Commit cb8b9b70 authored by David S. Miller's avatar David S. Miller

[SPARC64]: Make kprobe implementation more robust.

Switch over to use the single-step scheme which x86 uses
which is to execute the kprobe instruction in the
kprobe->insn[] area.  Also, make sure the kprobe execution
runs fully with interrupts disabled, so we do not deadlock.

This required adding code to fix things up as a result of
the instruction executing at a PC which is different from
where it would normally execute.  For example, if the
instruction is a PC-relative branch, we have to adjust the
final PC value.
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent bef836fb
......@@ -10,84 +10,69 @@
#include <asm/kdebug.h>
#include <asm/signal.h>
/* We do not have hardware single-stepping, so in order
* to implement post handlers correctly we use two breakpoint
* instructions.
/* We do not have hardware single-stepping on sparc64.
* So we implement software single-stepping with breakpoint
* traps. The top-level scheme is similar to that used
* in the x86 kprobes implementation.
*
* 1) ta 0x70 --> 0x91d02070
* 2) ta 0x71 --> 0x91d02071
* In the kprobe->insn[] array we store the original
* instruction at index zero and a break instruction at
* index one.
*
* When these are hit, control is transferred to kprobe_trap()
* below. The arg 'level' tells us which of the two traps occurred.
* When we hit a kprobe we:
* - Run the pre-handler
* - Remember "regs->tnpc" and interrupt level stored in
* "regs->tstate" so we can restore them later
* - Disable PIL interrupts
* - Set regs->tpc to point to kprobe->insn[0]
* - Set regs->tnpc to point to kprobe->insn[1]
* - Mark that we are actively in a kprobe
*
* Initially, the instruction at p->addr gets set to "ta 0x70"
* by code in register_kprobe() by setting that memory address
* to BREAKPOINT_INSTRUCTION. When this breakpoint is hit
* the following happens:
*
* 1) We run the pre-handler
* 2) We replace p->addr with the original opcode
* 3) We set the instruction at "regs->npc" to "ta 0x71"
* 4) We mark that we are waiting for the second breakpoint
* to hit and return from the trap.
*
* At this point we wait for the second breakpoint to hit.
* When it does:
*
* 1) We run the post-handler
* 2) We re-install "ta 0x70" at p->addr
* 3) We restore the opcode at the "ta 0x71" breakpoint
* 4) We reset our "waiting for "ta 0x71" state
* 5) We return from the trap
*
* We could use the trick used by the i386 kprobe code but I
* think that scheme has problems with exception tables. On i386
* they single-step over the original instruction stored at
* kprobe->insn. So they set the processor to single step, and
* set the program counter to kprobe->insn.
*
* But that explodes if the original opcode is a user space
* access instruction and that faults. It will go wrong because
* since the location of the instruction being executed is
* different from that recorded in the exception tables, the
* kernel will not find it and this will cause an erroneous
* kernel OOPS.
* At this point we wait for the second breakpoint at
* kprobe->insn[1] to hit. When it does we:
* - Run the post-handler
* - Set regs->tpc to "remembered" regs->tnpc stored above,
* restore the PIL interrupt level in "regs->tstate" as well
* - Make any adjustments necessary to regs->tnpc in order
* to handle relative branches correctly. See below.
* - Mark that we are no longer actively in a kprobe.
*/
void arch_prepare_kprobe(struct kprobe *p)
{
p->insn[0] = *p->addr;
p->insn[1] = 0xdeadbeef;
p->insn[1] = BREAKPOINT_INSTRUCTION_2;
}
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
u32 *insn2 = (u32 *) regs->tpc;
p->insn[1] = *insn2;
/* kprobe_status settings */
#define KPROBE_HIT_ACTIVE 0x00000001
#define KPROBE_HIT_SS 0x00000002
*insn2 = BREAKPOINT_INSTRUCTION_2;
flushi(insn2);
}
static struct kprobe *current_kprobe;
static unsigned long current_kprobe_orig_tnpc;
static unsigned long current_kprobe_orig_tstate_pil;
static unsigned int kprobe_status;
static void undo_singlestep(struct kprobe *p, struct pt_regs *regs)
static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
u32 *insn2 = (u32 *) regs->tpc;
BUG_ON(p->insn[1] == 0xdeadbeef);
*insn2 = p->insn[1];
flushi(insn2);
current_kprobe_orig_tnpc = regs->tnpc;
current_kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
regs->tstate |= TSTATE_PIL;
p->insn[1] = 0xdeadbeef;
regs->tpc = (unsigned long) &p->insn[0];
regs->tnpc = (unsigned long) &p->insn[1];
}
/* kprobe_status settings */
#define KPROBE_HIT_ACTIVE 0x00000001
#define KPROBE_HIT_SS 0x00000002
static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
{
*p->addr = p->opcode;
flushi(p->addr);
static struct kprobe *current_kprobe;
static unsigned int kprobe_status;
regs->tpc = (unsigned long) p->addr;
regs->tnpc = current_kprobe_orig_tnpc;
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
current_kprobe_orig_tstate_pil);
}
static int kprobe_handler(struct pt_regs *regs)
{
......@@ -98,16 +83,19 @@ static int kprobe_handler(struct pt_regs *regs)
preempt_disable();
if (kprobe_running()) {
/* We *are* holding lock here, so this is safe.
* Disarm the probe we just hit, and ignore it.
*/
p = get_kprobe(addr);
if (p) {
*p->addr = p->opcode;
flushi(p->addr);
disarm_kprobe(p, regs);
ret = 1;
} else {
p = current_kprobe;
if (p->break_handler && p->break_handler(p, regs))
goto ss_probe;
}
/* If it's not ours, can't be delete race, (we hold lock). */
goto no_kprobe;
}
......@@ -115,8 +103,17 @@ static int kprobe_handler(struct pt_regs *regs)
p = get_kprobe(addr);
if (!p) {
unlock_kprobes();
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION)
if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
......@@ -135,17 +132,102 @@ static int kprobe_handler(struct pt_regs *regs)
return ret;
}
static int post_kprobe_handler(struct pt_regs *regs)
/* If INSN is a relative control transfer instruction,
* return the corrected branch destination value.
*
* The original INSN location was REAL_PC, it actually
* executed at PC and produced destination address NPC.
*/
static unsigned long relbranch_fixup(u32 insn, unsigned long real_pc,
unsigned long pc, unsigned long npc)
{
/* Branch not taken, no mods necessary. */
if (npc == pc + 0x4UL)
return real_pc + 0x4UL;
/* The three cases are call, branch w/prediction,
* and traditional branch.
*/
if ((insn & 0xc0000000) == 0x40000000 ||
(insn & 0xc1c00000) == 0x00400000 ||
(insn & 0xc1c00000) == 0x00800000) {
/* The instruction did all the work for us
* already, just apply the offset to the correct
* instruction location.
*/
return (real_pc + (npc - pc));
}
return real_pc + 0x4UL;
}
/* If INSN is an instruction which writes it's PC location
* into a destination register, fix that up.
*/
static void retpc_fixup(struct pt_regs *regs, u32 insn, unsigned long real_pc)
{
unsigned long *slot = NULL;
/* Simplest cast is call, which always uses %o7 */
if ((insn & 0xc0000000) == 0x40000000) {
slot = &regs->u_regs[UREG_I7];
}
/* Jmpl encodes the register inside of the opcode */
if ((insn & 0xc1f80000) == 0x81c00000) {
unsigned long rd = ((insn >> 25) & 0x1f);
if (rd <= 15) {
slot = &regs->u_regs[rd];
} else {
/* Hard case, it goes onto the stack. */
flushw_all();
rd -= 16;
slot = (unsigned long *)
(regs->u_regs[UREG_FP] + STACK_BIAS);
slot += rd;
}
}
if (slot != NULL)
*slot = real_pc;
}
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the breakpoint
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->insn.
*
* This function prepares to return from the post-single-step
* breakpoint trap.
*/
static void resume_execution(struct kprobe *p, struct pt_regs *regs)
{
u32 *insn_p = (u32 *) regs->tpc;
u32 insn = p->insn[0];
regs->tpc = current_kprobe_orig_tnpc;
regs->tnpc = relbranch_fixup(insn,
(unsigned long) p->addr,
(unsigned long) &p->insn[0],
regs->tnpc);
retpc_fixup(regs, insn, (unsigned long) p->addr);
regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
current_kprobe_orig_tstate_pil);
}
if (!kprobe_running() || (*insn_p != BREAKPOINT_INSTRUCTION_2))
static inline int post_kprobe_handler(struct pt_regs *regs)
{
if (!kprobe_running())
return 0;
if (current_kprobe->post_handler)
current_kprobe->post_handler(current_kprobe, regs, 0);
undo_singlestep(current_kprobe, regs);
resume_execution(current_kprobe, regs);
unlock_kprobes();
preempt_enable_no_resched();
......@@ -161,7 +243,7 @@ static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
return 1;
if (kprobe_status & KPROBE_HIT_SS) {
undo_singlestep(current_kprobe, regs);
resume_execution(current_kprobe, regs);
unlock_kprobes();
preempt_enable_no_resched();
......@@ -222,12 +304,14 @@ asmlinkage void kprobe_trap(unsigned long trap_level, struct pt_regs *regs)
/* Jprobes support. */
static struct pt_regs jprobe_saved_regs;
static struct pt_regs *jprobe_saved_regs_location;
static struct sparc_stackf jprobe_saved_stack;
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
jprobe_saved_regs_location = regs;
memcpy(&jprobe_saved_regs, regs, sizeof(*regs));
/* Save a whole stack frame, this gets arguments
......@@ -240,6 +324,7 @@ int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
regs->tpc = (unsigned long) jp->entry;
regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
regs->tstate |= TSTATE_PIL;
return 1;
}
......@@ -255,11 +340,23 @@ void jprobe_return(void)
extern void jprobe_return_trap_instruction(void);
extern void __show_regs(struct pt_regs * regs);
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
u32 *addr = (u32 *) regs->tpc;
if (addr == (u32 *) jprobe_return_trap_instruction) {
if (jprobe_saved_regs_location != regs) {
printk("JPROBE: Current regs (%p) does not match "
"saved regs (%p).\n",
regs, jprobe_saved_regs_location);
printk("JPROBE: Saved registers\n");
__show_regs(jprobe_saved_regs_location);
printk("JPROBE: Current registers\n");
__show_regs(regs);
BUG();
}
/* Restore old register state. Do pt_regs
* first so that UREG_FP is the original one for
* the stack frame restore.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment