DGIER_OFFSET, XIIC_GINTR_ENABLE_MASK);
} }
static int xiic_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) static int xiic_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
...@@ -755,7 +746,10 @@ static int xiic_i2c_probe(struct platform_device *pdev) ...@@ -755,7 +746,10 @@ static int xiic_i2c_probe(struct platform_device *pdev)
spin_lock_init(&i2c->lock); spin_lock_init(&i2c->lock);
init_waitqueue_head(&i2c->wait); init_waitqueue_head(&i2c->wait);
ret = devm_request_irq(&pdev->dev, irq, xiic_isr, 0, pdev->name, i2c); ret = devm_request_threaded_irq(&pdev->dev, irq, xiic_isr,
xiic_process, IRQF_ONESHOT,
pdev->name, i2c);
if (ret < 0) { if (ret < 0) {
dev_err(&pdev->dev, "Cannot claim IRQ\n"); dev_err(&pdev->dev, "Cannot claim IRQ\n");
return ret; return ret;
......
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
I2C slave support (c) 2014 by Wolfram Sang <wsa@sang-engineering.com> I2C slave support (c) 2014 by Wolfram Sang <wsa@sang-engineering.com>
*/ */
#include <dt-bindings/i2c/i2c.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/delay.h> #include <linux/delay.h>
...@@ -47,6 +48,7 @@ ...@@ -47,6 +48,7 @@
#include <linux/rwsem.h> #include <linux/rwsem.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/pm_domain.h> #include <linux/pm_domain.h>
#include <linux/pm_wakeirq.h>
#include <linux/acpi.h> #include <linux/acpi.h>
#include <linux/jump_label.h> #include <linux/jump_label.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
...@@ -57,6 +59,9 @@ ...@@ -57,6 +59,9 @@
#define CREATE_TRACE_POINTS #define CREATE_TRACE_POINTS
#include <trace/events/i2c.h> #include <trace/events/i2c.h>
#define I2C_ADDR_OFFSET_TEN_BIT 0xa000
#define I2C_ADDR_OFFSET_SLAVE 0x1000
/* core_lock protects i2c_adapter_idr, and guarantees /* core_lock protects i2c_adapter_idr, and guarantees
that device detection, deletion of detected devices, and attach_adapter that device detection, deletion of detected devices, and attach_adapter
calls are serialized */ calls are serialized */
...@@ -641,11 +646,13 @@ static int i2c_device_probe(struct device *dev) ...@@ -641,11 +646,13 @@ static int i2c_device_probe(struct device *dev)
if (!client->irq) { if (!client->irq) {
int irq = -ENOENT; int irq = -ENOENT;
if (dev->of_node) if (dev->of_node) {
irq = of_irq_get_byname(dev->of_node, "irq");
if (irq == -EINVAL || irq == -ENODATA)
irq = of_irq_get(dev->of_node, 0); irq = of_irq_get(dev->of_node, 0);
else if (ACPI_COMPANION(dev)) } else if (ACPI_COMPANION(dev)) {
irq = acpi_dev_gpio_irq_get(ACPI_COMPANION(dev), 0); irq = acpi_dev_gpio_irq_get(ACPI_COMPANION(dev), 0);
}
if (irq == -EPROBE_DEFER) if (irq == -EPROBE_DEFER)
return irq; return irq;
if (irq < 0) if (irq < 0)
...@@ -658,23 +665,49 @@ static int i2c_device_probe(struct device *dev) ...@@ -658,23 +665,49 @@ static int i2c_device_probe(struct device *dev)
if (!driver->probe || !driver->id_table) if (!driver->probe || !driver->id_table)
return -ENODEV; return -ENODEV;
if (!device_can_wakeup(&client->dev)) if (client->flags & I2C_CLIENT_WAKE) {
device_init_wakeup(&client->dev, int wakeirq = -ENOENT;
client->flags & I2C_CLIENT_WAKE);
if (dev->of_node) {
wakeirq = of_irq_get_byname(dev->of_node, "wakeup");
if (wakeirq == -EPROBE_DEFER)
return wakeirq;
}
device_init_wakeup(&client->dev, true);
if (wakeirq > 0 && wakeirq != client->irq)
status = dev_pm_set_dedicated_wake_irq(dev, wakeirq);
else if (client->irq > 0)
status = dev_pm_set_wake_irq(dev, wakeirq);
else
status = 0;
if (status)
dev_warn(&client->dev, "failed to set up wakeup irq");
}
dev_dbg(dev, "probe\n"); dev_dbg(dev, "probe\n");
status = of_clk_set_defaults(dev->of_node, false); status = of_clk_set_defaults(dev->of_node, false);
if (status < 0) if (status < 0)
return status; goto err_clear_wakeup_irq;
status = dev_pm_domain_attach(&client->dev, true); status = dev_pm_domain_attach(&client->dev, true);
if (status != -EPROBE_DEFER) { if (status != -EPROBE_DEFER) {
status = driver->probe(client, i2c_match_id(driver->id_table, status = driver->probe(client, i2c_match_id(driver->id_table,
client)); client));
if (status) if (status)
dev_pm_domain_detach(&client->dev, true); goto err_detach_pm_domain;
} }
return 0;
err_detach_pm_domain:
dev_pm_domain_detach(&client->dev, true);
err_clear_wakeup_irq:
dev_pm_clear_wake_irq(&client->dev);
device_init_wakeup(&client->dev, false);
return status; return status;
} }
...@@ -694,6 +727,10 @@ static int i2c_device_remove(struct device *dev) ...@@ -694,6 +727,10 @@ static int i2c_device_remove(struct device *dev)
} }
dev_pm_domain_detach(&client->dev, true); dev_pm_domain_detach(&client->dev, true);
dev_pm_clear_wake_irq(&client->dev);
device_init_wakeup(&client->dev, false);
return status; return status;
} }
...@@ -778,17 +815,32 @@ struct i2c_client *i2c_verify_client(struct device *dev) ...@@ -778,17 +815,32 @@ struct i2c_client *i2c_verify_client(struct device *dev)
EXPORT_SYMBOL(i2c_verify_client); EXPORT_SYMBOL(i2c_verify_client);
/* Return a unique address which takes the flags of the client into account */
static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client)
{
unsigned short addr = client->addr;
/* For some client flags, add an arbitrary offset to avoid collisions */
if (client->flags & I2C_CLIENT_TEN)
addr |= I2C_ADDR_OFFSET_TEN_BIT;
if (client->flags & I2C_CLIENT_SLAVE)
addr |= I2C_ADDR_OFFSET_SLAVE;
return addr;
}
/* This is a permissive address validity check, I2C address map constraints /* This is a permissive address validity check, I2C address map constraints
* are purposely not enforced, except for the general call address. */ * are purposely not enforced, except for the general call address. */
static int i2c_check_client_addr_validity(const struct i2c_client *client) static int i2c_check_addr_validity(unsigned addr, unsigned short flags)
{ {
if (client->flags & I2C_CLIENT_TEN) { if (flags & I2C_CLIENT_TEN) {
/* 10-bit address, all values are valid */ /* 10-bit address, all values are valid */
if (client->addr > 0x3ff) if (addr > 0x3ff)
return -EINVAL; return -EINVAL;
} else { } else {
/* 7-bit address, reject the general call address */ /* 7-bit address, reject the general call address */
if (client->addr == 0x00 || client->addr > 0x7f) if (addr == 0x00 || addr > 0x7f)
return -EINVAL; return -EINVAL;
} }
return 0; return 0;
...@@ -798,7 +850,7 @@ static int i2c_check_client_addr_validity(const struct i2c_client *client) ...@@ -798,7 +850,7 @@ static int i2c_check_client_addr_validity(const struct i2c_client *client)
* device uses a reserved address, then it shouldn't be probed. 7-bit * device uses a reserved address, then it shouldn't be probed. 7-bit
* addressing is assumed, 10-bit address devices are rare and should be * addressing is assumed, 10-bit address devices are rare and should be
* explicitly enumerated. */ * explicitly enumerated. */
static int i2c_check_addr_validity(unsigned short addr) static int i2c_check_7bit_addr_validity_strict(unsigned short addr)
{ {
/* /*
* Reserved addresses per I2C specification: * Reserved addresses per I2C specification:
...@@ -820,7 +872,7 @@ static int __i2c_check_addr_busy(struct device *dev, void *addrp) ...@@ -820,7 +872,7 @@ static int __i2c_check_addr_busy(struct device *dev, void *addrp)
struct i2c_client *client = i2c_verify_client(dev); struct i2c_client *client = i2c_verify_client(dev);
int addr = *(int *)addrp; int addr = *(int *)addrp;
if (client && client->addr == addr) if (client && i2c_encode_flags_to_addr(client) == addr)
return -EBUSY; return -EBUSY;
return 0; return 0;
} }
...@@ -923,10 +975,8 @@ static void i2c_dev_set_name(struct i2c_adapter *adap, ...@@ -923,10 +975,8 @@ static void i2c_dev_set_name(struct i2c_adapter *adap,
return; return;
} }
/* For 10-bit clients, add an arbitrary offset to avoid collisions */
dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap), dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
client->addr | ((client->flags & I2C_CLIENT_TEN) i2c_encode_flags_to_addr(client));
? 0xa000 : 0));
} }
/** /**
...@@ -968,8 +1018,7 @@ i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info) ...@@ -968,8 +1018,7 @@ i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
strlcpy(client->name, info->type, sizeof(client->name)); strlcpy(client->name, info->type, sizeof(client->name));
/* Check for address validity */ status = i2c_check_addr_validity(client->addr, client->flags);
status = i2c_check_client_addr_validity(client);
if (status) { if (status) {
dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n", dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr); client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
...@@ -977,7 +1026,7 @@ i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info) ...@@ -977,7 +1026,7 @@ i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
} }
/* Check for address business */ /* Check for address business */
status = i2c_check_addr_busy(adap, client->addr); status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client));
if (status) if (status)
goto out_err; goto out_err;
...@@ -1142,6 +1191,16 @@ i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr, ...@@ -1142,6 +1191,16 @@ i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
return -EINVAL; return -EINVAL;
} }
if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) {
info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT;
info.flags |= I2C_CLIENT_TEN;
}
if (info.addr & I2C_ADDR_OFFSET_SLAVE) {
info.addr &= ~I2C_ADDR_OFFSET_SLAVE;
info.flags |= I2C_CLIENT_SLAVE;
}
client = i2c_new_device(adap, &info); client = i2c_new_device(adap, &info);
if (!client) if (!client)
return -EINVAL; return -EINVAL;
...@@ -1193,7 +1252,7 @@ i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr, ...@@ -1193,7 +1252,7 @@ i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
i2c_adapter_depth(adap)); i2c_adapter_depth(adap));
list_for_each_entry_safe(client, next, &adap->userspace_clients, list_for_each_entry_safe(client, next, &adap->userspace_clients,
detected) { detected) {
if (client->addr == addr) { if (i2c_encode_flags_to_addr(client) == addr) {
dev_info(dev, "%s: Deleting device %s at 0x%02hx\n", dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
"delete_device", client->name, client->addr); "delete_device", client->name, client->addr);
...@@ -1273,7 +1332,8 @@ static struct i2c_client *of_i2c_register_device(struct i2c_adapter *adap, ...@@ -1273,7 +1332,8 @@ static struct i2c_client *of_i2c_register_device(struct i2c_adapter *adap,
struct i2c_client *result; struct i2c_client *result;
struct i2c_board_info info = {}; struct i2c_board_info info = {};
struct dev_archdata dev_ad = {}; struct dev_archdata dev_ad = {};
const __be32 *addr; const __be32 *addr_be;
u32 addr;
int len; int len;
dev_dbg(&adap->dev, "of_i2c: register %s\n", node->full_name); dev_dbg(&adap->dev, "of_i2c: register %s\n", node->full_name);
...@@ -1284,20 +1344,31 @@ static struct i2c_client *of_i2c_register_device(struct i2c_adapter *adap, ...@@ -1284,20 +1344,31 @@ static struct i2c_client *of_i2c_register_device(struct i2c_adapter *adap,
return ERR_PTR(-EINVAL); return ERR_PTR(-EINVAL);
} }
addr = of_get_property(node, "reg", &len); addr_be = of_get_property(node, "reg", &len);
if (!addr || (len < sizeof(*addr))) { if (!addr_be || (len < sizeof(*addr_be))) {
dev_err(&adap->dev, "of_i2c: invalid reg on %s\n", dev_err(&adap->dev, "of_i2c: invalid reg on %s\n",
node->full_name); node->full_name);
return ERR_PTR(-EINVAL); return ERR_PTR(-EINVAL);
} }
info.addr = be32_to_cpup(addr); addr = be32_to_cpup(addr_be);
if (info.addr > (1 << 10) - 1) { if (addr & I2C_TEN_BIT_ADDRESS) {
addr &= ~I2C_TEN_BIT_ADDRESS;
info.flags |= I2C_CLIENT_TEN;
}
if (addr & I2C_OWN_SLAVE_ADDRESS) {
addr &= ~I2C_OWN_SLAVE_ADDRESS;
info.flags |= I2C_CLIENT_SLAVE;
}
if (i2c_check_addr_validity(addr, info.flags)) {
dev_err(&adap->dev, "of_i2c: invalid addr=%x on %s\n", dev_err(&adap->dev, "of_i2c: invalid addr=%x on %s\n",
info.addr, node->full_name); info.addr, node->full_name);
return ERR_PTR(-EINVAL); return ERR_PTR(-EINVAL);
} }
info.addr = addr;
info.of_node = of_node_get(node); info.of_node = of_node_get(node);
info.archdata = &dev_ad; info.archdata = &dev_ad;
...@@ -1371,6 +1442,24 @@ struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node) ...@@ -1371,6 +1442,24 @@ struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node)
return adapter; return adapter;
} }
EXPORT_SYMBOL(of_find_i2c_adapter_by_node); EXPORT_SYMBOL(of_find_i2c_adapter_by_node);
/* must call i2c_put_adapter() when done with returned i2c_adapter device */
struct i2c_adapter *of_get_i2c_adapter_by_node(struct device_node *node)
{
struct i2c_adapter *adapter;
adapter = of_find_i2c_adapter_by_node(node);
if (!adapter)
return NULL;
if (!try_module_get(adapter->owner)) {
put_device(&adapter->dev);
adapter = NULL;
}
return adapter;
}
EXPORT_SYMBOL(of_get_i2c_adapter_by_node);
#else #else
static void of_i2c_register_devices(struct i2c_adapter *adap) { } static void of_i2c_register_devices(struct i2c_adapter *adap) { }
#endif /* CONFIG_OF */ #endif /* CONFIG_OF */
...@@ -2262,14 +2351,14 @@ static int i2c_detect_address(struct i2c_client *temp_client, ...@@ -2262,14 +2351,14 @@ static int i2c_detect_address(struct i2c_client *temp_client,
int err; int err;
/* Make sure the address is valid */ /* Make sure the address is valid */
err = i2c_check_addr_validity(addr); err = i2c_check_7bit_addr_validity_strict(addr);
if (err) { if (err) {
dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n", dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
addr); addr);
return err; return err;
} }
/* Skip if already in use */ /* Skip if already in use (7 bit, no need to encode flags) */
if (i2c_check_addr_busy(adapter, addr)) if (i2c_check_addr_busy(adapter, addr))
return 0; return 0;
...@@ -2379,13 +2468,13 @@ i2c_new_probed_device(struct i2c_adapter *adap, ...@@ -2379,13 +2468,13 @@ i2c_new_probed_device(struct i2c_adapter *adap,
for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) { for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
/* Check address validity */ /* Check address validity */
if (i2c_check_addr_validity(addr_list[i]) < 0) { if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) {
dev_warn(&adap->dev, "Invalid 7-bit address " dev_warn(&adap->dev, "Invalid 7-bit address "
"0x%02x\n", addr_list[i]); "0x%02x\n", addr_list[i]);
continue; continue;
} }
/* Check address availability */ /* Check address availability (7 bit, no need to encode flags) */
if (i2c_check_addr_busy(adap, addr_list[i])) { if (i2c_check_addr_busy(adap, addr_list[i])) {
dev_dbg(&adap->dev, "Address 0x%02x already in " dev_dbg(&adap->dev, "Address 0x%02x already in "
"use, not probing\n", addr_list[i]); "use, not probing\n", addr_list[i]);
...@@ -2413,9 +2502,15 @@ struct i2c_adapter *i2c_get_adapter(int nr) ...@@ -2413,9 +2502,15 @@ struct i2c_adapter *i2c_get_adapter(int nr)
mutex_lock(&core_lock); mutex_lock(&core_lock);
adapter = idr_find(&i2c_adapter_idr, nr); adapter = idr_find(&i2c_adapter_idr, nr);
if (adapter && !try_module_get(adapter->owner)) if (!adapter)
goto exit;
if (try_module_get(adapter->owner))
get_device(&adapter->dev);
else
adapter = NULL; adapter = NULL;
exit:
mutex_unlock(&core_lock); mutex_unlock(&core_lock);
return adapter; return adapter;
} }
...@@ -2423,7 +2518,10 @@ EXPORT_SYMBOL(i2c_get_adapter); ...@@ -2423,7 +2518,10 @@ EXPORT_SYMBOL(i2c_get_adapter);
void i2c_put_adapter(struct i2c_adapter *adap) void i2c_put_adapter(struct i2c_adapter *adap)
{ {
if (adap) if (!adap)
return;
put_device(&adap->dev);
module_put(adap->owner); module_put(adap->owner);
} }
EXPORT_SYMBOL(i2c_put_adapter); EXPORT_SYMBOL(i2c_put_adapter);
...@@ -2942,6 +3040,63 @@ s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags, ...@@ -2942,6 +3040,63 @@ s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
} }
EXPORT_SYMBOL(i2c_smbus_xfer); EXPORT_SYMBOL(i2c_smbus_xfer);
/**
* i2c_smbus_read_i2c_block_data_or_emulated - read block or emulate
* @client: Handle to slave device
* @command: Byte interpreted by slave
* @length: Size of data block; SMBus allows at most I2C_SMBUS_BLOCK_MAX bytes
* @values: Byte array into which data will be read; big enough to hold
* the data returned by the slave. SMBus allows at most
* I2C_SMBUS_BLOCK_MAX bytes.
*
* This executes the SMBus "block read" protocol if supported by the adapter.
* If block read is not supported, it emulates it using either word or byte
* read protocols depending on availability.
*
* The addresses of the I2C slave device that are accessed with this function
* must be mapped to a linear region, so that a block read will have the same
* effect as a byte read. Before using this function you must double-check
* if the I2C slave does support exchanging a block transfer with a byte
* transfer.
*/
s32 i2c_smbus_read_i2c_block_data_or_emulated(const struct i2c_client *client,
u8 command, u8 length, u8 *values)
{
u8 i = 0;
int status;
if (length > I2C_SMBUS_BLOCK_MAX)
length = I2C_SMBUS_BLOCK_MAX;
if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_I2C_BLOCK))
return i2c_smbus_read_i2c_block_data(client, command, length, values);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA))
return -EOPNOTSUPP;
if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_WORD_DATA)) {
while ((i + 2) <= length) {
status = i2c_smbus_read_word_data(client, command + i);
if (status < 0)
return status;
values[i] = status & 0xff;
values[i + 1] = status >> 8;
i += 2;
}
}
while (i < length) {
status = i2c_smbus_read_byte_data(client, command + i);
if (status < 0)
return status;
values[i] = status;
i++;
}
return i;
}
EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data_or_emulated);
#if IS_ENABLED(CONFIG_I2C_SLAVE) #if IS_ENABLED(CONFIG_I2C_SLAVE)
int i2c_slave_register(struct i2c_client *client, i2c_slave_cb_t slave_cb) int i2c_slave_register(struct i2c_client *client, i2c_slave_cb_t slave_cb)
{ {
...@@ -2952,9 +3107,13 @@ int i2c_slave_register(struct i2c_client *client, i2c_slave_cb_t slave_cb) ...@@ -2952,9 +3107,13 @@ int i2c_slave_register(struct i2c_client *client, i2c_slave_cb_t slave_cb)
return -EINVAL; return -EINVAL;
} }
if (!(client->flags & I2C_CLIENT_SLAVE))
dev_warn(&client->dev, "%s: client slave flag not set. You might see address collisions\n",
__func__);
if (!(client->flags & I2C_CLIENT_TEN)) { if (!(client->flags & I2C_CLIENT_TEN)) {
/* Enforce stricter address checking */ /* Enforce stricter address checking */
ret = i2c_check_addr_validity(client->addr); ret = i2c_check_7bit_addr_validity_strict(client->addr);
if (ret) { if (ret) {
dev_err(&client->dev, "%s: invalid address\n", __func__); dev_err(&client->dev, "%s: invalid address\n", __func__);
return ret; return ret;
......
...@@ -157,7 +157,6 @@ MODULE_DEVICE_TABLE(i2c, i2c_slave_eeprom_id); ...@@ -157,7 +157,6 @@ MODULE_DEVICE_TABLE(i2c, i2c_slave_eeprom_id);
static struct i2c_driver i2c_slave_eeprom_driver = { static struct i2c_driver i2c_slave_eeprom_driver = {
.driver = { .driver = {
.name = "i2c-slave-eeprom", .name = "i2c-slave-eeprom",
.owner = THIS_MODULE,
}, },
.probe = i2c_slave_eeprom_probe, .probe = i2c_slave_eeprom_probe,
.remove = i2c_slave_eeprom_remove, .remove = i2c_slave_eeprom_remove,
......
...@@ -61,4 +61,15 @@ config I2C_MUX_PINCTRL ...@@ -61,4 +61,15 @@ config I2C_MUX_PINCTRL
This driver can also be built as a module. If so, the module will be This driver can also be built as a module. If so, the module will be
called pinctrl-i2cmux. called pinctrl-i2cmux.
config I2C_MUX_REG
tristate "Register-based I2C multiplexer"
help
If you say yes to this option, support will be included for a
register based I2C multiplexer. This driver provides access to
I2C busses connected through a MUX, which is controlled
by a single register.
This driver can also be built as a module. If so, the module
will be called i2c-mux-reg.
endmenu endmenu
...@@ -7,5 +7,6 @@ obj-$(CONFIG_I2C_MUX_GPIO) += i2c-mux-gpio.o ...@@ -7,5 +7,6 @@ obj-$(CONFIG_I2C_MUX_GPIO) += i2c-mux-gpio.o
obj-$(CONFIG_I2C_MUX_PCA9541) += i2c-mux-pca9541.o obj-$(CONFIG_I2C_MUX_PCA9541) += i2c-mux-pca9541.o
obj-$(CONFIG_I2C_MUX_PCA954x) += i2c-mux-pca954x.o obj-$(CONFIG_I2C_MUX_PCA954x) += i2c-mux-pca954x.o
obj-$(CONFIG_I2C_MUX_PINCTRL) += i2c-mux-pinctrl.o obj-$(CONFIG_I2C_MUX_PINCTRL) += i2c-mux-pinctrl.o
obj-$(CONFIG_I2C_MUX_REG) += i2c-mux-reg.o
ccflags-$(CONFIG_I2C_DEBUG_BUS) := -DDEBUG ccflags-$(CONFIG_I2C_DEBUG_BUS) := -DDEBUG
...@@ -196,7 +196,8 @@ static int i2c_arbitrator_probe(struct platform_device *pdev) ...@@ -196,7 +196,8 @@ static int i2c_arbitrator_probe(struct platform_device *pdev)
dev_err(dev, "Cannot parse i2c-parent\n"); dev_err(dev, "Cannot parse i2c-parent\n");
return -EINVAL; return -EINVAL;
} }
arb->parent = of_find_i2c_adapter_by_node(parent_np); arb->parent = of_get_i2c_adapter_by_node(parent_np);
of_node_put(parent_np);
if (!arb->parent) { if (!arb->parent) {
dev_err(dev, "Cannot find parent bus\n"); dev_err(dev, "Cannot find parent bus\n");
return -EPROBE_DEFER; return -EPROBE_DEFER;
......
...@@ -76,6 +76,7 @@ static int i2c_mux_gpio_probe_dt(struct gpiomux *mux, ...@@ -76,6 +76,7 @@ static int i2c_mux_gpio_probe_dt(struct gpiomux *mux,
return -ENODEV; return -ENODEV;
} }
adapter = of_find_i2c_adapter_by_node(adapter_np); adapter = of_find_i2c_adapter_by_node(adapter_np);
of_node_put(adapter_np);
if (!adapter) if (!adapter)
return -EPROBE_DEFER; return -EPROBE_DEFER;
......
...@@ -386,7 +386,6 @@ static int pca9541_remove(struct i2c_client *client) ...@@ -386,7 +386,6 @@ static int pca9541_remove(struct i2c_client *client)
static struct i2c_driver pca9541_driver = { static struct i2c_driver pca9541_driver = {
.driver = { .driver = {
.name = "pca9541", .name = "pca9541",
.owner = THIS_MODULE,
}, },
.probe = pca9541_probe, .probe = pca9541_probe,
.remove = pca9541_remove, .remove = pca9541_remove,
......
...@@ -300,7 +300,6 @@ static struct i2c_driver pca954x_driver = { ...@@ -300,7 +300,6 @@ static struct i2c_driver pca954x_driver = {
.driver = { .driver = {
.name = "pca954x", .name = "pca954x",
.pm = &pca954x_pm, .pm = &pca954x_pm,
.owner = THIS_MODULE,
}, },
.probe = pca954x_probe, .probe = pca954x_probe,
.remove = pca954x_remove, .remove = pca954x_remove,
......
...@@ -111,6 +111,7 @@ static int i2c_mux_pinctrl_parse_dt(struct i2c_mux_pinctrl *mux, ...@@ -111,6 +111,7 @@ static int i2c_mux_pinctrl_parse_dt(struct i2c_mux_pinctrl *mux,
return -ENODEV; return -ENODEV;
} }
adapter = of_find_i2c_adapter_by_node(adapter_np); adapter = of_find_i2c_adapter_by_node(adapter_np);
of_node_put(adapter_np);
if (!adapter) { if (!adapter) {
dev_err(mux->dev, "Cannot find parent bus\n"); dev_err(mux->dev, "Cannot find parent bus\n");
return -EPROBE_DEFER; return -EPROBE_DEFER;
......
/*
* I2C multiplexer using a single register
*
* Copyright 2015 Freescale Semiconductor
* York Sun <yorksun@freescale.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/i2c.h>
#include <linux/i2c-mux.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/platform_data/i2c-mux-reg.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
struct regmux {
struct i2c_adapter *parent;
struct i2c_adapter **adap; /* child busses */
struct i2c_mux_reg_platform_data data;
};
static int i2c_mux_reg_set(const struct regmux *mux, unsigned int chan_id)
{
if (!mux->data.reg)
return -EINVAL;
/*
* Write to the register, followed by a read to ensure the write is
* completed on a "posted" bus, for example PCI or write buffers.
* The endianness of reading doesn't matter and the return data
* is not used.
*/
switch (mux->data.reg_size) {
case 4:
if (mux->data.little_endian)
iowrite32(chan_id, mux->data.reg);
else
iowrite32be(chan_id, mux->data.reg);
if (!mux->data.write_only)
ioread32(mux->data.reg);
break;
case 2:
if (mux->data.little_endian)
iowrite16(chan_id, mux->data.reg);
else
iowrite16be(chan_id, mux->data.reg);
if (!mux->data.write_only)
ioread16(mux->data.reg);
break;
case 1:
iowrite8(chan_id, mux->data.reg);
if (!mux->data.write_only)
ioread8(mux->data.reg);
break;
}
return 0;
}
static int i2c_mux_reg_select(struct i2c_adapter *adap, void *data,
unsigned int chan)
{
struct regmux *mux = data;
return i2c_mux_reg_set(mux, chan);
}
static int i2c_mux_reg_deselect(struct i2c_adapter *adap, void *data,
unsigned int chan)
{
struct regmux *mux = data;
if (mux->data.idle_in_use)
return i2c_mux_reg_set(mux, mux->data.idle);
return 0;
}
#ifdef CONFIG_OF
static int i2c_mux_reg_probe_dt(struct regmux *mux,
struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device_node *adapter_np, *child;
struct i2c_adapter *adapter;
struct resource res;
unsigned *values;
int i = 0;
if (!np)
return -ENODEV;
adapter_np = of_parse_phandle(np, "i2c-parent", 0);
if (!adapter_np) {
dev_err(&pdev->dev, "Cannot parse i2c-parent\n");
return -ENODEV;
}
adapter = of_find_i2c_adapter_by_node(adapter_np);
of_node_put(adapter_np);
if (!adapter)
return -EPROBE_DEFER;
mux->parent = adapter;
mux->data.parent = i2c_adapter_id(adapter);
put_device(&adapter->dev);
mux->data.n_values = of_get_child_count(np);
if (of_find_property(np, "little-endian", NULL)) {
mux->data.little_endian = true;
} else if (of_find_property(np, "big-endian", NULL)) {
mux->data.little_endian = false;
} else {
#if defined(__BYTE_ORDER) ? __BYTE_ORDER == __LITTLE_ENDIAN : \
defined(__LITTLE_ENDIAN)
mux->data.little_endian = true;
#elif defined(__BYTE_ORDER) ? __BYTE_ORDER == __BIG_ENDIAN : \
defined(__BIG_ENDIAN)
mux->data.little_endian = false;
#else
#error Endianness not defined?
#endif
}
if (of_find_property(np, "write-only", NULL))
mux->data.write_only = true;
else
mux->data.write_only = false;
values = devm_kzalloc(&pdev->dev,
sizeof(*mux->data.values) * mux->data.n_values,
GFP_KERNEL);
if (!values) {
dev_err(&pdev->dev, "Cannot allocate values array");
return -ENOMEM;
}
for_each_child_of_node(np, child) {
of_property_read_u32(child, "reg", values + i);
i++;
}
mux->data.values = values;
if (!of_property_read_u32(np, "idle-state", &mux->data.idle))
mux->data.idle_in_use = true;
/* map address from "reg" if exists */
if (of_address_to_resource(np, 0, &res)) {
mux->data.reg_size = resource_size(&res);
mux->data.reg = devm_ioremap_resource(&pdev->dev, &res);
if (IS_ERR(mux->data.reg))
return PTR_ERR(mux->data.reg);
}
return 0;
}
#else
static int i2c_mux_reg_probe_dt(struct regmux *mux,
struct platform_device *pdev)
{
return 0;
}
#endif
static int i2c_mux_reg_probe(struct platform_device *pdev)
{
struct regmux *mux;
struct i2c_adapter *parent;
struct resource *res;
int (*deselect)(struct i2c_adapter *, void *, u32);
unsigned int class;
int i, ret, nr;
mux = devm_kzalloc(&pdev->dev, sizeof(*mux), GFP_KERNEL);
if (!mux)
return -ENOMEM;
platform_set_drvdata(pdev, mux);
if (dev_get_platdata(&pdev->dev)) {
memcpy(&mux->data, dev_get_platdata(&pdev->dev),
sizeof(mux->data));
parent = i2c_get_adapter(mux->data.parent);
if (!parent)
return -EPROBE_DEFER;
mux->parent = parent;
} else {
ret = i2c_mux_reg_probe_dt(mux, pdev);
if (ret < 0) {
dev_err(&pdev->dev, "Error parsing device tree");
return ret;
}
}
if (!mux->data.reg) {
dev_info(&pdev->dev,
"Register not set, using platform resource\n");
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mux->data.reg_size = resource_size(res);
mux->data.reg = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mux->data.reg))
return PTR_ERR(mux->data.reg);
}
if (mux->data.reg_size != 4 && mux->data.reg_size != 2 &&
mux->data.reg_size != 1) {
dev_err(&pdev->dev, "Invalid register size\n");
return -EINVAL;
}
mux->adap = devm_kzalloc(&pdev->dev,
sizeof(*mux->adap) * mux->data.n_values,
GFP_KERNEL);
if (!mux->adap) {
dev_err(&pdev->dev, "Cannot allocate i2c_adapter structure");
return -ENOMEM;
}
if (mux->data.idle_in_use)
deselect = i2c_mux_reg_deselect;
else
deselect = NULL;
for (i = 0; i < mux->data.n_values; i++) {
nr = mux->data.base_nr ? (mux->data.base_nr + i) : 0;
class = mux->data.classes ? mux->data.classes[i] : 0;
mux->adap[i] = i2c_add_mux_adapter(mux->parent, &pdev->dev, mux,
nr, mux->data.values[i],
class, i2c_mux_reg_select,
deselect);
if (!mux->adap[i]) {
ret = -ENODEV;
dev_err(&pdev->dev, "Failed to add adapter %d\n", i);
goto add_adapter_failed;
}
}
dev_dbg(&pdev->dev, "%d port mux on %s adapter\n",
mux->data.n_values, mux->parent->name);
return 0;
add_adapter_failed:
for (; i > 0; i--)
i2c_del_mux_adapter(mux->adap[i - 1]);
return ret;
}
static int i2c_mux_reg_remove(struct platform_device *pdev)
{
struct regmux *mux = platform_get_drvdata(pdev);
int i;
for (i = 0; i < mux->data.n_values; i++)
i2c_del_mux_adapter(mux->adap[i]);
i2c_put_adapter(mux->parent);
return 0;
}
static const struct of_device_id i2c_mux_reg_of_match[] = {
{ .compatible = "i2c-mux-reg", },
{},
};
MODULE_DEVICE_TABLE(of, i2c_mux_reg_of_match);
static struct platform_driver i2c_mux_reg_driver = {
.probe = i2c_mux_reg_probe,
.remove = i2c_mux_reg_remove,
.driver = {
.name = "i2c-mux-reg",
},
};
module_platform_driver(i2c_mux_reg_driver);
MODULE_DESCRIPTION("Register-based I2C multiplexer driver");
MODULE_AUTHOR("York Sun <yorksun@freescale.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:i2c-mux-reg");
...@@ -186,19 +186,11 @@ static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf, ...@@ -186,19 +186,11 @@ static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
if (count > io_limit) if (count > io_limit)
count = io_limit; count = io_limit;
switch (at24->use_smbus) { if (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA:
/* Smaller eeproms can work given some SMBus extension calls */ /* Smaller eeproms can work given some SMBus extension calls */
if (count > I2C_SMBUS_BLOCK_MAX) if (count > I2C_SMBUS_BLOCK_MAX)
count = I2C_SMBUS_BLOCK_MAX; count = I2C_SMBUS_BLOCK_MAX;
break; } else {
case I2C_SMBUS_WORD_DATA:
count = 2;
break;
case I2C_SMBUS_BYTE_DATA:
count = 1;
break;
default:
/* /*
* When we have a better choice than SMBus calls, use a * When we have a better choice than SMBus calls, use a
* combined I2C message. Write address; then read up to * combined I2C message. Write address; then read up to
...@@ -229,27 +221,10 @@ static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf, ...@@ -229,27 +221,10 @@ static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
timeout = jiffies + msecs_to_jiffies(write_timeout); timeout = jiffies + msecs_to_jiffies(write_timeout);
do { do {
read_time = jiffies; read_time = jiffies;
switch (at24->use_smbus) { if (at24->use_smbus) {
case I2C_SMBUS_I2C_BLOCK_DATA: status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
status = i2c_smbus_read_i2c_block_data(client, offset,
count, buf); count, buf);
break; } else {
case I2C_SMBUS_WORD_DATA:
status = i2c_smbus_read_word_data(client, offset);
if (status >= 0) {
buf[0] = status & 0xff;
buf[1] = status >> 8;
status = count;
}
break;
case I2C_SMBUS_BYTE_DATA:
status = i2c_smbus_read_byte_data(client, offset);
if (status >= 0) {
buf[0] = status;
status = count;
}
break;
default:
status = i2c_transfer(client->adapter, msg, 2); status = i2c_transfer(client->adapter, msg, 2);
if (status == 2) if (status == 2)
status = count; status = count;
......
...@@ -191,6 +191,7 @@ static const struct i2c_device_id max6875_id[] = { ...@@ -191,6 +191,7 @@ static const struct i2c_device_id max6875_id[] = {
{ "max6875", 0 }, { "max6875", 0 },
{ } { }
}; };
MODULE_DEVICE_TABLE(i2c, max6875_id);
static struct i2c_driver max6875_driver = { static struct i2c_driver max6875_driver = {
.driver = { .driver = {
......
...@@ -432,6 +432,7 @@ int of_irq_get_byname(struct device_node *dev, const char *name) ...@@ -432,6 +432,7 @@ int of_irq_get_byname(struct device_node *dev, const char *name)
return of_irq_get(dev, index); return of_irq_get(dev, index);
} }
EXPORT_SYMBOL_GPL(of_irq_get_byname);
/** /**
* of_irq_count - Count the number of IRQs a node uses * of_irq_count - Count the number of IRQs a node uses
......
/*
* This header provides constants for I2C bindings
*
* Copyright (C) 2015 by Sang Engineering
* Copyright (C) 2015 by Renesas Electronics Corporation
*
* Wolfram Sang <wsa@sang-engineering.com>
*
* GPLv2 only
*/
#ifndef _DT_BINDINGS_I2C_I2C_H
#define _DT_BINDINGS_I2C_I2C_H
#define I2C_TEN_BIT_ADDRESS (1 << 31)
#define I2C_OWN_SLAVE_ADDRESS (1 << 30)
#endif
...@@ -121,6 +121,9 @@ extern s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, ...@@ -121,6 +121,9 @@ extern s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client,
extern s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, extern s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client,
u8 command, u8 length, u8 command, u8 length,
const u8 *values); const u8 *values);
extern s32
i2c_smbus_read_i2c_block_data_or_emulated(const struct i2c_client *client,
u8 command, u8 length, u8 *values);
#endif /* I2C */ #endif /* I2C */
/** /**
...@@ -553,6 +556,7 @@ void i2c_unlock_adapter(struct i2c_adapter *); ...@@ -553,6 +556,7 @@ void i2c_unlock_adapter(struct i2c_adapter *);
#define I2C_CLIENT_PEC 0x04 /* Use Packet Error Checking */ #define I2C_CLIENT_PEC 0x04 /* Use Packet Error Checking */
#define I2C_CLIENT_TEN 0x10 /* we have a ten bit chip address */ #define I2C_CLIENT_TEN 0x10 /* we have a ten bit chip address */
/* Must equal I2C_M_TEN below */ /* Must equal I2C_M_TEN below */
#define I2C_CLIENT_SLAVE 0x20 /* we are the slave */
#define I2C_CLIENT_WAKE 0x80 /* for board_info; true iff can wake */ #define I2C_CLIENT_WAKE 0x80 /* for board_info; true iff can wake */
#define I2C_CLIENT_SCCB 0x9000 /* Use Omnivision SCCB protocol */ #define I2C_CLIENT_SCCB 0x9000 /* Use Omnivision SCCB protocol */
/* Must match I2C_M_STOP|IGNORE_NAK */ /* Must match I2C_M_STOP|IGNORE_NAK */
...@@ -638,6 +642,8 @@ extern struct i2c_client *of_find_i2c_device_by_node(struct device_node *node); ...@@ -638,6 +642,8 @@ extern struct i2c_client *of_find_i2c_device_by_node(struct device_node *node);
/* must call put_device() when done with returned i2c_adapter device */ /* must call put_device() when done with returned i2c_adapter device */
extern struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node); extern struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node *node);
/* must call i2c_put_adapter() when done with returned i2c_adapter device */
struct i2c_adapter *of_get_i2c_adapter_by_node(struct device_node *node);
#else #else
static inline struct i2c_client *of_find_i2c_device_by_node(struct device_node *node) static inline struct i2c_client *of_find_i2c_device_by_node(struct device_node *node)
...@@ -649,6 +655,11 @@ static inline struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node ...@@ -649,6 +655,11 @@ static inline struct i2c_adapter *of_find_i2c_adapter_by_node(struct device_node
{ {
return NULL; return NULL;
} }
static inline struct i2c_adapter *of_get_i2c_adapter_by_node(struct device_node *node)
{
return NULL;
}
#endif /* CONFIG_OF */ #endif /* CONFIG_OF */
#endif /* _LINUX_I2C_H */ #endif /* _LINUX_I2C_H */
/*
* I2C multiplexer using a single register
*
* Copyright 2015 Freescale Semiconductor
* York Sun <yorksun@freescale.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef __LINUX_PLATFORM_DATA_I2C_MUX_REG_H
#define __LINUX_PLATFORM_DATA_I2C_MUX_REG_H
/**
* struct i2c_mux_reg_platform_data - Platform-dependent data for i2c-mux-reg
* @parent: Parent I2C bus adapter number
* @base_nr: Base I2C bus number to number adapters from or zero for dynamic
* @values: Array of value for each channel
* @n_values: Number of multiplexer channels
* @little_endian: Indicating if the register is in little endian
* @write_only: Reading the register is not allowed by hardware
* @classes: Optional I2C auto-detection classes
* @idle: Value to write to mux when idle
* @idle_in_use: indicate if idle value is in use
* @reg: Virtual address of the register to switch channel
* @reg_size: register size in bytes
*/
struct i2c_mux_reg_platform_data {
int parent;
int base_nr;
const unsigned int *values;
int n_values;
bool little_endian;
bool write_only;
const unsigned int *classes;
u32 idle;
bool idle_in_use;
void __iomem *reg;
resource_size_t reg_size;
};
#endif /* __LINUX_PLATFORM_DATA_I2C_MUX_REG_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment