Commit b1923914 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'tpmdd-next-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd

Pull TPM updates from Jarkko Sakkinen:
 "These are the changes for the TPM driver with a single major new
  feature: TPM bus encryption and integrity protection. The key pair on
  TPM side is generated from so called null random seed per power on of
  the machine [1]. This supports the TPM encryption of the hard drive by
  adding layer of protection against bus interposer attacks.

  Other than that, a few minor fixes and documentation for tpm_tis to
  clarify basics of TPM localities for future patch review discussions
  (will be extended and refined over times, just a seed)"

Link: https://lore.kernel.org/linux-integrity/20240429202811.13643-1-James.Bottomley@HansenPartnership.com/ [1]

* tag 'tpmdd-next-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd: (28 commits)
  Documentation: tpm: Add TPM security docs toctree entry
  tpm: disable the TPM if NULL name changes
  Documentation: add tpm-security.rst
  tpm: add the null key name as a sysfs export
  KEYS: trusted: Add session encryption protection to the seal/unseal path
  tpm: add session encryption protection to tpm2_get_random()
  tpm: add hmac checks to tpm2_pcr_extend()
  tpm: Add the rest of the session HMAC API
  tpm: Add HMAC session name/handle append
  tpm: Add HMAC session start and end functions
  tpm: Add TCG mandated Key Derivation Functions (KDFs)
  tpm: Add NULL primary creation
  tpm: export the context save and load commands
  tpm: add buffer function to point to returned parameters
  crypto: lib - implement library version of AES in CFB mode
  KEYS: trusted: tpm2: Use struct tpm_buf for sized buffers
  tpm: Add tpm_buf_read_{u8,u16,u32}
  tpm: TPM2B formatted buffers
  tpm: Store the length of the tpm_buf data separately.
  tpm: Update struct tpm_buf documentation comments
  ...
parents c0248148 1d479e3c
......@@ -32,6 +32,7 @@ properties:
- enum:
- infineon,slb9673
- nuvoton,npct75x
- st,st33ktpm2xi2c
- const: tcg,tpm-tis-i2c
- description: TPM 1.2 and 2.0 chips with vendor-specific I²C interface
......
......@@ -5,6 +5,8 @@ Trusted Platform Module documentation
.. toctree::
tpm_event_log
tpm-security
tpm_tis
tpm_vtpm_proxy
xen-tpmfront
tpm_ftpm_tee
.. SPDX-License-Identifier: GPL-2.0-only
TPM Security
============
The object of this document is to describe how we make the kernel's
use of the TPM reasonably robust in the face of external snooping and
packet alteration attacks (called passive and active interposer attack
in the literature). The current security document is for TPM 2.0.
Introduction
------------
The TPM is usually a discrete chip attached to a PC via some type of
low bandwidth bus. There are exceptions to this such as the Intel
PTT, which is a software TPM running inside a software environment
close to the CPU, which are subject to different attacks, but right at
the moment, most hardened security environments require a discrete
hardware TPM, which is the use case discussed here.
Snooping and Alteration Attacks against the bus
-----------------------------------------------
The current state of the art for snooping the `TPM Genie`_ hardware
interposer which is a simple external device that can be installed in
a couple of seconds on any system or laptop. Recently attacks were
successfully demonstrated against the `Windows Bitlocker TPM`_ system.
Most recently the same `attack against TPM based Linux disk
encryption`_ schemes. The next phase of research seems to be hacking
existing devices on the bus to act as interposers, so the fact that
the attacker requires physical access for a few seconds might
evaporate. However, the goal of this document is to protect TPM
secrets and integrity as far as we are able in this environment and to
try to insure that if we can't prevent the attack then at least we can
detect it.
Unfortunately, most of the TPM functionality, including the hardware
reset capability can be controlled by an attacker who has access to
the bus, so we'll discuss some of the disruption possibilities below.
Measurement (PCR) Integrity
---------------------------
Since the attacker can send their own commands to the TPM, they can
send arbitrary PCR extends and thus disrupt the measurement system,
which would be an annoying denial of service attack. However, there
are two, more serious, classes of attack aimed at entities sealed to
trust measurements.
1. The attacker could intercept all PCR extends coming from the system
and completely substitute their own values, producing a replay of
an untampered state that would cause PCR measurements to attest to
a trusted state and release secrets
2. At some point in time the attacker could reset the TPM, clearing
the PCRs and then send down their own measurements which would
effectively overwrite the boot time measurements the TPM has
already done.
The first can be thwarted by always doing HMAC protection of the PCR
extend and read command meaning measurement values cannot be
substituted without producing a detectable HMAC failure in the
response. However, the second can only really be detected by relying
on some sort of mechanism for protection which would change over TPM
reset.
Secrets Guarding
----------------
Certain information passing in and out of the TPM, such as key sealing
and private key import and random number generation, is vulnerable to
interception which HMAC protection alone cannot protect against, so
for these types of command we must also employ request and response
encryption to prevent the loss of secret information.
Establishing Initial Trust with the TPM
---------------------------------------
In order to provide security from the beginning, an initial shared or
asymmetric secret must be established which must also be unknown to
the attacker. The most obvious avenues for this are the endorsement
and storage seeds, which can be used to derive asymmetric keys.
However, using these keys is difficult because the only way to pass
them into the kernel would be on the command line, which requires
extensive support in the boot system, and there's no guarantee that
either hierarchy would not have some type of authorization.
The mechanism chosen for the Linux Kernel is to derive the primary
elliptic curve key from the null seed using the standard storage seed
parameters. The null seed has two advantages: firstly the hierarchy
physically cannot have an authorization, so we are always able to use
it and secondly, the null seed changes across TPM resets, meaning if
we establish trust on the null seed at start of day, all sessions
salted with the derived key will fail if the TPM is reset and the seed
changes.
Obviously using the null seed without any other prior shared secrets,
we have to create and read the initial public key which could, of
course, be intercepted and substituted by the bus interposer.
However, the TPM has a key certification mechanism (using the EK
endorsement certificate, creating an attestation identity key and
certifying the null seed primary with that key) which is too complex
to run within the kernel, so we keep a copy of the null primary key
name, which is what is exported via sysfs so user-space can run the
full certification when it boots. The definitive guarantee here is
that if the null primary key certifies correctly, you know all your
TPM transactions since start of day were secure and if it doesn't, you
know there's an interposer on your system (and that any secret used
during boot may have been leaked).
Stacking Trust
--------------
In the current null primary scenario, the TPM must be completely
cleared before handing it on to the next consumer. However the kernel
hands to user-space the name of the derived null seed key which can
then be verified by certification in user-space. Therefore, this chain
of name handoff can be used between the various boot components as
well (via an unspecified mechanism). For instance, grub could use the
null seed scheme for security and hand the name off to the kernel in
the boot area. The kernel could make its own derivation of the key
and the name and know definitively that if they differ from the handed
off version that tampering has occurred. Thus it becomes possible to
chain arbitrary boot components together (UEFI to grub to kernel) via
the name handoff provided each successive component knows how to
collect the name and verifies it against its derived key.
Session Properties
------------------
All TPM commands the kernel uses allow sessions. HMAC sessions may be
used to check the integrity of requests and responses and decrypt and
encrypt flags may be used to shield parameters and responses. The
HMAC and encryption keys are usually derived from the shared
authorization secret, but for a lot of kernel operations that is well
known (and usually empty). Thus, every HMAC session used by the
kernel must be created using the null primary key as the salt key
which thus provides a cryptographic input into the session key
derivation. Thus, the kernel creates the null primary key once (as a
volatile TPM handle) and keeps it around in a saved context stored in
tpm_chip for every in-kernel use of the TPM. Currently, because of a
lack of de-gapping in the in-kernel resource manager, the session must
be created and destroyed for each operation, but, in future, a single
session may also be reused for the in-kernel HMAC, encryption and
decryption sessions.
Protection Types
----------------
For every in-kernel operation we use null primary salted HMAC to
protect the integrity. Additionally, we use parameter encryption to
protect key sealing and parameter decryption to protect key unsealing
and random number generation.
Null Primary Key Certification in Userspace
===========================================
Every TPM comes shipped with a couple of X.509 certificates for the
primary endorsement key. This document assumes that the Elliptic
Curve version of the certificate exists at 01C00002, but will work
equally well with the RSA certificate (at 01C00001).
The first step in the certification is primary creation using the
template from the `TCG EK Credential Profile`_ which allows comparison
of the generated primary key against the one in the certificate (the
public key must match). Note that generation of the EK primary
requires the EK hierarchy password, but a pre-generated version of the
EC primary should exist at 81010002 and a TPM2_ReadPublic() may be
performed on this without needing the key authority. Next, the
certificate itself must be verified to chain back to the manufacturer
root (which should be published on the manufacturer website). Once
this is done, an attestation key (AK) is generated within the TPM and
it's name and the EK public key can be used to encrypt a secret using
TPM2_MakeCredential. The TPM then runs TPM2_ActivateCredential which
will only recover the secret if the binding between the TPM, the EK
and the AK is true. the generated AK may now be used to run a
certification of the null primary key whose name the kernel has
exported. Since TPM2_MakeCredential/ActivateCredential are somewhat
complicated, a more simplified process involving an externally
generated private key is described below.
This process is a simplified abbreviation of the usual privacy CA
based attestation process. The assumption here is that the
attestation is done by the TPM owner who thus has access to only the
owner hierarchy. The owner creates an external public/private key
pair (assume elliptic curve in this case) and wraps the private key
for import using an inner wrapping process and parented to the EC
derived storage primary. The TPM2_Import() is done using a parameter
decryption HMAC session salted to the EK primary (which also does not
require the EK key authority) meaning that the inner wrapping key is
the encrypted parameter and thus the TPM will not be able to perform
the import unless is possesses the certified EK so if the command
succeeds and the HMAC verifies on return we know we have a loadable
copy of the private key only for the certified TPM. This key is now
loaded into the TPM and the Storage primary flushed (to free up space
for the null key generation).
The null EC primary is now generated using the Storage profile
outlined in the `TCG TPM v2.0 Provisioning Guidance`_; the name of
this key (the hash of the public area) is computed and compared to the
null seed name presented by the kernel in
/sys/class/tpm/tpm0/null_name. If the names do not match, the TPM is
compromised. If the names match, the user performs a TPM2_Certify()
using the null primary as the object handle and the loaded private key
as the sign handle and providing randomized qualifying data. The
signature of the returned certifyInfo is verified against the public
part of the loaded private key and the qualifying data checked to
prevent replay. If all of these tests pass, the user is now assured
that TPM integrity and privacy was preserved across the entire boot
sequence of this kernel.
.. _TPM Genie: https://www.nccgroup.trust/globalassets/about-us/us/documents/tpm-genie.pdf
.. _Windows Bitlocker TPM: https://dolosgroup.io/blog/2021/7/9/from-stolen-laptop-to-inside-the-company-network
.. _attack against TPM based Linux disk encryption: https://www.secura.com/blog/tpm-sniffing-attacks-against-non-bitlocker-targets
.. _TCG EK Credential Profile: https://trustedcomputinggroup.org/resource/tcg-ek-credential-profile-for-tpm-family-2-0/
.. _TCG TPM v2.0 Provisioning Guidance: https://trustedcomputinggroup.org/resource/tcg-tpm-v2-0-provisioning-guidance/
.. SPDX-License-Identifier: GPL-2.0
=========================
TPM FIFO interface driver
=========================
TCG PTP Specification defines two interface types: FIFO and CRB. The former is
based on sequenced read and write operations, and the latter is based on a
buffer containing the full command or response.
FIFO (First-In-First-Out) interface is used by the tpm_tis_core dependent
drivers. Originally Linux had only a driver called tpm_tis, which covered
memory mapped (aka MMIO) interface but it was later on extended to cover other
physical interfaces supported by the TCG standard.
For historical reasons above the original MMIO driver is called tpm_tis and the
framework for FIFO drivers is named as tpm_tis_core. The postfix "tis" in
tpm_tis comes from the TPM Interface Specification, which is the hardware
interface specification for TPM 1.x chips.
Communication is based on a 20 KiB buffer shared by the TPM chip through a
hardware bus or memory map, depending on the physical wiring. The buffer is
further split into five equal-size 4 KiB buffers, which provide equivalent
sets of registers for communication between the CPU and TPM. These
communication endpoints are called localities in the TCG terminology.
When the kernel wants to send commands to the TPM chip, it first reserves
locality 0 by setting the requestUse bit in the TPM_ACCESS register. The bit is
cleared by the chip when the access is granted. Once it completes its
communication, the kernel writes the TPM_ACCESS.activeLocality bit. This
informs the chip that the locality has been relinquished.
Pending localities are served in order by the chip in descending order, one at
a time:
- Locality 0 has the lowest priority.
- Locality 5 has the highest priority.
Further information on the purpose and meaning of the localities can be found
in section 3.2 of the TCG PC Client Platform TPM Profile Specification.
References
==========
TCG PC Client Platform TPM Profile (PTP) Specification
https://trustedcomputinggroup.org/resource/pc-client-platform-tpm-profile-ptp-specification/
......@@ -27,6 +27,20 @@ menuconfig TCG_TPM
if TCG_TPM
config TCG_TPM2_HMAC
bool "Use HMAC and encrypted transactions on the TPM bus"
default y
select CRYPTO_ECDH
select CRYPTO_LIB_AESCFB
select CRYPTO_LIB_SHA256
help
Setting this causes us to deploy a scheme which uses request
and response HMACs in addition to encryption for
communicating with the TPM to prevent or detect bus snooping
and interposer attacks (see tpm-security.rst). Saying Y
here adds some encryption overhead to all kernel to TPM
transactions.
config HW_RANDOM_TPM
bool "TPM HW Random Number Generator support"
depends on TCG_TPM && HW_RANDOM && !(TCG_TPM=y && HW_RANDOM=m)
......@@ -149,6 +163,7 @@ config TCG_NSC
config TCG_ATMEL
tristate "Atmel TPM Interface"
depends on PPC64 || HAS_IOPORT_MAP
depends on HAS_IOPORT
help
If you have a TPM security chip from Atmel say Yes and it
will be accessible from within Linux. To compile this driver
......@@ -156,7 +171,7 @@ config TCG_ATMEL
config TCG_INFINEON
tristate "Infineon Technologies TPM Interface"
depends on PNP
depends on PNP || COMPILE_TEST
help
If you have a TPM security chip from Infineon Technologies
(either SLD 9630 TT 1.1 or SLB 9635 TT 1.2) say Yes and it
......
......@@ -15,7 +15,9 @@ tpm-y += tpm-sysfs.o
tpm-y += eventlog/common.o
tpm-y += eventlog/tpm1.o
tpm-y += eventlog/tpm2.o
tpm-y += tpm-buf.o
tpm-$(CONFIG_TCG_TPM2_HMAC) += tpm2-sessions.o
tpm-$(CONFIG_ACPI) += tpm_ppi.o eventlog/acpi.o
tpm-$(CONFIG_EFI) += eventlog/efi.o
tpm-$(CONFIG_OF) += eventlog/of.o
......
......@@ -142,7 +142,6 @@ int tpm_read_log_acpi(struct tpm_chip *chip)
log->bios_event_log_end = log->bios_event_log + len;
ret = -EIO;
virt = acpi_os_map_iomem(start, len);
if (!virt) {
dev_warn(&chip->dev, "%s: Failed to map ACPI memory\n", __func__);
......
// SPDX-License-Identifier: GPL-2.0
/*
* Handling of TPM command and other buffers.
*/
#include <linux/tpm_command.h>
#include <linux/module.h>
#include <linux/tpm.h>
/**
* tpm_buf_init() - Allocate and initialize a TPM command
* @buf: A &tpm_buf
* @tag: TPM_TAG_RQU_COMMAND, TPM2_ST_NO_SESSIONS or TPM2_ST_SESSIONS
* @ordinal: A command ordinal
*
* Return: 0 or -ENOMEM
*/
int tpm_buf_init(struct tpm_buf *buf, u16 tag, u32 ordinal)
{
buf->data = (u8 *)__get_free_page(GFP_KERNEL);
if (!buf->data)
return -ENOMEM;
tpm_buf_reset(buf, tag, ordinal);
return 0;
}
EXPORT_SYMBOL_GPL(tpm_buf_init);
/**
* tpm_buf_reset() - Initialize a TPM command
* @buf: A &tpm_buf
* @tag: TPM_TAG_RQU_COMMAND, TPM2_ST_NO_SESSIONS or TPM2_ST_SESSIONS
* @ordinal: A command ordinal
*/
void tpm_buf_reset(struct tpm_buf *buf, u16 tag, u32 ordinal)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
WARN_ON(tag != TPM_TAG_RQU_COMMAND && tag != TPM2_ST_NO_SESSIONS &&
tag != TPM2_ST_SESSIONS && tag != 0);
buf->flags = 0;
buf->length = sizeof(*head);
head->tag = cpu_to_be16(tag);
head->length = cpu_to_be32(sizeof(*head));
head->ordinal = cpu_to_be32(ordinal);
buf->handles = 0;
}
EXPORT_SYMBOL_GPL(tpm_buf_reset);
/**
* tpm_buf_init_sized() - Allocate and initialize a sized (TPM2B) buffer
* @buf: A @tpm_buf
*
* Return: 0 or -ENOMEM
*/
int tpm_buf_init_sized(struct tpm_buf *buf)
{
buf->data = (u8 *)__get_free_page(GFP_KERNEL);
if (!buf->data)
return -ENOMEM;
tpm_buf_reset_sized(buf);
return 0;
}
EXPORT_SYMBOL_GPL(tpm_buf_init_sized);
/**
* tpm_buf_reset_sized() - Initialize a sized buffer
* @buf: A &tpm_buf
*/
void tpm_buf_reset_sized(struct tpm_buf *buf)
{
buf->flags = TPM_BUF_TPM2B;
buf->length = 2;
buf->data[0] = 0;
buf->data[1] = 0;
}
EXPORT_SYMBOL_GPL(tpm_buf_reset_sized);
void tpm_buf_destroy(struct tpm_buf *buf)
{
free_page((unsigned long)buf->data);
}
EXPORT_SYMBOL_GPL(tpm_buf_destroy);
/**
* tpm_buf_length() - Return the number of bytes consumed by the data
* @buf: A &tpm_buf
*
* Return: The number of bytes consumed by the buffer
*/
u32 tpm_buf_length(struct tpm_buf *buf)
{
return buf->length;
}
EXPORT_SYMBOL_GPL(tpm_buf_length);
/**
* tpm_buf_append() - Append data to an initialized buffer
* @buf: A &tpm_buf
* @new_data: A data blob
* @new_length: Size of the appended data
*/
void tpm_buf_append(struct tpm_buf *buf, const u8 *new_data, u16 new_length)
{
/* Return silently if overflow has already happened. */
if (buf->flags & TPM_BUF_OVERFLOW)
return;
if ((buf->length + new_length) > PAGE_SIZE) {
WARN(1, "tpm_buf: write overflow\n");
buf->flags |= TPM_BUF_OVERFLOW;
return;
}
memcpy(&buf->data[buf->length], new_data, new_length);
buf->length += new_length;
if (buf->flags & TPM_BUF_TPM2B)
((__be16 *)buf->data)[0] = cpu_to_be16(buf->length - 2);
else
((struct tpm_header *)buf->data)->length = cpu_to_be32(buf->length);
}
EXPORT_SYMBOL_GPL(tpm_buf_append);
void tpm_buf_append_u8(struct tpm_buf *buf, const u8 value)
{
tpm_buf_append(buf, &value, 1);
}
EXPORT_SYMBOL_GPL(tpm_buf_append_u8);
void tpm_buf_append_u16(struct tpm_buf *buf, const u16 value)
{
__be16 value2 = cpu_to_be16(value);
tpm_buf_append(buf, (u8 *)&value2, 2);
}
EXPORT_SYMBOL_GPL(tpm_buf_append_u16);
void tpm_buf_append_u32(struct tpm_buf *buf, const u32 value)
{
__be32 value2 = cpu_to_be32(value);
tpm_buf_append(buf, (u8 *)&value2, 4);
}
EXPORT_SYMBOL_GPL(tpm_buf_append_u32);
/**
* tpm_buf_read() - Read from a TPM buffer
* @buf: &tpm_buf instance
* @offset: offset within the buffer
* @count: the number of bytes to read
* @output: the output buffer
*/
static void tpm_buf_read(struct tpm_buf *buf, off_t *offset, size_t count, void *output)
{
off_t next_offset;
/* Return silently if overflow has already happened. */
if (buf->flags & TPM_BUF_BOUNDARY_ERROR)
return;
next_offset = *offset + count;
if (next_offset > buf->length) {
WARN(1, "tpm_buf: read out of boundary\n");
buf->flags |= TPM_BUF_BOUNDARY_ERROR;
return;
}
memcpy(output, &buf->data[*offset], count);
*offset = next_offset;
}
/**
* tpm_buf_read_u8() - Read 8-bit word from a TPM buffer
* @buf: &tpm_buf instance
* @offset: offset within the buffer
*
* Return: next 8-bit word
*/
u8 tpm_buf_read_u8(struct tpm_buf *buf, off_t *offset)
{
u8 value;
tpm_buf_read(buf, offset, sizeof(value), &value);
return value;
}
EXPORT_SYMBOL_GPL(tpm_buf_read_u8);
/**
* tpm_buf_read_u16() - Read 16-bit word from a TPM buffer
* @buf: &tpm_buf instance
* @offset: offset within the buffer
*
* Return: next 16-bit word
*/
u16 tpm_buf_read_u16(struct tpm_buf *buf, off_t *offset)
{
u16 value;
tpm_buf_read(buf, offset, sizeof(value), &value);
return be16_to_cpu(value);
}
EXPORT_SYMBOL_GPL(tpm_buf_read_u16);
/**
* tpm_buf_read_u32() - Read 32-bit word from a TPM buffer
* @buf: &tpm_buf instance
* @offset: offset within the buffer
*
* Return: next 32-bit word
*/
u32 tpm_buf_read_u32(struct tpm_buf *buf, off_t *offset)
{
u32 value;
tpm_buf_read(buf, offset, sizeof(value), &value);
return be32_to_cpu(value);
}
EXPORT_SYMBOL_GPL(tpm_buf_read_u32);
static u16 tpm_buf_tag(struct tpm_buf *buf)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
return be16_to_cpu(head->tag);
}
/**
* tpm_buf_parameters - return the TPM response parameters area of the tpm_buf
* @buf: tpm_buf to use
*
* Where the parameters are located depends on the tag of a TPM
* command (it's immediately after the header for TPM_ST_NO_SESSIONS
* or 4 bytes after for TPM_ST_SESSIONS). Evaluate this and return a
* pointer to the first byte of the parameters area.
*
* @return: pointer to parameters area
*/
u8 *tpm_buf_parameters(struct tpm_buf *buf)
{
int offset = TPM_HEADER_SIZE;
if (tpm_buf_tag(buf) == TPM2_ST_SESSIONS)
offset += 4;
return &buf->data[offset];
}
......@@ -158,6 +158,9 @@ int tpm_try_get_ops(struct tpm_chip *chip)
{
int rc = -EIO;
if (chip->flags & TPM_CHIP_FLAG_DISABLE)
return rc;
get_device(&chip->dev);
down_read(&chip->ops_sem);
......@@ -275,6 +278,9 @@ static void tpm_dev_release(struct device *dev)
kfree(chip->work_space.context_buf);
kfree(chip->work_space.session_buf);
kfree(chip->allocated_banks);
#ifdef CONFIG_TCG_TPM2_HMAC
kfree(chip->auth);
#endif
kfree(chip);
}
......
......@@ -232,6 +232,7 @@ ssize_t tpm_transmit_cmd(struct tpm_chip *chip, struct tpm_buf *buf,
if (len < min_rsp_body_length + TPM_HEADER_SIZE)
return -EFAULT;
buf->length = len;
return 0;
}
EXPORT_SYMBOL_GPL(tpm_transmit_cmd);
......@@ -342,31 +343,6 @@ int tpm_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
}
EXPORT_SYMBOL_GPL(tpm_pcr_extend);
/**
* tpm_send - send a TPM command
* @chip: a &struct tpm_chip instance, %NULL for the default chip
* @cmd: a TPM command buffer
* @buflen: the length of the TPM command buffer
*
* Return: same as with tpm_transmit_cmd()
*/
int tpm_send(struct tpm_chip *chip, void *cmd, size_t buflen)
{
struct tpm_buf buf;
int rc;
chip = tpm_find_get_ops(chip);
if (!chip)
return -ENODEV;
buf.data = cmd;
rc = tpm_transmit_cmd(chip, &buf, 0, "attempting to a send a command");
tpm_put_ops(chip);
return rc;
}
EXPORT_SYMBOL_GPL(tpm_send);
int tpm_auto_startup(struct tpm_chip *chip)
{
int rc;
......
......@@ -309,6 +309,21 @@ static ssize_t tpm_version_major_show(struct device *dev,
}
static DEVICE_ATTR_RO(tpm_version_major);
#ifdef CONFIG_TCG_TPM2_HMAC
static ssize_t null_name_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tpm_chip *chip = to_tpm_chip(dev);
int size = TPM2_NAME_SIZE;
bin2hex(buf, chip->null_key_name, size);
size *= 2;
buf[size++] = '\n';
return size;
}
static DEVICE_ATTR_RO(null_name);
#endif
static struct attribute *tpm1_dev_attrs[] = {
&dev_attr_pubek.attr,
&dev_attr_pcrs.attr,
......@@ -326,6 +341,9 @@ static struct attribute *tpm1_dev_attrs[] = {
static struct attribute *tpm2_dev_attrs[] = {
&dev_attr_tpm_version_major.attr,
#ifdef CONFIG_TCG_TPM2_HMAC
&dev_attr_null_name.attr,
#endif
NULL
};
......
......@@ -312,9 +312,23 @@ int tpm2_commit_space(struct tpm_chip *chip, struct tpm_space *space, void *buf,
size_t *bufsiz);
int tpm_devs_add(struct tpm_chip *chip);
void tpm_devs_remove(struct tpm_chip *chip);
int tpm2_save_context(struct tpm_chip *chip, u32 handle, u8 *buf,
unsigned int buf_size, unsigned int *offset);
int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
unsigned int *offset, u32 *handle);
void tpm_bios_log_setup(struct tpm_chip *chip);
void tpm_bios_log_teardown(struct tpm_chip *chip);
int tpm_dev_common_init(void);
void tpm_dev_common_exit(void);
#ifdef CONFIG_TCG_TPM2_HMAC
int tpm2_sessions_init(struct tpm_chip *chip);
#else
static inline int tpm2_sessions_init(struct tpm_chip *chip)
{
return 0;
}
#endif
#endif
......@@ -216,13 +216,6 @@ int tpm2_pcr_read(struct tpm_chip *chip, u32 pcr_idx,
return rc;
}
struct tpm2_null_auth_area {
__be32 handle;
__be16 nonce_size;
u8 attributes;
__be16 auth_size;
} __packed;
/**
* tpm2_pcr_extend() - extend a PCR value
*
......@@ -236,24 +229,22 @@ int tpm2_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
struct tpm_digest *digests)
{
struct tpm_buf buf;
struct tpm2_null_auth_area auth_area;
int rc;
int i;
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_PCR_EXTEND);
rc = tpm2_start_auth_session(chip);
if (rc)
return rc;
tpm_buf_append_u32(&buf, pcr_idx);
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_PCR_EXTEND);
if (rc) {
tpm2_end_auth_session(chip);
return rc;
}
auth_area.handle = cpu_to_be32(TPM2_RS_PW);
auth_area.nonce_size = 0;
auth_area.attributes = 0;
auth_area.auth_size = 0;
tpm_buf_append_name(chip, &buf, pcr_idx, NULL);
tpm_buf_append_hmac_session(chip, &buf, 0, NULL, 0);
tpm_buf_append_u32(&buf, sizeof(struct tpm2_null_auth_area));
tpm_buf_append(&buf, (const unsigned char *)&auth_area,
sizeof(auth_area));
tpm_buf_append_u32(&buf, chip->nr_allocated_banks);
for (i = 0; i < chip->nr_allocated_banks; i++) {
......@@ -262,7 +253,9 @@ int tpm2_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
chip->allocated_banks[i].digest_size);
}
tpm_buf_fill_hmac_session(chip, &buf);
rc = tpm_transmit_cmd(chip, &buf, 0, "attempting extend a PCR value");
rc = tpm_buf_check_hmac_response(chip, &buf, rc);
tpm_buf_destroy(&buf);
......@@ -299,25 +292,35 @@ int tpm2_get_random(struct tpm_chip *chip, u8 *dest, size_t max)
if (!num_bytes || max > TPM_MAX_RNG_DATA)
return -EINVAL;
err = tpm_buf_init(&buf, 0, 0);
err = tpm2_start_auth_session(chip);
if (err)
return err;
err = tpm_buf_init(&buf, 0, 0);
if (err) {
tpm2_end_auth_session(chip);
return err;
}
do {
tpm_buf_reset(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_GET_RANDOM);
tpm_buf_reset(&buf, TPM2_ST_SESSIONS, TPM2_CC_GET_RANDOM);
tpm_buf_append_hmac_session_opt(chip, &buf, TPM2_SA_ENCRYPT
| TPM2_SA_CONTINUE_SESSION,
NULL, 0);
tpm_buf_append_u16(&buf, num_bytes);
tpm_buf_fill_hmac_session(chip, &buf);
err = tpm_transmit_cmd(chip, &buf,
offsetof(struct tpm2_get_random_out,
buffer),
"attempting get random");
err = tpm_buf_check_hmac_response(chip, &buf, err);
if (err) {
if (err > 0)
err = -EIO;
goto out;
}
out = (struct tpm2_get_random_out *)
&buf.data[TPM_HEADER_SIZE];
out = (struct tpm2_get_random_out *)tpm_buf_parameters(&buf);
recd = min_t(u32, be16_to_cpu(out->size), num_bytes);
if (tpm_buf_length(&buf) <
TPM_HEADER_SIZE +
......@@ -334,9 +337,12 @@ int tpm2_get_random(struct tpm_chip *chip, u8 *dest, size_t max)
} while (retries-- && total < max);
tpm_buf_destroy(&buf);
tpm2_end_auth_session(chip);
return total ? total : -EIO;
out:
tpm_buf_destroy(&buf);
tpm2_end_auth_session(chip);
return err;
}
......@@ -759,6 +765,11 @@ int tpm2_auto_startup(struct tpm_chip *chip)
rc = 0;
}
if (rc)
goto out;
rc = tpm2_sessions_init(chip);
out:
/*
* Infineon TPM in field upgrade mode will return no data for the number
......
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 James.Bottomley@HansenPartnership.com
*
* Cryptographic helper routines for handling TPM2 sessions for
* authorization HMAC and request response encryption.
*
* The idea is to ensure that every TPM command is HMAC protected by a
* session, meaning in-flight tampering would be detected and in
* addition all sensitive inputs and responses should be encrypted.
*
* The basic way this works is to use a TPM feature called salted
* sessions where a random secret used in session construction is
* encrypted to the public part of a known TPM key. The problem is we
* have no known keys, so initially a primary Elliptic Curve key is
* derived from the NULL seed (we use EC because most TPMs generate
* these keys much faster than RSA ones). The curve used is NIST_P256
* because that's now mandated to be present in 'TCG TPM v2.0
* Provisioning Guidance'
*
* Threat problems: the initial TPM2_CreatePrimary is not (and cannot
* be) session protected, so a clever Man in the Middle could return a
* public key they control to this command and from there intercept
* and decode all subsequent session based transactions. The kernel
* cannot mitigate this threat but, after boot, userspace can get
* proof this has not happened by asking the TPM to certify the NULL
* key. This certification would chain back to the TPM Endorsement
* Certificate and prove the NULL seed primary had not been tampered
* with and thus all sessions must have been cryptographically secure.
* To assist with this, the initial NULL seed public key name is made
* available in a sysfs file.
*
* Use of these functions:
*
* The design is all the crypto, hash and hmac gunk is confined in this
* file and never needs to be seen even by the kernel internal user. To
* the user there's an init function tpm2_sessions_init() that needs to
* be called once per TPM which generates the NULL seed primary key.
*
* These are the usage functions:
*
* tpm2_start_auth_session() which allocates the opaque auth structure
* and gets a session from the TPM. This must be called before
* any of the following functions. The session is protected by a
* session_key which is derived from a random salt value
* encrypted to the NULL seed.
* tpm2_end_auth_session() kills the session and frees the resources.
* Under normal operation this function is done by
* tpm_buf_check_hmac_response(), so this is only to be used on
* error legs where the latter is not executed.
* tpm_buf_append_name() to add a handle to the buffer. This must be
* used in place of the usual tpm_buf_append_u32() for adding
* handles because handles have to be processed specially when
* calculating the HMAC. In particular, for NV, volatile and
* permanent objects you now need to provide the name.
* tpm_buf_append_hmac_session() which appends the hmac session to the
* buf in the same way tpm_buf_append_auth does().
* tpm_buf_fill_hmac_session() This calculates the correct hash and
* places it in the buffer. It must be called after the complete
* command buffer is finalized so it can fill in the correct HMAC
* based on the parameters.
* tpm_buf_check_hmac_response() which checks the session response in
* the buffer and calculates what it should be. If there's a
* mismatch it will log a warning and return an error. If
* tpm_buf_append_hmac_session() did not specify
* TPM_SA_CONTINUE_SESSION then the session will be closed (if it
* hasn't been consumed) and the auth structure freed.
*/
#include "tpm.h"
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <asm/unaligned.h>
#include <crypto/kpp.h>
#include <crypto/ecdh.h>
#include <crypto/hash.h>
#include <crypto/hmac.h>
/* maximum number of names the TPM must remember for authorization */
#define AUTH_MAX_NAMES 3
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
u32 *handle, u8 *name);
/*
* This is the structure that carries all the auth information (like
* session handle, nonces, session key and auth) from use to use it is
* designed to be opaque to anything outside.
*/
struct tpm2_auth {
u32 handle;
/*
* This has two meanings: before tpm_buf_fill_hmac_session()
* it marks the offset in the buffer of the start of the
* sessions (i.e. after all the handles). Once the buffer has
* been filled it markes the session number of our auth
* session so we can find it again in the response buffer.
*
* The two cases are distinguished because the first offset
* must always be greater than TPM_HEADER_SIZE and the second
* must be less than or equal to 5.
*/
u32 session;
/*
* the size here is variable and set by the size of our_nonce
* which must be between 16 and the name hash length. we set
* the maximum sha256 size for the greatest protection
*/
u8 our_nonce[SHA256_DIGEST_SIZE];
u8 tpm_nonce[SHA256_DIGEST_SIZE];
/*
* the salt is only used across the session command/response
* after that it can be used as a scratch area
*/
union {
u8 salt[EC_PT_SZ];
/* scratch for key + IV */
u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
};
/*
* the session key and passphrase are the same size as the
* name digest (sha256 again). The session key is constant
* for the use of the session and the passphrase can change
* with every invocation.
*
* Note: these fields must be adjacent and in this order
* because several HMAC/KDF schemes use the combination of the
* session_key and passphrase.
*/
u8 session_key[SHA256_DIGEST_SIZE];
u8 passphrase[SHA256_DIGEST_SIZE];
int passphrase_len;
struct crypto_aes_ctx aes_ctx;
/* saved session attributes: */
u8 attrs;
__be32 ordinal;
/*
* memory for three authorization handles. We know them by
* handle, but they are part of the session by name, which
* we must compute and remember
*/
u32 name_h[AUTH_MAX_NAMES];
u8 name[AUTH_MAX_NAMES][2 + SHA512_DIGEST_SIZE];
};
/*
* Name Size based on TPM algorithm (assumes no hash bigger than 255)
*/
static u8 name_size(const u8 *name)
{
static u8 size_map[] = {
[TPM_ALG_SHA1] = SHA1_DIGEST_SIZE,
[TPM_ALG_SHA256] = SHA256_DIGEST_SIZE,
[TPM_ALG_SHA384] = SHA384_DIGEST_SIZE,
[TPM_ALG_SHA512] = SHA512_DIGEST_SIZE,
};
u16 alg = get_unaligned_be16(name);
return size_map[alg] + 2;
}
/*
* It turns out the crypto hmac(sha256) is hard for us to consume
* because it assumes a fixed key and the TPM seems to change the key
* on every operation, so we weld the hmac init and final functions in
* here to give it the same usage characteristics as a regular hash
*/
static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len)
{
u8 pad[SHA256_BLOCK_SIZE];
int i;
sha256_init(sctx);
for (i = 0; i < sizeof(pad); i++) {
if (i < key_len)
pad[i] = key[i];
else
pad[i] = 0;
pad[i] ^= HMAC_IPAD_VALUE;
}
sha256_update(sctx, pad, sizeof(pad));
}
static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len,
u8 *out)
{
u8 pad[SHA256_BLOCK_SIZE];
int i;
for (i = 0; i < sizeof(pad); i++) {
if (i < key_len)
pad[i] = key[i];
else
pad[i] = 0;
pad[i] ^= HMAC_OPAD_VALUE;
}
/* collect the final hash; use out as temporary storage */
sha256_final(sctx, out);
sha256_init(sctx);
sha256_update(sctx, pad, sizeof(pad));
sha256_update(sctx, out, SHA256_DIGEST_SIZE);
sha256_final(sctx, out);
}
/*
* assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
* otherwise standard tpm2_KDFa. Note output is in bytes not bits.
*/
static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
u8 *v, u32 bytes, u8 *out)
{
u32 counter = 1;
const __be32 bits = cpu_to_be32(bytes * 8);
while (bytes > 0) {
struct sha256_state sctx;
__be32 c = cpu_to_be32(counter);
tpm2_hmac_init(&sctx, key, key_len);
sha256_update(&sctx, (u8 *)&c, sizeof(c));
sha256_update(&sctx, label, strlen(label)+1);
sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
tpm2_hmac_final(&sctx, key, key_len, out);
bytes -= SHA256_DIGEST_SIZE;
counter++;
out += SHA256_DIGEST_SIZE;
}
}
/*
* Somewhat of a bastardization of the real KDFe. We're assuming
* we're working with known point sizes for the input parameters and
* the hash algorithm is fixed at sha256. Because we know that the
* point size is 32 bytes like the hash size, there's no need to loop
* in this KDF.
*/
static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
u8 *out)
{
struct sha256_state sctx;
/*
* this should be an iterative counter, but because we know
* we're only taking 32 bytes for the point using a sha256
* hash which is also 32 bytes, there's only one loop
*/
__be32 c = cpu_to_be32(1);
sha256_init(&sctx);
/* counter (BE) */
sha256_update(&sctx, (u8 *)&c, sizeof(c));
/* secret value */
sha256_update(&sctx, z, EC_PT_SZ);
/* string including trailing zero */
sha256_update(&sctx, str, strlen(str)+1);
sha256_update(&sctx, pt_u, EC_PT_SZ);
sha256_update(&sctx, pt_v, EC_PT_SZ);
sha256_final(&sctx, out);
}
static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
{
struct crypto_kpp *kpp;
struct kpp_request *req;
struct scatterlist s[2], d[1];
struct ecdh p = {0};
u8 encoded_key[EC_PT_SZ], *x, *y;
unsigned int buf_len;
/* secret is two sized points */
tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
/*
* we cheat here and append uninitialized data to form
* the points. All we care about is getting the two
* co-ordinate pointers, which will be used to overwrite
* the uninitialized data
*/
tpm_buf_append_u16(buf, EC_PT_SZ);
x = &buf->data[tpm_buf_length(buf)];
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
tpm_buf_append_u16(buf, EC_PT_SZ);
y = &buf->data[tpm_buf_length(buf)];
tpm_buf_append(buf, encoded_key, EC_PT_SZ);
sg_init_table(s, 2);
sg_set_buf(&s[0], x, EC_PT_SZ);
sg_set_buf(&s[1], y, EC_PT_SZ);
kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
if (IS_ERR(kpp)) {
dev_err(&chip->dev, "crypto ecdh allocation failed\n");
return;
}
buf_len = crypto_ecdh_key_len(&p);
if (sizeof(encoded_key) < buf_len) {
dev_err(&chip->dev, "salt buffer too small needs %d\n",
buf_len);
goto out;
}
crypto_ecdh_encode_key(encoded_key, buf_len, &p);
/* this generates a random private key */
crypto_kpp_set_secret(kpp, encoded_key, buf_len);
/* salt is now the public point of this private key */
req = kpp_request_alloc(kpp, GFP_KERNEL);
if (!req)
goto out;
kpp_request_set_input(req, NULL, 0);
kpp_request_set_output(req, s, EC_PT_SZ*2);
crypto_kpp_generate_public_key(req);
/*
* we're not done: now we have to compute the shared secret
* which is our private key multiplied by the tpm_key public
* point, we actually only take the x point and discard the y
* point and feed it through KDFe to get the final secret salt
*/
sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
kpp_request_set_input(req, s, EC_PT_SZ*2);
sg_init_one(d, chip->auth->salt, EC_PT_SZ);
kpp_request_set_output(req, d, EC_PT_SZ);
crypto_kpp_compute_shared_secret(req);
kpp_request_free(req);
/*
* pass the shared secret through KDFe for salt. Note salt
* area is used both for input shared secret and output salt.
* This works because KDFe fully consumes the secret before it
* writes the salt
*/
tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x,
chip->auth->salt);
out:
crypto_free_kpp(kpp);
}
/**
* tpm_buf_append_hmac_session() - Append a TPM session element
* @chip: the TPM chip structure
* @buf: The buffer to be appended
* @attributes: The session attributes
* @passphrase: The session authority (NULL if none)
* @passphrase_len: The length of the session authority (0 if none)
*
* This fills in a session structure in the TPM command buffer, except
* for the HMAC which cannot be computed until the command buffer is
* complete. The type of session is controlled by the @attributes,
* the main ones of which are TPM2_SA_CONTINUE_SESSION which means the
* session won't terminate after tpm_buf_check_hmac_response(),
* TPM2_SA_DECRYPT which means this buffers first parameter should be
* encrypted with a session key and TPM2_SA_ENCRYPT, which means the
* response buffer's first parameter needs to be decrypted (confusing,
* but the defines are written from the point of view of the TPM).
*
* Any session appended by this command must be finalized by calling
* tpm_buf_fill_hmac_session() otherwise the HMAC will be incorrect
* and the TPM will reject the command.
*
* As with most tpm_buf operations, success is assumed because failure
* will be caused by an incorrect programming model and indicated by a
* kernel message.
*/
void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
u8 attributes, u8 *passphrase,
int passphrase_len)
{
u8 nonce[SHA256_DIGEST_SIZE];
u32 len;
struct tpm2_auth *auth = chip->auth;
/*
* The Architecture Guide requires us to strip trailing zeros
* before computing the HMAC
*/
while (passphrase && passphrase_len > 0
&& passphrase[passphrase_len - 1] == '\0')
passphrase_len--;
auth->attrs = attributes;
auth->passphrase_len = passphrase_len;
if (passphrase_len)
memcpy(auth->passphrase, passphrase, passphrase_len);
if (auth->session != tpm_buf_length(buf)) {
/* we're not the first session */
len = get_unaligned_be32(&buf->data[auth->session]);
if (4 + len + auth->session != tpm_buf_length(buf)) {
WARN(1, "session length mismatch, cannot append");
return;
}
/* add our new session */
len += 9 + 2 * SHA256_DIGEST_SIZE;
put_unaligned_be32(len, &buf->data[auth->session]);
} else {
tpm_buf_append_u32(buf, 9 + 2 * SHA256_DIGEST_SIZE);
}
/* random number for our nonce */
get_random_bytes(nonce, sizeof(nonce));
memcpy(auth->our_nonce, nonce, sizeof(nonce));
tpm_buf_append_u32(buf, auth->handle);
/* our new nonce */
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
tpm_buf_append_u8(buf, auth->attrs);
/* and put a placeholder for the hmac */
tpm_buf_append_u16(buf, SHA256_DIGEST_SIZE);
tpm_buf_append(buf, nonce, SHA256_DIGEST_SIZE);
}
EXPORT_SYMBOL(tpm_buf_append_hmac_session);
/**
* tpm_buf_fill_hmac_session() - finalize the session HMAC
* @chip: the TPM chip structure
* @buf: The buffer to be appended
*
* This command must not be called until all of the parameters have
* been appended to @buf otherwise the computed HMAC will be
* incorrect.
*
* This function computes and fills in the session HMAC using the
* session key and, if TPM2_SA_DECRYPT was specified, computes the
* encryption key and encrypts the first parameter of the command
* buffer with it.
*
* As with most tpm_buf operations, success is assumed because failure
* will be caused by an incorrect programming model and indicated by a
* kernel message.
*/
void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf)
{
u32 cc, handles, val;
struct tpm2_auth *auth = chip->auth;
int i;
struct tpm_header *head = (struct tpm_header *)buf->data;
off_t offset_s = TPM_HEADER_SIZE, offset_p;
u8 *hmac = NULL;
u32 attrs;
u8 cphash[SHA256_DIGEST_SIZE];
struct sha256_state sctx;
/* save the command code in BE format */
auth->ordinal = head->ordinal;
cc = be32_to_cpu(head->ordinal);
i = tpm2_find_cc(chip, cc);
if (i < 0) {
dev_err(&chip->dev, "Command 0x%x not found in TPM\n", cc);
return;
}
attrs = chip->cc_attrs_tbl[i];
handles = (attrs >> TPM2_CC_ATTR_CHANDLES) & GENMASK(2, 0);
/*
* just check the names, it's easy to make mistakes. This
* would happen if someone added a handle via
* tpm_buf_append_u32() instead of tpm_buf_append_name()
*/
for (i = 0; i < handles; i++) {
u32 handle = tpm_buf_read_u32(buf, &offset_s);
if (auth->name_h[i] != handle) {
dev_err(&chip->dev, "TPM: handle %d wrong for name\n",
i);
return;
}
}
/* point offset_s to the start of the sessions */
val = tpm_buf_read_u32(buf, &offset_s);
/* point offset_p to the start of the parameters */
offset_p = offset_s + val;
for (i = 1; offset_s < offset_p; i++) {
u32 handle = tpm_buf_read_u32(buf, &offset_s);
u16 len;
u8 a;
/* nonce (already in auth) */
len = tpm_buf_read_u16(buf, &offset_s);
offset_s += len;
a = tpm_buf_read_u8(buf, &offset_s);
len = tpm_buf_read_u16(buf, &offset_s);
if (handle == auth->handle && auth->attrs == a) {
hmac = &buf->data[offset_s];
/*
* save our session number so we know which
* session in the response belongs to us
*/
auth->session = i;
}
offset_s += len;
}
if (offset_s != offset_p) {
dev_err(&chip->dev, "TPM session length is incorrect\n");
return;
}
if (!hmac) {
dev_err(&chip->dev, "TPM could not find HMAC session\n");
return;
}
/* encrypt before HMAC */
if (auth->attrs & TPM2_SA_DECRYPT) {
u16 len;
/* need key and IV */
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
+ auth->passphrase_len, "CFB", auth->our_nonce,
auth->tpm_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
auth->scratch);
len = tpm_buf_read_u16(buf, &offset_p);
aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
aescfb_encrypt(&auth->aes_ctx, &buf->data[offset_p],
&buf->data[offset_p], len,
auth->scratch + AES_KEY_BYTES);
/* reset p to beginning of parameters for HMAC */
offset_p -= 2;
}
sha256_init(&sctx);
/* ordinal is already BE */
sha256_update(&sctx, (u8 *)&head->ordinal, sizeof(head->ordinal));
/* add the handle names */
for (i = 0; i < handles; i++) {
enum tpm2_mso_type mso = tpm2_handle_mso(auth->name_h[i]);
if (mso == TPM2_MSO_PERSISTENT ||
mso == TPM2_MSO_VOLATILE ||
mso == TPM2_MSO_NVRAM) {
sha256_update(&sctx, auth->name[i],
name_size(auth->name[i]));
} else {
__be32 h = cpu_to_be32(auth->name_h[i]);
sha256_update(&sctx, (u8 *)&h, 4);
}
}
if (offset_s != tpm_buf_length(buf))
sha256_update(&sctx, &buf->data[offset_s],
tpm_buf_length(buf) - offset_s);
sha256_final(&sctx, cphash);
/* now calculate the hmac */
tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
+ auth->passphrase_len);
sha256_update(&sctx, cphash, sizeof(cphash));
sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
sha256_update(&sctx, &auth->attrs, 1);
tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
+ auth->passphrase_len, hmac);
}
EXPORT_SYMBOL(tpm_buf_fill_hmac_session);
static int tpm2_parse_read_public(char *name, struct tpm_buf *buf)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
off_t offset = TPM_HEADER_SIZE;
u32 tot_len = be32_to_cpu(head->length);
u32 val;
/* we're starting after the header so adjust the length */
tot_len -= TPM_HEADER_SIZE;
/* skip public */
val = tpm_buf_read_u16(buf, &offset);
if (val > tot_len)
return -EINVAL;
offset += val;
/* name */
val = tpm_buf_read_u16(buf, &offset);
if (val != name_size(&buf->data[offset]))
return -EINVAL;
memcpy(name, &buf->data[offset], val);
/* forget the rest */
return 0;
}
static int tpm2_read_public(struct tpm_chip *chip, u32 handle, char *name)
{
struct tpm_buf buf;
int rc;
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_READ_PUBLIC);
if (rc)
return rc;
tpm_buf_append_u32(&buf, handle);
rc = tpm_transmit_cmd(chip, &buf, 0, "read public");
if (rc == TPM2_RC_SUCCESS)
rc = tpm2_parse_read_public(name, &buf);
tpm_buf_destroy(&buf);
return rc;
}
/**
* tpm_buf_append_name() - add a handle area to the buffer
* @chip: the TPM chip structure
* @buf: The buffer to be appended
* @handle: The handle to be appended
* @name: The name of the handle (may be NULL)
*
* In order to compute session HMACs, we need to know the names of the
* objects pointed to by the handles. For most objects, this is simply
* the actual 4 byte handle or an empty buf (in these cases @name
* should be NULL) but for volatile objects, permanent objects and NV
* areas, the name is defined as the hash (according to the name
* algorithm which should be set to sha256) of the public area to
* which the two byte algorithm id has been appended. For these
* objects, the @name pointer should point to this. If a name is
* required but @name is NULL, then TPM2_ReadPublic() will be called
* on the handle to obtain the name.
*
* As with most tpm_buf operations, success is assumed because failure
* will be caused by an incorrect programming model and indicated by a
* kernel message.
*/
void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
u32 handle, u8 *name)
{
enum tpm2_mso_type mso = tpm2_handle_mso(handle);
struct tpm2_auth *auth = chip->auth;
int slot;
slot = (tpm_buf_length(buf) - TPM_HEADER_SIZE)/4;
if (slot >= AUTH_MAX_NAMES) {
dev_err(&chip->dev, "TPM: too many handles\n");
return;
}
WARN(auth->session != tpm_buf_length(buf),
"name added in wrong place\n");
tpm_buf_append_u32(buf, handle);
auth->session += 4;
if (mso == TPM2_MSO_PERSISTENT ||
mso == TPM2_MSO_VOLATILE ||
mso == TPM2_MSO_NVRAM) {
if (!name)
tpm2_read_public(chip, handle, auth->name[slot]);
} else {
if (name)
dev_err(&chip->dev, "TPM: Handle does not require name but one is specified\n");
}
auth->name_h[slot] = handle;
if (name)
memcpy(auth->name[slot], name, name_size(name));
}
EXPORT_SYMBOL(tpm_buf_append_name);
/**
* tpm_buf_check_hmac_response() - check the TPM return HMAC for correctness
* @chip: the TPM chip structure
* @buf: the original command buffer (which now contains the response)
* @rc: the return code from tpm_transmit_cmd
*
* If @rc is non zero, @buf may not contain an actual return, so @rc
* is passed through as the return and the session cleaned up and
* de-allocated if required (this is required if
* TPM2_SA_CONTINUE_SESSION was not specified as a session flag).
*
* If @rc is zero, the response HMAC is computed against the returned
* @buf and matched to the TPM one in the session area. If there is a
* mismatch, an error is logged and -EINVAL returned.
*
* The reason for this is that the command issue and HMAC check
* sequence should look like:
*
* rc = tpm_transmit_cmd(...);
* rc = tpm_buf_check_hmac_response(&buf, auth, rc);
* if (rc)
* ...
*
* Which is easily layered into the current contrl flow.
*
* Returns: 0 on success or an error.
*/
int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
int rc)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
struct tpm2_auth *auth = chip->auth;
off_t offset_s, offset_p;
u8 rphash[SHA256_DIGEST_SIZE];
u32 attrs;
struct sha256_state sctx;
u16 tag = be16_to_cpu(head->tag);
u32 cc = be32_to_cpu(auth->ordinal);
int parm_len, len, i, handles;
if (auth->session >= TPM_HEADER_SIZE) {
WARN(1, "tpm session not filled correctly\n");
goto out;
}
if (rc != 0)
/* pass non success rc through and close the session */
goto out;
rc = -EINVAL;
if (tag != TPM2_ST_SESSIONS) {
dev_err(&chip->dev, "TPM: HMAC response check has no sessions tag\n");
goto out;
}
i = tpm2_find_cc(chip, cc);
if (i < 0)
goto out;
attrs = chip->cc_attrs_tbl[i];
handles = (attrs >> TPM2_CC_ATTR_RHANDLE) & 1;
/* point to area beyond handles */
offset_s = TPM_HEADER_SIZE + handles * 4;
parm_len = tpm_buf_read_u32(buf, &offset_s);
offset_p = offset_s;
offset_s += parm_len;
/* skip over any sessions before ours */
for (i = 0; i < auth->session - 1; i++) {
len = tpm_buf_read_u16(buf, &offset_s);
offset_s += len + 1;
len = tpm_buf_read_u16(buf, &offset_s);
offset_s += len;
}
/* TPM nonce */
len = tpm_buf_read_u16(buf, &offset_s);
if (offset_s + len > tpm_buf_length(buf))
goto out;
if (len != SHA256_DIGEST_SIZE)
goto out;
memcpy(auth->tpm_nonce, &buf->data[offset_s], len);
offset_s += len;
attrs = tpm_buf_read_u8(buf, &offset_s);
len = tpm_buf_read_u16(buf, &offset_s);
if (offset_s + len != tpm_buf_length(buf))
goto out;
if (len != SHA256_DIGEST_SIZE)
goto out;
/*
* offset_s points to the HMAC. now calculate comparison, beginning
* with rphash
*/
sha256_init(&sctx);
/* yes, I know this is now zero, but it's what the standard says */
sha256_update(&sctx, (u8 *)&head->return_code,
sizeof(head->return_code));
/* ordinal is already BE */
sha256_update(&sctx, (u8 *)&auth->ordinal, sizeof(auth->ordinal));
sha256_update(&sctx, &buf->data[offset_p], parm_len);
sha256_final(&sctx, rphash);
/* now calculate the hmac */
tpm2_hmac_init(&sctx, auth->session_key, sizeof(auth->session_key)
+ auth->passphrase_len);
sha256_update(&sctx, rphash, sizeof(rphash));
sha256_update(&sctx, auth->tpm_nonce, sizeof(auth->tpm_nonce));
sha256_update(&sctx, auth->our_nonce, sizeof(auth->our_nonce));
sha256_update(&sctx, &auth->attrs, 1);
/* we're done with the rphash, so put our idea of the hmac there */
tpm2_hmac_final(&sctx, auth->session_key, sizeof(auth->session_key)
+ auth->passphrase_len, rphash);
if (memcmp(rphash, &buf->data[offset_s], SHA256_DIGEST_SIZE) == 0) {
rc = 0;
} else {
dev_err(&chip->dev, "TPM: HMAC check failed\n");
goto out;
}
/* now do response decryption */
if (auth->attrs & TPM2_SA_ENCRYPT) {
/* need key and IV */
tpm2_KDFa(auth->session_key, SHA256_DIGEST_SIZE
+ auth->passphrase_len, "CFB", auth->tpm_nonce,
auth->our_nonce, AES_KEY_BYTES + AES_BLOCK_SIZE,
auth->scratch);
len = tpm_buf_read_u16(buf, &offset_p);
aes_expandkey(&auth->aes_ctx, auth->scratch, AES_KEY_BYTES);
aescfb_decrypt(&auth->aes_ctx, &buf->data[offset_p],
&buf->data[offset_p], len,
auth->scratch + AES_KEY_BYTES);
}
out:
if ((auth->attrs & TPM2_SA_CONTINUE_SESSION) == 0) {
if (rc)
/* manually close the session if it wasn't consumed */
tpm2_flush_context(chip, auth->handle);
memzero_explicit(auth, sizeof(*auth));
} else {
/* reset for next use */
auth->session = TPM_HEADER_SIZE;
}
return rc;
}
EXPORT_SYMBOL(tpm_buf_check_hmac_response);
/**
* tpm2_end_auth_session() - kill the allocated auth session
* @chip: the TPM chip structure
*
* ends the session started by tpm2_start_auth_session and frees all
* the resources. Under normal conditions,
* tpm_buf_check_hmac_response() will correctly end the session if
* required, so this function is only for use in error legs that will
* bypass the normal invocation of tpm_buf_check_hmac_response().
*/
void tpm2_end_auth_session(struct tpm_chip *chip)
{
tpm2_flush_context(chip, chip->auth->handle);
memzero_explicit(chip->auth, sizeof(*chip->auth));
}
EXPORT_SYMBOL(tpm2_end_auth_session);
static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
struct tpm_buf *buf)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
u32 tot_len = be32_to_cpu(head->length);
off_t offset = TPM_HEADER_SIZE;
u32 val;
/* we're starting after the header so adjust the length */
tot_len -= TPM_HEADER_SIZE;
/* should have handle plus nonce */
if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
return -EINVAL;
auth->handle = tpm_buf_read_u32(buf, &offset);
val = tpm_buf_read_u16(buf, &offset);
if (val != sizeof(auth->tpm_nonce))
return -EINVAL;
memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
/* now compute the session key from the nonces */
tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
auth->our_nonce, sizeof(auth->session_key),
auth->session_key);
return 0;
}
static int tpm2_load_null(struct tpm_chip *chip, u32 *null_key)
{
int rc;
unsigned int offset = 0; /* dummy offset for null seed context */
u8 name[SHA256_DIGEST_SIZE + 2];
rc = tpm2_load_context(chip, chip->null_key_context, &offset,
null_key);
if (rc != -EINVAL)
return rc;
/* an integrity failure may mean the TPM has been reset */
dev_err(&chip->dev, "NULL key integrity failure!\n");
/* check the null name against what we know */
tpm2_create_primary(chip, TPM2_RH_NULL, NULL, name);
if (memcmp(name, chip->null_key_name, sizeof(name)) == 0)
/* name unchanged, assume transient integrity failure */
return rc;
/*
* Fatal TPM failure: the NULL seed has actually changed, so
* the TPM must have been illegally reset. All in-kernel TPM
* operations will fail because the NULL primary can't be
* loaded to salt the sessions, but disable the TPM anyway so
* userspace programmes can't be compromised by it.
*/
dev_err(&chip->dev, "NULL name has changed, disabling TPM due to interference\n");
chip->flags |= TPM_CHIP_FLAG_DISABLE;
return rc;
}
/**
* tpm2_start_auth_session() - create a HMAC authentication session with the TPM
* @chip: the TPM chip structure to create the session with
*
* This function loads the NULL seed from its saved context and starts
* an authentication session on the null seed, fills in the
* @chip->auth structure to contain all the session details necessary
* for performing the HMAC, encrypt and decrypt operations and
* returns. The NULL seed is flushed before this function returns.
*
* Return: zero on success or actual error encountered.
*/
int tpm2_start_auth_session(struct tpm_chip *chip)
{
struct tpm_buf buf;
struct tpm2_auth *auth = chip->auth;
int rc;
u32 null_key;
rc = tpm2_load_null(chip, &null_key);
if (rc)
goto out;
auth->session = TPM_HEADER_SIZE;
rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
if (rc)
goto out;
/* salt key handle */
tpm_buf_append_u32(&buf, null_key);
/* bind key handle */
tpm_buf_append_u32(&buf, TPM2_RH_NULL);
/* nonce caller */
get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
/* append encrypted salt and squirrel away unencrypted in auth */
tpm_buf_append_salt(&buf, chip);
/* session type (HMAC, audit or policy) */
tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
/* symmetric encryption parameters */
/* symmetric algorithm */
tpm_buf_append_u16(&buf, TPM_ALG_AES);
/* bits for symmetric algorithm */
tpm_buf_append_u16(&buf, AES_KEY_BITS);
/* symmetric algorithm mode (must be CFB) */
tpm_buf_append_u16(&buf, TPM_ALG_CFB);
/* hash algorithm for session */
tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
tpm2_flush_context(chip, null_key);
if (rc == TPM2_RC_SUCCESS)
rc = tpm2_parse_start_auth_session(auth, &buf);
tpm_buf_destroy(&buf);
if (rc)
goto out;
out:
return rc;
}
EXPORT_SYMBOL(tpm2_start_auth_session);
/**
* tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
*
* @chip: The TPM the primary was created under
* @buf: The response buffer from the chip
* @handle: pointer to be filled in with the return handle of the primary
* @hierarchy: The hierarchy the primary was created for
* @name: pointer to be filled in with the primary key name
*
* Return:
* * 0 - OK
* * -errno - A system error
* * TPM_RC - A TPM error
*/
static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
u32 *handle, u32 hierarchy, u8 *name)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
off_t offset_r = TPM_HEADER_SIZE, offset_t;
u16 len = TPM_HEADER_SIZE;
u32 total_len = be32_to_cpu(head->length);
u32 val, param_len, keyhandle;
keyhandle = tpm_buf_read_u32(buf, &offset_r);
if (handle)
*handle = keyhandle;
else
tpm2_flush_context(chip, keyhandle);
param_len = tpm_buf_read_u32(buf, &offset_r);
/*
* param_len doesn't include the header, but all the other
* lengths and offsets do, so add it to parm len to make
* the comparisons easier
*/
param_len += TPM_HEADER_SIZE;
if (param_len + 8 > total_len)
return -EINVAL;
len = tpm_buf_read_u16(buf, &offset_r);
offset_t = offset_r;
if (name) {
/*
* now we have the public area, compute the name of
* the object
*/
put_unaligned_be16(TPM_ALG_SHA256, name);
sha256(&buf->data[offset_r], len, name + 2);
}
/* validate the public key */
val = tpm_buf_read_u16(buf, &offset_t);
/* key type (must be what we asked for) */
if (val != TPM_ALG_ECC)
return -EINVAL;
val = tpm_buf_read_u16(buf, &offset_t);
/* name algorithm */
if (val != TPM_ALG_SHA256)
return -EINVAL;
val = tpm_buf_read_u32(buf, &offset_t);
/* object properties */
if (val != TPM2_OA_TMPL)
return -EINVAL;
/* auth policy (empty) */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != 0)
return -EINVAL;
/* symmetric key parameters */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM_ALG_AES)
return -EINVAL;
/* symmetric key length */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != AES_KEY_BITS)
return -EINVAL;
/* symmetric encryption scheme */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM_ALG_CFB)
return -EINVAL;
/* signing scheme */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM_ALG_NULL)
return -EINVAL;
/* ECC Curve */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM2_ECC_NIST_P256)
return -EINVAL;
/* KDF Scheme */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != TPM_ALG_NULL)
return -EINVAL;
/* extract public key (x and y points) */
val = tpm_buf_read_u16(buf, &offset_t);
if (val != EC_PT_SZ)
return -EINVAL;
memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
offset_t += val;
val = tpm_buf_read_u16(buf, &offset_t);
if (val != EC_PT_SZ)
return -EINVAL;
memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
offset_t += val;
/* original length of the whole TPM2B */
offset_r += len;
/* should have exactly consumed the TPM2B public structure */
if (offset_t != offset_r)
return -EINVAL;
if (offset_r > param_len)
return -EINVAL;
/* creation data (skip) */
len = tpm_buf_read_u16(buf, &offset_r);
offset_r += len;
if (offset_r > param_len)
return -EINVAL;
/* creation digest (must be sha256) */
len = tpm_buf_read_u16(buf, &offset_r);
offset_r += len;
if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
return -EINVAL;
/* TPMT_TK_CREATION follows */
/* tag, must be TPM_ST_CREATION (0x8021) */
val = tpm_buf_read_u16(buf, &offset_r);
if (val != TPM2_ST_CREATION || offset_r > param_len)
return -EINVAL;
/* hierarchy */
val = tpm_buf_read_u32(buf, &offset_r);
if (val != hierarchy || offset_r > param_len)
return -EINVAL;
/* the ticket digest HMAC (might not be sha256) */
len = tpm_buf_read_u16(buf, &offset_r);
offset_r += len;
if (offset_r > param_len)
return -EINVAL;
/*
* finally we have the name, which is a sha256 digest plus a 2
* byte algorithm type
*/
len = tpm_buf_read_u16(buf, &offset_r);
if (offset_r + len != param_len + 8)
return -EINVAL;
if (len != SHA256_DIGEST_SIZE + 2)
return -EINVAL;
if (memcmp(chip->null_key_name, &buf->data[offset_r],
SHA256_DIGEST_SIZE + 2) != 0) {
dev_err(&chip->dev, "NULL Seed name comparison failed\n");
return -EINVAL;
}
return 0;
}
/**
* tpm2_create_primary() - create a primary key using a fixed P-256 template
*
* @chip: the TPM chip to create under
* @hierarchy: The hierarchy handle to create under
* @handle: The returned volatile handle on success
* @name: The name of the returned key
*
* For platforms that might not have a persistent primary, this can be
* used to create one quickly on the fly (it uses Elliptic Curve not
* RSA, so even slow TPMs can create one fast). The template uses the
* TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
* elliptic curve (the only current one all TPM2s are required to
* have) a sha256 name hash and no policy.
*
* Return:
* * 0 - OK
* * -errno - A system error
* * TPM_RC - A TPM error
*/
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
u32 *handle, u8 *name)
{
int rc;
struct tpm_buf buf;
struct tpm_buf template;
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
if (rc)
return rc;
rc = tpm_buf_init_sized(&template);
if (rc) {
tpm_buf_destroy(&buf);
return rc;
}
/*
* create the template. Note: in order for userspace to
* verify the security of the system, it will have to create
* and certify this NULL primary, meaning all the template
* parameters will have to be identical, so conform exactly to
* the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
* key H template (H has zero size unique points)
*/
/* key type */
tpm_buf_append_u16(&template, TPM_ALG_ECC);
/* name algorithm */
tpm_buf_append_u16(&template, TPM_ALG_SHA256);
/* object properties */
tpm_buf_append_u32(&template, TPM2_OA_TMPL);
/* sauth policy (empty) */
tpm_buf_append_u16(&template, 0);
/* BEGIN parameters: key specific; for ECC*/
/* symmetric algorithm */
tpm_buf_append_u16(&template, TPM_ALG_AES);
/* bits for symmetric algorithm */
tpm_buf_append_u16(&template, AES_KEY_BITS);
/* algorithm mode (must be CFB) */
tpm_buf_append_u16(&template, TPM_ALG_CFB);
/* scheme (NULL means any scheme) */
tpm_buf_append_u16(&template, TPM_ALG_NULL);
/* ECC Curve ID */
tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);
/* KDF Scheme */
tpm_buf_append_u16(&template, TPM_ALG_NULL);
/* unique: key specific; for ECC it is two zero size points */
tpm_buf_append_u16(&template, 0);
tpm_buf_append_u16(&template, 0);
/* END parameters */
/* primary handle */
tpm_buf_append_u32(&buf, hierarchy);
tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);
/* sensitive create size is 4 for two empty buffers */
tpm_buf_append_u16(&buf, 4);
/* sensitive create auth data (empty) */
tpm_buf_append_u16(&buf, 0);
/* sensitive create sensitive data (empty) */
tpm_buf_append_u16(&buf, 0);
/* the public template */
tpm_buf_append(&buf, template.data, template.length);
tpm_buf_destroy(&template);
/* outside info (empty) */
tpm_buf_append_u16(&buf, 0);
/* creation PCR (none) */
tpm_buf_append_u32(&buf, 0);
rc = tpm_transmit_cmd(chip, &buf, 0,
"attempting to create NULL primary");
if (rc == TPM2_RC_SUCCESS)
rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy,
name);
tpm_buf_destroy(&buf);
return rc;
}
static int tpm2_create_null_primary(struct tpm_chip *chip)
{
u32 null_key;
int rc;
rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key,
chip->null_key_name);
if (rc == TPM2_RC_SUCCESS) {
unsigned int offset = 0; /* dummy offset for null key context */
rc = tpm2_save_context(chip, null_key, chip->null_key_context,
sizeof(chip->null_key_context), &offset);
tpm2_flush_context(chip, null_key);
}
return rc;
}
/**
* tpm2_sessions_init() - start of day initialization for the sessions code
* @chip: TPM chip
*
* Derive and context save the null primary and allocate memory in the
* struct tpm_chip for the authorizations.
*/
int tpm2_sessions_init(struct tpm_chip *chip)
{
int rc;
rc = tpm2_create_null_primary(chip);
if (rc)
dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc);
chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL);
if (!chip->auth)
return -ENOMEM;
return rc;
}
......@@ -68,8 +68,8 @@ void tpm2_del_space(struct tpm_chip *chip, struct tpm_space *space)
kfree(space->session_buf);
}
static int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
unsigned int *offset, u32 *handle)
int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
unsigned int *offset, u32 *handle)
{
struct tpm_buf tbuf;
struct tpm2_context *ctx;
......@@ -105,6 +105,9 @@ static int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
*handle = 0;
tpm_buf_destroy(&tbuf);
return -ENOENT;
} else if (tpm2_rc_value(rc) == TPM2_RC_INTEGRITY) {
tpm_buf_destroy(&tbuf);
return -EINVAL;
} else if (rc > 0) {
dev_warn(&chip->dev, "%s: failed with a TPM error 0x%04X\n",
__func__, rc);
......@@ -119,8 +122,8 @@ static int tpm2_load_context(struct tpm_chip *chip, u8 *buf,
return 0;
}
static int tpm2_save_context(struct tpm_chip *chip, u32 handle, u8 *buf,
unsigned int buf_size, unsigned int *offset)
int tpm2_save_context(struct tpm_chip *chip, u32 handle, u8 *buf,
unsigned int buf_size, unsigned int *offset)
{
struct tpm_buf tbuf;
unsigned int body_size;
......
......@@ -51,34 +51,40 @@ static struct tpm_inf_dev tpm_dev;
static inline void tpm_data_out(unsigned char data, unsigned char offset)
{
#ifdef CONFIG_HAS_IOPORT
if (tpm_dev.iotype == TPM_INF_IO_PORT)
outb(data, tpm_dev.data_regs + offset);
else
#endif
writeb(data, tpm_dev.mem_base + tpm_dev.data_regs + offset);
}
static inline unsigned char tpm_data_in(unsigned char offset)
{
#ifdef CONFIG_HAS_IOPORT
if (tpm_dev.iotype == TPM_INF_IO_PORT)
return inb(tpm_dev.data_regs + offset);
else
return readb(tpm_dev.mem_base + tpm_dev.data_regs + offset);
#endif
return readb(tpm_dev.mem_base + tpm_dev.data_regs + offset);
}
static inline void tpm_config_out(unsigned char data, unsigned char offset)
{
#ifdef CONFIG_HAS_IOPORT
if (tpm_dev.iotype == TPM_INF_IO_PORT)
outb(data, tpm_dev.config_port + offset);
else
#endif
writeb(data, tpm_dev.mem_base + tpm_dev.index_off + offset);
}
static inline unsigned char tpm_config_in(unsigned char offset)
{
#ifdef CONFIG_HAS_IOPORT
if (tpm_dev.iotype == TPM_INF_IO_PORT)
return inb(tpm_dev.config_port + offset);
else
return readb(tpm_dev.mem_base + tpm_dev.index_off + offset);
#endif
return readb(tpm_dev.mem_base + tpm_dev.index_off + offset);
}
/* TPM header definitions */
......
......@@ -1057,11 +1057,6 @@ static void tpm_tis_clkrun_enable(struct tpm_chip *chip, bool value)
clkrun_val &= ~LPC_CLKRUN_EN;
iowrite32(clkrun_val, data->ilb_base_addr + LPC_CNTRL_OFFSET);
/*
* Write any random value on port 0x80 which is on LPC, to make
* sure LPC clock is running before sending any TPM command.
*/
outb(0xCC, 0x80);
} else {
data->clkrun_enabled--;
if (data->clkrun_enabled)
......@@ -1072,13 +1067,15 @@ static void tpm_tis_clkrun_enable(struct tpm_chip *chip, bool value)
/* Enable LPC CLKRUN# */
clkrun_val |= LPC_CLKRUN_EN;
iowrite32(clkrun_val, data->ilb_base_addr + LPC_CNTRL_OFFSET);
/*
* Write any random value on port 0x80 which is on LPC, to make
* sure LPC clock is running before sending any TPM command.
*/
outb(0xCC, 0x80);
}
#ifdef CONFIG_HAS_IOPORT
/*
* Write any random value on port 0x80 which is on LPC, to make
* sure LPC clock is running before sending any TPM command.
*/
outb(0xCC, 0x80);
#endif
}
static const struct tpm_class_ops tpm_tis = {
......
......@@ -87,4 +87,9 @@ void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in);
extern const u8 crypto_aes_sbox[];
extern const u8 crypto_aes_inv_sbox[];
void aescfb_encrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE]);
void aescfb_decrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE]);
#endif
......@@ -6,8 +6,6 @@
#include <linux/tpm_command.h>
/* implementation specific TPM constants */
#define MAX_BUF_SIZE 1024
#define TPM_GETRANDOM_SIZE 14
#define TPM_SIZE_OFFSET 2
#define TPM_RETURN_OFFSET 6
#define TPM_DATA_OFFSET 10
......
......@@ -23,6 +23,7 @@
#include <linux/fs.h>
#include <linux/highmem.h>
#include <crypto/hash_info.h>
#include <crypto/aes.h>
#define TPM_DIGEST_SIZE 20 /* Max TPM v1.2 PCR size */
#define TPM_MAX_DIGEST_SIZE SHA512_DIGEST_SIZE
......@@ -30,17 +31,28 @@
struct tpm_chip;
struct trusted_key_payload;
struct trusted_key_options;
/* opaque structure, holds auth session parameters like the session key */
struct tpm2_auth;
enum tpm2_session_types {
TPM2_SE_HMAC = 0x00,
TPM2_SE_POLICY = 0x01,
TPM2_SE_TRIAL = 0x02,
};
/* if you add a new hash to this, increment TPM_MAX_HASHES below */
enum tpm_algorithms {
TPM_ALG_ERROR = 0x0000,
TPM_ALG_SHA1 = 0x0004,
TPM_ALG_AES = 0x0006,
TPM_ALG_KEYEDHASH = 0x0008,
TPM_ALG_SHA256 = 0x000B,
TPM_ALG_SHA384 = 0x000C,
TPM_ALG_SHA512 = 0x000D,
TPM_ALG_NULL = 0x0010,
TPM_ALG_SM3_256 = 0x0012,
TPM_ALG_ECC = 0x0023,
TPM_ALG_CFB = 0x0043,
};
/*
......@@ -49,6 +61,11 @@ enum tpm_algorithms {
*/
#define TPM_MAX_HASHES 5
enum tpm2_curves {
TPM2_ECC_NONE = 0x0000,
TPM2_ECC_NIST_P256 = 0x0003,
};
struct tpm_digest {
u16 alg_id;
u8 digest[TPM_MAX_DIGEST_SIZE];
......@@ -116,6 +133,20 @@ struct tpm_chip_seqops {
const struct seq_operations *seqops;
};
/* fixed define for the curve we use which is NIST_P256 */
#define EC_PT_SZ 32
/*
* fixed define for the size of a name. This is actually HASHALG size
* plus 2, so 32 for SHA256
*/
#define TPM2_NAME_SIZE 34
/*
* The maximum size for an object context
*/
#define TPM2_MAX_CONTEXT_SIZE 4096
struct tpm_chip {
struct device dev;
struct device devs;
......@@ -170,6 +201,18 @@ struct tpm_chip {
/* active locality */
int locality;
#ifdef CONFIG_TCG_TPM2_HMAC
/* details for communication security via sessions */
/* saved context for NULL seed */
u8 null_key_context[TPM2_MAX_CONTEXT_SIZE];
/* name of NULL seed */
u8 null_key_name[TPM2_NAME_SIZE];
u8 null_ec_key_x[EC_PT_SZ];
u8 null_ec_key_y[EC_PT_SZ];
struct tpm2_auth *auth;
#endif
};
#define TPM_HEADER_SIZE 10
......@@ -194,6 +237,7 @@ enum tpm2_timeouts {
enum tpm2_structures {
TPM2_ST_NO_SESSIONS = 0x8001,
TPM2_ST_SESSIONS = 0x8002,
TPM2_ST_CREATION = 0x8021,
};
/* Indicates from what layer of the software stack the error comes from */
......@@ -204,6 +248,7 @@ enum tpm2_return_codes {
TPM2_RC_SUCCESS = 0x0000,
TPM2_RC_HASH = 0x0083, /* RC_FMT1 */
TPM2_RC_HANDLE = 0x008B,
TPM2_RC_INTEGRITY = 0x009F,
TPM2_RC_INITIALIZE = 0x0100, /* RC_VER1 */
TPM2_RC_FAILURE = 0x0101,
TPM2_RC_DISABLED = 0x0120,
......@@ -231,6 +276,8 @@ enum tpm2_command_codes {
TPM2_CC_CONTEXT_LOAD = 0x0161,
TPM2_CC_CONTEXT_SAVE = 0x0162,
TPM2_CC_FLUSH_CONTEXT = 0x0165,
TPM2_CC_READ_PUBLIC = 0x0173,
TPM2_CC_START_AUTH_SESS = 0x0176,
TPM2_CC_VERIFY_SIGNATURE = 0x0177,
TPM2_CC_GET_CAPABILITY = 0x017A,
TPM2_CC_GET_RANDOM = 0x017B,
......@@ -243,9 +290,25 @@ enum tpm2_command_codes {
};
enum tpm2_permanent_handles {
TPM2_RH_NULL = 0x40000007,
TPM2_RS_PW = 0x40000009,
};
/* Most Significant Octet for key types */
enum tpm2_mso_type {
TPM2_MSO_NVRAM = 0x01,
TPM2_MSO_SESSION = 0x02,
TPM2_MSO_POLICY = 0x03,
TPM2_MSO_PERMANENT = 0x40,
TPM2_MSO_VOLATILE = 0x80,
TPM2_MSO_PERSISTENT = 0x81,
};
static inline enum tpm2_mso_type tpm2_handle_mso(u32 handle)
{
return handle >> 24;
}
enum tpm2_capabilities {
TPM2_CAP_HANDLES = 1,
TPM2_CAP_COMMANDS = 2,
......@@ -284,6 +347,7 @@ enum tpm_chip_flags {
TPM_CHIP_FLAG_FIRMWARE_UPGRADE = BIT(7),
TPM_CHIP_FLAG_SUSPENDED = BIT(8),
TPM_CHIP_FLAG_HWRNG_DISABLED = BIT(9),
TPM_CHIP_FLAG_DISABLE = BIT(10),
};
#define to_tpm_chip(d) container_of(d, struct tpm_chip, dev)
......@@ -297,28 +361,61 @@ struct tpm_header {
};
} __packed;
/* A string buffer type for constructing TPM commands. This is based on the
* ideas of string buffer code in security/keys/trusted.h but is heap based
* in order to keep the stack usage minimal.
*/
enum tpm_buf_flags {
/* the capacity exceeded: */
TPM_BUF_OVERFLOW = BIT(0),
/* TPM2B format: */
TPM_BUF_TPM2B = BIT(1),
/* read out of boundary: */
TPM_BUF_BOUNDARY_ERROR = BIT(2),
};
/*
* A string buffer type for constructing TPM commands.
*/
struct tpm_buf {
unsigned int flags;
u32 flags;
u32 length;
u8 *data;
u8 handles;
};
enum tpm2_object_attributes {
TPM2_OA_FIXED_TPM = BIT(1),
TPM2_OA_ST_CLEAR = BIT(2),
TPM2_OA_FIXED_PARENT = BIT(4),
TPM2_OA_SENSITIVE_DATA_ORIGIN = BIT(5),
TPM2_OA_USER_WITH_AUTH = BIT(6),
TPM2_OA_ADMIN_WITH_POLICY = BIT(7),
TPM2_OA_NO_DA = BIT(10),
TPM2_OA_ENCRYPTED_DUPLICATION = BIT(11),
TPM2_OA_RESTRICTED = BIT(16),
TPM2_OA_DECRYPT = BIT(17),
TPM2_OA_SIGN = BIT(18),
};
/*
* definitions for the canonical template. These are mandated
* by the TCG key template documents
*/
#define AES_KEY_BYTES AES_KEYSIZE_128
#define AES_KEY_BITS (AES_KEY_BYTES*8)
#define TPM2_OA_TMPL (TPM2_OA_NO_DA | \
TPM2_OA_FIXED_TPM | \
TPM2_OA_FIXED_PARENT | \
TPM2_OA_SENSITIVE_DATA_ORIGIN | \
TPM2_OA_USER_WITH_AUTH | \
TPM2_OA_DECRYPT | \
TPM2_OA_RESTRICTED)
enum tpm2_session_attributes {
TPM2_SA_CONTINUE_SESSION = BIT(0),
TPM2_SA_AUDIT_EXCLUSIVE = BIT(1),
TPM2_SA_AUDIT_RESET = BIT(3),
TPM2_SA_DECRYPT = BIT(5),
TPM2_SA_ENCRYPT = BIT(6),
TPM2_SA_AUDIT = BIT(7),
};
struct tpm2_hash {
......@@ -326,84 +423,21 @@ struct tpm2_hash {
unsigned int tpm_id;
};
static inline void tpm_buf_reset(struct tpm_buf *buf, u16 tag, u32 ordinal)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
head->tag = cpu_to_be16(tag);
head->length = cpu_to_be32(sizeof(*head));
head->ordinal = cpu_to_be32(ordinal);
}
static inline int tpm_buf_init(struct tpm_buf *buf, u16 tag, u32 ordinal)
{
buf->data = (u8 *)__get_free_page(GFP_KERNEL);
if (!buf->data)
return -ENOMEM;
buf->flags = 0;
tpm_buf_reset(buf, tag, ordinal);
return 0;
}
static inline void tpm_buf_destroy(struct tpm_buf *buf)
{
free_page((unsigned long)buf->data);
}
static inline u32 tpm_buf_length(struct tpm_buf *buf)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
return be32_to_cpu(head->length);
}
static inline u16 tpm_buf_tag(struct tpm_buf *buf)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
return be16_to_cpu(head->tag);
}
static inline void tpm_buf_append(struct tpm_buf *buf,
const unsigned char *new_data,
unsigned int new_len)
{
struct tpm_header *head = (struct tpm_header *)buf->data;
u32 len = tpm_buf_length(buf);
/* Return silently if overflow has already happened. */
if (buf->flags & TPM_BUF_OVERFLOW)
return;
if ((len + new_len) > PAGE_SIZE) {
WARN(1, "tpm_buf: overflow\n");
buf->flags |= TPM_BUF_OVERFLOW;
return;
}
memcpy(&buf->data[len], new_data, new_len);
head->length = cpu_to_be32(len + new_len);
}
static inline void tpm_buf_append_u8(struct tpm_buf *buf, const u8 value)
{
tpm_buf_append(buf, &value, 1);
}
static inline void tpm_buf_append_u16(struct tpm_buf *buf, const u16 value)
{
__be16 value2 = cpu_to_be16(value);
tpm_buf_append(buf, (u8 *) &value2, 2);
}
static inline void tpm_buf_append_u32(struct tpm_buf *buf, const u32 value)
{
__be32 value2 = cpu_to_be32(value);
tpm_buf_append(buf, (u8 *) &value2, 4);
}
int tpm_buf_init(struct tpm_buf *buf, u16 tag, u32 ordinal);
void tpm_buf_reset(struct tpm_buf *buf, u16 tag, u32 ordinal);
int tpm_buf_init_sized(struct tpm_buf *buf);
void tpm_buf_reset_sized(struct tpm_buf *buf);
void tpm_buf_destroy(struct tpm_buf *buf);
u32 tpm_buf_length(struct tpm_buf *buf);
void tpm_buf_append(struct tpm_buf *buf, const u8 *new_data, u16 new_length);
void tpm_buf_append_u8(struct tpm_buf *buf, const u8 value);
void tpm_buf_append_u16(struct tpm_buf *buf, const u16 value);
void tpm_buf_append_u32(struct tpm_buf *buf, const u32 value);
u8 tpm_buf_read_u8(struct tpm_buf *buf, off_t *offset);
u16 tpm_buf_read_u16(struct tpm_buf *buf, off_t *offset);
u32 tpm_buf_read_u32(struct tpm_buf *buf, off_t *offset);
u8 *tpm_buf_parameters(struct tpm_buf *buf);
/*
* Check if TPM device is in the firmware upgrade mode.
......@@ -415,7 +449,7 @@ static inline bool tpm_is_firmware_upgrade(struct tpm_chip *chip)
static inline u32 tpm2_rc_value(u32 rc)
{
return (rc & BIT(7)) ? rc & 0xff : rc;
return (rc & BIT(7)) ? rc & 0xbf : rc;
}
#if defined(CONFIG_TCG_TPM) || defined(CONFIG_TCG_TPM_MODULE)
......@@ -429,10 +463,19 @@ extern int tpm_pcr_read(struct tpm_chip *chip, u32 pcr_idx,
struct tpm_digest *digest);
extern int tpm_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
struct tpm_digest *digests);
extern int tpm_send(struct tpm_chip *chip, void *cmd, size_t buflen);
extern int tpm_get_random(struct tpm_chip *chip, u8 *data, size_t max);
extern struct tpm_chip *tpm_default_chip(void);
void tpm2_flush_context(struct tpm_chip *chip, u32 handle);
static inline void tpm_buf_append_empty_auth(struct tpm_buf *buf, u32 handle)
{
/* simple authorization for empty auth */
tpm_buf_append_u32(buf, 9); /* total length of auth */
tpm_buf_append_u32(buf, handle);
tpm_buf_append_u16(buf, 0); /* nonce len */
tpm_buf_append_u8(buf, 0); /* attributes */
tpm_buf_append_u16(buf, 0); /* hmac len */
}
#else
static inline int tpm_is_tpm2(struct tpm_chip *chip)
{
......@@ -450,10 +493,6 @@ static inline int tpm_pcr_extend(struct tpm_chip *chip, u32 pcr_idx,
return -ENODEV;
}
static inline int tpm_send(struct tpm_chip *chip, void *cmd, size_t buflen)
{
return -ENODEV;
}
static inline int tpm_get_random(struct tpm_chip *chip, u8 *data, size_t max)
{
return -ENODEV;
......@@ -463,5 +502,102 @@ static inline struct tpm_chip *tpm_default_chip(void)
{
return NULL;
}
static inline void tpm_buf_append_empty_auth(struct tpm_buf *buf, u32 handle)
{
}
#endif
#ifdef CONFIG_TCG_TPM2_HMAC
int tpm2_start_auth_session(struct tpm_chip *chip);
void tpm_buf_append_name(struct tpm_chip *chip, struct tpm_buf *buf,
u32 handle, u8 *name);
void tpm_buf_append_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf,
u8 attributes, u8 *passphrase,
int passphraselen);
static inline void tpm_buf_append_hmac_session_opt(struct tpm_chip *chip,
struct tpm_buf *buf,
u8 attributes,
u8 *passphrase,
int passphraselen)
{
tpm_buf_append_hmac_session(chip, buf, attributes, passphrase,
passphraselen);
}
void tpm_buf_fill_hmac_session(struct tpm_chip *chip, struct tpm_buf *buf);
int tpm_buf_check_hmac_response(struct tpm_chip *chip, struct tpm_buf *buf,
int rc);
void tpm2_end_auth_session(struct tpm_chip *chip);
#else
#include <asm/unaligned.h>
static inline int tpm2_start_auth_session(struct tpm_chip *chip)
{
return 0;
}
static inline void tpm2_end_auth_session(struct tpm_chip *chip)
{
}
static inline void tpm_buf_append_name(struct tpm_chip *chip,
struct tpm_buf *buf,
u32 handle, u8 *name)
{
tpm_buf_append_u32(buf, handle);
/* count the number of handles in the upper bits of flags */
buf->handles++;
}
static inline void tpm_buf_append_hmac_session(struct tpm_chip *chip,
struct tpm_buf *buf,
u8 attributes, u8 *passphrase,
int passphraselen)
{
/* offset tells us where the sessions area begins */
int offset = buf->handles * 4 + TPM_HEADER_SIZE;
u32 len = 9 + passphraselen;
if (tpm_buf_length(buf) != offset) {
/* not the first session so update the existing length */
len += get_unaligned_be32(&buf->data[offset]);
put_unaligned_be32(len, &buf->data[offset]);
} else {
tpm_buf_append_u32(buf, len);
}
/* auth handle */
tpm_buf_append_u32(buf, TPM2_RS_PW);
/* nonce */
tpm_buf_append_u16(buf, 0);
/* attributes */
tpm_buf_append_u8(buf, 0);
/* passphrase */
tpm_buf_append_u16(buf, passphraselen);
tpm_buf_append(buf, passphrase, passphraselen);
}
static inline void tpm_buf_append_hmac_session_opt(struct tpm_chip *chip,
struct tpm_buf *buf,
u8 attributes,
u8 *passphrase,
int passphraselen)
{
int offset = buf->handles * 4 + TPM_HEADER_SIZE;
struct tpm_header *head = (struct tpm_header *) buf->data;
/*
* if the only sessions are optional, the command tag
* must change to TPM2_ST_NO_SESSIONS
*/
if (tpm_buf_length(buf) == offset)
head->tag = cpu_to_be16(TPM2_ST_NO_SESSIONS);
}
static inline void tpm_buf_fill_hmac_session(struct tpm_chip *chip,
struct tpm_buf *buf)
{
}
static inline int tpm_buf_check_hmac_response(struct tpm_chip *chip,
struct tpm_buf *buf,
int rc)
{
return rc;
}
#endif /* CONFIG_TCG_TPM2_HMAC */
#endif
......@@ -8,6 +8,11 @@ config CRYPTO_LIB_UTILS
config CRYPTO_LIB_AES
tristate
config CRYPTO_LIB_AESCFB
tristate
select CRYPTO_LIB_AES
select CRYPTO_LIB_UTILS
config CRYPTO_LIB_AESGCM
tristate
select CRYPTO_LIB_AES
......
......@@ -10,6 +10,9 @@ obj-$(CONFIG_CRYPTO_LIB_CHACHA_GENERIC) += libchacha.o
obj-$(CONFIG_CRYPTO_LIB_AES) += libaes.o
libaes-y := aes.o
obj-$(CONFIG_CRYPTO_LIB_AESCFB) += libaescfb.o
libaescfb-y := aescfb.o
obj-$(CONFIG_CRYPTO_LIB_AESGCM) += libaesgcm.o
libaesgcm-y := aesgcm.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* Minimal library implementation of AES in CFB mode
*
* Copyright 2023 Google LLC
*/
#include <linux/module.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <asm/irqflags.h>
static void aescfb_encrypt_block(const struct crypto_aes_ctx *ctx, void *dst,
const void *src)
{
unsigned long flags;
/*
* In AES-CFB, the AES encryption operates on known 'plaintext' (the IV
* and ciphertext), making it susceptible to timing attacks on the
* encryption key. The AES library already mitigates this risk to some
* extent by pulling the entire S-box into the caches before doing any
* substitutions, but this strategy is more effective when running with
* interrupts disabled.
*/
local_irq_save(flags);
aes_encrypt(ctx, dst, src);
local_irq_restore(flags);
}
/**
* aescfb_encrypt - Perform AES-CFB encryption on a block of data
*
* @ctx: The AES-CFB key schedule
* @dst: Pointer to the ciphertext output buffer
* @src: Pointer the plaintext (may equal @dst for encryption in place)
* @len: The size in bytes of the plaintext and ciphertext.
* @iv: The initialization vector (IV) to use for this block of data
*/
void aescfb_encrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE])
{
u8 ks[AES_BLOCK_SIZE];
const u8 *v = iv;
while (len > 0) {
aescfb_encrypt_block(ctx, ks, v);
crypto_xor_cpy(dst, src, ks, min(len, AES_BLOCK_SIZE));
v = dst;
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
len -= AES_BLOCK_SIZE;
}
memzero_explicit(ks, sizeof(ks));
}
EXPORT_SYMBOL(aescfb_encrypt);
/**
* aescfb_decrypt - Perform AES-CFB decryption on a block of data
*
* @ctx: The AES-CFB key schedule
* @dst: Pointer to the plaintext output buffer
* @src: Pointer the ciphertext (may equal @dst for decryption in place)
* @len: The size in bytes of the plaintext and ciphertext.
* @iv: The initialization vector (IV) to use for this block of data
*/
void aescfb_decrypt(const struct crypto_aes_ctx *ctx, u8 *dst, const u8 *src,
int len, const u8 iv[AES_BLOCK_SIZE])
{
u8 ks[2][AES_BLOCK_SIZE];
aescfb_encrypt_block(ctx, ks[0], iv);
for (int i = 0; len > 0; i ^= 1) {
if (len > AES_BLOCK_SIZE)
/*
* Generate the keystream for the next block before
* performing the XOR, as that may update in place and
* overwrite the ciphertext.
*/
aescfb_encrypt_block(ctx, ks[!i], src);
crypto_xor_cpy(dst, src, ks[i], min(len, AES_BLOCK_SIZE));
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
len -= AES_BLOCK_SIZE;
}
memzero_explicit(ks, sizeof(ks));
}
EXPORT_SYMBOL(aescfb_decrypt);
MODULE_DESCRIPTION("Generic AES-CFB library");
MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
MODULE_LICENSE("GPL");
#ifndef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
/*
* Test code below. Vectors taken from crypto/testmgr.h
*/
static struct {
u8 ptext[64];
u8 ctext[64];
u8 key[AES_MAX_KEY_SIZE];
u8 iv[AES_BLOCK_SIZE];
int klen;
int len;
} const aescfb_tv[] __initconst = {
{ /* From NIST SP800-38A */
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
"\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
"\xc8\xa6\x45\x37\xa0\xb3\xa9\x3f"
"\xcd\xe3\xcd\xad\x9f\x1c\xe5\x8b"
"\x26\x75\x1f\x67\xa3\xcb\xb1\x40"
"\xb1\x80\x8c\xf1\x87\xa4\xf4\xdf"
"\xc0\x4b\x05\x35\x7c\x5d\x1c\x0e"
"\xea\xc4\xc6\x6f\x9f\xf7\xf2\xe6",
.len = 64,
}, {
.key = "\x8e\x73\xb0\xf7\xda\x0e\x64\x52"
"\xc8\x10\xf3\x2b\x80\x90\x79\xe5"
"\x62\xf8\xea\xd2\x52\x2c\x6b\x7b",
.klen = 24,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.ctext = "\xcd\xc8\x0d\x6f\xdd\xf1\x8c\xab"
"\x34\xc2\x59\x09\xc9\x9a\x41\x74"
"\x67\xce\x7f\x7f\x81\x17\x36\x21"
"\x96\x1a\x2b\x70\x17\x1d\x3d\x7a"
"\x2e\x1e\x8a\x1d\xd5\x9b\x88\xb1"
"\xc8\xe6\x0f\xed\x1e\xfa\xc4\xc9"
"\xc0\x5f\x9f\x9c\xa9\x83\x4f\xa0"
"\x42\xae\x8f\xba\x58\x4b\x09\xff",
.len = 64,
}, {
.key = "\x60\x3d\xeb\x10\x15\xca\x71\xbe"
"\x2b\x73\xae\xf0\x85\x7d\x77\x81"
"\x1f\x35\x2c\x07\x3b\x61\x08\xd7"
"\x2d\x98\x10\xa3\x09\x14\xdf\xf4",
.klen = 32,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.ctext = "\xdc\x7e\x84\xbf\xda\x79\x16\x4b"
"\x7e\xcd\x84\x86\x98\x5d\x38\x60"
"\x39\xff\xed\x14\x3b\x28\xb1\xc8"
"\x32\x11\x3c\x63\x31\xe5\x40\x7b"
"\xdf\x10\x13\x24\x15\xe5\x4b\x92"
"\xa1\x3e\xd0\xa8\x26\x7a\xe2\xf9"
"\x75\xa3\x85\x74\x1a\xb9\xce\xf8"
"\x20\x31\x62\x3d\x55\xb1\xe4\x71",
.len = 64,
}, { /* > 16 bytes, not a multiple of 16 bytes */
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae",
.ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
"\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
"\xc8",
.len = 17,
}, { /* < 16 bytes */
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.ptext = "\x6b\xc1\xbe\xe2\x2e\x40\x9f",
.ctext = "\x3b\x3f\xd9\x2e\xb7\x2d\xad",
.len = 7,
},
};
static int __init libaescfb_init(void)
{
for (int i = 0; i < ARRAY_SIZE(aescfb_tv); i++) {
struct crypto_aes_ctx ctx;
u8 buf[64];
if (aes_expandkey(&ctx, aescfb_tv[i].key, aescfb_tv[i].klen)) {
pr_err("aes_expandkey() failed on vector %d\n", i);
return -ENODEV;
}
aescfb_encrypt(&ctx, buf, aescfb_tv[i].ptext, aescfb_tv[i].len,
aescfb_tv[i].iv);
if (memcmp(buf, aescfb_tv[i].ctext, aescfb_tv[i].len)) {
pr_err("aescfb_encrypt() #1 failed on vector %d\n", i);
return -ENODEV;
}
/* decrypt in place */
aescfb_decrypt(&ctx, buf, buf, aescfb_tv[i].len, aescfb_tv[i].iv);
if (memcmp(buf, aescfb_tv[i].ptext, aescfb_tv[i].len)) {
pr_err("aescfb_decrypt() failed on vector %d\n", i);
return -ENODEV;
}
/* encrypt in place */
aescfb_encrypt(&ctx, buf, buf, aescfb_tv[i].len, aescfb_tv[i].iv);
if (memcmp(buf, aescfb_tv[i].ctext, aescfb_tv[i].len)) {
pr_err("aescfb_encrypt() #2 failed on vector %d\n", i);
return -ENODEV;
}
}
return 0;
}
module_init(libaescfb_init);
static void __exit libaescfb_exit(void)
{
}
module_exit(libaescfb_exit);
#endif
......@@ -356,17 +356,28 @@ static int TSS_checkhmac2(unsigned char *buffer,
*/
int trusted_tpm_send(unsigned char *cmd, size_t buflen)
{
struct tpm_buf buf;
int rc;
if (!chip)
return -ENODEV;
rc = tpm_try_get_ops(chip);
if (rc)
return rc;
buf.flags = 0;
buf.length = buflen;
buf.data = cmd;
dump_tpm_buf(cmd);
rc = tpm_send(chip, cmd, buflen);
rc = tpm_transmit_cmd(chip, &buf, 4, "sending data");
dump_tpm_buf(cmd);
if (rc > 0)
/* Can't return positive return codes values to keyctl */
/* TPM error */
rc = -EPERM;
tpm_put_ops(chip);
return rc;
}
EXPORT_SYMBOL_GPL(trusted_tpm_send);
......@@ -407,7 +418,7 @@ static int osap(struct tpm_buf *tb, struct osapsess *s,
tpm_buf_append_u32(tb, handle);
tpm_buf_append(tb, ononce, TPM_NONCE_SIZE);
ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
ret = trusted_tpm_send(tb->data, tb->length);
if (ret < 0)
return ret;
......@@ -431,7 +442,7 @@ int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
return -ENODEV;
tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OIAP);
ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
ret = trusted_tpm_send(tb->data, tb->length);
if (ret < 0)
return ret;
......@@ -543,7 +554,7 @@ static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
tpm_buf_append_u8(tb, cont);
tpm_buf_append(tb, td->pubauth, SHA1_DIGEST_SIZE);
ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
ret = trusted_tpm_send(tb->data, tb->length);
if (ret < 0)
goto out;
......@@ -634,7 +645,7 @@ static int tpm_unseal(struct tpm_buf *tb,
tpm_buf_append_u8(tb, cont);
tpm_buf_append(tb, authdata2, SHA1_DIGEST_SIZE);
ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
ret = trusted_tpm_send(tb->data, tb->length);
if (ret < 0) {
pr_info("authhmac failed (%d)\n", ret);
return ret;
......
......@@ -228,8 +228,9 @@ int tpm2_seal_trusted(struct tpm_chip *chip,
struct trusted_key_payload *payload,
struct trusted_key_options *options)
{
off_t offset = TPM_HEADER_SIZE;
struct tpm_buf buf, sized;
int blob_len = 0;
struct tpm_buf buf;
u32 hash;
u32 flags;
int i;
......@@ -252,50 +253,58 @@ int tpm2_seal_trusted(struct tpm_chip *chip,
if (rc)
return rc;
rc = tpm2_start_auth_session(chip);
if (rc)
goto out_put;
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE);
if (rc) {
tpm_put_ops(chip);
return rc;
tpm2_end_auth_session(chip);
goto out_put;
}
tpm_buf_append_u32(&buf, options->keyhandle);
tpm2_buf_append_auth(&buf, TPM2_RS_PW,
NULL /* nonce */, 0,
0 /* session_attributes */,
options->keyauth /* hmac */,
TPM_DIGEST_SIZE);
rc = tpm_buf_init_sized(&sized);
if (rc) {
tpm_buf_destroy(&buf);
tpm2_end_auth_session(chip);
goto out_put;
}
tpm_buf_append_name(chip, &buf, options->keyhandle, NULL);
tpm_buf_append_hmac_session(chip, &buf, TPM2_SA_DECRYPT,
options->keyauth, TPM_DIGEST_SIZE);
/* sensitive */
tpm_buf_append_u16(&buf, 4 + options->blobauth_len + payload->key_len);
tpm_buf_append_u16(&sized, options->blobauth_len);
tpm_buf_append_u16(&buf, options->blobauth_len);
if (options->blobauth_len)
tpm_buf_append(&buf, options->blobauth, options->blobauth_len);
tpm_buf_append(&sized, options->blobauth, options->blobauth_len);
tpm_buf_append_u16(&buf, payload->key_len);
tpm_buf_append(&buf, payload->key, payload->key_len);
tpm_buf_append_u16(&sized, payload->key_len);
tpm_buf_append(&sized, payload->key, payload->key_len);
tpm_buf_append(&buf, sized.data, sized.length);
/* public */
tpm_buf_append_u16(&buf, 14 + options->policydigest_len);
tpm_buf_append_u16(&buf, TPM_ALG_KEYEDHASH);
tpm_buf_append_u16(&buf, hash);
tpm_buf_reset_sized(&sized);
tpm_buf_append_u16(&sized, TPM_ALG_KEYEDHASH);
tpm_buf_append_u16(&sized, hash);
/* key properties */
flags = 0;
flags |= options->policydigest_len ? 0 : TPM2_OA_USER_WITH_AUTH;
flags |= payload->migratable ? 0 : (TPM2_OA_FIXED_TPM |
TPM2_OA_FIXED_PARENT);
tpm_buf_append_u32(&buf, flags);
flags |= payload->migratable ? 0 : (TPM2_OA_FIXED_TPM | TPM2_OA_FIXED_PARENT);
tpm_buf_append_u32(&sized, flags);
/* policy */
tpm_buf_append_u16(&buf, options->policydigest_len);
tpm_buf_append_u16(&sized, options->policydigest_len);
if (options->policydigest_len)
tpm_buf_append(&buf, options->policydigest,
options->policydigest_len);
tpm_buf_append(&sized, options->policydigest, options->policydigest_len);
/* public parameters */
tpm_buf_append_u16(&buf, TPM_ALG_NULL);
tpm_buf_append_u16(&buf, 0);
tpm_buf_append_u16(&sized, TPM_ALG_NULL);
tpm_buf_append_u16(&sized, 0);
tpm_buf_append(&buf, sized.data, sized.length);
/* outside info */
tpm_buf_append_u16(&buf, 0);
......@@ -305,28 +314,30 @@ int tpm2_seal_trusted(struct tpm_chip *chip,
if (buf.flags & TPM_BUF_OVERFLOW) {
rc = -E2BIG;
tpm2_end_auth_session(chip);
goto out;
}
tpm_buf_fill_hmac_session(chip, &buf);
rc = tpm_transmit_cmd(chip, &buf, 4, "sealing data");
rc = tpm_buf_check_hmac_response(chip, &buf, rc);
if (rc)
goto out;
blob_len = be32_to_cpup((__be32 *) &buf.data[TPM_HEADER_SIZE]);
if (blob_len > MAX_BLOB_SIZE) {
blob_len = tpm_buf_read_u32(&buf, &offset);
if (blob_len > MAX_BLOB_SIZE || buf.flags & TPM_BUF_BOUNDARY_ERROR) {
rc = -E2BIG;
goto out;
}
if (tpm_buf_length(&buf) < TPM_HEADER_SIZE + 4 + blob_len) {
if (buf.length - offset < blob_len) {
rc = -EFAULT;
goto out;
}
blob_len = tpm2_key_encode(payload, options,
&buf.data[TPM_HEADER_SIZE + 4],
blob_len);
blob_len = tpm2_key_encode(payload, options, &buf.data[offset], blob_len);
out:
tpm_buf_destroy(&sized);
tpm_buf_destroy(&buf);
if (rc > 0) {
......@@ -340,6 +351,7 @@ int tpm2_seal_trusted(struct tpm_chip *chip,
else
payload->blob_len = blob_len;
out_put:
tpm_put_ops(chip);
return rc;
}
......@@ -409,25 +421,31 @@ static int tpm2_load_cmd(struct tpm_chip *chip,
if (blob_len > payload->blob_len)
return -E2BIG;
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_LOAD);
rc = tpm2_start_auth_session(chip);
if (rc)
return rc;
tpm_buf_append_u32(&buf, options->keyhandle);
tpm2_buf_append_auth(&buf, TPM2_RS_PW,
NULL /* nonce */, 0,
0 /* session_attributes */,
options->keyauth /* hmac */,
TPM_DIGEST_SIZE);
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_LOAD);
if (rc) {
tpm2_end_auth_session(chip);
return rc;
}
tpm_buf_append_name(chip, &buf, options->keyhandle, NULL);
tpm_buf_append_hmac_session(chip, &buf, 0, options->keyauth,
TPM_DIGEST_SIZE);
tpm_buf_append(&buf, blob, blob_len);
if (buf.flags & TPM_BUF_OVERFLOW) {
rc = -E2BIG;
tpm2_end_auth_session(chip);
goto out;
}
tpm_buf_fill_hmac_session(chip, &buf);
rc = tpm_transmit_cmd(chip, &buf, 4, "loading blob");
rc = tpm_buf_check_hmac_response(chip, &buf, rc);
if (!rc)
*blob_handle = be32_to_cpup(
(__be32 *) &buf.data[TPM_HEADER_SIZE]);
......@@ -465,20 +483,44 @@ static int tpm2_unseal_cmd(struct tpm_chip *chip,
u8 *data;
int rc;
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_UNSEAL);
rc = tpm2_start_auth_session(chip);
if (rc)
return rc;
tpm_buf_append_u32(&buf, blob_handle);
tpm2_buf_append_auth(&buf,
options->policyhandle ?
options->policyhandle : TPM2_RS_PW,
NULL /* nonce */, 0,
TPM2_SA_CONTINUE_SESSION,
options->blobauth /* hmac */,
options->blobauth_len);
rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_UNSEAL);
if (rc) {
tpm2_end_auth_session(chip);
return rc;
}
tpm_buf_append_name(chip, &buf, blob_handle, NULL);
if (!options->policyhandle) {
tpm_buf_append_hmac_session(chip, &buf, TPM2_SA_ENCRYPT,
options->blobauth,
options->blobauth_len);
} else {
/*
* FIXME: The policy session was generated outside the
* kernel so we don't known the nonce and thus can't
* calculate a HMAC on it. Therefore, the user can
* only really use TPM2_PolicyPassword and we must
* send down the plain text password, which could be
* intercepted. We can still encrypt the returned
* key, but that's small comfort since the interposer
* could repeat our actions with the exfiltrated
* password.
*/
tpm2_buf_append_auth(&buf, options->policyhandle,
NULL /* nonce */, 0, 0,
options->blobauth, options->blobauth_len);
tpm_buf_append_hmac_session_opt(chip, &buf, TPM2_SA_ENCRYPT,
NULL, 0);
}
tpm_buf_fill_hmac_session(chip, &buf);
rc = tpm_transmit_cmd(chip, &buf, 6, "unsealing");
rc = tpm_buf_check_hmac_response(chip, &buf, rc);
if (rc > 0)
rc = -EPERM;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment