Commit b271b212 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'edac_for_4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp

Pull EDAC updates from Borislav Petkov:

 - Support for ZynqMP DDR controller support to synopsys_edac along with
   a driver cleanup and generalization for the addition of support for
   the new IP. (Manish Narani)

 - Removal of the /sys/bus/edac devices hierarchy. This enabled us to
   get rid of the silly memory controllers maximum number notion. (Tony
   Luck and Borislav Petkov)

 - skx_edac improvements and fixes. (Qiuxu Zhuo and Tony Luck)

 - The usual garden variety of small cleanups and fixes.

* tag 'edac_for_4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp: (25 commits)
  EDAC, fsl_ddr: Add LS1021A to the list of supported hardware
  EDAC, i5000: Remove set but not used local variables
  MAINTAINERS, EDAC: Drop bouncing email
  EDAC, i82975x: Fix spelling mistake "reserverd" -> "reserved"
  EDAC, fsl: Move error injection under CONFIG_EDAC_DEBUG
  EDAC, skx: Let EDAC core show the decoded result for debugfs
  EDAC, skx: Move debugfs node under EDAC's hierarchy
  EDAC, skx: Prepend hex formatting with '0x'
  EDAC, skx: Fix function calling order in skx_exit()
  EDAC: Drop per-memory controller buses
  EDAC: Don't add devices under /sys/bus/edac
  EDAC: Fix indentation issues in several EDAC drivers
  EDAC, skx: Fix randconfig builds in a better way
  EDAC, i82975x: Remove set but not used variable dtype
  EDAC, qcom_edac: Remove irq_handled local variable
  EDAC, synopsys: Add Error Injection support for ZynqMP DDR controller
  EDAC, synopsys: Add ECC support for ZynqMP DDR controller
  EDAC, synopsys: Add macro defines for ZynqMP DDRC
  dt: bindings: Document ZynqMP DDRC in Synopsys documentation
  EDAC, synopsys: Add error handling for the of_device_get_match_data() result
  ...
parents 8e61e7b5 75dfa870
Binding for Synopsys IntelliDDR Multi Protocol Memory Controller Binding for Synopsys IntelliDDR Multi Protocol Memory Controller
This controller has an optional ECC support in half-bus width (16-bit) The ZynqMP DDR ECC controller has an optional ECC support in 64-bit and 32-bit
configuration. The ECC controller corrects one bit error and detects bus width configurations.
two bit errors.
The Zynq DDR ECC controller has an optional ECC support in half-bus width
(16-bit) configuration.
These both ECC controllers correct single bit ECC errors and detect double bit
ECC errors.
Required properties: Required properties:
- compatible: Should be 'xlnx,zynq-ddrc-a05' - compatible: One of:
- reg: Base address and size of the controllers memory area - 'xlnx,zynq-ddrc-a05' : Zynq DDR ECC controller
- 'xlnx,zynqmp-ddrc-2.40a' : ZynqMP DDR ECC controller
- reg: Should contain DDR controller registers location and length.
Required properties for "xlnx,zynqmp-ddrc-2.40a":
- interrupts: Property with a value describing the interrupt number.
Example: Example:
memory-controller@f8006000 { memory-controller@f8006000 {
compatible = "xlnx,zynq-ddrc-a05"; compatible = "xlnx,zynq-ddrc-a05";
reg = <0xf8006000 0x1000>; reg = <0xf8006000 0x1000>;
}; };
mc: memory-controller@fd070000 {
compatible = "xlnx,zynqmp-ddrc-2.40a";
reg = <0x0 0xfd070000 0x0 0x30000>;
interrupt-parent = <&gic>;
interrupts = <0 112 4>;
};
...@@ -5445,7 +5445,6 @@ S: Maintained ...@@ -5445,7 +5445,6 @@ S: Maintained
F: drivers/edac/i82443bxgx_edac.c F: drivers/edac/i82443bxgx_edac.c
EDAC-I82975X EDAC-I82975X
M: Ranganathan Desikan <ravi@jetztechnologies.com>
M: "Arvind R." <arvino55@gmail.com> M: "Arvind R." <arvino55@gmail.com>
L: linux-edac@vger.kernel.org L: linux-edac@vger.kernel.org
S: Maintained S: Maintained
......
...@@ -231,10 +231,10 @@ config EDAC_SBRIDGE ...@@ -231,10 +231,10 @@ config EDAC_SBRIDGE
config EDAC_SKX config EDAC_SKX
tristate "Intel Skylake server Integrated MC" tristate "Intel Skylake server Integrated MC"
depends on PCI && X86_64 && X86_MCE_INTEL && PCI_MMCONFIG depends on PCI && X86_64 && X86_MCE_INTEL && PCI_MMCONFIG && ACPI
depends on ACPI_NFIT || !ACPI_NFIT # if ACPI_NFIT=m, EDAC_SKX can't be y depends on ACPI_NFIT || !ACPI_NFIT # if ACPI_NFIT=m, EDAC_SKX can't be y
select DMI select DMI
select ACPI_ADXL if ACPI select ACPI_ADXL
help help
Support for error detection and correction the Intel Support for error detection and correction the Intel
Skylake server Integrated Memory Controllers. If your Skylake server Integrated Memory Controllers. If your
...@@ -442,7 +442,7 @@ config EDAC_ALTERA_SDMMC ...@@ -442,7 +442,7 @@ config EDAC_ALTERA_SDMMC
config EDAC_SYNOPSYS config EDAC_SYNOPSYS
tristate "Synopsys DDR Memory Controller" tristate "Synopsys DDR Memory Controller"
depends on ARCH_ZYNQ depends on ARCH_ZYNQ || ARCH_ZYNQMP
help help
Support for error detection and correction on the Synopsys DDR Support for error detection and correction on the Synopsys DDR
memory controller. memory controller.
......
...@@ -1446,8 +1446,8 @@ static int __init e752x_init(void) ...@@ -1446,8 +1446,8 @@ static int __init e752x_init(void)
edac_dbg(3, "\n"); edac_dbg(3, "\n");
/* Ensure that the OPSTATE is set correctly for POLL or NMI */ /* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init(); opstate_init();
pci_rc = pci_register_driver(&e752x_driver); pci_rc = pci_register_driver(&e752x_driver);
return (pci_rc < 0) ? pci_rc : 0; return (pci_rc < 0) ? pci_rc : 0;
......
...@@ -55,8 +55,6 @@ static LIST_HEAD(mc_devices); ...@@ -55,8 +55,6 @@ static LIST_HEAD(mc_devices);
*/ */
static const char *edac_mc_owner; static const char *edac_mc_owner;
static struct bus_type mc_bus[EDAC_MAX_MCS];
int edac_get_report_status(void) int edac_get_report_status(void)
{ {
return edac_report; return edac_report;
...@@ -716,11 +714,6 @@ int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, ...@@ -716,11 +714,6 @@ int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
int ret = -EINVAL; int ret = -EINVAL;
edac_dbg(0, "\n"); edac_dbg(0, "\n");
if (mci->mc_idx >= EDAC_MAX_MCS) {
pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
return -ENODEV;
}
#ifdef CONFIG_EDAC_DEBUG #ifdef CONFIG_EDAC_DEBUG
if (edac_debug_level >= 3) if (edac_debug_level >= 3)
edac_mc_dump_mci(mci); edac_mc_dump_mci(mci);
...@@ -760,7 +753,7 @@ int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, ...@@ -760,7 +753,7 @@ int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
/* set load time so that error rate can be tracked */ /* set load time so that error rate can be tracked */
mci->start_time = jiffies; mci->start_time = jiffies;
mci->bus = &mc_bus[mci->mc_idx]; mci->bus = edac_get_sysfs_subsys();
if (edac_create_sysfs_mci_device(mci, groups)) { if (edac_create_sysfs_mci_device(mci, groups)) {
edac_mc_printk(mci, KERN_WARNING, edac_mc_printk(mci, KERN_WARNING,
......
...@@ -405,7 +405,6 @@ static int edac_create_csrow_object(struct mem_ctl_info *mci, ...@@ -405,7 +405,6 @@ static int edac_create_csrow_object(struct mem_ctl_info *mci,
struct csrow_info *csrow, int index) struct csrow_info *csrow, int index)
{ {
csrow->dev.type = &csrow_attr_type; csrow->dev.type = &csrow_attr_type;
csrow->dev.bus = mci->bus;
csrow->dev.groups = csrow_dev_groups; csrow->dev.groups = csrow_dev_groups;
device_initialize(&csrow->dev); device_initialize(&csrow->dev);
csrow->dev.parent = &mci->dev; csrow->dev.parent = &mci->dev;
...@@ -636,7 +635,6 @@ static int edac_create_dimm_object(struct mem_ctl_info *mci, ...@@ -636,7 +635,6 @@ static int edac_create_dimm_object(struct mem_ctl_info *mci,
dimm->mci = mci; dimm->mci = mci;
dimm->dev.type = &dimm_attr_type; dimm->dev.type = &dimm_attr_type;
dimm->dev.bus = mci->bus;
device_initialize(&dimm->dev); device_initialize(&dimm->dev);
dimm->dev.parent = &mci->dev; dimm->dev.parent = &mci->dev;
...@@ -914,33 +912,13 @@ static const struct device_type mci_attr_type = { ...@@ -914,33 +912,13 @@ static const struct device_type mci_attr_type = {
int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
const struct attribute_group **groups) const struct attribute_group **groups)
{ {
char *name;
int i, err; int i, err;
/*
* The memory controller needs its own bus, in order to avoid
* namespace conflicts at /sys/bus/edac.
*/
name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
if (!name)
return -ENOMEM;
mci->bus->name = name;
edac_dbg(0, "creating bus %s\n", mci->bus->name);
err = bus_register(mci->bus);
if (err < 0) {
kfree(name);
return err;
}
/* get the /sys/devices/system/edac subsys reference */ /* get the /sys/devices/system/edac subsys reference */
mci->dev.type = &mci_attr_type; mci->dev.type = &mci_attr_type;
device_initialize(&mci->dev); device_initialize(&mci->dev);
mci->dev.parent = mci_pdev; mci->dev.parent = mci_pdev;
mci->dev.bus = mci->bus;
mci->dev.groups = groups; mci->dev.groups = groups;
dev_set_name(&mci->dev, "mc%d", mci->mc_idx); dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
dev_set_drvdata(&mci->dev, mci); dev_set_drvdata(&mci->dev, mci);
...@@ -950,7 +928,7 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, ...@@ -950,7 +928,7 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
err = device_add(&mci->dev); err = device_add(&mci->dev);
if (err < 0) { if (err < 0) {
edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
goto fail_unregister_bus; goto out;
} }
/* /*
...@@ -998,10 +976,8 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, ...@@ -998,10 +976,8 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
device_unregister(&dimm->dev); device_unregister(&dimm->dev);
} }
device_unregister(&mci->dev); device_unregister(&mci->dev);
fail_unregister_bus:
bus_unregister(mci->bus);
kfree(name);
out:
return err; return err;
} }
...@@ -1032,13 +1008,8 @@ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) ...@@ -1032,13 +1008,8 @@ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
void edac_unregister_sysfs(struct mem_ctl_info *mci) void edac_unregister_sysfs(struct mem_ctl_info *mci)
{ {
struct bus_type *bus = mci->bus;
const char *name = mci->bus->name;
edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
device_unregister(&mci->dev); device_unregister(&mci->dev);
bus_unregister(bus);
kfree(name);
} }
static void mc_attr_release(struct device *dev) static void mc_attr_release(struct device *dev)
......
...@@ -2,8 +2,8 @@ ...@@ -2,8 +2,8 @@
* Freescale Memory Controller kernel module * Freescale Memory Controller kernel module
* *
* Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
* ARM-based Layerscape SoCs including LS2xxx. Originally split * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
* out from mpc85xx_edac EDAC driver. * split out from mpc85xx_edac EDAC driver.
* *
* Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc. * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
* *
...@@ -51,6 +51,7 @@ static inline void ddr_out32(void __iomem *addr, u32 value) ...@@ -51,6 +51,7 @@ static inline void ddr_out32(void __iomem *addr, u32 value)
iowrite32be(value, addr); iowrite32be(value, addr);
} }
#ifdef CONFIG_EDAC_DEBUG
/************************ MC SYSFS parts ***********************************/ /************************ MC SYSFS parts ***********************************/
#define to_mci(k) container_of(k, struct mem_ctl_info, dev) #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
...@@ -151,11 +152,14 @@ static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR, ...@@ -151,11 +152,14 @@ static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store); fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR, static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store); fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
#endif /* CONFIG_EDAC_DEBUG */
static struct attribute *fsl_ddr_dev_attrs[] = { static struct attribute *fsl_ddr_dev_attrs[] = {
#ifdef CONFIG_EDAC_DEBUG
&dev_attr_inject_data_hi.attr, &dev_attr_inject_data_hi.attr,
&dev_attr_inject_data_lo.attr, &dev_attr_inject_data_lo.attr,
&dev_attr_inject_ctrl.attr, &dev_attr_inject_ctrl.attr,
#endif
NULL NULL
}; };
......
...@@ -2,8 +2,8 @@ ...@@ -2,8 +2,8 @@
* Freescale Memory Controller kernel module * Freescale Memory Controller kernel module
* *
* Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
* ARM-based Layerscape SoCs including LS2xxx. Originally split * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
* out from mpc85xx_edac EDAC driver. * split out from mpc85xx_edac EDAC driver.
* *
* Author: Dave Jiang <djiang@mvista.com> * Author: Dave Jiang <djiang@mvista.com>
* *
......
...@@ -508,8 +508,8 @@ static int __init i3000_init(void) ...@@ -508,8 +508,8 @@ static int __init i3000_init(void)
edac_dbg(3, "MC:\n"); edac_dbg(3, "MC:\n");
/* Ensure that the OPSTATE is set correctly for POLL or NMI */ /* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init(); opstate_init();
pci_rc = pci_register_driver(&i3000_driver); pci_rc = pci_register_driver(&i3000_driver);
if (pci_rc < 0) if (pci_rc < 0)
......
...@@ -1134,8 +1134,6 @@ static void i5000_get_mc_regs(struct mem_ctl_info *mci) ...@@ -1134,8 +1134,6 @@ static void i5000_get_mc_regs(struct mem_ctl_info *mci)
u32 actual_tolm; u32 actual_tolm;
u16 limit; u16 limit;
int slot_row; int slot_row;
int maxch;
int maxdimmperch;
int way0, way1; int way0, way1;
pvt = mci->pvt_info; pvt = mci->pvt_info;
...@@ -1145,9 +1143,6 @@ static void i5000_get_mc_regs(struct mem_ctl_info *mci) ...@@ -1145,9 +1143,6 @@ static void i5000_get_mc_regs(struct mem_ctl_info *mci)
pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
&pvt->u.ambase_top); &pvt->u.ambase_top);
maxdimmperch = pvt->maxdimmperch;
maxch = pvt->maxch;
edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n", edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
...@@ -1253,7 +1248,7 @@ static int i5000_init_csrows(struct mem_ctl_info *mci) ...@@ -1253,7 +1248,7 @@ static int i5000_init_csrows(struct mem_ctl_info *mci)
{ {
struct i5000_pvt *pvt; struct i5000_pvt *pvt;
struct dimm_info *dimm; struct dimm_info *dimm;
int empty, channel_count; int empty;
int max_csrows; int max_csrows;
int mtr; int mtr;
int csrow_megs; int csrow_megs;
...@@ -1261,8 +1256,6 @@ static int i5000_init_csrows(struct mem_ctl_info *mci) ...@@ -1261,8 +1256,6 @@ static int i5000_init_csrows(struct mem_ctl_info *mci)
int slot; int slot;
pvt = mci->pvt_info; pvt = mci->pvt_info;
channel_count = pvt->maxch;
max_csrows = pvt->maxdimmperch * 2; max_csrows = pvt->maxdimmperch * 2;
empty = 1; /* Assume NO memory */ empty = 1; /* Assume NO memory */
...@@ -1559,8 +1552,8 @@ static int __init i5000_init(void) ...@@ -1559,8 +1552,8 @@ static int __init i5000_init(void)
edac_dbg(2, "MC:\n"); edac_dbg(2, "MC:\n");
/* Ensure that the OPSTATE is set correctly for POLL or NMI */ /* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init(); opstate_init();
pci_rc = pci_register_driver(&i5000_driver); pci_rc = pci_register_driver(&i5000_driver);
......
...@@ -724,7 +724,7 @@ static ssize_t i7core_inject_type_store(struct device *dev, ...@@ -724,7 +724,7 @@ static ssize_t i7core_inject_type_store(struct device *dev,
const char *data, size_t count) const char *data, size_t count)
{ {
struct mem_ctl_info *mci = to_mci(dev); struct mem_ctl_info *mci = to_mci(dev);
struct i7core_pvt *pvt = mci->pvt_info; struct i7core_pvt *pvt = mci->pvt_info;
unsigned long value; unsigned long value;
int rc; int rc;
......
...@@ -104,7 +104,7 @@ NOTE: Only ONE of the three must be enabled ...@@ -104,7 +104,7 @@ NOTE: Only ONE of the three must be enabled
* *
* 31:14 Base Addr of 16K memory-mapped * 31:14 Base Addr of 16K memory-mapped
* configuration space * configuration space
* 13:1 reserverd * 13:1 reserved
* 0 mem-mapped config space enable * 0 mem-mapped config space enable
*/ */
...@@ -358,14 +358,6 @@ static int dual_channel_active(void __iomem *mch_window) ...@@ -358,14 +358,6 @@ static int dual_channel_active(void __iomem *mch_window)
return dualch; return dualch;
} }
static enum dev_type i82975x_dram_type(void __iomem *mch_window, int rank)
{
/*
* ECC is possible on i92975x ONLY with DEV_X8
*/
return DEV_X8;
}
static void i82975x_init_csrows(struct mem_ctl_info *mci, static void i82975x_init_csrows(struct mem_ctl_info *mci,
struct pci_dev *pdev, void __iomem *mch_window) struct pci_dev *pdev, void __iomem *mch_window)
{ {
...@@ -375,7 +367,6 @@ static void i82975x_init_csrows(struct mem_ctl_info *mci, ...@@ -375,7 +367,6 @@ static void i82975x_init_csrows(struct mem_ctl_info *mci,
u32 cumul_size, nr_pages; u32 cumul_size, nr_pages;
int index, chan; int index, chan;
struct dimm_info *dimm; struct dimm_info *dimm;
enum dev_type dtype;
last_cumul_size = 0; last_cumul_size = 0;
...@@ -413,7 +404,6 @@ static void i82975x_init_csrows(struct mem_ctl_info *mci, ...@@ -413,7 +404,6 @@ static void i82975x_init_csrows(struct mem_ctl_info *mci,
* [0-7] for single-channel; i.e. csrow->nr_channels = 1 * [0-7] for single-channel; i.e. csrow->nr_channels = 1
* [0-3] for dual-channel; i.e. csrow->nr_channels = 2 * [0-3] for dual-channel; i.e. csrow->nr_channels = 2
*/ */
dtype = i82975x_dram_type(mch_window, index);
for (chan = 0; chan < csrow->nr_channels; chan++) { for (chan = 0; chan < csrow->nr_channels; chan++) {
dimm = mci->csrows[index]->channels[chan]->dimm; dimm = mci->csrows[index]->channels[chan]->dimm;
...@@ -423,7 +413,10 @@ static void i82975x_init_csrows(struct mem_ctl_info *mci, ...@@ -423,7 +413,10 @@ static void i82975x_init_csrows(struct mem_ctl_info *mci,
(chan == 0) ? 'A' : 'B', (chan == 0) ? 'A' : 'B',
index); index);
dimm->grain = 1 << 7; /* 128Byte cache-line resolution */ dimm->grain = 1 << 7; /* 128Byte cache-line resolution */
dimm->dtype = i82975x_dram_type(mch_window, index);
/* ECC is possible on i92975x ONLY with DEV_X8. */
dimm->dtype = DEV_X8;
dimm->mtype = MEM_DDR2; /* I82975x supports only DDR2 */ dimm->mtype = MEM_DDR2; /* I82975x supports only DDR2 */
dimm->edac_mode = EDAC_SECDED; /* only supported */ dimm->edac_mode = EDAC_SECDED; /* only supported */
} }
...@@ -655,8 +648,8 @@ static int __init i82975x_init(void) ...@@ -655,8 +648,8 @@ static int __init i82975x_init(void)
edac_dbg(3, "\n"); edac_dbg(3, "\n");
/* Ensure that the OPSTATE is set correctly for POLL or NMI */ /* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init(); opstate_init();
pci_rc = pci_register_driver(&i82975x_driver); pci_rc = pci_register_driver(&i82975x_driver);
if (pci_rc < 0) if (pci_rc < 0)
......
...@@ -292,7 +292,6 @@ llcc_ecc_irq_handler(int irq, void *edev_ctl) ...@@ -292,7 +292,6 @@ llcc_ecc_irq_handler(int irq, void *edev_ctl)
struct llcc_drv_data *drv = edac_dev_ctl->pvt_info; struct llcc_drv_data *drv = edac_dev_ctl->pvt_info;
irqreturn_t irq_rc = IRQ_NONE; irqreturn_t irq_rc = IRQ_NONE;
u32 drp_error, trp_error, i; u32 drp_error, trp_error, i;
bool irq_handled;
int ret; int ret;
/* Iterate over the banks and look for Tag RAM or Data RAM errors */ /* Iterate over the banks and look for Tag RAM or Data RAM errors */
...@@ -311,7 +310,7 @@ llcc_ecc_irq_handler(int irq, void *edev_ctl) ...@@ -311,7 +310,7 @@ llcc_ecc_irq_handler(int irq, void *edev_ctl)
ret = dump_syn_reg(edev_ctl, LLCC_DRAM_UE, i); ret = dump_syn_reg(edev_ctl, LLCC_DRAM_UE, i);
} }
if (!ret) if (!ret)
irq_handled = true; irq_rc = IRQ_HANDLED;
ret = regmap_read(drv->regmap, ret = regmap_read(drv->regmap,
drv->offsets[i] + TRP_INTERRUPT_0_STATUS, drv->offsets[i] + TRP_INTERRUPT_0_STATUS,
...@@ -327,12 +326,9 @@ llcc_ecc_irq_handler(int irq, void *edev_ctl) ...@@ -327,12 +326,9 @@ llcc_ecc_irq_handler(int irq, void *edev_ctl)
ret = dump_syn_reg(edev_ctl, LLCC_TRAM_UE, i); ret = dump_syn_reg(edev_ctl, LLCC_TRAM_UE, i);
} }
if (!ret) if (!ret)
irq_handled = true; irq_rc = IRQ_HANDLED;
} }
if (irq_handled)
irq_rc = IRQ_HANDLED;
return irq_rc; return irq_rc;
} }
......
...@@ -209,7 +209,7 @@ static int get_all_bus_mappings(void) ...@@ -209,7 +209,7 @@ static int get_all_bus_mappings(void)
d->bus[1] = GET_BITFIELD(reg, 8, 15); d->bus[1] = GET_BITFIELD(reg, 8, 15);
d->bus[2] = GET_BITFIELD(reg, 16, 23); d->bus[2] = GET_BITFIELD(reg, 16, 23);
d->bus[3] = GET_BITFIELD(reg, 24, 31); d->bus[3] = GET_BITFIELD(reg, 24, 31);
edac_dbg(2, "busses: %x, %x, %x, %x\n", edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
d->bus[0], d->bus[1], d->bus[2], d->bus[3]); d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
list_add_tail(&d->list, &skx_edac_list); list_add_tail(&d->list, &skx_edac_list);
skx_num_sockets++; skx_num_sockets++;
...@@ -245,8 +245,8 @@ static int get_all_munits(const struct munit *m) ...@@ -245,8 +245,8 @@ static int get_all_munits(const struct munit *m)
/* Be sure that the device is enabled */ /* Be sure that the device is enabled */
if (unlikely(pci_enable_device(pdev) < 0)) { if (unlikely(pci_enable_device(pdev) < 0)) {
skx_printk(KERN_ERR, skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
"Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); PCI_VENDOR_ID_INTEL, m->did);
goto fail; goto fail;
} }
...@@ -323,7 +323,7 @@ static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, ...@@ -323,7 +323,7 @@ static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval,
u32 val = GET_BITFIELD(reg, lobit, hibit); u32 val = GET_BITFIELD(reg, lobit, hibit);
if (val < minval || val > maxval) { if (val < minval || val > maxval) {
edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg); edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
return -EINVAL; return -EINVAL;
} }
return val + add; return val + add;
...@@ -368,7 +368,7 @@ static int skx_get_hi_lo(void) ...@@ -368,7 +368,7 @@ static int skx_get_hi_lo(void)
skx_tohm |= (u64)reg << 32; skx_tohm |= (u64)reg << 32;
pci_dev_put(pdev); pci_dev_put(pdev);
edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm); edac_dbg(2, "tolm=0x%llx tohm=0x%llx\n", skx_tolm, skx_tohm);
return 0; return 0;
} }
...@@ -389,7 +389,7 @@ static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, ...@@ -389,7 +389,7 @@ static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
npages = MiB_TO_PAGES(size); npages = MiB_TO_PAGES(size);
edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%#x, col: 0x%#x\n",
imc->mc, chan, dimmno, size, npages, imc->mc, chan, dimmno, size, npages,
banks, 1 << ranks, rows, cols); banks, 1 << ranks, rows, cols);
...@@ -430,18 +430,18 @@ static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc, ...@@ -430,18 +430,18 @@ static int get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
} }
if (smbios_handle < 0) { if (smbios_handle < 0) {
skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=%x\n", dev_handle); skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
goto unknown_size; goto unknown_size;
} }
if (flags & ACPI_NFIT_MEM_MAP_FAILED) { if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
skx_printk(KERN_ERR, "NVDIMM ADR=%x is not mapped\n", dev_handle); skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
goto unknown_size; goto unknown_size;
} }
size = dmi_memdev_size(smbios_handle); size = dmi_memdev_size(smbios_handle);
if (size == ~0ull) if (size == ~0ull)
skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=%x/SMBIOS=%x\n", skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
dev_handle, smbios_handle); dev_handle, smbios_handle);
unknown_size: unknown_size:
...@@ -616,7 +616,7 @@ static bool skx_sad_decode(struct decoded_addr *res) ...@@ -616,7 +616,7 @@ static bool skx_sad_decode(struct decoded_addr *res)
/* Simple sanity check for I/O space or out of range */ /* Simple sanity check for I/O space or out of range */
if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
edac_dbg(0, "Address %llx out of range\n", addr); edac_dbg(0, "Address 0x%llx out of range\n", addr);
return false; return false;
} }
...@@ -631,7 +631,7 @@ static bool skx_sad_decode(struct decoded_addr *res) ...@@ -631,7 +631,7 @@ static bool skx_sad_decode(struct decoded_addr *res)
} }
prev_limit = limit + 1; prev_limit = limit + 1;
} }
edac_dbg(0, "No SAD entry for %llx\n", addr); edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
return false; return false;
sad_found: sad_found:
...@@ -709,7 +709,7 @@ static bool skx_sad_decode(struct decoded_addr *res) ...@@ -709,7 +709,7 @@ static bool skx_sad_decode(struct decoded_addr *res)
res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n", edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
res->addr, res->socket, res->imc, res->channel); res->addr, res->socket, res->imc, res->channel);
return true; return true;
} }
...@@ -756,7 +756,7 @@ static bool skx_tad_decode(struct decoded_addr *res) ...@@ -756,7 +756,7 @@ static bool skx_tad_decode(struct decoded_addr *res)
if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
goto tad_found; goto tad_found;
} }
edac_dbg(0, "No TAD entry for %llx\n", res->addr); edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
return false; return false;
tad_found: tad_found:
...@@ -784,7 +784,7 @@ static bool skx_tad_decode(struct decoded_addr *res) ...@@ -784,7 +784,7 @@ static bool skx_tad_decode(struct decoded_addr *res)
res->chan_addr = channel_addr; res->chan_addr = channel_addr;
edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n", edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
res->addr, res->chan_addr, res->sktways, res->chanways); res->addr, res->chan_addr, res->sktways, res->chanways);
return true; return true;
} }
...@@ -826,7 +826,7 @@ static bool skx_rir_decode(struct decoded_addr *res) ...@@ -826,7 +826,7 @@ static bool skx_rir_decode(struct decoded_addr *res)
} }
prev_limit = limit; prev_limit = limit;
} }
edac_dbg(0, "No RIR entry for %llx\n", res->addr); edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
return false; return false;
rir_found: rir_found:
...@@ -845,7 +845,7 @@ static bool skx_rir_decode(struct decoded_addr *res) ...@@ -845,7 +845,7 @@ static bool skx_rir_decode(struct decoded_addr *res)
res->dimm = chan_rank / 4; res->dimm = chan_rank / 4;
res->rank = chan_rank % 4; res->rank = chan_rank % 4;
edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n", edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
res->addr, res->dimm, res->rank, res->addr, res->dimm, res->rank,
res->channel_rank, res->rank_address); res->channel_rank, res->rank_address);
return true; return true;
...@@ -908,7 +908,7 @@ static bool skx_mad_decode(struct decoded_addr *r) ...@@ -908,7 +908,7 @@ static bool skx_mad_decode(struct decoded_addr *r)
} }
r->row &= (1u << dimm->rowbits) - 1; r->row &= (1u << dimm->rowbits) - 1;
edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n", edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
r->addr, r->row, r->column, r->bank_address, r->addr, r->row, r->column, r->bank_address,
r->bank_group); r->bank_group);
return true; return true;
...@@ -921,53 +921,6 @@ static bool skx_decode(struct decoded_addr *res) ...@@ -921,53 +921,6 @@ static bool skx_decode(struct decoded_addr *res)
skx_rir_decode(res) && skx_mad_decode(res); skx_rir_decode(res) && skx_mad_decode(res);
} }
#ifdef CONFIG_EDAC_DEBUG
/*
* Debug feature. Make /sys/kernel/debug/skx_edac_test/addr.
* Write an address to this file to exercise the address decode
* logic in this driver.
*/
static struct dentry *skx_test;
static u64 skx_fake_addr;
static int debugfs_u64_set(void *data, u64 val)
{
struct decoded_addr res;
res.addr = val;
skx_decode(&res);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
static struct dentry *mydebugfs_create(const char *name, umode_t mode,
struct dentry *parent, u64 *value)
{
return debugfs_create_file(name, mode, parent, value, &fops_u64_wo);
}
static void setup_skx_debug(void)
{
skx_test = debugfs_create_dir("skx_edac_test", NULL);
mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr);
}
static void teardown_skx_debug(void)
{
debugfs_remove_recursive(skx_test);
}
#else
static void setup_skx_debug(void)
{
}
static void teardown_skx_debug(void)
{
}
#endif /*CONFIG_EDAC_DEBUG*/
static bool skx_adxl_decode(struct decoded_addr *res) static bool skx_adxl_decode(struct decoded_addr *res)
{ {
...@@ -1069,13 +1022,13 @@ static void skx_mce_output_error(struct mem_ctl_info *mci, ...@@ -1069,13 +1022,13 @@ static void skx_mce_output_error(struct mem_ctl_info *mci,
} }
} }
if (adxl_component_count) { if (adxl_component_count) {
snprintf(skx_msg, MSG_SIZE, "%s%s err_code:%04x:%04x %s", snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
overflow ? " OVERFLOW" : "", overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "", (uncorrected_error && recoverable) ? " recoverable" : "",
mscod, errcode, adxl_msg); mscod, errcode, adxl_msg);
} else { } else {
snprintf(skx_msg, MSG_SIZE, snprintf(skx_msg, MSG_SIZE,
"%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x", "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
overflow ? " OVERFLOW" : "", overflow ? " OVERFLOW" : "",
(uncorrected_error && recoverable) ? " recoverable" : "", (uncorrected_error && recoverable) ? " recoverable" : "",
mscod, errcode, mscod, errcode,
...@@ -1151,15 +1104,15 @@ static int skx_mce_check_error(struct notifier_block *nb, unsigned long val, ...@@ -1151,15 +1104,15 @@ static int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
"Bank %d: %016Lx\n", mce->extcpu, type, "Bank %d: %016Lx\n", mce->extcpu, type,
mce->mcgstatus, mce->bank, mce->status); mce->mcgstatus, mce->bank, mce->status);
skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
"%u APIC %x\n", mce->cpuvendor, mce->cpuid, "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
mce->time, mce->socketid, mce->apicid); mce->time, mce->socketid, mce->apicid);
skx_mce_output_error(mci, mce, &res); skx_mce_output_error(mci, mce, &res);
...@@ -1172,6 +1125,54 @@ static struct notifier_block skx_mce_dec = { ...@@ -1172,6 +1125,54 @@ static struct notifier_block skx_mce_dec = {
.priority = MCE_PRIO_EDAC, .priority = MCE_PRIO_EDAC,
}; };
#ifdef CONFIG_EDAC_DEBUG
/*
* Debug feature.
* Exercise the address decode logic by writing an address to
* /sys/kernel/debug/edac/skx_test/addr.
*/
static struct dentry *skx_test;
static int debugfs_u64_set(void *data, u64 val)
{
struct mce m;
pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
memset(&m, 0, sizeof(m));
/* ADDRV + MemRd + Unknown channel */
m.status = MCI_STATUS_ADDRV + 0x90;
/* One corrected error */
m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
m.addr = val;
skx_mce_check_error(NULL, 0, &m);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
static void setup_skx_debug(void)
{
skx_test = edac_debugfs_create_dir("skx_test");
if (!skx_test)
return;
if (!edac_debugfs_create_file("addr", 0200, skx_test,
NULL, &fops_u64_wo)) {
debugfs_remove(skx_test);
skx_test = NULL;
}
}
static void teardown_skx_debug(void)
{
debugfs_remove_recursive(skx_test);
}
#else
static void setup_skx_debug(void) {}
static void teardown_skx_debug(void) {}
#endif /*CONFIG_EDAC_DEBUG*/
static void skx_remove(void) static void skx_remove(void)
{ {
int i, j; int i, j;
...@@ -1291,7 +1292,7 @@ static int __init skx_init(void) ...@@ -1291,7 +1292,7 @@ static int __init skx_init(void)
if (rc < 0) if (rc < 0)
goto fail; goto fail;
if (rc != m->per_socket * skx_num_sockets) { if (rc != m->per_socket * skx_num_sockets) {
edac_dbg(2, "Expected %d, got %d of %x\n", edac_dbg(2, "Expected %d, got %d of 0x%x\n",
m->per_socket * skx_num_sockets, rc, m->did); m->per_socket * skx_num_sockets, rc, m->did);
rc = -ENODEV; rc = -ENODEV;
goto fail; goto fail;
...@@ -1339,11 +1340,11 @@ static void __exit skx_exit(void) ...@@ -1339,11 +1340,11 @@ static void __exit skx_exit(void)
{ {
edac_dbg(2, "\n"); edac_dbg(2, "\n");
mce_unregister_decode_chain(&skx_mce_dec); mce_unregister_decode_chain(&skx_mce_dec);
skx_remove(); teardown_skx_debug();
if (nvdimm_count) if (nvdimm_count)
skx_adxl_put(); skx_adxl_put();
kfree(skx_msg); kfree(skx_msg);
teardown_skx_debug(); skx_remove();
} }
module_init(skx_init); module_init(skx_init);
......
...@@ -22,86 +22,259 @@ ...@@ -22,86 +22,259 @@
#include <linux/edac.h> #include <linux/edac.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include "edac_module.h" #include "edac_module.h"
/* Number of cs_rows needed per memory controller */ /* Number of cs_rows needed per memory controller */
#define SYNPS_EDAC_NR_CSROWS 1 #define SYNPS_EDAC_NR_CSROWS 1
/* Number of channels per memory controller */ /* Number of channels per memory controller */
#define SYNPS_EDAC_NR_CHANS 1 #define SYNPS_EDAC_NR_CHANS 1
/* Granularity of reported error in bytes */ /* Granularity of reported error in bytes */
#define SYNPS_EDAC_ERR_GRAIN 1 #define SYNPS_EDAC_ERR_GRAIN 1
#define SYNPS_EDAC_MSG_SIZE 256 #define SYNPS_EDAC_MSG_SIZE 256
#define SYNPS_EDAC_MOD_STRING "synps_edac" #define SYNPS_EDAC_MOD_STRING "synps_edac"
#define SYNPS_EDAC_MOD_VER "1" #define SYNPS_EDAC_MOD_VER "1"
/* Synopsys DDR memory controller registers that are relevant to ECC */ /* Synopsys DDR memory controller registers that are relevant to ECC */
#define CTRL_OFST 0x0 #define CTRL_OFST 0x0
#define T_ZQ_OFST 0xA4 #define T_ZQ_OFST 0xA4
/* ECC control register */ /* ECC control register */
#define ECC_CTRL_OFST 0xC4 #define ECC_CTRL_OFST 0xC4
/* ECC log register */ /* ECC log register */
#define CE_LOG_OFST 0xC8 #define CE_LOG_OFST 0xC8
/* ECC address register */ /* ECC address register */
#define CE_ADDR_OFST 0xCC #define CE_ADDR_OFST 0xCC
/* ECC data[31:0] register */ /* ECC data[31:0] register */
#define CE_DATA_31_0_OFST 0xD0 #define CE_DATA_31_0_OFST 0xD0
/* Uncorrectable error info registers */ /* Uncorrectable error info registers */
#define UE_LOG_OFST 0xDC #define UE_LOG_OFST 0xDC
#define UE_ADDR_OFST 0xE0 #define UE_ADDR_OFST 0xE0
#define UE_DATA_31_0_OFST 0xE4 #define UE_DATA_31_0_OFST 0xE4
#define STAT_OFST 0xF0 #define STAT_OFST 0xF0
#define SCRUB_OFST 0xF4 #define SCRUB_OFST 0xF4
/* Control register bit field definitions */ /* Control register bit field definitions */
#define CTRL_BW_MASK 0xC #define CTRL_BW_MASK 0xC
#define CTRL_BW_SHIFT 2 #define CTRL_BW_SHIFT 2
#define DDRCTL_WDTH_16 1 #define DDRCTL_WDTH_16 1
#define DDRCTL_WDTH_32 0 #define DDRCTL_WDTH_32 0
/* ZQ register bit field definitions */ /* ZQ register bit field definitions */
#define T_ZQ_DDRMODE_MASK 0x2 #define T_ZQ_DDRMODE_MASK 0x2
/* ECC control register bit field definitions */ /* ECC control register bit field definitions */
#define ECC_CTRL_CLR_CE_ERR 0x2 #define ECC_CTRL_CLR_CE_ERR 0x2
#define ECC_CTRL_CLR_UE_ERR 0x1 #define ECC_CTRL_CLR_UE_ERR 0x1
/* ECC correctable/uncorrectable error log register definitions */ /* ECC correctable/uncorrectable error log register definitions */
#define LOG_VALID 0x1 #define LOG_VALID 0x1
#define CE_LOG_BITPOS_MASK 0xFE #define CE_LOG_BITPOS_MASK 0xFE
#define CE_LOG_BITPOS_SHIFT 1 #define CE_LOG_BITPOS_SHIFT 1
/* ECC correctable/uncorrectable error address register definitions */ /* ECC correctable/uncorrectable error address register definitions */
#define ADDR_COL_MASK 0xFFF #define ADDR_COL_MASK 0xFFF
#define ADDR_ROW_MASK 0xFFFF000 #define ADDR_ROW_MASK 0xFFFF000
#define ADDR_ROW_SHIFT 12 #define ADDR_ROW_SHIFT 12
#define ADDR_BANK_MASK 0x70000000 #define ADDR_BANK_MASK 0x70000000
#define ADDR_BANK_SHIFT 28 #define ADDR_BANK_SHIFT 28
/* ECC statistic register definitions */ /* ECC statistic register definitions */
#define STAT_UECNT_MASK 0xFF #define STAT_UECNT_MASK 0xFF
#define STAT_CECNT_MASK 0xFF00 #define STAT_CECNT_MASK 0xFF00
#define STAT_CECNT_SHIFT 8 #define STAT_CECNT_SHIFT 8
/* ECC scrub register definitions */ /* ECC scrub register definitions */
#define SCRUB_MODE_MASK 0x7 #define SCRUB_MODE_MASK 0x7
#define SCRUB_MODE_SECDED 0x4 #define SCRUB_MODE_SECDED 0x4
/* DDR ECC Quirks */
#define DDR_ECC_INTR_SUPPORT BIT(0)
#define DDR_ECC_DATA_POISON_SUPPORT BIT(1)
/* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
/* ECC Configuration Registers */
#define ECC_CFG0_OFST 0x70
#define ECC_CFG1_OFST 0x74
/* ECC Status Register */
#define ECC_STAT_OFST 0x78
/* ECC Clear Register */
#define ECC_CLR_OFST 0x7C
/* ECC Error count Register */
#define ECC_ERRCNT_OFST 0x80
/* ECC Corrected Error Address Register */
#define ECC_CEADDR0_OFST 0x84
#define ECC_CEADDR1_OFST 0x88
/* ECC Syndrome Registers */
#define ECC_CSYND0_OFST 0x8C
#define ECC_CSYND1_OFST 0x90
#define ECC_CSYND2_OFST 0x94
/* ECC Bit Mask0 Address Register */
#define ECC_BITMASK0_OFST 0x98
#define ECC_BITMASK1_OFST 0x9C
#define ECC_BITMASK2_OFST 0xA0
/* ECC UnCorrected Error Address Register */
#define ECC_UEADDR0_OFST 0xA4
#define ECC_UEADDR1_OFST 0xA8
/* ECC Syndrome Registers */
#define ECC_UESYND0_OFST 0xAC
#define ECC_UESYND1_OFST 0xB0
#define ECC_UESYND2_OFST 0xB4
/* ECC Poison Address Reg */
#define ECC_POISON0_OFST 0xB8
#define ECC_POISON1_OFST 0xBC
#define ECC_ADDRMAP0_OFFSET 0x200
/* Control register bitfield definitions */
#define ECC_CTRL_BUSWIDTH_MASK 0x3000
#define ECC_CTRL_BUSWIDTH_SHIFT 12
#define ECC_CTRL_CLR_CE_ERRCNT BIT(2)
#define ECC_CTRL_CLR_UE_ERRCNT BIT(3)
/* DDR Control Register width definitions */
#define DDRCTL_EWDTH_16 2
#define DDRCTL_EWDTH_32 1
#define DDRCTL_EWDTH_64 0
/* ECC status register definitions */
#define ECC_STAT_UECNT_MASK 0xF0000
#define ECC_STAT_UECNT_SHIFT 16
#define ECC_STAT_CECNT_MASK 0xF00
#define ECC_STAT_CECNT_SHIFT 8
#define ECC_STAT_BITNUM_MASK 0x7F
/* DDR QOS Interrupt register definitions */
#define DDR_QOS_IRQ_STAT_OFST 0x20200
#define DDR_QOSUE_MASK 0x4
#define DDR_QOSCE_MASK 0x2
#define ECC_CE_UE_INTR_MASK 0x6
#define DDR_QOS_IRQ_EN_OFST 0x20208
#define DDR_QOS_IRQ_DB_OFST 0x2020C
/* ECC Corrected Error Register Mask and Shifts*/
#define ECC_CEADDR0_RW_MASK 0x3FFFF
#define ECC_CEADDR0_RNK_MASK BIT(24)
#define ECC_CEADDR1_BNKGRP_MASK 0x3000000
#define ECC_CEADDR1_BNKNR_MASK 0x70000
#define ECC_CEADDR1_BLKNR_MASK 0xFFF
#define ECC_CEADDR1_BNKGRP_SHIFT 24
#define ECC_CEADDR1_BNKNR_SHIFT 16
/* ECC Poison register shifts */
#define ECC_POISON0_RANK_SHIFT 24
#define ECC_POISON0_RANK_MASK BIT(24)
#define ECC_POISON0_COLUMN_SHIFT 0
#define ECC_POISON0_COLUMN_MASK 0xFFF
#define ECC_POISON1_BG_SHIFT 28
#define ECC_POISON1_BG_MASK 0x30000000
#define ECC_POISON1_BANKNR_SHIFT 24
#define ECC_POISON1_BANKNR_MASK 0x7000000
#define ECC_POISON1_ROW_SHIFT 0
#define ECC_POISON1_ROW_MASK 0x3FFFF
/* DDR Memory type defines */
#define MEM_TYPE_DDR3 0x1
#define MEM_TYPE_LPDDR3 0x8
#define MEM_TYPE_DDR2 0x4
#define MEM_TYPE_DDR4 0x10
#define MEM_TYPE_LPDDR4 0x20
/* DDRC Software control register */
#define DDRC_SWCTL 0x320
/* DDRC ECC CE & UE poison mask */
#define ECC_CEPOISON_MASK 0x3
#define ECC_UEPOISON_MASK 0x1
/* DDRC Device config masks */
#define DDRC_MSTR_CFG_MASK 0xC0000000
#define DDRC_MSTR_CFG_SHIFT 30
#define DDRC_MSTR_CFG_X4_MASK 0x0
#define DDRC_MSTR_CFG_X8_MASK 0x1
#define DDRC_MSTR_CFG_X16_MASK 0x2
#define DDRC_MSTR_CFG_X32_MASK 0x3
#define DDR_MAX_ROW_SHIFT 18
#define DDR_MAX_COL_SHIFT 14
#define DDR_MAX_BANK_SHIFT 3
#define DDR_MAX_BANKGRP_SHIFT 2
#define ROW_MAX_VAL_MASK 0xF
#define COL_MAX_VAL_MASK 0xF
#define BANK_MAX_VAL_MASK 0x1F
#define BANKGRP_MAX_VAL_MASK 0x1F
#define RANK_MAX_VAL_MASK 0x1F
#define ROW_B0_BASE 6
#define ROW_B1_BASE 7
#define ROW_B2_BASE 8
#define ROW_B3_BASE 9
#define ROW_B4_BASE 10
#define ROW_B5_BASE 11
#define ROW_B6_BASE 12
#define ROW_B7_BASE 13
#define ROW_B8_BASE 14
#define ROW_B9_BASE 15
#define ROW_B10_BASE 16
#define ROW_B11_BASE 17
#define ROW_B12_BASE 18
#define ROW_B13_BASE 19
#define ROW_B14_BASE 20
#define ROW_B15_BASE 21
#define ROW_B16_BASE 22
#define ROW_B17_BASE 23
#define COL_B2_BASE 2
#define COL_B3_BASE 3
#define COL_B4_BASE 4
#define COL_B5_BASE 5
#define COL_B6_BASE 6
#define COL_B7_BASE 7
#define COL_B8_BASE 8
#define COL_B9_BASE 9
#define COL_B10_BASE 10
#define COL_B11_BASE 11
#define COL_B12_BASE 12
#define COL_B13_BASE 13
#define BANK_B0_BASE 2
#define BANK_B1_BASE 3
#define BANK_B2_BASE 4
#define BANKGRP_B0_BASE 2
#define BANKGRP_B1_BASE 3
#define RANK_B0_BASE 6
/** /**
* struct ecc_error_info - ECC error log information * struct ecc_error_info - ECC error log information.
* @row: Row number * @row: Row number.
* @col: Column number * @col: Column number.
* @bank: Bank number * @bank: Bank number.
* @bitpos: Bit position * @bitpos: Bit position.
* @data: Data causing the error * @data: Data causing the error.
* @bankgrpnr: Bank group number.
* @blknr: Block number.
*/ */
struct ecc_error_info { struct ecc_error_info {
u32 row; u32 row;
...@@ -109,14 +282,16 @@ struct ecc_error_info { ...@@ -109,14 +282,16 @@ struct ecc_error_info {
u32 bank; u32 bank;
u32 bitpos; u32 bitpos;
u32 data; u32 data;
u32 bankgrpnr;
u32 blknr;
}; };
/** /**
* struct synps_ecc_status - ECC status information to report * struct synps_ecc_status - ECC status information to report.
* @ce_cnt: Correctable error count * @ce_cnt: Correctable error count.
* @ue_cnt: Uncorrectable error count * @ue_cnt: Uncorrectable error count.
* @ceinfo: Correctable error log information * @ceinfo: Correctable error log information.
* @ueinfo: Uncorrectable error log information * @ueinfo: Uncorrectable error log information.
*/ */
struct synps_ecc_status { struct synps_ecc_status {
u32 ce_cnt; u32 ce_cnt;
...@@ -126,34 +301,67 @@ struct synps_ecc_status { ...@@ -126,34 +301,67 @@ struct synps_ecc_status {
}; };
/** /**
* struct synps_edac_priv - DDR memory controller private instance data * struct synps_edac_priv - DDR memory controller private instance data.
* @baseaddr: Base address of the DDR controller * @baseaddr: Base address of the DDR controller.
* @message: Buffer for framing the event specific info * @message: Buffer for framing the event specific info.
* @stat: ECC status information * @stat: ECC status information.
* @ce_cnt: Correctable Error count * @p_data: Platform data.
* @ue_cnt: Uncorrectable Error count * @ce_cnt: Correctable Error count.
* @ue_cnt: Uncorrectable Error count.
* @poison_addr: Data poison address.
* @row_shift: Bit shifts for row bit.
* @col_shift: Bit shifts for column bit.
* @bank_shift: Bit shifts for bank bit.
* @bankgrp_shift: Bit shifts for bank group bit.
* @rank_shift: Bit shifts for rank bit.
*/ */
struct synps_edac_priv { struct synps_edac_priv {
void __iomem *baseaddr; void __iomem *baseaddr;
char message[SYNPS_EDAC_MSG_SIZE]; char message[SYNPS_EDAC_MSG_SIZE];
struct synps_ecc_status stat; struct synps_ecc_status stat;
const struct synps_platform_data *p_data;
u32 ce_cnt; u32 ce_cnt;
u32 ue_cnt; u32 ue_cnt;
#ifdef CONFIG_EDAC_DEBUG
ulong poison_addr;
u32 row_shift[18];
u32 col_shift[14];
u32 bank_shift[3];
u32 bankgrp_shift[2];
u32 rank_shift[1];
#endif
}; };
/** /**
* synps_edac_geterror_info - Get the current ecc error info * struct synps_platform_data - synps platform data structure.
* @base: Pointer to the base address of the ddr memory controller * @get_error_info: Get EDAC error info.
* @p: Pointer to the synopsys ecc status structure * @get_mtype: Get mtype.
* * @get_dtype: Get dtype.
* Determines there is any ecc error or not * @get_ecc_state: Get ECC state.
* @quirks: To differentiate IPs.
*/
struct synps_platform_data {
int (*get_error_info)(struct synps_edac_priv *priv);
enum mem_type (*get_mtype)(const void __iomem *base);
enum dev_type (*get_dtype)(const void __iomem *base);
bool (*get_ecc_state)(void __iomem *base);
int quirks;
};
/**
* zynq_get_error_info - Get the current ECC error info.
* @priv: DDR memory controller private instance data.
* *
* Return: one if there is no error otherwise returns zero * Return: one if there is no error, otherwise zero.
*/ */
static int synps_edac_geterror_info(void __iomem *base, static int zynq_get_error_info(struct synps_edac_priv *priv)
struct synps_ecc_status *p)
{ {
struct synps_ecc_status *p;
u32 regval, clearval = 0; u32 regval, clearval = 0;
void __iomem *base;
base = priv->baseaddr;
p = &priv->stat;
regval = readl(base + STAT_OFST); regval = readl(base + STAT_OFST);
if (!regval) if (!regval)
...@@ -172,7 +380,7 @@ static int synps_edac_geterror_info(void __iomem *base, ...@@ -172,7 +380,7 @@ static int synps_edac_geterror_info(void __iomem *base,
p->ceinfo.col = regval & ADDR_COL_MASK; p->ceinfo.col = regval & ADDR_COL_MASK;
p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT; p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
p->ceinfo.data = readl(base + CE_DATA_31_0_OFST); p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
edac_dbg(3, "ce bit position: %d data: %d\n", p->ceinfo.bitpos, edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
p->ceinfo.data); p->ceinfo.data);
clearval = ECC_CTRL_CLR_CE_ERR; clearval = ECC_CTRL_CLR_CE_ERR;
...@@ -196,23 +404,98 @@ static int synps_edac_geterror_info(void __iomem *base, ...@@ -196,23 +404,98 @@ static int synps_edac_geterror_info(void __iomem *base,
} }
/** /**
* synps_edac_handle_error - Handle controller error types CE and UE * zynqmp_get_error_info - Get the current ECC error info.
* @mci: Pointer to the edac memory controller instance * @priv: DDR memory controller private instance data.
* @p: Pointer to the synopsys ecc status structure
* *
* Handles the controller ECC correctable and un correctable error. * Return: one if there is no error otherwise returns zero.
*/ */
static void synps_edac_handle_error(struct mem_ctl_info *mci, static int zynqmp_get_error_info(struct synps_edac_priv *priv)
struct synps_ecc_status *p) {
struct synps_ecc_status *p;
u32 regval, clearval = 0;
void __iomem *base;
base = priv->baseaddr;
p = &priv->stat;
regval = readl(base + ECC_STAT_OFST);
if (!regval)
return 1;
p->ce_cnt = (regval & ECC_STAT_CECNT_MASK) >> ECC_STAT_CECNT_SHIFT;
p->ue_cnt = (regval & ECC_STAT_UECNT_MASK) >> ECC_STAT_UECNT_SHIFT;
if (!p->ce_cnt)
goto ue_err;
p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
regval = readl(base + ECC_CEADDR0_OFST);
p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
regval = readl(base + ECC_CEADDR1_OFST);
p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
ECC_CEADDR1_BNKNR_SHIFT;
p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
ECC_CEADDR1_BNKGRP_SHIFT;
p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
readl(base + ECC_CSYND2_OFST));
ue_err:
if (!p->ue_cnt)
goto out;
regval = readl(base + ECC_UEADDR0_OFST);
p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
regval = readl(base + ECC_UEADDR1_OFST);
p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
ECC_CEADDR1_BNKGRP_SHIFT;
p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
ECC_CEADDR1_BNKNR_SHIFT;
p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
out:
clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
writel(clearval, base + ECC_CLR_OFST);
writel(0x0, base + ECC_CLR_OFST);
return 0;
}
/**
* handle_error - Handle Correctable and Uncorrectable errors.
* @mci: EDAC memory controller instance.
* @p: Synopsys ECC status structure.
*
* Handles ECC correctable and uncorrectable errors.
*/
static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
{ {
struct synps_edac_priv *priv = mci->pvt_info; struct synps_edac_priv *priv = mci->pvt_info;
struct ecc_error_info *pinf; struct ecc_error_info *pinf;
if (p->ce_cnt) { if (p->ce_cnt) {
pinf = &p->ceinfo; pinf = &p->ceinfo;
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, if (!priv->p_data->quirks) {
"DDR ECC error type :%s Row %d Bank %d Col %d ", snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"CE", pinf->row, pinf->bank, pinf->col); "DDR ECC error type:%s Row %d Bank %d Col %d ",
"CE", pinf->row, pinf->bank, pinf->col);
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"Bit Position: %d Data: 0x%08x\n",
pinf->bitpos, pinf->data);
} else {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type:%s Row %d Bank %d Col %d ",
"CE", pinf->row, pinf->bank, pinf->col);
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"BankGroup Number %d Block Number %d ",
pinf->bankgrpnr, pinf->blknr);
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"Bit Position: %d Data: 0x%08x\n",
pinf->bitpos, pinf->data);
}
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
p->ce_cnt, 0, 0, 0, 0, 0, -1, p->ce_cnt, 0, 0, 0, 0, 0, -1,
priv->message, ""); priv->message, "");
...@@ -220,9 +503,19 @@ static void synps_edac_handle_error(struct mem_ctl_info *mci, ...@@ -220,9 +503,19 @@ static void synps_edac_handle_error(struct mem_ctl_info *mci,
if (p->ue_cnt) { if (p->ue_cnt) {
pinf = &p->ueinfo; pinf = &p->ueinfo;
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, if (!priv->p_data->quirks) {
"DDR ECC error type :%s Row %d Bank %d Col %d ", snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"UE", pinf->row, pinf->bank, pinf->col); "DDR ECC error type :%s Row %d Bank %d Col %d ",
"UE", pinf->row, pinf->bank, pinf->col);
} else {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type :%s Row %d Bank %d Col %d ",
"UE", pinf->row, pinf->bank, pinf->col);
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"BankGroup Number %d Block Number %d",
pinf->bankgrpnr, pinf->blknr);
}
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
p->ue_cnt, 0, 0, 0, 0, 0, -1, p->ue_cnt, 0, 0, 0, 0, 0, -1,
priv->message, ""); priv->message, "");
...@@ -232,38 +525,78 @@ static void synps_edac_handle_error(struct mem_ctl_info *mci, ...@@ -232,38 +525,78 @@ static void synps_edac_handle_error(struct mem_ctl_info *mci,
} }
/** /**
* synps_edac_check - Check controller for ECC errors * intr_handler - Interrupt Handler for ECC interrupts.
* @mci: Pointer to the edac memory controller instance * @irq: IRQ number.
* @dev_id: Device ID.
* *
* Used to check and post ECC errors. Called by the polling thread * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
*/ */
static void synps_edac_check(struct mem_ctl_info *mci) static irqreturn_t intr_handler(int irq, void *dev_id)
{ {
struct synps_edac_priv *priv = mci->pvt_info; const struct synps_platform_data *p_data;
struct mem_ctl_info *mci = dev_id;
struct synps_edac_priv *priv;
int status, regval;
priv = mci->pvt_info;
p_data = priv->p_data;
regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
if (!(regval & ECC_CE_UE_INTR_MASK))
return IRQ_NONE;
status = p_data->get_error_info(priv);
if (status)
return IRQ_NONE;
priv->ce_cnt += priv->stat.ce_cnt;
priv->ue_cnt += priv->stat.ue_cnt;
handle_error(mci, &priv->stat);
edac_dbg(3, "Total error count CE %d UE %d\n",
priv->ce_cnt, priv->ue_cnt);
writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
return IRQ_HANDLED;
}
/**
* check_errors - Check controller for ECC errors.
* @mci: EDAC memory controller instance.
*
* Check and post ECC errors. Called by the polling thread.
*/
static void check_errors(struct mem_ctl_info *mci)
{
const struct synps_platform_data *p_data;
struct synps_edac_priv *priv;
int status; int status;
status = synps_edac_geterror_info(priv->baseaddr, &priv->stat); priv = mci->pvt_info;
p_data = priv->p_data;
status = p_data->get_error_info(priv);
if (status) if (status)
return; return;
priv->ce_cnt += priv->stat.ce_cnt; priv->ce_cnt += priv->stat.ce_cnt;
priv->ue_cnt += priv->stat.ue_cnt; priv->ue_cnt += priv->stat.ue_cnt;
synps_edac_handle_error(mci, &priv->stat); handle_error(mci, &priv->stat);
edac_dbg(3, "Total error count ce %d ue %d\n", edac_dbg(3, "Total error count CE %d UE %d\n",
priv->ce_cnt, priv->ue_cnt); priv->ce_cnt, priv->ue_cnt);
} }
/** /**
* synps_edac_get_dtype - Return the controller memory width * zynq_get_dtype - Return the controller memory width.
* @base: Pointer to the ddr memory controller base address * @base: DDR memory controller base address.
* *
* Get the EDAC device type width appropriate for the current controller * Get the EDAC device type width appropriate for the current controller
* configuration. * configuration.
* *
* Return: a device type width enumeration. * Return: a device type width enumeration.
*/ */
static enum dev_type synps_edac_get_dtype(const void __iomem *base) static enum dev_type zynq_get_dtype(const void __iomem *base)
{ {
enum dev_type dt; enum dev_type dt;
u32 width; u32 width;
...@@ -286,36 +619,93 @@ static enum dev_type synps_edac_get_dtype(const void __iomem *base) ...@@ -286,36 +619,93 @@ static enum dev_type synps_edac_get_dtype(const void __iomem *base)
} }
/** /**
* synps_edac_get_eccstate - Return the controller ecc enable/disable status * zynqmp_get_dtype - Return the controller memory width.
* @base: Pointer to the ddr memory controller base address * @base: DDR memory controller base address.
*
* Get the EDAC device type width appropriate for the current controller
* configuration.
*
* Return: a device type width enumeration.
*/
static enum dev_type zynqmp_get_dtype(const void __iomem *base)
{
enum dev_type dt;
u32 width;
width = readl(base + CTRL_OFST);
width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
switch (width) {
case DDRCTL_EWDTH_16:
dt = DEV_X2;
break;
case DDRCTL_EWDTH_32:
dt = DEV_X4;
break;
case DDRCTL_EWDTH_64:
dt = DEV_X8;
break;
default:
dt = DEV_UNKNOWN;
}
return dt;
}
/**
* zynq_get_ecc_state - Return the controller ECC enable/disable status.
* @base: DDR memory controller base address.
* *
* Get the ECC enable/disable status for the controller * Get the ECC enable/disable status of the controller.
* *
* Return: a ecc status boolean i.e true/false - enabled/disabled. * Return: true if enabled, otherwise false.
*/ */
static bool synps_edac_get_eccstate(void __iomem *base) static bool zynq_get_ecc_state(void __iomem *base)
{ {
enum dev_type dt; enum dev_type dt;
u32 ecctype; u32 ecctype;
bool state = false;
dt = synps_edac_get_dtype(base); dt = zynq_get_dtype(base);
if (dt == DEV_UNKNOWN) if (dt == DEV_UNKNOWN)
return state; return false;
ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK; ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2)) if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
state = true; return true;
return state; return false;
} }
/** /**
* synps_edac_get_memsize - reads the size of the attached memory device * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
* @base: DDR memory controller base address.
* *
* Return: the memory size in bytes * Get the ECC enable/disable status for the controller.
*
* Return: a ECC status boolean i.e true/false - enabled/disabled.
*/ */
static u32 synps_edac_get_memsize(void) static bool zynqmp_get_ecc_state(void __iomem *base)
{
enum dev_type dt;
u32 ecctype;
dt = zynqmp_get_dtype(base);
if (dt == DEV_UNKNOWN)
return false;
ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
if ((ecctype == SCRUB_MODE_SECDED) &&
((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
return true;
return false;
}
/**
* get_memsize - Read the size of the attached memory device.
*
* Return: the memory size in bytes.
*/
static u32 get_memsize(void)
{ {
struct sysinfo inf; struct sysinfo inf;
...@@ -325,15 +715,15 @@ static u32 synps_edac_get_memsize(void) ...@@ -325,15 +715,15 @@ static u32 synps_edac_get_memsize(void)
} }
/** /**
* synps_edac_get_mtype - Returns controller memory type * zynq_get_mtype - Return the controller memory type.
* @base: pointer to the synopsys ecc status structure * @base: Synopsys ECC status structure.
* *
* Get the EDAC memory type appropriate for the current controller * Get the EDAC memory type appropriate for the current controller
* configuration. * configuration.
* *
* Return: a memory type enumeration. * Return: a memory type enumeration.
*/ */
static enum mem_type synps_edac_get_mtype(const void __iomem *base) static enum mem_type zynq_get_mtype(const void __iomem *base)
{ {
enum mem_type mt; enum mem_type mt;
u32 memtype; u32 memtype;
...@@ -349,54 +739,77 @@ static enum mem_type synps_edac_get_mtype(const void __iomem *base) ...@@ -349,54 +739,77 @@ static enum mem_type synps_edac_get_mtype(const void __iomem *base)
} }
/** /**
* synps_edac_init_csrows - Initialize the cs row data * zynqmp_get_mtype - Returns controller memory type.
* @mci: Pointer to the edac memory controller instance * @base: Synopsys ECC status structure.
* *
* Initializes the chip select rows associated with the EDAC memory * Get the EDAC memory type appropriate for the current controller
* controller instance * configuration.
* *
* Return: Unconditionally 0. * Return: a memory type enumeration.
*/ */
static int synps_edac_init_csrows(struct mem_ctl_info *mci) static enum mem_type zynqmp_get_mtype(const void __iomem *base)
{ {
enum mem_type mt;
u32 memtype;
memtype = readl(base + CTRL_OFST);
if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
mt = MEM_DDR3;
else if (memtype & MEM_TYPE_DDR2)
mt = MEM_RDDR2;
else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
mt = MEM_DDR4;
else
mt = MEM_EMPTY;
return mt;
}
/**
* init_csrows - Initialize the csrow data.
* @mci: EDAC memory controller instance.
*
* Initialize the chip select rows associated with the EDAC memory
* controller instance.
*/
static void init_csrows(struct mem_ctl_info *mci)
{
struct synps_edac_priv *priv = mci->pvt_info;
const struct synps_platform_data *p_data;
struct csrow_info *csi; struct csrow_info *csi;
struct dimm_info *dimm; struct dimm_info *dimm;
struct synps_edac_priv *priv = mci->pvt_info; u32 size, row;
u32 size; int j;
int row, j;
p_data = priv->p_data;
for (row = 0; row < mci->nr_csrows; row++) { for (row = 0; row < mci->nr_csrows; row++) {
csi = mci->csrows[row]; csi = mci->csrows[row];
size = synps_edac_get_memsize(); size = get_memsize();
for (j = 0; j < csi->nr_channels; j++) { for (j = 0; j < csi->nr_channels; j++) {
dimm = csi->channels[j]->dimm; dimm = csi->channels[j]->dimm;
dimm->edac_mode = EDAC_FLAG_SECDED; dimm->edac_mode = EDAC_FLAG_SECDED;
dimm->mtype = synps_edac_get_mtype(priv->baseaddr); dimm->mtype = p_data->get_mtype(priv->baseaddr);
dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels; dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
dimm->grain = SYNPS_EDAC_ERR_GRAIN; dimm->grain = SYNPS_EDAC_ERR_GRAIN;
dimm->dtype = synps_edac_get_dtype(priv->baseaddr); dimm->dtype = p_data->get_dtype(priv->baseaddr);
} }
} }
return 0;
} }
/** /**
* synps_edac_mc_init - Initialize driver instance * mc_init - Initialize one driver instance.
* @mci: Pointer to the edac memory controller instance * @mci: EDAC memory controller instance.
* @pdev: Pointer to the platform_device struct * @pdev: platform device.
* *
* Performs initialization of the EDAC memory controller instance and * Perform initialization of the EDAC memory controller instance and
* related driver-private data associated with the memory controller the * related driver-private data associated with the memory controller the
* instance is bound to. * instance is bound to.
*
* Return: Always zero.
*/ */
static int synps_edac_mc_init(struct mem_ctl_info *mci, static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
struct platform_device *pdev)
{ {
int status;
struct synps_edac_priv *priv; struct synps_edac_priv *priv;
mci->pdev = &pdev->dev; mci->pdev = &pdev->dev;
...@@ -414,39 +827,491 @@ static int synps_edac_mc_init(struct mem_ctl_info *mci, ...@@ -414,39 +827,491 @@ static int synps_edac_mc_init(struct mem_ctl_info *mci,
mci->dev_name = SYNPS_EDAC_MOD_STRING; mci->dev_name = SYNPS_EDAC_MOD_STRING;
mci->mod_name = SYNPS_EDAC_MOD_VER; mci->mod_name = SYNPS_EDAC_MOD_VER;
edac_op_state = EDAC_OPSTATE_POLL; if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
mci->edac_check = synps_edac_check; edac_op_state = EDAC_OPSTATE_INT;
} else {
edac_op_state = EDAC_OPSTATE_POLL;
mci->edac_check = check_errors;
}
mci->ctl_page_to_phys = NULL; mci->ctl_page_to_phys = NULL;
status = synps_edac_init_csrows(mci); init_csrows(mci);
}
static void enable_intr(struct synps_edac_priv *priv)
{
/* Enable UE/CE Interrupts */
writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
}
static void disable_intr(struct synps_edac_priv *priv)
{
/* Disable UE/CE Interrupts */
writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
}
static int setup_irq(struct mem_ctl_info *mci,
struct platform_device *pdev)
{
struct synps_edac_priv *priv = mci->pvt_info;
int ret, irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
edac_printk(KERN_ERR, EDAC_MC,
"No IRQ %d in DT\n", irq);
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, intr_handler,
0, dev_name(&pdev->dev), mci);
if (ret < 0) {
edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
return ret;
}
enable_intr(priv);
return 0;
}
static const struct synps_platform_data zynq_edac_def = {
.get_error_info = zynq_get_error_info,
.get_mtype = zynq_get_mtype,
.get_dtype = zynq_get_dtype,
.get_ecc_state = zynq_get_ecc_state,
.quirks = 0,
};
static const struct synps_platform_data zynqmp_edac_def = {
.get_error_info = zynqmp_get_error_info,
.get_mtype = zynqmp_get_mtype,
.get_dtype = zynqmp_get_dtype,
.get_ecc_state = zynqmp_get_ecc_state,
.quirks = (DDR_ECC_INTR_SUPPORT
#ifdef CONFIG_EDAC_DEBUG
| DDR_ECC_DATA_POISON_SUPPORT
#endif
),
};
static const struct of_device_id synps_edac_match[] = {
{
.compatible = "xlnx,zynq-ddrc-a05",
.data = (void *)&zynq_edac_def
},
{
.compatible = "xlnx,zynqmp-ddrc-2.40a",
.data = (void *)&zynqmp_edac_def
},
{
/* end of table */
}
};
MODULE_DEVICE_TABLE(of, synps_edac_match);
#ifdef CONFIG_EDAC_DEBUG
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
/**
* ddr_poison_setup - Update poison registers.
* @priv: DDR memory controller private instance data.
*
* Update poison registers as per DDR mapping.
* Return: none.
*/
static void ddr_poison_setup(struct synps_edac_priv *priv)
{
int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
int index;
ulong hif_addr = 0;
hif_addr = priv->poison_addr >> 3;
for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
if (priv->row_shift[index])
row |= (((hif_addr >> priv->row_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
if (priv->col_shift[index] || index < 3)
col |= (((hif_addr >> priv->col_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
if (priv->bank_shift[index])
bank |= (((hif_addr >> priv->bank_shift[index]) &
BIT(0)) << index);
else
break;
}
for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
if (priv->bankgrp_shift[index])
bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
& BIT(0)) << index);
else
break;
}
if (priv->rank_shift[0])
rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
writel(regval, priv->baseaddr + ECC_POISON0_OFST);
regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
writel(regval, priv->baseaddr + ECC_POISON1_OFST);
}
static ssize_t inject_data_error_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
"Error injection Address: 0x%lx\n\r",
readl(priv->baseaddr + ECC_POISON0_OFST),
readl(priv->baseaddr + ECC_POISON1_OFST),
priv->poison_addr);
}
static ssize_t inject_data_error_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
if (kstrtoul(data, 0, &priv->poison_addr))
return -EINVAL;
ddr_poison_setup(priv);
return count;
}
static ssize_t inject_data_poison_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
return sprintf(data, "Data Poisoning: %s\n\r",
(((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
? ("Correctable Error") : ("UnCorrectable Error"));
}
static ssize_t inject_data_poison_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct synps_edac_priv *priv = mci->pvt_info;
writel(0, priv->baseaddr + DDRC_SWCTL);
if (strncmp(data, "CE", 2) == 0)
writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
else
writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
writel(1, priv->baseaddr + DDRC_SWCTL);
return count;
}
static DEVICE_ATTR_RW(inject_data_error);
static DEVICE_ATTR_RW(inject_data_poison);
static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
{
int rc;
rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
if (rc < 0)
return rc;
rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
if (rc < 0)
return rc;
return 0;
}
static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
{
device_remove_file(&mci->dev, &dev_attr_inject_data_error);
device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
}
static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
u32 addrmap_row_b2_10;
int index;
priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
priv->row_shift[1] = ((addrmap[5] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B1_BASE;
addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
for (index = 2; index < 11; index++)
priv->row_shift[index] = addrmap_row_b2_10 +
index + ROW_B0_BASE;
} else {
priv->row_shift[2] = (addrmap[9] &
ROW_MAX_VAL_MASK) + ROW_B2_BASE;
priv->row_shift[3] = ((addrmap[9] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B3_BASE;
priv->row_shift[4] = ((addrmap[9] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B4_BASE;
priv->row_shift[5] = ((addrmap[9] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B5_BASE;
priv->row_shift[6] = (addrmap[10] &
ROW_MAX_VAL_MASK) + ROW_B6_BASE;
priv->row_shift[7] = ((addrmap[10] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B7_BASE;
priv->row_shift[8] = ((addrmap[10] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B8_BASE;
priv->row_shift[9] = ((addrmap[10] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B9_BASE;
priv->row_shift[10] = (addrmap[11] &
ROW_MAX_VAL_MASK) + ROW_B10_BASE;
}
return status; priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B11_BASE);
priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
ROW_MAX_VAL_MASK) + ROW_B12_BASE);
priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B13_BASE);
priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
ROW_MAX_VAL_MASK) + ROW_B14_BASE);
priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
ROW_MAX_VAL_MASK) + ROW_B15_BASE);
priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
ROW_MAX_VAL_MASK) + ROW_B16_BASE);
priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
ROW_MAX_VAL_MASK) + ROW_B17_BASE);
}
static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
u32 width, memtype;
int index;
memtype = readl(priv->baseaddr + CTRL_OFST);
width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
priv->col_shift[0] = 0;
priv->col_shift[1] = 1;
priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
priv->col_shift[3] = ((addrmap[2] >> 8) &
COL_MAX_VAL_MASK) + COL_B3_BASE;
priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
COL_MAX_VAL_MASK) + COL_B4_BASE);
priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
COL_MAX_VAL_MASK) + COL_B5_BASE);
priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
COL_MAX_VAL_MASK) + COL_B6_BASE);
priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
COL_MAX_VAL_MASK) + COL_B7_BASE);
priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) + COL_B8_BASE);
priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) + COL_B9_BASE);
if (width == DDRCTL_EWDTH_64) {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
priv->col_shift[11] = (((addrmap[4] >> 8) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
COL_B11_BASE);
} else {
priv->col_shift[11] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
priv->col_shift[13] = (((addrmap[4] >> 8) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
COL_B11_BASE);
}
} else if (width == DDRCTL_EWDTH_32) {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[11] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
} else {
priv->col_shift[11] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[13] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
}
} else {
if (memtype & MEM_TYPE_LPDDR3) {
priv->col_shift[10] = (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
COL_B8_BASE);
priv->col_shift[11] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
priv->col_shift[13] = ((addrmap[4] &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
((addrmap[4] & COL_MAX_VAL_MASK) +
COL_B10_BASE);
} else {
priv->col_shift[11] = (((addrmap[3] >> 16) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
COL_B8_BASE);
priv->col_shift[13] = (((addrmap[3] >> 24) &
COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
COL_B9_BASE);
}
}
if (width) {
for (index = 9; index > width; index--) {
priv->col_shift[index] = priv->col_shift[index - width];
priv->col_shift[index - width] = 0;
}
}
}
static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
priv->bank_shift[1] = ((addrmap[1] >> 8) &
BANK_MAX_VAL_MASK) + BANK_B1_BASE;
priv->bank_shift[2] = (((addrmap[1] >> 16) &
BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
(((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
BANK_B2_BASE);
}
static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->bankgrp_shift[0] = (addrmap[8] &
BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
& BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
}
static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
{
priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
RANK_MAX_VAL_MASK) + RANK_B0_BASE);
} }
/** /**
* synps_edac_mc_probe - Check controller and bind driver * setup_address_map - Set Address Map by querying ADDRMAP registers.
* @pdev: Pointer to the platform_device struct * @priv: DDR memory controller private instance data.
* *
* Probes a specific controller instance for binding with the driver. * Set Address Map by querying ADDRMAP registers.
*
* Return: none.
*/
static void setup_address_map(struct synps_edac_priv *priv)
{
u32 addrmap[12];
int index;
for (index = 0; index < 12; index++) {
u32 addrmap_offset;
addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
addrmap[index] = readl(priv->baseaddr + addrmap_offset);
}
setup_row_address_map(priv, addrmap);
setup_column_address_map(priv, addrmap);
setup_bank_address_map(priv, addrmap);
setup_bg_address_map(priv, addrmap);
setup_rank_address_map(priv, addrmap);
}
#endif /* CONFIG_EDAC_DEBUG */
/**
* mc_probe - Check controller and bind driver.
* @pdev: platform device.
*
* Probe a specific controller instance for binding with the driver.
* *
* Return: 0 if the controller instance was successfully bound to the * Return: 0 if the controller instance was successfully bound to the
* driver; otherwise, < 0 on error. * driver; otherwise, < 0 on error.
*/ */
static int synps_edac_mc_probe(struct platform_device *pdev) static int mc_probe(struct platform_device *pdev)
{ {
struct mem_ctl_info *mci; const struct synps_platform_data *p_data;
struct edac_mc_layer layers[2]; struct edac_mc_layer layers[2];
struct synps_edac_priv *priv; struct synps_edac_priv *priv;
int rc; struct mem_ctl_info *mci;
struct resource *res;
void __iomem *baseaddr; void __iomem *baseaddr;
struct resource *res;
int rc;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
baseaddr = devm_ioremap_resource(&pdev->dev, res); baseaddr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(baseaddr)) if (IS_ERR(baseaddr))
return PTR_ERR(baseaddr); return PTR_ERR(baseaddr);
if (!synps_edac_get_eccstate(baseaddr)) { p_data = of_device_get_match_data(&pdev->dev);
if (!p_data)
return -ENODEV;
if (!p_data->get_ecc_state(baseaddr)) {
edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n"); edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
return -ENXIO; return -ENXIO;
} }
...@@ -468,11 +1333,14 @@ static int synps_edac_mc_probe(struct platform_device *pdev) ...@@ -468,11 +1333,14 @@ static int synps_edac_mc_probe(struct platform_device *pdev)
priv = mci->pvt_info; priv = mci->pvt_info;
priv->baseaddr = baseaddr; priv->baseaddr = baseaddr;
rc = synps_edac_mc_init(mci, pdev); priv->p_data = p_data;
if (rc) {
edac_printk(KERN_ERR, EDAC_MC, mc_init(mci, pdev);
"Failed to initialize instance\n");
goto free_edac_mc; if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
rc = setup_irq(mci, pdev);
if (rc)
goto free_edac_mc;
} }
rc = edac_mc_add_mc(mci); rc = edac_mc_add_mc(mci);
...@@ -482,11 +1350,27 @@ static int synps_edac_mc_probe(struct platform_device *pdev) ...@@ -482,11 +1350,27 @@ static int synps_edac_mc_probe(struct platform_device *pdev)
goto free_edac_mc; goto free_edac_mc;
} }
#ifdef CONFIG_EDAC_DEBUG
if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
if (edac_create_sysfs_attributes(mci)) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed to create sysfs entries\n");
goto free_edac_mc;
}
}
if (of_device_is_compatible(pdev->dev.of_node,
"xlnx,zynqmp-ddrc-2.40a"))
setup_address_map(priv);
#endif
/* /*
* Start capturing the correctable and uncorrectable errors. A write of * Start capturing the correctable and uncorrectable errors. A write of
* 0 starts the counters. * 0 starts the counters.
*/ */
writel(0x0, baseaddr + ECC_CTRL_OFST); if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
writel(0x0, baseaddr + ECC_CTRL_OFST);
return rc; return rc;
free_edac_mc: free_edac_mc:
...@@ -496,14 +1380,23 @@ static int synps_edac_mc_probe(struct platform_device *pdev) ...@@ -496,14 +1380,23 @@ static int synps_edac_mc_probe(struct platform_device *pdev)
} }
/** /**
* synps_edac_mc_remove - Unbind driver from controller * mc_remove - Unbind driver from controller.
* @pdev: Pointer to the platform_device struct * @pdev: Platform device.
* *
* Return: Unconditionally 0 * Return: Unconditionally 0
*/ */
static int synps_edac_mc_remove(struct platform_device *pdev) static int mc_remove(struct platform_device *pdev)
{ {
struct mem_ctl_info *mci = platform_get_drvdata(pdev); struct mem_ctl_info *mci = platform_get_drvdata(pdev);
struct synps_edac_priv *priv = mci->pvt_info;
if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
disable_intr(priv);
#ifdef CONFIG_EDAC_DEBUG
if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
edac_remove_sysfs_attributes(mci);
#endif
edac_mc_del_mc(&pdev->dev); edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci); edac_mc_free(mci);
...@@ -511,20 +1404,13 @@ static int synps_edac_mc_remove(struct platform_device *pdev) ...@@ -511,20 +1404,13 @@ static int synps_edac_mc_remove(struct platform_device *pdev)
return 0; return 0;
} }
static const struct of_device_id synps_edac_match[] = {
{ .compatible = "xlnx,zynq-ddrc-a05", },
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, synps_edac_match);
static struct platform_driver synps_edac_mc_driver = { static struct platform_driver synps_edac_mc_driver = {
.driver = { .driver = {
.name = "synopsys-edac", .name = "synopsys-edac",
.of_match_table = synps_edac_match, .of_match_table = synps_edac_match,
}, },
.probe = synps_edac_mc_probe, .probe = mc_probe,
.remove = synps_edac_mc_remove, .remove = mc_remove,
}; };
module_platform_driver(synps_edac_mc_driver); module_platform_driver(synps_edac_mc_driver);
......
...@@ -7,12 +7,7 @@ ...@@ -7,12 +7,7 @@
#ifndef _LINUX_ADXL_H #ifndef _LINUX_ADXL_H
#define _LINUX_ADXL_H #define _LINUX_ADXL_H
#ifdef CONFIG_ACPI_ADXL
const char * const *adxl_get_component_names(void); const char * const *adxl_get_component_names(void);
int adxl_decode(u64 addr, u64 component_values[]); int adxl_decode(u64 addr, u64 component_values[]);
#else
static inline const char * const *adxl_get_component_names(void) { return NULL; }
static inline int adxl_decode(u64 addr, u64 component_values[]) { return -EOPNOTSUPP; }
#endif
#endif /* _LINUX_ADXL_H */ #endif /* _LINUX_ADXL_H */
...@@ -669,10 +669,4 @@ struct mem_ctl_info { ...@@ -669,10 +669,4 @@ struct mem_ctl_info {
bool fake_inject_ue; bool fake_inject_ue;
u16 fake_inject_count; u16 fake_inject_count;
}; };
/*
* Maximum number of memory controllers in the coherent fabric.
*/
#define EDAC_MAX_MCS 2 * MAX_NUMNODES
#endif #endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment