Commit adaa6aad authored by Andrew Morton's avatar Andrew Morton Committed by Linus Torvalds

[PATCH] mips: SGI A2 audio rewrite and 2.6 fixes

From: Ralf Baechle <ralf@linux-mips.org>

Fix HAL2 audio driver for the SGI A2 audio subsystem and rewrite large
parts of it to finally work.
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent e62d1b67
......@@ -186,7 +186,10 @@ config SOUND_VWSND
config SOUND_HAL2
tristate "SGI HAL2 sound (EXPERIMENTAL)"
depends on SGI_IP22 && SOUND && EXPERIMENTAL
depends on SOUND_PRIME!=n && SOUND && SGI_IP22 && EXPERIMENTAL
help
Say Y or M if you have an SGI Indy system and want to be able to
use it's on-board A2 audio system.
config SOUND_VRC5477
tristate "NEC Vrc5477 AC97 sound"
......
/*
* Driver for HAL2 sound processors
* Copyright (c) 2001, 2002 Ladislav Michl <ladis@psi.cz>
* Driver for A2 audio system used in SGI machines
* Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
*
* Based on Ulf Carlsson's code.
*
......@@ -21,22 +21,21 @@
* /dev/dsp standard dsp device, (mostly) OSS compatible
* /dev/mixer standard mixer device, (mostly) OSS compatible
*
* BUGS:
* + Driver currently supports indigo mode only.
* + Recording doesn't work. I guess that it is caused by PBUS channel
* misconfiguration, but until I get relevant info I'm unable to fix it.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/sound.h>
#include <linux/soundcard.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/sgi/sgint23.h>
#include <asm/sgi/hpc3.h>
#include <asm/sgi/ip22.h>
#include "hal2.h"
......@@ -52,21 +51,91 @@
#define DEBUG_MIX(args...)
#endif
/*
* Before touching these look how it works. It is a bit unusual I know,
* but it helps to keep things simple. This driver is considered complete
* and I won't add any new features although hardware has many cool
* capabilities.
* (Historical note: HAL2 driver was first written by Ulf Carlsson - ALSA
* 0.3 running with 2.2.x kernel. Then ALSA changed completely and it
* seemed easier to me to write OSS driver from scratch - this one. Now
* when ALSA is official part of 2.6 kernel it's time to write ALSA driver
* using (hopefully) final version of ALSA interface)
*/
#define H2_BLOCK_SIZE 1024
#define H2_ADC_BUFSIZE 8192
#define H2_DAC_BUFSIZE 16834
struct hal2_pbus {
struct hpc3_pbus_dmacregs *pbus;
int pbusnr;
unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
};
struct hal2_desc {
struct hpc_dma_desc desc;
u32 cnt; /* don't touch, it is also padding */
};
struct hal2_codec {
unsigned char *buffer;
struct hal2_desc *desc;
int desc_count;
int tail, head; /* tail index, head index */
struct hal2_pbus pbus;
unsigned int format; /* Audio data format */
int voices; /* mono/stereo */
unsigned int sample_rate;
unsigned int master; /* Master frequency */
unsigned short mod; /* MOD value */
unsigned short inc; /* INC value */
wait_queue_head_t dma_wait;
spinlock_t lock;
struct semaphore sem;
int usecount; /* recording and playback are
* independent */
};
#define H2_MIX_OUTPUT_ATT 0
#define H2_MIX_INPUT_GAIN 1
#define H2_MIXERS 2
struct hal2_mixer {
int modcnt;
unsigned int master;
unsigned int volume[H2_MIXERS];
};
struct hal2_card {
int dev_dsp; /* audio device */
int dev_mixer; /* mixer device */
int dev_midi; /* midi device */
struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
struct hal2_codec dac;
struct hal2_codec adc;
struct hal2_mixer mixer;
};
#define H2_INDIRECT_WAIT(regs) while (regs->isr & H2_ISR_TSTATUS);
#define H2_READ_ADDR(addr) (addr | (1<<7))
#define H2_WRITE_ADDR(addr) (addr)
static char *hal2str = "HAL2 audio";
static int ibuffers = 32;
static int obuffers = 32;
static char *hal2str = "HAL2";
/* I doubt anyone has a machine with two HAL2 cards. It's possible to
/*
* I doubt anyone has a machine with two HAL2 cards. It's possible to
* have two HPC's, so it is probably possible to have two HAL2 cards.
* Try to deal with it, but note that it is not tested.
*/
#define MAXCARDS 2
static hal2_card_t* hal2_card[MAXCARDS];
static struct hal2_card* hal2_card[MAXCARDS];
static const struct {
unsigned char idx:4, avail:1;
......@@ -77,36 +146,36 @@ static const struct {
#define H2_SUPPORTED_FORMATS (AFMT_S16_LE | AFMT_S16_BE)
static inline void hal2_isr_write(hal2_card_t *hal2, u32 val)
static inline void hal2_isr_write(struct hal2_card *hal2, u16 val)
{
hal2->ctl_regs->isr = val;
}
static inline u32 hal2_isr_look(hal2_card_t *hal2)
static inline u16 hal2_isr_look(struct hal2_card *hal2)
{
return hal2->ctl_regs->isr;
}
static inline u32 hal2_rev_look(hal2_card_t *hal2)
static inline u16 hal2_rev_look(struct hal2_card *hal2)
{
return hal2->ctl_regs->rev;
}
#if 0
static u16 hal2_i_look16(hal2_card_t *hal2, u32 addr)
#ifdef HAL2_DUMP_REGS
static u16 hal2_i_look16(struct hal2_card *hal2, u16 addr)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
return (regs->idr0 & 0xffff);
return regs->idr0;
}
#endif
static u32 hal2_i_look32(hal2_card_t *hal2, u32 addr)
static u32 hal2_i_look32(struct hal2_card *hal2, u16 addr)
{
u32 ret;
hal2_ctl_regs_t *regs = hal2->ctl_regs;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
......@@ -117,9 +186,9 @@ static u32 hal2_i_look32(hal2_card_t *hal2, u32 addr)
return ret;
}
static void hal2_i_write16(hal2_card_t *hal2, u32 addr, u16 val)
static void hal2_i_write16(struct hal2_card *hal2, u16 addr, u16 val)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->idr0 = val;
regs->idr1 = 0;
......@@ -129,9 +198,9 @@ static void hal2_i_write16(hal2_card_t *hal2, u32 addr, u16 val)
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_write32(hal2_card_t *hal2, u32 addr, u32 val)
static void hal2_i_write32(struct hal2_card *hal2, u16 addr, u32 val)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->idr0 = val & 0xffff;
regs->idr1 = val >> 16;
......@@ -141,13 +210,13 @@ static void hal2_i_write32(hal2_card_t *hal2, u32 addr, u32 val)
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit16(hal2_card_t *hal2, u32 addr, u16 bit)
static void hal2_i_setbit16(struct hal2_card *hal2, u16 addr, u16 bit)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
regs->idr0 = regs->idr0 | bit;
regs->idr0 = (regs->idr0 & 0xffff) | bit;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
......@@ -155,14 +224,14 @@ static void hal2_i_setbit16(hal2_card_t *hal2, u32 addr, u16 bit)
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_setbit32(hal2_card_t *hal2, u32 addr, u32 bit)
static void hal2_i_setbit32(struct hal2_card *hal2, u16 addr, u32 bit)
{
u32 tmp;
hal2_ctl_regs_t *regs = hal2->ctl_regs;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
tmp = regs->idr0 | (regs->idr1 << 16) | bit;
tmp = (regs->idr0 & 0xffff) | (regs->idr1 << 16) | bit;
regs->idr0 = tmp & 0xffff;
regs->idr1 = tmp >> 16;
regs->idr2 = 0;
......@@ -171,13 +240,13 @@ static void hal2_i_setbit32(hal2_card_t *hal2, u32 addr, u32 bit)
H2_INDIRECT_WAIT(regs);
}
static void hal2_i_clearbit16(hal2_card_t *hal2, u32 addr, u16 bit)
static void hal2_i_clearbit16(struct hal2_card *hal2, u16 addr, u16 bit)
{
hal2_ctl_regs_t *regs = hal2->ctl_regs;
struct hal2_ctl_regs *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
regs->idr0 = regs->idr0 & ~bit;
regs->idr0 = (regs->idr0 & 0xffff) & ~bit;
regs->idr1 = 0;
regs->idr2 = 0;
regs->idr3 = 0;
......@@ -186,14 +255,14 @@ static void hal2_i_clearbit16(hal2_card_t *hal2, u32 addr, u16 bit)
}
#if 0
static void hal2_i_clearbit32(hal2_card_t *hal2, u32 addr, u32 bit)
static void hal2_i_clearbit32(struct hal2_card *hal2, u16 addr, u32 bit)
{
u32 tmp;
hal2_ctl_regs_t *regs = hal2->ctl_regs;
regs->iar = H2_READ_ADDR(addr);
H2_INDIRECT_WAIT(regs);
tmp = (regs->idr0 | (regs->idr1 << 16)) & ~bit;
tmp = ((regs->idr0 & 0xffff) | (regs->idr1 << 16)) & ~bit;
regs->idr0 = tmp & 0xffff;
regs->idr1 = tmp >> 16;
regs->idr2 = 0;
......@@ -203,33 +272,33 @@ static void hal2_i_clearbit32(hal2_card_t *hal2, u32 addr, u32 bit)
}
#endif
#ifdef HAL2_DEBUG
static void hal2_dump_regs(hal2_card_t *hal2)
#ifdef HAL2_DUMP_REGS
static void hal2_dump_regs(struct hal2_card *hal2)
{
printk("isr: %08hx ", hal2_isr_look(hal2));
printk("rev: %08hx\n", hal2_rev_look(hal2));
printk("relay: %04hx\n", hal2_i_look16(hal2, H2I_RELAY_C));
printk("port en: %04hx ", hal2_i_look16(hal2, H2I_DMA_PORT_EN));
printk("dma end: %04hx ", hal2_i_look16(hal2, H2I_DMA_END));
printk("dma drv: %04hx\n", hal2_i_look16(hal2, H2I_DMA_DRV));
printk("syn ctl: %04hx ", hal2_i_look16(hal2, H2I_SYNTH_C));
printk("aesrx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESRX_C));
printk("aestx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESTX_C));
printk("dac ctl1: %04hx ", hal2_i_look16(hal2, H2I_ADC_C1));
printk("dac ctl2: %08lx ", hal2_i_look32(hal2, H2I_ADC_C2));
printk("adc ctl1: %04hx ", hal2_i_look16(hal2, H2I_DAC_C1));
printk("adc ctl2: %08lx ", hal2_i_look32(hal2, H2I_DAC_C2));
printk("syn map: %04hx\n", hal2_i_look16(hal2, H2I_SYNTH_MAP_C));
printk("bres1 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES1_C1));
printk("bres1 ctl2: %04lx ", hal2_i_look32(hal2, H2I_BRES1_C2));
printk("bres2 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES2_C1));
printk("bres2 ctl2: %04lx ", hal2_i_look32(hal2, H2I_BRES2_C2));
printk("bres3 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES3_C1));
printk("bres3 ctl2: %04lx\n", hal2_i_look32(hal2, H2I_BRES3_C2));
DEBUG("isr: %08hx ", hal2_isr_look(hal2));
DEBUG("rev: %08hx\n", hal2_rev_look(hal2));
DEBUG("relay: %04hx\n", hal2_i_look16(hal2, H2I_RELAY_C));
DEBUG("port en: %04hx ", hal2_i_look16(hal2, H2I_DMA_PORT_EN));
DEBUG("dma end: %04hx ", hal2_i_look16(hal2, H2I_DMA_END));
DEBUG("dma drv: %04hx\n", hal2_i_look16(hal2, H2I_DMA_DRV));
DEBUG("syn ctl: %04hx ", hal2_i_look16(hal2, H2I_SYNTH_C));
DEBUG("aesrx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESRX_C));
DEBUG("aestx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESTX_C));
DEBUG("dac ctl1: %04hx ", hal2_i_look16(hal2, H2I_ADC_C1));
DEBUG("dac ctl2: %08x ", hal2_i_look32(hal2, H2I_ADC_C2));
DEBUG("adc ctl1: %04hx ", hal2_i_look16(hal2, H2I_DAC_C1));
DEBUG("adc ctl2: %08x ", hal2_i_look32(hal2, H2I_DAC_C2));
DEBUG("syn map: %04hx\n", hal2_i_look16(hal2, H2I_SYNTH_MAP_C));
DEBUG("bres1 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES1_C1));
DEBUG("bres1 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES1_C2));
DEBUG("bres2 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES2_C1));
DEBUG("bres2 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES2_C2));
DEBUG("bres3 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES3_C1));
DEBUG("bres3 ctl2: %04x\n", hal2_i_look32(hal2, H2I_BRES3_C2));
}
#endif
static hal2_card_t* hal2_dsp_find_card(int minor)
static struct hal2_card* hal2_dsp_find_card(int minor)
{
int i;
......@@ -239,7 +308,7 @@ static hal2_card_t* hal2_dsp_find_card(int minor)
return NULL;
}
static hal2_card_t* hal2_mixer_find_card(int minor)
static struct hal2_card* hal2_mixer_find_card(int minor)
{
int i;
......@@ -249,48 +318,51 @@ static hal2_card_t* hal2_mixer_find_card(int minor)
return NULL;
}
static void hal2_inc_head(struct hal2_codec *codec)
{
codec->head++;
if (codec->head == codec->desc_count)
codec->head = 0;
}
static void hal2_dac_interrupt(hal2_codec_t *dac)
static void hal2_inc_tail(struct hal2_codec *codec)
{
codec->tail++;
if (codec->tail == codec->desc_count)
codec->tail = 0;
}
static void hal2_dac_interrupt(struct hal2_codec *dac)
{
int running;
spin_lock(&dac->lock);
/* if tail buffer contains zero samples DMA stream was already
* stopped */
running = dac->tail->info.cnt;
dac->tail->info.cnt = 0;
dac->tail->info.desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX;
dma_cache_wback_inv((unsigned long) dac->tail,
sizeof(struct hpc_dma_desc));
running = dac->desc[dac->tail].cnt;
dac->desc[dac->tail].cnt = 0;
dac->desc[dac->tail].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX;
/* we just proccessed empty buffer, don't update tail pointer */
if (running)
dac->tail = dac->tail->info.next;
hal2_inc_tail(dac);
spin_unlock(&dac->lock);
wake_up(&dac->dma_wait);
}
static void hal2_adc_interrupt(hal2_codec_t *adc)
static void hal2_adc_interrupt(struct hal2_codec *adc)
{
int running;
spin_lock(&adc->lock);
/* if head buffer contains nonzero samples DMA stream was already
* stopped */
running = !adc->head->info.cnt;
adc->head->info.cnt = H2_BUFFER_SIZE;
adc->head->info.desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX;
dma_cache_wback_inv((unsigned long) adc->head,
sizeof(struct hpc_dma_desc));
running = !adc->desc[adc->head].cnt;
adc->desc[adc->head].cnt = H2_BLOCK_SIZE;
adc->desc[adc->head].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOR;
/* we just proccessed empty buffer, don't update head pointer */
if (running) {
dma_cache_inv((unsigned long) adc->head->data, H2_BUFFER_SIZE);
adc->head = adc->head->info.next;
}
if (running)
hal2_inc_head(adc);
spin_unlock(&adc->lock);
wake_up(&adc->dma_wait);
......@@ -298,60 +370,48 @@ static void hal2_adc_interrupt(hal2_codec_t *adc)
static irqreturn_t hal2_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
hal2_card_t *hal2 = (hal2_card_t*)dev_id;
struct hal2_card *hal2 = (struct hal2_card*)dev_id;
irqreturn_t ret = IRQ_NONE;
/* decide what caused this interrupt */
if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT)
if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
hal2_dac_interrupt(&hal2->dac);
if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT)
ret = IRQ_HANDLED;
}
if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
hal2_adc_interrupt(&hal2->adc);
return IRQ_HANDLED;
ret = IRQ_HANDLED;
}
return ret;
}
static int hal2_compute_rate(hal2_codec_t *codec, unsigned int rate)
static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
{
unsigned short inc;
/* We default to 44.1 kHz and if it isn't possible to fall back to
* 48.0 kHz with the needed adjustments of real_rate.
*/
unsigned short mod;
DEBUG("rate: %d\n", rate);
/* Refer to CS4216 data sheet */
if (rate < 4000)
rate = 4000;
if (rate > 50000)
rate = 50000;
if (rate < 4000) rate = 4000;
else if (rate > 48000) rate = 48000;
/* Note: This is NOT the way they set up the bresenham clock generators
* in the specification. I've tried to implement that method but it
* doesn't work. It's probably another silly bug in the spec.
*
* I accidently discovered this method while I was testing and it seems
* to work very well with all frequencies, and thee shall follow rule #1
* of programming :-)
*/
if (44100 % rate == 0) {
inc = 44100 / rate;
if (inc < 1) inc = 1;
if (44100 % rate < 48000 % rate) {
mod = 4 * 44100 / rate;
codec->master = 44100;
} else {
inc = 48000 / rate;
if (inc < 1) inc = 1;
rate = 48000 / inc;
mod = 4 * 48000 / rate;
codec->master = 48000;
}
codec->inc = inc;
codec->mod = 1;
codec->inc = 4;
codec->mod = mod;
rate = 4 * codec->master / mod;
DEBUG("real_rate: %d\n", rate);
return rate;
}
static void hal2_set_dac_rate(hal2_card_t *hal2)
static void hal2_set_dac_rate(struct hal2_card *hal2)
{
unsigned int master = hal2->dac.master;
int inc = hal2->dac.inc;
......@@ -360,10 +420,10 @@ static void hal2_set_dac_rate(hal2_card_t *hal2)
DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (mod - inc - 1)) << 16) | 1);
hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (inc - mod - 1)) << 16) | inc);
}
static void hal2_set_adc_rate(hal2_card_t *hal2)
static void hal2_set_adc_rate(struct hal2_card *hal2)
{
unsigned int master = hal2->adc.master;
int inc = hal2->adc.inc;
......@@ -372,13 +432,13 @@ static void hal2_set_adc_rate(hal2_card_t *hal2)
DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (mod - inc - 1)) << 16) | 1);
hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (inc - mod - 1)) << 16) | inc);
}
static void hal2_setup_dac(hal2_card_t *hal2)
static void hal2_setup_dac(struct hal2_card *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
hal2_pbus_t *pbus = &hal2->dac.pbus;
struct hal2_pbus *pbus = &hal2->dac.pbus;
DEBUG("hal2_setup_dac\n");
......@@ -388,230 +448,215 @@ static void hal2_setup_dac(hal2_card_t *hal2)
* endian. The information is written later, on the start call.
*/
sample_size = 2 * hal2->dac.voices;
/* Fifo should be set to hold exactly four samples. Highwater mark
* should be set to two samples. */
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = 0; /* playback is first */
fifoend = (sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24);
(highwater << 8) | (fifobeg << 16) | (fifoend << 24) |
(hal2->dac.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0);
/* We disable everything before we do anything at all */
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
hal2_i_clearbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* Setup the HAL2 for playback */
hal2_set_dac_rate(hal2);
/* Set endianess */
if (hal2->dac.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
/* Set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* We are using 1st Bresenham clock generator for playback */
hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (1 << H2I_C1_CLKID_SHIFT)
| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
}
static void hal2_setup_adc(hal2_card_t *hal2)
static void hal2_setup_adc(struct hal2_card *hal2)
{
unsigned int fifobeg, fifoend, highwater, sample_size;
hal2_pbus_t *pbus = &hal2->adc.pbus;
struct hal2_pbus *pbus = &hal2->adc.pbus;
DEBUG("hal2_setup_adc\n");
sample_size = 2 * hal2->adc.voices;
highwater = (sample_size * 2) >> 1; /* halfwords */
fifobeg = (4 * 4) >> 3; /* record is second */
fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
(highwater << 8) | (fifobeg << 16) | (fifoend << 24);
(highwater << 8) | (fifobeg << 16) | (fifoend << 24) |
(hal2->adc.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0);
pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
hal2_i_clearbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* Setup the HAL2 for record */
hal2_set_adc_rate(hal2);
/* Set endianess */
if (hal2->adc.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
/* Set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* We are using 2nd Bresenham clock generator for record */
hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
| (2 << H2I_C1_CLKID_SHIFT)
| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
}
static void hal2_start_dac(hal2_card_t *hal2)
static dma_addr_t hal2_desc_addr(struct hal2_codec *codec, int i)
{
hal2_pbus_t *pbus = &hal2->dac.pbus;
if (--i < 0)
i = codec->desc_count - 1;
return codec->desc[i].desc.pnext;
}
DEBUG("hal2_start_dac\n");
static void hal2_start_dac(struct hal2_card *hal2)
{
struct hal2_codec *dac = &hal2->dac;
struct hal2_pbus *pbus = &dac->pbus;
pbus->pbus->pbdma_dptr = PHYSADDR(hal2->dac.tail);
pbus->pbus->pbdma_dptr = hal2_desc_addr(dac, dac->tail);
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* set endianess */
if (hal2->dac.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
/* set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* enable DAC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
}
static void hal2_start_adc(hal2_card_t *hal2)
static void hal2_start_adc(struct hal2_card *hal2)
{
hal2_pbus_t *pbus = &hal2->adc.pbus;
struct hal2_codec *adc = &hal2->adc;
struct hal2_pbus *pbus = &adc->pbus;
DEBUG("hal2_start_adc\n");
pbus->pbus->pbdma_dptr = PHYSADDR(hal2->adc.head);
pbus->pbus->pbdma_dptr = hal2_desc_addr(adc, adc->head);
pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
/* set endianess */
if (hal2->adc.format & AFMT_S16_LE)
hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
else
hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
/* set DMA bus */
hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
/* enable ADC */
hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
}
static inline void hal2_stop_dac(hal2_card_t *hal2)
static inline void hal2_stop_dac(struct hal2_card *hal2)
{
DEBUG("hal2_stop_dac\n");
hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
/* The HAL2 itself may remain enabled safely */
}
static inline void hal2_stop_adc(hal2_card_t *hal2)
static inline void hal2_stop_adc(struct hal2_card *hal2)
{
DEBUG("hal2_stop_adc\n");
hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
}
#define hal2_alloc_dac_dmabuf(hal2) hal2_alloc_dmabuf(hal2, 1)
#define hal2_alloc_adc_dmabuf(hal2) hal2_alloc_dmabuf(hal2, 0)
static int hal2_alloc_dmabuf(hal2_card_t *hal2, int is_dac)
static int hal2_alloc_dmabuf(struct hal2_codec *codec, int size,
int count, int cntinfo, int dir)
{
int buffers, cntinfo;
hal2_buf_t *buf, *prev;
hal2_codec_t *codec;
if (is_dac) {
codec = &hal2->dac;
buffers = obuffers;
cntinfo = HPCDMA_XIE | HPCDMA_EOX;
} else {
codec = &hal2->adc;
buffers = ibuffers;
cntinfo = HPCDMA_XIE | H2_BUFFER_SIZE;
}
struct hal2_desc *desc, *dma_addr;
int i;
DEBUG("allocating %d DMA buffers.\n", buffers);
DEBUG("allocating %dk DMA buffer.\n", size / 1024);
buf = (hal2_buf_t*) get_zeroed_page(GFP_KERNEL);
if (!buf)
codec->buffer = (unsigned char *)__get_free_pages(GFP_KERNEL | GFP_DMA,
get_order(size));
if (!codec->buffer)
return -ENOMEM;
codec->head = buf;
codec->tail = buf;
while (--buffers) {
buf->info.desc.pbuf = PHYSADDR(&buf->data);
buf->info.desc.cntinfo = cntinfo;
buf->info.cnt = 0;
prev = buf;
buf = (hal2_buf_t*) get_zeroed_page(GFP_KERNEL);
if (!buf) {
printk("HAL2: Not enough memory for DMA buffer.\n");
buf = codec->head;
while (buf) {
prev = buf;
free_page((unsigned long) buf);
buf = prev->info.next;
}
desc = dma_alloc_coherent(NULL, count * sizeof(struct hal2_desc),
(dma_addr_t *)&dma_addr, GFP_KERNEL);
if (!desc) {
free_pages((unsigned long)codec->buffer, get_order(size));
return -ENOMEM;
}
prev->info.next = buf;
prev->info.desc.pnext = PHYSADDR(buf);
/* The PBUS can prolly not read this stuff when it's in
* the cache so we have to flush it back to main memory
*/
dma_cache_wback_inv((unsigned long) prev, PAGE_SIZE);
}
buf->info.desc.pbuf = PHYSADDR(&buf->data);
buf->info.desc.cntinfo = cntinfo;
buf->info.cnt = 0;
buf->info.next = codec->head;
buf->info.desc.pnext = PHYSADDR(codec->head);
dma_cache_wback_inv((unsigned long) buf, PAGE_SIZE);
codec->desc = desc;
for (i = 0; i < count; i++) {
desc->desc.pbuf = dma_map_single(NULL,
(void *)(codec->buffer + i * H2_BLOCK_SIZE),
H2_BLOCK_SIZE, dir);
desc->desc.cntinfo = cntinfo;
desc->desc.pnext = (i == count - 1) ?
(u32)dma_addr : (u32)(dma_addr + i + 1);
desc->cnt = 0;
desc++;
}
codec->desc_count = count;
codec->head = codec->tail = 0;
return 0;
}
#define hal2_free_dac_dmabuf(hal2) hal2_free_dmabuf(hal2, 1)
#define hal2_free_adc_dmabuf(hal2) hal2_free_dmabuf(hal2, 0)
static void hal2_free_dmabuf(hal2_card_t *hal2, int is_dac)
static int hal2_alloc_dac_dmabuf(struct hal2_codec *codec)
{
hal2_buf_t *buf, *next;
hal2_codec_t *codec = (is_dac) ? &hal2->dac : &hal2->adc;
if (!codec->head)
return;
buf = codec->head->info.next;
codec->head->info.next = NULL;
while (buf) {
next = buf->info.next;
free_page((unsigned long) buf);
buf = next;
}
codec->head = codec->tail = NULL;
return hal2_alloc_dmabuf(codec, H2_DAC_BUFSIZE,
H2_DAC_BUFSIZE / H2_BLOCK_SIZE,
HPCDMA_XIE | HPCDMA_EOX,
DMA_TO_DEVICE);
}
static int hal2_alloc_adc_dmabuf(struct hal2_codec *codec)
{
return hal2_alloc_dmabuf(codec, H2_ADC_BUFSIZE,
H2_ADC_BUFSIZE / H2_BLOCK_SIZE,
HPCDMA_XIE | H2_BLOCK_SIZE,
DMA_TO_DEVICE);
}
static void hal2_free_dmabuf(struct hal2_codec *codec, int size, int dir)
{
dma_addr_t dma_addr;
int i;
dma_addr = codec->desc[codec->desc_count - 1].desc.pnext;
for (i = 0; i < codec->desc_count; i++)
dma_unmap_single(NULL, codec->desc[i].desc.pbuf,
H2_BLOCK_SIZE, dir);
dma_free_coherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
(void *)codec->desc, dma_addr);
free_pages((unsigned long)codec->buffer, get_order(size));
}
static void hal2_free_dac_dmabuf(struct hal2_codec *codec)
{
return hal2_free_dmabuf(codec, H2_DAC_BUFSIZE, DMA_TO_DEVICE);
}
static void hal2_free_adc_dmabuf(struct hal2_codec *codec)
{
return hal2_free_dmabuf(codec, H2_ADC_BUFSIZE, DMA_FROM_DEVICE);
}
/*
* Add 'count' bytes to 'buffer' from DMA ring buffers. Return number of
* bytes added or -EFAULT if copy_from_user failed.
*/
static int hal2_get_buffer(hal2_card_t *hal2, char *buffer, int count)
static int hal2_get_buffer(struct hal2_card *hal2, char *buffer, int count)
{
unsigned long flags;
int size, ret = 0;
hal2_codec_t *adc = &hal2->adc;
spin_lock_irqsave(&adc->lock, flags);
unsigned char *buf;
struct hal2_desc *tail;
struct hal2_codec *adc = &hal2->adc;
DEBUG("getting %d bytes ", count);
spin_lock_irqsave(&adc->lock, flags);
tail = &adc->desc[adc->tail];
/* enable DMA stream if there are no data */
if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) &&
adc->tail->info.cnt == 0)
if (!tail->cnt && !(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
hal2_start_adc(hal2);
DEBUG("... ");
while (adc->tail->info.cnt > 0 && count > 0) {
size = min(adc->tail->info.cnt, count);
while (tail->cnt > 0 && count > 0) {
size = min((int)tail->cnt, count);
buf = &adc->buffer[(adc->tail + 1) * H2_BLOCK_SIZE - tail->cnt];
spin_unlock_irqrestore(&adc->lock, flags);
if (copy_to_user(buffer, &adc->tail->data[H2_BUFFER_SIZE-size],
size)) {
dma_sync_single(NULL, tail->desc.pbuf, size, DMA_FROM_DEVICE);
if (copy_to_user(buffer, buf, size)) {
ret = -EFAULT;
goto out;
}
spin_lock_irqsave(&adc->lock, flags);
adc->tail->info.cnt -= size;
tail->cnt -= size;
/* buffer is empty, update tail pointer */
if (adc->tail->info.cnt == 0) {
adc->tail->info.desc.cntinfo = HPCDMA_XIE |
H2_BUFFER_SIZE;
dma_cache_wback_inv((unsigned long) adc->tail,
sizeof(struct hpc_dma_desc));
adc->tail = adc->tail->info.next;
if (tail->cnt == 0) {
tail->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
hal2_inc_tail(adc);
tail = &adc->desc[adc->tail];
/* enable DMA stream again if needed */
if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
hal2_start_adc(hal2);
}
buffer += size;
ret += size;
......@@ -630,40 +675,40 @@ static int hal2_get_buffer(hal2_card_t *hal2, char *buffer, int count)
* Add 'count' bytes from 'buffer' to DMA ring buffers. Return number of
* bytes added or -EFAULT if copy_from_user failed.
*/
static int hal2_add_buffer(hal2_card_t *hal2, char *buffer, int count)
static int hal2_add_buffer(struct hal2_card *hal2, char *buffer, int count)
{
unsigned long flags;
unsigned char *buf;
int size, ret = 0;
hal2_codec_t *dac = &hal2->dac;
spin_lock_irqsave(&dac->lock, flags);
struct hal2_desc *head;
struct hal2_codec *dac = &hal2->dac;
DEBUG("adding %d bytes ", count);
while (dac->head->info.cnt == 0 && count > 0) {
size = min((int)H2_BUFFER_SIZE, count);
spin_lock_irqsave(&dac->lock, flags);
head = &dac->desc[dac->head];
while (head->cnt == 0 && count > 0) {
size = min((int)H2_BLOCK_SIZE, count);
buf = &dac->buffer[dac->head * H2_BLOCK_SIZE];
spin_unlock_irqrestore(&dac->lock, flags);
if (copy_from_user(dac->head->data, buffer, size)) {
if (copy_from_user(buf, buffer, size)) {
ret = -EFAULT;
goto out;
}
dma_sync_single(NULL, head->desc.pbuf, size, DMA_TO_DEVICE);
spin_lock_irqsave(&dac->lock, flags);
dac->head->info.desc.cntinfo = size | HPCDMA_XIE;
dac->head->info.cnt = size;
dma_cache_wback_inv((unsigned long) dac->head,
size + PAGE_SIZE - H2_BUFFER_SIZE);
head->desc.cntinfo = size | HPCDMA_XIE;
head->cnt = size;
buffer += size;
ret += size;
count -= size;
dac->head = dac->head->info.next;
hal2_inc_head(dac);
head = &dac->desc[dac->head];
DEBUG("(%d) ", size);
}
if (!(dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) && ret > 0)
hal2_start_dac(hal2);
spin_unlock_irqrestore(&dac->lock, flags);
out:
DEBUG("\n");
......@@ -673,43 +718,38 @@ static int hal2_add_buffer(hal2_card_t *hal2, char *buffer, int count)
#define hal2_reset_dac_pointer(hal2) hal2_reset_pointer(hal2, 1)
#define hal2_reset_adc_pointer(hal2) hal2_reset_pointer(hal2, 0)
static void hal2_reset_pointer(hal2_card_t *hal2, int is_dac)
static void hal2_reset_pointer(struct hal2_card *hal2, int is_dac)
{
hal2_codec_t *codec = (is_dac) ? &hal2->dac : &hal2->adc;
int i;
struct hal2_codec *codec = (is_dac) ? &hal2->dac : &hal2->adc;
DEBUG("hal2_reset_pointer\n");
codec->tail = codec->head;
do {
codec->tail->info.desc.cntinfo = HPCDMA_XIE | (is_dac) ?
HPCDMA_EOX : H2_BUFFER_SIZE;
codec->tail->info.cnt = 0;
dma_cache_wback_inv((unsigned long) codec->tail,
sizeof(struct hpc_dma_desc));
codec->tail = codec->tail->info.next;
} while (codec->tail != codec->head);
for (i = 0; i < codec->desc_count; i++) {
codec->desc[i].cnt = 0;
codec->desc[i].desc.cntinfo = HPCDMA_XIE | (is_dac) ?
HPCDMA_EOX : H2_BLOCK_SIZE;
}
codec->head = codec->tail = 0;
}
static int hal2_sync_dac(hal2_card_t *hal2)
static int hal2_sync_dac(struct hal2_card *hal2)
{
DECLARE_WAITQUEUE(wait, current);
hal2_codec_t *dac = &hal2->dac;
struct hal2_codec *dac = &hal2->dac;
int ret = 0;
signed long timeout = 1000 * H2_BUFFER_SIZE * 2 * dac->voices *
unsigned long flags;
signed long timeout = 1000 * H2_BLOCK_SIZE * 2 * dac->voices *
HZ / dac->sample_rate / 900;
down(&dac->sem);
while (dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) {
add_wait_queue(&dac->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
if (!schedule_timeout(timeout))
/* We may get bogus timeout when system is
* heavily loaded */
if (dac->tail->info.cnt) {
printk("HAL2: timeout...\n");
schedule_timeout(timeout);
spin_lock_irqsave(&dac->lock, flags);
if (dac->desc[dac->tail].cnt)
ret = -ETIME;
}
spin_unlock_irqrestore(&dac->lock, flags);
if (signal_pending(current))
ret = -ERESTARTSYS;
if (ret) {
......@@ -719,14 +759,12 @@ static int hal2_sync_dac(hal2_card_t *hal2)
remove_wait_queue(&dac->dma_wait, &wait);
}
up(&dac->sem);
return ret;
}
static int hal2_write_mixer(hal2_card_t *hal2, int index, int vol)
static int hal2_write_mixer(struct hal2_card *hal2, int index, int vol)
{
unsigned int l, r;
unsigned int l, r, tmp;
DEBUG_MIX("mixer %d write\n", index);
......@@ -743,18 +781,17 @@ static int hal2_write_mixer(hal2_card_t *hal2, int index, int vol)
hal2->mixer.volume[mixtable[index].idx] = l | (r << 8);
switch (mixtable[index].idx) {
case H2_MIX_OUTPUT_ATT: {
case H2_MIX_OUTPUT_ATT:
DEBUG_MIX("output attenuator %d,%d\n", l, r);
if (r | l) {
unsigned int tmp = hal2_i_look32(hal2, H2I_DAC_C2);
tmp = hal2_i_look32(hal2, H2I_DAC_C2);
tmp &= ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
/* Attenuator has five bits */
l = (31 * (100 - l) / 99);
r = (31 * (100 - r) / 99);
l = 31 * (100 - l) / 99;
r = 31 * (100 - r) / 99;
DEBUG_MIX("left: %d, right %d\n", l, r);
......@@ -763,30 +800,80 @@ static int hal2_write_mixer(hal2_card_t *hal2, int index, int vol)
hal2_i_write32(hal2, H2I_DAC_C2, tmp);
} else
hal2_i_setbit32(hal2, H2I_DAC_C2, H2I_C2_MUTE);
break;
case H2_MIX_INPUT_GAIN:
DEBUG_MIX("input gain %d,%d\n", l, r);
tmp = hal2_i_look32(hal2, H2I_ADC_C2);
tmp &= ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
/* Gain control has four bits */
l = 16 * l / 100;
r = 16 * r / 100;
DEBUG_MIX("left: %d, right %d\n", l, r);
tmp |= (l << H2I_C2_L_GAIN_SHIFT) & H2I_C2_L_GAIN_M;
tmp |= (r << H2I_C2_R_GAIN_SHIFT) & H2I_C2_R_GAIN_M;
hal2_i_write32(hal2, H2I_ADC_C2, tmp);
break;
}
case H2_MIX_INPUT_GAIN: {
/* TODO */
}
}
return 0;
}
static void hal2_init_mixer(hal2_card_t *hal2)
static void hal2_init_mixer(struct hal2_card *hal2)
{
int i;
for (i = 0; i < SOUND_MIXER_NRDEVICES; i++)
hal2_write_mixer(hal2, i, 100 | (100 << 8));
if (mixtable[i].avail)
hal2->mixer.volume[mixtable[i].idx] = 100 | (100 << 8);
/* disable attenuator */
hal2_i_write32(hal2, H2I_DAC_C2, 0);
/* set max input gain */
hal2_i_write32(hal2, H2I_ADC_C2, H2I_C2_MUTE |
(H2I_C2_L_GAIN_M << H2I_C2_L_GAIN_SHIFT) |
(H2I_C2_R_GAIN_M << H2I_C2_R_GAIN_SHIFT));
/* set max volume */
hal2->mixer.master = 0xff;
hal2->vol_regs->left = 0xff;
hal2->vol_regs->right = 0xff;
}
/*
* XXX: later i'll implement mixer for main volume which will be disabled
* by default. enabling it users will be allowed to have master volume level
* control on panel in their favourite X desktop
*/
static void hal2_volume_control(int direction)
{
unsigned int master = hal2_card[0]->mixer.master;
struct hal2_vol_regs *vol = hal2_card[0]->vol_regs;
/* volume up */
if (direction > 0 && master < 0xff)
master++;
/* volume down */
else if (direction < 0 && master > 0)
master--;
/* TODO: mute/unmute */
vol->left = master;
vol->right = master;
hal2_card[0]->mixer.master = master;
}
static int hal2_mixer_ioctl(hal2_card_t *hal2, unsigned int cmd,
static int hal2_mixer_ioctl(struct hal2_card *hal2, unsigned int cmd,
unsigned long arg)
{
int val;
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, hal2str, sizeof(info.id));
strlcpy(info.name, hal2str, sizeof(info.name));
......@@ -797,6 +884,7 @@ static int hal2_mixer_ioctl(hal2_card_t *hal2, unsigned int cmd,
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, hal2str, sizeof(info.id));
strlcpy(info.name, hal2str, sizeof(info.name));
......@@ -867,7 +955,7 @@ static int hal2_mixer_ioctl(hal2_card_t *hal2, unsigned int cmd,
static int hal2_open_mixdev(struct inode *inode, struct file *file)
{
hal2_card_t *hal2 = hal2_mixer_find_card(iminor(inode));
struct hal2_card *hal2 = hal2_mixer_find_card(iminor(inode));
if (hal2) {
file->private_data = hal2;
......@@ -884,15 +972,14 @@ static int hal2_release_mixdev(struct inode *inode, struct file *file)
static int hal2_ioctl_mixdev(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
return hal2_mixer_ioctl((hal2_card_t *)file->private_data, cmd, arg);
return hal2_mixer_ioctl((struct hal2_card *)file->private_data, cmd, arg);
}
static int hal2_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
int val;
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
switch (cmd) {
case OSS_GETVERSION:
......@@ -1006,52 +1093,45 @@ static int hal2_ioctl(struct inode *inode, struct file *file,
return 0;
case SNDCTL_DSP_GETOSPACE: {
unsigned long flags;
audio_buf_info info;
hal2_buf_t *buf;
hal2_codec_t *dac = &hal2->dac;
int i;
unsigned long flags;
struct hal2_codec *dac = &hal2->dac;
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&dac->lock, flags);
info.fragments = 0;
buf = dac->head;
while (buf->info.cnt == 0 && buf != dac->tail) {
spin_lock_irqsave(&dac->lock, flags);
for (i = 0; i < dac->desc_count; i++)
if (dac->desc[i].cnt == 0)
info.fragments++;
buf = buf->info.next;
}
spin_unlock_irqrestore(&dac->lock, flags);
info.fragstotal = obuffers;
info.fragsize = H2_BUFFER_SIZE;
info.fragstotal = dac->desc_count;
info.fragsize = H2_BLOCK_SIZE;
info.bytes = info.fragsize * info.fragments;
return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
}
case SNDCTL_DSP_GETISPACE: {
unsigned long flags;
audio_buf_info info;
hal2_buf_t *buf;
hal2_codec_t *adc = &hal2->adc;
int i;
unsigned long flags;
struct hal2_codec *adc = &hal2->adc;
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&adc->lock, flags);
info.fragments = 0;
info.bytes = 0;
buf = adc->tail;
while (buf->info.cnt > 0 && buf != adc->head) {
spin_lock_irqsave(&adc->lock, flags);
for (i = 0; i < adc->desc_count; i++)
if (adc->desc[i].cnt > 0) {
info.fragments++;
info.bytes += buf->info.cnt;
buf = buf->info.next;
info.bytes += adc->desc[i].cnt;
}
spin_unlock_irqrestore(&adc->lock, flags);
info.fragstotal = ibuffers;
info.fragsize = H2_BUFFER_SIZE;
info.fragstotal = adc->desc_count;
info.fragsize = H2_BLOCK_SIZE;
return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
}
......@@ -1061,7 +1141,7 @@ static int hal2_ioctl(struct inode *inode, struct file *file,
return 0;
case SNDCTL_DSP_GETBLKSIZE:
return put_user(H2_BUFFER_SIZE, (int *)arg);
return put_user(H2_BLOCK_SIZE, (int *)arg);
case SNDCTL_DSP_SETFRAGMENT:
return 0;
......@@ -1083,8 +1163,7 @@ static int hal2_ioctl(struct inode *inode, struct file *file,
return put_user(val, (int *)arg);
case SOUND_PCM_READ_BITS:
val = 16;
return put_user(val, (int *)arg);
return put_user(16, (int *)arg);
}
return hal2_mixer_ioctl(hal2, cmd, arg);
......@@ -1094,24 +1173,24 @@ static ssize_t hal2_read(struct file *file, char *buffer,
size_t count, loff_t *ppos)
{
ssize_t err;
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
hal2_codec_t *adc = &hal2->adc;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
struct hal2_codec *adc = &hal2->adc;
if (count == 0)
if (!count)
return 0;
if (ppos != &file->f_pos)
return -ESPIPE;
down(&adc->sem);
if (down_interruptible(&adc->sem))
return -EINTR;
if (file->f_flags & O_NONBLOCK) {
err = hal2_get_buffer(hal2, buffer, count);
err = err == 0 ? -EAGAIN : err;
} else {
do {
/* ~10% longer */
signed long timeout = 1000 * H2_BUFFER_SIZE *
signed long timeout = 1000 * H2_BLOCK_SIZE *
2 * adc->voices * HZ / adc->sample_rate / 900;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
ssize_t cnt = 0;
......@@ -1125,26 +1204,21 @@ static ssize_t hal2_read(struct file *file, char *buffer,
if (count > 0 && err >= 0) {
add_wait_queue(&adc->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
/* Well, it is possible, that interrupt already
* arrived. Hmm, shit happens, we have one more
* buffer filled ;) */
if (!schedule_timeout(timeout))
/* We may get bogus timeout when system
* is heavily loaded */
if (!adc->tail->info.cnt) {
printk("HAL2: timeout...\n");
hal2_stop_adc(hal2);
hal2_reset_adc_pointer(hal2);
schedule_timeout(timeout);
spin_lock_irqsave(&adc->lock, flags);
if (!adc->desc[adc->tail].cnt)
err = -EAGAIN;
}
spin_unlock_irqrestore(&adc->lock, flags);
if (signal_pending(current))
err = -ERESTARTSYS;
remove_wait_queue(&adc->dma_wait, &wait);
if (err < 0) {
hal2_stop_adc(hal2);
hal2_reset_adc_pointer(hal2);
}
}
} while (count > 0 && err >= 0);
}
up(&adc->sem);
return err;
......@@ -1155,24 +1229,24 @@ static ssize_t hal2_write(struct file *file, const char *buffer,
{
ssize_t err;
char *buf = (char*) buffer;
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
hal2_codec_t *dac = &hal2->dac;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
struct hal2_codec *dac = &hal2->dac;
if (count == 0)
if (!count)
return 0;
if (ppos != &file->f_pos)
return -ESPIPE;
down(&dac->sem);
if (down_interruptible(&dac->sem))
return -EINTR;
if (file->f_flags & O_NONBLOCK) {
err = hal2_add_buffer(hal2, buf, count);
err = err == 0 ? -EAGAIN : err;
} else {
do {
/* ~10% longer */
signed long timeout = 1000 * H2_BUFFER_SIZE *
signed long timeout = 1000 * H2_BLOCK_SIZE *
2 * dac->voices * HZ / dac->sample_rate / 900;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
ssize_t cnt = 0;
......@@ -1186,25 +1260,21 @@ static ssize_t hal2_write(struct file *file, const char *buffer,
if (count > 0 && err >= 0) {
add_wait_queue(&dac->dma_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
/* Well, it is possible, that interrupt already
* arrived. Hmm, shit happens, we have one more
* buffer free ;) */
if (!schedule_timeout(timeout))
/* We may get bogus timeout when system
* is heavily loaded */
if (dac->head->info.cnt) {
printk("HAL2: timeout...\n");
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
schedule_timeout(timeout);
spin_lock_irqsave(&dac->lock, flags);
if (dac->desc[dac->head].cnt)
err = -EAGAIN;
}
spin_unlock_irqrestore(&dac->lock, flags);
if (signal_pending(current))
err = -ERESTARTSYS;
remove_wait_queue(&dac->dma_wait, &wait);
if (err < 0) {
hal2_stop_dac(hal2);
hal2_reset_dac_pointer(hal2);
}
}
} while (count > 0 && err >= 0);
}
up(&dac->sem);
return err;
......@@ -1214,24 +1284,24 @@ static unsigned int hal2_poll(struct file *file, struct poll_table_struct *wait)
{
unsigned long flags;
unsigned int mask = 0;
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
if (file->f_mode & FMODE_READ) {
hal2_codec_t *adc = &hal2->adc;
struct hal2_codec *adc = &hal2->adc;
poll_wait(file, &hal2->adc.dma_wait, wait);
poll_wait(file, &adc->dma_wait, wait);
spin_lock_irqsave(&adc->lock, flags);
if (adc->tail->info.cnt > 0)
if (adc->desc[adc->tail].cnt > 0)
mask |= POLLIN;
spin_unlock_irqrestore(&adc->lock, flags);
}
if (file->f_mode & FMODE_WRITE) {
hal2_codec_t *dac = &hal2->dac;
struct hal2_codec *dac = &hal2->dac;
poll_wait(file, &dac->dma_wait, wait);
spin_lock_irqsave(&dac->lock, flags);
if (dac->head->info.cnt == 0)
if (dac->desc[dac->head].cnt == 0)
mask |= POLLOUT;
spin_unlock_irqrestore(&dac->lock, flags);
}
......@@ -1242,52 +1312,42 @@ static unsigned int hal2_poll(struct file *file, struct poll_table_struct *wait)
static int hal2_open(struct inode *inode, struct file *file)
{
int err;
hal2_card_t *hal2 = hal2_dsp_find_card(iminor(inode));
DEBUG("opening audio device.\n");
struct hal2_card *hal2 = hal2_dsp_find_card(iminor(inode));
if (!hal2) {
printk("HAL2: Whee?! Open door and go away!\n");
if (!hal2)
return -ENODEV;
}
file->private_data = hal2;
if (file->f_mode & FMODE_READ) {
if (hal2->adc.usecount)
return -EBUSY;
struct hal2_codec *adc = &hal2->adc;
if (adc->usecount)
return -EBUSY;
/* OSS spec wanted us to use 8 bit, 8 kHz mono by default,
* but HAL2 can't do 8bit audio */
hal2->adc.format = AFMT_S16_BE;
hal2->adc.voices = 1;
hal2->adc.sample_rate = hal2_compute_rate(&hal2->adc, 8000);
adc->format = AFMT_S16_BE;
adc->voices = 1;
adc->sample_rate = hal2_compute_rate(adc, 8000);
hal2_set_adc_rate(hal2);
/* alloc DMA buffers */
err = hal2_alloc_adc_dmabuf(hal2);
err = hal2_alloc_adc_dmabuf(adc);
if (err)
return err;
hal2_setup_adc(hal2);
hal2->adc.usecount++;
adc->usecount++;
}
if (file->f_mode & FMODE_WRITE) {
if (hal2->dac.usecount)
return -EBUSY;
struct hal2_codec *dac = &hal2->dac;
hal2->dac.format = AFMT_S16_BE;
hal2->dac.voices = 1;
hal2->dac.sample_rate = hal2_compute_rate(&hal2->dac, 8000);
if (dac->usecount)
return -EBUSY;
dac->format = AFMT_S16_BE;
dac->voices = 1;
dac->sample_rate = hal2_compute_rate(dac, 8000);
hal2_set_dac_rate(hal2);
/* alloc DMA buffers */
err = hal2_alloc_dac_dmabuf(hal2);
err = hal2_alloc_dac_dmabuf(dac);
if (err)
return err;
hal2_setup_dac(hal2);
hal2->dac.usecount++;
dac->usecount++;
}
return 0;
......@@ -1295,18 +1355,25 @@ static int hal2_open(struct inode *inode, struct file *file)
static int hal2_release(struct inode *inode, struct file *file)
{
hal2_card_t *hal2 = (hal2_card_t *) file->private_data;
struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
if (file->f_mode & FMODE_READ) {
struct hal2_codec *adc = &hal2->adc;
down(&adc->sem);
hal2_stop_adc(hal2);
hal2_free_adc_dmabuf(hal2);
hal2->adc.usecount--;
hal2_free_adc_dmabuf(adc);
adc->usecount--;
up(&adc->sem);
}
if (file->f_mode & FMODE_WRITE) {
struct hal2_codec *dac = &hal2->dac;
down(&dac->sem);
hal2_sync_dac(hal2);
hal2_free_dac_dmabuf(hal2);
hal2->dac.usecount--;
hal2_free_dac_dmabuf(dac);
dac->usecount--;
up(&dac->sem);
}
return 0;
......@@ -1331,159 +1398,155 @@ static struct file_operations hal2_mixer_fops = {
.release = hal2_release_mixdev,
};
static int hal2_request_irq(hal2_card_t *hal2, int irq)
{
unsigned long flags;
int ret = 0;
save_and_cli(flags);
if (request_irq(irq, hal2_interrupt, SA_SHIRQ, hal2str, hal2)) {
printk(KERN_ERR "HAL2: Can't get irq %d\n", irq);
ret = -EAGAIN;
}
restore_flags(flags);
return ret;
}
static int hal2_alloc_resources(hal2_card_t *hal2, struct hpc3_regs *hpc3)
{
hal2_pbus_t *pbus;
pbus = &hal2->dac.pbus;
pbus->pbusnr = 0;
pbus->pbus = &hpc3->pbdma[pbus->pbusnr];
/* The spec says that we should write 0x08248844 but that's WRONG. HAL2
* does 8 bit DMA, not 16 bit even if it generates 16 bit audio. */
hpc3->pbus_dmacfgs[pbus->pbusnr][0] = 0x08208844; /* Magic :-) */
pbus = &hal2->adc.pbus;
pbus->pbusnr = 1;
pbus->pbus = &hpc3->pbdma[pbus->pbusnr];
hpc3->pbus_dmacfgs[pbus->pbusnr][0] = 0x08208844; /* Magic :-) */
return hal2_request_irq(hal2, SGI_HPCDMA_IRQ);
}
static void hal2_init_codec(hal2_codec_t *codec)
static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
int index)
{
codec->pbus.pbusnr = index;
codec->pbus.pbus = &hpc3->pbdma[index];
init_waitqueue_head(&codec->dma_wait);
init_MUTEX(&codec->sem);
spin_lock_init(&codec->lock);
}
static void hal2_free_resources(hal2_card_t *hal2)
{
free_irq(SGI_HPCDMA_IRQ, hal2);
}
static int hal2_detect(hal2_card_t *hal2)
static int hal2_detect(struct hal2_card *hal2)
{
unsigned short board, major, minor;
unsigned short rev;
/* reset HAL2 */
hal2_isr_write(hal2, 0);
/* release reset */
hal2_isr_write(hal2, H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N);
hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
if ((rev = hal2_rev_look(hal2)) & H2_REV_AUDIO_PRESENT) {
DEBUG("HAL2: no device detected, rev: 0x%04hx\n", rev);
if ((rev = hal2_rev_look(hal2)) & H2_REV_AUDIO_PRESENT)
return -ENODEV;
}
board = (rev & H2_REV_BOARD_M) >> 12;
major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
minor = (rev & H2_REV_MINOR_CHIP_M);
printk("SGI HAL2 Processor revision %i.%i.%i detected\n",
printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
board, major, minor);
if (board != 4 || major != 1 || minor != 0)
printk( "Other revision than 4.1.0 detected. "
"Your card is probably unsupported\n");
return 0;
}
static int hal2_init_card(hal2_card_t **phal2, struct hpc3_regs *hpc3,
unsigned long hpc3_base)
static int hal2_init_card(struct hal2_card **phal2, struct hpc3_regs *hpc3)
{
int ret = 0;
hal2_card_t *hal2;
struct hal2_card *hal2;
hal2 = (hal2_card_t *) kmalloc(sizeof(hal2_card_t), GFP_KERNEL);
hal2 = (struct hal2_card *) kmalloc(sizeof(struct hal2_card), GFP_KERNEL);
if (!hal2)
return -ENOMEM;
memset(hal2, 0, sizeof(hal2_card_t));
memset(hal2, 0, sizeof(struct hal2_card));
hal2->ctl_regs = (hal2_ctl_regs_t *) KSEG1ADDR(hpc3_base + H2_CTL_PIO);
hal2->aes_regs = (hal2_aes_regs_t *) KSEG1ADDR(hpc3_base + H2_AES_PIO);
hal2->vol_regs = (hal2_vol_regs_t *) KSEG1ADDR(hpc3_base + H2_VOL_PIO);
hal2->syn_regs = (hal2_syn_regs_t *) KSEG1ADDR(hpc3_base + H2_SYN_PIO);
hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
if (hal2_detect(hal2) < 0) {
printk("HAL2 audio processor not found\n");
ret = -ENODEV;
goto fail1;
goto free_card;
}
hal2_init_codec(&hal2->dac);
hal2_init_codec(&hal2->adc);
hal2_init_codec(&hal2->dac, hpc3, 0);
hal2_init_codec(&hal2->adc, hpc3, 1);
ret = hal2_alloc_resources(hal2, hpc3);
if (ret)
goto fail1;
/*
* All DMA channel interfaces in HAL2 are designed to operate with
* PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
* in D5. HAL2 is a 16-bit device which can accept both big and little
* endian format. It assumes that even address bytes are on high
* portion of PBUS (15:8) and assumes that HPC3 is programmed to
* accept a live (unsynchronized) version of P_DREQ_N from HAL2.
*/
#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
(2 << HPC3_DMACFG_D4R_SHIFT) | \
(2 << HPC3_DMACFG_D5R_SHIFT) | \
(0 << HPC3_DMACFG_D3W_SHIFT) | \
(2 << HPC3_DMACFG_D4W_SHIFT) | \
(2 << HPC3_DMACFG_D5W_SHIFT) | \
HPC3_DMACFG_DS16 | \
HPC3_DMACFG_EVENHI | \
HPC3_DMACFG_RTIME | \
(8 << HPC3_DMACFG_BURST_SHIFT) | \
HPC3_DMACFG_DRQLIVE)
/*
* Ignore what's mentioned in the specification and write value which
* works in The Real World (TM)
*/
hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
hal2_init_mixer(hal2);
if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, SA_SHIRQ,
hal2str, hal2)) {
printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
ret = -EAGAIN;
goto free_card;
}
hal2->dev_dsp = register_sound_dsp(&hal2_audio_fops, -1);
if (hal2->dev_dsp < 0) {
ret = hal2->dev_dsp;
goto fail2;
goto free_irq;
}
hal2->dev_mixer = register_sound_mixer(&hal2_mixer_fops, -1);
if (hal2->dev_mixer < 0) {
ret = hal2->dev_mixer;
goto fail3;
goto unregister_dsp;
}
hal2_init_mixer(hal2);
*phal2 = hal2;
return 0;
fail3:
unregister_dsp:
unregister_sound_dsp(hal2->dev_dsp);
fail2:
hal2_free_resources(hal2);
fail1:
free_irq:
free_irq(SGI_HPCDMA_IRQ, hal2);
free_card:
kfree(hal2);
return ret;
}
extern void (*indy_volume_button)(int);
/*
* We are assuming only one HAL2 card. If you ever meet machine with more than
* one, tell immediately about it to someone. Preferably to me. --ladis
* Assuming only one HAL2 card. Mail me if you ever meet machine with
* more than one.
*/
static int __init init_hal2(void)
{
int i;
int i, error;
for (i = 0; i < MAXCARDS; i++)
hal2_card[i] = NULL;
return hal2_init_card(&hal2_card[0], hpc3c0, HPC3_CHIP0_PBASE);
error = hal2_init_card(&hal2_card[0], hpc3c0);
/* let Indy's volume buttons work */
if (!error && !ip22_is_fullhouse())
indy_volume_button = hal2_volume_control;
return error;
}
static void __exit exit_hal2(void)
{
int i;
/* unregister volume butons callback function */
indy_volume_button = NULL;
for (i = 0; i < MAXCARDS; i++)
if (hal2_card[i]) {
hal2_free_resources(hal2_card[i]);
free_irq(SGI_HPCDMA_IRQ, hal2_card[i]);
unregister_sound_dsp(hal2_card[i]->dev_dsp);
unregister_sound_mixer(hal2_card[i]->dev_mixer);
kfree(hal2_card[i]);
......
......@@ -4,7 +4,7 @@
/*
* Driver for HAL2 sound processors
* Copyright (c) 1999 Ulf Carlsson <ulfc@bun.falkenberg.se>
* Copyright (c) 2001 Ladislav Michl <ladis@psi.cz>
* Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -22,16 +22,10 @@
*/
#include <asm/addrspace.h>
#include <asm/sgi/sgihpc.h>
#include <asm/sgi/hpc3.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#define H2_HAL2_BASE 0x58000
#define H2_CTL_PIO (H2_HAL2_BASE + 0 * 0x400)
#define H2_AES_PIO (H2_HAL2_BASE + 1 * 0x400)
#define H2_VOL_PIO (H2_HAL2_BASE + 2 * 0x400)
#define H2_SYN_PIO (H2_HAL2_BASE + 3 * 0x400)
/* Indirect status register */
#define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */
......@@ -207,122 +201,48 @@
#define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */
#define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */
typedef volatile u32 hal2_reg_t;
typedef struct stru_hal2_ctl_regs hal2_ctl_regs_t;
struct stru_hal2_ctl_regs {
hal2_reg_t _unused0[4];
hal2_reg_t isr; /* 0x10 Status Register */
hal2_reg_t _unused1[3];
hal2_reg_t rev; /* 0x20 Revision Register */
hal2_reg_t _unused2[3];
hal2_reg_t iar; /* 0x30 Indirect Address Register */
hal2_reg_t _unused3[3];
hal2_reg_t idr0; /* 0x40 Indirect Data Register 0 */
hal2_reg_t _unused4[3];
hal2_reg_t idr1; /* 0x50 Indirect Data Register 1 */
hal2_reg_t _unused5[3];
hal2_reg_t idr2; /* 0x60 Indirect Data Register 2 */
hal2_reg_t _unused6[3];
hal2_reg_t idr3; /* 0x70 Indirect Data Register 3 */
};
typedef struct stru_hal2_aes_regs hal2_aes_regs_t;
struct stru_hal2_aes_regs {
hal2_reg_t rx_stat[2]; /* Status registers */
hal2_reg_t rx_cr[2]; /* Control registers */
hal2_reg_t rx_ud[4]; /* User data window */
hal2_reg_t rx_st[24]; /* Channel status data */
hal2_reg_t tx_stat[1]; /* Status register */
hal2_reg_t tx_cr[3]; /* Control registers */
hal2_reg_t tx_ud[4]; /* User data window */
hal2_reg_t tx_st[24]; /* Channel status data */
};
typedef struct stru_hal2_vol_regs hal2_vol_regs_t;
struct stru_hal2_vol_regs {
hal2_reg_t right; /* 0x00 Right volume */
hal2_reg_t left; /* 0x04 Left volume */
};
typedef struct stru_hal2_syn_regs hal2_syn_regs_t;
struct stru_hal2_syn_regs {
hal2_reg_t _unused0[2];
hal2_reg_t page; /* DOC Page register */
hal2_reg_t regsel; /* DOC Register selection */
hal2_reg_t dlow; /* DOC Data low */
hal2_reg_t dhigh; /* DOC Data high */
hal2_reg_t irq; /* IRQ Status */
hal2_reg_t dram; /* DRAM Access */
struct hal2_ctl_regs {
u32 _unused0[4];
volatile u32 isr; /* 0x10 Status Register */
u32 _unused1[3];
volatile u32 rev; /* 0x20 Revision Register */
u32 _unused2[3];
volatile u32 iar; /* 0x30 Indirect Address Register */
u32 _unused3[3];
volatile u32 idr0; /* 0x40 Indirect Data Register 0 */
u32 _unused4[3];
volatile u32 idr1; /* 0x50 Indirect Data Register 1 */
u32 _unused5[3];
volatile u32 idr2; /* 0x60 Indirect Data Register 2 */
u32 _unused6[3];
volatile u32 idr3; /* 0x70 Indirect Data Register 3 */
};
/* HAL2 specific structures */
struct hal2_aes_regs {
volatile u32 rx_stat[2]; /* Status registers */
volatile u32 rx_cr[2]; /* Control registers */
volatile u32 rx_ud[4]; /* User data window */
volatile u32 rx_st[24]; /* Channel status data */
typedef struct stru_hal2_pbus hal2_pbus_t;
struct stru_hal2_pbus {
struct hpc3_pbus_dmacregs *pbus;
int pbusnr;
unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
volatile u32 tx_stat[1]; /* Status register */
volatile u32 tx_cr[3]; /* Control registers */
volatile u32 tx_ud[4]; /* User data window */
volatile u32 tx_st[24]; /* Channel status data */
};
typedef struct stru_hal2_binfo hal2_binfo_t;
typedef struct stru_hal2_buffer hal2_buf_t;
struct stru_hal2_binfo {
volatile struct hpc_dma_desc desc;
hal2_buf_t *next; /* pointer to next buffer */
int cnt; /* bytes in buffer */
struct hal2_vol_regs {
volatile u32 right; /* Right volume */
volatile u32 left; /* Left volume */
};
#define H2_BUFFER_SIZE (PAGE_SIZE - \
((sizeof(hal2_binfo_t) - 1) / 8 + 1) * 8)
struct stru_hal2_buffer {
hal2_binfo_t info;
char data[H2_BUFFER_SIZE] __attribute__((aligned(8)));
};
typedef struct stru_hal2_codec hal2_codec_t;
struct stru_hal2_codec {
hal2_buf_t *head;
hal2_buf_t *tail;
hal2_pbus_t pbus;
unsigned int format; /* Audio data format */
int voices; /* mono/stereo */
unsigned int sample_rate;
unsigned int master; /* Master frequency */
unsigned short mod; /* MOD value */
unsigned short inc; /* INC value */
wait_queue_head_t dma_wait;
spinlock_t lock;
struct semaphore sem;
int usecount; /* recording and playback are
* independent */
};
#define H2_MIX_OUTPUT_ATT 0
#define H2_MIX_INPUT_GAIN 1
#define H2_MIXERS 2
typedef struct stru_hal2_mixer hal2_mixer_t;
struct stru_hal2_mixer {
int modcnt;
unsigned int volume[H2_MIXERS];
};
typedef struct stru_hal2_card hal2_card_t;
struct stru_hal2_card {
int dev_dsp; /* audio device */
int dev_mixer; /* mixer device */
int dev_midi; /* midi device */
hal2_ctl_regs_t *ctl_regs; /* HAL2 ctl registers */
hal2_aes_regs_t *aes_regs; /* HAL2 vol registers */
hal2_vol_regs_t *vol_regs; /* HAL2 aes registers */
hal2_syn_regs_t *syn_regs; /* HAL2 syn registers */
hal2_codec_t dac;
hal2_codec_t adc;
hal2_mixer_t mixer;
struct hal2_syn_regs {
u32 _unused0[2];
volatile u32 page; /* DOC Page register */
volatile u32 regsel; /* DOC Register selection */
volatile u32 dlow; /* DOC Data low */
volatile u32 dhigh; /* DOC Data high */
volatile u32 irq; /* IRQ Status */
volatile u32 dram; /* DRAM Access */
};
#endif /* __HAL2_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment