Commit c0193f39 authored by Markus Bollinger's avatar Markus Bollinger Committed by Takashi Iwai

ALSA: pcxhr - add support for pcxhr stereo sound cards (mixer part)

- add support for pcxhr stereo cards mixer controls
- adjust tlv db scales to real dBu values
- fix bug with monitoring volume control pcxhr_monitor_vol_put
- do some cleanup
Signed-off-by: default avatarMarkus Bollinger <bollinger@digigram.com>
Signed-off-by: default avatarTakashi Iwai <tiwai@suse.de>
parent 7628700e
snd-pcxhr-objs := pcxhr.o pcxhr_hwdep.o pcxhr_mixer.o pcxhr_core.o snd-pcxhr-objs := pcxhr.o pcxhr_hwdep.o pcxhr_mixer.o pcxhr_core.o pcxhr_mix22.o
obj-$(CONFIG_SND_PCXHR) += snd-pcxhr.o obj-$(CONFIG_SND_PCXHR) += snd-pcxhr.o
/*
* Driver for Digigram pcxhr compatible soundcards
*
* mixer interface for stereo cards
*
* Copyright (c) 2004 by Digigram <alsa@digigram.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include <sound/asoundef.h>
#include "pcxhr.h"
#include "pcxhr_core.h"
#include "pcxhr_mix22.h"
/* registers used on the DSP and Xilinx (port 2) : HR stereo cards only */
#define PCXHR_DSP_RESET 0x20
#define PCXHR_XLX_CFG 0x24
#define PCXHR_XLX_RUER 0x28
#define PCXHR_XLX_DATA 0x2C
#define PCXHR_XLX_STATUS 0x30
#define PCXHR_XLX_LOFREQ 0x34
#define PCXHR_XLX_HIFREQ 0x38
#define PCXHR_XLX_CSUER 0x3C
#define PCXHR_XLX_SELMIC 0x40
#define PCXHR_DSP 2
/* byte access only ! */
#define PCXHR_INPB(mgr, x) inb((mgr)->port[PCXHR_DSP] + (x))
#define PCXHR_OUTPB(mgr, x, data) outb((data), (mgr)->port[PCXHR_DSP] + (x))
/* values for PCHR_DSP_RESET register */
#define PCXHR_DSP_RESET_DSP 0x01
#define PCXHR_DSP_RESET_MUTE 0x02
#define PCXHR_DSP_RESET_CODEC 0x08
/* values for PCHR_XLX_CFG register */
#define PCXHR_CFG_SYNCDSP_MASK 0x80
#define PCXHR_CFG_DEPENDENCY_MASK 0x60
#define PCXHR_CFG_INDEPENDANT_SEL 0x00
#define PCXHR_CFG_MASTER_SEL 0x40
#define PCXHR_CFG_SLAVE_SEL 0x20
#define PCXHR_CFG_DATA_UER1_SEL_MASK 0x10 /* 0 (UER0), 1(UER1) */
#define PCXHR_CFG_DATAIN_SEL_MASK 0x08 /* 0 (ana), 1 (UER) */
#define PCXHR_CFG_SRC_MASK 0x04 /* 0 (Bypass), 1 (SRC Actif) */
#define PCXHR_CFG_CLOCK_UER1_SEL_MASK 0x02 /* 0 (UER0), 1(UER1) */
#define PCXHR_CFG_CLOCKIN_SEL_MASK 0x01 /* 0 (internal), 1 (AES/EBU) */
/* values for PCHR_XLX_DATA register */
#define PCXHR_DATA_CODEC 0x80
#define AKM_POWER_CONTROL_CMD 0xA007
#define AKM_RESET_ON_CMD 0xA100
#define AKM_RESET_OFF_CMD 0xA103
#define AKM_CLOCK_INF_55K_CMD 0xA240
#define AKM_CLOCK_SUP_55K_CMD 0xA24D
#define AKM_MUTE_CMD 0xA38D
#define AKM_UNMUTE_CMD 0xA30D
#define AKM_LEFT_LEVEL_CMD 0xA600
#define AKM_RIGHT_LEVEL_CMD 0xA700
/* values for PCHR_XLX_STATUS register - READ */
#define PCXHR_STAT_SRC_LOCK 0x01
#define PCXHR_STAT_LEVEL_IN 0x02
#define PCXHR_STAT_MIC_CAPS 0x10
/* values for PCHR_XLX_STATUS register - WRITE */
#define PCXHR_STAT_FREQ_SYNC_MASK 0x01
#define PCXHR_STAT_FREQ_UER1_MASK 0x02
#define PCXHR_STAT_FREQ_SAVE_MASK 0x80
/* values for PCHR_XLX_CSUER register */
#define PCXHR_SUER1_BIT_U_READ_MASK 0x80
#define PCXHR_SUER1_BIT_C_READ_MASK 0x40
#define PCXHR_SUER1_DATA_PRESENT_MASK 0x20
#define PCXHR_SUER1_CLOCK_PRESENT_MASK 0x10
#define PCXHR_SUER_BIT_U_READ_MASK 0x08
#define PCXHR_SUER_BIT_C_READ_MASK 0x04
#define PCXHR_SUER_DATA_PRESENT_MASK 0x02
#define PCXHR_SUER_CLOCK_PRESENT_MASK 0x01
#define PCXHR_SUER_BIT_U_WRITE_MASK 0x02
#define PCXHR_SUER_BIT_C_WRITE_MASK 0x01
/* values for PCXHR_XLX_SELMIC register - WRITE */
#define PCXHR_SELMIC_PREAMPLI_OFFSET 2
#define PCXHR_SELMIC_PREAMPLI_MASK 0x0C
#define PCXHR_SELMIC_PHANTOM_ALIM 0x80
static const unsigned char g_hr222_p_level[] = {
0x00, /* [000] -49.5 dB: AKM[000] = -1.#INF dB (mute) */
0x01, /* [001] -49.0 dB: AKM[001] = -48.131 dB (diff=0.86920 dB) */
0x01, /* [002] -48.5 dB: AKM[001] = -48.131 dB (diff=0.36920 dB) */
0x01, /* [003] -48.0 dB: AKM[001] = -48.131 dB (diff=0.13080 dB) */
0x01, /* [004] -47.5 dB: AKM[001] = -48.131 dB (diff=0.63080 dB) */
0x01, /* [005] -46.5 dB: AKM[001] = -48.131 dB (diff=1.63080 dB) */
0x01, /* [006] -47.0 dB: AKM[001] = -48.131 dB (diff=1.13080 dB) */
0x01, /* [007] -46.0 dB: AKM[001] = -48.131 dB (diff=2.13080 dB) */
0x01, /* [008] -45.5 dB: AKM[001] = -48.131 dB (diff=2.63080 dB) */
0x02, /* [009] -45.0 dB: AKM[002] = -42.110 dB (diff=2.88980 dB) */
0x02, /* [010] -44.5 dB: AKM[002] = -42.110 dB (diff=2.38980 dB) */
0x02, /* [011] -44.0 dB: AKM[002] = -42.110 dB (diff=1.88980 dB) */
0x02, /* [012] -43.5 dB: AKM[002] = -42.110 dB (diff=1.38980 dB) */
0x02, /* [013] -43.0 dB: AKM[002] = -42.110 dB (diff=0.88980 dB) */
0x02, /* [014] -42.5 dB: AKM[002] = -42.110 dB (diff=0.38980 dB) */
0x02, /* [015] -42.0 dB: AKM[002] = -42.110 dB (diff=0.11020 dB) */
0x02, /* [016] -41.5 dB: AKM[002] = -42.110 dB (diff=0.61020 dB) */
0x02, /* [017] -41.0 dB: AKM[002] = -42.110 dB (diff=1.11020 dB) */
0x02, /* [018] -40.5 dB: AKM[002] = -42.110 dB (diff=1.61020 dB) */
0x03, /* [019] -40.0 dB: AKM[003] = -38.588 dB (diff=1.41162 dB) */
0x03, /* [020] -39.5 dB: AKM[003] = -38.588 dB (diff=0.91162 dB) */
0x03, /* [021] -39.0 dB: AKM[003] = -38.588 dB (diff=0.41162 dB) */
0x03, /* [022] -38.5 dB: AKM[003] = -38.588 dB (diff=0.08838 dB) */
0x03, /* [023] -38.0 dB: AKM[003] = -38.588 dB (diff=0.58838 dB) */
0x03, /* [024] -37.5 dB: AKM[003] = -38.588 dB (diff=1.08838 dB) */
0x04, /* [025] -37.0 dB: AKM[004] = -36.090 dB (diff=0.91040 dB) */
0x04, /* [026] -36.5 dB: AKM[004] = -36.090 dB (diff=0.41040 dB) */
0x04, /* [027] -36.0 dB: AKM[004] = -36.090 dB (diff=0.08960 dB) */
0x04, /* [028] -35.5 dB: AKM[004] = -36.090 dB (diff=0.58960 dB) */
0x05, /* [029] -35.0 dB: AKM[005] = -34.151 dB (diff=0.84860 dB) */
0x05, /* [030] -34.5 dB: AKM[005] = -34.151 dB (diff=0.34860 dB) */
0x05, /* [031] -34.0 dB: AKM[005] = -34.151 dB (diff=0.15140 dB) */
0x05, /* [032] -33.5 dB: AKM[005] = -34.151 dB (diff=0.65140 dB) */
0x06, /* [033] -33.0 dB: AKM[006] = -32.568 dB (diff=0.43222 dB) */
0x06, /* [034] -32.5 dB: AKM[006] = -32.568 dB (diff=0.06778 dB) */
0x06, /* [035] -32.0 dB: AKM[006] = -32.568 dB (diff=0.56778 dB) */
0x07, /* [036] -31.5 dB: AKM[007] = -31.229 dB (diff=0.27116 dB) */
0x07, /* [037] -31.0 dB: AKM[007] = -31.229 dB (diff=0.22884 dB) */
0x08, /* [038] -30.5 dB: AKM[008] = -30.069 dB (diff=0.43100 dB) */
0x08, /* [039] -30.0 dB: AKM[008] = -30.069 dB (diff=0.06900 dB) */
0x09, /* [040] -29.5 dB: AKM[009] = -29.046 dB (diff=0.45405 dB) */
0x09, /* [041] -29.0 dB: AKM[009] = -29.046 dB (diff=0.04595 dB) */
0x0a, /* [042] -28.5 dB: AKM[010] = -28.131 dB (diff=0.36920 dB) */
0x0a, /* [043] -28.0 dB: AKM[010] = -28.131 dB (diff=0.13080 dB) */
0x0b, /* [044] -27.5 dB: AKM[011] = -27.303 dB (diff=0.19705 dB) */
0x0b, /* [045] -27.0 dB: AKM[011] = -27.303 dB (diff=0.30295 dB) */
0x0c, /* [046] -26.5 dB: AKM[012] = -26.547 dB (diff=0.04718 dB) */
0x0d, /* [047] -26.0 dB: AKM[013] = -25.852 dB (diff=0.14806 dB) */
0x0e, /* [048] -25.5 dB: AKM[014] = -25.208 dB (diff=0.29176 dB) */
0x0e, /* [049] -25.0 dB: AKM[014] = -25.208 dB (diff=0.20824 dB) */
0x0f, /* [050] -24.5 dB: AKM[015] = -24.609 dB (diff=0.10898 dB) */
0x10, /* [051] -24.0 dB: AKM[016] = -24.048 dB (diff=0.04840 dB) */
0x11, /* [052] -23.5 dB: AKM[017] = -23.522 dB (diff=0.02183 dB) */
0x12, /* [053] -23.0 dB: AKM[018] = -23.025 dB (diff=0.02535 dB) */
0x13, /* [054] -22.5 dB: AKM[019] = -22.556 dB (diff=0.05573 dB) */
0x14, /* [055] -22.0 dB: AKM[020] = -22.110 dB (diff=0.11020 dB) */
0x15, /* [056] -21.5 dB: AKM[021] = -21.686 dB (diff=0.18642 dB) */
0x17, /* [057] -21.0 dB: AKM[023] = -20.896 dB (diff=0.10375 dB) */
0x18, /* [058] -20.5 dB: AKM[024] = -20.527 dB (diff=0.02658 dB) */
0x1a, /* [059] -20.0 dB: AKM[026] = -19.831 dB (diff=0.16866 dB) */
0x1b, /* [060] -19.5 dB: AKM[027] = -19.504 dB (diff=0.00353 dB) */
0x1d, /* [061] -19.0 dB: AKM[029] = -18.883 dB (diff=0.11716 dB) */
0x1e, /* [062] -18.5 dB: AKM[030] = -18.588 dB (diff=0.08838 dB) */
0x20, /* [063] -18.0 dB: AKM[032] = -18.028 dB (diff=0.02780 dB) */
0x22, /* [064] -17.5 dB: AKM[034] = -17.501 dB (diff=0.00123 dB) */
0x24, /* [065] -17.0 dB: AKM[036] = -17.005 dB (diff=0.00475 dB) */
0x26, /* [066] -16.5 dB: AKM[038] = -16.535 dB (diff=0.03513 dB) */
0x28, /* [067] -16.0 dB: AKM[040] = -16.090 dB (diff=0.08960 dB) */
0x2b, /* [068] -15.5 dB: AKM[043] = -15.461 dB (diff=0.03857 dB) */
0x2d, /* [069] -15.0 dB: AKM[045] = -15.067 dB (diff=0.06655 dB) */
0x30, /* [070] -14.5 dB: AKM[048] = -14.506 dB (diff=0.00598 dB) */
0x33, /* [071] -14.0 dB: AKM[051] = -13.979 dB (diff=0.02060 dB) */
0x36, /* [072] -13.5 dB: AKM[054] = -13.483 dB (diff=0.01707 dB) */
0x39, /* [073] -13.0 dB: AKM[057] = -13.013 dB (diff=0.01331 dB) */
0x3c, /* [074] -12.5 dB: AKM[060] = -12.568 dB (diff=0.06778 dB) */
0x40, /* [075] -12.0 dB: AKM[064] = -12.007 dB (diff=0.00720 dB) */
0x44, /* [076] -11.5 dB: AKM[068] = -11.481 dB (diff=0.01937 dB) */
0x48, /* [077] -11.0 dB: AKM[072] = -10.984 dB (diff=0.01585 dB) */
0x4c, /* [078] -10.5 dB: AKM[076] = -10.515 dB (diff=0.01453 dB) */
0x51, /* [079] -10.0 dB: AKM[081] = -9.961 dB (diff=0.03890 dB) */
0x55, /* [080] -9.5 dB: AKM[085] = -9.542 dB (diff=0.04243 dB) */
0x5a, /* [081] -9.0 dB: AKM[090] = -9.046 dB (diff=0.04595 dB) */
0x60, /* [082] -8.5 dB: AKM[096] = -8.485 dB (diff=0.01462 dB) */
0x66, /* [083] -8.0 dB: AKM[102] = -7.959 dB (diff=0.04120 dB) */
0x6c, /* [084] -7.5 dB: AKM[108] = -7.462 dB (diff=0.03767 dB) */
0x72, /* [085] -7.0 dB: AKM[114] = -6.993 dB (diff=0.00729 dB) */
0x79, /* [086] -6.5 dB: AKM[121] = -6.475 dB (diff=0.02490 dB) */
0x80, /* [087] -6.0 dB: AKM[128] = -5.987 dB (diff=0.01340 dB) */
0x87, /* [088] -5.5 dB: AKM[135] = -5.524 dB (diff=0.02413 dB) */
0x8f, /* [089] -5.0 dB: AKM[143] = -5.024 dB (diff=0.02408 dB) */
0x98, /* [090] -4.5 dB: AKM[152] = -4.494 dB (diff=0.00607 dB) */
0xa1, /* [091] -4.0 dB: AKM[161] = -3.994 dB (diff=0.00571 dB) */
0xaa, /* [092] -3.5 dB: AKM[170] = -3.522 dB (diff=0.02183 dB) */
0xb5, /* [093] -3.0 dB: AKM[181] = -2.977 dB (diff=0.02277 dB) */
0xbf, /* [094] -2.5 dB: AKM[191] = -2.510 dB (diff=0.01014 dB) */
0xcb, /* [095] -2.0 dB: AKM[203] = -1.981 dB (diff=0.01912 dB) */
0xd7, /* [096] -1.5 dB: AKM[215] = -1.482 dB (diff=0.01797 dB) */
0xe3, /* [097] -1.0 dB: AKM[227] = -1.010 dB (diff=0.01029 dB) */
0xf1, /* [098] -0.5 dB: AKM[241] = -0.490 dB (diff=0.00954 dB) */
0xff, /* [099] +0.0 dB: AKM[255] = +0.000 dB (diff=0.00000 dB) */
};
static void hr222_config_akm(struct pcxhr_mgr *mgr, unsigned short data)
{
unsigned short mask = 0x8000;
/* activate access to codec registers */
PCXHR_INPB(mgr, PCXHR_XLX_HIFREQ);
while (mask) {
PCXHR_OUTPB(mgr, PCXHR_XLX_DATA,
data & mask ? PCXHR_DATA_CODEC : 0);
mask >>= 1;
}
/* termiate access to codec registers */
PCXHR_INPB(mgr, PCXHR_XLX_RUER);
}
static int hr222_set_hw_playback_level(struct pcxhr_mgr *mgr,
int idx, int level)
{
unsigned short cmd;
if (idx > 1 ||
level < 0 ||
level >= ARRAY_SIZE(g_hr222_p_level))
return -EINVAL;
if (idx == 0)
cmd = AKM_LEFT_LEVEL_CMD;
else
cmd = AKM_RIGHT_LEVEL_CMD;
/* conversion from PmBoardCodedLevel to AKM nonlinear programming */
cmd += g_hr222_p_level[level];
hr222_config_akm(mgr, cmd);
return 0;
}
static int hr222_set_hw_capture_level(struct pcxhr_mgr *mgr,
int level_l, int level_r, int level_mic)
{
/* program all input levels at the same time */
unsigned int data;
int i;
if (!mgr->capture_chips)
return -EINVAL; /* no PCX22 */
data = ((level_mic & 0xff) << 24); /* micro is mono, but apply */
data |= ((level_mic & 0xff) << 16); /* level on both channels */
data |= ((level_r & 0xff) << 8); /* line input right channel */
data |= (level_l & 0xff); /* line input left channel */
PCXHR_INPB(mgr, PCXHR_XLX_DATA); /* activate input codec */
/* send 32 bits (4 x 8 bits) */
for (i = 0; i < 32; i++, data <<= 1) {
PCXHR_OUTPB(mgr, PCXHR_XLX_DATA,
(data & 0x80000000) ? PCXHR_DATA_CODEC : 0);
}
PCXHR_INPB(mgr, PCXHR_XLX_RUER); /* close input level codec */
return 0;
}
static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level);
int hr222_sub_init(struct pcxhr_mgr *mgr)
{
unsigned char reg;
mgr->board_has_analog = 1; /* analog always available */
mgr->xlx_cfg = PCXHR_CFG_SYNCDSP_MASK;
reg = PCXHR_INPB(mgr, PCXHR_XLX_STATUS);
if (reg & PCXHR_STAT_MIC_CAPS)
mgr->board_has_mic = 1; /* microphone available */
snd_printdd("MIC input available = %d\n", mgr->board_has_mic);
/* reset codec */
PCXHR_OUTPB(mgr, PCXHR_DSP_RESET,
PCXHR_DSP_RESET_DSP);
msleep(5);
PCXHR_OUTPB(mgr, PCXHR_DSP_RESET,
PCXHR_DSP_RESET_DSP |
PCXHR_DSP_RESET_MUTE |
PCXHR_DSP_RESET_CODEC);
msleep(5);
/* config AKM */
hr222_config_akm(mgr, AKM_POWER_CONTROL_CMD);
hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD);
hr222_config_akm(mgr, AKM_UNMUTE_CMD);
hr222_config_akm(mgr, AKM_RESET_OFF_CMD);
/* init micro boost */
hr222_micro_boost(mgr, 0);
return 0;
}
/* calc PLL register */
/* TODO : there is a very similar fct in pcxhr.c */
static int hr222_pll_freq_register(unsigned int freq,
unsigned int *pllreg,
unsigned int *realfreq)
{
unsigned int reg;
if (freq < 6900 || freq > 219000)
return -EINVAL;
reg = (28224000 * 2) / freq;
reg = (reg - 1) / 2;
if (reg < 0x100)
*pllreg = reg + 0xC00;
else if (reg < 0x200)
*pllreg = reg + 0x800;
else if (reg < 0x400)
*pllreg = reg & 0x1ff;
else if (reg < 0x800) {
*pllreg = ((reg >> 1) & 0x1ff) + 0x200;
reg &= ~1;
} else {
*pllreg = ((reg >> 2) & 0x1ff) + 0x400;
reg &= ~3;
}
if (realfreq)
*realfreq = (28224000 / (reg + 1));
return 0;
}
int hr222_sub_set_clock(struct pcxhr_mgr *mgr,
unsigned int rate,
int *changed)
{
unsigned int speed, pllreg = 0;
int err;
unsigned realfreq = rate;
switch (mgr->use_clock_type) {
case HR22_CLOCK_TYPE_INTERNAL:
err = hr222_pll_freq_register(rate, &pllreg, &realfreq);
if (err)
return err;
mgr->xlx_cfg &= ~(PCXHR_CFG_CLOCKIN_SEL_MASK |
PCXHR_CFG_CLOCK_UER1_SEL_MASK);
break;
case HR22_CLOCK_TYPE_AES_SYNC:
mgr->xlx_cfg |= PCXHR_CFG_CLOCKIN_SEL_MASK;
mgr->xlx_cfg &= ~PCXHR_CFG_CLOCK_UER1_SEL_MASK;
break;
case HR22_CLOCK_TYPE_AES_1:
if (!mgr->board_has_aes1)
return -EINVAL;
mgr->xlx_cfg |= (PCXHR_CFG_CLOCKIN_SEL_MASK |
PCXHR_CFG_CLOCK_UER1_SEL_MASK);
break;
default:
return -EINVAL;
}
hr222_config_akm(mgr, AKM_MUTE_CMD);
if (mgr->use_clock_type == HR22_CLOCK_TYPE_INTERNAL) {
PCXHR_OUTPB(mgr, PCXHR_XLX_HIFREQ, pllreg >> 8);
PCXHR_OUTPB(mgr, PCXHR_XLX_LOFREQ, pllreg & 0xff);
}
/* set clock source */
PCXHR_OUTPB(mgr, PCXHR_XLX_CFG, mgr->xlx_cfg);
/* codec speed modes */
speed = rate < 55000 ? 0 : 1;
if (mgr->codec_speed != speed) {
mgr->codec_speed = speed;
if (speed == 0)
hr222_config_akm(mgr, AKM_CLOCK_INF_55K_CMD);
else
hr222_config_akm(mgr, AKM_CLOCK_SUP_55K_CMD);
}
mgr->sample_rate_real = realfreq;
mgr->cur_clock_type = mgr->use_clock_type;
if (changed)
*changed = 1;
hr222_config_akm(mgr, AKM_UNMUTE_CMD);
snd_printdd("set_clock to %dHz (realfreq=%d pllreg=%x)\n",
rate, realfreq, pllreg);
return 0;
}
int hr222_get_external_clock(struct pcxhr_mgr *mgr,
enum pcxhr_clock_type clock_type,
int *sample_rate)
{
int rate, calc_rate = 0;
unsigned int ticks;
unsigned char mask, reg;
if (clock_type == HR22_CLOCK_TYPE_AES_SYNC) {
mask = (PCXHR_SUER_CLOCK_PRESENT_MASK |
PCXHR_SUER_DATA_PRESENT_MASK);
reg = PCXHR_STAT_FREQ_SYNC_MASK;
} else if (clock_type == HR22_CLOCK_TYPE_AES_1 && mgr->board_has_aes1) {
mask = (PCXHR_SUER1_CLOCK_PRESENT_MASK |
PCXHR_SUER1_DATA_PRESENT_MASK);
reg = PCXHR_STAT_FREQ_UER1_MASK;
} else {
snd_printdd("get_external_clock : type %d not supported\n",
clock_type);
return -EINVAL; /* other clocks not supported */
}
if ((PCXHR_INPB(mgr, PCXHR_XLX_CSUER) & mask) != mask) {
snd_printdd("get_external_clock(%d) = 0 Hz\n", clock_type);
*sample_rate = 0;
return 0; /* no external clock locked */
}
PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* calculate freq */
/* save the measured clock frequency */
reg |= PCXHR_STAT_FREQ_SAVE_MASK;
if (mgr->last_reg_stat != reg) {
udelay(500); /* wait min 2 cycles of lowest freq (8000) */
mgr->last_reg_stat = reg;
}
PCXHR_OUTPB(mgr, PCXHR_XLX_STATUS, reg); /* save */
/* get the frequency */
ticks = (unsigned int)PCXHR_INPB(mgr, PCXHR_XLX_CFG);
ticks = (ticks & 0x03) << 8;
ticks |= (unsigned int)PCXHR_INPB(mgr, PCXHR_DSP_RESET);
if (ticks != 0)
calc_rate = 28224000 / ticks;
/* rounding */
if (calc_rate > 184200)
rate = 192000;
else if (calc_rate > 152200)
rate = 176400;
else if (calc_rate > 112000)
rate = 128000;
else if (calc_rate > 92100)
rate = 96000;
else if (calc_rate > 76100)
rate = 88200;
else if (calc_rate > 56000)
rate = 64000;
else if (calc_rate > 46050)
rate = 48000;
else if (calc_rate > 38050)
rate = 44100;
else if (calc_rate > 28000)
rate = 32000;
else if (calc_rate > 23025)
rate = 24000;
else if (calc_rate > 19025)
rate = 22050;
else if (calc_rate > 14000)
rate = 16000;
else if (calc_rate > 11512)
rate = 12000;
else if (calc_rate > 9512)
rate = 11025;
else if (calc_rate > 7000)
rate = 8000;
else
rate = 0;
snd_printdd("External clock is at %d Hz (measured %d Hz)\n",
rate, calc_rate);
*sample_rate = rate;
return 0;
}
int hr222_update_analog_audio_level(struct snd_pcxhr *chip,
int is_capture, int channel)
{
snd_printdd("hr222_update_analog_audio_level(%s chan=%d)\n",
is_capture ? "capture" : "playback", channel);
if (is_capture) {
int level_l, level_r, level_mic;
/* we have to update all levels */
if (chip->analog_capture_active) {
level_l = chip->analog_capture_volume[0];
level_r = chip->analog_capture_volume[1];
} else {
level_l = HR222_LINE_CAPTURE_LEVEL_MIN;
level_r = HR222_LINE_CAPTURE_LEVEL_MIN;
}
if (chip->mic_active)
level_mic = chip->mic_volume;
else
level_mic = HR222_MICRO_CAPTURE_LEVEL_MIN;
return hr222_set_hw_capture_level(chip->mgr,
level_l, level_r, level_mic);
} else {
int vol;
if (chip->analog_playback_active[channel])
vol = chip->analog_playback_volume[channel];
else
vol = HR222_LINE_PLAYBACK_LEVEL_MIN;
return hr222_set_hw_playback_level(chip->mgr, channel, vol);
}
}
/*texts[5] = {"Line", "Digital", "Digi+SRC", "Mic", "Line+Mic"}*/
#define SOURCE_LINE 0
#define SOURCE_DIGITAL 1
#define SOURCE_DIGISRC 2
#define SOURCE_MIC 3
#define SOURCE_LINEMIC 4
int hr222_set_audio_source(struct snd_pcxhr *chip)
{
int digital = 0;
/* default analog source */
chip->mgr->xlx_cfg &= ~(PCXHR_CFG_SRC_MASK |
PCXHR_CFG_DATAIN_SEL_MASK |
PCXHR_CFG_DATA_UER1_SEL_MASK);
if (chip->audio_capture_source == SOURCE_DIGISRC) {
chip->mgr->xlx_cfg |= PCXHR_CFG_SRC_MASK;
digital = 1;
} else {
if (chip->audio_capture_source == SOURCE_DIGITAL)
digital = 1;
}
if (digital) {
chip->mgr->xlx_cfg |= PCXHR_CFG_DATAIN_SEL_MASK;
if (chip->mgr->board_has_aes1) {
/* get data from the AES1 plug */
chip->mgr->xlx_cfg |= PCXHR_CFG_DATA_UER1_SEL_MASK;
}
/* chip->mic_active = 0; */
/* chip->analog_capture_active = 0; */
} else {
int update_lvl = 0;
chip->analog_capture_active = 0;
chip->mic_active = 0;
if (chip->audio_capture_source == SOURCE_LINE ||
chip->audio_capture_source == SOURCE_LINEMIC) {
if (chip->analog_capture_active == 0)
update_lvl = 1;
chip->analog_capture_active = 1;
}
if (chip->audio_capture_source == SOURCE_MIC ||
chip->audio_capture_source == SOURCE_LINEMIC) {
if (chip->mic_active == 0)
update_lvl = 1;
chip->mic_active = 1;
}
if (update_lvl) {
/* capture: update all 3 mutes/unmutes with one call */
hr222_update_analog_audio_level(chip, 1, 0);
}
}
/* set the source infos (max 3 bits modified) */
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CFG, chip->mgr->xlx_cfg);
return 0;
}
int hr222_iec958_capture_byte(struct snd_pcxhr *chip,
int aes_idx, unsigned char *aes_bits)
{
unsigned char idx = (unsigned char)(aes_idx * 8);
unsigned char temp = 0;
unsigned char mask = chip->mgr->board_has_aes1 ?
PCXHR_SUER1_BIT_C_READ_MASK : PCXHR_SUER_BIT_C_READ_MASK;
int i;
for (i = 0; i < 8; i++) {
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx++); /* idx < 192 */
temp <<= 1;
if (PCXHR_INPB(chip->mgr, PCXHR_XLX_CSUER) & mask)
temp |= 1;
}
snd_printdd("read iec958 AES %d byte %d = 0x%x\n",
chip->chip_idx, aes_idx, temp);
*aes_bits = temp;
return 0;
}
int hr222_iec958_update_byte(struct snd_pcxhr *chip,
int aes_idx, unsigned char aes_bits)
{
int i;
unsigned char new_bits = aes_bits;
unsigned char old_bits = chip->aes_bits[aes_idx];
unsigned char idx = (unsigned char)(aes_idx * 8);
for (i = 0; i < 8; i++) {
if ((old_bits & 0x01) != (new_bits & 0x01)) {
/* idx < 192 */
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_RUER, idx);
/* write C and U bit */
PCXHR_OUTPB(chip->mgr, PCXHR_XLX_CSUER, new_bits&0x01 ?
PCXHR_SUER_BIT_C_WRITE_MASK : 0);
}
idx++;
old_bits >>= 1;
new_bits >>= 1;
}
chip->aes_bits[aes_idx] = aes_bits;
return 0;
}
static void hr222_micro_boost(struct pcxhr_mgr *mgr, int level)
{
unsigned char boost_mask;
boost_mask = (unsigned char) (level << PCXHR_SELMIC_PREAMPLI_OFFSET);
if (boost_mask & (~PCXHR_SELMIC_PREAMPLI_MASK))
return; /* only values form 0 to 3 accepted */
mgr->xlx_selmic &= ~PCXHR_SELMIC_PREAMPLI_MASK;
mgr->xlx_selmic |= boost_mask;
PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic);
snd_printdd("hr222_micro_boost : set %x\n", boost_mask);
}
static void hr222_phantom_power(struct pcxhr_mgr *mgr, int power)
{
if (power)
mgr->xlx_selmic |= PCXHR_SELMIC_PHANTOM_ALIM;
else
mgr->xlx_selmic &= ~PCXHR_SELMIC_PHANTOM_ALIM;
PCXHR_OUTPB(mgr, PCXHR_XLX_SELMIC, mgr->xlx_selmic);
snd_printdd("hr222_phantom_power : set %d\n", power);
}
/* mic level */
static const DECLARE_TLV_DB_SCALE(db_scale_mic_hr222, -9850, 50, 650);
static int hr222_mic_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = HR222_MICRO_CAPTURE_LEVEL_MIN; /* -98 dB */
/* gains from 9 dB to 31.5 dB not recommended; use micboost instead */
uinfo->value.integer.max = HR222_MICRO_CAPTURE_LEVEL_MAX; /* +7 dB */
return 0;
}
static int hr222_mic_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->mic_volume;
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int hr222_mic_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
mutex_lock(&chip->mgr->mixer_mutex);
if (chip->mic_volume != ucontrol->value.integer.value[0]) {
changed = 1;
chip->mic_volume = ucontrol->value.integer.value[0];
hr222_update_analog_audio_level(chip, 1, 0);
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new hr222_control_mic_level = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "Mic Capture Volume",
.info = hr222_mic_vol_info,
.get = hr222_mic_vol_get,
.put = hr222_mic_vol_put,
.tlv = { .p = db_scale_mic_hr222 },
};
/* mic boost level */
static const DECLARE_TLV_DB_SCALE(db_scale_micboost_hr222, 0, 1800, 5400);
static int hr222_mic_boost_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0; /* 0 dB */
uinfo->value.integer.max = 3; /* 54 dB */
return 0;
}
static int hr222_mic_boost_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->mic_boost;
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int hr222_mic_boost_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0;
mutex_lock(&chip->mgr->mixer_mutex);
if (chip->mic_boost != ucontrol->value.integer.value[0]) {
changed = 1;
chip->mic_boost = ucontrol->value.integer.value[0];
hr222_micro_boost(chip->mgr, chip->mic_boost);
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new hr222_control_mic_boost = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "MicBoost Capture Volume",
.info = hr222_mic_boost_info,
.get = hr222_mic_boost_get,
.put = hr222_mic_boost_put,
.tlv = { .p = db_scale_micboost_hr222 },
};
/******************* Phantom power switch *******************/
#define hr222_phantom_power_info snd_ctl_boolean_mono_info
static int hr222_phantom_power_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
mutex_lock(&chip->mgr->mixer_mutex);
ucontrol->value.integer.value[0] = chip->phantom_power;
mutex_unlock(&chip->mgr->mixer_mutex);
return 0;
}
static int hr222_phantom_power_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int power, changed = 0;
mutex_lock(&chip->mgr->mixer_mutex);
power = !!ucontrol->value.integer.value[0];
if (chip->phantom_power != power) {
hr222_phantom_power(chip->mgr, power);
chip->phantom_power = power;
changed = 1;
}
mutex_unlock(&chip->mgr->mixer_mutex);
return changed;
}
static struct snd_kcontrol_new hr222_phantom_power_switch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Phantom Power Switch",
.info = hr222_phantom_power_info,
.get = hr222_phantom_power_get,
.put = hr222_phantom_power_put,
};
int hr222_add_mic_controls(struct snd_pcxhr *chip)
{
int err;
if (!chip->mgr->board_has_mic)
return 0;
/* controls */
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_level,
chip));
if (err < 0)
return err;
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_control_mic_boost,
chip));
if (err < 0)
return err;
err = snd_ctl_add(chip->card, snd_ctl_new1(&hr222_phantom_power_switch,
chip));
return err;
}
/*
* Driver for Digigram pcxhr compatible soundcards
*
* low level interface with interrupt ans message handling
*
* Copyright (c) 2004 by Digigram <alsa@digigram.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __SOUND_PCXHR_MIX22_H
#define __SOUND_PCXHR_MIX22_H
struct pcxhr_mgr;
int hr222_sub_init(struct pcxhr_mgr *mgr);
int hr222_sub_set_clock(struct pcxhr_mgr *mgr, unsigned int rate,
int *changed);
int hr222_get_external_clock(struct pcxhr_mgr *mgr,
enum pcxhr_clock_type clock_type,
int *sample_rate);
#define HR222_LINE_PLAYBACK_LEVEL_MIN 0 /* -25.5 dB */
#define HR222_LINE_PLAYBACK_ZERO_LEVEL 51 /* 0.0 dB */
#define HR222_LINE_PLAYBACK_LEVEL_MAX 99 /* +24.0 dB */
#define HR222_LINE_CAPTURE_LEVEL_MIN 0 /* -111.5 dB */
#define HR222_LINE_CAPTURE_ZERO_LEVEL 223 /* 0.0 dB */
#define HR222_LINE_CAPTURE_LEVEL_MAX 255 /* +16 dB */
#define HR222_MICRO_CAPTURE_LEVEL_MIN 0 /* -98.5 dB */
#define HR222_MICRO_CAPTURE_LEVEL_MAX 210 /* +6.5 dB */
int hr222_update_analog_audio_level(struct snd_pcxhr *chip,
int is_capture,
int channel);
int hr222_set_audio_source(struct snd_pcxhr *chip);
int hr222_iec958_capture_byte(struct snd_pcxhr *chip, int aes_idx,
unsigned char *aes_bits);
int hr222_iec958_update_byte(struct snd_pcxhr *chip, int aes_idx,
unsigned char aes_bits);
int hr222_add_mic_controls(struct snd_pcxhr *chip);
#endif /* __SOUND_PCXHR_MIX22_H */
...@@ -33,20 +33,24 @@ ...@@ -33,20 +33,24 @@
#include <sound/tlv.h> #include <sound/tlv.h>
#include <sound/asoundef.h> #include <sound/asoundef.h>
#include "pcxhr_mixer.h" #include "pcxhr_mixer.h"
#include "pcxhr_mix22.h"
#define PCXHR_LINE_CAPTURE_LEVEL_MIN 0 /* -112.0 dB */
#define PCXHR_LINE_CAPTURE_LEVEL_MAX 255 /* +15.5 dB */
#define PCXHR_LINE_CAPTURE_ZERO_LEVEL 224 /* 0.0 dB ( 0 dBu -> 0 dBFS ) */
#define PCXHR_ANALOG_CAPTURE_LEVEL_MIN 0 /* -96.0 dB */ #define PCXHR_LINE_PLAYBACK_LEVEL_MIN 0 /* -104.0 dB */
#define PCXHR_ANALOG_CAPTURE_LEVEL_MAX 255 /* +31.5 dB */ #define PCXHR_LINE_PLAYBACK_LEVEL_MAX 128 /* +24.0 dB */
#define PCXHR_ANALOG_CAPTURE_ZERO_LEVEL 224 /* +16.0 dB ( +31.5 dB - fix level +15.5 dB ) */ #define PCXHR_LINE_PLAYBACK_ZERO_LEVEL 104 /* 0.0 dB ( 0 dBFS -> 0 dBu ) */
#define PCXHR_ANALOG_PLAYBACK_LEVEL_MIN 0 /* -128.0 dB */ static const DECLARE_TLV_DB_SCALE(db_scale_analog_capture, -11200, 50, 1550);
#define PCXHR_ANALOG_PLAYBACK_LEVEL_MAX 128 /* 0.0 dB */
#define PCXHR_ANALOG_PLAYBACK_ZERO_LEVEL 104 /* -24.0 dB ( 0.0 dB - fix level +24.0 dB ) */
static const DECLARE_TLV_DB_SCALE(db_scale_analog_capture, -9600, 50, 3150);
static const DECLARE_TLV_DB_SCALE(db_scale_analog_playback, -10400, 100, 2400); static const DECLARE_TLV_DB_SCALE(db_scale_analog_playback, -10400, 100, 2400);
static int pcxhr_update_analog_audio_level(struct snd_pcxhr *chip, int is_capture, int channel) static const DECLARE_TLV_DB_SCALE(db_scale_a_hr222_capture, -11150, 50, 1600);
static const DECLARE_TLV_DB_SCALE(db_scale_a_hr222_playback, -2550, 50, 2400);
static int pcxhr_update_analog_audio_level(struct snd_pcxhr *chip,
int is_capture, int channel)
{ {
int err, vol; int err, vol;
struct pcxhr_rmh rmh; struct pcxhr_rmh rmh;
...@@ -60,15 +64,17 @@ static int pcxhr_update_analog_audio_level(struct snd_pcxhr *chip, int is_captur ...@@ -60,15 +64,17 @@ static int pcxhr_update_analog_audio_level(struct snd_pcxhr *chip, int is_captur
if (chip->analog_playback_active[channel]) if (chip->analog_playback_active[channel])
vol = chip->analog_playback_volume[channel]; vol = chip->analog_playback_volume[channel];
else else
vol = PCXHR_ANALOG_PLAYBACK_LEVEL_MIN; vol = PCXHR_LINE_PLAYBACK_LEVEL_MIN;
rmh.cmd[2] = PCXHR_ANALOG_PLAYBACK_LEVEL_MAX - vol; /* playback analog levels are inversed */ /* playback analog levels are inversed */
rmh.cmd[2] = PCXHR_LINE_PLAYBACK_LEVEL_MAX - vol;
} }
rmh.cmd[1] = 1 << ((2 * chip->chip_idx) + channel); /* audio mask */ rmh.cmd[1] = 1 << ((2 * chip->chip_idx) + channel); /* audio mask */
rmh.cmd_len = 3; rmh.cmd_len = 3;
err = pcxhr_send_msg(chip->mgr, &rmh); err = pcxhr_send_msg(chip->mgr, &rmh);
if (err < 0) { if (err < 0) {
snd_printk(KERN_DEBUG "error update_analog_audio_level card(%d) " snd_printk(KERN_DEBUG "error update_analog_audio_level card(%d)"
"is_capture(%d) err(%x)\n", chip->chip_idx, is_capture, err); " is_capture(%d) err(%x)\n",
chip->chip_idx, is_capture, err);
return -EINVAL; return -EINVAL;
} }
return 0; return 0;
...@@ -80,14 +86,34 @@ static int pcxhr_update_analog_audio_level(struct snd_pcxhr *chip, int is_captur ...@@ -80,14 +86,34 @@ static int pcxhr_update_analog_audio_level(struct snd_pcxhr *chip, int is_captur
static int pcxhr_analog_vol_info(struct snd_kcontrol *kcontrol, static int pcxhr_analog_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo) struct snd_ctl_elem_info *uinfo)
{ {
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2; uinfo->count = 2;
if (kcontrol->private_value == 0) { /* playback */ if (kcontrol->private_value == 0) { /* playback */
uinfo->value.integer.min = PCXHR_ANALOG_PLAYBACK_LEVEL_MIN; /* -128 dB */ if (chip->mgr->is_hr_stereo) {
uinfo->value.integer.max = PCXHR_ANALOG_PLAYBACK_LEVEL_MAX; /* 0 dB */ uinfo->value.integer.min =
HR222_LINE_PLAYBACK_LEVEL_MIN; /* -25 dB */
uinfo->value.integer.max =
HR222_LINE_PLAYBACK_LEVEL_MAX; /* +24 dB */
} else {
uinfo->value.integer.min =
PCXHR_LINE_PLAYBACK_LEVEL_MIN; /*-104 dB */
uinfo->value.integer.max =
PCXHR_LINE_PLAYBACK_LEVEL_MAX; /* +24 dB */
}
} else { /* capture */ } else { /* capture */
uinfo->value.integer.min = PCXHR_ANALOG_CAPTURE_LEVEL_MIN; /* -96 dB */ if (chip->mgr->is_hr_stereo) {
uinfo->value.integer.max = PCXHR_ANALOG_CAPTURE_LEVEL_MAX; /* 31.5 dB */ uinfo->value.integer.min =
HR222_LINE_CAPTURE_LEVEL_MIN; /*-112 dB */
uinfo->value.integer.max =
HR222_LINE_CAPTURE_LEVEL_MAX; /* +15.5 dB */
} else {
uinfo->value.integer.min =
PCXHR_LINE_CAPTURE_LEVEL_MIN; /*-112 dB */
uinfo->value.integer.max =
PCXHR_LINE_CAPTURE_LEVEL_MAX; /* +15.5 dB */
}
} }
return 0; return 0;
} }
...@@ -123,18 +149,35 @@ static int pcxhr_analog_vol_put(struct snd_kcontrol *kcontrol, ...@@ -123,18 +149,35 @@ static int pcxhr_analog_vol_put(struct snd_kcontrol *kcontrol,
&chip->analog_capture_volume[i] : &chip->analog_capture_volume[i] :
&chip->analog_playback_volume[i]; &chip->analog_playback_volume[i];
if (is_capture) { if (is_capture) {
if (new_volume < PCXHR_ANALOG_CAPTURE_LEVEL_MIN || if (chip->mgr->is_hr_stereo) {
new_volume > PCXHR_ANALOG_CAPTURE_LEVEL_MAX) if (new_volume < HR222_LINE_CAPTURE_LEVEL_MIN ||
new_volume > HR222_LINE_CAPTURE_LEVEL_MAX)
continue; continue;
} else { } else {
if (new_volume < PCXHR_ANALOG_PLAYBACK_LEVEL_MIN || if (new_volume < PCXHR_LINE_CAPTURE_LEVEL_MIN ||
new_volume > PCXHR_ANALOG_PLAYBACK_LEVEL_MAX) new_volume > PCXHR_LINE_CAPTURE_LEVEL_MAX)
continue; continue;
} }
} else {
if (chip->mgr->is_hr_stereo) {
if (new_volume < HR222_LINE_PLAYBACK_LEVEL_MIN ||
new_volume > HR222_LINE_PLAYBACK_LEVEL_MAX)
continue;
} else {
if (new_volume < PCXHR_LINE_PLAYBACK_LEVEL_MIN ||
new_volume > PCXHR_LINE_PLAYBACK_LEVEL_MAX)
continue;
}
}
if (*stored_volume != new_volume) { if (*stored_volume != new_volume) {
*stored_volume = new_volume; *stored_volume = new_volume;
changed = 1; changed = 1;
pcxhr_update_analog_audio_level(chip, is_capture, i); if (chip->mgr->is_hr_stereo)
hr222_update_analog_audio_level(chip,
is_capture, i);
else
pcxhr_update_analog_audio_level(chip,
is_capture, i);
} }
} }
mutex_unlock(&chip->mgr->mixer_mutex); mutex_unlock(&chip->mgr->mixer_mutex);
...@@ -153,6 +196,7 @@ static struct snd_kcontrol_new pcxhr_control_analog_level = { ...@@ -153,6 +196,7 @@ static struct snd_kcontrol_new pcxhr_control_analog_level = {
}; };
/* shared */ /* shared */
#define pcxhr_sw_info snd_ctl_boolean_stereo_info #define pcxhr_sw_info snd_ctl_boolean_stereo_info
static int pcxhr_audio_sw_get(struct snd_kcontrol *kcontrol, static int pcxhr_audio_sw_get(struct snd_kcontrol *kcontrol,
...@@ -180,6 +224,9 @@ static int pcxhr_audio_sw_put(struct snd_kcontrol *kcontrol, ...@@ -180,6 +224,9 @@ static int pcxhr_audio_sw_put(struct snd_kcontrol *kcontrol,
!!ucontrol->value.integer.value[i]; !!ucontrol->value.integer.value[i];
changed = 1; changed = 1;
/* update playback levels */ /* update playback levels */
if (chip->mgr->is_hr_stereo)
hr222_update_analog_audio_level(chip, 0, i);
else
pcxhr_update_analog_audio_level(chip, 0, i); pcxhr_update_analog_audio_level(chip, 0, i);
} }
} }
...@@ -251,7 +298,8 @@ static int pcxhr_update_playback_stream_level(struct snd_pcxhr* chip, int idx) ...@@ -251,7 +298,8 @@ static int pcxhr_update_playback_stream_level(struct snd_pcxhr* chip, int idx)
#define VALID_AUDIO_IO_MUTE_LEVEL 0x000004 #define VALID_AUDIO_IO_MUTE_LEVEL 0x000004
#define VALID_AUDIO_IO_MUTE_MONITOR_1 0x000008 #define VALID_AUDIO_IO_MUTE_MONITOR_1 0x000008
static int pcxhr_update_audio_pipe_level(struct snd_pcxhr* chip, int capture, int channel) static int pcxhr_update_audio_pipe_level(struct snd_pcxhr *chip,
int capture, int channel)
{ {
int err; int err;
struct pcxhr_rmh rmh; struct pcxhr_rmh rmh;
...@@ -264,18 +312,20 @@ static int pcxhr_update_audio_pipe_level(struct snd_pcxhr* chip, int capture, in ...@@ -264,18 +312,20 @@ static int pcxhr_update_audio_pipe_level(struct snd_pcxhr* chip, int capture, in
pcxhr_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST); pcxhr_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST);
/* add channel mask */ /* add channel mask */
pcxhr_set_pipe_cmd_params(&rmh, capture, 0, 0, 1 << (channel + pipe->first_audio)); pcxhr_set_pipe_cmd_params(&rmh, capture, 0, 0,
/* TODO : if mask (3 << pipe->first_audio) is used, left and right channel 1 << (channel + pipe->first_audio));
* will be programmed to the same params /* TODO : if mask (3 << pipe->first_audio) is used, left and right
*/ * channel will be programmed to the same params */
if (capture) { if (capture) {
rmh.cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL; rmh.cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL;
/* VALID_AUDIO_IO_MUTE_LEVEL not yet handled (capture pipe level) */ /* VALID_AUDIO_IO_MUTE_LEVEL not yet handled
* (capture pipe level) */
rmh.cmd[2] = chip->digital_capture_volume[channel]; rmh.cmd[2] = chip->digital_capture_volume[channel];
} else { } else {
rmh.cmd[0] |= VALID_AUDIO_IO_MONITOR_LEVEL | VALID_AUDIO_IO_MUTE_MONITOR_1; rmh.cmd[0] |= VALID_AUDIO_IO_MONITOR_LEVEL |
/* VALID_AUDIO_IO_DIGITAL_LEVEL and VALID_AUDIO_IO_MUTE_LEVEL not yet VALID_AUDIO_IO_MUTE_MONITOR_1;
* handled (playback pipe level) /* VALID_AUDIO_IO_DIGITAL_LEVEL and VALID_AUDIO_IO_MUTE_LEVEL
* not yet handled (playback pipe level)
*/ */
rmh.cmd[2] = chip->monitoring_volume[channel] << 10; rmh.cmd[2] = chip->monitoring_volume[channel] << 10;
if (chip->monitoring_active[channel] == 0) if (chip->monitoring_active[channel] == 0)
...@@ -284,8 +334,8 @@ static int pcxhr_update_audio_pipe_level(struct snd_pcxhr* chip, int capture, in ...@@ -284,8 +334,8 @@ static int pcxhr_update_audio_pipe_level(struct snd_pcxhr* chip, int capture, in
rmh.cmd_len = 3; rmh.cmd_len = 3;
err = pcxhr_send_msg(chip->mgr, &rmh); err = pcxhr_send_msg(chip->mgr, &rmh);
if(err<0) { if (err < 0) {
snd_printk(KERN_DEBUG "error update_audio_level card(%d) err(%x)\n", snd_printk(KERN_DEBUG "error update_audio_level(%d) err=%x\n",
chip->chip_idx, err); chip->chip_idx, err);
return -EINVAL; return -EINVAL;
} }
...@@ -314,10 +364,10 @@ static int pcxhr_pcm_vol_get(struct snd_kcontrol *kcontrol, ...@@ -314,10 +364,10 @@ static int pcxhr_pcm_vol_get(struct snd_kcontrol *kcontrol,
int is_capture = kcontrol->private_value; int is_capture = kcontrol->private_value;
mutex_lock(&chip->mgr->mixer_mutex); mutex_lock(&chip->mgr->mixer_mutex);
if (is_capture) if (is_capture) /* digital capture */
stored_volume = chip->digital_capture_volume; /* digital capture */ stored_volume = chip->digital_capture_volume;
else else /* digital playback */
stored_volume = chip->digital_playback_volume[idx]; /* digital playback */ stored_volume = chip->digital_playback_volume[idx];
ucontrol->value.integer.value[0] = stored_volume[0]; ucontrol->value.integer.value[0] = stored_volume[0];
ucontrol->value.integer.value[1] = stored_volume[1]; ucontrol->value.integer.value[1] = stored_volume[1];
mutex_unlock(&chip->mgr->mixer_mutex); mutex_unlock(&chip->mgr->mixer_mutex);
...@@ -384,7 +434,8 @@ static int pcxhr_pcm_sw_get(struct snd_kcontrol *kcontrol, ...@@ -384,7 +434,8 @@ static int pcxhr_pcm_sw_get(struct snd_kcontrol *kcontrol,
return 0; return 0;
} }
static int pcxhr_pcm_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) static int pcxhr_pcm_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{ {
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int changed = 0; int changed = 0;
...@@ -444,8 +495,8 @@ static int pcxhr_monitor_vol_put(struct snd_kcontrol *kcontrol, ...@@ -444,8 +495,8 @@ static int pcxhr_monitor_vol_put(struct snd_kcontrol *kcontrol,
if (chip->monitoring_volume[i] != if (chip->monitoring_volume[i] !=
ucontrol->value.integer.value[i]) { ucontrol->value.integer.value[i]) {
chip->monitoring_volume[i] = chip->monitoring_volume[i] =
!!ucontrol->value.integer.value[i]; ucontrol->value.integer.value[i];
if(chip->monitoring_active[i]) if (chip->monitoring_active[i])
/* update monitoring volume and mute */ /* update monitoring volume and mute */
/* do only when monitoring is unmuted */ /* do only when monitoring is unmuted */
pcxhr_update_audio_pipe_level(chip, 0, i); pcxhr_update_audio_pipe_level(chip, 0, i);
...@@ -460,7 +511,7 @@ static struct snd_kcontrol_new pcxhr_control_monitor_vol = { ...@@ -460,7 +511,7 @@ static struct snd_kcontrol_new pcxhr_control_monitor_vol = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ), SNDRV_CTL_ELEM_ACCESS_TLV_READ),
.name = "Monitoring Volume", .name = "Monitoring Playback Volume",
.info = pcxhr_digital_vol_info, /* shared */ .info = pcxhr_digital_vol_info, /* shared */
.get = pcxhr_monitor_vol_get, .get = pcxhr_monitor_vol_get,
.put = pcxhr_monitor_vol_put, .put = pcxhr_monitor_vol_put,
...@@ -511,7 +562,7 @@ static int pcxhr_monitor_sw_put(struct snd_kcontrol *kcontrol, ...@@ -511,7 +562,7 @@ static int pcxhr_monitor_sw_put(struct snd_kcontrol *kcontrol,
static struct snd_kcontrol_new pcxhr_control_monitor_sw = { static struct snd_kcontrol_new pcxhr_control_monitor_sw = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Monitoring Switch", .name = "Monitoring Playback Switch",
.info = pcxhr_sw_info, /* shared */ .info = pcxhr_sw_info, /* shared */
.get = pcxhr_monitor_sw_get, .get = pcxhr_monitor_sw_get,
.put = pcxhr_monitor_sw_put .put = pcxhr_monitor_sw_put
...@@ -533,7 +584,7 @@ static int pcxhr_set_audio_source(struct snd_pcxhr* chip) ...@@ -533,7 +584,7 @@ static int pcxhr_set_audio_source(struct snd_pcxhr* chip)
struct pcxhr_rmh rmh; struct pcxhr_rmh rmh;
unsigned int mask, reg; unsigned int mask, reg;
unsigned int codec; unsigned int codec;
int err, use_src, changed; int err, changed;
switch (chip->chip_idx) { switch (chip->chip_idx) {
case 0 : mask = PCXHR_SOURCE_AUDIO01_UER; codec = CS8420_01_CS; break; case 0 : mask = PCXHR_SOURCE_AUDIO01_UER; codec = CS8420_01_CS; break;
...@@ -542,13 +593,10 @@ static int pcxhr_set_audio_source(struct snd_pcxhr* chip) ...@@ -542,13 +593,10 @@ static int pcxhr_set_audio_source(struct snd_pcxhr* chip)
case 3 : mask = PCXHR_SOURCE_AUDIO67_UER; codec = CS8420_67_CS; break; case 3 : mask = PCXHR_SOURCE_AUDIO67_UER; codec = CS8420_67_CS; break;
default: return -EINVAL; default: return -EINVAL;
} }
reg = 0; /* audio source from analog plug */
use_src = 0; /* do not activate codec SRC */
if (chip->audio_capture_source != 0) { if (chip->audio_capture_source != 0) {
reg = mask; /* audio source from digital plug */ reg = mask; /* audio source from digital plug */
if (chip->audio_capture_source == 2) } else {
use_src = 1; reg = 0; /* audio source from analog plug */
} }
/* set the input source */ /* set the input source */
pcxhr_write_io_num_reg_cont(chip->mgr, mask, reg, &changed); pcxhr_write_io_num_reg_cont(chip->mgr, mask, reg, &changed);
...@@ -560,29 +608,61 @@ static int pcxhr_set_audio_source(struct snd_pcxhr* chip) ...@@ -560,29 +608,61 @@ static int pcxhr_set_audio_source(struct snd_pcxhr* chip)
if (err) if (err)
return err; return err;
} }
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* set codec SRC on off */ if (chip->mgr->board_aes_in_192k) {
int i;
unsigned int src_config = 0xC0;
/* update all src configs with one call */
for (i = 0; (i < 4) && (i < chip->mgr->capture_chips); i++) {
if (chip->mgr->chip[i]->audio_capture_source == 2)
src_config |= (1 << (3 - i));
}
/* set codec SRC on off */
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
rmh.cmd_len = 2;
rmh.cmd[0] |= IO_NUM_REG_CONFIG_SRC;
rmh.cmd[1] = src_config;
err = pcxhr_send_msg(chip->mgr, &rmh);
} else {
int use_src = 0;
if (chip->audio_capture_source == 2)
use_src = 1;
/* set codec SRC on off */
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
rmh.cmd_len = 3; rmh.cmd_len = 3;
rmh.cmd[0] |= IO_NUM_UER_CHIP_REG; rmh.cmd[0] |= IO_NUM_UER_CHIP_REG;
rmh.cmd[1] = codec; rmh.cmd[1] = codec;
rmh.cmd[2] = (CS8420_DATA_FLOW_CTL & CHIP_SIG_AND_MAP_SPI) | (use_src ? 0x41 : 0x54); rmh.cmd[2] = ((CS8420_DATA_FLOW_CTL & CHIP_SIG_AND_MAP_SPI) |
(use_src ? 0x41 : 0x54));
err = pcxhr_send_msg(chip->mgr, &rmh); err = pcxhr_send_msg(chip->mgr, &rmh);
if(err) if (err)
return err; return err;
rmh.cmd[2] = (CS8420_CLOCK_SRC_CTL & CHIP_SIG_AND_MAP_SPI) | (use_src ? 0x41 : 0x49); rmh.cmd[2] = ((CS8420_CLOCK_SRC_CTL & CHIP_SIG_AND_MAP_SPI) |
(use_src ? 0x41 : 0x49));
err = pcxhr_send_msg(chip->mgr, &rmh); err = pcxhr_send_msg(chip->mgr, &rmh);
}
return err; return err;
} }
static int pcxhr_audio_src_info(struct snd_kcontrol *kcontrol, static int pcxhr_audio_src_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo) struct snd_ctl_elem_info *uinfo)
{ {
static char *texts[3] = {"Analog", "Digital", "Digi+SRC"}; static const char *texts[5] = {
"Line", "Digital", "Digi+SRC", "Mic", "Line+Mic"
};
int i;
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
i = 2; /* no SRC, no Mic available */
if (chip->mgr->board_has_aes1) {
i = 3; /* SRC available */
if (chip->mgr->board_has_mic)
i = 5; /* Mic and MicroMix available */
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1; uinfo->count = 1;
uinfo->value.enumerated.items = 3; uinfo->value.enumerated.items = i;
if (uinfo->value.enumerated.item > 2) if (uinfo->value.enumerated.item > (i-1))
uinfo->value.enumerated.item = 2; uinfo->value.enumerated.item = i-1;
strcpy(uinfo->value.enumerated.name, strcpy(uinfo->value.enumerated.name,
texts[uinfo->value.enumerated.item]); texts[uinfo->value.enumerated.item]);
return 0; return 0;
...@@ -601,12 +681,20 @@ static int pcxhr_audio_src_put(struct snd_kcontrol *kcontrol, ...@@ -601,12 +681,20 @@ static int pcxhr_audio_src_put(struct snd_kcontrol *kcontrol,
{ {
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
int ret = 0; int ret = 0;
int i = 2; /* no SRC, no Mic available */
if (ucontrol->value.enumerated.item[0] >= 3) if (chip->mgr->board_has_aes1) {
i = 3; /* SRC available */
if (chip->mgr->board_has_mic)
i = 5; /* Mic and MicroMix available */
}
if (ucontrol->value.enumerated.item[0] >= i)
return -EINVAL; return -EINVAL;
mutex_lock(&chip->mgr->mixer_mutex); mutex_lock(&chip->mgr->mixer_mutex);
if (chip->audio_capture_source != ucontrol->value.enumerated.item[0]) { if (chip->audio_capture_source != ucontrol->value.enumerated.item[0]) {
chip->audio_capture_source = ucontrol->value.enumerated.item[0]; chip->audio_capture_source = ucontrol->value.enumerated.item[0];
if (chip->mgr->is_hr_stereo)
hr222_set_audio_source(chip);
else
pcxhr_set_audio_source(chip); pcxhr_set_audio_source(chip);
ret = 1; ret = 1;
} }
...@@ -633,18 +721,39 @@ static struct snd_kcontrol_new pcxhr_control_audio_src = { ...@@ -633,18 +721,39 @@ static struct snd_kcontrol_new pcxhr_control_audio_src = {
* PCXHR_CLOCK_TYPE_AES_2, * PCXHR_CLOCK_TYPE_AES_2,
* PCXHR_CLOCK_TYPE_AES_3, * PCXHR_CLOCK_TYPE_AES_3,
* PCXHR_CLOCK_TYPE_AES_4, * PCXHR_CLOCK_TYPE_AES_4,
* PCXHR_CLOCK_TYPE_MAX = PCXHR_CLOCK_TYPE_AES_4,
* HR22_CLOCK_TYPE_INTERNAL = PCXHR_CLOCK_TYPE_INTERNAL,
* HR22_CLOCK_TYPE_AES_SYNC,
* HR22_CLOCK_TYPE_AES_1,
* HR22_CLOCK_TYPE_MAX = HR22_CLOCK_TYPE_AES_1,
* }; * };
*/ */
static int pcxhr_clock_type_info(struct snd_kcontrol *kcontrol, static int pcxhr_clock_type_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo) struct snd_ctl_elem_info *uinfo)
{ {
static char *texts[7] = { static const char *textsPCXHR[7] = {
"Internal", "WordClock", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4" "Internal", "WordClock", "AES Sync",
"AES 1", "AES 2", "AES 3", "AES 4"
};
static const char *textsHR22[3] = {
"Internal", "AES Sync", "AES 1"
}; };
const char **texts;
struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol); struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol);
int clock_items = 3 + mgr->capture_chips; int clock_items = 2; /* at least Internal and AES Sync clock */
if (mgr->board_has_aes1) {
clock_items += mgr->capture_chips; /* add AES x */
if (!mgr->is_hr_stereo)
clock_items += 1; /* add word clock */
}
if (mgr->is_hr_stereo) {
texts = textsHR22;
snd_BUG_ON(clock_items > (HR22_CLOCK_TYPE_MAX+1));
} else {
texts = textsPCXHR;
snd_BUG_ON(clock_items > (PCXHR_CLOCK_TYPE_MAX+1));
}
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1; uinfo->count = 1;
uinfo->value.enumerated.items = clock_items; uinfo->value.enumerated.items = clock_items;
...@@ -667,9 +776,13 @@ static int pcxhr_clock_type_put(struct snd_kcontrol *kcontrol, ...@@ -667,9 +776,13 @@ static int pcxhr_clock_type_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) struct snd_ctl_elem_value *ucontrol)
{ {
struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol); struct pcxhr_mgr *mgr = snd_kcontrol_chip(kcontrol);
unsigned int clock_items = 3 + mgr->capture_chips;
int rate, ret = 0; int rate, ret = 0;
unsigned int clock_items = 2; /* at least Internal and AES Sync clock */
if (mgr->board_has_aes1) {
clock_items += mgr->capture_chips; /* add AES x */
if (!mgr->is_hr_stereo)
clock_items += 1; /* add word clock */
}
if (ucontrol->value.enumerated.item[0] >= clock_items) if (ucontrol->value.enumerated.item[0] >= clock_items)
return -EINVAL; return -EINVAL;
mutex_lock(&mgr->mixer_mutex); mutex_lock(&mgr->mixer_mutex);
...@@ -677,7 +790,8 @@ static int pcxhr_clock_type_put(struct snd_kcontrol *kcontrol, ...@@ -677,7 +790,8 @@ static int pcxhr_clock_type_put(struct snd_kcontrol *kcontrol,
mutex_lock(&mgr->setup_mutex); mutex_lock(&mgr->setup_mutex);
mgr->use_clock_type = ucontrol->value.enumerated.item[0]; mgr->use_clock_type = ucontrol->value.enumerated.item[0];
if (mgr->use_clock_type) if (mgr->use_clock_type)
pcxhr_get_external_clock(mgr, mgr->use_clock_type, &rate); pcxhr_get_external_clock(mgr, mgr->use_clock_type,
&rate);
else else
rate = mgr->sample_rate; rate = mgr->sample_rate;
if (rate) { if (rate) {
...@@ -747,14 +861,16 @@ static struct snd_kcontrol_new pcxhr_control_clock_rate = { ...@@ -747,14 +861,16 @@ static struct snd_kcontrol_new pcxhr_control_clock_rate = {
/* /*
* IEC958 status bits * IEC958 status bits
*/ */
static int pcxhr_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) static int pcxhr_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{ {
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1; uinfo->count = 1;
return 0; return 0;
} }
static int pcxhr_iec958_capture_byte(struct snd_pcxhr *chip, int aes_idx, unsigned char* aes_bits) static int pcxhr_iec958_capture_byte(struct snd_pcxhr *chip,
int aes_idx, unsigned char *aes_bits)
{ {
int i, err; int i, err;
unsigned char temp; unsigned char temp;
...@@ -763,39 +879,61 @@ static int pcxhr_iec958_capture_byte(struct snd_pcxhr *chip, int aes_idx, unsign ...@@ -763,39 +879,61 @@ static int pcxhr_iec958_capture_byte(struct snd_pcxhr *chip, int aes_idx, unsign
pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
rmh.cmd[0] |= IO_NUM_UER_CHIP_REG; rmh.cmd[0] |= IO_NUM_UER_CHIP_REG;
switch (chip->chip_idx) { switch (chip->chip_idx) {
case 0: rmh.cmd[1] = CS8420_01_CS; break; /* use CS8416_01_CS for AES SYNC plug */ /* instead of CS8420_01_CS use CS8416_01_CS for AES SYNC plug */
case 0: rmh.cmd[1] = CS8420_01_CS; break;
case 1: rmh.cmd[1] = CS8420_23_CS; break; case 1: rmh.cmd[1] = CS8420_23_CS; break;
case 2: rmh.cmd[1] = CS8420_45_CS; break; case 2: rmh.cmd[1] = CS8420_45_CS; break;
case 3: rmh.cmd[1] = CS8420_67_CS; break; case 3: rmh.cmd[1] = CS8420_67_CS; break;
default: return -EINVAL; default: return -EINVAL;
} }
if (chip->mgr->board_aes_in_192k) {
switch (aes_idx) {
case 0: rmh.cmd[2] = CS8416_CSB0; break;
case 1: rmh.cmd[2] = CS8416_CSB1; break;
case 2: rmh.cmd[2] = CS8416_CSB2; break;
case 3: rmh.cmd[2] = CS8416_CSB3; break;
case 4: rmh.cmd[2] = CS8416_CSB4; break;
default: return -EINVAL;
}
} else {
switch (aes_idx) { switch (aes_idx) {
case 0: rmh.cmd[2] = CS8420_CSB0; break; /* use CS8416_CSBx for AES SYNC plug */ /* instead of CS8420_CSB0 use CS8416_CSBx for AES SYNC plug */
case 0: rmh.cmd[2] = CS8420_CSB0; break;
case 1: rmh.cmd[2] = CS8420_CSB1; break; case 1: rmh.cmd[2] = CS8420_CSB1; break;
case 2: rmh.cmd[2] = CS8420_CSB2; break; case 2: rmh.cmd[2] = CS8420_CSB2; break;
case 3: rmh.cmd[2] = CS8420_CSB3; break; case 3: rmh.cmd[2] = CS8420_CSB3; break;
case 4: rmh.cmd[2] = CS8420_CSB4; break; case 4: rmh.cmd[2] = CS8420_CSB4; break;
default: return -EINVAL; default: return -EINVAL;
} }
rmh.cmd[1] &= 0x0fffff; /* size and code the chip id for the fpga */ }
rmh.cmd[2] &= CHIP_SIG_AND_MAP_SPI; /* chip signature + map for spi read */ /* size and code the chip id for the fpga */
rmh.cmd[1] &= 0x0fffff;
/* chip signature + map for spi read */
rmh.cmd[2] &= CHIP_SIG_AND_MAP_SPI;
rmh.cmd_len = 3; rmh.cmd_len = 3;
err = pcxhr_send_msg(chip->mgr, &rmh); err = pcxhr_send_msg(chip->mgr, &rmh);
if (err) if (err)
return err; return err;
if (chip->mgr->board_aes_in_192k) {
temp = (unsigned char)rmh.stat[1];
} else {
temp = 0; temp = 0;
/* reversed bit order (not with CS8416_01_CS) */
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
/* attention : reversed bit order (not with CS8416_01_CS) */
temp <<= 1; temp <<= 1;
if (rmh.stat[1] & (1 << i)) if (rmh.stat[1] & (1 << i))
temp |= 1; temp |= 1;
} }
snd_printdd("read iec958 AES %d byte %d = 0x%x\n", chip->chip_idx, aes_idx, temp); }
snd_printdd("read iec958 AES %d byte %d = 0x%x\n",
chip->chip_idx, aes_idx, temp);
*aes_bits = temp; *aes_bits = temp;
return 0; return 0;
} }
static int pcxhr_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) static int pcxhr_iec958_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{ {
struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol); struct snd_pcxhr *chip = snd_kcontrol_chip(kcontrol);
unsigned char aes_bits; unsigned char aes_bits;
...@@ -806,7 +944,12 @@ static int pcxhr_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_v ...@@ -806,7 +944,12 @@ static int pcxhr_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_v
if (kcontrol->private_value == 0) /* playback */ if (kcontrol->private_value == 0) /* playback */
aes_bits = chip->aes_bits[i]; aes_bits = chip->aes_bits[i];
else { /* capture */ else { /* capture */
err = pcxhr_iec958_capture_byte(chip, i, &aes_bits); if (chip->mgr->is_hr_stereo)
err = hr222_iec958_capture_byte(chip, i,
&aes_bits);
else
err = pcxhr_iec958_capture_byte(chip, i,
&aes_bits);
if (err) if (err)
break; break;
} }
...@@ -825,7 +968,8 @@ static int pcxhr_iec958_mask_get(struct snd_kcontrol *kcontrol, ...@@ -825,7 +968,8 @@ static int pcxhr_iec958_mask_get(struct snd_kcontrol *kcontrol,
return 0; return 0;
} }
static int pcxhr_iec958_update_byte(struct snd_pcxhr *chip, int aes_idx, unsigned char aes_bits) static int pcxhr_iec958_update_byte(struct snd_pcxhr *chip,
int aes_idx, unsigned char aes_bits)
{ {
int i, err, cmd; int i, err, cmd;
unsigned char new_bits = aes_bits; unsigned char new_bits = aes_bits;
...@@ -835,7 +979,7 @@ static int pcxhr_iec958_update_byte(struct snd_pcxhr *chip, int aes_idx, unsigne ...@@ -835,7 +979,7 @@ static int pcxhr_iec958_update_byte(struct snd_pcxhr *chip, int aes_idx, unsigne
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
if ((old_bits & 0x01) != (new_bits & 0x01)) { if ((old_bits & 0x01) != (new_bits & 0x01)) {
cmd = chip->chip_idx & 0x03; /* chip index 0..3 */ cmd = chip->chip_idx & 0x03; /* chip index 0..3 */
if(chip->chip_idx > 3) if (chip->chip_idx > 3)
/* new bit used if chip_idx>3 (PCX1222HR) */ /* new bit used if chip_idx>3 (PCX1222HR) */
cmd |= 1 << 22; cmd |= 1 << 22;
cmd |= ((aes_idx << 3) + i) << 2; /* add bit offset */ cmd |= ((aes_idx << 3) + i) << 2; /* add bit offset */
...@@ -867,7 +1011,12 @@ static int pcxhr_iec958_put(struct snd_kcontrol *kcontrol, ...@@ -867,7 +1011,12 @@ static int pcxhr_iec958_put(struct snd_kcontrol *kcontrol,
mutex_lock(&chip->mgr->mixer_mutex); mutex_lock(&chip->mgr->mixer_mutex);
for (i = 0; i < 5; i++) { for (i = 0; i < 5; i++) {
if (ucontrol->value.iec958.status[i] != chip->aes_bits[i]) { if (ucontrol->value.iec958.status[i] != chip->aes_bits[i]) {
pcxhr_iec958_update_byte(chip, i, ucontrol->value.iec958.status[i]); if (chip->mgr->is_hr_stereo)
hr222_iec958_update_byte(chip, i,
ucontrol->value.iec958.status[i]);
else
pcxhr_iec958_update_byte(chip, i,
ucontrol->value.iec958.status[i]);
changed = 1; changed = 1;
} }
} }
...@@ -917,29 +1066,53 @@ static void pcxhr_init_audio_levels(struct snd_pcxhr *chip) ...@@ -917,29 +1066,53 @@ static void pcxhr_init_audio_levels(struct snd_pcxhr *chip)
/* at boot time the digital volumes are unmuted 0dB */ /* at boot time the digital volumes are unmuted 0dB */
for (j = 0; j < PCXHR_PLAYBACK_STREAMS; j++) { for (j = 0; j < PCXHR_PLAYBACK_STREAMS; j++) {
chip->digital_playback_active[j][i] = 1; chip->digital_playback_active[j][i] = 1;
chip->digital_playback_volume[j][i] = PCXHR_DIGITAL_ZERO_LEVEL; chip->digital_playback_volume[j][i] =
PCXHR_DIGITAL_ZERO_LEVEL;
} }
/* after boot, only two bits are set on the uer interface */ /* after boot, only two bits are set on the uer
chip->aes_bits[0] = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_FS_48000; * interface
/* only for test purpose, remove later */ */
chip->aes_bits[0] = (IEC958_AES0_PROFESSIONAL |
IEC958_AES0_PRO_FS_48000);
#ifdef CONFIG_SND_DEBUG #ifdef CONFIG_SND_DEBUG
/* analog volumes for playback (is LEVEL_MIN after boot) */ /* analog volumes for playback
* (is LEVEL_MIN after boot)
*/
chip->analog_playback_active[i] = 1; chip->analog_playback_active[i] = 1;
chip->analog_playback_volume[i] = PCXHR_ANALOG_PLAYBACK_ZERO_LEVEL; if (chip->mgr->is_hr_stereo)
chip->analog_playback_volume[i] =
HR222_LINE_PLAYBACK_ZERO_LEVEL;
else {
chip->analog_playback_volume[i] =
PCXHR_LINE_PLAYBACK_ZERO_LEVEL;
pcxhr_update_analog_audio_level(chip, 0, i); pcxhr_update_analog_audio_level(chip, 0, i);
}
#endif #endif
/* test end */ /* stereo cards need to be initialised after boot */
if (chip->mgr->is_hr_stereo)
hr222_update_analog_audio_level(chip, 0, i);
} }
if (chip->nb_streams_capt) { if (chip->nb_streams_capt) {
/* at boot time the digital volumes are unmuted 0dB */ /* at boot time the digital volumes are unmuted 0dB */
chip->digital_capture_volume[i] = PCXHR_DIGITAL_ZERO_LEVEL; chip->digital_capture_volume[i] =
/* only for test purpose, remove later */ PCXHR_DIGITAL_ZERO_LEVEL;
chip->analog_capture_active = 1;
#ifdef CONFIG_SND_DEBUG #ifdef CONFIG_SND_DEBUG
/* analog volumes for playback (is LEVEL_MIN after boot) */ /* analog volumes for playback
chip->analog_capture_volume[i] = PCXHR_ANALOG_CAPTURE_ZERO_LEVEL; * (is LEVEL_MIN after boot)
*/
if (chip->mgr->is_hr_stereo)
chip->analog_capture_volume[i] =
HR222_LINE_CAPTURE_ZERO_LEVEL;
else {
chip->analog_capture_volume[i] =
PCXHR_LINE_CAPTURE_ZERO_LEVEL;
pcxhr_update_analog_audio_level(chip, 1, i); pcxhr_update_analog_audio_level(chip, 1, i);
}
#endif #endif
/* test end */ /* stereo cards need to be initialised after boot */
if (chip->mgr->is_hr_stereo)
hr222_update_analog_audio_level(chip, 1, i);
} }
} }
...@@ -963,90 +1136,125 @@ int pcxhr_create_mixer(struct pcxhr_mgr *mgr) ...@@ -963,90 +1136,125 @@ int pcxhr_create_mixer(struct pcxhr_mgr *mgr)
temp = pcxhr_control_analog_level; temp = pcxhr_control_analog_level;
temp.name = "Master Playback Volume"; temp.name = "Master Playback Volume";
temp.private_value = 0; /* playback */ temp.private_value = 0; /* playback */
if (mgr->is_hr_stereo)
temp.tlv.p = db_scale_a_hr222_playback;
else
temp.tlv.p = db_scale_analog_playback; temp.tlv.p = db_scale_analog_playback;
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&temp, chip))) < 0) err = snd_ctl_add(chip->card,
snd_ctl_new1(&temp, chip));
if (err < 0)
return err; return err;
/* output mute controls */ /* output mute controls */
if ((err = snd_ctl_add(chip->card, err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_output_switch, snd_ctl_new1(&pcxhr_control_output_switch,
chip))) < 0) chip));
if (err < 0)
return err; return err;
temp = snd_pcxhr_pcm_vol; temp = snd_pcxhr_pcm_vol;
temp.name = "PCM Playback Volume"; temp.name = "PCM Playback Volume";
temp.count = PCXHR_PLAYBACK_STREAMS; temp.count = PCXHR_PLAYBACK_STREAMS;
temp.private_value = 0; /* playback */ temp.private_value = 0; /* playback */
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&temp, chip))) < 0) err = snd_ctl_add(chip->card,
snd_ctl_new1(&temp, chip));
if (err < 0)
return err; return err;
if ((err = snd_ctl_add(chip->card, err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_pcm_switch, snd_ctl_new1(&pcxhr_control_pcm_switch, chip));
chip))) < 0) if (err < 0)
return err; return err;
/* IEC958 controls */ /* IEC958 controls */
if ((err = snd_ctl_add(chip->card, err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_playback_iec958_mask, snd_ctl_new1(&pcxhr_control_playback_iec958_mask,
chip))) < 0) chip));
if (err < 0)
return err; return err;
if ((err = snd_ctl_add(chip->card,
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_playback_iec958, snd_ctl_new1(&pcxhr_control_playback_iec958,
chip))) < 0) chip));
if (err < 0)
return err; return err;
} }
if (chip->nb_streams_capt) { if (chip->nb_streams_capt) {
/* analog input level control only on first two chips !*/ /* analog input level control */
temp = pcxhr_control_analog_level; temp = pcxhr_control_analog_level;
temp.name = "Master Capture Volume"; temp.name = "Line Capture Volume";
temp.private_value = 1; /* capture */ temp.private_value = 1; /* capture */
if (mgr->is_hr_stereo)
temp.tlv.p = db_scale_a_hr222_capture;
else
temp.tlv.p = db_scale_analog_capture; temp.tlv.p = db_scale_analog_capture;
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&temp, chip))) < 0)
err = snd_ctl_add(chip->card,
snd_ctl_new1(&temp, chip));
if (err < 0)
return err; return err;
temp = snd_pcxhr_pcm_vol; temp = snd_pcxhr_pcm_vol;
temp.name = "PCM Capture Volume"; temp.name = "PCM Capture Volume";
temp.count = 1; temp.count = 1;
temp.private_value = 1; /* capture */ temp.private_value = 1; /* capture */
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&temp, chip))) < 0)
err = snd_ctl_add(chip->card,
snd_ctl_new1(&temp, chip));
if (err < 0)
return err; return err;
/* Audio source */ /* Audio source */
if ((err = snd_ctl_add(chip->card, err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_audio_src, snd_ctl_new1(&pcxhr_control_audio_src, chip));
chip))) < 0) if (err < 0)
return err; return err;
/* IEC958 controls */ /* IEC958 controls */
if ((err = snd_ctl_add(chip->card, err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_capture_iec958_mask, snd_ctl_new1(&pcxhr_control_capture_iec958_mask,
chip))) < 0) chip));
if (err < 0)
return err; return err;
if ((err = snd_ctl_add(chip->card,
err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_capture_iec958, snd_ctl_new1(&pcxhr_control_capture_iec958,
chip))) < 0) chip));
if (err < 0)
return err; return err;
if (mgr->is_hr_stereo) {
err = hr222_add_mic_controls(chip);
if (err < 0)
return err;
}
} }
/* monitoring only if playback and capture device available */ /* monitoring only if playback and capture device available */
if (chip->nb_streams_capt > 0 && chip->nb_streams_play > 0) { if (chip->nb_streams_capt > 0 && chip->nb_streams_play > 0) {
/* monitoring */ /* monitoring */
if ((err = snd_ctl_add(chip->card, err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_monitor_vol, snd_ctl_new1(&pcxhr_control_monitor_vol, chip));
chip))) < 0) if (err < 0)
return err; return err;
if ((err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_monitor_sw, err = snd_ctl_add(chip->card,
chip))) < 0) snd_ctl_new1(&pcxhr_control_monitor_sw, chip));
if (err < 0)
return err; return err;
} }
if (i == 0) { if (i == 0) {
/* clock mode only one control per pcxhr */ /* clock mode only one control per pcxhr */
if ((err = snd_ctl_add(chip->card, err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_clock_type, snd_ctl_new1(&pcxhr_control_clock_type, mgr));
mgr))) < 0) if (err < 0)
return err; return err;
/* non standard control used to scan the external clock presence/frequencies */ /* non standard control used to scan
if ((err = snd_ctl_add(chip->card, * the external clock presence/frequencies
snd_ctl_new1(&pcxhr_control_clock_rate, */
mgr))) < 0) err = snd_ctl_add(chip->card,
snd_ctl_new1(&pcxhr_control_clock_rate, mgr));
if (err < 0)
return err; return err;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment