Commit c186caca authored by FUJITA Tomonori's avatar FUJITA Tomonori Committed by Linus Torvalds

dma-mapping: alpha: use include/linux/pci-dma-compat.h

This converts Alpha to use include/linux/pci-dma-compat.h.  Alpha is the
only architecutre that implements the PCI DMA API in the own way.  That
makes it difficult to implement the generic DMA API via the PCI bus
specific DMA API.

The generic DMA API calls the PCI DMA API implementation in
arch/alpha/kernel/pci_iommu.c on non Jensen systems.  It calls the DMA API
in arch/alpha/kernel/pci-noop.c on Jensen systems.
Signed-off-by: default avatarFUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Greg KH <greg@kroah.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 34900429
...@@ -10,6 +10,7 @@ config ALPHA ...@@ -10,6 +10,7 @@ config ALPHA
select HAVE_OPROFILE select HAVE_OPROFILE
select HAVE_SYSCALL_WRAPPERS select HAVE_SYSCALL_WRAPPERS
select HAVE_PERF_EVENTS select HAVE_PERF_EVENTS
select HAVE_DMA_ATTRS
help help
The Alpha is a 64-bit general-purpose processor designed and The Alpha is a 64-bit general-purpose processor designed and
marketed by the Digital Equipment Corporation of blessed memory, marketed by the Digital Equipment Corporation of blessed memory,
......
#ifndef _ALPHA_DMA_MAPPING_H #ifndef _ALPHA_DMA_MAPPING_H
#define _ALPHA_DMA_MAPPING_H #define _ALPHA_DMA_MAPPING_H
#include <linux/dma-attrs.h>
#ifdef CONFIG_PCI extern struct dma_map_ops *dma_ops;
#include <linux/pci.h> static inline struct dma_map_ops *get_dma_ops(struct device *dev)
{
return dma_ops;
}
#define dma_map_single(dev, va, size, dir) \ #include <asm-generic/dma-mapping-common.h>
pci_map_single(alpha_gendev_to_pci(dev), va, size, dir)
#define dma_unmap_single(dev, addr, size, dir) \
pci_unmap_single(alpha_gendev_to_pci(dev), addr, size, dir)
#define dma_alloc_coherent(dev, size, addr, gfp) \
__pci_alloc_consistent(alpha_gendev_to_pci(dev), size, addr, gfp)
#define dma_free_coherent(dev, size, va, addr) \
pci_free_consistent(alpha_gendev_to_pci(dev), size, va, addr)
#define dma_map_page(dev, page, off, size, dir) \
pci_map_page(alpha_gendev_to_pci(dev), page, off, size, dir)
#define dma_unmap_page(dev, addr, size, dir) \
pci_unmap_page(alpha_gendev_to_pci(dev), addr, size, dir)
#define dma_map_sg(dev, sg, nents, dir) \
pci_map_sg(alpha_gendev_to_pci(dev), sg, nents, dir)
#define dma_unmap_sg(dev, sg, nents, dir) \
pci_unmap_sg(alpha_gendev_to_pci(dev), sg, nents, dir)
#define dma_supported(dev, mask) \
pci_dma_supported(alpha_gendev_to_pci(dev), mask)
#define dma_mapping_error(dev, addr) \
pci_dma_mapping_error(alpha_gendev_to_pci(dev), addr)
#else /* no PCI - no IOMMU. */ static inline void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
return get_dma_ops(dev)->alloc_coherent(dev, size, dma_handle, gfp);
}
#include <asm/io.h> /* for virt_to_phys() */ static inline void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
get_dma_ops(dev)->free_coherent(dev, size, vaddr, dma_handle);
}
struct scatterlist; static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
void *dma_alloc_coherent(struct device *dev, size_t size, {
dma_addr_t *dma_handle, gfp_t gfp); return get_dma_ops(dev)->mapping_error(dev, dma_addr);
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, }
enum dma_data_direction direction);
#define dma_free_coherent(dev, size, va, addr) \ static inline int dma_supported(struct device *dev, u64 mask)
free_pages((unsigned long)va, get_order(size)) {
#define dma_supported(dev, mask) (mask < 0x00ffffffUL ? 0 : 1) return get_dma_ops(dev)->dma_supported(dev, mask);
#define dma_map_single(dev, va, size, dir) virt_to_phys(va) }
#define dma_map_page(dev, page, off, size, dir) (page_to_pa(page) + off)
#define dma_unmap_single(dev, addr, size, dir) ((void)0) static inline int dma_set_mask(struct device *dev, u64 mask)
#define dma_unmap_page(dev, addr, size, dir) ((void)0) {
#define dma_unmap_sg(dev, sg, nents, dir) ((void)0) return get_dma_ops(dev)->set_dma_mask(dev, mask);
}
#define dma_mapping_error(dev, addr) (0)
#endif /* !CONFIG_PCI */
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f) #define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h) #define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
#define dma_is_consistent(d, h) (1) #define dma_is_consistent(d, h) (1)
int dma_set_mask(struct device *dev, u64 mask);
#define dma_sync_single_for_cpu(dev, addr, size, dir) ((void)0)
#define dma_sync_single_for_device(dev, addr, size, dir) ((void)0)
#define dma_sync_sg_for_cpu(dev, sg, nents, dir) ((void)0)
#define dma_sync_sg_for_device(dev, sg, nents, dir) ((void)0)
#define dma_cache_sync(dev, va, size, dir) ((void)0) #define dma_cache_sync(dev, va, size, dir) ((void)0)
#define dma_sync_single_range_for_cpu(dev, addr, offset, size, dir) ((void)0)
#define dma_sync_single_range_for_device(dev, addr, offset, size, dir) ((void)0)
#define dma_get_cache_alignment() L1_CACHE_BYTES #define dma_get_cache_alignment() L1_CACHE_BYTES
#endif /* _ALPHA_DMA_MAPPING_H */ #endif /* _ALPHA_DMA_MAPPING_H */
...@@ -70,128 +70,11 @@ extern inline void pcibios_penalize_isa_irq(int irq, int active) ...@@ -70,128 +70,11 @@ extern inline void pcibios_penalize_isa_irq(int irq, int active)
decisions. */ decisions. */
#define PCI_DMA_BUS_IS_PHYS 0 #define PCI_DMA_BUS_IS_PHYS 0
/* Allocate and map kernel buffer using consistent mode DMA for PCI #ifdef CONFIG_PCI
device. Returns non-NULL cpu-view pointer to the buffer if
successful and sets *DMA_ADDRP to the pci side dma address as well,
else DMA_ADDRP is undefined. */
extern void *__pci_alloc_consistent(struct pci_dev *, size_t,
dma_addr_t *, gfp_t);
static inline void *
pci_alloc_consistent(struct pci_dev *dev, size_t size, dma_addr_t *dma)
{
return __pci_alloc_consistent(dev, size, dma, GFP_ATOMIC);
}
/* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must
be values that were returned from pci_alloc_consistent. SIZE must
be the same as what as passed into pci_alloc_consistent.
References to the memory and mappings associated with CPU_ADDR or
DMA_ADDR past this call are illegal. */
extern void pci_free_consistent(struct pci_dev *, size_t, void *, dma_addr_t);
/* Map a single buffer of the indicate size for PCI DMA in streaming mode.
The 32-bit PCI bus mastering address to use is returned. Once the device
is given the dma address, the device owns this memory until either
pci_unmap_single or pci_dma_sync_single_for_cpu is performed. */
extern dma_addr_t pci_map_single(struct pci_dev *, void *, size_t, int);
/* Likewise, but for a page instead of an address. */
extern dma_addr_t pci_map_page(struct pci_dev *, struct page *,
unsigned long, size_t, int);
/* Test for pci_map_single or pci_map_page having generated an error. */
static inline int
pci_dma_mapping_error(struct pci_dev *pdev, dma_addr_t dma_addr)
{
return dma_addr == 0;
}
/* Unmap a single streaming mode DMA translation. The DMA_ADDR and
SIZE must match what was provided for in a previous pci_map_single
call. All other usages are undefined. After this call, reads by
the cpu to the buffer are guaranteed to see whatever the device
wrote there. */
extern void pci_unmap_single(struct pci_dev *, dma_addr_t, size_t, int);
extern void pci_unmap_page(struct pci_dev *, dma_addr_t, size_t, int);
/* Map a set of buffers described by scatterlist in streaming mode for
PCI DMA. This is the scatter-gather version of the above
pci_map_single interface. Here the scatter gather list elements
are each tagged with the appropriate PCI dma address and length.
They are obtained via sg_dma_{address,length}(SG).
NOTE: An implementation may be able to use a smaller number of DMA
address/length pairs than there are SG table elements. (for
example via virtual mapping capabilities) The routine returns the
number of addr/length pairs actually used, at most nents.
Device ownership issues as mentioned above for pci_map_single are
the same here. */
extern int pci_map_sg(struct pci_dev *, struct scatterlist *, int, int);
/* Unmap a set of streaming mode DMA translations. Again, cpu read
rules concerning calls here are the same as for pci_unmap_single()
above. */
extern void pci_unmap_sg(struct pci_dev *, struct scatterlist *, int, int);
/* Make physical memory consistent for a single streaming mode DMA
translation after a transfer and device currently has ownership
of the buffer.
If you perform a pci_map_single() but wish to interrogate the
buffer using the cpu, yet do not wish to teardown the PCI dma
mapping, you must call this function before doing so. At the next
point you give the PCI dma address back to the card, you must first
perform a pci_dma_sync_for_device, and then the device again owns
the buffer. */
static inline void
pci_dma_sync_single_for_cpu(struct pci_dev *dev, dma_addr_t dma_addr,
long size, int direction)
{
/* Nothing to do. */
}
static inline void
pci_dma_sync_single_for_device(struct pci_dev *dev, dma_addr_t dma_addr,
size_t size, int direction)
{
/* Nothing to do. */
}
/* Make physical memory consistent for a set of streaming mode DMA
translations after a transfer. The same as pci_dma_sync_single_*
but for a scatter-gather list, same rules and usage. */
static inline void
pci_dma_sync_sg_for_cpu(struct pci_dev *dev, struct scatterlist *sg,
int nents, int direction)
{
/* Nothing to do. */
}
static inline void
pci_dma_sync_sg_for_device(struct pci_dev *dev, struct scatterlist *sg,
int nents, int direction)
{
/* Nothing to do. */
}
/* Return whether the given PCI device DMA address mask can
be supported properly. For example, if your device can
only drive the low 24-bits during PCI bus mastering, then
you would pass 0x00ffffff as the mask to this function. */
extern int pci_dma_supported(struct pci_dev *hwdev, u64 mask); /* implement the pci_ DMA API in terms of the generic device dma_ one */
#include <asm-generic/pci-dma-compat.h>
#ifdef CONFIG_PCI
static inline void pci_dma_burst_advice(struct pci_dev *pdev, static inline void pci_dma_burst_advice(struct pci_dev *pdev,
enum pci_dma_burst_strategy *strat, enum pci_dma_burst_strategy *strat,
unsigned long *strategy_parameter) unsigned long *strategy_parameter)
...@@ -230,8 +113,6 @@ static inline int pci_proc_domain(struct pci_bus *bus) ...@@ -230,8 +113,6 @@ static inline int pci_proc_domain(struct pci_bus *bus)
return hose->need_domain_info; return hose->need_domain_info;
} }
struct pci_dev *alpha_gendev_to_pci(struct device *dev);
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
/* Values for the `which' argument to sys_pciconfig_iobase. */ /* Values for the `which' argument to sys_pciconfig_iobase. */
......
...@@ -106,58 +106,8 @@ sys_pciconfig_write(unsigned long bus, unsigned long dfn, ...@@ -106,58 +106,8 @@ sys_pciconfig_write(unsigned long bus, unsigned long dfn,
return -ENODEV; return -ENODEV;
} }
/* Stubs for the routines in pci_iommu.c: */ static void *alpha_noop_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
void *
__pci_alloc_consistent(struct pci_dev *pdev, size_t size,
dma_addr_t *dma_addrp, gfp_t gfp)
{
return NULL;
}
void
pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu_addr,
dma_addr_t dma_addr)
{
}
dma_addr_t
pci_map_single(struct pci_dev *pdev, void *cpu_addr, size_t size,
int direction)
{
return (dma_addr_t) 0;
}
void
pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr, size_t size,
int direction)
{
}
int
pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents,
int direction)
{
return 0;
}
void
pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents,
int direction)
{
}
int
pci_dma_supported(struct pci_dev *hwdev, dma_addr_t mask)
{
return 0;
}
/* Generic DMA mapping functions: */
void *
dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{ {
void *ret; void *ret;
...@@ -171,11 +121,22 @@ dma_alloc_coherent(struct device *dev, size_t size, ...@@ -171,11 +121,22 @@ dma_alloc_coherent(struct device *dev, size_t size,
return ret; return ret;
} }
EXPORT_SYMBOL(dma_alloc_coherent); static void alpha_noop_free_coherent(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr)
{
free_pages((unsigned long)cpu_addr, get_order(size));
}
static dma_addr_t alpha_noop_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
return page_to_pa(page) + offset;
}
int static int alpha_noop_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
dma_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
enum dma_data_direction direction)
{ {
int i; int i;
struct scatterlist *sg; struct scatterlist *sg;
...@@ -192,19 +153,37 @@ dma_map_sg(struct device *dev, struct scatterlist *sgl, int nents, ...@@ -192,19 +153,37 @@ dma_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
return nents; return nents;
} }
EXPORT_SYMBOL(dma_map_sg); static int alpha_noop_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
static int alpha_noop_supported(struct device *dev, u64 mask)
{
return mask < 0x00ffffffUL ? 0 : 1;
}
int static int alpha_noop_set_mask(struct device *dev, u64 mask)
dma_set_mask(struct device *dev, u64 mask)
{ {
if (!dev->dma_mask || !dma_supported(dev, mask)) if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO; return -EIO;
*dev->dma_mask = mask; *dev->dma_mask = mask;
return 0; return 0;
} }
EXPORT_SYMBOL(dma_set_mask);
struct dma_map_ops alpha_noop_ops = {
.alloc_coherent = alpha_noop_alloc_coherent,
.free_coherent = alpha_noop_free_coherent,
.map_page = alpha_noop_map_page,
.map_sg = alpha_noop_map_sg,
.mapping_error = alpha_noop_mapping_error,
.dma_supported = alpha_noop_supported,
.set_dma_mask = alpha_noop_set_mask,
};
struct dma_map_ops *dma_ops = &alpha_noop_ops;
EXPORT_SYMBOL(dma_ops);
void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen) void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
{ {
......
...@@ -216,10 +216,30 @@ iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n) ...@@ -216,10 +216,30 @@ iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n)
for (i = 0; i < n; ++i) for (i = 0; i < n; ++i)
p[i] = 0; p[i] = 0;
} }
/* True if the machine supports DAC addressing, and DEV can /*
make use of it given MASK. */ * True if the machine supports DAC addressing, and DEV can
static int pci_dac_dma_supported(struct pci_dev *hwdev, u64 mask); * make use of it given MASK.
*/
static int pci_dac_dma_supported(struct pci_dev *dev, u64 mask)
{
dma64_addr_t dac_offset = alpha_mv.pci_dac_offset;
int ok = 1;
/* If this is not set, the machine doesn't support DAC at all. */
if (dac_offset == 0)
ok = 0;
/* The device has to be able to address our DAC bit. */
if ((dac_offset & dev->dma_mask) != dac_offset)
ok = 0;
/* If both conditions above are met, we are fine. */
DBGA("pci_dac_dma_supported %s from %p\n",
ok ? "yes" : "no", __builtin_return_address(0));
return ok;
}
/* Map a single buffer of the indicated size for PCI DMA in streaming /* Map a single buffer of the indicated size for PCI DMA in streaming
mode. The 32-bit PCI bus mastering address to use is returned. mode. The 32-bit PCI bus mastering address to use is returned.
...@@ -301,23 +321,36 @@ pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size, ...@@ -301,23 +321,36 @@ pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size,
return ret; return ret;
} }
dma_addr_t /* Helper for generic DMA-mapping functions. */
pci_map_single(struct pci_dev *pdev, void *cpu_addr, size_t size, int dir) static struct pci_dev *alpha_gendev_to_pci(struct device *dev)
{ {
int dac_allowed; if (dev && dev->bus == &pci_bus_type)
return to_pci_dev(dev);
if (dir == PCI_DMA_NONE) /* Assume that non-PCI devices asking for DMA are either ISA or EISA,
BUG(); BUG() otherwise. */
BUG_ON(!isa_bridge);
dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; /* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA
return pci_map_single_1(pdev, cpu_addr, size, dac_allowed); bridge is bus master then). */
if (!dev || !dev->dma_mask || !*dev->dma_mask)
return isa_bridge;
/* For EISA bus masters, return isa_bridge (it might have smaller
dma_mask due to wiring limitations). */
if (*dev->dma_mask >= isa_bridge->dma_mask)
return isa_bridge;
/* This assumes ISA bus master with dma_mask 0xffffff. */
return NULL;
} }
EXPORT_SYMBOL(pci_map_single);
dma_addr_t static dma_addr_t alpha_pci_map_page(struct device *dev, struct page *page,
pci_map_page(struct pci_dev *pdev, struct page *page, unsigned long offset, unsigned long offset, size_t size,
size_t size, int dir) enum dma_data_direction dir,
struct dma_attrs *attrs)
{ {
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
int dac_allowed; int dac_allowed;
if (dir == PCI_DMA_NONE) if (dir == PCI_DMA_NONE)
...@@ -327,7 +360,6 @@ pci_map_page(struct pci_dev *pdev, struct page *page, unsigned long offset, ...@@ -327,7 +360,6 @@ pci_map_page(struct pci_dev *pdev, struct page *page, unsigned long offset,
return pci_map_single_1(pdev, (char *)page_address(page) + offset, return pci_map_single_1(pdev, (char *)page_address(page) + offset,
size, dac_allowed); size, dac_allowed);
} }
EXPORT_SYMBOL(pci_map_page);
/* Unmap a single streaming mode DMA translation. The DMA_ADDR and /* Unmap a single streaming mode DMA translation. The DMA_ADDR and
SIZE must match what was provided for in a previous pci_map_single SIZE must match what was provided for in a previous pci_map_single
...@@ -335,16 +367,17 @@ EXPORT_SYMBOL(pci_map_page); ...@@ -335,16 +367,17 @@ EXPORT_SYMBOL(pci_map_page);
the cpu to the buffer are guaranteed to see whatever the device the cpu to the buffer are guaranteed to see whatever the device
wrote there. */ wrote there. */
void static void alpha_pci_unmap_page(struct device *dev, dma_addr_t dma_addr,
pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, size_t size, enum dma_data_direction dir,
int direction) struct dma_attrs *attrs)
{ {
unsigned long flags; unsigned long flags;
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose;
struct pci_iommu_arena *arena; struct pci_iommu_arena *arena;
long dma_ofs, npages; long dma_ofs, npages;
if (direction == PCI_DMA_NONE) if (dir == PCI_DMA_NONE)
BUG(); BUG();
if (dma_addr >= __direct_map_base if (dma_addr >= __direct_map_base
...@@ -393,25 +426,16 @@ pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, ...@@ -393,25 +426,16 @@ pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr, size_t size,
DBGA2("pci_unmap_single: sg [%llx,%zx] np %ld from %p\n", DBGA2("pci_unmap_single: sg [%llx,%zx] np %ld from %p\n",
dma_addr, size, npages, __builtin_return_address(0)); dma_addr, size, npages, __builtin_return_address(0));
} }
EXPORT_SYMBOL(pci_unmap_single);
void
pci_unmap_page(struct pci_dev *pdev, dma_addr_t dma_addr,
size_t size, int direction)
{
pci_unmap_single(pdev, dma_addr, size, direction);
}
EXPORT_SYMBOL(pci_unmap_page);
/* Allocate and map kernel buffer using consistent mode DMA for PCI /* Allocate and map kernel buffer using consistent mode DMA for PCI
device. Returns non-NULL cpu-view pointer to the buffer if device. Returns non-NULL cpu-view pointer to the buffer if
successful and sets *DMA_ADDRP to the pci side dma address as well, successful and sets *DMA_ADDRP to the pci side dma address as well,
else DMA_ADDRP is undefined. */ else DMA_ADDRP is undefined. */
void * static void *alpha_pci_alloc_coherent(struct device *dev, size_t size,
__pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp, gfp_t gfp)
dma_addr_t *dma_addrp, gfp_t gfp)
{ {
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
void *cpu_addr; void *cpu_addr;
long order = get_order(size); long order = get_order(size);
...@@ -439,13 +463,12 @@ __pci_alloc_consistent(struct pci_dev *pdev, size_t size, ...@@ -439,13 +463,12 @@ __pci_alloc_consistent(struct pci_dev *pdev, size_t size,
gfp |= GFP_DMA; gfp |= GFP_DMA;
goto try_again; goto try_again;
} }
DBGA2("pci_alloc_consistent: %zx -> [%p,%llx] from %p\n", DBGA2("pci_alloc_consistent: %zx -> [%p,%llx] from %p\n",
size, cpu_addr, *dma_addrp, __builtin_return_address(0)); size, cpu_addr, *dma_addrp, __builtin_return_address(0));
return cpu_addr; return cpu_addr;
} }
EXPORT_SYMBOL(__pci_alloc_consistent);
/* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must /* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must
be values that were returned from pci_alloc_consistent. SIZE must be values that were returned from pci_alloc_consistent. SIZE must
...@@ -453,17 +476,16 @@ EXPORT_SYMBOL(__pci_alloc_consistent); ...@@ -453,17 +476,16 @@ EXPORT_SYMBOL(__pci_alloc_consistent);
References to the memory and mappings associated with CPU_ADDR or References to the memory and mappings associated with CPU_ADDR or
DMA_ADDR past this call are illegal. */ DMA_ADDR past this call are illegal. */
void static void alpha_pci_free_coherent(struct device *dev, size_t size,
pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu_addr, void *cpu_addr, dma_addr_t dma_addr)
dma_addr_t dma_addr)
{ {
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL); pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL);
free_pages((unsigned long)cpu_addr, get_order(size)); free_pages((unsigned long)cpu_addr, get_order(size));
DBGA2("pci_free_consistent: [%llx,%zx] from %p\n", DBGA2("pci_free_consistent: [%llx,%zx] from %p\n",
dma_addr, size, __builtin_return_address(0)); dma_addr, size, __builtin_return_address(0));
} }
EXPORT_SYMBOL(pci_free_consistent);
/* Classify the elements of the scatterlist. Write dma_address /* Classify the elements of the scatterlist. Write dma_address
of each element with: of each element with:
...@@ -626,23 +648,21 @@ sg_fill(struct device *dev, struct scatterlist *leader, struct scatterlist *end, ...@@ -626,23 +648,21 @@ sg_fill(struct device *dev, struct scatterlist *leader, struct scatterlist *end,
return 1; return 1;
} }
int static int alpha_pci_map_sg(struct device *dev, struct scatterlist *sg,
pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, int nents, enum dma_data_direction dir,
int direction) struct dma_attrs *attrs)
{ {
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
struct scatterlist *start, *end, *out; struct scatterlist *start, *end, *out;
struct pci_controller *hose; struct pci_controller *hose;
struct pci_iommu_arena *arena; struct pci_iommu_arena *arena;
dma_addr_t max_dma; dma_addr_t max_dma;
int dac_allowed; int dac_allowed;
struct device *dev;
if (direction == PCI_DMA_NONE) if (dir == PCI_DMA_NONE)
BUG(); BUG();
dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; dac_allowed = dev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0;
dev = pdev ? &pdev->dev : NULL;
/* Fast path single entry scatterlists. */ /* Fast path single entry scatterlists. */
if (nents == 1) { if (nents == 1) {
...@@ -699,19 +719,19 @@ pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, ...@@ -699,19 +719,19 @@ pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents,
/* Some allocation failed while mapping the scatterlist /* Some allocation failed while mapping the scatterlist
entries. Unmap them now. */ entries. Unmap them now. */
if (out > start) if (out > start)
pci_unmap_sg(pdev, start, out - start, direction); pci_unmap_sg(pdev, start, out - start, dir);
return 0; return 0;
} }
EXPORT_SYMBOL(pci_map_sg);
/* Unmap a set of streaming mode DMA translations. Again, cpu read /* Unmap a set of streaming mode DMA translations. Again, cpu read
rules concerning calls here are the same as for pci_unmap_single() rules concerning calls here are the same as for pci_unmap_single()
above. */ above. */
void static void alpha_pci_unmap_sg(struct device *dev, struct scatterlist *sg,
pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, int nents, enum dma_data_direction dir,
int direction) struct dma_attrs *attrs)
{ {
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
unsigned long flags; unsigned long flags;
struct pci_controller *hose; struct pci_controller *hose;
struct pci_iommu_arena *arena; struct pci_iommu_arena *arena;
...@@ -719,7 +739,7 @@ pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, ...@@ -719,7 +739,7 @@ pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents,
dma_addr_t max_dma; dma_addr_t max_dma;
dma_addr_t fbeg, fend; dma_addr_t fbeg, fend;
if (direction == PCI_DMA_NONE) if (dir == PCI_DMA_NONE)
BUG(); BUG();
if (! alpha_mv.mv_pci_tbi) if (! alpha_mv.mv_pci_tbi)
...@@ -783,15 +803,13 @@ pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, ...@@ -783,15 +803,13 @@ pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents,
DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg)); DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg));
} }
EXPORT_SYMBOL(pci_unmap_sg);
/* Return whether the given PCI device DMA address mask can be /* Return whether the given PCI device DMA address mask can be
supported properly. */ supported properly. */
int static int alpha_pci_supported(struct device *dev, u64 mask)
pci_dma_supported(struct pci_dev *pdev, u64 mask)
{ {
struct pci_dev *pdev = alpha_gendev_to_pci(dev);
struct pci_controller *hose; struct pci_controller *hose;
struct pci_iommu_arena *arena; struct pci_iommu_arena *arena;
...@@ -818,7 +836,6 @@ pci_dma_supported(struct pci_dev *pdev, u64 mask) ...@@ -818,7 +836,6 @@ pci_dma_supported(struct pci_dev *pdev, u64 mask)
return 0; return 0;
} }
EXPORT_SYMBOL(pci_dma_supported);
/* /*
...@@ -918,66 +935,32 @@ iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count) ...@@ -918,66 +935,32 @@ iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count)
return 0; return 0;
} }
/* True if the machine supports DAC addressing, and DEV can static int alpha_pci_mapping_error(struct device *dev, dma_addr_t dma_addr)
make use of it given MASK. */
static int
pci_dac_dma_supported(struct pci_dev *dev, u64 mask)
{
dma64_addr_t dac_offset = alpha_mv.pci_dac_offset;
int ok = 1;
/* If this is not set, the machine doesn't support DAC at all. */
if (dac_offset == 0)
ok = 0;
/* The device has to be able to address our DAC bit. */
if ((dac_offset & dev->dma_mask) != dac_offset)
ok = 0;
/* If both conditions above are met, we are fine. */
DBGA("pci_dac_dma_supported %s from %p\n",
ok ? "yes" : "no", __builtin_return_address(0));
return ok;
}
/* Helper for generic DMA-mapping functions. */
struct pci_dev *
alpha_gendev_to_pci(struct device *dev)
{ {
if (dev && dev->bus == &pci_bus_type) return dma_addr == 0;
return to_pci_dev(dev);
/* Assume that non-PCI devices asking for DMA are either ISA or EISA,
BUG() otherwise. */
BUG_ON(!isa_bridge);
/* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA
bridge is bus master then). */
if (!dev || !dev->dma_mask || !*dev->dma_mask)
return isa_bridge;
/* For EISA bus masters, return isa_bridge (it might have smaller
dma_mask due to wiring limitations). */
if (*dev->dma_mask >= isa_bridge->dma_mask)
return isa_bridge;
/* This assumes ISA bus master with dma_mask 0xffffff. */
return NULL;
} }
EXPORT_SYMBOL(alpha_gendev_to_pci);
int static int alpha_pci_set_mask(struct device *dev, u64 mask)
dma_set_mask(struct device *dev, u64 mask)
{ {
if (!dev->dma_mask || if (!dev->dma_mask ||
!pci_dma_supported(alpha_gendev_to_pci(dev), mask)) !pci_dma_supported(alpha_gendev_to_pci(dev), mask))
return -EIO; return -EIO;
*dev->dma_mask = mask; *dev->dma_mask = mask;
return 0; return 0;
} }
EXPORT_SYMBOL(dma_set_mask);
struct dma_map_ops alpha_pci_ops = {
.alloc_coherent = alpha_pci_alloc_coherent,
.free_coherent = alpha_pci_free_coherent,
.map_page = alpha_pci_map_page,
.unmap_page = alpha_pci_unmap_page,
.map_sg = alpha_pci_map_sg,
.unmap_sg = alpha_pci_unmap_sg,
.mapping_error = alpha_pci_mapping_error,
.dma_supported = alpha_pci_supported,
.set_dma_mask = alpha_pci_set_mask,
};
struct dma_map_ops *dma_ops = &alpha_pci_ops;
EXPORT_SYMBOL(dma_ops);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment