Commit c2d548ca authored by Joshua Hay's avatar Joshua Hay Committed by Tony Nguyen

idpf: add TX splitq napi poll support

Add support to handle the interrupts for the TX completion queue and
process the various completion types.

In the flow scheduling mode, the driver processes primarily buffer
completions as well as descriptor completions occasionally. This mode
supports out of order TX completions. To do so, HW generates one buffer
completion per packet. Each of those completions contains the unique tag
provided during the TX encoding which is used to locate the packet either
on the TX buffer ring or in a hash table. The hash table is used to track
TX buffer information so the descriptor(s) for a given packet can be
reused while the driver is still waiting on the buffer completion(s).

Packets end up in the hash table in one of 2 ways: 1) a packet was
stashed during descriptor completion cleaning, or 2) because an out of
order buffer completion was processed. A descriptor completion arrives
only every so often and is primarily used to guarantee the TX descriptor
ring can be reused without having to wait on the individual buffer
completions. E.g. a descriptor completion for N+16 guarantees HW read all
of the descriptors for packets N through N+15, therefore all of the
buffers for packets N through N+15 are stashed into the hash table and the
descriptors can be reused for more TX packets. Similarly, a packet can be
stashed in the hash table because an out an order buffer completion was
processed. E.g. processing a buffer completion for packet N+3 implies that
HW read all of the descriptors for packets N through N+3 and they can be
reused. However, the HW did not do the DMA yet. The buffers for packets N
through N+2 cannot be freed, so they are stashed in the hash table.
In either case, the buffer completions will eventually be processed for
all of the stashed packets, and all of the buffers will be cleaned from
the hash table.

In queue based scheduling mode, the driver processes primarily descriptor
completions and cleans the TX ring the conventional way.

Finally, the driver triggers a TX queue drain after sending the disable
queues virtchnl message. When the HW completes the queue draining, it
sends the driver a queue marker packet completion. The driver determines
when all TX queues have been drained and proceeds with the disable flow.

With this, the driver can send TX packets and clean up the resources
properly.
Signed-off-by: default avatarJoshua Hay <joshua.a.hay@intel.com>
Co-developed-by: default avatarAlan Brady <alan.brady@intel.com>
Signed-off-by: default avatarAlan Brady <alan.brady@intel.com>
Co-developed-by: default avatarMadhu Chittim <madhu.chittim@intel.com>
Signed-off-by: default avatarMadhu Chittim <madhu.chittim@intel.com>
Co-developed-by: default avatarPhani Burra <phani.r.burra@intel.com>
Signed-off-by: default avatarPhani Burra <phani.r.burra@intel.com>
Reviewed-by: default avatarSridhar Samudrala <sridhar.samudrala@intel.com>
Reviewed-by: default avatarWillem de Bruijn <willemb@google.com>
Co-developed-by: default avatarPavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: default avatarPavan Kumar Linga <pavan.kumar.linga@intel.com>
Signed-off-by: default avatarTony Nguyen <anthony.l.nguyen@intel.com>
parent 6818c4d5
......@@ -14,6 +14,7 @@ struct idpf_vport_max_q;
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include <linux/bitfield.h>
#include <linux/dim.h>
#include "virtchnl2.h"
#include "idpf_lan_txrx.h"
......@@ -41,6 +42,8 @@ struct idpf_vport_max_q;
/* available message levels */
#define IDPF_AVAIL_NETIF_M (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
#define IDPF_DIM_PROFILE_SLOTS 5
#define IDPF_VIRTCHNL_VERSION_MAJOR VIRTCHNL2_VERSION_MAJOR_2
#define IDPF_VIRTCHNL_VERSION_MINOR VIRTCHNL2_VERSION_MINOR_0
......@@ -254,12 +257,24 @@ enum idpf_vport_vc_state {
extern const char * const idpf_vport_vc_state_str[];
/**
* enum idpf_vport_flags - Vport flags
* @IDPF_VPORT_SW_MARKER: Indicate TX pipe drain software marker packets
* processing is done
* @IDPF_VPORT_FLAGS_NBITS: Must be last
*/
enum idpf_vport_flags {
IDPF_VPORT_SW_MARKER,
IDPF_VPORT_FLAGS_NBITS,
};
/**
* struct idpf_vport - Handle for netdevices and queue resources
* @num_txq: Number of allocated TX queues
* @num_complq: Number of allocated completion queues
* @txq_desc_count: TX queue descriptor count
* @complq_desc_count: Completion queue descriptor count
* @compln_clean_budget: Work budget for completion clean
* @num_txq_grp: Number of TX queue groups
* @txq_grps: Array of TX queue groups
* @txq_model: Split queue or single queue queuing model
......@@ -280,6 +295,7 @@ extern const char * const idpf_vport_vc_state_str[];
* @adapter: back pointer to associated adapter
* @netdev: Associated net_device. Each vport should have one and only one
* associated netdev.
* @flags: See enum idpf_vport_flags
* @vport_type: Default SRIOV, SIOV, etc.
* @vport_id: Device given vport identifier
* @idx: Software index in adapter vports struct
......@@ -290,10 +306,12 @@ extern const char * const idpf_vport_vc_state_str[];
* @q_vector_idxs: Starting index of queue vectors
* @max_mtu: device given max possible MTU
* @default_mac_addr: device will give a default MAC to use
* @tx_itr_profile: TX profiles for Dynamic Interrupt Moderation
* @link_up: True if link is up
* @vc_msg: Virtchnl message buffer
* @vc_state: Virtchnl message state
* @vchnl_wq: Wait queue for virtchnl messages
* @sw_marker_wq: workqueue for marker packets
* @vc_buf_lock: Lock to protect virtchnl buffer
*/
struct idpf_vport {
......@@ -301,6 +319,7 @@ struct idpf_vport {
u16 num_complq;
u32 txq_desc_count;
u32 complq_desc_count;
u32 compln_clean_budget;
u16 num_txq_grp;
struct idpf_txq_group *txq_grps;
u32 txq_model;
......@@ -319,6 +338,7 @@ struct idpf_vport {
struct idpf_adapter *adapter;
struct net_device *netdev;
DECLARE_BITMAP(flags, IDPF_VPORT_FLAGS_NBITS);
u16 vport_type;
u32 vport_id;
u16 idx;
......@@ -330,6 +350,7 @@ struct idpf_vport {
u16 *q_vector_idxs;
u16 max_mtu;
u8 default_mac_addr[ETH_ALEN];
u16 tx_itr_profile[IDPF_DIM_PROFILE_SLOTS];
bool link_up;
......@@ -337,6 +358,7 @@ struct idpf_vport {
DECLARE_BITMAP(vc_state, IDPF_VC_NBITS);
wait_queue_head_t vchnl_wq;
wait_queue_head_t sw_marker_wq;
struct mutex vc_buf_lock;
};
......
......@@ -56,6 +56,14 @@ enum idpf_rss_hash {
BIT_ULL(IDPF_HASH_NONF_UNICAST_IPV6_UDP) | \
BIT_ULL(IDPF_HASH_NONF_MULTICAST_IPV6_UDP))
/* For idpf_splitq_base_tx_compl_desc */
#define IDPF_TXD_COMPLQ_GEN_S 15
#define IDPF_TXD_COMPLQ_GEN_M BIT_ULL(IDPF_TXD_COMPLQ_GEN_S)
#define IDPF_TXD_COMPLQ_COMPL_TYPE_S 11
#define IDPF_TXD_COMPLQ_COMPL_TYPE_M GENMASK_ULL(13, 11)
#define IDPF_TXD_COMPLQ_QID_S 0
#define IDPF_TXD_COMPLQ_QID_M GENMASK_ULL(9, 0)
#define IDPF_TXD_CTX_QW1_MSS_S 50
#define IDPF_TXD_CTX_QW1_MSS_M GENMASK_ULL(63, 50)
#define IDPF_TXD_CTX_QW1_TSO_LEN_S 30
......@@ -75,6 +83,14 @@ enum idpf_rss_hash {
#define IDPF_TXD_QW1_DTYPE_S 0
#define IDPF_TXD_QW1_DTYPE_M GENMASK_ULL(3, 0)
/* TX Completion Descriptor Completion Types */
#define IDPF_TXD_COMPLT_ITR_FLUSH 0
/* Descriptor completion type 1 is reserved */
#define IDPF_TXD_COMPLT_RS 2
/* Descriptor completion type 3 is reserved */
#define IDPF_TXD_COMPLT_RE 4
#define IDPF_TXD_COMPLT_SW_MARKER 5
enum idpf_tx_desc_dtype_value {
IDPF_TX_DESC_DTYPE_DATA = 0,
IDPF_TX_DESC_DTYPE_CTX = 1,
......
......@@ -929,6 +929,7 @@ static struct idpf_vport *idpf_vport_alloc(struct idpf_adapter *adapter,
vport->idx = idx;
vport->adapter = adapter;
vport->compln_clean_budget = IDPF_TX_COMPLQ_CLEAN_BUDGET;
vport->default_vport = adapter->num_alloc_vports <
idpf_get_default_vports(adapter);
......@@ -1241,6 +1242,7 @@ void idpf_init_task(struct work_struct *work)
index = vport->idx;
vport_config = adapter->vport_config[index];
init_waitqueue_head(&vport->sw_marker_wq);
init_waitqueue_head(&vport->vchnl_wq);
mutex_init(&vport->vc_buf_lock);
......
......@@ -3,6 +3,36 @@
#include "idpf.h"
/**
* idpf_buf_lifo_push - push a buffer pointer onto stack
* @stack: pointer to stack struct
* @buf: pointer to buf to push
*
* Returns 0 on success, negative on failure
**/
static int idpf_buf_lifo_push(struct idpf_buf_lifo *stack,
struct idpf_tx_stash *buf)
{
if (unlikely(stack->top == stack->size))
return -ENOSPC;
stack->bufs[stack->top++] = buf;
return 0;
}
/**
* idpf_buf_lifo_pop - pop a buffer pointer from stack
* @stack: pointer to stack struct
**/
static struct idpf_tx_stash *idpf_buf_lifo_pop(struct idpf_buf_lifo *stack)
{
if (unlikely(!stack->top))
return NULL;
return stack->bufs[--stack->top];
}
/**
* idpf_tx_buf_rel - Release a Tx buffer
* @tx_q: the queue that owns the buffer
......@@ -1364,6 +1394,498 @@ int idpf_vport_queues_alloc(struct idpf_vport *vport)
return err;
}
/**
* idpf_tx_handle_sw_marker - Handle queue marker packet
* @tx_q: tx queue to handle software marker
*/
static void idpf_tx_handle_sw_marker(struct idpf_queue *tx_q)
{
struct idpf_vport *vport = tx_q->vport;
int i;
clear_bit(__IDPF_Q_SW_MARKER, tx_q->flags);
/* Hardware must write marker packets to all queues associated with
* completion queues. So check if all queues received marker packets
*/
for (i = 0; i < vport->num_txq; i++)
/* If we're still waiting on any other TXQ marker completions,
* just return now since we cannot wake up the marker_wq yet.
*/
if (test_bit(__IDPF_Q_SW_MARKER, vport->txqs[i]->flags))
return;
/* Drain complete */
set_bit(IDPF_VPORT_SW_MARKER, vport->flags);
wake_up(&vport->sw_marker_wq);
}
/**
* idpf_tx_splitq_clean_hdr - Clean TX buffer resources for header portion of
* packet
* @tx_q: tx queue to clean buffer from
* @tx_buf: buffer to be cleaned
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @napi_budget: Used to determine if we are in netpoll
*/
static void idpf_tx_splitq_clean_hdr(struct idpf_queue *tx_q,
struct idpf_tx_buf *tx_buf,
struct idpf_cleaned_stats *cleaned,
int napi_budget)
{
napi_consume_skb(tx_buf->skb, napi_budget);
if (dma_unmap_len(tx_buf, len)) {
dma_unmap_single(tx_q->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
/* clear tx_buf data */
tx_buf->skb = NULL;
cleaned->bytes += tx_buf->bytecount;
cleaned->packets += tx_buf->gso_segs;
}
/**
* idpf_tx_clean_stashed_bufs - clean bufs that were stored for
* out of order completions
* @txq: queue to clean
* @compl_tag: completion tag of packet to clean (from completion descriptor)
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @budget: Used to determine if we are in netpoll
*/
static void idpf_tx_clean_stashed_bufs(struct idpf_queue *txq, u16 compl_tag,
struct idpf_cleaned_stats *cleaned,
int budget)
{
struct idpf_tx_stash *stash;
struct hlist_node *tmp_buf;
/* Buffer completion */
hash_for_each_possible_safe(txq->sched_buf_hash, stash, tmp_buf,
hlist, compl_tag) {
if (unlikely(stash->buf.compl_tag != (int)compl_tag))
continue;
if (stash->buf.skb) {
idpf_tx_splitq_clean_hdr(txq, &stash->buf, cleaned,
budget);
} else if (dma_unmap_len(&stash->buf, len)) {
dma_unmap_page(txq->dev,
dma_unmap_addr(&stash->buf, dma),
dma_unmap_len(&stash->buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(&stash->buf, len, 0);
}
/* Push shadow buf back onto stack */
idpf_buf_lifo_push(&txq->buf_stack, stash);
hash_del(&stash->hlist);
}
}
/**
* idpf_stash_flow_sch_buffers - store buffer parameters info to be freed at a
* later time (only relevant for flow scheduling mode)
* @txq: Tx queue to clean
* @tx_buf: buffer to store
*/
static int idpf_stash_flow_sch_buffers(struct idpf_queue *txq,
struct idpf_tx_buf *tx_buf)
{
struct idpf_tx_stash *stash;
if (unlikely(!dma_unmap_addr(tx_buf, dma) &&
!dma_unmap_len(tx_buf, len)))
return 0;
stash = idpf_buf_lifo_pop(&txq->buf_stack);
if (unlikely(!stash)) {
net_err_ratelimited("%s: No out-of-order TX buffers left!\n",
txq->vport->netdev->name);
return -ENOMEM;
}
/* Store buffer params in shadow buffer */
stash->buf.skb = tx_buf->skb;
stash->buf.bytecount = tx_buf->bytecount;
stash->buf.gso_segs = tx_buf->gso_segs;
dma_unmap_addr_set(&stash->buf, dma, dma_unmap_addr(tx_buf, dma));
dma_unmap_len_set(&stash->buf, len, dma_unmap_len(tx_buf, len));
stash->buf.compl_tag = tx_buf->compl_tag;
/* Add buffer to buf_hash table to be freed later */
hash_add(txq->sched_buf_hash, &stash->hlist, stash->buf.compl_tag);
memset(tx_buf, 0, sizeof(struct idpf_tx_buf));
/* Reinitialize buf_id portion of tag */
tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG;
return 0;
}
#define idpf_tx_splitq_clean_bump_ntc(txq, ntc, desc, buf) \
do { \
(ntc)++; \
if (unlikely(!(ntc))) { \
ntc -= (txq)->desc_count; \
buf = (txq)->tx_buf; \
desc = IDPF_FLEX_TX_DESC(txq, 0); \
} else { \
(buf)++; \
(desc)++; \
} \
} while (0)
/**
* idpf_tx_splitq_clean - Reclaim resources from buffer queue
* @tx_q: Tx queue to clean
* @end: queue index until which it should be cleaned
* @napi_budget: Used to determine if we are in netpoll
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @descs_only: true if queue is using flow-based scheduling and should
* not clean buffers at this time
*
* Cleans the queue descriptor ring. If the queue is using queue-based
* scheduling, the buffers will be cleaned as well. If the queue is using
* flow-based scheduling, only the descriptors are cleaned at this time.
* Separate packet completion events will be reported on the completion queue,
* and the buffers will be cleaned separately. The stats are not updated from
* this function when using flow-based scheduling.
*/
static void idpf_tx_splitq_clean(struct idpf_queue *tx_q, u16 end,
int napi_budget,
struct idpf_cleaned_stats *cleaned,
bool descs_only)
{
union idpf_tx_flex_desc *next_pending_desc = NULL;
union idpf_tx_flex_desc *tx_desc;
s16 ntc = tx_q->next_to_clean;
struct idpf_tx_buf *tx_buf;
tx_desc = IDPF_FLEX_TX_DESC(tx_q, ntc);
next_pending_desc = IDPF_FLEX_TX_DESC(tx_q, end);
tx_buf = &tx_q->tx_buf[ntc];
ntc -= tx_q->desc_count;
while (tx_desc != next_pending_desc) {
union idpf_tx_flex_desc *eop_desc;
/* If this entry in the ring was used as a context descriptor,
* it's corresponding entry in the buffer ring will have an
* invalid completion tag since no buffer was used. We can
* skip this descriptor since there is no buffer to clean.
*/
if (unlikely(tx_buf->compl_tag == IDPF_SPLITQ_TX_INVAL_COMPL_TAG))
goto fetch_next_txq_desc;
eop_desc = (union idpf_tx_flex_desc *)tx_buf->next_to_watch;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
if (descs_only) {
if (idpf_stash_flow_sch_buffers(tx_q, tx_buf))
goto tx_splitq_clean_out;
while (tx_desc != eop_desc) {
idpf_tx_splitq_clean_bump_ntc(tx_q, ntc,
tx_desc, tx_buf);
if (dma_unmap_len(tx_buf, len)) {
if (idpf_stash_flow_sch_buffers(tx_q,
tx_buf))
goto tx_splitq_clean_out;
}
}
} else {
idpf_tx_splitq_clean_hdr(tx_q, tx_buf, cleaned,
napi_budget);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
idpf_tx_splitq_clean_bump_ntc(tx_q, ntc,
tx_desc, tx_buf);
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(tx_q->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
}
}
fetch_next_txq_desc:
idpf_tx_splitq_clean_bump_ntc(tx_q, ntc, tx_desc, tx_buf);
}
tx_splitq_clean_out:
ntc += tx_q->desc_count;
tx_q->next_to_clean = ntc;
}
#define idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, buf) \
do { \
(buf)++; \
(ntc)++; \
if (unlikely((ntc) == (txq)->desc_count)) { \
buf = (txq)->tx_buf; \
ntc = 0; \
} \
} while (0)
/**
* idpf_tx_clean_buf_ring - clean flow scheduling TX queue buffers
* @txq: queue to clean
* @compl_tag: completion tag of packet to clean (from completion descriptor)
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @budget: Used to determine if we are in netpoll
*
* Cleans all buffers associated with the input completion tag either from the
* TX buffer ring or from the hash table if the buffers were previously
* stashed. Returns the byte/segment count for the cleaned packet associated
* this completion tag.
*/
static bool idpf_tx_clean_buf_ring(struct idpf_queue *txq, u16 compl_tag,
struct idpf_cleaned_stats *cleaned,
int budget)
{
u16 idx = compl_tag & txq->compl_tag_bufid_m;
struct idpf_tx_buf *tx_buf = NULL;
u16 ntc = txq->next_to_clean;
u16 num_descs_cleaned = 0;
u16 orig_idx = idx;
tx_buf = &txq->tx_buf[idx];
while (tx_buf->compl_tag == (int)compl_tag) {
if (tx_buf->skb) {
idpf_tx_splitq_clean_hdr(txq, tx_buf, cleaned, budget);
} else if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(txq->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
memset(tx_buf, 0, sizeof(struct idpf_tx_buf));
tx_buf->compl_tag = IDPF_SPLITQ_TX_INVAL_COMPL_TAG;
num_descs_cleaned++;
idpf_tx_clean_buf_ring_bump_ntc(txq, idx, tx_buf);
}
/* If we didn't clean anything on the ring for this completion, there's
* nothing more to do.
*/
if (unlikely(!num_descs_cleaned))
return false;
/* Otherwise, if we did clean a packet on the ring directly, it's safe
* to assume that the descriptors starting from the original
* next_to_clean up until the previously cleaned packet can be reused.
* Therefore, we will go back in the ring and stash any buffers still
* in the ring into the hash table to be cleaned later.
*/
tx_buf = &txq->tx_buf[ntc];
while (tx_buf != &txq->tx_buf[orig_idx]) {
idpf_stash_flow_sch_buffers(txq, tx_buf);
idpf_tx_clean_buf_ring_bump_ntc(txq, ntc, tx_buf);
}
/* Finally, update next_to_clean to reflect the work that was just done
* on the ring, if any. If the packet was only cleaned from the hash
* table, the ring will not be impacted, therefore we should not touch
* next_to_clean. The updated idx is used here
*/
txq->next_to_clean = idx;
return true;
}
/**
* idpf_tx_handle_rs_completion - clean a single packet and all of its buffers
* whether on the buffer ring or in the hash table
* @txq: Tx ring to clean
* @desc: pointer to completion queue descriptor to extract completion
* information from
* @cleaned: pointer to stats struct to track cleaned packets/bytes
* @budget: Used to determine if we are in netpoll
*
* Returns bytes/packets cleaned
*/
static void idpf_tx_handle_rs_completion(struct idpf_queue *txq,
struct idpf_splitq_tx_compl_desc *desc,
struct idpf_cleaned_stats *cleaned,
int budget)
{
u16 compl_tag;
if (!test_bit(__IDPF_Q_FLOW_SCH_EN, txq->flags)) {
u16 head = le16_to_cpu(desc->q_head_compl_tag.q_head);
return idpf_tx_splitq_clean(txq, head, budget, cleaned, false);
}
compl_tag = le16_to_cpu(desc->q_head_compl_tag.compl_tag);
/* If we didn't clean anything on the ring, this packet must be
* in the hash table. Go clean it there.
*/
if (!idpf_tx_clean_buf_ring(txq, compl_tag, cleaned, budget))
idpf_tx_clean_stashed_bufs(txq, compl_tag, cleaned, budget);
}
/**
* idpf_tx_clean_complq - Reclaim resources on completion queue
* @complq: Tx ring to clean
* @budget: Used to determine if we are in netpoll
* @cleaned: returns number of packets cleaned
*
* Returns true if there's any budget left (e.g. the clean is finished)
*/
static bool idpf_tx_clean_complq(struct idpf_queue *complq, int budget,
int *cleaned)
{
struct idpf_splitq_tx_compl_desc *tx_desc;
struct idpf_vport *vport = complq->vport;
s16 ntc = complq->next_to_clean;
struct idpf_netdev_priv *np;
unsigned int complq_budget;
bool complq_ok = true;
int i;
complq_budget = vport->compln_clean_budget;
tx_desc = IDPF_SPLITQ_TX_COMPLQ_DESC(complq, ntc);
ntc -= complq->desc_count;
do {
struct idpf_cleaned_stats cleaned_stats = { };
struct idpf_queue *tx_q;
int rel_tx_qid;
u16 hw_head;
u8 ctype; /* completion type */
u16 gen;
/* if the descriptor isn't done, no work yet to do */
gen = (le16_to_cpu(tx_desc->qid_comptype_gen) &
IDPF_TXD_COMPLQ_GEN_M) >> IDPF_TXD_COMPLQ_GEN_S;
if (test_bit(__IDPF_Q_GEN_CHK, complq->flags) != gen)
break;
/* Find necessary info of TX queue to clean buffers */
rel_tx_qid = (le16_to_cpu(tx_desc->qid_comptype_gen) &
IDPF_TXD_COMPLQ_QID_M) >> IDPF_TXD_COMPLQ_QID_S;
if (rel_tx_qid >= complq->txq_grp->num_txq ||
!complq->txq_grp->txqs[rel_tx_qid]) {
dev_err(&complq->vport->adapter->pdev->dev,
"TxQ not found\n");
goto fetch_next_desc;
}
tx_q = complq->txq_grp->txqs[rel_tx_qid];
/* Determine completion type */
ctype = (le16_to_cpu(tx_desc->qid_comptype_gen) &
IDPF_TXD_COMPLQ_COMPL_TYPE_M) >>
IDPF_TXD_COMPLQ_COMPL_TYPE_S;
switch (ctype) {
case IDPF_TXD_COMPLT_RE:
hw_head = le16_to_cpu(tx_desc->q_head_compl_tag.q_head);
idpf_tx_splitq_clean(tx_q, hw_head, budget,
&cleaned_stats, true);
break;
case IDPF_TXD_COMPLT_RS:
idpf_tx_handle_rs_completion(tx_q, tx_desc,
&cleaned_stats, budget);
break;
case IDPF_TXD_COMPLT_SW_MARKER:
idpf_tx_handle_sw_marker(tx_q);
break;
default:
dev_err(&tx_q->vport->adapter->pdev->dev,
"Unknown TX completion type: %d\n",
ctype);
goto fetch_next_desc;
}
u64_stats_update_begin(&tx_q->stats_sync);
u64_stats_add(&tx_q->q_stats.tx.packets, cleaned_stats.packets);
u64_stats_add(&tx_q->q_stats.tx.bytes, cleaned_stats.bytes);
tx_q->cleaned_pkts += cleaned_stats.packets;
tx_q->cleaned_bytes += cleaned_stats.bytes;
complq->num_completions++;
u64_stats_update_end(&tx_q->stats_sync);
fetch_next_desc:
tx_desc++;
ntc++;
if (unlikely(!ntc)) {
ntc -= complq->desc_count;
tx_desc = IDPF_SPLITQ_TX_COMPLQ_DESC(complq, 0);
change_bit(__IDPF_Q_GEN_CHK, complq->flags);
}
prefetch(tx_desc);
/* update budget accounting */
complq_budget--;
} while (likely(complq_budget));
/* Store the state of the complq to be used later in deciding if a
* TXQ can be started again
*/
if (unlikely(IDPF_TX_COMPLQ_PENDING(complq->txq_grp) >
IDPF_TX_COMPLQ_OVERFLOW_THRESH(complq)))
complq_ok = false;
np = netdev_priv(complq->vport->netdev);
for (i = 0; i < complq->txq_grp->num_txq; ++i) {
struct idpf_queue *tx_q = complq->txq_grp->txqs[i];
struct netdev_queue *nq;
bool dont_wake;
/* We didn't clean anything on this queue, move along */
if (!tx_q->cleaned_bytes)
continue;
*cleaned += tx_q->cleaned_pkts;
/* Update BQL */
nq = netdev_get_tx_queue(tx_q->vport->netdev, tx_q->idx);
dont_wake = !complq_ok || IDPF_TX_BUF_RSV_LOW(tx_q) ||
np->state != __IDPF_VPORT_UP ||
!netif_carrier_ok(tx_q->vport->netdev);
/* Check if the TXQ needs to and can be restarted */
__netif_txq_completed_wake(nq, tx_q->cleaned_pkts, tx_q->cleaned_bytes,
IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH,
dont_wake);
/* Reset cleaned stats for the next time this queue is
* cleaned
*/
tx_q->cleaned_bytes = 0;
tx_q->cleaned_pkts = 0;
}
ntc += complq->desc_count;
complq->next_to_clean = ntc;
return !!complq_budget;
}
/**
* idpf_tx_splitq_build_ctb - populate command tag and size for queue
* based scheduling descriptors
......@@ -2140,7 +2662,11 @@ netdev_tx_t idpf_tx_splitq_start(struct sk_buff *skb,
static irqreturn_t idpf_vport_intr_clean_queues(int __always_unused irq,
void *data)
{
/* stub */
struct idpf_q_vector *q_vector = (struct idpf_q_vector *)data;
q_vector->total_events++;
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
......@@ -2240,6 +2766,121 @@ static void idpf_vport_intr_rel_irq(struct idpf_vport *vport)
}
}
/**
* idpf_vport_intr_dis_irq_all - Disable all interrupt
* @vport: main vport structure
*/
static void idpf_vport_intr_dis_irq_all(struct idpf_vport *vport)
{
struct idpf_q_vector *q_vector = vport->q_vectors;
int q_idx;
for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++)
writel(0, q_vector[q_idx].intr_reg.dyn_ctl);
}
/**
* idpf_vport_intr_buildreg_itr - Enable default interrupt generation settings
* @q_vector: pointer to q_vector
* @type: itr index
* @itr: itr value
*/
static u32 idpf_vport_intr_buildreg_itr(struct idpf_q_vector *q_vector,
const int type, u16 itr)
{
u32 itr_val;
itr &= IDPF_ITR_MASK;
/* Don't clear PBA because that can cause lost interrupts that
* came in while we were cleaning/polling
*/
itr_val = q_vector->intr_reg.dyn_ctl_intena_m |
(type << q_vector->intr_reg.dyn_ctl_itridx_s) |
(itr << (q_vector->intr_reg.dyn_ctl_intrvl_s - 1));
return itr_val;
}
/**
* idpf_update_dim_sample - Update dim sample with packets and bytes
* @q_vector: the vector associated with the interrupt
* @dim_sample: dim sample to update
* @dim: dim instance structure
* @packets: total packets
* @bytes: total bytes
*
* Update the dim sample with the packets and bytes which are passed to this
* function. Set the dim state appropriately if the dim settings gets stale.
*/
static void idpf_update_dim_sample(struct idpf_q_vector *q_vector,
struct dim_sample *dim_sample,
struct dim *dim, u64 packets, u64 bytes)
{
dim_update_sample(q_vector->total_events, packets, bytes, dim_sample);
dim_sample->comp_ctr = 0;
/* if dim settings get stale, like when not updated for 1 second or
* longer, force it to start again. This addresses the frequent case
* of an idle queue being switched to by the scheduler.
*/
if (ktime_ms_delta(dim_sample->time, dim->start_sample.time) >= HZ)
dim->state = DIM_START_MEASURE;
}
/**
* idpf_net_dim - Update net DIM algorithm
* @q_vector: the vector associated with the interrupt
*
* Create a DIM sample and notify net_dim() so that it can possibly decide
* a new ITR value based on incoming packets, bytes, and interrupts.
*
* This function is a no-op if the queue is not configured to dynamic ITR.
*/
static void idpf_net_dim(struct idpf_q_vector *q_vector)
{
struct dim_sample dim_sample = { };
u64 packets, bytes;
u32 i;
if (!IDPF_ITR_IS_DYNAMIC(q_vector->tx_intr_mode))
return;
for (i = 0, packets = 0, bytes = 0; i < q_vector->num_txq; i++) {
struct idpf_queue *txq = q_vector->tx[i];
unsigned int start;
do {
start = u64_stats_fetch_begin(&txq->stats_sync);
packets += u64_stats_read(&txq->q_stats.tx.packets);
bytes += u64_stats_read(&txq->q_stats.tx.bytes);
} while (u64_stats_fetch_retry(&txq->stats_sync, start));
}
idpf_update_dim_sample(q_vector, &dim_sample, &q_vector->tx_dim,
packets, bytes);
net_dim(&q_vector->tx_dim, dim_sample);
}
/**
* idpf_vport_intr_update_itr_ena_irq - Update itr and re-enable MSIX interrupt
* @q_vector: q_vector for which itr is being updated and interrupt enabled
*
* Update the net_dim() algorithm and re-enable the interrupt associated with
* this vector.
*/
static void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector)
{
u32 intval;
/* net_dim() updates ITR out-of-band using a work item */
idpf_net_dim(q_vector);
intval = idpf_vport_intr_buildreg_itr(q_vector,
IDPF_NO_ITR_UPDATE_IDX, 0);
writel(intval, q_vector->intr_reg.dyn_ctl);
}
/**
* idpf_vport_intr_req_irq - get MSI-X vectors from the OS for the vport
* @vport: main vport structure
......@@ -2292,6 +2933,54 @@ static int idpf_vport_intr_req_irq(struct idpf_vport *vport, char *basename)
return err;
}
/**
* idpf_vport_intr_write_itr - Write ITR value to the ITR register
* @q_vector: q_vector structure
* @itr: Interrupt throttling rate
* @tx: Tx or Rx ITR
*/
static void idpf_vport_intr_write_itr(struct idpf_q_vector *q_vector,
u16 itr, bool tx)
{
struct idpf_intr_reg *intr_reg;
if (tx && !q_vector->tx)
return;
else if (!tx && !q_vector->rx)
return;
intr_reg = &q_vector->intr_reg;
writel(ITR_REG_ALIGN(itr) >> IDPF_ITR_GRAN_S,
tx ? intr_reg->tx_itr : intr_reg->rx_itr);
}
/**
* idpf_vport_intr_ena_irq_all - Enable IRQ for the given vport
* @vport: main vport structure
*/
static void idpf_vport_intr_ena_irq_all(struct idpf_vport *vport)
{
bool dynamic;
int q_idx;
u16 itr;
for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) {
struct idpf_q_vector *qv = &vport->q_vectors[q_idx];
/* Set the initial ITR values */
if (qv->num_txq) {
dynamic = IDPF_ITR_IS_DYNAMIC(qv->tx_intr_mode);
itr = vport->tx_itr_profile[qv->tx_dim.profile_ix];
idpf_vport_intr_write_itr(qv, dynamic ?
itr : qv->tx_itr_value,
true);
}
if (qv->num_txq)
idpf_vport_intr_update_itr_ena_irq(qv);
}
}
/**
* idpf_vport_intr_deinit - Release all vector associations for the vport
* @vport: main vport structure
......@@ -2300,9 +2989,47 @@ void idpf_vport_intr_deinit(struct idpf_vport *vport)
{
idpf_vport_intr_napi_dis_all(vport);
idpf_vport_intr_napi_del_all(vport);
idpf_vport_intr_dis_irq_all(vport);
idpf_vport_intr_rel_irq(vport);
}
/**
* idpf_tx_dim_work - Call back from the stack
* @work: work queue structure
*/
static void idpf_tx_dim_work(struct work_struct *work)
{
struct idpf_q_vector *q_vector;
struct idpf_vport *vport;
struct dim *dim;
u16 itr;
dim = container_of(work, struct dim, work);
q_vector = container_of(dim, struct idpf_q_vector, tx_dim);
vport = q_vector->vport;
if (dim->profile_ix >= ARRAY_SIZE(vport->tx_itr_profile))
dim->profile_ix = ARRAY_SIZE(vport->tx_itr_profile) - 1;
/* look up the values in our local table */
itr = vport->tx_itr_profile[dim->profile_ix];
idpf_vport_intr_write_itr(q_vector, itr, true);
dim->state = DIM_START_MEASURE;
}
/**
* idpf_init_dim - Set up dynamic interrupt moderation
* @qv: q_vector structure
*/
static void idpf_init_dim(struct idpf_q_vector *qv)
{
INIT_WORK(&qv->tx_dim.work, idpf_tx_dim_work);
qv->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
qv->tx_dim.profile_ix = IDPF_DIM_DEFAULT_PROFILE_IX;
}
/**
* idpf_vport_intr_napi_ena_all - Enable NAPI for all q_vectors in the vport
* @vport: main vport structure
......@@ -2314,10 +3041,37 @@ static void idpf_vport_intr_napi_ena_all(struct idpf_vport *vport)
for (q_idx = 0; q_idx < vport->num_q_vectors; q_idx++) {
struct idpf_q_vector *q_vector = &vport->q_vectors[q_idx];
idpf_init_dim(q_vector);
napi_enable(&q_vector->napi);
}
}
/**
* idpf_tx_splitq_clean_all- Clean completion queues
* @q_vec: queue vector
* @budget: Used to determine if we are in netpoll
* @cleaned: returns number of packets cleaned
*
* Returns false if clean is not complete else returns true
*/
static bool idpf_tx_splitq_clean_all(struct idpf_q_vector *q_vec,
int budget, int *cleaned)
{
u16 num_txq = q_vec->num_txq;
bool clean_complete = true;
int i, budget_per_q;
if (unlikely(!num_txq))
return true;
budget_per_q = DIV_ROUND_UP(budget, num_txq);
for (i = 0; i < num_txq; i++)
clean_complete &= idpf_tx_clean_complq(q_vec->tx[i],
budget_per_q, cleaned);
return clean_complete;
}
/**
* idpf_vport_splitq_napi_poll - NAPI handler
* @napi: struct from which you get q_vector
......@@ -2325,8 +3079,41 @@ static void idpf_vport_intr_napi_ena_all(struct idpf_vport *vport)
*/
static int idpf_vport_splitq_napi_poll(struct napi_struct *napi, int budget)
{
/* stub */
return 0;
struct idpf_q_vector *q_vector =
container_of(napi, struct idpf_q_vector, napi);
bool clean_complete;
int work_done = 0;
/* Handle case where we are called by netpoll with a budget of 0 */
if (unlikely(!budget)) {
idpf_tx_splitq_clean_all(q_vector, budget, &work_done);
return 0;
}
clean_complete = idpf_tx_splitq_clean_all(q_vector, budget, &work_done);
/* If work not completed, return budget and polling will return */
if (!clean_complete)
return budget;
work_done = min_t(int, work_done, budget - 1);
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done)))
idpf_vport_intr_update_itr_ena_irq(q_vector);
/* Switch to poll mode in the tear-down path after sending disable
* queues virtchnl message, as the interrupts will be disabled after
* that
*/
if (unlikely(q_vector->num_txq && test_bit(__IDPF_Q_POLL_MODE,
q_vector->tx[0]->flags)))
return budget;
else
return work_done;
}
/**
......@@ -2578,6 +3365,8 @@ int idpf_vport_intr_init(struct idpf_vport *vport)
if (err)
goto unroll_vectors_alloc;
idpf_vport_intr_ena_irq_all(vport);
return 0;
unroll_vectors_alloc:
......
......@@ -15,6 +15,9 @@
#define IDPF_MIN_TXQ_COMPLQ_DESC 256
#define IDPF_MAX_QIDS 256
#define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
#define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
#define MIN_SUPPORT_TXDID (\
VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
VIRTCHNL2_TXDID_FLEX_TSO_CTX)
......@@ -79,6 +82,9 @@
#define IDPF_SPLITQ_RX_BUF_DESC(rxq, i) \
(&(((struct virtchnl2_splitq_rx_buf_desc *)((rxq)->desc_ring))[i]))
#define IDPF_SPLITQ_TX_COMPLQ_DESC(txcq, i) \
(&(((struct idpf_splitq_tx_compl_desc *)((txcq)->desc_ring))[i]))
#define IDPF_FLEX_TX_DESC(txq, i) \
(&(((union idpf_tx_flex_desc *)((txq)->desc_ring))[i]))
#define IDPF_FLEX_TX_CTX_DESC(txq, i) \
......@@ -155,7 +161,8 @@ struct idpf_tx_buf {
};
struct idpf_tx_stash {
/* stub */
struct hlist_node hlist;
struct idpf_tx_buf buf;
};
/**
......@@ -209,6 +216,7 @@ struct idpf_tx_splitq_params {
struct idpf_tx_offload_params offload;
};
#define IDPF_TX_COMPLQ_CLEAN_BUDGET 256
#define IDPF_TX_MIN_PKT_LEN 17
#define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1
#define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \
......@@ -362,12 +370,16 @@ struct idpf_rx_ptype_decoded {
* @__IDPF_RFLQ_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW bit
* and RFLGQ_GEN is the SW bit.
* @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
* @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
* @__IDPF_Q_POLL_MODE: Enable poll mode
* @__IDPF_Q_FLAGS_NBITS: Must be last
*/
enum idpf_queue_flags_t {
__IDPF_Q_GEN_CHK,
__IDPF_RFLQ_GEN_CHK,
__IDPF_Q_FLOW_SCH_EN,
__IDPF_Q_SW_MARKER,
__IDPF_Q_POLL_MODE,
__IDPF_Q_FLAGS_NBITS,
};
......@@ -418,6 +430,7 @@ struct idpf_intr_reg {
* @intr_reg: See struct idpf_intr_reg
* @num_txq: Number of TX queues
* @tx: Array of TX queues to service
* @tx_dim: Data for TX net_dim algorithm
* @tx_itr_value: TX interrupt throttling rate
* @tx_intr_mode: Dynamic ITR or not
* @tx_itr_idx: TX ITR index
......@@ -428,6 +441,7 @@ struct idpf_intr_reg {
* @rx_itr_idx: RX ITR index
* @num_bufq: Number of buffer queues
* @bufq: Array of buffer queues to service
* @total_events: Number of interrupts processed
* @name: Queue vector name
*/
struct idpf_q_vector {
......@@ -439,6 +453,7 @@ struct idpf_q_vector {
u16 num_txq;
struct idpf_queue **tx;
struct dim tx_dim;
u16 tx_itr_value;
bool tx_intr_mode;
u32 tx_itr_idx;
......@@ -452,6 +467,7 @@ struct idpf_q_vector {
u16 num_bufq;
struct idpf_queue **bufq;
u16 total_events;
char *name;
};
......@@ -460,6 +476,8 @@ struct idpf_rx_queue_stats {
};
struct idpf_tx_queue_stats {
u64_stats_t packets;
u64_stats_t bytes;
u64_stats_t lso_pkts;
u64_stats_t linearize;
u64_stats_t q_busy;
......@@ -467,6 +485,11 @@ struct idpf_tx_queue_stats {
u64_stats_t dma_map_errs;
};
struct idpf_cleaned_stats {
u32 packets;
u32 bytes;
};
union idpf_queue_stats {
struct idpf_rx_queue_stats rx;
struct idpf_tx_queue_stats tx;
......@@ -474,9 +497,16 @@ union idpf_queue_stats {
#define IDPF_ITR_DYNAMIC 1
#define IDPF_ITR_20K 0x0032
#define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */
#define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */
#define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK)
#define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
#define IDPF_ITR_TX_DEF IDPF_ITR_20K
#define IDPF_ITR_RX_DEF IDPF_ITR_20K
/* Index used for 'No ITR' update in DYN_CTL register */
#define IDPF_NO_ITR_UPDATE_IDX 3
#define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt)
#define IDPF_DIM_DEFAULT_PROFILE_IX 1
/**
* struct idpf_queue
......@@ -512,6 +542,15 @@ union idpf_queue_stats {
* @flags: See enum idpf_queue_flags_t
* @q_stats: See union idpf_queue_stats
* @stats_sync: See struct u64_stats_sync
* @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
* the TX completion queue, it can be for any TXQ associated
* with that completion queue. This means we can clean up to
* N TXQs during a single call to clean the completion queue.
* cleaned_bytes|pkts tracks the clean stats per TXQ during
* that single call to clean the completion queue. By doing so,
* we can update BQL with aggregate cleaned stats for each TXQ
* only once at the end of the cleaning routine.
* @cleaned_pkts: Number of packets cleaned for the above said case
* @rx_hsplit_en: RX headsplit enable
* @rx_hbuf_size: Header buffer size
* @rx_buf_size: Buffer size
......@@ -587,6 +626,9 @@ struct idpf_queue {
union idpf_queue_stats q_stats;
struct u64_stats_sync stats_sync;
u32 cleaned_bytes;
u16 cleaned_pkts;
bool rx_hsplit_en;
u16 rx_hbuf_size;
u16 rx_buf_size;
......
......@@ -645,6 +645,36 @@ static int idpf_wait_for_event(struct idpf_adapter *adapter,
IDPF_WAIT_FOR_EVENT_TIMEO);
}
/**
* idpf_wait_for_marker_event - wait for software marker response
* @vport: virtual port data structure
*
* Returns 0 success, negative on failure.
**/
static int idpf_wait_for_marker_event(struct idpf_vport *vport)
{
int event;
int i;
for (i = 0; i < vport->num_txq; i++)
set_bit(__IDPF_Q_SW_MARKER, vport->txqs[i]->flags);
event = wait_event_timeout(vport->sw_marker_wq,
test_and_clear_bit(IDPF_VPORT_SW_MARKER,
vport->flags),
msecs_to_jiffies(500));
for (i = 0; i < vport->num_txq; i++)
clear_bit(__IDPF_Q_POLL_MODE, vport->txqs[i]->flags);
if (event)
return 0;
dev_warn(&vport->adapter->pdev->dev, "Failed to receive marker packets\n");
return -ETIMEDOUT;
}
/**
* idpf_send_ver_msg - send virtchnl version message
* @adapter: Driver specific private structure
......@@ -1936,7 +1966,23 @@ int idpf_send_enable_queues_msg(struct idpf_vport *vport)
*/
int idpf_send_disable_queues_msg(struct idpf_vport *vport)
{
return idpf_send_ena_dis_queues_msg(vport, VIRTCHNL2_OP_DISABLE_QUEUES);
int err, i;
err = idpf_send_ena_dis_queues_msg(vport, VIRTCHNL2_OP_DISABLE_QUEUES);
if (err)
return err;
/* switch to poll mode as interrupts will be disabled after disable
* queues virtchnl message is sent
*/
for (i = 0; i < vport->num_txq; i++)
set_bit(__IDPF_Q_POLL_MODE, vport->txqs[i]->flags);
/* schedule the napi to receive all the marker packets */
for (i = 0; i < vport->num_q_vectors; i++)
napi_schedule(&vport->q_vectors[i].napi);
return idpf_wait_for_marker_event(vport);
}
/**
......@@ -2813,6 +2859,7 @@ void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
struct idpf_adapter *adapter = vport->adapter;
struct virtchnl2_create_vport *vport_msg;
struct idpf_vport_config *vport_config;
u16 tx_itr[] = {2, 8, 64, 128, 256};
struct idpf_rss_data *rss_data;
u16 idx = vport->idx;
......@@ -2837,6 +2884,9 @@ void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - IDPF_PACKET_HDR_PAD;
/* Initialize Tx profiles for Dynamic Interrupt Moderation */
memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
idpf_vport_init_num_qs(vport, vport_msg);
idpf_vport_calc_num_q_desc(vport);
idpf_vport_calc_num_q_groups(vport);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment