Commit ba0696c2 authored by Florian Fainelli's avatar Florian Fainelli Committed by David S. Miller

net: dsa: bcm_sf2: Add support for IPv6 CFP rules

Inserting IPv6 CFP rules complicates the code a little bit in that we
need to insert two rules side by side and chain them to match a full
IPv6 tuple (src, dst IPv6 + port + protocol).
Signed-off-by: default avatarFlorian Fainelli <f.fainelli@gmail.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 4daa70cf
...@@ -1067,6 +1067,7 @@ static int bcm_sf2_sw_probe(struct platform_device *pdev) ...@@ -1067,6 +1067,7 @@ static int bcm_sf2_sw_probe(struct platform_device *pdev)
* permanently used * permanently used
*/ */
set_bit(0, priv->cfp.used); set_bit(0, priv->cfp.used);
set_bit(0, priv->cfp.unique);
bcm_sf2_identify_ports(priv, dn->child); bcm_sf2_identify_ports(priv, dn->child);
......
...@@ -54,6 +54,7 @@ struct bcm_sf2_cfp_priv { ...@@ -54,6 +54,7 @@ struct bcm_sf2_cfp_priv {
/* Mutex protecting concurrent accesses to the CFP registers */ /* Mutex protecting concurrent accesses to the CFP registers */
struct mutex lock; struct mutex lock;
DECLARE_BITMAP(used, CFP_NUM_RULES); DECLARE_BITMAP(used, CFP_NUM_RULES);
DECLARE_BITMAP(unique, CFP_NUM_RULES);
unsigned int rules_cnt; unsigned int rules_cnt;
}; };
......
...@@ -57,6 +57,60 @@ static const struct cfp_udf_layout udf_tcpip4_layout = { ...@@ -57,6 +57,60 @@ static const struct cfp_udf_layout udf_tcpip4_layout = {
}, },
}; };
/* UDF slices layout for a TCPv6/UDPv6 specification */
static const struct cfp_udf_layout udf_tcpip6_layout = {
.udfs = {
[0] = {
.slices = {
/* End of L2, byte offset 8, src IP[0:15] */
CFG_UDF_EOL2 | 4,
/* End of L2, byte offset 10, src IP[16:31] */
CFG_UDF_EOL2 | 5,
/* End of L2, byte offset 12, src IP[32:47] */
CFG_UDF_EOL2 | 6,
/* End of L2, byte offset 14, src IP[48:63] */
CFG_UDF_EOL2 | 7,
/* End of L2, byte offset 16, src IP[64:79] */
CFG_UDF_EOL2 | 8,
/* End of L2, byte offset 18, src IP[80:95] */
CFG_UDF_EOL2 | 9,
/* End of L2, byte offset 20, src IP[96:111] */
CFG_UDF_EOL2 | 10,
/* End of L2, byte offset 22, src IP[112:127] */
CFG_UDF_EOL2 | 11,
/* End of L3, byte offset 0, src port */
CFG_UDF_EOL3 | 0,
},
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
.base_offset = CORE_UDF_0_B_0_8_PORT_0,
},
[3] = {
.slices = {
/* End of L2, byte offset 24, dst IP[0:15] */
CFG_UDF_EOL2 | 12,
/* End of L2, byte offset 26, dst IP[16:31] */
CFG_UDF_EOL2 | 13,
/* End of L2, byte offset 28, dst IP[32:47] */
CFG_UDF_EOL2 | 14,
/* End of L2, byte offset 30, dst IP[48:63] */
CFG_UDF_EOL2 | 15,
/* End of L2, byte offset 32, dst IP[64:79] */
CFG_UDF_EOL2 | 16,
/* End of L2, byte offset 34, dst IP[80:95] */
CFG_UDF_EOL2 | 17,
/* End of L2, byte offset 36, dst IP[96:111] */
CFG_UDF_EOL2 | 18,
/* End of L2, byte offset 38, dst IP[112:127] */
CFG_UDF_EOL2 | 19,
/* End of L3, byte offset 2, dst port */
CFG_UDF_EOL3 | 1,
},
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
.base_offset = CORE_UDF_0_D_0_11_PORT_0,
},
},
};
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
{ {
unsigned int i, count = 0; unsigned int i, count = 0;
...@@ -153,7 +207,8 @@ static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) ...@@ -153,7 +207,8 @@ static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
unsigned int rule_index, unsigned int rule_index,
unsigned int port_num, unsigned int port_num,
unsigned int queue_num) unsigned int queue_num,
bool fwd_map_change)
{ {
int ret; int ret;
u32 reg; u32 reg;
...@@ -161,14 +216,17 @@ static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, ...@@ -161,14 +216,17 @@ static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
/* Replace ARL derived destination with DST_MAP derived, define /* Replace ARL derived destination with DST_MAP derived, define
* which port and queue this should be forwarded to. * which port and queue this should be forwarded to.
*/ */
reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) | if (fwd_map_change)
reg = CHANGE_FWRD_MAP_IB_REP_ARL |
BIT(port_num + DST_MAP_IB_SHIFT) |
CHANGE_TC | queue_num << NEW_TC_SHIFT; CHANGE_TC | queue_num << NEW_TC_SHIFT;
else
reg = 0;
core_writel(priv, reg, CORE_ACT_POL_DATA0); core_writel(priv, reg, CORE_ACT_POL_DATA0);
/* Set classification ID that needs to be put in Broadcom tag */ /* Set classification ID that needs to be put in Broadcom tag */
core_writel(priv, rule_index << CHAIN_ID_SHIFT, core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
CORE_ACT_POL_DATA1);
core_writel(priv, 0, CORE_ACT_POL_DATA2); core_writel(priv, 0, CORE_ACT_POL_DATA2);
...@@ -337,7 +395,8 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, ...@@ -337,7 +395,8 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
} }
/* Insert into Action and policer RAMs now */ /* Insert into Action and policer RAMs now */
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num, queue_num); ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
queue_num, true);
if (ret) if (ret)
return ret; return ret;
...@@ -348,17 +407,280 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, ...@@ -348,17 +407,280 @@ static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
/* Flag the rule as being used and return it */ /* Flag the rule as being used and return it */
set_bit(rule_index, priv->cfp.used); set_bit(rule_index, priv->cfp.used);
set_bit(rule_index, priv->cfp.unique);
fs->location = rule_index; fs->location = rule_index;
return 0; return 0;
} }
static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
const __be32 *ip6_addr, const __be16 port,
unsigned int slice_num)
{
u32 reg, tmp, val;
/* C-Tag [31:24]
* UDF_n_B8 [23:8] (port)
* UDF_n_B7 (upper) [7:0] (addr[15:8])
*/
reg = be32_to_cpu(ip6_addr[3]);
val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
core_writel(priv, val, CORE_CFP_DATA_PORT(4));
/* UDF_n_B7 (lower) [31:24] (addr[7:0])
* UDF_n_B6 [23:8] (addr[31:16])
* UDF_n_B5 (upper) [7:0] (addr[47:40])
*/
tmp = be32_to_cpu(ip6_addr[2]);
val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
((tmp >> 8) & 0xff);
core_writel(priv, val, CORE_CFP_DATA_PORT(3));
/* UDF_n_B5 (lower) [31:24] (addr[39:32])
* UDF_n_B4 [23:8] (addr[63:48])
* UDF_n_B3 (upper) [7:0] (addr[79:72])
*/
reg = be32_to_cpu(ip6_addr[1]);
val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
((reg >> 8) & 0xff);
core_writel(priv, val, CORE_CFP_DATA_PORT(2));
/* UDF_n_B3 (lower) [31:24] (addr[71:64])
* UDF_n_B2 [23:8] (addr[95:80])
* UDF_n_B1 (upper) [7:0] (addr[111:104])
*/
tmp = be32_to_cpu(ip6_addr[0]);
val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
((tmp >> 8) & 0xff);
core_writel(priv, val, CORE_CFP_DATA_PORT(1));
/* UDF_n_B1 (lower) [31:24] (addr[103:96])
* UDF_n_B0 [23:8] (addr[127:112])
* Reserved [7:4]
* Slice ID [3:2]
* Slice valid [1:0]
*/
reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
SLICE_NUM(slice_num) | SLICE_VALID;
core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
/* All other UDFs should be matched with the filter */
core_writel(priv, 0x00ffffff, CORE_CFP_MASK_PORT(4));
core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(3));
core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2));
core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1));
core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0));
}
static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
unsigned int port_num,
unsigned int queue_num,
struct ethtool_rx_flow_spec *fs)
{
unsigned int slice_num, rule_index[2];
struct ethtool_tcpip6_spec *v6_spec;
const struct cfp_udf_layout *layout;
u8 ip_proto, ip_frag;
int ret = 0;
u8 num_udf;
u32 reg;
switch (fs->flow_type & ~FLOW_EXT) {
case TCP_V6_FLOW:
ip_proto = IPPROTO_TCP;
v6_spec = &fs->h_u.tcp_ip6_spec;
break;
case UDP_V6_FLOW:
ip_proto = IPPROTO_UDP;
v6_spec = &fs->h_u.udp_ip6_spec;
break;
default:
return -EINVAL;
}
ip_frag = be32_to_cpu(fs->m_ext.data[0]);
layout = &udf_tcpip6_layout;
slice_num = bcm_sf2_get_slice_number(layout, 0);
if (slice_num == UDF_NUM_SLICES)
return -EINVAL;
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
/* Negotiate two indexes, one for the second half which we are chained
* from, which is what we will return to user-space, and a second one
* which is used to store its first half. That first half does not
* allow any choice of placement, so it just needs to find the next
* available bit. We return the second half as fs->location because
* that helps with the rule lookup later on since the second half is
* chained from its first half, we can easily identify IPv6 CFP rules
* by looking whether they carry a CHAIN_ID.
*
* We also want the second half to have a lower rule_index than its
* first half because the HW search is by incrementing addresses.
*/
if (fs->location == RX_CLS_LOC_ANY)
rule_index[0] = find_first_zero_bit(priv->cfp.used,
bcm_sf2_cfp_rule_size(priv));
else
rule_index[0] = fs->location;
/* Flag it as used (cleared on error path) such that we can immediately
* obtain a second one to chain from.
*/
set_bit(rule_index[0], priv->cfp.used);
rule_index[1] = find_first_zero_bit(priv->cfp.used,
bcm_sf2_cfp_rule_size(priv));
if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) {
ret = -ENOSPC;
goto out_err;
}
/* Apply the UDF layout for this filter */
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
/* Apply to all packets received through this port */
core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
/* Source port map match */
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
/* S-Tag status [31:30]
* C-Tag status [29:28]
* L2 framing [27:26]
* L3 framing [25:24]
* IP ToS [23:16]
* IP proto [15:08]
* IP Fragm [7]
* Non 1st frag [6]
* IP Authen [5]
* TTL range [4:3]
* PPPoE session [2]
* Reserved [1]
* UDF_Valid[8] [0]
*/
reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
/* Mask with the specific layout for IPv6 packets including
* UDF_Valid[8]
*/
reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
/* UDF_Valid[7:0] [31:24]
* S-Tag [23:8]
* C-Tag [7:0]
*/
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
/* Mask all but valid UDFs */
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
/* Slice the IPv6 source address and port */
bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc, slice_num);
/* Insert into TCAM now because we need to insert a second rule */
bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
if (ret) {
pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
goto out_err;
}
/* Insert into Action and policer RAMs now */
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
queue_num, false);
if (ret)
goto out_err;
/* Now deal with the second slice to chain this rule */
slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
if (slice_num == UDF_NUM_SLICES) {
ret = -EINVAL;
goto out_err;
}
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
/* Apply the UDF layout for this filter */
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
/* Chained rule, source port match is coming from the rule we are
* chained from.
*/
core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
/*
* CHAIN ID [31:24] chain to previous slice
* Reserved [23:20]
* UDF_Valid[11:8] [19:16]
* UDF_Valid[7:0] [15:8]
* UDF_n_D11 [7:0]
*/
reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
udf_lower_bits(num_udf) << 8;
core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
udf_lower_bits(num_udf) << 8;
core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
/* Don't care */
core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
/* Mask all */
core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num);
/* Insert into TCAM now */
bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
if (ret) {
pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
goto out_err;
}
/* Insert into Action and policer RAMs now, set chain ID to
* the one we are chained to
*/
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
queue_num, true);
if (ret)
goto out_err;
/* Turn on CFP for this rule now */
reg = core_readl(priv, CORE_CFP_CTL_REG);
reg |= BIT(port);
core_writel(priv, reg, CORE_CFP_CTL_REG);
/* Flag the second half rule as being used now, return it as the
* location, and flag it as unique while dumping rules
*/
set_bit(rule_index[1], priv->cfp.used);
set_bit(rule_index[1], priv->cfp.unique);
fs->location = rule_index[1];
return ret;
out_err:
clear_bit(rule_index[0], priv->cfp.used);
return ret;
}
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
struct ethtool_rx_flow_spec *fs) struct ethtool_rx_flow_spec *fs)
{ {
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
unsigned int queue_num, port_num; unsigned int queue_num, port_num;
int ret; int ret = -EINVAL;
/* Check for unsupported extensions */ /* Check for unsupported extensions */
if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype || if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
...@@ -391,15 +713,26 @@ static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, ...@@ -391,15 +713,26 @@ static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
if (port_num >= 7) if (port_num >= 7)
port_num -= 1; port_num -= 1;
ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, queue_num, fs); switch (fs->flow_type & ~FLOW_EXT) {
if (ret) case TCP_V4_FLOW:
return ret; case UDP_V4_FLOW:
ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
queue_num, fs);
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
queue_num, fs);
break;
default:
break;
}
return 0; return ret;
} }
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
u32 loc) u32 loc, u32 *next_loc)
{ {
int ret; int ret;
u32 reg; u32 reg;
...@@ -415,6 +748,14 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, ...@@ -415,6 +748,14 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
if (ret) if (ret)
return ret; return ret;
/* Check if this is possibly an IPv6 rule that would
* indicate we need to delete its companion rule
* as well
*/
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
if (next_loc)
*next_loc = (reg >> 24) & CHAIN_ID_MASK;
/* Clear its valid bits */ /* Clear its valid bits */
reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
reg &= ~SLICE_VALID; reg &= ~SLICE_VALID;
...@@ -426,10 +767,28 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, ...@@ -426,10 +767,28 @@ static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
return ret; return ret;
clear_bit(loc, priv->cfp.used); clear_bit(loc, priv->cfp.used);
clear_bit(loc, priv->cfp.unique);
return 0; return 0;
} }
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
u32 loc)
{
u32 next_loc = 0;
int ret;
ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
if (ret)
return ret;
/* If this was an IPv6 rule, delete is companion rule too */
if (next_loc)
ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
return ret;
}
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
{ {
unsigned int i; unsigned int i;
...@@ -444,12 +803,32 @@ static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) ...@@ -444,12 +803,32 @@ static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
} }
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port, static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
struct ethtool_tcpip4_spec *v4_spec, struct ethtool_rx_flow_spec *fs)
struct ethtool_tcpip4_spec *v4_m_spec)
{ {
struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
u16 src_dst_port; u16 src_dst_port;
u32 reg, ipv4; u32 reg, ipv4;
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
case IPPROTO_TCP:
fs->flow_type = TCP_V4_FLOW;
v4_spec = &fs->h_u.tcp_ip4_spec;
v4_m_spec = &fs->m_u.tcp_ip4_spec;
break;
case IPPROTO_UDP:
fs->flow_type = UDP_V4_FLOW;
v4_spec = &fs->h_u.udp_ip4_spec;
v4_m_spec = &fs->m_u.udp_ip4_spec;
break;
default:
return -EINVAL;
}
fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
reg = core_readl(priv, CORE_CFP_DATA_PORT(3)); reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
/* src port [15:8] */ /* src port [15:8] */
src_dst_port = reg << 8; src_dst_port = reg << 8;
...@@ -490,12 +869,128 @@ static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port, ...@@ -490,12 +869,128 @@ static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
return 0; return 0;
} }
static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
__be32 *ip6_addr, __be16 *port,
__be32 *ip6_mask, __be16 *port_mask)
{
u32 reg, tmp;
/* C-Tag [31:24]
* UDF_n_B8 [23:8] (port)
* UDF_n_B7 (upper) [7:0] (addr[15:8])
*/
reg = core_readl(priv, CORE_CFP_DATA_PORT(4));
*port = cpu_to_be32(reg) >> 8;
*port_mask = cpu_to_be16(~0);
tmp = (u32)(reg & 0xff) << 8;
/* UDF_n_B7 (lower) [31:24] (addr[7:0])
* UDF_n_B6 [23:8] (addr[31:16])
* UDF_n_B5 (upper) [7:0] (addr[47:40])
*/
reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
tmp |= (reg >> 24) & 0xff;
tmp |= (u32)((reg >> 8) << 16);
ip6_mask[3] = cpu_to_be32(~0);
ip6_addr[3] = cpu_to_be32(tmp);
tmp = (u32)(reg & 0xff) << 8;
/* UDF_n_B5 (lower) [31:24] (addr[39:32])
* UDF_n_B4 [23:8] (addr[63:48])
* UDF_n_B3 (upper) [7:0] (addr[79:72])
*/
reg = core_readl(priv, CORE_CFP_DATA_PORT(2));
tmp |= (reg >> 24) & 0xff;
tmp |= (u32)((reg >> 8) << 16);
ip6_mask[2] = cpu_to_be32(~0);
ip6_addr[2] = cpu_to_be32(tmp);
tmp = (u32)(reg & 0xff) << 8;
/* UDF_n_B3 (lower) [31:24] (addr[71:64])
* UDF_n_B2 [23:8] (addr[95:80])
* UDF_n_B1 (upper) [7:0] (addr[111:104])
*/
reg = core_readl(priv, CORE_CFP_DATA_PORT(1));
tmp |= (reg >> 24) & 0xff;
tmp |= (u32)((reg >> 8) << 16);
ip6_mask[1] = cpu_to_be32(~0);
ip6_addr[1] = cpu_to_be32(tmp);
tmp = (u32)(reg & 0xff) << 8;
/* UDF_n_B1 (lower) [31:24] (addr[103:96])
* UDF_n_B0 [23:8] (addr[127:112])
* Reserved [7:4]
* Slice ID [3:2]
* Slice valid [1:0]
*/
reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
tmp |= (reg >> 24) & 0xff;
tmp |= (u32)((reg >> 8) << 16);
ip6_mask[0] = cpu_to_be32(~0);
ip6_addr[0] = cpu_to_be32(tmp);
if (!(reg & SLICE_VALID))
return -EINVAL;
return 0;
}
static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
struct ethtool_rx_flow_spec *fs,
u32 next_loc)
{
struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
u32 reg;
int ret;
/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
* assuming tcp_ip6_spec here being an union.
*/
v6_spec = &fs->h_u.tcp_ip6_spec;
v6_m_spec = &fs->m_u.tcp_ip6_spec;
/* Read the second half first */
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
v6_m_spec->ip6dst, &v6_m_spec->pdst);
if (ret)
return ret;
/* Read last to avoid next entry clobbering the results during search
* operations. We would not have the port enabled for this rule, so
* don't bother checking it.
*/
(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
/* The slice number is valid, so read the rule we are chained from now
* which is our first half.
*/
bcm_sf2_cfp_rule_addr_set(priv, next_loc);
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
if (ret)
return ret;
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
case IPPROTO_TCP:
fs->flow_type = TCP_V6_FLOW;
break;
case IPPROTO_UDP:
fs->flow_type = UDP_V6_FLOW;
break;
default:
return -EINVAL;
}
return bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
v6_m_spec->ip6src, &v6_m_spec->psrc);
}
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
struct ethtool_rxnfc *nfc) struct ethtool_rxnfc *nfc)
{ {
struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec; u32 reg, ipv4_or_chain_id;
unsigned int queue_num; unsigned int queue_num;
u32 reg;
int ret; int ret;
bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location); bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
...@@ -523,29 +1018,19 @@ static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, ...@@ -523,29 +1018,19 @@ static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK; queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
nfc->fs.ring_cookie += queue_num; nfc->fs.ring_cookie += queue_num;
/* Extract the IP protocol */ /* Extract the L3_FRAMING or CHAIN_ID */
reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
case IPPROTO_TCP:
nfc->fs.flow_type = TCP_V4_FLOW;
v4_spec = &nfc->fs.h_u.tcp_ip4_spec;
v4_m_spec = &nfc->fs.m_u.tcp_ip4_spec;
break;
case IPPROTO_UDP:
nfc->fs.flow_type = UDP_V4_FLOW;
v4_spec = &nfc->fs.h_u.udp_ip4_spec;
v4_m_spec = &nfc->fs.m_u.udp_ip4_spec;
break;
default:
return -EINVAL;
}
nfc->fs.m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
if (v4_spec) {
v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, v4_spec, v4_m_spec);
}
/* With IPv6 rules this would contain a non-zero chain ID since
* we reserve entry 0 and it cannot be used. So if we read 0 here
* this means an IPv4 rule.
*/
ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
if (ipv4_or_chain_id == 0)
ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
else
ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
ipv4_or_chain_id);
if (ret) if (ret)
return ret; return ret;
...@@ -571,7 +1056,7 @@ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, ...@@ -571,7 +1056,7 @@ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
{ {
unsigned int index = 1, rules_cnt = 0; unsigned int index = 1, rules_cnt = 0;
for_each_set_bit_from(index, priv->cfp.used, priv->num_cfp_rules) { for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
rule_locs[rules_cnt] = index; rule_locs[rules_cnt] = index;
rules_cnt++; rules_cnt++;
} }
...@@ -594,7 +1079,7 @@ int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, ...@@ -594,7 +1079,7 @@ int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
switch (nfc->cmd) { switch (nfc->cmd) {
case ETHTOOL_GRXCLSRLCNT: case ETHTOOL_GRXCLSRLCNT:
/* Subtract the default, unusable rule */ /* Subtract the default, unusable rule */
nfc->rule_cnt = bitmap_weight(priv->cfp.used, nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
priv->num_cfp_rules) - 1; priv->num_cfp_rules) - 1;
/* We support specifying rule locations */ /* We support specifying rule locations */
nfc->data |= RX_CLS_LOC_SPECIAL; nfc->data |= RX_CLS_LOC_SPECIAL;
......
...@@ -313,6 +313,7 @@ enum bcm_sf2_reg_offs { ...@@ -313,6 +313,7 @@ enum bcm_sf2_reg_offs {
#define SLICE_VALID 3 #define SLICE_VALID 3
#define SLICE_NUM_SHIFT 2 #define SLICE_NUM_SHIFT 2
#define SLICE_NUM(x) ((x) << SLICE_NUM_SHIFT) #define SLICE_NUM(x) ((x) << SLICE_NUM_SHIFT)
#define SLICE_NUM_MASK 0xff
#define CORE_CFP_MASK_PORT_0 0x280c0 #define CORE_CFP_MASK_PORT_0 0x280c0
...@@ -408,6 +409,12 @@ enum bcm_sf2_reg_offs { ...@@ -408,6 +409,12 @@ enum bcm_sf2_reg_offs {
#define CFG_UDF_EOL2 (2 << CFG_UDF_OFFSET_BASE_SHIFT) #define CFG_UDF_EOL2 (2 << CFG_UDF_OFFSET_BASE_SHIFT)
#define CFG_UDF_EOL3 (3 << CFG_UDF_OFFSET_BASE_SHIFT) #define CFG_UDF_EOL3 (3 << CFG_UDF_OFFSET_BASE_SHIFT)
/* IPv6 slices */
#define CORE_UDF_0_B_0_8_PORT_0 0x28500
/* IPv6 chained slices */
#define CORE_UDF_0_D_0_11_PORT_0 0x28680
/* Number of slices for IPv4, IPv6 and non-IP */ /* Number of slices for IPv4, IPv6 and non-IP */
#define UDF_NUM_SLICES 4 #define UDF_NUM_SLICES 4
#define UDFS_PER_SLICE 9 #define UDFS_PER_SLICE 9
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment