Commit b203e95a authored by Linus Torvalds's avatar Linus Torvalds

Remove rest of legacy arch/m32r/drivers directory

parent ef8932e3
/*!***************************************************************************
*!
*! FILE NAME : ds1302.c
*!
*! DESCRIPTION: Implements an interface for the DS1302 RTC through Etrax I/O
*!
*! Functions exported: ds1302_readreg, ds1302_writereg, ds1302_init, get_rtc_status
*!
*! $Log: ds1302.c,v $
*! Revision 1.2 2003/10/29 08:42:58 fujiwara
*! Set PLD_RTCBAUR from bus clock
*!
*! Revision 1.12 2002/04/10 15:35:25 johana
*! Moved probe function closer to init function and marked it __init.
*!
*! Revision 1.11 2001/06/14 12:35:52 jonashg
*! The ATA hack is back. It is unfortunately the only way to set g27 to output.
*!
*! Revision 1.9 2001/06/14 10:00:14 jonashg
*! No need for tempudelay to be inline anymore (had to adjust the usec to
*! loops conversion because of this to make it slow enough to be a udelay).
*!
*! Revision 1.8 2001/06/14 08:06:32 jonashg
*! Made tempudelay delay usecs (well, just a tad more).
*!
*! Revision 1.7 2001/06/13 14:18:11 jonashg
*! Only allow processes with SYS_TIME capability to set time and charge.
*!
*! Revision 1.6 2001/06/12 15:22:07 jonashg
*! * Made init function __init.
*! * Parameter to out_byte() is unsigned char.
*! * The magic number 42 has got a name.
*! * Removed comment about /proc (nothing is exported there).
*!
*! Revision 1.5 2001/06/12 14:35:13 jonashg
*! Gave the module a name and added it to printk's.
*!
*! Revision 1.4 2001/05/31 14:53:40 jonashg
*! Made tempudelay() inline so that the watchdog doesn't reset (see
*! function comment).
*!
*! Revision 1.3 2001/03/26 16:03:06 bjornw
*! Needs linux/config.h
*!
*! Revision 1.2 2001/03/20 19:42:00 bjornw
*! Use the ETRAX prefix on the DS1302 options
*!
*! Revision 1.1 2001/03/20 09:13:50 magnusmn
*! Linux 2.4 port
*!
*! Revision 1.10 2000/07/05 15:38:23 bjornw
*! Dont update kernel time when a RTC_SET_TIME is done
*!
*! Revision 1.9 2000/03/02 15:42:59 macce
*! * Hack to make RTC work on all 2100/2400
*!
*! Revision 1.8 2000/02/23 16:59:18 torbjore
*! added setup of R_GEN_CONFIG when RTC is connected to the generic port.
*!
*! Revision 1.7 2000/01/17 15:51:43 johana
*! Added RTC_SET_CHARGE ioctl to enable trickle charger.
*!
*! Revision 1.6 1999/10/27 13:19:47 bjornw
*! Added update_xtime_from_cmos which reads back the updated RTC into the kernel.
*! /dev/rtc calls it now.
*!
*! Revision 1.5 1999/10/27 12:39:37 bjornw
*! Disabled superuser check. Anyone can now set the time.
*!
*! Revision 1.4 1999/09/02 13:27:46 pkj
*! Added shadow for R_PORT_PB_CONFIG.
*! Renamed port_g_shadow to port_g_data_shadow.
*!
*! Revision 1.3 1999/09/02 08:28:06 pkj
*! Made it possible to select either port PB or the generic port for the RST
*! signal line to the DS1302 RTC.
*! Also make sure the RST bit is configured as output on Port PB (if used).
*!
*! Revision 1.2 1999/09/01 14:47:20 bjornw
*! Added support for /dev/rtc operations with ioctl RD_TIME and SET_TIME to read
*! and set the date. Register as major 121.
*!
*! Revision 1.1 1999/09/01 09:45:29 bjornw
*! Implemented a DS1302 RTC driver.
*!
*!
*! ---------------------------------------------------------------------------
*!
*! (C) Copyright 1999, 2000, 2001 Axis Communications AB, LUND, SWEDEN
*!
*! $Id: ds1302.c,v 1.2 2003/10/29 08:42:58 fujiwara Exp $
*!
*!***************************************************************************/
#include <linux/config.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/delay.h>
#include <linux/bcd.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/rtc.h>
#include <asm/m32r.h>
#define RTC_MAJOR_NR 121 /* local major, change later */
static const char ds1302_name[] = "ds1302";
/* Send 8 bits. */
static void
out_byte_rtc(unsigned int reg_addr, unsigned char x)
{
//RST H
outw(0x0001,(unsigned long)PLD_RTCRSTODT);
//write data
outw(((x<<8)|(reg_addr&0xff)),(unsigned long)PLD_RTCWRDATA);
//WE
outw(0x0002,(unsigned long)PLD_RTCCR);
//wait
while(inw((unsigned long)PLD_RTCCR));
//RST L
outw(0x0000,(unsigned long)PLD_RTCRSTODT);
}
static unsigned char
in_byte_rtc(unsigned int reg_addr)
{
unsigned char retval;
//RST H
outw(0x0001,(unsigned long)PLD_RTCRSTODT);
//write data
outw((reg_addr&0xff),(unsigned long)PLD_RTCRDDATA);
//RE
outw(0x0001,(unsigned long)PLD_RTCCR);
//wait
while(inw((unsigned long)PLD_RTCCR));
//read data
retval=(inw((unsigned long)PLD_RTCRDDATA) & 0xff00)>>8;
//RST L
outw(0x0000,(unsigned long)PLD_RTCRSTODT);
return retval;
}
/* Enable writing. */
static void
ds1302_wenable(void)
{
out_byte_rtc(0x8e,0x00);
}
/* Disable writing. */
static void
ds1302_wdisable(void)
{
out_byte_rtc(0x8e,0x80);
}
/* Read a byte from the selected register in the DS1302. */
unsigned char
ds1302_readreg(int reg)
{
unsigned char x;
x=in_byte_rtc((0x81 | (reg << 1))); /* read register */
return x;
}
/* Write a byte to the selected register. */
void
ds1302_writereg(int reg, unsigned char val)
{
ds1302_wenable();
out_byte_rtc((0x80 | (reg << 1)),val);
ds1302_wdisable();
}
void
get_rtc_time(struct rtc_time *rtc_tm)
{
unsigned long flags;
local_irq_save(flags);
local_irq_disable();
rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
local_irq_restore(flags);
BCD_TO_BIN(rtc_tm->tm_sec);
BCD_TO_BIN(rtc_tm->tm_min);
BCD_TO_BIN(rtc_tm->tm_hour);
BCD_TO_BIN(rtc_tm->tm_mday);
BCD_TO_BIN(rtc_tm->tm_mon);
BCD_TO_BIN(rtc_tm->tm_year);
/*
* Account for differences between how the RTC uses the values
* and how they are defined in a struct rtc_time;
*/
if (rtc_tm->tm_year <= 69)
rtc_tm->tm_year += 100;
rtc_tm->tm_mon--;
}
static unsigned char days_in_mo[] =
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
/* ioctl that supports RTC_RD_TIME and RTC_SET_TIME (read and set time/date). */
static int
rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
unsigned long flags;
switch(cmd) {
case RTC_RD_TIME: /* read the time/date from RTC */
{
struct rtc_time rtc_tm;
memset(&rtc_tm, 0, sizeof (struct rtc_time));
get_rtc_time(&rtc_tm);
if (copy_to_user((struct rtc_time*)arg, &rtc_tm, sizeof(struct rtc_time)))
return -EFAULT;
return 0;
}
case RTC_SET_TIME: /* set the RTC */
{
struct rtc_time rtc_tm;
unsigned char mon, day, hrs, min, sec, leap_yr;
unsigned int yrs;
if (!capable(CAP_SYS_TIME))
return -EPERM;
if (copy_from_user(&rtc_tm, (struct rtc_time*)arg, sizeof(struct rtc_time)))
return -EFAULT;
yrs = rtc_tm.tm_year + 1900;
mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
day = rtc_tm.tm_mday;
hrs = rtc_tm.tm_hour;
min = rtc_tm.tm_min;
sec = rtc_tm.tm_sec;
if ((yrs < 1970) || (yrs > 2069))
return -EINVAL;
leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
if ((mon > 12) || (day == 0))
return -EINVAL;
if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
return -EINVAL;
if ((hrs >= 24) || (min >= 60) || (sec >= 60))
return -EINVAL;
if (yrs >= 2000)
yrs -= 2000; /* RTC (0, 1, ... 69) */
else
yrs -= 1900; /* RTC (70, 71, ... 99) */
BIN_TO_BCD(sec);
BIN_TO_BCD(min);
BIN_TO_BCD(hrs);
BIN_TO_BCD(day);
BIN_TO_BCD(mon);
BIN_TO_BCD(yrs);
local_irq_save(flags);
local_irq_disable();
CMOS_WRITE(yrs, RTC_YEAR);
CMOS_WRITE(mon, RTC_MONTH);
CMOS_WRITE(day, RTC_DAY_OF_MONTH);
CMOS_WRITE(hrs, RTC_HOURS);
CMOS_WRITE(min, RTC_MINUTES);
CMOS_WRITE(sec, RTC_SECONDS);
local_irq_restore(flags);
/* Notice that at this point, the RTC is updated but
* the kernel is still running with the old time.
* You need to set that separately with settimeofday
* or adjtimex.
*/
return 0;
}
case RTC_SET_CHARGE: /* set the RTC TRICKLE CHARGE register */
{
int tcs_val;
if (!capable(CAP_SYS_TIME))
return -EPERM;
if(copy_from_user(&tcs_val, (int*)arg, sizeof(int)))
return -EFAULT;
tcs_val = RTC_TCR_PATTERN | (tcs_val & 0x0F);
ds1302_writereg(RTC_TRICKLECHARGER, tcs_val);
return 0;
}
default:
return -EINVAL;
}
}
int
get_rtc_status(char *buf)
{
char *p;
struct rtc_time tm;
p = buf;
get_rtc_time(&tm);
/*
* There is no way to tell if the luser has the RTC set for local
* time or for Universal Standard Time (GMT). Probably local though.
*/
p += sprintf(p,
"rtc_time\t: %02d:%02d:%02d\n"
"rtc_date\t: %04d-%02d-%02d\n",
tm.tm_hour, tm.tm_min, tm.tm_sec,
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday);
return p - buf;
}
/* The various file operations we support. */
static struct file_operations rtc_fops = {
.owner = THIS_MODULE,
.ioctl = rtc_ioctl,
};
/* Probe for the chip by writing something to its RAM and try reading it back. */
#define MAGIC_PATTERN 0x42
static int __init
ds1302_probe(void)
{
int retval, res, baur;
baur=(boot_cpu_data.bus_clock/(2*1000*1000));
printk("%s: Set PLD_RTCBAUR = %d\n", ds1302_name,baur);
outw(0x0000,(unsigned long)PLD_RTCCR);
outw(0x0000,(unsigned long)PLD_RTCRSTODT);
outw(baur,(unsigned long)PLD_RTCBAUR);
/* Try to talk to timekeeper. */
ds1302_wenable();
/* write RAM byte 0 */
/* write something magic */
out_byte_rtc(0xc0,MAGIC_PATTERN);
/* read RAM byte 0 */
if((res = in_byte_rtc(0xc1)) == MAGIC_PATTERN) {
char buf[100];
ds1302_wdisable();
printk("%s: RTC found.\n", ds1302_name);
get_rtc_status(buf);
printk(buf);
retval = 1;
} else {
printk("%s: RTC not found.\n", ds1302_name);
retval = 0;
}
return retval;
}
/* Just probe for the RTC and register the device to handle the ioctl needed. */
int __init
ds1302_init(void)
{
if (!ds1302_probe()) {
return -1;
}
return 0;
}
static int __init ds1302_register(void)
{
ds1302_init();
if (register_chrdev(RTC_MAJOR_NR, ds1302_name, &rtc_fops)) {
printk(KERN_INFO "%s: unable to get major %d for rtc\n",
ds1302_name, RTC_MAJOR_NR);
return -1;
}
return 0;
}
module_init(ds1302_register);
/* $Id$
*
* M32R onboard PLD serial module support.
*
* Much of the design and some of the code came from serial.c:
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997,
* 1998, 1999 Theodore Ts'o
*
* M32R work:
* Copyright 1996, 2001, Mitsubishi Electric Corporation
* Copyright (C) 2000,2001 by Hiro Kondo, Hiro Takata, and Hitoshi Yamamoto.
*
* 2002-12-25: Support M32700UT Platform by Takeo Takahashi
* Derived from dbg_console.c.
*/
static char *serial_version = "kondo";
static char *serial_revdate = "2002-09-11";
static char *serial_name = "M32R Serial driver";
#define LOCAL_VERSTRING ""
#include <linux/config.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/tty_driver.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <linux/major.h>
#include <linux/console.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/serial.h>
#include <linux/serialP.h> /* serial_state */
#include <linux/slab.h> /* kmalloc */
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/serial.h>
#include <asm/m32r.h>
extern struct console console_for_debug;
static int psio_write(struct tty_struct *tty, int from_user,
const unsigned char *buf, int count);
static int psio_write_room(struct tty_struct *tty);
static int psio_chars_in_buffer(struct tty_struct *tty);
static void dbg_console_write(struct console *, const char *, unsigned);
static kdev_t dbg_console_device(struct console *c);
//static void psio_interrupt_single(int, void *, struct pt_regs *);
void psio_interrupt_single(int, void *, struct pt_regs *);
static void psio_receive_chars(struct async_struct *, int *);
static void psio_wait_until_sent(struct tty_struct *, int);
static void change_speed(struct async_struct *,struct termios *);
static void autoconfig(struct serial_state *);
static unsigned detect_uart_irq (struct serial_state *);
static struct tty_driver psio_driver;
static int psio_refcount;
#define RS_STROBE_TIME (10*HZ)
#define RS_ISR_PASS_LIMIT 256
/* number of characters left in xmit buffer before we ask for more */
#define WAKEUP_CHARS 256
static struct async_struct *IRQ_ports[NR_IRQS];
static int IRQ_timeout[NR_IRQS];
#ifdef CONFIG_SERIAL_CONSOLE
static struct console cons;
static int lsr_break_flag;
#endif
#define BAUDRATE 115200 /* Set Baudrate */
/*
* Here we define the default xmit fifo size used for each type of
* UART
*/
static struct serial_uart_config uart_config[] = {
{ "unknown", 1, 0 },
{ "8250", 1, 0 },
{ "16450", 1, 0 },
{ "16550", 1, 0 },
{ "16550A", 16, UART_CLEAR_FIFO | UART_USE_FIFO },
{ "cirrus", 1, 0 }, /* usurped by cyclades.c */
{ "ST16650", 1, UART_CLEAR_FIFO | UART_STARTECH },
{ "ST16650V2", 32, UART_CLEAR_FIFO | UART_USE_FIFO |
UART_STARTECH },
{ "TI16750", 64, UART_CLEAR_FIFO | UART_USE_FIFO},
{ "Startech", 1, 0}, /* usurped by cyclades.c */
{ "16C950/954", 128, UART_CLEAR_FIFO | UART_USE_FIFO},
{ "ST16654", 64, UART_CLEAR_FIFO | UART_USE_FIFO |
UART_STARTECH },
{ "XR16850", 128, UART_CLEAR_FIFO | UART_USE_FIFO |
UART_STARTECH },
{ "RSA", 2048, UART_CLEAR_FIFO | UART_USE_FIFO },
{ "m32102", 1, 0 },
{ 0, 0}
};
static struct serial_state rs_table[RS_TABLE_SIZE] = {
/* UART CLK PORT IRQ FLAGS */
{ 0, BAUDRATE, ((int)PLD_ESIO0CR + NONCACHE_OFFSET), PLD_IRQ_SIO0_RCV, STD_COM_FLAGS },
};
#define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state))
#define HIGH_BITS_OFFSET ((sizeof(long)-sizeof(int))*8)
static DECLARE_TASK_QUEUE(tq_psio_serial);
static struct tty_struct *psio_table[NR_PORTS];
static struct termios *psio_termios[NR_PORTS];
static struct termios *psio_termios_locked[NR_PORTS];
#if defined(MODULE) && defined(SERIAL_DEBUG_MCOUNT)
#define DBG_CNT(s) printk("(%s): [%x] refc=%d, serc=%d, ttyc=%d -> %s\n", \
kdevname(tty->device), (info->flags), serial_refcount,info->count,tty->count,s
)
#else
#define DBG_CNT(s)
#endif
static struct timer_list serial_timer;
static unsigned char *tmp_buf;
#ifdef DECLARE_MUTEX
static DECLARE_MUTEX(tmp_buf_sem);
#else
static struct semaphore tmp_buf_sem = MUTEX;
#endif
static int dbg_console_setup(struct console *console, char *options);
#undef SIO0CR
#undef SIO0MOD0
#undef SIO0MOD1
#undef SIO0STS
#undef SIO0IMASK
#undef SIO0BAUR
#undef SIO0TXB
#undef SIO0RXB
#define SIO0CR PLD_ESIO0CR
#define SIO0MOD0 PLD_ESIO0MOD0
#define SIO0MOD1 PLD_ESIO0MOD1
#define SIO0STS PLD_ESIO0STS
#define SIO0IMASK PLD_ESIO0INTCR
#define SIO0BAUR PLD_ESIO0BAUR
#define SIO0TXB PLD_ESIO0TXB
#define SIO0RXB PLD_ESIO0RXB
#define SIO_IMASK_TEMPIE (1UL<<1) /* b14: enable */
#define SIO_IMASK_RXCEN (1UL<<2) /* b13: enable */
#define SIO_IMASK_REIE (0UL)
#define SIO_SIO0STS_TEMP (1UL<<0) /* Transmitter Register Empty */
#define SIO_SIO0STS_TXCP (1UL<<1)
#define SIO_SIO0STS_RXCP (1UL<<2)
#define SIO_SIO0STS_OERR (0UL)
#define SIO_SIO0STS_PERR (0UL)
#define SIO_SIO0STS_FERR (0UL)
#define SIO_SIO0MOD0_CTSS (1UL<<6)
#define SIO_SIO0MOD0_RTSS (1UL<<7)
#define SIO_NONE (0UL)
#define UART_TX ((unsigned char *)SIO0TXB - (unsigned char *)SIO0CR)
#define UART_RX ((unsigned char *)SIO0RXB - (unsigned char *)SIO0CR)
#define UART_IER ((unsigned char *)SIO0IMASK - (unsigned char *)SIO0CR)
#define UART_IER_THRI SIO_IMASK_TEMPIE
#define UART_IER_MSI SIO_NONE
#define UART_IER_RLSI SIO_IMASK_RXCEN
#define UART_IER_RDI SIO_IMASK_REIE
#define UART_LSR ((unsigned char *)SIO0STS - (unsigned char *)SIO0CR)
#define UART_LSR_DR SIO_SIO0STS_RXCP
#define UART_LSR_THRE SIO_SIO0STS_TEMP
#define UART_LSR_TEMT SIO_SIO0STS_TXCP
#define UART_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
#define UART_LSR_BI SIO_NONE
#define UART_LSR_PE SIO_SIO0STS_PERR
#define UART_LSR_FE SIO_SIO0STS_FERR
#define UART_LSR_OE SIO_SIO0STS_OERR
#define UART_IIR ((unsigned char *)SIO0STS - (unsigned char *)SIO0CR)
#define UART_LCR ((unsigned char *)SIO0CR - (unsigned char *)SIO0CR)
#define UART_LCR_SBC SIO_NONE
#define UART_LCR_PARITY SIO_NONE
#define UART_LCR_EPAR SIO_NONE
#define UART_LCR_SPAR SIO_NONE
#define UART_MCR ((unsigned char *)SIO0MOD0 - (unsigned char *)SIO0CR)
#define UART_MCR_RTS SIO_SIO0MOD0_RTSS
#define UART_MCR_DTR SIO_NONE /* SIO_SIO0MOD0_CTSS */
#define UART_MCR_LOOP SIO_NONE
#define UART_MCR_OUT1 SIO_NONE
#define UART_MCR_OUT2 SIO_NONE
#define UART_MSR ((unsigned char *)SIO0MOD0 - (unsigned char *)SIO0CR)
#define UART_MSR_DCD SIO_NONE
#define UART_MSR_RI SIO_NONE
#define UART_MSR_DSR SIO_NONE
#define UART_MSR_CTS SIO_NONE
#define UART_BAUR ((unsigned char *)SIO0BAUR - (unsigned char *)SIO0CR)
#define UART_MOD0 ((unsigned char *)SIO0MOD0 - (unsigned char *)SIO0CR)
#define UART_MOD1 ((unsigned char *)SIO0MOD1 - (unsigned char *)SIO0CR)
static inline unsigned int psio_in(struct async_struct *info,int offset)
{
return *(volatile unsigned short *)(info->port + offset);
}
static inline void psio_out(struct async_struct *info,int offset,int value)
{
*(volatile unsigned short *)(info->port + offset) = value;
}
#define serial_in(info, offset) psio_in(info,(int)offset)
#define serial_out(info, offset, value) psio_out(info,(int)offset, value)
#define serial_inp(info, offset) psio_in(info,(int)offset)
#define serial_outp(info, offset, value) psio_out(info,(int)offset, value)
static inline int serial_paranoia_check(struct async_struct *info,
kdev_t device, const char *routine)
{
#ifdef SERIAL_PARANOIA_CHECK
static const char *badmagic =
"Warning: bad magic number for serial struct (%s) in %s\n";
static const char *badinfo =
"Warning: null async_struct for (%s) in %s\n";
if (!info) {
printk(badinfo, kdevname(device), routine);
return 1;
}
if (info->magic != SERIAL_MAGIC) {
printk(badmagic, kdevname(device), routine);
return 1;
}
#endif
return 0;
}
/*
* ------------------------------------------------------------
* psio_stop() and psio_start()
*
* This routines are called before setting or resetting tty->stopped.
* They enable or disable transmitter interrupts, as necessary.
* ------------------------------------------------------------
*/
static void psio_stop(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "psio_stop"))
return;
save_flags(flags); cli();
if (info->IER & UART_IER_THRI) {
info->IER &= ~UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
restore_flags(flags);
}
static void psio_start(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "psio_start"))
return;
save_flags(flags); cli();
if (info->xmit.head != info->xmit.tail
&& info->xmit.buf
&& !(info->IER & UART_IER_THRI)) {
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
serial_out(info, UART_TX, info->xmit.buf[info->xmit.tail]);
info->xmit.tail = (info->xmit.tail + 1) & (SERIAL_XMIT_SIZE-1);
info->state->icount.tx++;
}
restore_flags(flags);
}
/*
* This routine is used by the interrupt handler to schedule
* processing in the software interrupt portion of the driver.
*/
static inline void psio_sched_event(struct async_struct *info,int event)
{
info->event |= 1 << event;
queue_task(&info->tqueue, &tq_psio_serial);
mark_bh(SERIAL_BH);
}
static inline void psio_receive_chars(struct async_struct *info,int *status)
{
struct tty_struct *tty = info->tty;
unsigned char ch;
struct async_icount *icount;
int max_count = 256;
icount = &info->state->icount;
do {
if (tty->flip.count >= TTY_FLIPBUF_SIZE) {
tty->flip.tqueue.routine((void *) tty);
if (tty->flip.count >= TTY_FLIPBUF_SIZE)
return; // if TTY_DONT_FLIP is set
}
ch = serial_inp(info, UART_RX);
*tty->flip.char_buf_ptr = ch;
icount->rx++;
#ifdef SERIAL_DEBUG_INTR
printk("DR%02x:%02x...", ch, *status);
#endif
*tty->flip.flag_buf_ptr = 0;
if (*status & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE)) {
/*
* For statistics only
*/
if (*status & UART_LSR_BI) {
*status &= ~(UART_LSR_FE | UART_LSR_PE);
icount->brk++;
/*
* We do the SysRQ and SAK checking
* here because otherwise the break
* may get masked by ignore_status_mask
* or read_status_mask.
*/
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
if (info->line == cons.index) {
if (!break_pressed) {
break_pressed = jiffies;
goto ignore_char;
}
break_pressed = 0;
}
#endif
if (info->flags & ASYNC_SAK)
do_SAK(tty);
} else if (*status & UART_LSR_PE)
icount->parity++;
else if (*status & UART_LSR_FE)
icount->frame++;
if (*status & UART_LSR_OE)
icount->overrun++;
/*
* Mask off conditions which should be ignored.
*/
*status &= info->read_status_mask;
#ifdef CONFIG_SERIAL_CONSOLE
if (info->line == cons.index) {
/* Recover the break flag from console xmit */
*status |= lsr_break_flag;
lsr_break_flag = 0;
}
#endif
if (*status & (UART_LSR_BI)) {
#ifdef SERIAL_DEBUG_INTR
printk("handling break....");
#endif
*tty->flip.flag_buf_ptr = TTY_BREAK;
} else if (*status & UART_LSR_PE)
*tty->flip.flag_buf_ptr = TTY_PARITY;
else if (*status & UART_LSR_FE)
*tty->flip.flag_buf_ptr = TTY_FRAME;
}
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
if (break_pressed && info->line == cons.index) {
if (ch != 0 &&
time_before(jiffies, break_pressed + HZ*5)) {
handle_sysrq(ch, regs, NULL, NULL);
break_pressed = 0;
goto ignore_char;
}
break_pressed = 0;
}
#endif
if ((*status & info->ignore_status_mask) == 0) {
tty->flip.flag_buf_ptr++;
tty->flip.char_buf_ptr++;
tty->flip.count++;
}
#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
ignore_char:
#endif
*status = serial_inp(info, UART_LSR);
} while ((*status & UART_LSR_DR) && (max_count-- > 0));
#if (LINUX_VERSION_CODE > 131394) /* 2.1.66 */
tty_flip_buffer_push(tty);
#else
queue_task_irq_off(&tty->flip.tqueue, &tq_timer);
#endif
}
static void transmit_chars(struct async_struct *info, int *intr_done)
{
int count;
if (info->x_char) {
// for M32102 serial
// serial_outp(info, UART_TX, info->x_char);
info->state->icount.tx++;
info->x_char = 0;
if (intr_done)
*intr_done = 0;
while((serial_in(info,UART_LSR) & UART_LSR_TEMT) == 0);
return;
}
if (info->xmit.head == info->xmit.tail
|| info->tty->stopped
|| info->tty->hw_stopped) {
info->IER &= ~UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
return;
}
count = info->xmit_fifo_size;
count = SERIAL_XMIT_SIZE-1;
do {
serial_out(info, UART_TX, info->xmit.buf[info->xmit.tail]);
info->xmit.tail = (info->xmit.tail + 1) & (SERIAL_XMIT_SIZE-1);
info->state->icount.tx++;
if (info->xmit.head == info->xmit.tail)
break;
while((serial_in(info,UART_LSR) & UART_LSR_THRE) == 0);
} while (--count > 0);
while((serial_in(info,UART_LSR) & UART_LSR_TEMT) == 0);
if (CIRC_CNT(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE) < WAKEUP_CHARS)
psio_sched_event(info, RS_EVENT_WRITE_WAKEUP);
#ifdef SERIAL_DEBUG_INTR
printk("THRE...");
#endif
if (intr_done)
*intr_done = 0;
if (info->xmit.head == info->xmit.tail) {
info->IER &= ~UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
}
}
/*
#ifdef CONFIG_SERIAL_SHARE_IRQ
static void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs)
#endif
*/
static void sio_reset(struct async_struct *info)
{
unsigned int dummy;
/* reset sio */
/* read receive buffer */
dummy = serial_inp(info, UART_RX);
dummy = serial_inp(info, UART_RX);
dummy = serial_inp(info, UART_LSR);
serial_outp(info, UART_LCR, 0x0300); /* RSCLR:1, TSCLR:1 */
serial_outp(info, UART_LCR, 0x0003); /* RSEN:1, TXEN:1 */
}
static void sio_error(struct async_struct *info,int status)
{
unsigned int dummy;
/* reset sio */
printk("sio[%d] error[%04x]\n", info->line,status);
/* read receive buffer */
dummy = serial_inp(info, UART_RX);
dummy = serial_inp(info, UART_RX);
dummy = serial_inp(info, UART_LSR);
serial_outp(info, UART_LCR, 0x0300); /* RSCLR:1, TSCLR:1 */
serial_outp(info, UART_LCR, 0x0003); /* RSEN:1, TXEN:1 */
}
//static void psio_interrupt_single(int irq, void *dev_id, struct pt_regs * regs)
void psio_interrupt_single(int irq, void *dev_id, struct pt_regs * regs)
{
int status;
// int pass_counter = 0;
struct async_struct * info;
#ifdef CONFIG_SERIAL_MULTIPORT
int first_multi = 0;
struct rs_multiport_struct *multi;
#endif
#ifdef SERIAL_DEBUG_INTR
printk("psio_interrupt_single(%d)...", irq);
#endif
info = IRQ_ports[irq&(~1)];
if (!info || !info->tty)
return;
#ifdef CONFIG_SERIAL_MULTIPORT
multi = &rs_multiport[irq];
if (multi->port_monitor)
first_multi = inb(multi->port_monitor);
#endif
{
status = serial_inp(info, UART_LSR);
#ifdef SERIAL_DEBUG_INTR
printk("status = %x...", status);
#endif
if (status & UART_LSR_DR){
psio_receive_chars(info, &status);
}
if ((serial_in(info,UART_LSR) & UART_EMPTY) != UART_EMPTY)
sio_error(info, status);
if (status & UART_LSR_THRE)
transmit_chars(info, 0);
#ifdef SERIAL_DEBUG_INTR
printk("IIR = %x...", serial_in(info, UART_IIR));
#endif
}
info->last_active = jiffies;
#ifdef CONFIG_SERIAL_MULTIPORT
if (multi->port_monitor)
printk("rs port monitor (single) irq %d: 0x%x, 0x%x\n",
info->state->irq, first_multi,
inb(multi->port_monitor));
#endif
#ifdef SERIAL_DEBUG_INTR
printk("end.\n");
#endif
}
#ifdef CONFIG_SERIAL_MULTIPORT
static void rs_interrupt_multi(int irq, void *dev_id, struct pt_regs * regs)
{}
#endif
static void do_psio_serial_bh(void)
{
run_task_queue(&tq_psio_serial);
}
static void do_softint(void *private_)
{
struct async_struct *info = (struct async_struct *) private_;
struct tty_struct *tty;
tty = info->tty;
if (!tty)
return;
if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) {
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
tty->ldisc.write_wakeup)
(tty->ldisc.write_wakeup)(tty);
wake_up_interruptible(&tty->write_wait);
#ifdef SERIAL_HAVE_POLL_WAIT
wake_up_interruptible(&tty->poll_wait);
#endif
}
}
static void psio_timer(void)
{
static unsigned long last_strobe = 0;
struct async_struct *info;
unsigned int i;
unsigned long flags;
if ((jiffies - last_strobe) >= RS_STROBE_TIME) {
for (i=0; i < NR_IRQS; i++) {
info = IRQ_ports[i];
if (!info)
continue;
save_flags(flags); cli();
psio_interrupt_single(i, NULL, NULL);
restore_flags(flags);
}
}
last_strobe = jiffies;
#if 1
mod_timer(&serial_timer, jiffies + 10);
#else
mod_timer(&serial_timer, jiffies + RS_STROBE_TIME);
#endif
if (IRQ_ports[0]) {
save_flags(flags); cli();
#ifdef CONFIG_SERIAL_SHARE_IRQ
psio_interrupt(0, NULL, NULL);
#else
psio_interrupt_single(0, NULL, NULL);
#endif
restore_flags(flags);
mod_timer(&serial_timer, jiffies + IRQ_timeout[0]);
}
}
/*
* ---------------------------------------------------------------
* Low level utility subroutines for the serial driver: routines to
* figure out the appropriate timeout for an interrupt chain, routines
* to initialize and startup a serial port, and routines to shutdown a
* serial port. Useful stuff like that.
* ---------------------------------------------------------------
*/
/*
* This routine figures out the correct timeout for a particular IRQ.
* It uses the smallest timeout of all of the serial ports in a
* particular interrupt chain. Now only used for IRQ 0....
*/
static void figure_IRQ_timeout(int irq)
{
struct async_struct *info;
int timeout = 60*HZ; /* 60 seconds === a long time :-) */
info = IRQ_ports[irq];
if (!info) {
IRQ_timeout[irq] = 60*HZ;
return;
}
while (info) {
if (info->timeout < timeout)
timeout = info->timeout;
info = info->next_port;
}
if (!irq)
timeout = timeout / 2;
IRQ_timeout[irq] = timeout ? timeout : 1;
}
#ifdef CONFIG_SERIAL_RSA
/* Attempts to turn on the RSA FIFO. Returns zero on failure */
static int enable_rsa(struct async_struct *info) {}
/* Attempts to turn off the RSA FIFO. Returns zero on failure */
static int disable_rsa(struct async_struct *info) { }
#endif /* CONFIG_SERIAL_RSA */
static int startup(struct async_struct * info)
{
unsigned long flags;
int retval=0;
void (*handler)(int, void *, struct pt_regs *);
struct serial_state *state= info->state;
unsigned long page;
#ifdef CONFIG_SERIAL_MANY_PORTS
unsigned short ICP;
#endif
page = get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
save_flags(flags); cli();
if (info->flags & ASYNC_INITIALIZED) {
free_page(page);
goto errout;
}
if (info->xmit.buf)
free_page(page);
else
info->xmit.buf = (unsigned char *) page;
#ifdef SERIAL_DEBUG_OPEN
printk("starting up ttyD%d (irq %d)...", info->line, state->irq);
#endif
/*
* Clear the FIFO buffers and disable them
* (they will be reenabled in change_speed())
*/
/*
* Clear the interrupt registers.
*/
sio_reset(info);
/*
* Allocate the IRQ if necessary
*/
if (state->irq && (!IRQ_ports[state->irq] ||
!IRQ_ports[state->irq]->next_port)) {
if (IRQ_ports[state->irq]) {
#ifdef CONFIG_SERIAL_SHARE_IRQ
free_irq(state->irq, &IRQ_ports[state->irq]);
free_irq(state->irq+1, &IRQ_ports[state->irq]);
#ifdef CONFIG_SERIAL_MULTIPORT
if (rs_multiport[state->irq].port1)
handler = rs_interrupt_multi;
else
#endif
handler = psio_interrupt;
#else
retval = -EBUSY;
goto errout;
#endif /* CONFIG_SERIAL_SHARE_IRQ */
} else
handler = psio_interrupt_single;
/* 020116 */
retval = request_irq(state->irq, handler, SA_SHIRQ,
"serial_rx", &IRQ_ports[state->irq]);
retval = request_irq(state->irq+1, handler, SA_SHIRQ,
"serial_tx", &IRQ_ports[state->irq]);
if (retval) {
if (capable(CAP_SYS_ADMIN)) {
if (info->tty)
set_bit(TTY_IO_ERROR,
&info->tty->flags);
retval = 0;
}
goto errout;
}
}
/*
* Insert serial port into IRQ chain.
*/
info->prev_port = 0;
info->next_port = IRQ_ports[state->irq];
if (info->next_port)
info->next_port->prev_port = info;
IRQ_ports[state->irq] = info;
figure_IRQ_timeout(state->irq);
/*
* Now, initialize the UART
*/
/* for m32r @020113 */
sio_reset(info);
info->MCR = 0;
if (info->tty->termios->c_cflag & CBAUD)
info->MCR = UART_MCR_DTR | UART_MCR_RTS;
#ifdef CONFIG_SERIAL_MANY_PORTS
if (info->flags & ASYNC_FOURPORT) {
if (state->irq == 0)
info->MCR |= UART_MCR_OUT1;
} else
#endif
{
if (state->irq != 0)
info->MCR |= UART_MCR_OUT2;
}
info->MCR |= ALPHA_KLUDGE_MCR; /* Don't ask */
serial_outp(info, UART_MCR, info->MCR);
/*
* Finally, enable interrupts
*/
info->IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI;
serial_outp(info, UART_IER, info->IER); /* enable interrupts */
#ifdef CONFIG_SERIAL_MANY_PORTS
if (info->flags & ASYNC_FOURPORT) {
/* Enable interrupts on the AST Fourport board */
ICP = (info->port & 0xFE0) | 0x01F;
outb_p(0x80, ICP);
(void) inb_p(ICP);
}
#endif
/*
* And clear the interrupt registers again for luck.
*/
(void)serial_inp(info, UART_LSR);
(void)serial_inp(info, UART_RX);
(void)serial_inp(info, UART_IIR);
(void)serial_inp(info, UART_MSR);
if (info->tty)
clear_bit(TTY_IO_ERROR, &info->tty->flags);
info->xmit.head = info->xmit.tail = 0;
/*
* Set up serial timers...
*/
mod_timer(&serial_timer, jiffies + 2*HZ/100);
/*
* Set up the tty->alt_speed kludge
*/
#if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */
if (info->tty) {
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
info->tty->alt_speed = 57600;
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
info->tty->alt_speed = 115200;
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
info->tty->alt_speed = 230400;
if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
info->tty->alt_speed = 460800;
}
#endif
/*
* and set the speed of the serial port
*/
change_speed(info, 0);
info->flags |= ASYNC_INITIALIZED;
restore_flags(flags);
return 0;
errout:
restore_flags(flags);
return retval;
}
/*
* This routine will shutdown a serial port; interrupts are disabled, and
* DTR is dropped if the hangup on close termio flag is on.
*/
static void shutdown(struct async_struct * info)
{
unsigned long flags;
struct serial_state *state;
int retval;
if (!(info->flags & ASYNC_INITIALIZED))
return;
state = info->state;
#ifdef SERIAL_DEBUG_OPEN
printk("Shutting down serial port %d (irq %d)....", info->line,
state->irq);
#endif
save_flags(flags); cli(); /* Disable interrupts */
/*
* clear delta_msr_wait queue to avoid mem leaks: we may free the irq
* here so the queue might never be waken up
*/
wake_up_interruptible(&info->delta_msr_wait);
/*
* First unlink the serial port from the IRQ chain...
*/
if (info->next_port)
info->next_port->prev_port = info->prev_port;
if (info->prev_port)
info->prev_port->next_port = info->next_port;
else
IRQ_ports[state->irq] = info->next_port;
figure_IRQ_timeout(state->irq);
/*
* Free the IRQ, if necessary
*/
if (state->irq && (!IRQ_ports[state->irq] ||
!IRQ_ports[state->irq]->next_port)) {
if (IRQ_ports[state->irq]) {
/* 020116 */
free_irq(state->irq+1, &IRQ_ports[state->irq]);
retval = request_irq(state->irq+1, psio_interrupt_single,
SA_SHIRQ, "serial_xx",
&IRQ_ports[state->irq]);
free_irq(state->irq, &IRQ_ports[state->irq]);
retval = request_irq(state->irq, psio_interrupt_single,
SA_SHIRQ, "serial",
&IRQ_ports[state->irq]);
if (retval)
printk("serial shutdown: request_irq: error %d"
" Couldn't reacquire IRQ.\n", retval);
} else{
free_irq(state->irq, &IRQ_ports[state->irq]);
/* 020116 */
free_irq(state->irq+1, &IRQ_ports[state->irq]);
}
}
if (info->xmit.buf) {
unsigned long pg = (unsigned long) info->xmit.buf;
info->xmit.buf = 0;
free_page(pg);
}
info->IER = 0;
serial_outp(info, UART_IER, 0x00); /* disable all intrs */
#ifdef CONFIG_SERIAL_MANY_PORTS
if (info->flags & ASYNC_FOURPORT) {
/* reset interrupts on the AST Fourport board */
(void) inb((info->port & 0xFE0) | 0x01F);
info->MCR |= UART_MCR_OUT1;
} else
#endif
if (!info->tty || (info->tty->termios->c_cflag & HUPCL))
info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS);
serial_outp(info, UART_MCR, info->MCR);
#ifdef CONFIG_SERIAL_RSA
/*
* Reset the RSA board back to 115kbps compat mode.
*/
if ((state->type == PORT_RSA) &&
(state->baud_base == SERIAL_RSA_BAUD_BASE &&
disable_rsa(info)))
state->baud_base = SERIAL_RSA_BAUD_BASE_LO;
#endif
(void)serial_in(info, UART_RX); /* read data port to reset things */
if (info->tty)
set_bit(TTY_IO_ERROR, &info->tty->flags);
sio_reset(info);
info->flags &= ~ASYNC_INITIALIZED;
restore_flags(flags);
}
static void change_speed(struct async_struct *info,struct termios *old_termios)
{
int quot = 0, baud_base, baud;
unsigned cflag, cval = 0;
int bits;
unsigned long flags;
unsigned mod0, mod1;
if (!info->tty || !info->tty->termios)
return;
cflag = info->tty->termios->c_cflag;
if (!CONFIGURED_SERIAL_PORT(info))
return;
/* byte size and parity */
switch (cflag & CSIZE) {
case CS5: mod1 = 0x05; bits = 7; break;
case CS6: mod1 = 0x06; bits = 8; break;
case CS7: mod1 = 0x07; bits = 9; break;
case CS8: mod1 = 0x08; bits = 10; break;
/* Never happens, but GCC is too dumb to figure it out */
default: mod1 = 0x05; bits = 7; break;
}
mod1 <<= 8;
mod0 = 0;
if (cflag & CSTOPB) {
mod0 |= 0x03;
bits++;
}
if (cflag & PARENB) {
mod0 |= 0x10;
bits++;
}
if (!(cflag & PARODD)) {
mod0 |= 0x4;
}
mod0 = 0x80; /* Use RTS# output only */
serial_outp(info, UART_MOD0, mod0); /* */
//serial_outp(info, UART_MOD1, mod1);
//mod1 = 0;
info->LCR = mod1; /* Save LCR */
/* Determine divisor based on baud rate */
baud = tty_get_baud_rate(info->tty);
if (!baud)
baud = 9600; /* B0 transition handled in rs_set_termios */
#ifdef CONFIG_SERIAL_RSA
if ((info->state->type == PORT_RSA) &&
(info->state->baud_base != SERIAL_RSA_BAUD_BASE) &&
enable_rsa(info))
info->state->baud_base = SERIAL_RSA_BAUD_BASE;
#endif
baud_base = info->state->baud_base;
if (baud == 38400 &&
((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST))
quot = info->state->custom_divisor;
else {
if (baud == 134)
/* Special case since 134 is really 134.5 */
quot = (2*baud_base / 269);
else if (baud)
quot = baud_base / baud;
}
/* If the quotient is zero refuse the change */
if (!quot && old_termios) {
info->tty->termios->c_cflag &= ~CBAUD;
info->tty->termios->c_cflag |= (old_termios->c_cflag & CBAUD);
baud = tty_get_baud_rate(info->tty);
if (!baud)
baud = 9600;
if (baud == 38400 &&
((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST))
quot = info->state->custom_divisor;
else {
if (baud == 134)
/* Special case since 134 is really 134.5 */
quot = (2*baud_base / 269);
else if (baud)
quot = baud_base / baud ;
}
}
quot = baud_base / (baud*4) ;
/* As a last resort, if the quotient is zero, default to 9600 bps */
if (!quot)
quot = baud_base / 9600;
/*
* Work around a bug in the Oxford Semiconductor 952 rev B
* chip which causes it to seriously miscalculate baud rates
* when DLL is 0.
*/
if (((quot & 0xFF) == 0) && (info->state->type == PORT_16C950) &&
(info->state->revision == 0x5201))
quot++;
info->quot = quot;
info->timeout = ((info->xmit_fifo_size*HZ*bits*quot) / baud_base);
info->timeout += HZ/50; /* Add .02 seconds of slop */
/* CTS flow control flag and modem status interrupts */
info->IER &= ~UART_IER_MSI;
if (info->flags & ASYNC_HARDPPS_CD)
info->IER |= UART_IER_MSI;
if (cflag & CRTSCTS) {
info->flags |= ASYNC_CTS_FLOW;
info->IER |= UART_IER_MSI;
} else
info->flags &= ~ASYNC_CTS_FLOW;
if (cflag & CLOCAL)
info->flags &= ~ASYNC_CHECK_CD;
else {
info->flags |= ASYNC_CHECK_CD;
info->IER |= UART_IER_MSI;
}
serial_out(info, UART_IER, info->IER);
/*
* Set up parity check flag
*/
#define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
info->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
if (I_INPCK(info->tty))
info->read_status_mask |= UART_LSR_FE | UART_LSR_PE;
if (I_BRKINT(info->tty) || I_PARMRK(info->tty))
info->read_status_mask |= UART_LSR_BI;
/*
* Characters to ignore
*/
info->ignore_status_mask = 0;
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
if (I_IGNBRK(info->tty)) {
info->ignore_status_mask |= UART_LSR_BI;
/*
* If we're ignore parity and break indicators, ignore
* overruns too. (For real raw support).
*/
if (I_IGNPAR(info->tty))
info->ignore_status_mask |= UART_LSR_OE;
}
/*
* !!! ignore all characters if CREAD is not set
*/
if ((cflag & CREAD) == 0)
info->ignore_status_mask |= UART_LSR_DR;
cval = (baud_base / (baud * 4)) - 1;
save_flags(flags); cli();
serial_outp(info, UART_BAUR, cval ); /* set baurate reg */
serial_outp(info, UART_LCR, 0x03);
restore_flags(flags);
}
static void psio_put_char(struct tty_struct *tty, unsigned char ch)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "psio_put_char"))
return;
if (!tty || !info->xmit.buf)
return;
save_flags(flags); cli();
if (CIRC_SPACE(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE) == 0) {
restore_flags(flags);
return;
}
info->xmit.buf[info->xmit.head] = ch;
info->xmit.head = (info->xmit.head + 1) & (SERIAL_XMIT_SIZE-1);
restore_flags(flags);
}
static void psio_flush_chars(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "psio_flush_chars"))
return;
if (info->xmit.head == info->xmit.tail
|| tty->stopped
|| tty->hw_stopped
|| !info->xmit.buf)
return;
save_flags(flags); cli();
if (!(info->IER & UART_IER_THRI)) {
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
serial_out(info, UART_TX, info->xmit.buf[info->xmit.tail]);
info->xmit.tail = (info->xmit.tail + 1) & (SERIAL_XMIT_SIZE-1);
info->state->icount.tx++;
}
restore_flags(flags);
while((serial_in(info,UART_LSR) & UART_EMPTY) != UART_EMPTY);
}
static int psio_write(struct tty_struct *tty, int from_user,
const unsigned char *buf, int count)
{
int c, ret = 0;
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "psio_write"))
return 0;
if (!tty || !info->xmit.buf || !tmp_buf)
return 0;
save_flags(flags);
if (from_user) {
down(&tmp_buf_sem);
while (1) {
int c1;
c = CIRC_SPACE_TO_END(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE);
if (count < c)
c = count;
if (c <= 0)
break;
c -= copy_from_user(tmp_buf, buf, c);
if (!c) {
if (!ret)
ret = -EFAULT;
break;
}
cli();
c1 = CIRC_SPACE_TO_END(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE);
if (c1 < c)
c = c1;
memcpy(info->xmit.buf + info->xmit.head, tmp_buf, c);
info->xmit.head = ((info->xmit.head + c) &
(SERIAL_XMIT_SIZE-1));
restore_flags(flags);
buf += c;
count -= c;
ret += c;
}
up(&tmp_buf_sem);
} else {
cli();
while (1) {
c = CIRC_SPACE_TO_END(info->xmit.head,
info->xmit.tail,
SERIAL_XMIT_SIZE);
if (count < c)
c = count;
if (c <= 0) {
break;
}
memcpy(info->xmit.buf + info->xmit.head, buf, c);
info->xmit.head = ((info->xmit.head + c) &
(SERIAL_XMIT_SIZE-1));
buf += c;
count -= c;
ret += c;
}
restore_flags(flags);
}
save_flags(flags); cli();
if (info->xmit.head != info->xmit.tail
&& !tty->stopped
&& !tty->hw_stopped
&& !(info->IER & UART_IER_THRI)) {
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
serial_out(info, UART_TX, info->xmit.buf[info->xmit.tail]);
info->xmit.tail = (info->xmit.tail + 1) & (SERIAL_XMIT_SIZE-1);
info->state->icount.tx++;
}
restore_flags(flags);
while((serial_in(info,UART_LSR) & UART_EMPTY) != UART_EMPTY);
return ret;
}
static int psio_write_room(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "psio_write_room"))
return 0;
return CIRC_SPACE(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE);
}
static int psio_chars_in_buffer(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "psio_chars_in_buffer"))
return 0;
return CIRC_CNT(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE);
}
static void psio_flush_buffer(struct tty_struct *tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "psio_flush_buffer"))
return;
save_flags(flags); cli();
info->xmit.head = info->xmit.tail = 0;
restore_flags(flags);
wake_up_interruptible(&tty->write_wait);
#ifdef SERIAL_HAVE_POLL_WAIT
wake_up_interruptible(&tty->poll_wait);
#endif
if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
tty->ldisc.write_wakeup)
(tty->ldisc.write_wakeup)(tty);
}
/*
* This function is used to send a high-priority XON/XOFF character to
* the device
*/
static void psio_send_xchar(struct tty_struct *tty, char ch)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
if (serial_paranoia_check(info, tty->device, "psio_send_char"))
return;
info->x_char = ch;
if (ch) {
unsigned long flags;
save_flags(flags); cli();
if (!(info->IER & UART_IER_THRI)) {
info->IER |= UART_IER_THRI;
serial_out(info, UART_IER, info->IER);
serial_out(info, UART_TX, info->x_char);
}
restore_flags(flags);
}
}
/*
* ------------------------------------------------------------
* rs_throttle()
*
* This routine is called by the upper-layer tty layer to signal that
* incoming characters should be throttled.
* ------------------------------------------------------------
*/
static void psio_throttle(struct tty_struct * tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
#ifdef SERIAL_DEBUG_THROTTLE
char buf[64];
printk("throttle %s: %d....\n", tty_name(tty, buf),
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->device, "psio_throttle"))
return;
if (I_IXOFF(tty))
psio_send_xchar(tty, STOP_CHAR(tty));
if (tty->termios->c_cflag & CRTSCTS)
info->MCR &= ~UART_MCR_RTS;
save_flags(flags); cli();
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
}
static void psio_unthrottle(struct tty_struct * tty)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
#ifdef SERIAL_DEBUG_THROTTLE
char buf[64];
printk("unthrottle %s: %d....\n", tty_name(tty, buf),
tty->ldisc.chars_in_buffer(tty));
#endif
if (serial_paranoia_check(info, tty->device, "psio_unthrottle"))
return;
if (I_IXOFF(tty)) {
if (info->x_char) info->x_char = 0;
}
if (tty->termios->c_cflag & CRTSCTS)
info->MCR |= UART_MCR_RTS;
save_flags(flags); cli();
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
}
/*
* ------------------------------------------------------------
* rs_ioctl() and friends
* ------------------------------------------------------------
*/
static int get_serial_info(struct async_struct * info,
struct serial_struct * retinfo)
{
struct serial_struct tmp;
struct serial_state *state = info->state;
if (!retinfo)
return -EFAULT;
memset(&tmp, 0, sizeof(tmp));
tmp.type = state->type;
tmp.line = state->line;
tmp.port = state->port;
if (HIGH_BITS_OFFSET)
tmp.port_high = state->port >> HIGH_BITS_OFFSET;
else
tmp.port_high = 0;
tmp.irq = state->irq;
tmp.flags = state->flags;
tmp.xmit_fifo_size = state->xmit_fifo_size;
tmp.baud_base = state->baud_base;
tmp.close_delay = state->close_delay;
tmp.closing_wait = state->closing_wait;
tmp.custom_divisor = state->custom_divisor;
tmp.hub6 = state->hub6;
tmp.io_type = state->io_type;
if (copy_to_user(retinfo,&tmp,sizeof(*retinfo)))
return -EFAULT;
return 0;
}
static int set_serial_info(struct async_struct * info,
struct serial_struct * new_info)
{
struct serial_struct new_serial;
struct serial_state old_state, *state;
unsigned int i,change_irq,change_port;
int retval = 0;
unsigned long new_port;
if (copy_from_user(&new_serial,new_info,sizeof(new_serial)))
return -EFAULT;
state = info->state;
old_state = *state;
new_port = new_serial.port;
if (HIGH_BITS_OFFSET)
new_port += (unsigned long) new_serial.port_high << HIGH_BITS_OFFSET;
change_irq = new_serial.irq != state->irq;
change_port = (new_port != ((int) state->port)) ||
(new_serial.hub6 != state->hub6);
if (!capable(CAP_SYS_ADMIN)) {
if (change_irq || change_port ||
(new_serial.baud_base != state->baud_base) ||
(new_serial.type != state->type) ||
(new_serial.close_delay != state->close_delay) ||
(new_serial.xmit_fifo_size != state->xmit_fifo_size) ||
((new_serial.flags & ~ASYNC_USR_MASK) !=
(state->flags & ~ASYNC_USR_MASK)))
return -EPERM;
state->flags = ((state->flags & ~ASYNC_USR_MASK) |
(new_serial.flags & ASYNC_USR_MASK));
info->flags = ((info->flags & ~ASYNC_USR_MASK) |
(new_serial.flags & ASYNC_USR_MASK));
state->custom_divisor = new_serial.custom_divisor;
goto check_and_exit;
}
new_serial.irq = irq_cannonicalize(new_serial.irq);
if ((new_serial.irq >= NR_IRQS) || (new_serial.irq < 0) ||
(new_serial.baud_base < 9600)|| (new_serial.type < PORT_UNKNOWN) ||
(new_serial.type > PORT_MAX) || (new_serial.type == PORT_CIRRUS) ||
(new_serial.type == PORT_STARTECH)) {
return -EINVAL;
}
if ((new_serial.type != state->type) ||
(new_serial.xmit_fifo_size <= 0))
new_serial.xmit_fifo_size =
uart_config[new_serial.type].dfl_xmit_fifo_size;
/* Make sure address is not already in use */
if (new_serial.type) {
for (i = 0 ; i < NR_PORTS; i++)
if ((state != &rs_table[i]) &&
(rs_table[i].port == new_port) &&
rs_table[i].type)
return -EADDRINUSE;
}
if ((change_port || change_irq) && (state->count > 1))
return -EBUSY;
/*
* OK, past this point, all the error checking has been done.
* At this point, we start making changes.....
*/
state->baud_base = new_serial.baud_base;
state->flags = ((state->flags & ~ASYNC_FLAGS) |
(new_serial.flags & ASYNC_FLAGS));
info->flags = ((state->flags & ~ASYNC_INTERNAL_FLAGS) |
(info->flags & ASYNC_INTERNAL_FLAGS));
state->custom_divisor = new_serial.custom_divisor;
state->close_delay = new_serial.close_delay * HZ/100;
state->closing_wait = new_serial.closing_wait * HZ/100;
#if (LINUX_VERSION_CODE > 0x20100)
info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
#endif
info->xmit_fifo_size = state->xmit_fifo_size =
new_serial.xmit_fifo_size;
if ((state->type != PORT_UNKNOWN) && state->port) {
#ifdef CONFIG_SERIAL_RSA
if (old_state.type == PORT_RSA)
release_region(state->port + UART_RSA_BASE, 16);
else
#endif
release_region(state->port,8);
}
state->type = new_serial.type;
if (change_port || change_irq) {
/*
* We need to shutdown the serial port at the old
* port/irq combination.
*/
shutdown(info);
state->irq = new_serial.irq;
info->port = state->port = new_port;
info->hub6 = state->hub6 = new_serial.hub6;
if (info->hub6)
info->io_type = state->io_type = SERIAL_IO_HUB6;
else if (info->io_type == SERIAL_IO_HUB6)
info->io_type = state->io_type = SERIAL_IO_PORT;
}
if ((state->type != PORT_UNKNOWN) && state->port) {
#ifdef CONFIG_SERIAL_RSA
if (state->type == PORT_RSA)
request_region(state->port + UART_RSA_BASE,
16, "serial_rsa(set)");
else
#endif
request_region(state->port,8,"serial(set)");
}
check_and_exit:
if (!state->port || !state->type)
return 0;
if (info->flags & ASYNC_INITIALIZED) {
if (((old_state.flags & ASYNC_SPD_MASK) !=
(state->flags & ASYNC_SPD_MASK)) ||
(old_state.custom_divisor != state->custom_divisor)) {
#if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
info->tty->alt_speed = 57600;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
info->tty->alt_speed = 115200;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
info->tty->alt_speed = 230400;
if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
info->tty->alt_speed = 460800;
#endif
change_speed(info, 0);
}
} else
retval = startup(info);
return retval;
}
/*
* get_lsr_info - get line status register info
*
* Purpose: Let user call ioctl() to get info when the UART physically
* is emptied. On bus types like RS485, the transmitter must
* release the bus after transmitting. This must be done when
* the transmit shift register is empty, not be done when the
* transmit holding register is empty. This functionality
* allows an RS485 driver to be written in user space.
*/
static int get_lsr_info(struct async_struct * info, unsigned int *value)
{
unsigned char status;
unsigned int result;
unsigned long flags;
save_flags(flags); cli();
status = serial_in(info, UART_LSR);
restore_flags(flags);
result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0);
/*
* If we're about to load something into the transmit
* register, we'll pretend the transmitter isn't empty to
* avoid a race condition (depending on when the transmit
* interrupt happens).
*/
if (info->x_char ||
((CIRC_CNT(info->xmit.head, info->xmit.tail,
SERIAL_XMIT_SIZE) > 0) &&
!info->tty->stopped && !info->tty->hw_stopped))
result &= ~TIOCSER_TEMT;
if (copy_to_user(value, &result, sizeof(int)))
return -EFAULT;
return 0;
}
static int get_modem_info(struct async_struct * info, unsigned int *value)
{
unsigned char control, status;
unsigned int result;
unsigned long flags;
control = info->MCR;
save_flags(flags); cli();
status = serial_in(info, UART_MSR);
restore_flags(flags);
result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0)
| ((control & UART_MCR_DTR) ? TIOCM_DTR : 0)
#ifdef TIOCM_OUT1
| ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0)
| ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0)
#endif
| ((status & UART_MSR_DCD) ? TIOCM_CAR : 0)
| ((status & UART_MSR_RI) ? TIOCM_RNG : 0)
| ((status & UART_MSR_DSR) ? TIOCM_DSR : 0)
| ((status & UART_MSR_CTS) ? TIOCM_CTS : 0);
if (copy_to_user(value, &result, sizeof(int)))
return -EFAULT;
return 0;
}
static int set_modem_info(struct async_struct * info, unsigned int cmd,
unsigned int *value)
{
unsigned int arg;
unsigned long flags;
if (copy_from_user(&arg, value, sizeof(int)))
return -EFAULT;
switch (cmd) {
case TIOCMBIS:
if (arg & TIOCM_RTS)
info->MCR |= UART_MCR_RTS;
if (arg & TIOCM_DTR)
info->MCR |= UART_MCR_DTR;
#ifdef TIOCM_OUT1
if (arg & TIOCM_OUT1)
info->MCR |= UART_MCR_OUT1;
if (arg & TIOCM_OUT2)
info->MCR |= UART_MCR_OUT2;
#endif
if (arg & TIOCM_LOOP)
info->MCR |= UART_MCR_LOOP;
break;
case TIOCMBIC:
if (arg & TIOCM_RTS)
info->MCR &= ~UART_MCR_RTS;
if (arg & TIOCM_DTR)
info->MCR &= ~UART_MCR_DTR;
#ifdef TIOCM_OUT1
if (arg & TIOCM_OUT1)
info->MCR &= ~UART_MCR_OUT1;
if (arg & TIOCM_OUT2)
info->MCR &= ~UART_MCR_OUT2;
#endif
if (arg & TIOCM_LOOP)
info->MCR &= ~UART_MCR_LOOP;
break;
case TIOCMSET:
info->MCR = ((info->MCR & ~(UART_MCR_RTS |
#ifdef TIOCM_OUT1
UART_MCR_OUT1 |
UART_MCR_OUT2 |
#endif
UART_MCR_LOOP |
UART_MCR_DTR))
| ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0)
#ifdef TIOCM_OUT1
| ((arg & TIOCM_OUT1) ? UART_MCR_OUT1 : 0)
| ((arg & TIOCM_OUT2) ? UART_MCR_OUT2 : 0)
#endif
| ((arg & TIOCM_LOOP) ? UART_MCR_LOOP : 0)
| ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0));
break;
default:
return -EINVAL;
}
save_flags(flags); cli();
info->MCR |= ALPHA_KLUDGE_MCR; /* Don't ask */
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
return 0;
}
static int do_autoconfig(struct async_struct * info)
{
int irq, retval;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (info->state->count > 1)
return -EBUSY;
shutdown(info);
autoconfig(info->state);
if ((info->state->flags & ASYNC_AUTO_IRQ) &&
(info->state->port != 0 || info->state->iomem_base != 0) &&
(info->state->type != PORT_UNKNOWN)) {
irq = detect_uart_irq(info->state);
if (irq > 0)
info->state->irq = irq;
}
retval = startup(info);
if (retval)
return retval;
return 0;
}
/*
* rs_break() --- routine which turns the break handling on or off
*/
#if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */
static void send_break( struct async_struct * info, int duration)
{
if (!CONFIGURED_SERIAL_PORT(info))
return;
current->state = TASK_INTERRUPTIBLE;
current->timeout = jiffies + duration;
cli();
info->LCR |= UART_LCR_SBC;
serial_out(info, UART_LCR, 0x3);
schedule();
info->LCR &= ~UART_LCR_SBC;
serial_out(info, UART_LCR, 0x3);
sti();
}
#else
static void psio_break(struct tty_struct *tty, int break_state)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
unsigned long flags;
if (serial_paranoia_check(info, tty->device, "rs_break"))
return;
if (!CONFIGURED_SERIAL_PORT(info))
return;
save_flags(flags); cli();
if (break_state == -1)
info->LCR |= UART_LCR_SBC;
else
info->LCR &= ~UART_LCR_SBC;
restore_flags(flags);
}
#endif
#ifdef CONFIG_SERIAL_MULTIPORT
static int get_multiport_struct(struct async_struct * info,
struct serial_multiport_struct *retinfo)
{
struct serial_multiport_struct ret;
struct rs_multiport_struct *multi;
multi = &rs_multiport[info->state->irq];
ret.port_monitor = multi->port_monitor;
ret.port1 = multi->port1;
ret.mask1 = multi->mask1;
ret.match1 = multi->match1;
ret.port2 = multi->port2;
ret.mask2 = multi->mask2;
ret.match2 = multi->match2;
ret.port3 = multi->port3;
ret.mask3 = multi->mask3;
ret.match3 = multi->match3;
ret.port4 = multi->port4;
ret.mask4 = multi->mask4;
ret.match4 = multi->match4;
ret.irq = info->state->irq;
if (copy_to_user(retinfo,&ret,sizeof(*retinfo)))
return -EFAULT;
return 0;
}
static int set_multiport_struct(struct async_struct * info,
struct serial_multiport_struct *in_multi)
{
struct serial_multiport_struct new_multi;
struct rs_multiport_struct *multi;
struct serial_state *state;
int was_multi, now_multi;
int retval;
void (*handler)(int, void *, struct pt_regs *);
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
state = info->state;
if (copy_from_user(&new_multi, in_multi,
sizeof(struct serial_multiport_struct)))
return -EFAULT;
if (new_multi.irq != state->irq || state->irq == 0 ||
!IRQ_ports[state->irq])
return -EINVAL;
multi = &rs_multiport[state->irq];
was_multi = (multi->port1 != 0);
multi->port_monitor = new_multi.port_monitor;
if (multi->port1)
release_region(multi->port1,1);
multi->port1 = new_multi.port1;
multi->mask1 = new_multi.mask1;
multi->match1 = new_multi.match1;
if (multi->port1)
request_region(multi->port1,1,"serial(multiport1)");
if (multi->port2)
release_region(multi->port2,1);
multi->port2 = new_multi.port2;
multi->mask2 = new_multi.mask2;
multi->match2 = new_multi.match2;
if (multi->port2)
request_region(multi->port2,1,"serial(multiport2)");
if (multi->port3)
release_region(multi->port3,1);
multi->port3 = new_multi.port3;
multi->mask3 = new_multi.mask3;
multi->match3 = new_multi.match3;
if (multi->port3)
request_region(multi->port3,1,"serial(multiport3)");
if (multi->port4)
release_region(multi->port4,1);
multi->port4 = new_multi.port4;
multi->mask4 = new_multi.mask4;
multi->match4 = new_multi.match4;
if (multi->port4)
request_region(multi->port4,1,"serial(multiport4)");
now_multi = (multi->port1 != 0);
if (IRQ_ports[state->irq]->next_port &&
(was_multi != now_multi)) {
free_irq(state->irq, &IRQ_ports[state->irq]);
if (now_multi)
handler = rs_interrupt_multi;
else
handler = rs_interrupt;
retval = request_irq(state->irq, handler, SA_SHIRQ,
"serial", &IRQ_ports[state->irq]);
if (retval) {
printk("Couldn't reallocate serial interrupt "
"driver!!\n");
}
}
return 0;
}
#endif
static int psio_ioctl(struct tty_struct *tty, struct file * file,
unsigned int cmd, unsigned long arg)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct async_icount cprev, cnow; /* kernel counter temps */
struct serial_icounter_struct icount;
unsigned long flags;
#if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */
int retval, tmp;
#endif
if (serial_paranoia_check(info, tty->device, "rs_ioctl"))
return -ENODEV;
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT) &&
(cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
switch (cmd) {
#if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */
case TCSBRK: /* SVID version: non-zero arg --> no break */
retval = tty_check_change(tty);
if (retval)
return retval;
tty_wait_until_sent(tty, 0);
if (signal_pending(current))
return -EINTR;
if (!arg) {
send_break(info, HZ/4); /* 1/4 second */
if (signal_pending(current))
return -EINTR;
}
return 0;
case TCSBRKP: /* support for POSIX tcsendbreak() */
retval = tty_check_change(tty);
if (retval)
return retval;
tty_wait_until_sent(tty, 0);
if (signal_pending(current))
return -EINTR;
send_break(info, arg ? arg*(HZ/10) : HZ/4);
if (signal_pending(current))
return -EINTR;
return 0;
case TIOCGSOFTCAR:
tmp = C_CLOCAL(tty) ? 1 : 0;
if (copy_to_user((void *)arg, &tmp, sizeof(int)))
return -EFAULT;
return 0;
case TIOCSSOFTCAR:
if (copy_from_user(&tmp, (void *)arg, sizeof(int)))
return -EFAULT;
tty->termios->c_cflag =
((tty->termios->c_cflag & ~CLOCAL) |
(tmp ? CLOCAL : 0));
return 0;
#endif
case TIOCMGET:
return get_modem_info(info, (unsigned int *) arg);
case TIOCMBIS:
case TIOCMBIC:
case TIOCMSET:
return set_modem_info(info, cmd, (unsigned int *) arg);
case TIOCGSERIAL:
return get_serial_info(info,
(struct serial_struct *) arg);
case TIOCSSERIAL:
return set_serial_info(info,
(struct serial_struct *) arg);
case TIOCSERCONFIG:
return do_autoconfig(info);
case TIOCSERGETLSR: /* Get line status register */
return get_lsr_info(info, (unsigned int *) arg);
case TIOCSERGSTRUCT:
if (copy_to_user((struct async_struct *) arg,
info, sizeof(struct async_struct)))
return -EFAULT;
return 0;
#ifdef CONFIG_SERIAL_MULTIPORT
case TIOCSERGETMULTI:
return get_multiport_struct(info,
(struct serial_multiport_struct *) arg);
case TIOCSERSETMULTI:
return set_multiport_struct(info,
(struct serial_multiport_struct *) arg);
#endif
/*
* Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change
* - mask passed in arg for lines of interest
* (use |'ed TIOCM_RNG/DSR/CD/CTS for masking)
* Caller should use TIOCGICOUNT to see which one it was
*/
case TIOCMIWAIT:
save_flags(flags); cli();
/* note the counters on entry */
cprev = info->state->icount;
restore_flags(flags);
/* Force modem status interrupts on */
info->IER |= UART_IER_MSI;
serial_out(info, UART_IER, info->IER);
while (1) {
interruptible_sleep_on(&info->delta_msr_wait);
/* see if a signal did it */
if (signal_pending(current))
return -ERESTARTSYS;
save_flags(flags); cli();
cnow = info->state->icount; /* atomic copy */
restore_flags(flags);
if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
cnow.dcd == cprev.dcd && cnow.cts == cprev.cts)
return -EIO; /* no change => error */
if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) ||
((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) ||
((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) ||
((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) {
return 0;
}
cprev = cnow;
}
/* NOTREACHED */
/*
* Get counter of input serial line interrupts (DCD,RI,DSR,CTS)
* Return: write counters to the user passed counter struct
* NB: both 1->0 and 0->1 transitions are counted except for
* RI where only 0->1 is counted.
*/
case TIOCGICOUNT:
save_flags(flags); cli();
cnow = info->state->icount;
restore_flags(flags);
icount.cts = cnow.cts;
icount.dsr = cnow.dsr;
icount.rng = cnow.rng;
icount.dcd = cnow.dcd;
icount.rx = cnow.rx;
icount.tx = cnow.tx;
icount.frame = cnow.frame;
icount.overrun = cnow.overrun;
icount.parity = cnow.parity;
icount.brk = cnow.brk;
icount.buf_overrun = cnow.buf_overrun;
if (copy_to_user((void *)arg, &icount, sizeof(icount)))
return -EFAULT;
return 0;
case TIOCSERGWILD:
case TIOCSERSWILD:
/* "setserial -W" is called in Debian boot */
printk ("TIOCSER?WILD ioctl obsolete, ignored.\n");
return 0;
default:
return -ENOIOCTLCMD;
}
return 0;
}
static void psio_set_termios(struct tty_struct *tty, struct termios *old_termios)
{
struct async_struct *info = (struct async_struct *)tty->driver_data;
unsigned long flags;
unsigned int cflag = tty->termios->c_cflag;
if ( (cflag == old_termios->c_cflag)
&& ( RELEVANT_IFLAG(tty->termios->c_iflag)
== RELEVANT_IFLAG(old_termios->c_iflag)))
return;
change_speed(info, old_termios);
/* Handle transition to B0 status */
if ((old_termios->c_cflag & CBAUD) &&
!(cflag & CBAUD)) {
info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS);
save_flags(flags); cli();
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
}
/* Handle transition away from B0 status */
if (!(old_termios->c_cflag & CBAUD) &&
(cflag & CBAUD)) {
info->MCR |= UART_MCR_DTR;
if (!(tty->termios->c_cflag & CRTSCTS) ||
!test_bit(TTY_THROTTLED, &tty->flags)) {
info->MCR |= UART_MCR_RTS;
}
save_flags(flags); cli();
serial_out(info, UART_MCR, info->MCR);
restore_flags(flags);
}
/* Handle turning off CRTSCTS */
if ((old_termios->c_cflag & CRTSCTS) &&
!(tty->termios->c_cflag & CRTSCTS)) {
tty->hw_stopped = 0;
psio_start(tty);
}
}
/*
* -----------------------------------------------------------
* psio_close()
*
* This routine is called when the debug console port gets closed.
* First, we wait for the last remaining data to be sent. Then, we unlink
* its async structure from the interrupt chain if necessary, and we free
* that IRQ if nothing is left in the chain.
* -----------------------------------------------------------
*/
static void psio_close(struct tty_struct *tty, struct file *filp)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct serial_state *state;
unsigned long flags;
if (!info || serial_paranoia_check(info, tty->device, "rs_close"))
return;
state = info->state;
save_flags(flags); cli();
if (tty_hung_up_p(filp)) {
DBG_CNT("before DEC-hung");
MOD_DEC_USE_COUNT;
restore_flags(flags);
return;
}
#ifdef SERIAL_DEBUG_OPEN
printk("psio_close ttyD%d, count = %d\n", info->line, state->count);
#endif
if ((tty->count == 1) && (state->count != 1)) {
/*
* Uh, oh. tty->count is 1, which means that the tty
* structure will be freed. state->count should always
* be one in these conditions. If it's greater than
* one, we've got real problems, since it means the
* serial port won't be shutdown.
*/
printk("rs_close: bad serial port count; tty->count is 1, "
"state->count is %d\n", state->count);
state->count = 1;
}
if (--state->count < 0) {
printk("psio_close: bad serial port count for ttyD%d: %d\n",
info->line, state->count);
state->count = 0;
}
if (state->count) {
DBG_CNT("before DEC-2");
MOD_DEC_USE_COUNT;
restore_flags(flags);
return;
}
info->flags |= ASYNC_CLOSING;
restore_flags(flags);
/*
* Save the termios structure, since this port may have
* separate termios for callout and dialin.
*/
if (info->flags & ASYNC_NORMAL_ACTIVE)
info->state->normal_termios = *tty->termios;
if (info->flags & ASYNC_CALLOUT_ACTIVE)
info->state->callout_termios = *tty->termios;
/*
* Now we wait for the transmit buffer to clear; and we notify
* the line discipline to only process XON/XOFF characters.
*/
tty->closing = 1;
if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE)
tty_wait_until_sent(tty, info->closing_wait);
/*
* At this point we stop accepting input. To do this, we
* disable the receive line status interrupts, and tell the
* interrupt driver to stop checking the data ready bit in the
* line status register.
*/
info->IER &= ~UART_IER_RLSI;
info->read_status_mask &= ~UART_LSR_DR;
if (info->flags & ASYNC_INITIALIZED) {
serial_out(info, UART_IER, info->IER);
/*
* Before we drop DTR, make sure the UART transmitter
* has completely drained; this is especially
* important if there is a transmit FIFO!
*/
psio_wait_until_sent(tty, info->timeout);
}
shutdown(info);
if (tty->driver.flush_buffer)
tty->driver.flush_buffer(tty);
if (tty->ldisc.flush_buffer)
tty->ldisc.flush_buffer(tty);
tty->closing = 0;
info->event = 0;
info->tty = 0;
if (info->blocked_open) {
if (info->close_delay) {
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(info->close_delay);
}
wake_up_interruptible(&info->open_wait);
}
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE|
ASYNC_CLOSING);
wake_up_interruptible(&info->close_wait);
MOD_DEC_USE_COUNT;
}
/*
* rs_wait_until_sent() --- wait until the transmitter is empty
*/
static void psio_wait_until_sent(struct tty_struct *tty, int timeout)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
unsigned long orig_jiffies, char_time;
int lsr;
if (serial_paranoia_check(info, tty->device, "psio_wait_until_sent"))
return;
if (info->state->type == PORT_UNKNOWN)
return;
if (info->xmit_fifo_size == 0)
return; /* Just in case.... */
orig_jiffies = jiffies;
/*
* Set the check interval to be 1/5 of the estimated time to
* send a single character, and make it at least 1. The check
* interval should also be less than the timeout.
*
* Note: we have to use pretty tight timings here to satisfy
* the NIST-PCTS.
*/
char_time = (info->timeout - HZ/50) / info->xmit_fifo_size;
char_time = char_time / 5;
if (char_time == 0)
char_time = 1;
if (timeout && timeout < char_time)
char_time = timeout;
/*
* If the transmitter hasn't cleared in twice the approximate
* amount of time to send the entire FIFO, it probably won't
* ever clear. This assumes the UART isn't doing flow
* control, which is currently the case. Hence, if it ever
* takes longer than info->timeout, this is probably due to a
* UART bug of some kind. So, we clamp the timeout parameter at
* 2*info->timeout.
*/
if (!timeout || timeout > 2*info->timeout)
timeout = 2*info->timeout;
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time);
printk("jiff=%lu...", jiffies);
#endif
while (!((lsr = serial_inp(info, UART_LSR)) & UART_LSR_TEMT)) {
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("lsr = %d (jiff=%lu)...", lsr, jiffies);
#endif
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(char_time);
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
}
#ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT
printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies);
#endif
}
/*
* psio_hangup() --- called by tty_hangup() when a hangup is signaled.
*/
static void psio_hangup(struct tty_struct *tty)
{
struct async_struct * info = (struct async_struct *)tty->driver_data;
struct serial_state *state = info->state;
if (serial_paranoia_check(info, tty->device, "psio_hangup"))
return;
state = info->state;
psio_flush_buffer(tty);
if (info->flags & ASYNC_CLOSING)
return;
shutdown(info);
info->event = 0;
state->count = 0;
info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE);
info->tty = 0;
wake_up_interruptible(&info->open_wait);
}
/*
static void rs_wait_until_sent(struct tty_struct *tty, int timeout)
static void rs_hangup(struct tty_struct *tty)
*/
/*
* ------------------------------------------------------------
* psio_open() and friends
* ------------------------------------------------------------
*/
#define SERIAL_DEBUG_OPEN
static int block_til_ready(struct tty_struct *tty, struct file * filp,
struct async_struct *info)
{
DECLARE_WAITQUEUE(wait, current);
struct serial_state *state = info->state;
int retval;
int do_clocal = 0, extra_count = 0;
unsigned long flags;
/*
* If the device is in the middle of being closed, then block
* until it's done, and then try again.
*/
if (tty_hung_up_p(filp) ||
(info->flags & ASYNC_CLOSING)) {
if (info->flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->close_wait);
#ifdef SERIAL_DO_RESTART
return ((info->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
#else
return -EAGAIN;
#endif
}
/*
* If this is a callout device, then just make sure the normal
* device isn't being used.
*/
if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) {
if (info->flags & ASYNC_NORMAL_ACTIVE)
return -EBUSY;
if ((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_SESSION_LOCKOUT) &&
(info->session != current->session))
return -EBUSY;
if ((info->flags & ASYNC_CALLOUT_ACTIVE) &&
(info->flags & ASYNC_PGRP_LOCKOUT) &&
(info->pgrp != current->pgrp))
return -EBUSY;
info->flags |= ASYNC_CALLOUT_ACTIVE;
return 0;
}
#if 1 /* ? 020906 */
filp->f_flags |= O_NONBLOCK;
#endif /* ? 020906 */
/*
* If non-blocking mode is set, or the port is not enabled,
* then make the check up front and then exit.
*/
if ((filp->f_flags & O_NONBLOCK) ||
(tty->flags & (1 << TTY_IO_ERROR))) {
if (info->flags & ASYNC_CALLOUT_ACTIVE)
return -EBUSY;
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
if (info->flags & ASYNC_CALLOUT_ACTIVE) {
if (state->normal_termios.c_cflag & CLOCAL)
do_clocal = 1;
} else {
if (tty->termios->c_cflag & CLOCAL)
do_clocal = 1;
}
/*
* Block waiting for the carrier detect and the line to become
* free (i.e., not in use by the callout). While we are in
* this loop, state->count is dropped by one, so that
* rs_close() knows when to free things. We restore it upon
* exit, either normal or abnormal.
*/
retval = 0;
add_wait_queue(&info->open_wait, &wait);
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready before block: ttyD%d, count = %d\n",
state->line, state->count);
#endif
save_flags(flags); cli();
if (!tty_hung_up_p(filp)) {
extra_count = 1;
state->count--;
}
restore_flags(flags);
info->blocked_open++;
while (1) {
save_flags(flags); cli();
if (!(info->flags & ASYNC_CALLOUT_ACTIVE) &&
(tty->termios->c_cflag & CBAUD))
serial_out(info, UART_MCR,
serial_inp(info, UART_MCR) |
(UART_MCR_DTR | UART_MCR_RTS));
restore_flags(flags);
set_current_state(TASK_INTERRUPTIBLE);
if (tty_hung_up_p(filp) ||
!(info->flags & ASYNC_INITIALIZED)) {
#ifdef SERIAL_DO_RESTART
if (info->flags & ASYNC_HUP_NOTIFY)
retval = -EAGAIN;
else
retval = -ERESTARTSYS;
#else
retval = -EAGAIN;
#endif
break;
}
if (!(info->flags & ASYNC_CALLOUT_ACTIVE) &&
!(info->flags & ASYNC_CLOSING) &&
(do_clocal || (serial_in(info, UART_MSR) &
UART_MSR_DCD)))
break;
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready blocking: ttyD%d, count = %d\n",
info->line, state->count);
#endif
schedule();
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&info->open_wait, &wait);
if (extra_count)
state->count++;
info->blocked_open--;
#ifdef SERIAL_DEBUG_OPEN
printk("block_til_ready after blocking: ttyD%d, count = %d\n",
info->line, state->count);
#endif
if (retval)
return retval;
info->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
#undef SERIAL_DEBUG_OPEN
static int get_async_struct(int line, struct async_struct **ret_info)
{
struct async_struct *info;
struct serial_state *sstate;
sstate = rs_table + line;
sstate->count++;
if (sstate->info) {
*ret_info = sstate->info;
return 0;
}
info = kmalloc(sizeof(struct async_struct), GFP_KERNEL);
if (!info) {
sstate->count--;
return -ENOMEM;
}
memset(info, 0, sizeof(struct async_struct));
init_waitqueue_head(&info->open_wait);
init_waitqueue_head(&info->close_wait);
init_waitqueue_head(&info->delta_msr_wait);
info->magic = SERIAL_MAGIC;
info->port = sstate->port;
info->flags = sstate->flags;
info->io_type = sstate->io_type;
info->iomem_base = sstate->iomem_base;
info->iomem_reg_shift = sstate->iomem_reg_shift;
info->xmit_fifo_size = sstate->xmit_fifo_size=0;
info->line = line;
info->tqueue.routine = do_softint;
info->tqueue.data = info;
info->state = sstate;
if (sstate->info) {
kfree(info);
*ret_info = sstate->info;
return 0;
}
*ret_info = sstate->info = info;
return 0;
}
/*
* -----------------------------------------------------------
* psio_open()
*
* This routine is called whenever a debug console port is opened. It
* enables interrupts for a serial port, linking in its async structure into
* the IRQ chain. It also performs the serial-specific
* initialization for the tty structure.
* -----------------------------------------------------------
*/
static int psio_open(struct tty_struct *tty, struct file *filp)
{
struct async_struct *info;
int retval,line=0;
unsigned long page;
MOD_INC_USE_COUNT;
line = MINOR(tty->device) - tty->driver.minor_start;
if ((line < 0) || (line >= NR_PORTS)) {
MOD_DEC_USE_COUNT;
return -ENODEV;
}
retval = get_async_struct(line, &info);
if (retval) {
printk("psio_open ttyD%d fail...",line);
MOD_DEC_USE_COUNT;
return retval;
}
tty->driver_data = info;
info->tty = tty;
if (serial_paranoia_check(info, tty->device, "psio_open"))
return -ENODEV;
#ifdef SERIAL_DEBUG_OPEN
printk("psio_open %s%d, count = %d\n", tty->driver.name, info->line,
info->state->count);
#endif
info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0;
/*
* This relies on lock_kernel() stuff so wants tidying for 2.5
*/
if (!tmp_buf) {
page = get_zeroed_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
if (tmp_buf)
free_page(page);
else
tmp_buf = (unsigned char *) page;
}
/*
* If the port is the middle of closing, bail out now
*/
if (tty_hung_up_p(filp) ||
(info->flags & ASYNC_CLOSING)) {
if (info->flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->close_wait);
#ifdef SERIAL_DO_RESTART
return ((info->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
#else
return -EAGAIN;
#endif
}
/*
* Start up serial port
*/
retval=startup(info);
if (retval)
return retval;
retval = block_til_ready(tty, filp, info);
if (retval) {
#ifdef SERIAL_DEBUG_OPEN
printk("psio_open returning after block_til_ready with %d\n",
retval);
#endif
return retval;
}
if ((info->state->count == 1) &&
(info->flags & ASYNC_SPLIT_TERMIOS)) {
if (tty->driver.subtype == SERIAL_TYPE_NORMAL)
*tty->termios = info->state->normal_termios;
else
*tty->termios = info->state->callout_termios;
change_speed(info, 0);
}
#ifdef CONFIG_SERIAL_CONSOLE
if (cons.cflag && cons.index == line) {
tty->termios->c_cflag = cons.cflag;
cons.cflag = 0;
change_speed(info, 0);
}
#endif
info->session = current->session;
info->pgrp = current->pgrp;
return 0;
}
/*
* /proc fs routines....
*/
static inline int line_info(char *buf, struct serial_state *state)
{
struct async_struct *info = state->info, scr_info;
char stat_buf[30], control, status;
int ret;
unsigned long flags;
ret = sprintf(buf, "%d: uart:%s port:%lX irq:%d",
state->line, uart_config[state->type].name,
state->port, state->irq);
if (!state->port || (state->type == PORT_UNKNOWN)) {
ret += sprintf(buf+ret, "\n");
return ret;
}
/*
* Figure out the current RS-232 lines
*/
if (!info) {
info = &scr_info; /* This is just for serial_{in,out} */
info->magic = SERIAL_MAGIC;
info->port = state->port;
info->flags = state->flags;
info->hub6 = state->hub6;
info->io_type = state->io_type;
info->iomem_base = state->iomem_base;
info->iomem_reg_shift = state->iomem_reg_shift;
info->quot = 0;
info->tty = 0;
}
save_flags(flags); cli();
status = serial_in(info, UART_MSR);
control = info != &scr_info ? info->MCR : serial_in(info, UART_MCR);
restore_flags(flags);
stat_buf[0] = 0;
stat_buf[1] = 0;
if (control & UART_MCR_RTS)
strcat(stat_buf, "|RTS");
if (status & UART_MSR_CTS)
strcat(stat_buf, "|CTS");
if (control & UART_MCR_DTR)
strcat(stat_buf, "|DTR");
if (status & UART_MSR_DSR)
strcat(stat_buf, "|DSR");
if (status & UART_MSR_DCD)
strcat(stat_buf, "|CD");
if (status & UART_MSR_RI)
strcat(stat_buf, "|RI");
if (info->quot) {
ret += sprintf(buf+ret, " baud:%d",
state->baud_base / (16*info->quot));
}
ret += sprintf(buf+ret, " tx:%d rx:%d",
state->icount.tx, state->icount.rx);
if (state->icount.frame)
ret += sprintf(buf+ret, " fe:%d", state->icount.frame);
if (state->icount.parity)
ret += sprintf(buf+ret, " pe:%d", state->icount.parity);
if (state->icount.brk)
ret += sprintf(buf+ret, " brk:%d", state->icount.brk);
if (state->icount.overrun)
ret += sprintf(buf+ret, " oe:%d", state->icount.overrun);
/*
* Last thing is the RS-232 status lines
*/
ret += sprintf(buf+ret, " %s\n", stat_buf+1);
return ret;
}
int psio_read_proc(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int i, len = 0, l;
off_t begin = 0;
len += sprintf(page, "sioinfo:1.0 driver:%s%s revision:%s\n",
serial_version, LOCAL_VERSTRING, serial_revdate);
for (i = 0; i < NR_PORTS && len < 4000; i++) {
l = line_info(page + len, &rs_table[i]);
len += l;
if (len+begin > off+count)
goto done;
if (len+begin < off) {
begin += len;
len = 0;
}
}
*eof = 1;
done:
if (off >= len+begin)
return 0;
*start = page + (off-begin);
return ((count < begin+len-off) ? count : begin+len-off);
}
static char serial_options[] __initdata =
" no serial options enabled\n";
static inline void show_serial_version(void)
{
printk(KERN_INFO "%s version %s%s (%s) with%s", serial_name,
serial_version, LOCAL_VERSTRING, serial_revdate,
serial_options);
}
static unsigned detect_uart_irq (struct serial_state * state)
{
if(! state->irq)
printk(KERN_INFO "detect_uart_irq: Ohh irq = 0\n");
return state->irq;
}
static void autoconfig(struct serial_state * state)
{
struct async_struct *info, scr_info;
//unsigned long flags;
state->type = PORT_UNKNOWN;
#ifdef SERIAL_DEBUG_AUTOCONF
printk("Testing ttyD%d (0x%04lx, 0x%04x)...\n", state->line,
state->port, (unsigned) state->iomem_base);
#endif
if (!CONFIGURED_SERIAL_PORT(state))
return;
info = &scr_info; /* This is just for serial_{in,out} */
info->magic = SERIAL_MAGIC;
info->state = state;
info->port = state->port;
info->flags = state->flags;
sio_reset(info);
}
/*
* The debug console driver boot-time initialization code!
*/
/* 20020830 */
int __init psio_init(void)
{
int i;
struct serial_state * state;
init_bh(SERIAL_BH, do_psio_serial_bh);
init_timer(&serial_timer);
serial_timer.function = (void *)psio_timer;
#if 1
mod_timer(&serial_timer, jiffies + 10);
#else /* 1 */
mod_timer(&serial_timer, jiffies + RS_STROBE_TIME);
#endif /* 1 */
for (i = 0; i < NR_IRQS; i++) {
IRQ_ports[i] = 0;
IRQ_timeout[i] = 0;
}
/*
* Initialize the tty_driver structure
*/
memset(&psio_driver, 0, sizeof(struct tty_driver));
psio_driver.magic = TTY_DRIVER_MAGIC;
#if (LINUX_VERSION_CODE > 0x20100)
psio_driver.driver_name = "serial_m32102";
#endif
#if 1
psio_driver.name = "ttyD";
#else
#if (LINUX_VERSION_CODE > 0x2032D && defined(CONFIG_DEVFS_FS))
psio_driver.name = "ttyd/%d";
#else
psio_driver.name = "ttyD";
#endif
#endif /* 1 */
psio_driver.major = TTY_MAJOR;
psio_driver.minor_start = 80;
psio_driver.name_base = 0;
psio_driver.num = NR_PORTS;
psio_driver.type = TTY_DRIVER_TYPE_SERIAL;
psio_driver.subtype = SERIAL_TYPE_NORMAL;
psio_driver.init_termios = tty_std_termios;
psio_driver.init_termios.c_cflag =
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
psio_driver.flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_NO_DEVFS;
psio_driver.refcount = &psio_refcount;
psio_driver.table = psio_table;
psio_driver.termios = psio_termios;
psio_driver.termios_locked = psio_termios_locked;
psio_driver.open = psio_open;
psio_driver.close = psio_close;
psio_driver.write = psio_write;
psio_driver.put_char = psio_put_char;
psio_driver.flush_chars = psio_flush_chars;
psio_driver.write_room = psio_write_room;
psio_driver.chars_in_buffer = psio_chars_in_buffer;
psio_driver.flush_buffer = psio_flush_buffer;
psio_driver.ioctl = psio_ioctl;
psio_driver.throttle = psio_throttle;
psio_driver.unthrottle = psio_unthrottle;
psio_driver.set_termios = psio_set_termios;
psio_driver.stop = psio_stop;
psio_driver.start = psio_start;
psio_driver.hangup = psio_hangup;
#if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */
psio_driver.break_ctl = psio_break;
#endif
#if (LINUX_VERSION_CODE >= 131343)
psio_driver.send_xchar = psio_send_xchar;
psio_driver.wait_until_sent = psio_wait_until_sent;
psio_driver.read_proc = psio_read_proc;
#endif
if (tty_register_driver(&psio_driver))
panic("Couldn't register debug console driver\n");
for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) {
state->magic = SSTATE_MAGIC;
state->line = i;
state->type = 14;
state->custom_divisor = 0;
state->close_delay = 5*HZ/10;
state->closing_wait = 30*HZ;
state->callout_termios = psio_driver.init_termios;
state->normal_termios = psio_driver.init_termios;
state->icount.cts = state->icount.dsr =
state->icount.rng = state->icount.dcd = 0;
state->icount.rx = state->icount.tx = 0;
state->icount.frame = state->icount.parity = 0;
state->icount.overrun = state->icount.brk = 0;
state->irq = irq_cannonicalize(state->irq);
#if 0
if (check_region(state->port,8))
continue;
if (state->flags & ASYNC_BOOT_AUTOCONF)
autoconfig(psio_table);
#endif
state->baud_base = boot_cpu_data.bus_clock;
printk(KERN_INFO "ttyD%d initialized.\n",i);
tty_register_devfs(&psio_driver, 0,
psio_driver.minor_start + state->line);
}
return 0;
}
/* 20020830 */
static void __exit psio_fini(void)
{
unsigned long flags;
// int e1, e2;
int e1;
// int i;
// struct async_struct *info;
/* printk("Unloading %s: version %s\n", serial_name, serial_version); */
del_timer_sync(&serial_timer);
save_flags(flags); cli();
remove_bh(SERIAL_BH);
if ((e1 = tty_unregister_driver(&psio_driver)))
printk("psio_serial: failed to unregister serial driver (%d)\n",e1);
restore_flags(flags);
if (tmp_buf) {
unsigned long pg = (unsigned long) tmp_buf;
tmp_buf = NULL;
free_page(pg);
}
}
module_init(psio_init);
module_exit(psio_fini);
MODULE_DESCRIPTION("M32R/M32102 (dumb) serial driver");
MODULE_AUTHOR("Hiroyuki Kondo <kondo.hiroyuki@renesas.com>, Takeo Takahashi <takahashi.takeo@renesas.com>");
MODULE_LICENSE("GPL");
/*
* -----------------------------------------------------------
* Debug console driver
* -----------------------------------------------------------
*/
#define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
static struct async_struct async_dbgcons;
/*
* Wait for transmitter & holding register to empty
*/
static inline void wait_for_xmitr(struct async_struct *info)
{
unsigned int status, tmout = 1000000;
do {
status = serial_in(info, UART_LSR);
if (status & UART_LSR_BI)
lsr_break_flag = UART_LSR_BI;
if (--tmout == 0)
break;
} while((status & BOTH_EMPTY) != BOTH_EMPTY);
/* Wait for flow control if necessary */
if (info->flags & ASYNC_CONS_FLOW) {
tmout = 1000000;
while (--tmout &&
((serial_in(info, UART_MSR) & UART_MSR_CTS) == 0));
}
}
static void dbg_console_write(struct console *co, const char *s,
unsigned count)
{
static struct async_struct *info = &async_dbgcons;
int ier;
unsigned i;
/*
* First save the IER then disable the interrupts
*/
ier = serial_in(info, UART_IER);
serial_out(info, UART_IER, 0x00);
/*
* Now, do each character
*/
for (i = 0; i < count; i++, s++) {
wait_for_xmitr(info);
/*
* Send the character out.
* If a LF, also do CR...
*/
serial_out(info, UART_TX, *s);
if (*s == 10) {
wait_for_xmitr(info);
serial_out(info, UART_TX, 13);
}
}
/*
* Finally, Wait for transmitter & holding register to empty
* and restore the IER
*/
wait_for_xmitr(info);
serial_out(info, UART_IER, ier);
}
#if (LINUX_VERSION_CODE <= 132114) /* Linux 2.4.18 */
/*
* Receive character from the serial port
*/
static int dbg_console_wait_key(struct console *console)
{
static struct async_struct *info;
int ier, c;
info = &async_dbgcons;
/*
* First save the IER then disable the interrupts so
* that the real driver for the port does not get the
* character.
*/
ier = serial_in(info, UART_IER);
serial_out(info, UART_IER, 0x00);
while ((serial_in(info, UART_LSR) & UART_LSR_DR) == 0);
c = serial_in(info, UART_RX);
/*
* Restore the interrupts
*/
serial_out(info, UART_IER, ier);
return c;
}
#endif
static kdev_t dbg_console_device(struct console *c)
{
return MKDEV(TTY_MAJOR, 80 + c->index);
}
static int __init dbg_console_setup(struct console *co, char *options)
{
static struct async_struct *info;
struct serial_state *state;
int baud = BAUDRATE;
int baud_base= boot_cpu_data.bus_clock;
int bits = 8;
int parity = 'n';
int doflow = 0;
unsigned int cflag = CREAD | HUPCL | CLOCAL | CRTSCTS;
int cval;
char *s;
if (options) {
baud = simple_strtoul(options, NULL, 10);
s = options;
while(*s >= '0' && *s <= '9')
s++;
if (*s) parity = *s++;
if (*s) bits = *s++ - '0';
if (*s) doflow = (*s++ == 'r');
}
co->flags |= CON_ENABLED;
/*
* Now construct a cflag setting.
*/
switch(baud) {
case 1200:
cflag |= B1200;
break;
case 2400:
cflag |= B2400;
break;
case 4800:
cflag |= B4800;
break;
case 19200:
cflag |= B19200;
break;
case 38400:
cflag |= B38400;
break;
case 57600:
cflag |= B57600;
break;
case 115200:
cflag |= B115200;
break;
case 9600:
default:
cflag |= B9600;
baud = 9600;
break;
}
switch(bits) {
case 7:
cflag |= CS7;
break;
default:
case 8:
cflag |= CS8;
break;
}
switch(parity) {
case 'o': case 'O':
cflag |= PARODD;
break;
case 'e': case 'E':
cflag |= PARENB;
break;
}
co->cflag = cflag;
state = rs_table + co->index;
if (doflow)
state->flags |= ASYNC_CONS_FLOW;
info = &async_dbgcons;
info->magic = SERIAL_MAGIC;
info->state = state;
info->port = state->port;
info->flags = state->flags;
info->io_type = state->io_type;
info->iomem_base = state->iomem_base;
info->iomem_reg_shift = state->iomem_reg_shift;
cval = (baud_base / (baud * 4)) - 1;
serial_outp(info, UART_LCR, 0x0300); /* init status */
//serial_outp(info, UART_MOD1, 0x0800); /* 8bit */
serial_outp(info, UART_MOD0, 0x80); /* cts/rts 1stop nonpari */
//serial_outp(info, UART_MOD0, 0x180); /* rts 1stop nonpari */
//serial_outp(info, UART_MOD0, 0xc0); /* cts/rts 1stop nonpari */
serial_outp(info, UART_BAUR, cval); /* set baurate reg */
//serial_outp(info, UART_RBAUR, adj); /* set adj baurate reg */
serial_outp(info, UART_IER, 0x00); /* intr mask */
serial_outp(info, UART_LCR, 0x03);
return 0;
}
static struct console cons = {
name: "ttyD",
write: dbg_console_write,
device: dbg_console_device,
#if (LINUX_VERSION_CODE <= 132114) /* Linux 2.4.18 */
wait_key: dbg_console_wait_key,
#endif
setup: dbg_console_setup,
flags: CON_PRINTBUFFER,
index: -1,
};
/*
* Register console.
*/
void __init psio_console_init(void)
{
register_console(&cons);
}
/*
* linux/arch/m32r/drivers/m32r_cfc.c
*
* Device driver for the CFC functionality of M32R.
*
* Copyright (c) 2001, 2002, 2003, 2004
* Hiroyuki Kondo, Naoto Sugai, Hayato Fujiwara
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/config.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/bitops.h>
#include <asm/system.h>
#include <pcmcia/version.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/ss.h>
#include <pcmcia/cs.h>
#undef MAX_IO_WIN /* FIXME */
#define MAX_IO_WIN 1
#undef MAX_WIN /* FIXME */
#define MAX_WIN 1
#include "m32r_cfc.h"
#if !defined(COFIG_PLAT_USRV)
#define PCMCIA_DEBUG 3
#endif /* COFIG_PLAT_USRV */
#ifdef PCMCIA_DEBUG
int m32r_cfc_debug = PCMCIA_DEBUG;
module_param(m32r_cfc_debug, int, 0444);
#define DEBUG(n, args...) if (m32r_cfc_debug>(n)) printk(args)
#else
#define DEBUG(n, args...) do { } while (0)
#endif
/* Poll status interval -- 0 means default to interrupt */
static int poll_interval = 0;
typedef enum pcc_space { as_none = 0, as_comm, as_attr, as_io } pcc_as_t;
typedef struct pcc_socket {
u_short type, flags;
struct pcmcia_socket socket;
unsigned int number;
ioaddr_t ioaddr;
u_long mapaddr;
u_long base; /* PCC register base */
u_char cs_irq1, cs_irq2, intr;
pccard_io_map io_map[MAX_IO_WIN];
pccard_mem_map mem_map[MAX_WIN];
u_char io_win;
u_char mem_win;
pcc_as_t current_space;
u_char last_iodbex;
#ifdef CHAOS_PCC_DEBUG
u_char last_iosize;
#endif
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *proc;
#endif
} pcc_socket_t;
static int pcc_sockets = 0;
static pcc_socket_t socket[M32R_MAX_PCC] = {
{ 0, }, /* ... */
};
#define ISA_LOCK(n, f) do { } while (0)
#define ISA_UNLOCK(n, f) do { } while (0)
/*====================================================================*/
static unsigned int pcc_get(u_short, unsigned int);
static void pcc_set(u_short, unsigned int , unsigned int );
static spinlock_t pcc_lock = SPIN_LOCK_UNLOCKED;
#if !defined(CONFIG_PLAT_USRV)
static __inline__ u_long pcc_port2addr(unsigned long port, int size) {
u_long addr = 0;
u_long odd;
if (size == 1) { /* byte access */
odd = (port&1) << 11;
port -= port & 1;
addr = CFC_IO_MAPBASE_BYTE - CFC_IOPORT_BASE + odd + port;
} else if (size == 2)
addr = CFC_IO_MAPBASE_WORD - CFC_IOPORT_BASE + port;
return addr;
}
#else /* CONFIG_PLAT_USRV */
static __inline__ u_long pcc_port2addr(unsigned long port, int size) {
u_long odd;
u_long addr = ((port - CFC_IOPORT_BASE) & 0xf000) << 8;
if (size == 1) { /* byte access */
odd = port & 1;
port -= odd;
odd <<= 11;
addr = (addr | CFC_IO_MAPBASE_BYTE) + odd + (port & 0xfff);
} else if (size == 2) /* word access */
addr = (addr | CFC_IO_MAPBASE_WORD) + (port & 0xfff);
return addr;
}
#endif /* CONFIG_PLAT_USRV */
void pcc_ioread_byte(int sock, unsigned long port, void *buf, size_t size,
size_t nmemb, int flag)
{
u_long addr;
unsigned char *bp = (unsigned char *)buf;
unsigned long flags;
DEBUG(3, "m32r_cfc: pcc_ioread_byte: sock=%d, port=%#lx, buf=%p, "
"size=%u, nmemb=%d, flag=%d\n",
sock, port, buf, size, nmemb, flag);
addr = pcc_port2addr(port, 1);
if (!addr) {
printk("m32r_cfc:ioread_byte null port :%#lx\n",port);
return;
}
DEBUG(3, "m32r_cfc: pcc_ioread_byte: addr=%#lx\n", addr);
spin_lock_irqsave(&pcc_lock, flags);
/* read Byte */
while (nmemb--)
*bp++ = readb(addr);
spin_unlock_irqrestore(&pcc_lock, flags);
}
void pcc_ioread_word(int sock, unsigned long port, void *buf, size_t size,
size_t nmemb, int flag)
{
u_long addr;
unsigned short *bp = (unsigned short *)buf;
unsigned long flags;
DEBUG(3, "m32r_cfc: pcc_ioread_word: sock=%d, port=%#lx, "
"buf=%p, size=%u, nmemb=%d, flag=%d\n",
sock, port, buf, size, nmemb, flag);
if (size != 2)
printk("m32r_cfc: ioread_word :illigal size %u : %#lx\n", size,
port);
if (size == 9)
printk("m32r_cfc: ioread_word :insw \n");
addr = pcc_port2addr(port, 2);
if (!addr) {
printk("m32r_cfc:ioread_word null port :%#lx\n",port);
return;
}
DEBUG(3, "m32r_cfc: pcc_ioread_word: addr=%#lx\n", addr);
spin_lock_irqsave(&pcc_lock, flags);
/* read Word */
while (nmemb--)
*bp++ = readw(addr);
spin_unlock_irqrestore(&pcc_lock, flags);
}
void pcc_iowrite_byte(int sock, unsigned long port, void *buf, size_t size,
size_t nmemb, int flag)
{
u_long addr;
unsigned char *bp = (unsigned char *)buf;
unsigned long flags;
DEBUG(3, "m32r_cfc: pcc_iowrite_byte: sock=%d, port=%#lx, "
"buf=%p, size=%u, nmemb=%d, flag=%d\n",
sock, port, buf, size, nmemb, flag);
/* write Byte */
addr = pcc_port2addr(port, 1);
if (!addr) {
printk("m32r_cfc:iowrite_byte null port:%#lx\n",port);
return;
}
DEBUG(3, "m32r_cfc: pcc_iowrite_byte: addr=%#lx\n", addr);
spin_lock_irqsave(&pcc_lock, flags);
while (nmemb--)
writeb(*bp++, addr);
spin_unlock_irqrestore(&pcc_lock, flags);
}
void pcc_iowrite_word(int sock, unsigned long port, void *buf, size_t size,
size_t nmemb, int flag)
{
u_long addr;
unsigned short *bp = (unsigned short *)buf;
unsigned long flags;
DEBUG(3, "m32r_cfc: pcc_iowrite_word: sock=%d, port=%#lx, "
"buf=%p, size=%u, nmemb=%d, flag=%d\n",
sock, port, buf, size, nmemb, flag);
if(size != 2)
printk("m32r_cfc: iowrite_word :illigal size %u : %#lx\n",
size, port);
if(size == 9)
printk("m32r_cfc: iowrite_word :outsw \n");
addr = pcc_port2addr(port, 2);
if (!addr) {
printk("m32r_cfc:iowrite_word null addr :%#lx\n",port);
return;
}
#if 1
if (addr & 1) {
printk("m32r_cfc:iowrite_word port addr (%#lx):%#lx\n", port,
addr);
return;
}
#endif
DEBUG(3, "m32r_cfc: pcc_iowrite_word: addr=%#lx\n", addr);
spin_lock_irqsave(&pcc_lock, flags);
while (nmemb--)
writew(*bp++, addr);
spin_unlock_irqrestore(&pcc_lock, flags);
}
/*====================================================================*/
#define IS_ALIVE 0x8000
typedef struct pcc_t {
char *name;
u_short flags;
} pcc_t;
static pcc_t pcc[] = {
#if !defined(CONFIG_PLAT_USRV)
{ "m32r_cfc", 0 }, { "", 0 },
#else /* CONFIG_PLAT_USRV */
{ "m32r_cfc", 0 }, { "m32r_cfc", 0 }, { "m32r_cfc", 0 },
{ "m32r_cfc", 0 }, { "m32r_cfc", 0 }, { "", 0 },
#endif /* CONFIG_PLAT_USRV */
};
static irqreturn_t pcc_interrupt(int, void *, struct pt_regs *regs);
/*====================================================================*/
static struct timer_list poll_timer;
static unsigned int pcc_get(u_short sock, unsigned int reg)
{
unsigned int val = inw(reg);
DEBUG(3, "m32r_cfc: pcc_get: reg(0x%08x)=0x%04x\n", reg, val);
return val;
}
static void pcc_set(u_short sock, unsigned int reg, unsigned int data)
{
outw(data, reg);
DEBUG(3, "m32r_cfc: pcc_set: reg(0x%08x)=0x%04x\n", reg, data);
}
/*======================================================================
See if a card is present, powered up, in IO mode, and already
bound to a (non PC Card) Linux driver. We leave these alone.
We make an exception for cards that seem to be serial devices.
======================================================================*/
static int __init is_alive(u_short sock)
{
unsigned int stat;
DEBUG(3, "m32r_cfc: is_alive:\n");
printk("CF: ");
stat = pcc_get(sock, (unsigned int)PLD_CFSTS);
if (!stat)
printk("No ");
printk("Card is detected at socket %d : stat = 0x%08x\n", sock, stat);
DEBUG(3, "m32r_cfc: is_alive: sock stat is 0x%04x\n", stat);
return 0;
}
static void add_pcc_socket(ulong base, int irq, ulong mapaddr, ioaddr_t ioaddr)
{
pcc_socket_t *t = &socket[pcc_sockets];
DEBUG(3, "m32r_cfc: add_pcc_socket: base=%#lx, irq=%d, "
"mapaddr=%#lx, ioaddr=%08x\n",
base, irq, mapaddr, ioaddr);
/* add sockets */
t->ioaddr = ioaddr;
t->mapaddr = mapaddr;
#if !defined(CONFIG_PLAT_USRV)
t->base = 0;
t->flags = 0;
t->cs_irq1 = irq; // insert irq
t->cs_irq2 = irq + 1; // eject irq
#else /* CONFIG_PLAT_USRV */
t->base = base;
t->flags = 0;
t->cs_irq1 = 0; // insert irq
t->cs_irq2 = 0; // eject irq
#endif /* CONFIG_PLAT_USRV */
if (is_alive(pcc_sockets))
t->flags |= IS_ALIVE;
/* add pcc */
#if !defined(CONFIG_PLAT_USRV)
request_region((unsigned int)PLD_CFRSTCR, 0x20, "m32r_cfc");
#else /* CONFIG_PLAT_USRV */
{
unsigned int reg_base;
reg_base = (unsigned int)PLD_CFRSTCR;
reg_base |= pcc_sockets << 8;
request_region(reg_base, 0x20, "m32r_cfc");
}
#endif /* CONFIG_PLAT_USRV */
printk(KERN_INFO " %s ", pcc[pcc_sockets].name);
printk("pcc at 0x%08lx\n", t->base);
/* Update socket interrupt information, capabilities */
t->socket.features |= (SS_CAP_PCCARD | SS_CAP_STATIC_MAP);
t->socket.map_size = M32R_PCC_MAPSIZE;
t->socket.io_offset = ioaddr; /* use for io access offset */
t->socket.irq_mask = 0;
#if !defined(CONFIG_PLAT_USRV)
t->socket.pci_irq = PLD_IRQ_CFIREQ ; /* card interrupt */
#else /* CONFIG_PLAT_USRV */
t->socket.pci_irq = PLD_IRQ_CF0 + pcc_sockets;
#endif /* CONFIG_PLAT_USRV */
#ifndef CONFIG_PLAT_USRV
/* insert interrupt */
request_irq(irq, pcc_interrupt, 0, "m32r_cfc", pcc_interrupt);
/* eject interrupt */
request_irq(irq+1, pcc_interrupt, 0, "m32r_cfc", pcc_interrupt);
DEBUG(3, "m32r_cfc: enable CFMSK, RDYSEL\n");
pcc_set(pcc_sockets, (unsigned int)PLD_CFIMASK, 0x01);
#endif /* CONFIG_PLAT_USRV */
#if defined(CONFIG_PLAT_M32700UT) || defined(CONFIG_PLAT_USRV) || defined(CONFIG_PLAT_OPSPUT)
pcc_set(pcc_sockets, (unsigned int)PLD_CFCR1, 0x0200);
#endif
pcc_sockets++;
return;
}
/*====================================================================*/
static irqreturn_t pcc_interrupt(int irq, void *dev, struct pt_regs *regs)
{
int i;
u_int events = 0;
int handled = 0;
DEBUG(3, "m32r_cfc: pcc_interrupt: irq=%d, dev=%p, regs=%p\n",
irq, dev, regs);
for (i = 0; i < pcc_sockets; i++) {
if (socket[i].cs_irq1 != irq && socket[i].cs_irq2 != irq)
continue;
handled = 1;
DEBUG(3, "m32r_cfc: pcc_interrupt: socket %d irq 0x%02x ",
i, irq);
events |= SS_DETECT; /* insert or eject */
if (events)
pcmcia_parse_events(&socket[i].socket, events);
}
DEBUG(3, "m32r_cfc: pcc_interrupt: done\n");
return IRQ_RETVAL(handled);
} /* pcc_interrupt */
static void pcc_interrupt_wrapper(u_long data)
{
DEBUG(3, "m32r_cfc: pcc_interrupt_wrapper:\n");
pcc_interrupt(0, NULL, NULL);
init_timer(&poll_timer);
poll_timer.expires = jiffies + poll_interval;
add_timer(&poll_timer);
}
/*====================================================================*/
static int _pcc_get_status(u_short sock, u_int *value)
{
u_int status;
DEBUG(3, "m32r_cfc: _pcc_get_status:\n");
status = pcc_get(sock, (unsigned int)PLD_CFSTS);
*value = (status) ? SS_DETECT : 0;
DEBUG(3, "m32r_cfc: _pcc_get_status: status=0x%08x\n", status);
#if defined(CONFIG_PLAT_M32700UT) || defined(CONFIG_PLAT_USRV) || defined(CONFIG_PLAT_OPSPUT)
if ( status ) {
/* enable CF power */
status = inw((unsigned int)PLD_CPCR);
if (!(status & PLD_CPCR_CF)) {
DEBUG(3, "m32r_cfc: _pcc_get_status: "
"power on (CPCR=0x%08x)\n", status);
status |= PLD_CPCR_CF;
outw(status, (unsigned int)PLD_CPCR);
udelay(100);
}
*value |= SS_POWERON;
pcc_set(sock, (unsigned int)PLD_CFBUFCR,0);/* enable buffer */
udelay(100);
*value |= SS_READY; /* always ready */
*value |= SS_3VCARD;
} else {
/* disable CF power */
status = inw((unsigned int)PLD_CPCR);
status &= ~PLD_CPCR_CF;
outw(status, (unsigned int)PLD_CPCR);
udelay(100);
DEBUG(3, "m32r_cfc: _pcc_get_status: "
"power off (CPCR=0x%08x)\n", status);
}
#elif defined(CONFIG_PLAT_MAPPI2)
if ( status ) {
status = pcc_get(sock, (unsigned int)PLD_CPCR);
if (status == 0) { /* power off */
pcc_set(sock, (unsigned int)PLD_CPCR, 1);
pcc_set(sock, (unsigned int)PLD_CFBUFCR,0); /* force buffer off for ZA-36 */
udelay(50);
}
status = pcc_get(sock, (unsigned int)PLD_CFBUFCR);
if (status != 0) { /* buffer off */
pcc_set(sock, (unsigned int)PLD_CFBUFCR,0);
udelay(50);
pcc_set(sock, (unsigned int)PLD_CFRSTCR, 0x0101);
udelay(25); /* for IDE reset */
pcc_set(sock, (unsigned int)PLD_CFRSTCR, 0x0100);
mdelay(2); /* for IDE reset */
} else {
*value |= SS_POWERON;
*value |= SS_READY;
}
}
#else
#error no platform configuration
#endif
DEBUG(3, "m32r_cfc: _pcc_get_status: GetStatus(%d) = %#4.4x\n",
sock, *value);
return 0;
} /* _get_status */
/*====================================================================*/
static int _pcc_get_socket(u_short sock, socket_state_t *state)
{
// pcc_socket_t *t = &socket[sock];
#if defined(CONFIG_PLAT_M32700UT) || defined(CONFIG_PLAT_USRV) || defined(CONFIG_PLAT_OPSPUT)
state->flags = 0;
state->csc_mask = SS_DETECT; /* ??? */
state->csc_mask |= SS_READY; /* ??? */
state->io_irq = 0;
state->Vcc = 33; /* 3.3V fixed */
state->Vpp = 33;
#endif
DEBUG(3, "m32r_cfc: GetSocket(%d) = flags %#3.3x, Vcc %d, Vpp %d, "
"io_irq %d, csc_mask %#2.2x\n", sock, state->flags,
state->Vcc, state->Vpp, state->io_irq, state->csc_mask);
return 0;
} /* _get_socket */
/*====================================================================*/
static int _pcc_set_socket(u_short sock, socket_state_t *state)
{
#if defined(CONFIG_PLAT_MAPPI2)
u_long reg = 0;
#endif
DEBUG(3, "m32r_cfc: SetSocket(%d, flags %#3.3x, Vcc %d, Vpp %d, "
"io_irq %d, csc_mask %#2.2x)\n", sock, state->flags,
state->Vcc, state->Vpp, state->io_irq, state->csc_mask);
#if defined(CONFIG_PLAT_M32700UT) || defined(CONFIG_PLAT_USRV) || defined(CONFIG_PLAT_OPSPUT)
if (state->Vcc) {
if ((state->Vcc != 50) && (state->Vcc != 33))
return -EINVAL;
/* accept 5V and 3.3V */
}
#elif defined(CONFIG_PLAT_MAPPI2)
if (state->Vcc) {
/*
* 5V only
*/
if (state->Vcc == 50) {
reg |= PCCSIGCR_VEN;
} else {
return -EINVAL;
}
}
#endif
if (state->flags & SS_RESET) {
DEBUG(3, ":RESET\n");
pcc_set(sock,(unsigned int)PLD_CFRSTCR,0x101);
}else{
pcc_set(sock,(unsigned int)PLD_CFRSTCR,0x100);
}
if (state->flags & SS_OUTPUT_ENA){
DEBUG(3, ":OUTPUT_ENA\n");
/* bit clear */
pcc_set(sock,(unsigned int)PLD_CFBUFCR,0);
} else {
pcc_set(sock,(unsigned int)PLD_CFBUFCR,1);
}
#ifdef PCMCIA_DEBUG
if(state->flags & SS_IOCARD){
DEBUG(3, ":IOCARD");
}
if (state->flags & SS_PWR_AUTO) {
DEBUG(3, ":PWR_AUTO");
}
if (state->csc_mask & SS_DETECT)
DEBUG(3, ":csc-SS_DETECT");
if (state->flags & SS_IOCARD) {
if (state->csc_mask & SS_STSCHG)
DEBUG(3, ":STSCHG");
} else {
if (state->csc_mask & SS_BATDEAD)
DEBUG(3, ":BATDEAD");
if (state->csc_mask & SS_BATWARN)
DEBUG(3, ":BATWARN");
if (state->csc_mask & SS_READY)
DEBUG(3, ":READY");
}
DEBUG(3, "\n");
#endif
return 0;
} /* _set_socket */
/*====================================================================*/
static int _pcc_set_io_map(u_short sock, struct pccard_io_map *io)
{
u_char map;
DEBUG(3, "m32r_cfc: SetIOMap(%d, %d, %#2.2x, %d ns, "
"%#4.4x-%#4.4x)\n", sock, io->map, io->flags,
io->speed, io->start, io->stop);
map = io->map;
return 0;
} /* _set_io_map */
/*====================================================================*/
static int _pcc_set_mem_map(u_short sock, struct pccard_mem_map *mem)
{
u_char map = mem->map;
u_long mode;
u_long addr;
pcc_socket_t *t = &socket[sock];
DEBUG(3, "m32r_cfc: SetMemMap(%d, %d, %#2.2x, %d ns, "
"%#5.5lx-%#5.5lx, %#5.5x)\n", sock, map, mem->flags,
mem->speed, mem->res->start, mem->res->end, mem->card_start);
/*
* sanity check
*/
if ((map > MAX_WIN) || (mem->card_start > 0x3ffffff) ||
(mem->res->start > mem->res->end)) {
return -EINVAL;
}
/*
* de-activate
*/
if ((mem->flags & MAP_ACTIVE) == 0) {
t->current_space = as_none;
return 0;
}
/*
* Disable first
*/
// pcc_set(sock, PCCR, 0);
/*
* Set mode
*/
if (mem->flags & MAP_ATTRIB) {
mode = PCMOD_AS_ATTRIB | PCMOD_CBSZ;
t->current_space = as_attr;
} else {
mode = 0; /* common memory */
t->current_space = as_comm;
}
// pcc_set(sock, PCMOD, mode);
/*
* Set address
*/
addr = t->mapaddr + (mem->card_start & M32R_PCC_MAPMASK);
// pcc_set(sock, PCADR, addr);
mem->res->start = addr + mem->card_start;
mem->res->end = mem->res->start + (M32R_PCC_MAPSIZE - 1);
/*
* Set timing
*/
// pcc_set(sock, PCATCR, pcc_access_timing);
/*
* Enable again
*/
// pcc_set(sock, PCCR, 1);
return 0;
} /* _set_mem_map */
#if 0 /* driver model ordering issue */
/*======================================================================
Routines for accessing socket information and register dumps via
/proc/bus/pccard/...
======================================================================*/
static ssize_t show_info(struct class_device *class_dev, char *buf)
{
pcc_socket_t *s = container_of(class_dev, struct pcc_socket,
socket.dev);
return sprintf(buf, "type: %s\nbase addr: 0x%08lx\n",
pcc[s->type].name, s->base);
}
static ssize_t show_exca(struct class_device *class_dev, char *buf)
{
/* FIXME */
return 0;
}
static CLASS_DEVICE_ATTR(info, S_IRUGO, show_info, NULL);
static CLASS_DEVICE_ATTR(exca, S_IRUGO, show_exca, NULL);
#endif
/*====================================================================*/
/* this is horribly ugly... proper locking needs to be done here at
* some time... */
#define LOCKED(x) do { \
int retval; \
unsigned long flags; \
spin_lock_irqsave(&pcc_lock, flags); \
retval = x; \
spin_unlock_irqrestore(&pcc_lock, flags); \
return retval; \
} while (0)
static int pcc_get_status(struct pcmcia_socket *s, u_int *value)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE) {
DEBUG(3, "m32r_cfc: pcc_get_status: sock(%d) -EINVAL\n", sock);
*value = 0;
return -EINVAL;
}
DEBUG(3, "m32r_cfc: pcc_get_status: sock(%d)\n", sock);
LOCKED(_pcc_get_status(sock, value));
}
static int pcc_get_socket(struct pcmcia_socket *s, socket_state_t *state)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE) {
DEBUG(3, "m32r_cfc: pcc_get_socket: sock(%d) -EINVAL\n", sock);
return -EINVAL;
}
DEBUG(3, "m32r_cfc: pcc_get_socket: sock(%d)\n", sock);
LOCKED(_pcc_get_socket(sock, state));
}
static int pcc_set_socket(struct pcmcia_socket *s, socket_state_t *state)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE) {
DEBUG(3, "m32r_cfc: pcc_set_socket: sock(%d) -EINVAL\n", sock);
return -EINVAL;
}
DEBUG(3, "m32r_cfc: pcc_set_socket: sock(%d)\n", sock);
LOCKED(_pcc_set_socket(sock, state));
}
static int pcc_set_io_map(struct pcmcia_socket *s, struct pccard_io_map *io)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE) {
DEBUG(3, "m32r_cfc: pcc_set_io_map: sock(%d) -EINVAL\n", sock);
return -EINVAL;
}
DEBUG(3, "m32r_cfc: pcc_set_io_map: sock(%d)\n", sock);
LOCKED(_pcc_set_io_map(sock, io));
}
static int pcc_set_mem_map(struct pcmcia_socket *s, struct pccard_mem_map *mem)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE) {
DEBUG(3, "m32r_cfc: pcc_set_mem_map: sock(%d) -EINVAL\n", sock);
return -EINVAL;
}
DEBUG(3, "m32r_cfc: pcc_set_mem_map: sock(%d)\n", sock);
LOCKED(_pcc_set_mem_map(sock, mem));
}
static int pcc_init(struct pcmcia_socket *s)
{
DEBUG(3, "m32r_cfc: pcc_init()\n");
return 0;
}
static int pcc_suspend(struct pcmcia_socket *sock)
{
DEBUG(3, "m32r_cfc: pcc_suspend()\n");
return pcc_set_socket(sock, &dead_socket);
}
static struct pccard_operations pcc_operations = {
.init = pcc_init,
.suspend = pcc_suspend,
.get_status = pcc_get_status,
.get_socket = pcc_get_socket,
.set_socket = pcc_set_socket,
.set_io_map = pcc_set_io_map,
.set_mem_map = pcc_set_mem_map,
};
/*====================================================================*/
static int m32rpcc_suspend(struct device *dev, u32 state, u32 level)
{
int ret = 0;
if (level == SUSPEND_SAVE_STATE)
ret = pcmcia_socket_dev_suspend(dev, state);
return ret;
}
static int m32rpcc_resume(struct device *dev, u32 level)
{
int ret = 0;
if (level == RESUME_RESTORE_STATE)
ret = pcmcia_socket_dev_resume(dev);
return ret;
}
static struct device_driver pcc_driver = {
.name = "cfc",
.bus = &platform_bus_type,
.suspend = m32rpcc_suspend,
.resume = m32rpcc_resume,
};
static struct platform_device pcc_device = {
.name = "cfc",
.id = 0,
};
/*====================================================================*/
#define UT_CFC
static int __init init_m32r_pcc(void)
{
int i, ret;
ret = driver_register(&pcc_driver);
if (ret)
return ret;
ret = platform_device_register(&pcc_device);
if (ret){
driver_unregister(&pcc_driver);
return ret;
}
#if defined(CONFIG_PLAT_MAPPI2)
pcc_set(0, (unsigned int)PLD_CFCR0, 0x0f0f);
pcc_set(0, (unsigned int)PLD_CFCR1, 0x0200);
#endif
pcc_sockets = 0;
#if !defined(CONFIG_PLAT_USRV)
add_pcc_socket(M32R_PCC0_BASE, PLD_IRQ_CFC_INSERT, CFC_ATTR_MAPBASE,
CFC_IOPORT_BASE);
#else /* CONFIG_PLAT_USRV */
{
ulong base, mapaddr;
ioaddr_t ioaddr;
for (i = 0 ; i < M32R_MAX_PCC ; i++) {
base = (ulong)PLD_CFRSTCR;
base = base | (i << 8);
ioaddr = (i + 1) << 12;
mapaddr = CFC_ATTR_MAPBASE | (i << 20);
add_pcc_socket(base, 0, mapaddr, ioaddr);
}
}
#endif /* CONFIG_PLAT_USRV */
if (pcc_sockets == 0) {
printk("socket is not found.\n");
platform_device_unregister(&pcc_device);
driver_unregister(&pcc_driver);
return -ENODEV;
}
/* Set up interrupt handler(s) */
for (i = 0 ; i < pcc_sockets ; i++) {
socket[i].socket.dev.dev = &pcc_device.dev;
socket[i].socket.ops = &pcc_operations;
socket[i].socket.owner = THIS_MODULE;
socket[i].number = i;
ret = pcmcia_register_socket(&socket[i].socket);
if (ret && i--) {
for (; i>= 0; i--)
pcmcia_unregister_socket(&socket[i].socket);
break;
}
#if 0 /* driver model ordering issue */
class_device_create_file(&socket[i].socket.dev,
&class_device_attr_info);
class_device_create_file(&socket[i].socket.dev,
&class_device_attr_exca);
#endif
}
/* Finally, schedule a polling interrupt */
if (poll_interval != 0) {
poll_timer.function = pcc_interrupt_wrapper;
poll_timer.data = 0;
init_timer(&poll_timer);
poll_timer.expires = jiffies + poll_interval;
add_timer(&poll_timer);
}
return 0;
} /* init_m32r_pcc */
static void __exit exit_m32r_pcc(void)
{
int i;
for (i = 0; i < pcc_sockets; i++)
pcmcia_unregister_socket(&socket[i].socket);
platform_device_unregister(&pcc_device);
if (poll_interval != 0)
del_timer_sync(&poll_timer);
driver_unregister(&pcc_driver);
} /* exit_m32r_pcc */
module_init(init_m32r_pcc);
module_exit(exit_m32r_pcc);
MODULE_LICENSE("Dual MPL/GPL");
/*====================================================================*/
/*
* $Id$
*
* Copyright (C) 2001 by Hiroyuki Kondo
*/
#if !defined(CONFIG_PLAT_USRV)
#define M32R_MAX_PCC 2
#else /* CONFIG_PLAT_USRV */
#define M32R_MAX_PCC CONFIG_CFC_NUM
#endif /* CONFIG_PLAT_USRV */
/*
* M32R PC Card Controler
*/
#define M32R_PCC0_BASE 0x00ef7000
#define M32R_PCC1_BASE 0x00ef7020
/*
* Register offsets
*/
#define PCCR 0x00
#define PCADR 0x04
#define PCMOD 0x08
#define PCIRC 0x0c
#define PCCSIGCR 0x10
#define PCATCR 0x14
/*
* PCCR
*/
#define PCCR_PCEN (1UL<<(31-31))
/*
* PCIRC
*/
#define PCIRC_BWERR (1UL<<(31-7))
#define PCIRC_CDIN1 (1UL<<(31-14))
#define PCIRC_CDIN2 (1UL<<(31-15))
#define PCIRC_BEIEN (1UL<<(31-23))
#define PCIRC_CIIEN (1UL<<(31-30))
#define PCIRC_COIEN (1UL<<(31-31))
/*
* PCCSIGCR
*/
#define PCCSIGCR_SEN (1UL<<(31-3))
#define PCCSIGCR_VEN (1UL<<(31-7))
#define PCCSIGCR_CRST (1UL<<(31-15))
#define PCCSIGCR_COCR (1UL<<(31-31))
/*
*
*/
#define PCMOD_AS_ATTRIB (1UL<<(31-19))
#define PCMOD_AS_IO (1UL<<(31-18))
#define PCMOD_CBSZ (1UL<<(31-23)) /* set for 8bit */
#define PCMOD_DBEX (1UL<<(31-31)) /* set for excahnge */
/*
* M32R PCC Map addr
*/
#define M32R_PCC0_MAPBASE 0x14000000
#define M32R_PCC1_MAPBASE 0x16000000
#define M32R_PCC_MAPMAX 0x02000000
#define M32R_PCC_MAPSIZE 0x00001000 /* XXX */
#define M32R_PCC_MAPMASK (~(M32R_PCC_MAPMAX-1))
#define CFC_IOPORT_BASE 0x1000
#if !defined(CONFIG_PLAT_USRV)
#define CFC_ATTR_MAPBASE 0x0c014000
#define CFC_IO_MAPBASE_BYTE 0xac012000
#define CFC_IO_MAPBASE_WORD 0xac002000
#else /* CONFIG_PLAT_USRV */
#define CFC_ATTR_MAPBASE 0x04014000
#define CFC_IO_MAPBASE_BYTE 0xa4012000
#define CFC_IO_MAPBASE_WORD 0xa4002000
#endif /* CONFIG_PLAT_USRV */
/*
* linux/arch/m32r/drivers/m32r_pcc.c
*
* Device driver for the PCMCIA functionality of M32R.
*
* Copyright (c) 2001, 2002, 2003, 2004
* Hiroyuki Kondo, Naoto Sugai, Hayato Fujiwara
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/config.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/bitops.h>
#include <asm/system.h>
#include <asm/addrspace.h>
#include <pcmcia/version.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/ss.h>
#include <pcmcia/cs.h>
/* XXX: should be moved into asm/irq.h */
#define PCC0_IRQ 24
#define PCC1_IRQ 25
#define CHAOS_PCC_DEBUG
#ifdef CHAOS_PCC_DEBUG
static volatile u_short dummy_readbuf;
#endif
#define PCC_DEBUG_DBEX
#define PCMCIA_DEBUG 0
#include "m32r_pcc.h"
#ifdef PCMCIA_DEBUG
int pc_debug = PCMCIA_DEBUG;
module_param(pc_debug, int, 0444);
#define DEBUG(n, args...) if (pc_debug>(n)) printk(args)
#else
#define DEBUG(n, args...) do { } while (0)
#endif
/* Poll status interval -- 0 means default to interrupt */
static int poll_interval = 0;
typedef enum pcc_space { as_none = 0, as_comm, as_attr, as_io } pcc_as_t;
typedef struct pcc_socket {
u_short type, flags;
struct pcmcia_socket socket;
unsigned int number;
ioaddr_t ioaddr;
u_long mapaddr;
u_long base; /* PCC register base */
u_char cs_irq, intr;
pccard_io_map io_map[MAX_IO_WIN];
pccard_mem_map mem_map[MAX_WIN];
u_char io_win;
u_char mem_win;
pcc_as_t current_space;
u_char last_iodbex;
#ifdef CHAOS_PCC_DEBUG
u_char last_iosize;
#endif
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *proc;
#endif
} pcc_socket_t;
static int pcc_sockets = 0;
static pcc_socket_t socket[M32R_MAX_PCC] = {
{ 0, }, /* ... */
};
#define ISA_LOCK(n, f) do { } while (0)
#define ISA_UNLOCK(n, f) do { } while (0)
/*====================================================================*/
static unsigned int pcc_get(u_short, unsigned int);
static void pcc_set(u_short, unsigned int , unsigned int );
static spinlock_t pcc_lock = SPIN_LOCK_UNLOCKED;
void pcc_iorw(int sock, unsigned long port, void *buf, size_t size, size_t nmemb, int wr, int flag)
{
u_long addr;
u_long flags;
int need_ex;
#ifdef PCC_DEBUG_DBEX
int _dbex;
#endif
pcc_socket_t *t = &socket[sock];
#ifdef CHAOS_PCC_DEBUG
int map_changed = 0;
#endif
/* Need lock ? */
spin_lock_irqsave(&pcc_lock, flags);
/*
* Check if need dbex
*/
need_ex = (size > 1 && flag == 0) ? PCMOD_DBEX : 0;
#ifdef PCC_DEBUG_DBEX
_dbex = need_ex;
need_ex = 0;
#endif
/*
* calculate access address
*/
addr = t->mapaddr + port - t->ioaddr + KSEG1; /* XXX */
/*
* Check current mapping
*/
if (t->current_space != as_io || t->last_iodbex != need_ex) {
u_long cbsz;
/*
* Disable first
*/
pcc_set(sock, PCCR, 0);
/*
* Set mode and io address
*/
cbsz = (t->flags & MAP_16BIT) ? 0 : PCMOD_CBSZ;
pcc_set(sock, PCMOD, PCMOD_AS_IO | cbsz | need_ex);
pcc_set(sock, PCADR, addr & 0x1ff00000);
/*
* Enable and read it
*/
pcc_set(sock, PCCR, 1);
#ifdef CHAOS_PCC_DEBUG
#if 0
map_changed = (t->current_space == as_attr && size == 2); /* XXX */
#else
map_changed = 1;
#endif
#endif
t->current_space = as_io;
}
/*
* access to IO space
*/
if (size == 1) {
/* Byte */
unsigned char *bp = (unsigned char *)buf;
#ifdef CHAOS_DEBUG
if (map_changed) {
dummy_readbuf = readb(addr);
}
#endif
if (wr) {
/* write Byte */
while (nmemb--) {
writeb(*bp++, addr);
}
} else {
/* read Byte */
while (nmemb--) {
*bp++ = readb(addr);
}
}
} else {
/* Word */
unsigned short *bp = (unsigned short *)buf;
#ifdef CHAOS_PCC_DEBUG
if (map_changed) {
dummy_readbuf = readw(addr);
}
#endif
if (wr) {
/* write Word */
while (nmemb--) {
#ifdef PCC_DEBUG_DBEX
if (_dbex) {
unsigned char *cp = (unsigned char *)bp;
unsigned short tmp;
tmp = cp[1] << 8 | cp[0];
writew(tmp, addr);
bp++;
} else
#endif
writew(*bp++, addr);
}
} else {
/* read Word */
while (nmemb--) {
#ifdef PCC_DEBUG_DBEX
if (_dbex) {
unsigned char *cp = (unsigned char *)bp;
unsigned short tmp;
tmp = readw(addr);
cp[0] = tmp & 0xff;
cp[1] = (tmp >> 8) & 0xff;
bp++;
} else
#endif
*bp++ = readw(addr);
}
}
}
#if 1
/* addr is no longer used */
if ((addr = pcc_get(sock, PCIRC)) & PCIRC_BWERR) {
printk("m32r_pcc: BWERR detected : port 0x%04lx : iosize %dbit\n",
port, size * 8);
pcc_set(sock, PCIRC, addr);
}
#endif
/*
* save state
*/
t->last_iosize = size;
t->last_iodbex = need_ex;
/* Need lock ? */
spin_unlock_irqrestore(&pcc_lock,flags);
return;
}
void pcc_ioread(int sock, unsigned long port, void *buf, size_t size, size_t nmemb, int flag) {
pcc_iorw(sock, port, buf, size, nmemb, 0, flag);
}
void pcc_iowrite(int sock, unsigned long port, void *buf, size_t size, size_t nmemb, int flag) {
pcc_iorw(sock, port, buf, size, nmemb, 1, flag);
}
/*====================================================================*/
#define IS_ALIVE 0x8000
typedef struct pcc_t {
char *name;
u_short flags;
} pcc_t;
static pcc_t pcc[] = {
{ "xnux2", 0 }, { "xnux2", 0 },
};
static irqreturn_t pcc_interrupt(int, void *, struct pt_regs *);
/*====================================================================*/
static struct timer_list poll_timer;
static unsigned int pcc_get(u_short sock, unsigned int reg)
{
return inl(socket[sock].base + reg);
}
static void pcc_set(u_short sock, unsigned int reg, unsigned int data)
{
outl(data, socket[sock].base + reg);
}
/*======================================================================
See if a card is present, powered up, in IO mode, and already
bound to a (non PC Card) Linux driver. We leave these alone.
We make an exception for cards that seem to be serial devices.
======================================================================*/
static int __init is_alive(u_short sock)
{
unsigned int stat;
unsigned int f;
stat = pcc_get(sock, PCIRC);
f = (stat & (PCIRC_CDIN1 | PCIRC_CDIN2)) >> 16;
if(!f){
printk("m32r_pcc: No Card is detected at socket %d : stat = 0x%08x\n",stat,sock);
return 0;
}
if(f!=3)
printk("m32r_pcc: Insertion fail (%.8x) at socket %d\n",stat,sock);
else
printk("m32r_pcc: Card is Inserted at socket %d(%.8x)\n",sock,stat);
return 0;
}
static void add_pcc_socket(ulong base, int irq, ulong mapaddr, ioaddr_t ioaddr)
{
pcc_socket_t *t = &socket[pcc_sockets];
/* add sockets */
t->ioaddr = ioaddr;
t->mapaddr = mapaddr;
t->base = base;
#ifdef CHAOS_PCC_DEBUG
t->flags = MAP_16BIT;
#else
t->flags = 0;
#endif
if (is_alive(pcc_sockets))
t->flags |= IS_ALIVE;
/* add pcc */
if (t->base > 0) {
request_region(t->base, 0x20, "m32r-pcc");
}
printk(KERN_INFO " %s ", pcc[pcc_sockets].name);
printk("pcc at 0x%08lx\n", t->base);
/* Update socket interrupt information, capabilities */
t->socket.features |= (SS_CAP_PCCARD | SS_CAP_STATIC_MAP);
t->socket.map_size = M32R_PCC_MAPSIZE;
t->socket.io_offset = ioaddr; /* use for io access offset */
t->socket.irq_mask = 0;
t->socket.pci_irq = 2 + pcc_sockets; /* XXX */
request_irq(irq, pcc_interrupt, 0, "m32r-pcc", pcc_interrupt);
pcc_sockets++;
return;
}
/*====================================================================*/
static irqreturn_t pcc_interrupt(int irq, void *dev, struct pt_regs *regs)
{
int i, j, irc;
u_int events, active;
int handled = 0;
DEBUG(4, "m32r: pcc_interrupt(%d)\n", irq);
for (j = 0; j < 20; j++) {
active = 0;
for (i = 0; i < pcc_sockets; i++) {
if ((socket[i].cs_irq != irq) &&
(socket[i].socket.pci_irq != irq))
continue;
handled = 1;
irc = pcc_get(i, PCIRC);
irc >>=16;
DEBUG(2, "m32r-pcc:interrput: socket %d pcirc 0x%02x ", i, irc);
if (!irc)
continue;
events = (irc) ? SS_DETECT : 0;
events |= (pcc_get(i,PCCR) & PCCR_PCEN) ? SS_READY : 0;
DEBUG(2, " event 0x%02x\n", events);
if (events)
pcmcia_parse_events(&socket[i].socket, events);
active |= events;
active = 0;
}
if (!active) break;
}
if (j == 20)
printk(KERN_NOTICE "m32r-pcc: infinite loop in interrupt handler\n");
DEBUG(4, "m32r-pcc: interrupt done\n");
return IRQ_RETVAL(handled);
} /* pcc_interrupt */
static void pcc_interrupt_wrapper(u_long data)
{
pcc_interrupt(0, NULL, NULL);
init_timer(&poll_timer);
poll_timer.expires = jiffies + poll_interval;
add_timer(&poll_timer);
}
/*====================================================================*/
static int _pcc_get_status(u_short sock, u_int *value)
{
u_int status;
status = pcc_get(sock,PCIRC);
*value = ((status & PCIRC_CDIN1) && (status & PCIRC_CDIN2))
? SS_DETECT : 0;
status = pcc_get(sock,PCCR);
#if 0
*value |= (status & PCCR_PCEN) ? SS_READY : 0;
#else
*value |= SS_READY; /* XXX: always */
#endif
status = pcc_get(sock,PCCSIGCR);
*value |= (status & PCCSIGCR_VEN) ? SS_POWERON : 0;
DEBUG(3, "m32r-pcc: GetStatus(%d) = %#4.4x\n", sock, *value);
return 0;
} /* _get_status */
/*====================================================================*/
static int _pcc_get_socket(u_short sock, socket_state_t *state)
{
DEBUG(3, "m32r-pcc: GetSocket(%d) = flags %#3.3x, Vcc %d, Vpp %d, "
"io_irq %d, csc_mask %#2.2x\n", sock, state->flags,
state->Vcc, state->Vpp, state->io_irq, state->csc_mask);
return 0;
} /* _get_socket */
/*====================================================================*/
static int _pcc_set_socket(u_short sock, socket_state_t *state)
{
u_long reg = 0;
DEBUG(3, "m32r-pcc: SetSocket(%d, flags %#3.3x, Vcc %d, Vpp %d, "
"io_irq %d, csc_mask %#2.2x)", sock, state->flags,
state->Vcc, state->Vpp, state->io_irq, state->csc_mask);
if (state->Vcc) {
/*
* 5V only
*/
if (state->Vcc == 50) {
reg |= PCCSIGCR_VEN;
} else {
return -EINVAL;
}
}
if (state->flags & SS_RESET) {
DEBUG(3, ":RESET\n");
reg |= PCCSIGCR_CRST;
}
if (state->flags & SS_OUTPUT_ENA){
DEBUG(3, ":OUTPUT_ENA\n");
/* bit clear */
} else {
reg |= PCCSIGCR_SEN;
}
pcc_set(sock,PCCSIGCR,reg);
#ifdef PCMCIA_DEBUG
if(state->flags & SS_IOCARD){
DEBUG(3, ":IOCARD");
}
if (state->flags & SS_PWR_AUTO) {
DEBUG(3, ":PWR_AUTO");
}
if (state->csc_mask & SS_DETECT)
DEBUG(3, ":csc-SS_DETECT");
if (state->flags & SS_IOCARD) {
if (state->csc_mask & SS_STSCHG)
DEBUG(3, ":STSCHG");
} else {
if (state->csc_mask & SS_BATDEAD)
DEBUG(3, ":BATDEAD");
if (state->csc_mask & SS_BATWARN)
DEBUG(3, ":BATWARN");
if (state->csc_mask & SS_READY)
DEBUG(3, ":READY");
}
DEBUG(3, "\n");
#endif
return 0;
} /* _set_socket */
/*====================================================================*/
static int _pcc_set_io_map(u_short sock, struct pccard_io_map *io)
{
u_char map;
DEBUG(3, "m32r-pcc: SetIOMap(%d, %d, %#2.2x, %d ns, "
"%#4.4x-%#4.4x)\n", sock, io->map, io->flags,
io->speed, io->start, io->stop);
map = io->map;
return 0;
} /* _set_io_map */
/*====================================================================*/
static int _pcc_set_mem_map(u_short sock, struct pccard_mem_map *mem)
{
u_char map = mem->map;
u_long mode;
u_long addr;
pcc_socket_t *t = &socket[sock];
#ifdef CHAOS_PCC_DEBUG
#if 0
pcc_as_t last = t->current_space;
#endif
#endif
DEBUG(3, "m32r-pcc: SetMemMap(%d, %d, %#2.2x, %d ns, "
"%#5.5lx-%#5.5lx, %#5.5x)\n", sock, map, mem->flags,
mem->speed, mem->res->start, mem->res->end, mem->card_start);
/*
* sanity check
*/
if ((map > MAX_WIN) || (mem->card_start > 0x3ffffff) ||
(mem->res->start > mem->res->end)) {
return -EINVAL;
}
/*
* de-activate
*/
if ((mem->flags & MAP_ACTIVE) == 0) {
t->current_space = as_none;
return 0;
}
/*
* Disable first
*/
pcc_set(sock, PCCR, 0);
/*
* Set mode
*/
if (mem->flags & MAP_ATTRIB) {
mode = PCMOD_AS_ATTRIB | PCMOD_CBSZ;
t->current_space = as_attr;
} else {
mode = 0; /* common memory */
t->current_space = as_comm;
}
pcc_set(sock, PCMOD, mode);
/*
* Set address
*/
addr = t->mapaddr + (mem->card_start & M32R_PCC_MAPMASK);
pcc_set(sock, PCADR, addr);
mem->res->start = addr + mem->card_start;
mem->res->end = mem->res->start + (M32R_PCC_MAPSIZE - 1);
/*
* Enable again
*/
pcc_set(sock, PCCR, 1);
#ifdef CHAOS_PCC_DEBUG
#if 0
if (last != as_attr) {
#else
if (1) {
#endif
dummy_readbuf = *(u_char *)(addr + KSEG1);
}
#endif
return 0;
} /* _set_mem_map */
#if 0 /* driver model ordering issue */
/*======================================================================
Routines for accessing socket information and register dumps via
/proc/bus/pccard/...
======================================================================*/
static ssize_t show_info(struct class_device *class_dev, char *buf)
{
pcc_socket_t *s = container_of(class_dev, struct pcc_socket,
socket.dev);
return sprintf(buf, "type: %s\nbase addr: 0x%08lx\n",
pcc[s->type].name, s->base);
}
static ssize_t show_exca(struct class_device *class_dev, char *buf)
{
/* FIXME */
return 0;
}
static CLASS_DEVICE_ATTR(info, S_IRUGO, show_info, NULL);
static CLASS_DEVICE_ATTR(exca, S_IRUGO, show_exca, NULL);
#endif
/*====================================================================*/
/* this is horribly ugly... proper locking needs to be done here at
* some time... */
#define LOCKED(x) do { \
int retval; \
unsigned long flags; \
spin_lock_irqsave(&pcc_lock, flags); \
retval = x; \
spin_unlock_irqrestore(&pcc_lock, flags); \
return retval; \
} while (0)
static int pcc_get_status(struct pcmcia_socket *s, u_int *value)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE) {
*value = 0;
return -EINVAL;
}
LOCKED(_pcc_get_status(sock, value));
}
static int pcc_get_socket(struct pcmcia_socket *s, socket_state_t *state)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE)
return -EINVAL;
LOCKED(_pcc_get_socket(sock, state));
}
static int pcc_set_socket(struct pcmcia_socket *s, socket_state_t *state)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE)
return -EINVAL;
LOCKED(_pcc_set_socket(sock, state));
}
static int pcc_set_io_map(struct pcmcia_socket *s, struct pccard_io_map *io)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE)
return -EINVAL;
LOCKED(_pcc_set_io_map(sock, io));
}
static int pcc_set_mem_map(struct pcmcia_socket *s, struct pccard_mem_map *mem)
{
unsigned int sock = container_of(s, struct pcc_socket, socket)->number;
if (socket[sock].flags & IS_ALIVE)
return -EINVAL;
LOCKED(_pcc_set_mem_map(sock, mem));
}
static int pcc_init(struct pcmcia_socket *s)
{
DEBUG(4, "m32r-pcc: init call\n");
return 0;
}
static int pcc_suspend(struct pcmcia_socket *sock)
{
return pcc_set_socket(sock, &dead_socket);
}
static struct pccard_operations pcc_operations = {
.init = pcc_init,
.suspend = pcc_suspend,
.get_status = pcc_get_status,
.get_socket = pcc_get_socket,
.set_socket = pcc_set_socket,
.set_io_map = pcc_set_io_map,
.set_mem_map = pcc_set_mem_map,
};
/*====================================================================*/
static int m32r_pcc_suspend(struct device *dev, u32 state, u32 level)
{
int ret = 0;
if (level == SUSPEND_SAVE_STATE)
ret = pcmcia_socket_dev_suspend(dev, state);
return ret;
}
static int m32r_pcc_resume(struct device *dev, u32 level)
{
int ret = 0;
if (level == RESUME_RESTORE_STATE)
ret = pcmcia_socket_dev_resume(dev);
return ret;
}
static struct device_driver pcc_driver = {
.name = "pcc",
.bus = &platform_bus_type,
.suspend = m32r_pcc_suspend,
.resume = m32r_pcc_resume,
};
static struct platform_device pcc_device = {
.name = "pcc",
.id = 0,
};
/*====================================================================*/
static int __init init_m32r_pcc(void)
{
int i, ret;
ret = driver_register(&pcc_driver);
if (ret)
return ret;
ret = platform_device_register(&pcc_device);
if (ret){
driver_unregister(&pcc_driver);
return ret;
}
printk(KERN_INFO "m32r PCC probe:\n");
pcc_sockets = 0;
add_pcc_socket(M32R_PCC0_BASE, PCC0_IRQ, M32R_PCC0_MAPBASE, 0x1000);
#ifdef CONFIG_M32RPCC_SLOT2
add_pcc_socket(M32R_PCC1_BASE, PCC1_IRQ, M32R_PCC1_MAPBASE, 0x2000);
#endif
if (pcc_sockets == 0) {
printk("socket is not found.\n");
platform_device_unregister(&pcc_device);
driver_unregister(&pcc_driver);
return -ENODEV;
}
/* Set up interrupt handler(s) */
for (i = 0 ; i < pcc_sockets ; i++) {
socket[i].socket.dev.dev = &pcc_device.dev;
socket[i].socket.ops = &pcc_operations;
socket[i].socket.owner = THIS_MODULE;
socket[i].number = i;
ret = pcmcia_register_socket(&socket[i].socket);
if (ret && i--) {
for (; i>= 0; i--)
pcmcia_unregister_socket(&socket[i].socket);
break;
}
#if 0 /* driver model ordering issue */
class_device_create_file(&socket[i].socket.dev,
&class_device_attr_info);
class_device_create_file(&socket[i].socket.dev,
&class_device_attr_exca);
#endif
}
/* Finally, schedule a polling interrupt */
if (poll_interval != 0) {
poll_timer.function = pcc_interrupt_wrapper;
poll_timer.data = 0;
init_timer(&poll_timer);
poll_timer.expires = jiffies + poll_interval;
add_timer(&poll_timer);
}
return 0;
} /* init_m32r_pcc */
static void __exit exit_m32r_pcc(void)
{
int i;
for (i = 0; i < pcc_sockets; i++)
pcmcia_unregister_socket(&socket[i].socket);
platform_device_unregister(&pcc_device);
if (poll_interval != 0)
del_timer_sync(&poll_timer);
driver_unregister(&pcc_driver);
} /* exit_m32r_pcc */
module_init(init_m32r_pcc);
module_exit(exit_m32r_pcc);
MODULE_LICENSE("Dual MPL/GPL");
/*====================================================================*/
/*
* $Id$
*
* Copyright (C) 2001 by Hiroyuki Kondo
*/
#define M32R_MAX_PCC 2
/*
* M32R PC Card Controler
*/
#define M32R_PCC0_BASE 0x00ef7000
#define M32R_PCC1_BASE 0x00ef7020
/*
* Register offsets
*/
#define PCCR 0x00
#define PCADR 0x04
#define PCMOD 0x08
#define PCIRC 0x0c
#define PCCSIGCR 0x10
#define PCATCR 0x14
/*
* PCCR
*/
#define PCCR_PCEN (1UL<<(31-31))
/*
* PCIRC
*/
#define PCIRC_BWERR (1UL<<(31-7))
#define PCIRC_CDIN1 (1UL<<(31-14))
#define PCIRC_CDIN2 (1UL<<(31-15))
#define PCIRC_BEIEN (1UL<<(31-23))
#define PCIRC_CIIEN (1UL<<(31-30))
#define PCIRC_COIEN (1UL<<(31-31))
/*
* PCCSIGCR
*/
#define PCCSIGCR_SEN (1UL<<(31-3))
#define PCCSIGCR_VEN (1UL<<(31-7))
#define PCCSIGCR_CRST (1UL<<(31-15))
#define PCCSIGCR_COCR (1UL<<(31-31))
/*
*
*/
#define PCMOD_AS_ATTRIB (1UL<<(31-19))
#define PCMOD_AS_IO (1UL<<(31-18))
#define PCMOD_CBSZ (1UL<<(31-23)) /* set for 8bit */
#define PCMOD_DBEX (1UL<<(31-31)) /* set for excahnge */
/*
* M32R PCC Map addr
*/
#define M32R_PCC0_MAPBASE 0x14000000
#define M32R_PCC1_MAPBASE 0x16000000
#define M32R_PCC_MAPMAX 0x02000000
#define M32R_PCC_MAPSIZE 0x00001000 /* XXX */
#define M32R_PCC_MAPMASK (~(M32R_PCC_MAPMAX-1))
/*
* MTD chip driver for M5M29GT320VP
*
* Copyright (C) 2003 Takeo Takahashi
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* $Id$
*/
#ifndef __KERNEL__
# define __KERNEL__
#endif
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/mtd/map.h>
#include <linux/mtd/cfi.h>
#include <linux/delay.h>
#define M5DRV_DEBUG(n, args...) if ((n) & m5drv_debug) printk(KERN_DEBUG args)
#undef UNLOCK_BEFORE_ERASE
#define M5DRV_PAGE_SIZE (256) /* page program size */
#define M5DRV_BLOCK_SIZE8 (8*1024) /* 8K block size in byte */
#define M5DRV_BLOCK_SIZE64 (64*1024) /* 64K block size in byte */
#define M5DRV_MAX_BLOCK_NUM 70 /* number of blocks */
#define M5DRV_ERASE_REGION 2 /* 64KB and 8KB */
/*
* Software commands
*/
#define CMD_READ_ARRAY 0xff
#define CMD_DEVICE_IDENT 0x90
#define CMD_READ_STATUS 0x70
#define CMD_CLEAR_STATUS 0x50
#define CMD_BLOCK_ERASE 0x20
#define CMD_CONFIRM 0xd0
#define CMD_PROGRAM_BYTE 0x40
#define CMD_PROGRAM_WORD CMD_PROGRAM_BYTE
#define CMD_PROGRAM_PAGE 0x41
#define CMD_SINGLE_LOAD_DATA 0x74
#define CMD_BUFF2FLASH 0x0e
#define CMD_FLASH2BUFF 0xf1
#define CMD_CLEAR_BUFF 0x55
#define CMD_SUSPEND 0xb0
#define CMD_RESUME 0xd0
#define IDENT_OFFSET 0 /* indent command offset */
/*
* Status
*/
#define STATUS_READY 0x80 /* 0:busy 1:ready */
#define STATUS_SUSPEND 0x40 /* 0:progress/complete 1:suspend */
#define STATUS_ERASE 0x20 /* 0:pass 1:error */
#define STATUS_PROGRAM 0x10 /* 0:pass 1:error */
#define STATUS_BLOCK 0x08 /* 0:pass 1:error */
/*
* Device Code
*/
#define MAKER (0x1c)
#define M5M29GT320VP (0x20)
#define M5M29GB320VP (0x21)
static const char version[] = "M5DRV Flash Driver";
static const char date[] = __DATE__;
static const char time[] = __TIME__;
static int m5drv_debug = 0;
MODULE_PARM(m5drv_debug, "i");
struct m5drv_info {
struct flchip *chip;
int chipshift;
int numchips;
struct flchip chips[1];
unsigned char buf[M5DRV_BLOCK_SIZE64];
#define M5BUF (m5drv->buf)
};
struct mtd_info *m5drv_probe(struct map_info *map);
static int m5drv_probe_map(struct map_info *map, struct mtd_info *mtd);
static int m5drv_wait(struct map_info *map, struct flchip *chip, loff_t adr);
static void m5drv_release(struct flchip *chip);
static int m5drv_query_blksize(loff_t ofs);
static int m5drv_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
static int m5drv_read_oneblock(struct map_info *map, loff_t from);
static int m5drv_write(struct mtd_info *mtd, loff_t adr, size_t len, size_t *retlen, const u_char *buf);
static int m5drv_write_oneblock(struct map_info *map, loff_t adr, size_t len, const u_char *buf);
static int m5drv_write_onepage(struct map_info *map, struct flchip *chip, unsigned long adr, const u_char *buf);
static int m5drv_erase(struct mtd_info *mtd, struct erase_info *instr);
static int m5drv_do_wait_for_ready(struct map_info *map, struct flchip *chip, unsigned long adr);
static int m5drv_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr);
static void m5drv_sync(struct mtd_info *mtd);
static int m5drv_suspend(struct mtd_info *mtd);
static void m5drv_resume(struct mtd_info *mtd);
static void m5drv_destroy(struct mtd_info *mtd);
#ifdef UNLOCK_BEFORE_ERASE
static void m5drv_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr);
#endif
static struct mtd_chip_driver m5drv_chipdrv = {
probe: m5drv_probe,
destroy: m5drv_destroy,
name: "m5drv",
module: THIS_MODULE
};
struct mtd_info *m5drv_probe(struct map_info *map)
{
struct mtd_info *mtd = NULL;
struct m5drv_info *m5drv = NULL;
int width;
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
if (!mtd) {
printk("m5drv: can not allocate memory for mtd_info\n");
return NULL;
}
m5drv = kmalloc(sizeof(*m5drv), GFP_KERNEL);
if (!m5drv) {
printk("m5drv: can not allocate memory for m5drv_info\n");
kfree(mtd);
return NULL;
}
memset(mtd, 0, sizeof(*mtd));
width = m5drv_probe_map(map, mtd);
if (!width) {
printk("m5drv: m5drv_probe_map error (width=%d)\n", width);
kfree(mtd);
kfree(m5drv);
return NULL;
}
mtd->priv = map;
mtd->type = MTD_OTHER;
mtd->erase = m5drv_erase;
mtd->read = m5drv_read;
mtd->write = m5drv_write;
mtd->sync = m5drv_sync;
mtd->suspend = m5drv_suspend;
mtd->resume = m5drv_resume;
mtd->flags = MTD_CAP_NORFLASH; /* ??? */
mtd->name = map->name;
memset(m5drv, 0, sizeof(*m5drv));
m5drv->chipshift = 23;
m5drv->numchips = 1;
m5drv->chips[0].start = 0;
m5drv->chips[0].state = FL_READY;
m5drv->chips[0].mutex = &m5drv->chips[0]._spinlock;
m5drv->chips[0].word_write_time = 0;
init_waitqueue_head(&m5drv->chips[0].wq);
spin_lock_init(&m5drv->chips[0]._spinlock);
map->fldrv = &m5drv_chipdrv;
map->fldrv_priv = m5drv;
MOD_INC_USE_COUNT;
return mtd;
}
static int m5drv_probe_map(struct map_info *map, struct mtd_info *mtd)
{
u16 tmp;
u16 maker, device;
int width = 2;
struct mtd_erase_region_info *einfo;
map->write16(map, CMD_READ_ARRAY, IDENT_OFFSET);
tmp = map->read16(map, IDENT_OFFSET);
map->write16(map, CMD_DEVICE_IDENT, IDENT_OFFSET);
maker = map->read16(map, IDENT_OFFSET);
maker &= 0xff;
if (maker == MAKER) {
/* FIXME: check device */
device = maker >> 8;
printk("m5drv: detected M5M29GT320VP\n");
einfo = kmalloc(sizeof(*einfo) * M5DRV_ERASE_REGION, GFP_KERNEL);
if (!einfo) {
printk("m5drv: cannot allocate memory for erase_region\n");
return 0;
}
/* 64KB erase block (blk no# 0-62) */
einfo[0].offset = 0;
einfo[0].erasesize = 0x8000 * width;
einfo[0].numblocks = (7 + 8 + 24 + 24);
/* 8KB erase block (blk no# 63-70) */
einfo[1].offset = 0x3f0000;
einfo[1].erasesize = 0x1000 * width;
einfo[1].numblocks = (2 + 8);
mtd->numeraseregions = M5DRV_ERASE_REGION;
mtd->eraseregions = einfo;
mtd->size = 0x200000 * width; /* total 4MB */
/*
* mtd->erasesize is used in parse_xxx_partitions.
* last erase block has a partition table.
*/
mtd->erasesize = 0x8000 * width;
return width;
} else if (map->read16(map, IDENT_OFFSET) == CMD_DEVICE_IDENT) {
printk("m5drv: looks like RAM\n");
map->write16(map, tmp, IDENT_OFFSET);
} else {
printk("m5drv: can not detect flash memory (0x%04x)\n", maker);
}
map->write16(map, CMD_READ_ARRAY, IDENT_OFFSET);
return 0;
}
static int m5drv_query_blksize(loff_t ofs)
{
int blk;
blk = ofs >> 16;
if (blk > 0x3f) {
printk("m5drv: out of block address (0x%08x)\n", (u32)ofs);
return M5DRV_BLOCK_SIZE64;
}
if (blk == 63) blk += ((ofs & 0x0000e000) >> 13);
if (blk > M5DRV_MAX_BLOCK_NUM) {
printk("m5drv: out of block address (0x%08x)\n", (u32)ofs);
return M5DRV_BLOCK_SIZE64;
}
return ((blk >= 63)? M5DRV_BLOCK_SIZE8:M5DRV_BLOCK_SIZE64);
}
static int m5drv_wait(struct map_info *map, struct flchip *chip, loff_t adr)
{
__u16 status;
unsigned long timeo;
DECLARE_WAITQUEUE(wait, current);
timeo = jiffies + HZ;
adr &= ~1; /* align 2 */
retry:
spin_lock_bh(chip->mutex);
switch (chip->state) {
case FL_READY:
map->write16(map, CMD_READ_STATUS, adr);
chip->state = FL_STATUS;
case FL_STATUS:
status = map->read16(map, adr);
if ((status & STATUS_READY) != STATUS_READY) {
udelay(100);
}
break;
default:
printk("m5drv: waiting for chip\n");
if (time_after(jiffies, timeo)) { /* jiffies is after timeo */
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock_bh(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock_bh(chip->mutex); // by takeo
if (signal_pending(current)) {
printk("m5drv: canceled\n");
map->write16(map, CMD_CLEAR_STATUS, adr);
map->write16(map, CMD_READ_ARRAY, adr);
chip->state = FL_READY;
return -EINTR;
}
}
timeo = jiffies + HZ;
goto retry;
}
map->write16(map, CMD_READ_ARRAY, adr);
chip->state = FL_READY;
return 0;
}
static void m5drv_release(struct flchip *chip)
{
M5DRV_DEBUG(1, "m5drv_release\n");
wake_up(&chip->wq);
spin_unlock_bh(chip->mutex);
}
static int m5drv_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct m5drv_info *m5drv = map->fldrv_priv;
int chipnum;
int ret;
*retlen = 0;
chipnum = (from >> m5drv->chipshift);
if (chipnum >= m5drv->numchips) {
printk("m5drv: out of chip number (%d)\n", chipnum);
return -EIO;
}
/* We don't support erase suspend */
ret = m5drv_wait(map, &m5drv->chips[chipnum], from);
if (ret < 0) return ret;
map->copy_from(map, buf, from, len);
m5drv_release(&m5drv->chips[chipnum]);
*retlen = len;
return 0;
}
static int m5drv_read_oneblock(struct map_info *map, loff_t from)
{
struct m5drv_info *m5drv = map->fldrv_priv;
int ofs;
int ret;
int blksize;
int chipnum;
M5DRV_DEBUG(1, "m5drv_read_oneblock(0x%08x)\n", (u32)from);
chipnum = (from >> m5drv->chipshift);
blksize = m5drv_query_blksize(from);
ofs = (from & ~(blksize - 1));
ret = m5drv_wait(map, &m5drv->chips[chipnum], from);
if (ret < 0) return ret;
map->copy_from(map, M5BUF, ofs, blksize);
m5drv_release(&m5drv->chips[chipnum]);
return 0;
}
static int m5drv_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
{
struct map_info *map = mtd->priv;
struct m5drv_info *m5drv = map->fldrv_priv;
int ret = 0;
int blksize;
int chipnum;
int thislen;
M5DRV_DEBUG(1, "m5drv_write(to=0x%08x, len=%d, buf=0x%08x\n", (u32)to, (u32)len, (u32)buf);
*retlen = 0;
blksize = m5drv_query_blksize(to);
chipnum = (to >> m5drv->chipshift);
/*
* we does not support byte/word program yet.
*/
for (thislen = len; thislen > 0; thislen -= blksize) {
thislen = ((thislen >= blksize)? blksize:thislen);
ret = m5drv_write_oneblock(map, to, thislen, buf);
if (ret < 0) return ret;
to += blksize;
buf += blksize;
*retlen += thislen;
}
return 0;
}
static int m5drv_write_oneblock(struct map_info *map, loff_t adr, size_t len, const u_char *buf)
{
struct m5drv_info *m5drv = map->fldrv_priv;
int ofs;
int blksize;
int ret;
int chipnum;
int i;
M5DRV_DEBUG(1, "m5drv_write_oneblock(0x%08x, %d)\n", (u32)adr, (u32)len);
chipnum = (adr >> m5drv->chipshift);
ret = m5drv_read_oneblock(map, adr);
if (ret < 0) return ret;
blksize = m5drv_query_blksize(adr);
ofs = (adr & (blksize - 1));
adr = adr & ~(blksize - 1);
memcpy(M5BUF + ofs, buf, len); /* copy to block buffer */
#if 0 /*
* FIXME: erasing is unnecessary.
*/
ret = m5drv_erase_oneblock(map, &m5drv->chips[chipnum], adr);
if (ret < 0) return ret;
#endif
for (i = 0; i < len; i += M5DRV_PAGE_SIZE) {
ret = m5drv_write_onepage(map, &m5drv->chips[chipnum], adr, M5BUF+i);
if (ret < 0) return ret;
adr += M5DRV_PAGE_SIZE;
}
return 0;
}
static int m5drv_write_onepage(struct map_info *map, struct flchip *chip, unsigned long adr, const u_char *buf)
{
int ret;
int i;
u_short data;
long padr; /* page address */
u_short status;
int chipnum;
struct m5drv_info *m5drv = map->fldrv_priv;
M5DRV_DEBUG(1, "m5drv_write_onepage(0x%08x, 0x%08x)\n", (u32)adr, (u32)buf);
padr = adr;
padr &= ~1; /* align 2 */
chipnum = (adr >> m5drv->chipshift);
ret = m5drv_wait(map, chip, padr);
if (ret < 0) return ret;
map->write16(map, CMD_PROGRAM_PAGE, padr);
chip->state = FL_WRITING;
for (i = 0; i < M5DRV_PAGE_SIZE; i += map->buswidth) {
data = ((*buf << 8)| *(buf + 1));
/*
* FIXME: convert be->le ?
*/
map->write16(map, data, adr);
adr += map->buswidth;
buf += map->buswidth;
}
ret = m5drv_do_wait_for_ready(map, chip, padr);
if (ret < 0) {
m5drv_release(&m5drv->chips[chipnum]);
return ret;
}
status = map->read16(map, padr);
if ((status & STATUS_READY) != STATUS_READY) {
printk("m5drv: error page writing at addr=0x%08x status=0x%08x\n",
(u32)padr, (u32)status);
map->write16(map, CMD_CLEAR_STATUS, padr);
}
map->write16(map, CMD_READ_ARRAY, padr);
chip->state = FL_READY;
m5drv_release(&m5drv->chips[chipnum]);
return 0;
}
static int m5drv_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct map_info *map = mtd->priv;
struct m5drv_info *m5drv = map->fldrv_priv;
unsigned long adr,len;
int chipnum, ret=0;
int erasesize = 0;
int i;
M5DRV_DEBUG(2, "m5drv_erase(0x%08x)\n", instr->addr);
chipnum = instr->addr >> m5drv->chipshift;
if (chipnum >= m5drv->numchips) {
printk("m5drv: out of chip number (%d)\n", chipnum);
return -EIO;
}
adr = instr->addr & ((1<<m5drv->chipshift)-1);
len = instr->len;
if (mtd->numeraseregions == 0) {
erasesize = mtd->erasesize;
} else if (mtd->numeraseregions == 1) {
erasesize = mtd->eraseregions->erasesize;
} else {
for (i = 0; i < (mtd->numeraseregions - 1); i++) {
if (adr < mtd->eraseregions[i+1].offset) {
erasesize = mtd->eraseregions[i].erasesize;
break;
}
}
if (i == (mtd->numeraseregions - 1)) { /* last region */
erasesize = mtd->eraseregions[i].erasesize;
}
}
M5DRV_DEBUG(2, "erasesize=%d, len=%ld\n", erasesize, len);
if (erasesize == 0) return -EINVAL;
if(instr->addr & (erasesize - 1))
return -EINVAL;
if(instr->len & (erasesize - 1))
return -EINVAL;
if(instr->len + instr->addr > mtd->size)
return -EINVAL;
while (len) {
ret = m5drv_erase_oneblock(map, &m5drv->chips[chipnum], adr);
if (ret < 0) return ret;
adr += erasesize;
len -= erasesize;
if(adr >> m5drv->chipshift){
adr = 0;
chipnum++;
if(chipnum >= m5drv->numchips)
break;
}
}
instr->state = MTD_ERASE_DONE;
if(instr->callback) {
M5DRV_DEBUG(1, "m5drv: call callback\n");
instr->callback(instr);
}
return 0;
}
static int m5drv_do_wait_for_ready(struct map_info *map, struct flchip *chip, unsigned long adr)
{
int ret;
int timeo;
u_short status;
DECLARE_WAITQUEUE(wait, current);
/* unnecessary CMD_READ_STATUS */
/*
map->write16(map, CMD_READ_STATUS, adr);
status = map->read16(map, adr);
*/
timeo = jiffies + HZ;
while (time_before(jiffies, timeo)) {
/*
map->write16(map, CMD_READ_STATUS, adr);
*/
status = map->read16(map, adr);
if ((status & STATUS_READY) == STATUS_READY) {
M5DRV_DEBUG(1, "m5drv_wait_for_ready: ok, ready\n");
/*
* FIXME: do full status check
*/
ret = 0;
goto out;
}
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
// enabled by takeo
spin_unlock_bh(chip->mutex);
schedule_timeout(1);
schedule();
remove_wait_queue(&chip->wq, &wait);
// enabled by takeo
spin_lock_bh(chip->mutex);
if (signal_pending(current)) {
ret = -EINTR;
goto out;
}
//timeo = jiffies + HZ;
}
ret = -ETIME;
out:
if (ret < 0) {
map->write16(map, CMD_CLEAR_STATUS, adr);
map->write16(map, CMD_READ_ARRAY, adr);
chip->state = FL_READY;
}
return ret;
}
static int m5drv_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
{
int ret;
u_short status;
struct m5drv_info *m5drv = map->fldrv_priv;
int chipnum;
M5DRV_DEBUG(1, "m5drv_erase_oneblock()\n");
#ifdef UNLOCK_BEFORE_ERASE
m5drv_unlock_oneblock(map, chip, adr);
#endif
chipnum = (adr >> m5drv->chipshift);
adr &= ~1; /* align 2 */
ret = m5drv_wait(map, chip, adr);
if (ret < 0) return ret;
map->write16(map, CMD_BLOCK_ERASE, adr);
map->write16(map, CMD_CONFIRM, adr);
chip->state = FL_ERASING;
ret = m5drv_do_wait_for_ready(map, chip, adr);
if(ret < 0) {
m5drv_release(&m5drv->chips[chipnum]);
return ret;
}
status = map->read16(map, adr);
if ((status & STATUS_READY) == STATUS_READY) {
M5DRV_DEBUG(1, "m5drv: erase completed status=%04x\n", status);
map->write16(map, CMD_READ_ARRAY, adr);
chip->state = FL_READY;
m5drv_release(&m5drv->chips[chipnum]);
return 0; /* ok, erasing completed */
}
printk("m5drv: error erasing block at addr=%08lx status=%08x\n",
adr,status);
map->write16(map, CMD_READ_ARRAY, adr); /* cancel erasing */
chip->state = FL_READY;
m5drv_release(&m5drv->chips[chipnum]);
return -EIO;
}
#ifdef UNLOCK_BEFORE_ERASE
/*
* we don't support unlock yet
*/
static void m5drv_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
{
M5DRV_DEBUG(1, "m5drv_unlock_oneblock\n");
}
#endif
static void m5drv_sync(struct mtd_info *mtd)
{
M5DRV_DEBUG(1, "m5drv_sync()\n");
}
static int m5drv_suspend(struct mtd_info *mtd)
{
M5DRV_DEBUG(1, "m5drv_suspend()\n");
return -EINVAL;
}
static void m5drv_resume(struct mtd_info *mtd)
{
M5DRV_DEBUG(1, "m5drv_resume()\n");
}
static void m5drv_destroy(struct mtd_info *mtd)
{
M5DRV_DEBUG(1, "m5drv_destroy()\n");
}
int __init m5drv_probe_init(void)
{
printk("MTD chip driver\n");
register_mtd_chip_driver(&m5drv_chipdrv);
return 0;
}
static void __exit m5drv_probe_exit(void)
{
M5DRV_DEBUG(1, "m5drv_probe_exit()\n");
unregister_mtd_chip_driver(&m5drv_chipdrv);
}
module_init(m5drv_probe_init);
module_exit(m5drv_probe_exit);
MODULE_AUTHOR("Takeo Takahashi");
MODULE_DESCRIPTION("MTD chip driver for M5M29GT320VP");
MODULE_LICENSE("GPL");
EXPORT_NO_SYMBOLS;
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment