Commit c2b636b3 authored by Tedd Ho-Jeong An's avatar Tedd Ho-Jeong An Committed by Luiz Augusto von Dentz

Bluetooth: btintel_pcie: Add support for PCIe transport

Add initial code to support Intel bluetooth devices based on PCIe
transport. Allocate memory for TX & RX buffers, internal structures,
initialize interrupts for TX & RX and PCIe device.
Signed-off-by: default avatarTedd Ho-Jeong An <tedd.an@intel.com>
Suggested-by: default avatarBjorn Helgaas <helgaas@kernel.org>
Suggested-by: default avatarPaul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: default avatarKiran K <kiran.k@intel.com>
Signed-off-by: default avatarLuiz Augusto von Dentz <luiz.von.dentz@intel.com>
parent 67d4dbac
......@@ -478,5 +478,16 @@ config BT_NXPUART
Say Y here to compile support for NXP Bluetooth UART device into
the kernel, or say M here to compile as a module (btnxpuart).
config BT_INTEL_PCIE
tristate "Intel HCI PCIe driver"
depends on PCI
select BT_INTEL
select FW_LOADER
help
Intel Bluetooth transport driver for PCIe.
This driver is required if you want to use Intel Bluetooth device
with PCIe interface.
Say Y here to compiler support for Intel Bluetooth PCIe device into
the kernel or say M to compile it as module (btintel_pcie)
endmenu
......@@ -17,6 +17,7 @@ obj-$(CONFIG_BT_HCIBTUSB) += btusb.o
obj-$(CONFIG_BT_HCIBTSDIO) += btsdio.o
obj-$(CONFIG_BT_INTEL) += btintel.o
obj-$(CONFIG_BT_INTEL_PCIE) += btintel_pcie.o btintel.o
obj-$(CONFIG_BT_ATH3K) += ath3k.o
obj-$(CONFIG_BT_MRVL) += btmrvl.o
obj-$(CONFIG_BT_MRVL_SDIO) += btmrvl_sdio.o
......
......@@ -209,7 +209,7 @@ struct btintel_data {
#define btintel_wait_on_flag_timeout(hdev, nr, m, to) \
wait_on_bit_timeout(btintel_get_flag(hdev), (nr), m, to)
#if IS_ENABLED(CONFIG_BT_INTEL)
#if IS_ENABLED(CONFIG_BT_INTEL) || IS_ENABLED(CONFIG_BT_INTEL_PCIE)
int btintel_check_bdaddr(struct hci_dev *hdev);
int btintel_enter_mfg(struct hci_dev *hdev);
......
// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Bluetooth support for Intel PCIe devices
*
* Copyright (C) 2024 Intel Corporation
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "btintel.h"
#include "btintel_pcie.h"
#define VERSION "0.1"
#define BTINTEL_PCI_DEVICE(dev, subdev) \
.vendor = PCI_VENDOR_ID_INTEL, \
.device = (dev), \
.subvendor = PCI_ANY_ID, \
.subdevice = (subdev), \
.driver_data = 0
#define POLL_INTERVAL_US 10
/* Intel Bluetooth PCIe device id table */
static const struct pci_device_id btintel_pcie_table[] = {
{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
/* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
#define BTINTEL_PCIE_HCI_TYPE_LEN 4
#define BTINTEL_PCIE_HCI_ACL_PKT 0x00000002
#define BTINTEL_PCIE_HCI_SCO_PKT 0x00000003
#define BTINTEL_PCIE_HCI_EVT_PKT 0x00000004
static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
u16 queue_num)
{
bt_dev_dbg(hdev, "IA: %s: tr-h:%02u tr-t:%02u cr-h:%02u cr-t:%02u",
queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
ia->tr_hia[queue_num], ia->tr_tia[queue_num],
ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
}
static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
u16 index)
{
bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
}
static int btintel_pcie_poll_bit(struct btintel_pcie_data *data, u32 offset,
u32 bits, u32 mask, int timeout_us)
{
int t = 0;
u32 reg;
do {
reg = btintel_pcie_rd_reg32(data, offset);
if ((reg & mask) == (bits & mask))
return t;
udelay(POLL_INTERVAL_US);
t += POLL_INTERVAL_US;
} while (t < timeout_us);
return -ETIMEDOUT;
}
static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
{
u8 queue = entry->entry;
struct msix_entry *entries = entry - queue;
return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
}
/* Set the doorbell for RXQ to notify the device that @index (actually index-1)
* is available to receive the data
*/
static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
{
u32 val;
val = index;
val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
}
/* Update the FRBD (free buffer descriptor) with the @frbd_index and the
* DMA address of the free buffer.
*/
static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
{
struct data_buf *buf;
struct frbd *frbd;
/* Get the buffer of the FRBD for DMA */
buf = &rxq->bufs[frbd_index];
frbd = &rxq->frbds[frbd_index];
memset(frbd, 0, sizeof(*frbd));
/* Update FRBD */
frbd->tag = frbd_index;
frbd->addr = buf->data_p_addr;
}
static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
{
u16 frbd_index;
struct rxq *rxq = &data->rxq;
frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
if (frbd_index > rxq->count)
return -ERANGE;
/* Prepare for RX submit. It updates the FRBD with the address of DMA
* buffer
*/
btintel_pcie_prepare_rx(rxq, frbd_index);
frbd_index = (frbd_index + 1) % rxq->count;
data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
/* Set the doorbell to notify the device */
btintel_pcie_set_rx_db(data, frbd_index);
return 0;
}
static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
{
int i, ret;
for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) {
ret = btintel_pcie_submit_rx(data);
if (ret)
return ret;
}
return 0;
}
static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
{
memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
}
static void btintel_pcie_reset_bt(struct btintel_pcie_data *data)
{
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
}
/* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
* BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
* BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
* Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
* from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
*/
static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
{
int err;
u32 reg;
data->gp0_received = false;
/* Update the DMA address of CI struct to CSR */
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
data->ci_p_addr & 0xffffffff);
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
data->ci_p_addr >> 32);
/* Reset the cached value of boot stage. it is updated by the MSI-X
* gp0 interrupt handler.
*/
data->boot_stage_cache = 0x0;
/* Set MAC_INIT bit to start primary bootloader */
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
/* Wait until MAC_ACCESS is granted */
err = btintel_pcie_poll_bit(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS,
BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS,
BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US);
if (err < 0)
return -ENODEV;
/* MAC is ready. Enable BT FUNC */
btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
/* wait for interrupt from the device after booting up to primary
* bootloader.
*/
err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT));
if (!err)
return -ETIME;
/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
return -ENODEV;
return 0;
}
/* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
* BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
*/
static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
{
u32 reg;
/* This interrupt is for three different causes and it is not easy to
* know what causes the interrupt. So, it compares each register value
* with cached value and update it before it wake up the queue.
*/
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
if (reg != data->boot_stage_cache)
data->boot_stage_cache = reg;
reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
if (reg != data->img_resp_cache)
data->img_resp_cache = reg;
data->gp0_received = true;
/* If the boot stage is OP or IML, reset IA and start RX again */
if (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW ||
data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) {
btintel_pcie_reset_ia(data);
btintel_pcie_start_rx(data);
}
wake_up(&data->gp0_wait_q);
}
/* This function handles the MSX-X interrupt for rx queue 0 which is for TX
*/
static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
{
u16 cr_tia, cr_hia;
struct txq *txq;
struct urbd0 *urbd0;
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
if (cr_tia == cr_hia)
return;
txq = &data->txq;
while (cr_tia != cr_hia) {
data->tx_wait_done = true;
wake_up(&data->tx_wait_q);
urbd0 = &txq->urbd0s[cr_tia];
if (urbd0->tfd_index > txq->count)
return;
cr_tia = (cr_tia + 1) % txq->count;
data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
}
}
/* Process the received rx data
* It check the frame header to identify the data type and create skb
* and calling HCI API
*/
static int btintel_pcie_hci_recv_frame(struct btintel_pcie_data *data,
struct sk_buff *skb)
{
int ret;
u8 pkt_type;
u16 plen;
u32 pcie_pkt_type;
struct sk_buff *new_skb;
void *pdata;
struct hci_dev *hdev = data->hdev;
spin_lock(&data->hci_rx_lock);
/* The first 4 bytes indicates the Intel PCIe specific packet type */
pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
if (!data) {
bt_dev_err(hdev, "Corrupted packet received");
ret = -EILSEQ;
goto exit_error;
}
pcie_pkt_type = get_unaligned_le32(pdata);
switch (pcie_pkt_type) {
case BTINTEL_PCIE_HCI_ACL_PKT:
if (skb->len >= HCI_ACL_HDR_SIZE) {
plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
pkt_type = HCI_ACLDATA_PKT;
} else {
bt_dev_err(hdev, "ACL packet is too short");
ret = -EILSEQ;
goto exit_error;
}
break;
case BTINTEL_PCIE_HCI_SCO_PKT:
if (skb->len >= HCI_SCO_HDR_SIZE) {
plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
pkt_type = HCI_SCODATA_PKT;
} else {
bt_dev_err(hdev, "SCO packet is too short");
ret = -EILSEQ;
goto exit_error;
}
break;
case BTINTEL_PCIE_HCI_EVT_PKT:
if (skb->len >= HCI_EVENT_HDR_SIZE) {
plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
pkt_type = HCI_EVENT_PKT;
} else {
bt_dev_err(hdev, "Event packet is too short");
ret = -EILSEQ;
goto exit_error;
}
break;
default:
bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
pcie_pkt_type);
ret = -EINVAL;
goto exit_error;
}
if (skb->len < plen) {
bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
pkt_type);
ret = -EILSEQ;
goto exit_error;
}
bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
new_skb = bt_skb_alloc(plen, GFP_ATOMIC);
if (!new_skb) {
bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u",
skb->len);
ret = -ENOMEM;
goto exit_error;
}
hci_skb_pkt_type(new_skb) = pkt_type;
skb_put_data(new_skb, skb->data, plen);
hdev->stat.byte_rx += plen;
if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
ret = btintel_recv_event(hdev, new_skb);
else
ret = hci_recv_frame(hdev, new_skb);
exit_error:
if (ret)
hdev->stat.err_rx++;
spin_unlock(&data->hci_rx_lock);
return ret;
}
static void btintel_pcie_rx_work(struct work_struct *work)
{
struct btintel_pcie_data *data = container_of(work,
struct btintel_pcie_data, rx_work);
struct sk_buff *skb;
int err;
struct hci_dev *hdev = data->hdev;
/* Process the sk_buf in queue and send to the HCI layer */
while ((skb = skb_dequeue(&data->rx_skb_q))) {
err = btintel_pcie_hci_recv_frame(data, skb);
if (err)
bt_dev_err(hdev, "Failed to send received frame: %d",
err);
kfree_skb(skb);
}
}
/* create sk_buff with data and save it to queue and start RX work */
static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
void *buf)
{
int ret, len;
struct rfh_hdr *rfh_hdr;
struct sk_buff *skb;
rfh_hdr = buf;
len = rfh_hdr->packet_len;
if (len <= 0) {
ret = -EINVAL;
goto resubmit;
}
/* Remove RFH header */
buf += sizeof(*rfh_hdr);
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb) {
ret = -ENOMEM;
goto resubmit;
}
skb_put_data(skb, buf, len);
skb_queue_tail(&data->rx_skb_q, skb);
queue_work(data->workqueue, &data->rx_work);
resubmit:
ret = btintel_pcie_submit_rx(data);
return ret;
}
/* Handles the MSI-X interrupt for rx queue 1 which is for RX */
static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
{
u16 cr_hia, cr_tia;
struct rxq *rxq;
struct urbd1 *urbd1;
struct frbd *frbd;
struct data_buf *buf;
int ret;
struct hci_dev *hdev = data->hdev;
cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
bt_dev_dbg(hdev, "RXQ: cr_hia: %u cr_tia: %u", cr_hia, cr_tia);
/* Check CR_TIA and CR_HIA for change */
if (cr_tia == cr_hia) {
bt_dev_warn(hdev, "RXQ: no new CD found");
return;
}
rxq = &data->rxq;
/* The firmware sends multiple CD in a single MSI-X and it needs to
* process all received CDs in this interrupt.
*/
while (cr_tia != cr_hia) {
urbd1 = &rxq->urbd1s[cr_tia];
ipc_print_urbd1(data->hdev, urbd1, cr_tia);
frbd = &rxq->frbds[urbd1->frbd_tag];
buf = &rxq->bufs[urbd1->frbd_tag];
if (!buf) {
bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
urbd1->frbd_tag);
return;
}
ret = btintel_pcie_submit_rx_work(data, urbd1->status,
buf->data);
if (ret) {
bt_dev_err(hdev, "RXQ: failed to submit rx request");
return;
}
cr_tia = (cr_tia + 1) % rxq->count;
data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
}
}
static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
{
return IRQ_WAKE_THREAD;
}
static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
{
struct msix_entry *entry = dev_id;
struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
u32 intr_fh, intr_hw;
spin_lock(&data->irq_lock);
intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
/* Clear causes registers to avoid being handling the same cause */
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
spin_unlock(&data->irq_lock);
if (unlikely(!(intr_fh | intr_hw))) {
/* Ignore interrupt, inta == 0 */
return IRQ_NONE;
}
/* This interrupt is triggered by the firmware after updating
* boot_stage register and image_response register
*/
if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
btintel_pcie_msix_gp0_handler(data);
/* For TX */
if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0)
btintel_pcie_msix_tx_handle(data);
/* For RX */
if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1)
btintel_pcie_msix_rx_handle(data);
/*
* Before sending the interrupt the HW disables it to prevent a nested
* interrupt. This is done by writing 1 to the corresponding bit in
* the mask register. After handling the interrupt, it should be
* re-enabled by clearing this bit. This register is defined as write 1
* clear (W1C) register, meaning that it's cleared by writing 1
* to the bit.
*/
btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
BIT(entry->entry));
return IRQ_HANDLED;
}
/* This function requests the irq for MSI-X and registers the handlers per irq.
* Currently, it requests only 1 irq for all interrupt causes.
*/
static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
{
int err;
int num_irqs, i;
for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
data->msix_entries[i].entry = i;
num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
if (num_irqs < 0)
return num_irqs;
data->alloc_vecs = num_irqs;
data->msix_enabled = 1;
data->def_irq = 0;
/* setup irq handler */
for (i = 0; i < data->alloc_vecs; i++) {
struct msix_entry *msix_entry;
msix_entry = &data->msix_entries[i];
msix_entry->vector = pci_irq_vector(data->pdev, i);
err = devm_request_threaded_irq(&data->pdev->dev,
msix_entry->vector,
btintel_pcie_msix_isr,
btintel_pcie_irq_msix_handler,
IRQF_SHARED,
KBUILD_MODNAME,
msix_entry);
if (err) {
pci_free_irq_vectors(data->pdev);
data->alloc_vecs = 0;
return err;
}
}
return 0;
}
struct btintel_pcie_causes_list {
u32 cause;
u32 mask_reg;
u8 cause_num;
};
struct btintel_pcie_causes_list causes_list[] = {
{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x00 },
{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK, 0x01 },
{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK, 0x20 },
};
/* This function configures the interrupt masks for both HW_INT_CAUSES and
* FH_INT_CAUSES which are meaningful to us.
*
* After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
* need to call this function again to configure since the masks
* are reset to 0xFFFFFFFF after reset.
*/
static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
{
int i;
int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
/* Set Non Auto Clear Cause */
for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
btintel_pcie_wr_reg8(data,
BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
val);
btintel_pcie_clr_reg_bits(data,
causes_list[i].mask_reg,
causes_list[i].cause);
}
/* Save the initial interrupt mask */
data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
}
static int btintel_pcie_config_pcie(struct pci_dev *pdev,
struct btintel_pcie_data *data)
{
int err;
err = pcim_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err)
return err;
}
err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
if (err)
return err;
data->base_addr = pcim_iomap_table(pdev)[0];
if (!data->base_addr)
return -ENODEV;
err = btintel_pcie_setup_irq(data);
if (err)
return err;
/* Configure MSI-X with causes list */
btintel_pcie_config_msix(data);
return 0;
}
static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
struct ctx_info *ci)
{
ci->version = 0x1;
ci->size = sizeof(*ci);
ci->config = 0x0000;
ci->addr_cr_hia = data->ia.cr_hia_p_addr;
ci->addr_tr_tia = data->ia.tr_tia_p_addr;
ci->addr_cr_tia = data->ia.cr_tia_p_addr;
ci->addr_tr_hia = data->ia.tr_hia_p_addr;
ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
ci->addr_tfdq = data->txq.tfds_p_addr;
ci->num_tfdq = data->txq.count;
ci->num_urbdq0 = data->txq.count;
ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
ci->addr_frbdq = data->rxq.frbds_p_addr;
ci->num_frbdq = data->rxq.count;
ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
ci->num_urbdq1 = data->rxq.count;
ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
}
static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
struct txq *txq)
{
/* Free data buffers first */
dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
txq->buf_v_addr, txq->buf_p_addr);
kfree(txq->bufs);
}
static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
struct txq *txq)
{
int i;
struct data_buf *buf;
/* Allocate the same number of buffers as the descriptor */
txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
if (!txq->bufs)
return -ENOMEM;
/* Allocate full chunk of data buffer for DMA first and do indexing and
* initialization next, so it can be freed easily
*/
txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
txq->count * BTINTEL_PCIE_BUFFER_SIZE,
&txq->buf_p_addr,
GFP_KERNEL | __GFP_NOWARN);
if (!txq->buf_v_addr) {
kfree(txq->bufs);
return -ENOMEM;
}
memset(txq->buf_v_addr, 0, txq->count * BTINTEL_PCIE_BUFFER_SIZE);
/* Setup the allocated DMA buffer to bufs. Each data_buf should
* have virtual address and physical address
*/
for (i = 0; i < txq->count; i++) {
buf = &txq->bufs[i];
buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
}
return 0;
}
static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
struct rxq *rxq)
{
/* Free data buffers first */
dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
rxq->buf_v_addr, rxq->buf_p_addr);
kfree(rxq->bufs);
}
static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
struct rxq *rxq)
{
int i;
struct data_buf *buf;
/* Allocate the same number of buffers as the descriptor */
rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
if (!rxq->bufs)
return -ENOMEM;
/* Allocate full chunk of data buffer for DMA first and do indexing and
* initialization next, so it can be freed easily
*/
rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
&rxq->buf_p_addr,
GFP_KERNEL | __GFP_NOWARN);
if (!rxq->buf_v_addr) {
kfree(rxq->bufs);
return -ENOMEM;
}
memset(rxq->buf_v_addr, 0, rxq->count * BTINTEL_PCIE_BUFFER_SIZE);
/* Setup the allocated DMA buffer to bufs. Each data_buf should
* have virtual address and physical address
*/
for (i = 0; i < rxq->count; i++) {
buf = &rxq->bufs[i];
buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
}
return 0;
}
static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
dma_addr_t p_addr, void *v_addr,
struct ia *ia)
{
/* TR Head Index Array */
ia->tr_hia_p_addr = p_addr;
ia->tr_hia = v_addr;
/* TR Tail Index Array */
ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
/* CR Head index Array */
ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
/* CR Tail Index Array */
ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
}
static void btintel_pcie_free(struct btintel_pcie_data *data)
{
btintel_pcie_free_rxq_bufs(data, &data->rxq);
btintel_pcie_free_txq_bufs(data, &data->txq);
dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
dma_pool_destroy(data->dma_pool);
}
/* Allocate tx and rx queues, any related data structures and buffers.
*/
static int btintel_pcie_alloc(struct btintel_pcie_data *data)
{
int err = 0;
size_t total;
dma_addr_t p_addr;
void *v_addr;
/* Allocate the chunk of DMA memory for descriptors, index array, and
* context information, instead of allocating individually.
* The DMA memory for data buffer is allocated while setting up the
* each queue.
*
* Total size is sum of the following
* + size of TFD * Number of descriptors in queue
* + size of URBD0 * Number of descriptors in queue
* + size of FRBD * Number of descriptors in queue
* + size of URBD1 * Number of descriptors in queue
* + size of index * Number of queues(2) * type of index array(4)
* + size of context information
*/
total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd)
+ sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT;
/* Add the sum of size of index array and size of ci struct */
total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
/* Allocate DMA Pool */
data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
if (!data->dma_pool) {
err = -ENOMEM;
goto exit_error;
}
v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
&p_addr);
if (!v_addr) {
dma_pool_destroy(data->dma_pool);
err = -ENOMEM;
goto exit_error;
}
data->dma_p_addr = p_addr;
data->dma_v_addr = v_addr;
/* Setup descriptor count */
data->txq.count = BTINTEL_DESCS_COUNT;
data->rxq.count = BTINTEL_DESCS_COUNT;
/* Setup tfds */
data->txq.tfds_p_addr = p_addr;
data->txq.tfds = v_addr;
p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
/* Setup urbd0 */
data->txq.urbd0s_p_addr = p_addr;
data->txq.urbd0s = v_addr;
p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
/* Setup FRBD*/
data->rxq.frbds_p_addr = p_addr;
data->rxq.frbds = v_addr;
p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
/* Setup urbd1 */
data->rxq.urbd1s_p_addr = p_addr;
data->rxq.urbd1s = v_addr;
p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
/* Setup data buffers for txq */
err = btintel_pcie_setup_txq_bufs(data, &data->txq);
if (err)
goto exit_error_pool;
/* Setup data buffers for rxq */
err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
if (err)
goto exit_error_txq;
/* Setup Index Array */
btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
/* Setup Context Information */
p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
data->ci = v_addr;
data->ci_p_addr = p_addr;
/* Initialize the CI */
btintel_pcie_init_ci(data, data->ci);
return 0;
exit_error_txq:
btintel_pcie_free_txq_bufs(data, &data->txq);
exit_error_pool:
dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
dma_pool_destroy(data->dma_pool);
exit_error:
return err;
}
static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
{
/* TODO: Unregister and release hdev */
}
static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
{
/* TODO: initialize hdev and assign the callbacks to hdev */
return -ENODEV;
}
static int btintel_pcie_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int err;
struct btintel_pcie_data *data;
if (!pdev)
return -ENODEV;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->pdev = pdev;
spin_lock_init(&data->irq_lock);
spin_lock_init(&data->hci_rx_lock);
init_waitqueue_head(&data->gp0_wait_q);
data->gp0_received = false;
init_waitqueue_head(&data->tx_wait_q);
data->tx_wait_done = false;
data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
if (!data->workqueue)
return -ENOMEM;
skb_queue_head_init(&data->rx_skb_q);
INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
data->boot_stage_cache = 0x00;
data->img_resp_cache = 0x00;
err = btintel_pcie_config_pcie(pdev, data);
if (err)
goto exit_error;
pci_set_drvdata(pdev, data);
err = btintel_pcie_alloc(data);
if (err)
goto exit_error;
err = btintel_pcie_enable_bt(data);
if (err)
goto exit_error;
/* CNV information (CNVi and CNVr) is in CSR */
data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
err = btintel_pcie_start_rx(data);
if (err)
goto exit_error;
err = btintel_pcie_setup_hdev(data);
if (err)
goto exit_error;
bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
data->cnvr);
return 0;
exit_error:
/* reset device before exit */
btintel_pcie_reset_bt(data);
pci_clear_master(pdev);
pci_set_drvdata(pdev, NULL);
return err;
}
static void btintel_pcie_remove(struct pci_dev *pdev)
{
struct btintel_pcie_data *data;
data = pci_get_drvdata(pdev);
btintel_pcie_reset_bt(data);
pci_free_irq_vectors(pdev);
btintel_pcie_release_hdev(data);
flush_work(&data->rx_work);
destroy_workqueue(data->workqueue);
btintel_pcie_free(data);
pci_clear_master(pdev);
pci_set_drvdata(pdev, NULL);
}
static struct pci_driver btintel_pcie_driver = {
.name = KBUILD_MODNAME,
.id_table = btintel_pcie_table,
.probe = btintel_pcie_probe,
.remove = btintel_pcie_remove,
};
module_pci_driver(btintel_pcie_driver);
MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>");
MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
*
* Bluetooth support for Intel PCIe devices
*
* Copyright (C) 2024 Intel Corporation
*/
/* Control and Status Register(BTINTEL_PCIE_CSR) */
#define BTINTEL_PCIE_CSR_BASE (0x000)
#define BTINTEL_PCIE_CSR_FUNC_CTRL_REG (BTINTEL_PCIE_CSR_BASE + 0x024)
#define BTINTEL_PCIE_CSR_HW_REV_REG (BTINTEL_PCIE_CSR_BASE + 0x028)
#define BTINTEL_PCIE_CSR_RF_ID_REG (BTINTEL_PCIE_CSR_BASE + 0x09C)
#define BTINTEL_PCIE_CSR_BOOT_STAGE_REG (BTINTEL_PCIE_CSR_BASE + 0x108)
#define BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG (BTINTEL_PCIE_CSR_BASE + 0x118)
#define BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG (BTINTEL_PCIE_CSR_BASE + 0x11C)
#define BTINTEL_PCIE_CSR_IMG_RESPONSE_REG (BTINTEL_PCIE_CSR_BASE + 0x12C)
#define BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR (BTINTEL_PCIE_CSR_BASE + 0x460)
/* BTINTEL_PCIE_CSR Function Control Register */
#define BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA (BIT(0))
#define BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT (BIT(6))
#define BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT (BIT(7))
#define BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS (BIT(20))
#define BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET (BIT(31))
/* Value for BTINTEL_PCIE_CSR_BOOT_STAGE register */
#define BTINTEL_PCIE_CSR_BOOT_STAGE_ROM (BIT(0))
#define BTINTEL_PCIE_CSR_BOOT_STAGE_IML (BIT(1))
#define BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW (BIT(2))
#define BTINTEL_PCIE_CSR_BOOT_STAGE_ROM_LOCKDOWN (BIT(10))
#define BTINTEL_PCIE_CSR_BOOT_STAGE_IML_LOCKDOWN (BIT(11))
#define BTINTEL_PCIE_CSR_BOOT_STAGE_MAC_ACCESS_ON (BIT(16))
#define BTINTEL_PCIE_CSR_BOOT_STAGE_ALIVE (BIT(23))
/* Registers for MSI-X */
#define BTINTEL_PCIE_CSR_MSIX_BASE (0x2000)
#define BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES (BTINTEL_PCIE_CSR_MSIX_BASE + 0x0800)
#define BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK (BTINTEL_PCIE_CSR_MSIX_BASE + 0x0804)
#define BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES (BTINTEL_PCIE_CSR_MSIX_BASE + 0x0808)
#define BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK (BTINTEL_PCIE_CSR_MSIX_BASE + 0x080C)
#define BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST (BTINTEL_PCIE_CSR_MSIX_BASE + 0x0810)
#define BTINTEL_PCIE_CSR_MSIX_AUTOMASK_EN (BTINTEL_PCIE_CSR_MSIX_BASE + 0x0814)
#define BTINTEL_PCIE_CSR_MSIX_IVAR_BASE (BTINTEL_PCIE_CSR_MSIX_BASE + 0x0880)
#define BTINTEL_PCIE_CSR_MSIX_IVAR(cause) (BTINTEL_PCIE_CSR_MSIX_IVAR_BASE + (cause))
/* Causes for the FH register interrupts */
enum msix_fh_int_causes {
BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0 = BIT(0), /* cause 0 */
BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1 = BIT(1), /* cause 1 */
};
/* Causes for the HW register interrupts */
enum msix_hw_int_causes {
BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0 = BIT(0), /* cause 32 */
};
#define BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE BIT(7)
/* Minimum and Maximum number of MSI-X Vector
* Intel Bluetooth PCIe support only 1 vector
*/
#define BTINTEL_PCIE_MSIX_VEC_MAX 1
#define BTINTEL_PCIE_MSIX_VEC_MIN 1
/* Default poll time for MAC access during init */
#define BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US 200000
/* Default interrupt timeout in msec */
#define BTINTEL_DEFAULT_INTR_TIMEOUT 3000
/* The number of descriptors in TX/RX queues */
#define BTINTEL_DESCS_COUNT 16
/* Number of Queue for TX and RX
* It indicates the index of the IA(Index Array)
*/
enum {
BTINTEL_PCIE_TXQ_NUM = 0,
BTINTEL_PCIE_RXQ_NUM = 1,
BTINTEL_PCIE_NUM_QUEUES = 2,
};
/* The size of DMA buffer for TX and RX in bytes */
#define BTINTEL_PCIE_BUFFER_SIZE 4096
/* DMA allocation alignment */
#define BTINTEL_PCIE_DMA_POOL_ALIGNMENT 256
/* Number of pending RX requests for downlink */
#define BTINTEL_PCIE_RX_MAX_QUEUE 6
/* Doorbell vector for FRBD */
#define BTINTEL_PCIE_RX_DB_VEC 513
/* RBD buffer size mapping */
#define BTINTEL_PCIE_RBD_SIZE_4K 0x04
/*
* Struct for Context Information (v2)
*
* All members are write-only for host and read-only for device.
*
* @version: Version of context information
* @size: Size of context information
* @config: Config with which host wants peripheral to execute
* Subset of capability register published by device
* @addr_tr_hia: Address of TR Head Index Array
* @addr_tr_tia: Address of TR Tail Index Array
* @addr_cr_hia: Address of CR Head Index Array
* @addr_cr_tia: Address of CR Tail Index Array
* @num_tr_ia: Number of entries in TR Index Arrays
* @num_cr_ia: Number of entries in CR Index Arrays
* @rbd_siz: RBD Size { 0x4=4K }
* @addr_tfdq: Address of TFD Queue(tx)
* @addr_urbdq0: Address of URBD Queue(tx)
* @num_tfdq: Number of TFD in TFD Queue(tx)
* @num_urbdq0: Number of URBD in URBD Queue(tx)
* @tfdq_db_vec: Queue number of TFD
* @urbdq0_db_vec: Queue number of URBD
* @addr_frbdq: Address of FRBD Queue(rx)
* @addr_urbdq1: Address of URBD Queue(rx)
* @num_frbdq: Number of FRBD in FRBD Queue(rx)
* @frbdq_db_vec: Queue number of FRBD
* @num_urbdq1: Number of URBD in URBD Queue(rx)
* @urbdq_db_vec: Queue number of URBDQ1
* @tr_msi_vec: Transfer Ring MSI-X Vector
* @cr_msi_vec: Completion Ring MSI-X Vector
* @dbgc_addr: DBGC first fragment address
* @dbgc_size: DBGC buffer size
* @early_enable: Enarly debug enable
* @dbg_output_mode: Debug output mode
* Bit[4] DBGC O/P { 0=SRAM, 1=DRAM(not relevant for NPK) }
* Bit[5] DBGC I/P { 0=BDBG, 1=DBGI }
* Bits[6:7] DBGI O/P(relevant if bit[5] = 1)
* 0=BT DBGC, 1=WiFi DBGC, 2=NPK }
* @dbg_preset: Debug preset
* @ext_addr: Address of context information extension
* @ext_size: Size of context information part
*
* Total 38 DWords
*/
struct ctx_info {
u16 version;
u16 size;
u32 config;
u32 reserved_dw02;
u32 reserved_dw03;
u64 addr_tr_hia;
u64 addr_tr_tia;
u64 addr_cr_hia;
u64 addr_cr_tia;
u16 num_tr_ia;
u16 num_cr_ia;
u32 rbd_size:4,
reserved_dw13:28;
u64 addr_tfdq;
u64 addr_urbdq0;
u16 num_tfdq;
u16 num_urbdq0;
u16 tfdq_db_vec;
u16 urbdq0_db_vec;
u64 addr_frbdq;
u64 addr_urbdq1;
u16 num_frbdq;
u16 frbdq_db_vec;
u16 num_urbdq1;
u16 urbdq_db_vec;
u16 tr_msi_vec;
u16 cr_msi_vec;
u32 reserved_dw27;
u64 dbgc_addr;
u32 dbgc_size;
u32 early_enable:1,
reserved_dw31:3,
dbg_output_mode:4,
dbg_preset:8,
reserved2_dw31:16;
u64 ext_addr;
u32 ext_size;
u32 test_param;
u32 reserved_dw36;
u32 reserved_dw37;
} __packed;
/* Transfer Descriptor for TX
* @type: Not in use. Set to 0x0
* @size: Size of data in the buffer
* @addr: DMA Address of buffer
*/
struct tfd {
u8 type;
u16 size;
u8 reserved;
u64 addr;
u32 reserved1;
} __packed;
/* URB Descriptor for TX
* @tfd_index: Index of TFD in TFDQ + 1
* @num_txq: Queue index of TFD Queue
* @cmpl_count: Completion count. Always 0x01
* @immediate_cmpl: Immediate completion flag: Always 0x01
*/
struct urbd0 {
u32 tfd_index:16,
num_txq:8,
cmpl_count:4,
reserved:3,
immediate_cmpl:1;
} __packed;
/* FRB Descriptor for RX
* @tag: RX buffer tag (index of RX buffer queue)
* @addr: Address of buffer
*/
struct frbd {
u32 tag:16,
reserved:16;
u32 reserved2;
u64 addr;
} __packed;
/* URB Descriptor for RX
* @frbd_tag: Tag from FRBD
* @status: Status
*/
struct urbd1 {
u32 frbd_tag:16,
status:1,
reserved:14,
fixed:1;
} __packed;
/* RFH header in RX packet
* @packet_len: Length of the data in the buffer
* @rxq: RX Queue number
* @cmd_id: Command ID. Not in Use
*/
struct rfh_hdr {
u64 packet_len:16,
rxq:6,
reserved:10,
cmd_id:16,
reserved1:16;
} __packed;
/* Internal data buffer
* @data: pointer to the data buffer
* @p_addr: physical address of data buffer
*/
struct data_buf {
u8 *data;
dma_addr_t data_p_addr;
};
/* Index Array */
struct ia {
dma_addr_t tr_hia_p_addr;
u16 *tr_hia;
dma_addr_t tr_tia_p_addr;
u16 *tr_tia;
dma_addr_t cr_hia_p_addr;
u16 *cr_hia;
dma_addr_t cr_tia_p_addr;
u16 *cr_tia;
};
/* Structure for TX Queue
* @count: Number of descriptors
* @tfds: Array of TFD
* @urbd0s: Array of URBD0
* @buf: Array of data_buf structure
*/
struct txq {
u16 count;
dma_addr_t tfds_p_addr;
struct tfd *tfds;
dma_addr_t urbd0s_p_addr;
struct urbd0 *urbd0s;
dma_addr_t buf_p_addr;
void *buf_v_addr;
struct data_buf *bufs;
};
/* Structure for RX Queue
* @count: Number of descriptors
* @frbds: Array of FRBD
* @urbd1s: Array of URBD1
* @buf: Array of data_buf structure
*/
struct rxq {
u16 count;
dma_addr_t frbds_p_addr;
struct frbd *frbds;
dma_addr_t urbd1s_p_addr;
struct urbd1 *urbd1s;
dma_addr_t buf_p_addr;
void *buf_v_addr;
struct data_buf *bufs;
};
/* struct btintel_pcie_data
* @pdev: pci device
* @hdev: hdev device
* @flags: driver state
* @irq_lock: spinlock for MSI-X
* @hci_rx_lock: spinlock for HCI RX flow
* @base_addr: pci base address (from BAR)
* @msix_entries: array of MSI-X entries
* @msix_enabled: true if MSI-X is enabled;
* @alloc_vecs: number of interrupt vectors allocated
* @def_irq: default irq for all causes
* @fh_init_mask: initial unmasked rxq causes
* @hw_init_mask: initial unmaksed hw causes
* @boot_stage_cache: cached value of boot stage register
* @img_resp_cache: cached value of image response register
* @cnvi: CNVi register value
* @cnvr: CNVr register value
* @gp0_received: condition for gp0 interrupt
* @gp0_wait_q: wait_q for gp0 interrupt
* @tx_wait_done: condition for tx interrupt
* @tx_wait_q: wait_q for tx interrupt
* @workqueue: workqueue for RX work
* @rx_skb_q: SKB queue for RX packet
* @rx_work: RX work struct to process the RX packet in @rx_skb_q
* @dma_pool: DMA pool for descriptors, index array and ci
* @dma_p_addr: DMA address for pool
* @dma_v_addr: address of pool
* @ci_p_addr: DMA address for CI struct
* @ci: CI struct
* @ia: Index Array struct
* @txq: TX Queue struct
* @rxq: RX Queue struct
*/
struct btintel_pcie_data {
struct pci_dev *pdev;
struct hci_dev *hdev;
unsigned long flags;
/* lock used in MSI-X interrupt */
spinlock_t irq_lock;
/* lock to serialize rx events */
spinlock_t hci_rx_lock;
void __iomem *base_addr;
struct msix_entry msix_entries[BTINTEL_PCIE_MSIX_VEC_MAX];
bool msix_enabled;
u32 alloc_vecs;
u32 def_irq;
u32 fh_init_mask;
u32 hw_init_mask;
u32 boot_stage_cache;
u32 img_resp_cache;
u32 cnvi;
u32 cnvr;
bool gp0_received;
wait_queue_head_t gp0_wait_q;
bool tx_wait_done;
wait_queue_head_t tx_wait_q;
struct workqueue_struct *workqueue;
struct sk_buff_head rx_skb_q;
struct work_struct rx_work;
struct dma_pool *dma_pool;
dma_addr_t dma_p_addr;
void *dma_v_addr;
dma_addr_t ci_p_addr;
struct ctx_info *ci;
struct ia ia;
struct txq txq;
struct rxq rxq;
};
static inline u32 btintel_pcie_rd_reg32(struct btintel_pcie_data *data,
u32 offset)
{
return ioread32(data->base_addr + offset);
}
static inline void btintel_pcie_wr_reg8(struct btintel_pcie_data *data,
u32 offset, u8 val)
{
iowrite8(val, data->base_addr + offset);
}
static inline void btintel_pcie_wr_reg32(struct btintel_pcie_data *data,
u32 offset, u32 val)
{
iowrite32(val, data->base_addr + offset);
}
static inline void btintel_pcie_set_reg_bits(struct btintel_pcie_data *data,
u32 offset, u32 bits)
{
u32 r;
r = ioread32(data->base_addr + offset);
r |= bits;
iowrite32(r, data->base_addr + offset);
}
static inline void btintel_pcie_clr_reg_bits(struct btintel_pcie_data *data,
u32 offset, u32 bits)
{
u32 r;
r = ioread32(data->base_addr + offset);
r &= ~bits;
iowrite32(r, data->base_addr + offset);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment