Commit c1f85878 authored by Chris Wilson's avatar Chris Wilson

drm/i915/gt: Split low level gen2-7 CS emitters

Pull the routines for writing CS packets out of intel_ring_submission
into their own files. These are low level operations for building CS
instructions, rather than the logic for filling the global ring buffer
with requests, and we will want to reuse them outside of this context.
Signed-off-by: default avatarChris Wilson <chris@chris-wilson.co.uk>
Acked-by: default avatarMika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200601072446.19548-2-chris@chris-wilson.co.uk
parent f9496520
...@@ -78,6 +78,8 @@ gt-y += \ ...@@ -78,6 +78,8 @@ gt-y += \
gt/debugfs_engines.o \ gt/debugfs_engines.o \
gt/debugfs_gt.o \ gt/debugfs_gt.o \
gt/debugfs_gt_pm.o \ gt/debugfs_gt_pm.o \
gt/gen2_engine_cs.o \
gt/gen6_engine_cs.o \
gt/gen6_ppgtt.o \ gt/gen6_ppgtt.o \
gt/gen7_renderclear.o \ gt/gen7_renderclear.o \
gt/gen8_ppgtt.o \ gt/gen8_ppgtt.o \
......
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include "gen2_engine_cs.h"
#include "i915_drv.h"
#include "intel_engine.h"
#include "intel_gpu_commands.h"
#include "intel_gt.h"
#include "intel_gt_irq.h"
#include "intel_ring.h"
int gen2_emit_flush(struct i915_request *rq, u32 mode)
{
unsigned int num_store_dw;
u32 cmd, *cs;
cmd = MI_FLUSH;
num_store_dw = 0;
if (mode & EMIT_INVALIDATE)
cmd |= MI_READ_FLUSH;
if (mode & EMIT_FLUSH)
num_store_dw = 4;
cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = cmd;
while (num_store_dw--) {
*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT);
*cs++ = 0;
}
*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
intel_ring_advance(rq, cs);
return 0;
}
int gen4_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
u32 cmd, *cs;
int i;
/*
* read/write caches:
*
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
* also flushed at 2d versus 3d pipeline switches.
*
* read-only caches:
*
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
* MI_READ_FLUSH is set, and is always flushed on 965.
*
* I915_GEM_DOMAIN_COMMAND may not exist?
*
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
* invalidated when MI_EXE_FLUSH is set.
*
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
* invalidated with every MI_FLUSH.
*
* TLBs:
*
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
* are flushed at any MI_FLUSH.
*/
cmd = MI_FLUSH;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_EXE_FLUSH;
if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
cmd |= MI_INVALIDATE_ISP;
}
i = 2;
if (mode & EMIT_INVALIDATE)
i += 20;
cs = intel_ring_begin(rq, i);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = cmd;
/*
* A random delay to let the CS invalidate take effect? Without this
* delay, the GPU relocation path fails as the CS does not see
* the updated contents. Just as important, if we apply the flushes
* to the EMIT_FLUSH branch (i.e. immediately after the relocation
* write and before the invalidate on the next batch), the relocations
* still fail. This implies that is a delay following invalidation
* that is required to reset the caches as opposed to a delay to
* ensure the memory is written.
*/
if (mode & EMIT_INVALIDATE) {
*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT) |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
*cs++ = 0;
for (i = 0; i < 12; i++)
*cs++ = MI_FLUSH;
*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT) |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
*cs++ = 0;
}
*cs++ = cmd;
intel_ring_advance(rq, cs);
return 0;
}
int gen4_emit_flush_vcs(struct i915_request *rq, u32 mode)
{
u32 *cs;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_FLUSH;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
u32 *gen3_emit_breadcrumb(struct i915_request *rq, u32 *cs)
{
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH;
*cs++ = MI_STORE_DWORD_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#define GEN5_WA_STORES 8 /* must be at least 1! */
u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
{
int i;
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH;
BUILD_BUG_ON(GEN5_WA_STORES < 1);
for (i = 0; i < GEN5_WA_STORES; i++) {
*cs++ = MI_STORE_DWORD_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR;
*cs++ = rq->fence.seqno;
}
*cs++ = MI_USER_INTERRUPT;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#undef GEN5_WA_STORES
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT SZ_256K
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES * SZ_4K, I830_BATCH_LIMIT)
int i830_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs, cs_offset =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT);
GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Evict the invalid PTE TLBs */
*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
*cs++ = cs_offset;
*cs++ = 0xdeadbeef;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
if (len > I830_BATCH_LIMIT)
return -ENOSPC;
cs = intel_ring_begin(rq, 6 + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Blit the batch (which has now all relocs applied) to the
* stable batch scratch bo area (so that the CS never
* stumbles over its tlb invalidation bug) ...
*/
*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
*cs++ = cs_offset;
*cs++ = 4096;
*cs++ = offset;
*cs++ = MI_FLUSH;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
/* ... and execute it. */
offset = cs_offset;
}
if (!(dispatch_flags & I915_DISPATCH_SECURE))
offset |= MI_BATCH_NON_SECURE;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
*cs++ = offset;
intel_ring_advance(rq, cs);
return 0;
}
int gen3_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs;
if (!(dispatch_flags & I915_DISPATCH_SECURE))
offset |= MI_BATCH_NON_SECURE;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
*cs++ = offset;
intel_ring_advance(rq, cs);
return 0;
}
int gen4_emit_bb_start(struct i915_request *rq,
u64 offset, u32 length,
unsigned int dispatch_flags)
{
u32 security;
u32 *cs;
security = MI_BATCH_NON_SECURE_I965;
if (dispatch_flags & I915_DISPATCH_SECURE)
security = 0;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | security;
*cs++ = offset;
intel_ring_advance(rq, cs);
return 0;
}
void gen2_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
i915->irq_mask &= ~engine->irq_enable_mask;
intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
ENGINE_POSTING_READ16(engine, RING_IMR);
}
void gen2_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
i915->irq_mask |= engine->irq_enable_mask;
intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
}
void gen3_irq_enable(struct intel_engine_cs *engine)
{
engine->i915->irq_mask &= ~engine->irq_enable_mask;
intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
}
void gen3_irq_disable(struct intel_engine_cs *engine)
{
engine->i915->irq_mask |= engine->irq_enable_mask;
intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
}
void gen5_irq_enable(struct intel_engine_cs *engine)
{
gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
}
void gen5_irq_disable(struct intel_engine_cs *engine)
{
gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
}
/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2020 Intel Corporation
*/
#ifndef __GEN2_ENGINE_CS_H__
#define __GEN2_ENGINE_CS_H__
#include <linux/types.h>
struct i915_request;
struct intel_engine_cs;
int gen2_emit_flush(struct i915_request *rq, u32 mode);
int gen4_emit_flush_rcs(struct i915_request *rq, u32 mode);
int gen4_emit_flush_vcs(struct i915_request *rq, u32 mode);
u32 *gen3_emit_breadcrumb(struct i915_request *rq, u32 *cs);
u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs);
int i830_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags);
int gen3_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags);
int gen4_emit_bb_start(struct i915_request *rq,
u64 offset, u32 length,
unsigned int dispatch_flags);
void gen2_irq_enable(struct intel_engine_cs *engine);
void gen2_irq_disable(struct intel_engine_cs *engine);
void gen3_irq_enable(struct intel_engine_cs *engine);
void gen3_irq_disable(struct intel_engine_cs *engine);
void gen5_irq_enable(struct intel_engine_cs *engine);
void gen5_irq_disable(struct intel_engine_cs *engine);
#endif /* __GEN2_ENGINE_CS_H__ */
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include "gen6_engine_cs.h"
#include "intel_engine.h"
#include "intel_gpu_commands.h"
#include "intel_gt.h"
#include "intel_gt_irq.h"
#include "intel_gt_pm_irq.h"
#include "intel_ring.h"
#define HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32))
/*
* Emits a PIPE_CONTROL with a non-zero post-sync operation, for
* implementing two workarounds on gen6. From section 1.4.7.1
* "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
*
* [DevSNB-C+{W/A}] Before any depth stall flush (including those
* produced by non-pipelined state commands), software needs to first
* send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
* 0.
*
* [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
* =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
*
* And the workaround for these two requires this workaround first:
*
* [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
* BEFORE the pipe-control with a post-sync op and no write-cache
* flushes.
*
* And this last workaround is tricky because of the requirements on
* that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
* volume 2 part 1:
*
* "1 of the following must also be set:
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - Notify Enable ([8] of DW1)"
*
* The cache flushes require the workaround flush that triggered this
* one, so we can't use it. Depth stall would trigger the same.
* Post-sync nonzero is what triggered this second workaround, so we
* can't use that one either. Notify enable is IRQs, which aren't
* really our business. That leaves only stall at scoreboard.
*/
static int
gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(5);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0; /* low dword */
*cs++ = 0; /* high dword */
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(5);
*cs++ = PIPE_CONTROL_QW_WRITE;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
int gen6_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs, flags = 0;
int ret;
/* Force SNB workarounds for PIPE_CONTROL flushes */
ret = gen6_emit_post_sync_nonzero_flush(rq);
if (ret)
return ret;
/*
* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact. And when rearranging requests, the order of flushes is
* unknown.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/*
* Ensure that any following seqno writes only happen
* when the render cache is indeed flushed.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = flags;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
u32 *gen6_emit_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = 0;
*cs++ = 0;
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_QW_WRITE;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT) |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
/* Finally we can flush and with it emit the breadcrumb */
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_CS_STALL);
*cs++ = i915_request_active_timeline(rq)->hwsp_offset |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
static int mi_flush_dw(struct i915_request *rq, u32 flags)
{
u32 cmd, *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW;
/*
* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.3 - blitter engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
cmd |= flags;
*cs++ = cmd;
*cs++ = HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = 0;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
{
return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
}
int gen6_emit_flush_xcs(struct i915_request *rq, u32 mode)
{
return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
}
int gen6_emit_flush_vcs(struct i915_request *rq, u32 mode)
{
return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
}
int gen6_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 security;
u32 *cs;
security = MI_BATCH_NON_SECURE_I965;
if (dispatch_flags & I915_DISPATCH_SECURE)
security = 0;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = __gen6_emit_bb_start(cs, offset, security);
intel_ring_advance(rq, cs);
return 0;
}
int
hsw_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 security;
u32 *cs;
security = MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW;
if (dispatch_flags & I915_DISPATCH_SECURE)
security = 0;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = __gen6_emit_bb_start(cs, offset, security);
intel_ring_advance(rq, cs);
return 0;
}
static int gen7_stall_cs(struct i915_request *rq)
{
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = 0;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
int gen7_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs, flags = 0;
/*
* Ensure that any following seqno writes only happen when the render
* cache is indeed flushed.
*
* Workaround: 4th PIPE_CONTROL command (except the ones with only
* read-cache invalidate bits set) must have the CS_STALL bit set. We
* don't try to be clever and just set it unconditionally.
*/
flags |= PIPE_CONTROL_CS_STALL;
/*
* CS_STALL suggests at least a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/*
* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
/*
* Workaround: we must issue a pipe_control with CS-stall bit
* set before a pipe_control command that has the state cache
* invalidate bit set.
*/
gen7_stall_cs(rq);
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = flags;
*cs++ = scratch_addr;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
u32 *gen7_emit_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL);
*cs++ = i915_request_active_timeline(rq)->hwsp_offset;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
u32 *gen6_emit_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#define GEN7_XCS_WA 32
u32 *gen7_emit_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
int i;
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB |
MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = rq->fence.seqno;
for (i = 0; i < GEN7_XCS_WA; i++) {
*cs++ = MI_STORE_DWORD_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR;
*cs++ = rq->fence.seqno;
}
*cs++ = MI_FLUSH_DW;
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#undef GEN7_XCS_WA
void gen6_irq_enable(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR,
~(engine->irq_enable_mask | engine->irq_keep_mask));
/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
ENGINE_POSTING_READ(engine, RING_IMR);
gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
}
void gen6_irq_disable(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
}
void hsw_irq_enable_vecs(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
ENGINE_POSTING_READ(engine, RING_IMR);
gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
}
void hsw_irq_disable_vecs(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~0);
gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
}
/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2020 Intel Corporation
*/
#ifndef __GEN6_ENGINE_CS_H__
#define __GEN6_ENGINE_CS_H__
#include <linux/types.h>
#include "intel_gpu_commands.h"
struct i915_request;
struct intel_engine_cs;
int gen6_emit_flush_rcs(struct i915_request *rq, u32 mode);
int gen6_emit_flush_vcs(struct i915_request *rq, u32 mode);
int gen6_emit_flush_xcs(struct i915_request *rq, u32 mode);
u32 *gen6_emit_breadcrumb_rcs(struct i915_request *rq, u32 *cs);
u32 *gen6_emit_breadcrumb_xcs(struct i915_request *rq, u32 *cs);
int gen7_emit_flush_rcs(struct i915_request *rq, u32 mode);
u32 *gen7_emit_breadcrumb_rcs(struct i915_request *rq, u32 *cs);
u32 *gen7_emit_breadcrumb_xcs(struct i915_request *rq, u32 *cs);
int gen6_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags);
int hsw_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags);
void gen6_irq_enable(struct intel_engine_cs *engine);
void gen6_irq_disable(struct intel_engine_cs *engine);
void hsw_irq_enable_vecs(struct intel_engine_cs *engine);
void hsw_irq_disable_vecs(struct intel_engine_cs *engine);
#endif /* __GEN6_ENGINE_CS_H__ */
...@@ -187,7 +187,6 @@ intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value) ...@@ -187,7 +187,6 @@ intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
#define I915_GEM_HWS_SEQNO 0x40 #define I915_GEM_HWS_SEQNO 0x40
#define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32)) #define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32))
#define I915_GEM_HWS_SCRATCH 0x80 #define I915_GEM_HWS_SCRATCH 0x80
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32))
#define I915_HWS_CSB_BUF0_INDEX 0x10 #define I915_HWS_CSB_BUF0_INDEX 0x10
#define I915_HWS_CSB_WRITE_INDEX 0x1f #define I915_HWS_CSB_WRITE_INDEX 0x1f
......
...@@ -27,21 +27,15 @@ ...@@ -27,21 +27,15 @@
* *
*/ */
#include <linux/log2.h> #include "gen2_engine_cs.h"
#include "gen6_engine_cs.h"
#include "gem/i915_gem_context.h"
#include "gen6_ppgtt.h" #include "gen6_ppgtt.h"
#include "gen7_renderclear.h" #include "gen7_renderclear.h"
#include "i915_drv.h" #include "i915_drv.h"
#include "i915_trace.h"
#include "intel_context.h" #include "intel_context.h"
#include "intel_gt.h" #include "intel_gt.h"
#include "intel_gt_irq.h"
#include "intel_gt_pm_irq.h"
#include "intel_reset.h" #include "intel_reset.h"
#include "intel_ring.h" #include "intel_ring.h"
#include "intel_workarounds.h"
#include "shmem_utils.h" #include "shmem_utils.h"
/* Rough estimate of the typical request size, performing a flush, /* Rough estimate of the typical request size, performing a flush,
...@@ -49,436 +43,6 @@ ...@@ -49,436 +43,6 @@
*/ */
#define LEGACY_REQUEST_SIZE 200 #define LEGACY_REQUEST_SIZE 200
static int
gen2_render_ring_flush(struct i915_request *rq, u32 mode)
{
unsigned int num_store_dw;
u32 cmd, *cs;
cmd = MI_FLUSH;
num_store_dw = 0;
if (mode & EMIT_INVALIDATE)
cmd |= MI_READ_FLUSH;
if (mode & EMIT_FLUSH)
num_store_dw = 4;
cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = cmd;
while (num_store_dw--) {
*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT);
*cs++ = 0;
}
*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
intel_ring_advance(rq, cs);
return 0;
}
static int
gen4_render_ring_flush(struct i915_request *rq, u32 mode)
{
u32 cmd, *cs;
int i;
/*
* read/write caches:
*
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
* also flushed at 2d versus 3d pipeline switches.
*
* read-only caches:
*
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
* MI_READ_FLUSH is set, and is always flushed on 965.
*
* I915_GEM_DOMAIN_COMMAND may not exist?
*
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
* invalidated when MI_EXE_FLUSH is set.
*
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
* invalidated with every MI_FLUSH.
*
* TLBs:
*
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
* are flushed at any MI_FLUSH.
*/
cmd = MI_FLUSH;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_EXE_FLUSH;
if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
cmd |= MI_INVALIDATE_ISP;
}
i = 2;
if (mode & EMIT_INVALIDATE)
i += 20;
cs = intel_ring_begin(rq, i);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = cmd;
/*
* A random delay to let the CS invalidate take effect? Without this
* delay, the GPU relocation path fails as the CS does not see
* the updated contents. Just as important, if we apply the flushes
* to the EMIT_FLUSH branch (i.e. immediately after the relocation
* write and before the invalidate on the next batch), the relocations
* still fail. This implies that is a delay following invalidation
* that is required to reset the caches as opposed to a delay to
* ensure the memory is written.
*/
if (mode & EMIT_INVALIDATE) {
*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT) |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
*cs++ = 0;
for (i = 0; i < 12; i++)
*cs++ = MI_FLUSH;
*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT) |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
*cs++ = 0;
}
*cs++ = cmd;
intel_ring_advance(rq, cs);
return 0;
}
/*
* Emits a PIPE_CONTROL with a non-zero post-sync operation, for
* implementing two workarounds on gen6. From section 1.4.7.1
* "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
*
* [DevSNB-C+{W/A}] Before any depth stall flush (including those
* produced by non-pipelined state commands), software needs to first
* send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
* 0.
*
* [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
* =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
*
* And the workaround for these two requires this workaround first:
*
* [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
* BEFORE the pipe-control with a post-sync op and no write-cache
* flushes.
*
* And this last workaround is tricky because of the requirements on
* that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
* volume 2 part 1:
*
* "1 of the following must also be set:
* - Render Target Cache Flush Enable ([12] of DW1)
* - Depth Cache Flush Enable ([0] of DW1)
* - Stall at Pixel Scoreboard ([1] of DW1)
* - Depth Stall ([13] of DW1)
* - Post-Sync Operation ([13] of DW1)
* - Notify Enable ([8] of DW1)"
*
* The cache flushes require the workaround flush that triggered this
* one, so we can't use it. Depth stall would trigger the same.
* Post-sync nonzero is what triggered this second workaround, so we
* can't use that one either. Notify enable is IRQs, which aren't
* really our business. That leaves only stall at scoreboard.
*/
static int
gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(5);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0; /* low dword */
*cs++ = 0; /* high dword */
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(5);
*cs++ = PIPE_CONTROL_QW_WRITE;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static int
gen6_render_ring_flush(struct i915_request *rq, u32 mode)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs, flags = 0;
int ret;
/* Force SNB workarounds for PIPE_CONTROL flushes */
ret = gen6_emit_post_sync_nonzero_flush(rq);
if (ret)
return ret;
/* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/*
* Ensure that any following seqno writes only happen
* when the render cache is indeed flushed.
*/
flags |= PIPE_CONTROL_CS_STALL;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
/*
* TLB invalidate requires a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = flags;
*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
{
/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = 0;
*cs++ = 0;
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_QW_WRITE;
*cs++ = intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT) |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = 0;
/* Finally we can flush and with it emit the breadcrumb */
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_CS_STALL);
*cs++ = i915_request_active_timeline(rq)->hwsp_offset |
PIPE_CONTROL_GLOBAL_GTT;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
static int
gen7_render_ring_cs_stall_wa(struct i915_request *rq)
{
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
*cs++ = 0;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
static int
gen7_render_ring_flush(struct i915_request *rq, u32 mode)
{
u32 scratch_addr =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
u32 *cs, flags = 0;
/*
* Ensure that any following seqno writes only happen when the render
* cache is indeed flushed.
*
* Workaround: 4th PIPE_CONTROL command (except the ones with only
* read-cache invalidate bits set) must have the CS_STALL bit set. We
* don't try to be clever and just set it unconditionally.
*/
flags |= PIPE_CONTROL_CS_STALL;
/*
* CS_STALL suggests at least a post-sync write.
*/
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/* Just flush everything. Experiments have shown that reducing the
* number of bits based on the write domains has little performance
* impact.
*/
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
/* Workaround: we must issue a pipe_control with CS-stall bit
* set before a pipe_control command that has the state cache
* invalidate bit set. */
gen7_render_ring_cs_stall_wa(rq);
}
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = flags;
*cs++ = scratch_addr;
*cs++ = 0;
intel_ring_advance(rq, cs);
return 0;
}
static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
{
*cs++ = GFX_OP_PIPE_CONTROL(4);
*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_QW_WRITE |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL);
*cs++ = i915_request_active_timeline(rq)->hwsp_offset;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
{
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#define GEN7_XCS_WA 32
static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
{
int i;
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH_DW | MI_INVALIDATE_TLB |
MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = rq->fence.seqno;
for (i = 0; i < GEN7_XCS_WA; i++) {
*cs++ = MI_STORE_DWORD_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR;
*cs++ = rq->fence.seqno;
}
*cs++ = MI_FLUSH_DW;
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#undef GEN7_XCS_WA
static void set_hwstam(struct intel_engine_cs *engine, u32 mask) static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
{ {
/* /*
...@@ -918,255 +482,6 @@ static void i9xx_submit_request(struct i915_request *request) ...@@ -918,255 +482,6 @@ static void i9xx_submit_request(struct i915_request *request)
intel_ring_set_tail(request->ring, request->tail)); intel_ring_set_tail(request->ring, request->tail));
} }
static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
{
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH;
*cs++ = MI_STORE_DWORD_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR;
*cs++ = rq->fence.seqno;
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_NOOP;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#define GEN5_WA_STORES 8 /* must be at least 1! */
static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
{
int i;
GEM_BUG_ON(i915_request_active_timeline(rq)->hwsp_ggtt != rq->engine->status_page.vma);
GEM_BUG_ON(offset_in_page(i915_request_active_timeline(rq)->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
*cs++ = MI_FLUSH;
BUILD_BUG_ON(GEN5_WA_STORES < 1);
for (i = 0; i < GEN5_WA_STORES; i++) {
*cs++ = MI_STORE_DWORD_INDEX;
*cs++ = I915_GEM_HWS_SEQNO_ADDR;
*cs++ = rq->fence.seqno;
}
*cs++ = MI_USER_INTERRUPT;
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return cs;
}
#undef GEN5_WA_STORES
static void
gen5_irq_enable(struct intel_engine_cs *engine)
{
gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
}
static void
gen5_irq_disable(struct intel_engine_cs *engine)
{
gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
}
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
{
engine->i915->irq_mask &= ~engine->irq_enable_mask;
intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
}
static void
i9xx_irq_disable(struct intel_engine_cs *engine)
{
engine->i915->irq_mask |= engine->irq_enable_mask;
intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
}
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
i915->irq_mask &= ~engine->irq_enable_mask;
intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
ENGINE_POSTING_READ16(engine, RING_IMR);
}
static void
i8xx_irq_disable(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
i915->irq_mask |= engine->irq_enable_mask;
intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
}
static int
bsd_ring_flush(struct i915_request *rq, u32 mode)
{
u32 *cs;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_FLUSH;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static void
gen6_irq_enable(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR,
~(engine->irq_enable_mask | engine->irq_keep_mask));
/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
ENGINE_POSTING_READ(engine, RING_IMR);
gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
}
static void
gen6_irq_disable(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
}
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
ENGINE_POSTING_READ(engine, RING_IMR);
gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
}
static void
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~0);
gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
}
static int
i965_emit_bb_start(struct i915_request *rq,
u64 offset, u32 length,
unsigned int dispatch_flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
*cs++ = offset;
intel_ring_advance(rq, cs);
return 0;
}
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT SZ_256K
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
static int
i830_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs, cs_offset =
intel_gt_scratch_offset(rq->engine->gt,
INTEL_GT_SCRATCH_FIELD_DEFAULT);
GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Evict the invalid PTE TLBs */
*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
*cs++ = cs_offset;
*cs++ = 0xdeadbeef;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
if (len > I830_BATCH_LIMIT)
return -ENOSPC;
cs = intel_ring_begin(rq, 6 + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
/* Blit the batch (which has now all relocs applied) to the
* stable batch scratch bo area (so that the CS never
* stumbles over its tlb invalidation bug) ...
*/
*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
*cs++ = cs_offset;
*cs++ = 4096;
*cs++ = offset;
*cs++ = MI_FLUSH;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
/* ... and execute it. */
offset = cs_offset;
}
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
MI_BATCH_NON_SECURE);
intel_ring_advance(rq, cs);
return 0;
}
static int
i915_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
MI_BATCH_NON_SECURE);
intel_ring_advance(rq, cs);
return 0;
}
static void __ring_context_fini(struct intel_context *ce) static void __ring_context_fini(struct intel_context *ce)
{ {
i915_vma_put(ce->state); i915_vma_put(ce->state);
...@@ -1704,99 +1019,6 @@ static void gen6_bsd_submit_request(struct i915_request *request) ...@@ -1704,99 +1019,6 @@ static void gen6_bsd_submit_request(struct i915_request *request)
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
} }
static int mi_flush_dw(struct i915_request *rq, u32 flags)
{
u32 cmd, *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW;
/*
* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
/*
* Bspec vol 1c.3 - blitter engine command streamer:
* "If ENABLED, all TLBs will be invalidated once the flush
* operation is complete. This bit is only valid when the
* Post-Sync Operation field is a value of 1h or 3h."
*/
cmd |= flags;
*cs++ = cmd;
*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
*cs++ = 0;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
{
return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
}
static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
{
return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
}
static int
hsw_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
/* bit0-7 is the length on GEN6+ */
*cs++ = offset;
intel_ring_advance(rq, cs);
return 0;
}
static int
gen6_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
unsigned int dispatch_flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
0 : MI_BATCH_NON_SECURE_I965);
/* bit0-7 is the length on GEN6+ */
*cs++ = offset;
intel_ring_advance(rq, cs);
return 0;
}
/* Blitter support (SandyBridge+) */
static int gen6_ring_flush(struct i915_request *rq, u32 mode)
{
return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
}
static void i9xx_set_default_submission(struct intel_engine_cs *engine) static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{ {
engine->submit_request = i9xx_submit_request; engine->submit_request = i9xx_submit_request;
...@@ -1843,11 +1065,11 @@ static void setup_irq(struct intel_engine_cs *engine) ...@@ -1843,11 +1065,11 @@ static void setup_irq(struct intel_engine_cs *engine)
engine->irq_enable = gen5_irq_enable; engine->irq_enable = gen5_irq_enable;
engine->irq_disable = gen5_irq_disable; engine->irq_disable = gen5_irq_disable;
} else if (INTEL_GEN(i915) >= 3) { } else if (INTEL_GEN(i915) >= 3) {
engine->irq_enable = i9xx_irq_enable; engine->irq_enable = gen3_irq_enable;
engine->irq_disable = i9xx_irq_disable; engine->irq_disable = gen3_irq_disable;
} else { } else {
engine->irq_enable = i8xx_irq_enable; engine->irq_enable = gen2_irq_enable;
engine->irq_disable = i8xx_irq_disable; engine->irq_disable = gen2_irq_disable;
} }
} }
...@@ -1874,7 +1096,7 @@ static void setup_common(struct intel_engine_cs *engine) ...@@ -1874,7 +1096,7 @@ static void setup_common(struct intel_engine_cs *engine)
* equivalent to our next initial bread so we can elide * equivalent to our next initial bread so we can elide
* engine->emit_init_breadcrumb(). * engine->emit_init_breadcrumb().
*/ */
engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb; engine->emit_fini_breadcrumb = gen3_emit_breadcrumb;
if (IS_GEN(i915, 5)) if (IS_GEN(i915, 5))
engine->emit_fini_breadcrumb = gen5_emit_breadcrumb; engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
...@@ -1883,11 +1105,11 @@ static void setup_common(struct intel_engine_cs *engine) ...@@ -1883,11 +1105,11 @@ static void setup_common(struct intel_engine_cs *engine)
if (INTEL_GEN(i915) >= 6) if (INTEL_GEN(i915) >= 6)
engine->emit_bb_start = gen6_emit_bb_start; engine->emit_bb_start = gen6_emit_bb_start;
else if (INTEL_GEN(i915) >= 4) else if (INTEL_GEN(i915) >= 4)
engine->emit_bb_start = i965_emit_bb_start; engine->emit_bb_start = gen4_emit_bb_start;
else if (IS_I830(i915) || IS_I845G(i915)) else if (IS_I830(i915) || IS_I845G(i915))
engine->emit_bb_start = i830_emit_bb_start; engine->emit_bb_start = i830_emit_bb_start;
else else
engine->emit_bb_start = i915_emit_bb_start; engine->emit_bb_start = gen3_emit_bb_start;
} }
static void setup_rcs(struct intel_engine_cs *engine) static void setup_rcs(struct intel_engine_cs *engine)
...@@ -1900,18 +1122,18 @@ static void setup_rcs(struct intel_engine_cs *engine) ...@@ -1900,18 +1122,18 @@ static void setup_rcs(struct intel_engine_cs *engine)
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT; engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
if (INTEL_GEN(i915) >= 7) { if (INTEL_GEN(i915) >= 7) {
engine->emit_flush = gen7_render_ring_flush; engine->emit_flush = gen7_emit_flush_rcs;
engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb; engine->emit_fini_breadcrumb = gen7_emit_breadcrumb_rcs;
} else if (IS_GEN(i915, 6)) { } else if (IS_GEN(i915, 6)) {
engine->emit_flush = gen6_render_ring_flush; engine->emit_flush = gen6_emit_flush_rcs;
engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb; engine->emit_fini_breadcrumb = gen6_emit_breadcrumb_rcs;
} else if (IS_GEN(i915, 5)) { } else if (IS_GEN(i915, 5)) {
engine->emit_flush = gen4_render_ring_flush; engine->emit_flush = gen4_emit_flush_rcs;
} else { } else {
if (INTEL_GEN(i915) < 4) if (INTEL_GEN(i915) < 4)
engine->emit_flush = gen2_render_ring_flush; engine->emit_flush = gen2_emit_flush;
else else
engine->emit_flush = gen4_render_ring_flush; engine->emit_flush = gen4_emit_flush_rcs;
engine->irq_enable_mask = I915_USER_INTERRUPT; engine->irq_enable_mask = I915_USER_INTERRUPT;
} }
...@@ -1929,15 +1151,15 @@ static void setup_vcs(struct intel_engine_cs *engine) ...@@ -1929,15 +1151,15 @@ static void setup_vcs(struct intel_engine_cs *engine)
/* gen6 bsd needs a special wa for tail updates */ /* gen6 bsd needs a special wa for tail updates */
if (IS_GEN(i915, 6)) if (IS_GEN(i915, 6))
engine->set_default_submission = gen6_bsd_set_default_submission; engine->set_default_submission = gen6_bsd_set_default_submission;
engine->emit_flush = gen6_bsd_ring_flush; engine->emit_flush = gen6_emit_flush_vcs;
engine->irq_enable_mask = GT_BSD_USER_INTERRUPT; engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
if (IS_GEN(i915, 6)) if (IS_GEN(i915, 6))
engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb; engine->emit_fini_breadcrumb = gen6_emit_breadcrumb_xcs;
else else
engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; engine->emit_fini_breadcrumb = gen7_emit_breadcrumb_xcs;
} else { } else {
engine->emit_flush = bsd_ring_flush; engine->emit_flush = gen4_emit_flush_vcs;
if (IS_GEN(i915, 5)) if (IS_GEN(i915, 5))
engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT; engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
else else
...@@ -1949,13 +1171,13 @@ static void setup_bcs(struct intel_engine_cs *engine) ...@@ -1949,13 +1171,13 @@ static void setup_bcs(struct intel_engine_cs *engine)
{ {
struct drm_i915_private *i915 = engine->i915; struct drm_i915_private *i915 = engine->i915;
engine->emit_flush = gen6_ring_flush; engine->emit_flush = gen6_emit_flush_xcs;
engine->irq_enable_mask = GT_BLT_USER_INTERRUPT; engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
if (IS_GEN(i915, 6)) if (IS_GEN(i915, 6))
engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb; engine->emit_fini_breadcrumb = gen6_emit_breadcrumb_xcs;
else else
engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; engine->emit_fini_breadcrumb = gen7_emit_breadcrumb_xcs;
} }
static void setup_vecs(struct intel_engine_cs *engine) static void setup_vecs(struct intel_engine_cs *engine)
...@@ -1964,12 +1186,12 @@ static void setup_vecs(struct intel_engine_cs *engine) ...@@ -1964,12 +1186,12 @@ static void setup_vecs(struct intel_engine_cs *engine)
GEM_BUG_ON(INTEL_GEN(i915) < 7); GEM_BUG_ON(INTEL_GEN(i915) < 7);
engine->emit_flush = gen6_ring_flush; engine->emit_flush = gen6_emit_flush_xcs;
engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT; engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
engine->irq_enable = hsw_vebox_irq_enable; engine->irq_enable = hsw_irq_enable_vecs;
engine->irq_disable = hsw_vebox_irq_disable; engine->irq_disable = hsw_irq_disable_vecs;
engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb; engine->emit_fini_breadcrumb = gen7_emit_breadcrumb_xcs;
} }
static int gen7_ctx_switch_bb_setup(struct intel_engine_cs * const engine, static int gen7_ctx_switch_bb_setup(struct intel_engine_cs * const engine,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment