Commit ccd5d1b9 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'ntb-4.13' of git://github.com/jonmason/ntb

Pull NTB updates from Jon Mason:
 "The major change in the series is a rework of the NTB infrastructure
  to all for IDT hardware to be supported (and resulting fallout from
  that). There are also a few clean-ups, etc.

  New IDT NTB driver and changes to the NTB infrastructure to allow for
  this different kind of NTB HW, some style fixes (per Greg KH
  recommendation), and some ntb_test tweaks"

* tag 'ntb-4.13' of git://github.com/jonmason/ntb:
  ntb_netdev: set the net_device's parent
  ntb: Add error path/handling to Debug FS entry creation
  ntb: Add more debugfs support for ntb_perf testing options
  ntb: Remove debug-fs variables from the context structure
  ntb: Add a module option to control affinity of DMA channels
  NTB: Add IDT 89HPESxNTx PCIe-switches support
  ntb_hw_intel: Style fixes: open code macros that just obfuscate code
  ntb_hw_amd: Style fixes: open code macros that just obfuscate code
  NTB: Add ntb.h comments
  NTB: Add PCIe Gen4 link speed
  NTB: Add new Memory Windows API documentation
  NTB: Add Messaging NTB API
  NTB: Alter Scratchpads API to support multi-ports devices
  NTB: Alter MW API to support multi-ports devices
  NTB: Alter link-state API to support multi-port devices
  NTB: Add indexed ports NTB API
  NTB: Make link-state API being declared first
  NTB: ntb_test: add parameter for doorbell bitmask
  NTB: ntb_test: modprobe on remote host
parents 4d25ec19 854b1dd9
# NTB Drivers # NTB Drivers
NTB (Non-Transparent Bridge) is a type of PCI-Express bridge chip that connects NTB (Non-Transparent Bridge) is a type of PCI-Express bridge chip that connects
the separate memory systems of two computers to the same PCI-Express fabric. the separate memory systems of two or more computers to the same PCI-Express
Existing NTB hardware supports a common feature set, including scratchpad fabric. Existing NTB hardware supports a common feature set: doorbell
registers, doorbell registers, and memory translation windows. Scratchpad registers and memory translation windows, as well as non common features like
registers are read-and-writable registers that are accessible from either side scratchpad and message registers. Scratchpad registers are read-and-writable
of the device, so that peers can exchange a small amount of information at a registers that are accessible from either side of the device, so that peers can
fixed address. Doorbell registers provide a way for peers to send interrupt exchange a small amount of information at a fixed address. Message registers can
events. Memory windows allow translated read and write access to the peer be utilized for the same purpose. Additionally they are provided with with
memory. special status bits to make sure the information isn't rewritten by another
peer. Doorbell registers provide a way for peers to send interrupt events.
Memory windows allow translated read and write access to the peer memory.
## NTB Core Driver (ntb) ## NTB Core Driver (ntb)
...@@ -26,6 +28,87 @@ as ntb hardware, or hardware drivers, are inserted and removed. The ...@@ -26,6 +28,87 @@ as ntb hardware, or hardware drivers, are inserted and removed. The
registration uses the Linux Device framework, so it should feel familiar to registration uses the Linux Device framework, so it should feel familiar to
anyone who has written a pci driver. anyone who has written a pci driver.
### NTB Typical client driver implementation
Primary purpose of NTB is to share some peace of memory between at least two
systems. So the NTB device features like Scratchpad/Message registers are
mainly used to perform the proper memory window initialization. Typically
there are two types of memory window interfaces supported by the NTB API:
inbound translation configured on the local ntb port and outbound translation
configured by the peer, on the peer ntb port. The first type is
depicted on the next figure
Inbound translation:
Memory: Local NTB Port: Peer NTB Port: Peer MMIO:
____________
| dma-mapped |-ntb_mw_set_trans(addr) |
| memory | _v____________ | ______________
| (addr) |<======| MW xlat addr |<====| MW base addr |<== memory-mapped IO
|------------| |--------------| | |--------------|
So typical scenario of the first type memory window initialization looks:
1) allocate a memory region, 2) put translated address to NTB config,
3) somehow notify a peer device of performed initialization, 4) peer device
maps corresponding outbound memory window so to have access to the shared
memory region.
The second type of interface, that implies the shared windows being
initialized by a peer device, is depicted on the figure:
Outbound translation:
Memory: Local NTB Port: Peer NTB Port: Peer MMIO:
____________ ______________
| dma-mapped | | | MW base addr |<== memory-mapped IO
| memory | | |--------------|
| (addr) |<===================| MW xlat addr |<-ntb_peer_mw_set_trans(addr)
|------------| | |--------------|
Typical scenario of the second type interface initialization would be:
1) allocate a memory region, 2) somehow deliver a translated address to a peer
device, 3) peer puts the translated address to NTB config, 4) peer device maps
outbound memory window so to have access to the shared memory region.
As one can see the described scenarios can be combined in one portable
algorithm.
Local device:
1) Allocate memory for a shared window
2) Initialize memory window by translated address of the allocated region
(it may fail if local memory window initialization is unsupported)
3) Send the translated address and memory window index to a peer device
Peer device:
1) Initialize memory window with retrieved address of the allocated
by another device memory region (it may fail if peer memory window
initialization is unsupported)
2) Map outbound memory window
In accordance with this scenario, the NTB Memory Window API can be used as
follows:
Local device:
1) ntb_mw_count(pidx) - retrieve number of memory ranges, which can
be allocated for memory windows between local device and peer device
of port with specified index.
2) ntb_get_align(pidx, midx) - retrieve parameters restricting the
shared memory region alignment and size. Then memory can be properly
allocated.
3) Allocate physically contiguous memory region in compliance with
restrictions retrieved in 2).
4) ntb_mw_set_trans(pidx, midx) - try to set translation address of
the memory window with specified index for the defined peer device
(it may fail if local translated address setting is not supported)
5) Send translated base address (usually together with memory window
number) to the peer device using, for instance, scratchpad or message
registers.
Peer device:
1) ntb_peer_mw_set_trans(pidx, midx) - try to set received from other
device (related to pidx) translated address for specified memory
window. It may fail if retrieved address, for instance, exceeds
maximum possible address or isn't properly aligned.
2) ntb_peer_mw_get_addr(widx) - retrieve MMIO address to map the memory
window so to have an access to the shared memory.
Also it is worth to note, that method ntb_mw_count(pidx) should return the
same value as ntb_peer_mw_count() on the peer with port index - pidx.
### NTB Transport Client (ntb\_transport) and NTB Netdev (ntb\_netdev) ### NTB Transport Client (ntb\_transport) and NTB Netdev (ntb\_netdev)
The primary client for NTB is the Transport client, used in tandem with NTB The primary client for NTB is the Transport client, used in tandem with NTB
......
...@@ -9381,6 +9381,12 @@ F: include/linux/ntb.h ...@@ -9381,6 +9381,12 @@ F: include/linux/ntb.h
F: include/linux/ntb_transport.h F: include/linux/ntb_transport.h
F: tools/testing/selftests/ntb/ F: tools/testing/selftests/ntb/
NTB IDT DRIVER
M: Serge Semin <fancer.lancer@gmail.com>
L: linux-ntb@googlegroups.com
S: Supported
F: drivers/ntb/hw/idt/
NTB INTEL DRIVER NTB INTEL DRIVER
M: Jon Mason <jdmason@kudzu.us> M: Jon Mason <jdmason@kudzu.us>
M: Dave Jiang <dave.jiang@intel.com> M: Dave Jiang <dave.jiang@intel.com>
......
...@@ -418,6 +418,8 @@ static int ntb_netdev_probe(struct device *client_dev) ...@@ -418,6 +418,8 @@ static int ntb_netdev_probe(struct device *client_dev)
if (!ndev) if (!ndev)
return -ENOMEM; return -ENOMEM;
SET_NETDEV_DEV(ndev, client_dev);
dev = netdev_priv(ndev); dev = netdev_priv(ndev);
dev->ndev = ndev; dev->ndev = ndev;
dev->pdev = pdev; dev->pdev = pdev;
......
source "drivers/ntb/hw/amd/Kconfig" source "drivers/ntb/hw/amd/Kconfig"
source "drivers/ntb/hw/idt/Kconfig"
source "drivers/ntb/hw/intel/Kconfig" source "drivers/ntb/hw/intel/Kconfig"
obj-$(CONFIG_NTB_AMD) += amd/ obj-$(CONFIG_NTB_AMD) += amd/
obj-$(CONFIG_NTB_IDT) += idt/
obj-$(CONFIG_NTB_INTEL) += intel/ obj-$(CONFIG_NTB_INTEL) += intel/
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
* GPL LICENSE SUMMARY * GPL LICENSE SUMMARY
* *
* Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved. * Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as * it under the terms of version 2 of the GNU General Public License as
...@@ -13,6 +14,7 @@ ...@@ -13,6 +14,7 @@
* BSD LICENSE * BSD LICENSE
* *
* Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved. * Copyright (C) 2016 Advanced Micro Devices, Inc. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions * modification, are permitted provided that the following conditions
...@@ -79,40 +81,42 @@ static int ndev_mw_to_bar(struct amd_ntb_dev *ndev, int idx) ...@@ -79,40 +81,42 @@ static int ndev_mw_to_bar(struct amd_ntb_dev *ndev, int idx)
return 1 << idx; return 1 << idx;
} }
static int amd_ntb_mw_count(struct ntb_dev *ntb) static int amd_ntb_mw_count(struct ntb_dev *ntb, int pidx)
{ {
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
return ntb_ndev(ntb)->mw_count; return ntb_ndev(ntb)->mw_count;
} }
static int amd_ntb_mw_get_range(struct ntb_dev *ntb, int idx, static int amd_ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int idx,
phys_addr_t *base, resource_size_t *addr_align,
resource_size_t *size, resource_size_t *size_align,
resource_size_t *align, resource_size_t *size_max)
resource_size_t *align_size)
{ {
struct amd_ntb_dev *ndev = ntb_ndev(ntb); struct amd_ntb_dev *ndev = ntb_ndev(ntb);
int bar; int bar;
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
bar = ndev_mw_to_bar(ndev, idx); bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0) if (bar < 0)
return bar; return bar;
if (base) if (addr_align)
*base = pci_resource_start(ndev->ntb.pdev, bar); *addr_align = SZ_4K;
if (size)
*size = pci_resource_len(ndev->ntb.pdev, bar);
if (align) if (size_align)
*align = SZ_4K; *size_align = 1;
if (align_size) if (size_max)
*align_size = 1; *size_max = pci_resource_len(ndev->ntb.pdev, bar);
return 0; return 0;
} }
static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int idx, static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int pidx, int idx,
dma_addr_t addr, resource_size_t size) dma_addr_t addr, resource_size_t size)
{ {
struct amd_ntb_dev *ndev = ntb_ndev(ntb); struct amd_ntb_dev *ndev = ntb_ndev(ntb);
...@@ -122,11 +126,14 @@ static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int idx, ...@@ -122,11 +126,14 @@ static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int idx,
u64 base_addr, limit, reg_val; u64 base_addr, limit, reg_val;
int bar; int bar;
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
bar = ndev_mw_to_bar(ndev, idx); bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0) if (bar < 0)
return bar; return bar;
mw_size = pci_resource_len(ndev->ntb.pdev, bar); mw_size = pci_resource_len(ntb->pdev, bar);
/* make sure the range fits in the usable mw size */ /* make sure the range fits in the usable mw size */
if (size > mw_size) if (size > mw_size)
...@@ -135,7 +142,7 @@ static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int idx, ...@@ -135,7 +142,7 @@ static int amd_ntb_mw_set_trans(struct ntb_dev *ntb, int idx,
mmio = ndev->self_mmio; mmio = ndev->self_mmio;
peer_mmio = ndev->peer_mmio; peer_mmio = ndev->peer_mmio;
base_addr = pci_resource_start(ndev->ntb.pdev, bar); base_addr = pci_resource_start(ntb->pdev, bar);
if (bar != 1) { if (bar != 1) {
xlat_reg = AMD_BAR23XLAT_OFFSET + ((bar - 2) << 2); xlat_reg = AMD_BAR23XLAT_OFFSET + ((bar - 2) << 2);
...@@ -212,7 +219,7 @@ static int amd_link_is_up(struct amd_ntb_dev *ndev) ...@@ -212,7 +219,7 @@ static int amd_link_is_up(struct amd_ntb_dev *ndev)
return 0; return 0;
} }
static int amd_ntb_link_is_up(struct ntb_dev *ntb, static u64 amd_ntb_link_is_up(struct ntb_dev *ntb,
enum ntb_speed *speed, enum ntb_speed *speed,
enum ntb_width *width) enum ntb_width *width)
{ {
...@@ -225,7 +232,7 @@ static int amd_ntb_link_is_up(struct ntb_dev *ntb, ...@@ -225,7 +232,7 @@ static int amd_ntb_link_is_up(struct ntb_dev *ntb,
if (width) if (width)
*width = NTB_LNK_STA_WIDTH(ndev->lnk_sta); *width = NTB_LNK_STA_WIDTH(ndev->lnk_sta);
dev_dbg(ndev_dev(ndev), "link is up.\n"); dev_dbg(&ntb->pdev->dev, "link is up.\n");
ret = 1; ret = 1;
} else { } else {
...@@ -234,7 +241,7 @@ static int amd_ntb_link_is_up(struct ntb_dev *ntb, ...@@ -234,7 +241,7 @@ static int amd_ntb_link_is_up(struct ntb_dev *ntb,
if (width) if (width)
*width = NTB_WIDTH_NONE; *width = NTB_WIDTH_NONE;
dev_dbg(ndev_dev(ndev), "link is down.\n"); dev_dbg(&ntb->pdev->dev, "link is down.\n");
} }
return ret; return ret;
...@@ -254,7 +261,7 @@ static int amd_ntb_link_enable(struct ntb_dev *ntb, ...@@ -254,7 +261,7 @@ static int amd_ntb_link_enable(struct ntb_dev *ntb,
if (ndev->ntb.topo == NTB_TOPO_SEC) if (ndev->ntb.topo == NTB_TOPO_SEC)
return -EINVAL; return -EINVAL;
dev_dbg(ndev_dev(ndev), "Enabling Link.\n"); dev_dbg(&ntb->pdev->dev, "Enabling Link.\n");
ntb_ctl = readl(mmio + AMD_CNTL_OFFSET); ntb_ctl = readl(mmio + AMD_CNTL_OFFSET);
ntb_ctl |= (PMM_REG_CTL | SMM_REG_CTL); ntb_ctl |= (PMM_REG_CTL | SMM_REG_CTL);
...@@ -275,7 +282,7 @@ static int amd_ntb_link_disable(struct ntb_dev *ntb) ...@@ -275,7 +282,7 @@ static int amd_ntb_link_disable(struct ntb_dev *ntb)
if (ndev->ntb.topo == NTB_TOPO_SEC) if (ndev->ntb.topo == NTB_TOPO_SEC)
return -EINVAL; return -EINVAL;
dev_dbg(ndev_dev(ndev), "Enabling Link.\n"); dev_dbg(&ntb->pdev->dev, "Enabling Link.\n");
ntb_ctl = readl(mmio + AMD_CNTL_OFFSET); ntb_ctl = readl(mmio + AMD_CNTL_OFFSET);
ntb_ctl &= ~(PMM_REG_CTL | SMM_REG_CTL); ntb_ctl &= ~(PMM_REG_CTL | SMM_REG_CTL);
...@@ -284,6 +291,31 @@ static int amd_ntb_link_disable(struct ntb_dev *ntb) ...@@ -284,6 +291,31 @@ static int amd_ntb_link_disable(struct ntb_dev *ntb)
return 0; return 0;
} }
static int amd_ntb_peer_mw_count(struct ntb_dev *ntb)
{
/* The same as for inbound MWs */
return ntb_ndev(ntb)->mw_count;
}
static int amd_ntb_peer_mw_get_addr(struct ntb_dev *ntb, int idx,
phys_addr_t *base, resource_size_t *size)
{
struct amd_ntb_dev *ndev = ntb_ndev(ntb);
int bar;
bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
if (base)
*base = pci_resource_start(ndev->ntb.pdev, bar);
if (size)
*size = pci_resource_len(ndev->ntb.pdev, bar);
return 0;
}
static u64 amd_ntb_db_valid_mask(struct ntb_dev *ntb) static u64 amd_ntb_db_valid_mask(struct ntb_dev *ntb)
{ {
return ntb_ndev(ntb)->db_valid_mask; return ntb_ndev(ntb)->db_valid_mask;
...@@ -400,30 +432,30 @@ static int amd_ntb_spad_write(struct ntb_dev *ntb, ...@@ -400,30 +432,30 @@ static int amd_ntb_spad_write(struct ntb_dev *ntb,
return 0; return 0;
} }
static u32 amd_ntb_peer_spad_read(struct ntb_dev *ntb, int idx) static u32 amd_ntb_peer_spad_read(struct ntb_dev *ntb, int pidx, int sidx)
{ {
struct amd_ntb_dev *ndev = ntb_ndev(ntb); struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio; void __iomem *mmio = ndev->self_mmio;
u32 offset; u32 offset;
if (idx < 0 || idx >= ndev->spad_count) if (sidx < 0 || sidx >= ndev->spad_count)
return -EINVAL; return -EINVAL;
offset = ndev->peer_spad + (idx << 2); offset = ndev->peer_spad + (sidx << 2);
return readl(mmio + AMD_SPAD_OFFSET + offset); return readl(mmio + AMD_SPAD_OFFSET + offset);
} }
static int amd_ntb_peer_spad_write(struct ntb_dev *ntb, static int amd_ntb_peer_spad_write(struct ntb_dev *ntb, int pidx,
int idx, u32 val) int sidx, u32 val)
{ {
struct amd_ntb_dev *ndev = ntb_ndev(ntb); struct amd_ntb_dev *ndev = ntb_ndev(ntb);
void __iomem *mmio = ndev->self_mmio; void __iomem *mmio = ndev->self_mmio;
u32 offset; u32 offset;
if (idx < 0 || idx >= ndev->spad_count) if (sidx < 0 || sidx >= ndev->spad_count)
return -EINVAL; return -EINVAL;
offset = ndev->peer_spad + (idx << 2); offset = ndev->peer_spad + (sidx << 2);
writel(val, mmio + AMD_SPAD_OFFSET + offset); writel(val, mmio + AMD_SPAD_OFFSET + offset);
return 0; return 0;
...@@ -431,8 +463,10 @@ static int amd_ntb_peer_spad_write(struct ntb_dev *ntb, ...@@ -431,8 +463,10 @@ static int amd_ntb_peer_spad_write(struct ntb_dev *ntb,
static const struct ntb_dev_ops amd_ntb_ops = { static const struct ntb_dev_ops amd_ntb_ops = {
.mw_count = amd_ntb_mw_count, .mw_count = amd_ntb_mw_count,
.mw_get_range = amd_ntb_mw_get_range, .mw_get_align = amd_ntb_mw_get_align,
.mw_set_trans = amd_ntb_mw_set_trans, .mw_set_trans = amd_ntb_mw_set_trans,
.peer_mw_count = amd_ntb_peer_mw_count,
.peer_mw_get_addr = amd_ntb_peer_mw_get_addr,
.link_is_up = amd_ntb_link_is_up, .link_is_up = amd_ntb_link_is_up,
.link_enable = amd_ntb_link_enable, .link_enable = amd_ntb_link_enable,
.link_disable = amd_ntb_link_disable, .link_disable = amd_ntb_link_disable,
...@@ -466,18 +500,19 @@ static void amd_ack_smu(struct amd_ntb_dev *ndev, u32 bit) ...@@ -466,18 +500,19 @@ static void amd_ack_smu(struct amd_ntb_dev *ndev, u32 bit)
static void amd_handle_event(struct amd_ntb_dev *ndev, int vec) static void amd_handle_event(struct amd_ntb_dev *ndev, int vec)
{ {
void __iomem *mmio = ndev->self_mmio; void __iomem *mmio = ndev->self_mmio;
struct device *dev = &ndev->ntb.pdev->dev;
u32 status; u32 status;
status = readl(mmio + AMD_INTSTAT_OFFSET); status = readl(mmio + AMD_INTSTAT_OFFSET);
if (!(status & AMD_EVENT_INTMASK)) if (!(status & AMD_EVENT_INTMASK))
return; return;
dev_dbg(ndev_dev(ndev), "status = 0x%x and vec = %d\n", status, vec); dev_dbg(dev, "status = 0x%x and vec = %d\n", status, vec);
status &= AMD_EVENT_INTMASK; status &= AMD_EVENT_INTMASK;
switch (status) { switch (status) {
case AMD_PEER_FLUSH_EVENT: case AMD_PEER_FLUSH_EVENT:
dev_info(ndev_dev(ndev), "Flush is done.\n"); dev_info(dev, "Flush is done.\n");
break; break;
case AMD_PEER_RESET_EVENT: case AMD_PEER_RESET_EVENT:
amd_ack_smu(ndev, AMD_PEER_RESET_EVENT); amd_ack_smu(ndev, AMD_PEER_RESET_EVENT);
...@@ -503,7 +538,7 @@ static void amd_handle_event(struct amd_ntb_dev *ndev, int vec) ...@@ -503,7 +538,7 @@ static void amd_handle_event(struct amd_ntb_dev *ndev, int vec)
status = readl(mmio + AMD_PMESTAT_OFFSET); status = readl(mmio + AMD_PMESTAT_OFFSET);
/* check if this is WAKEUP event */ /* check if this is WAKEUP event */
if (status & 0x1) if (status & 0x1)
dev_info(ndev_dev(ndev), "Wakeup is done.\n"); dev_info(dev, "Wakeup is done.\n");
amd_ack_smu(ndev, AMD_PEER_D0_EVENT); amd_ack_smu(ndev, AMD_PEER_D0_EVENT);
...@@ -512,14 +547,14 @@ static void amd_handle_event(struct amd_ntb_dev *ndev, int vec) ...@@ -512,14 +547,14 @@ static void amd_handle_event(struct amd_ntb_dev *ndev, int vec)
AMD_LINK_HB_TIMEOUT); AMD_LINK_HB_TIMEOUT);
break; break;
default: default:
dev_info(ndev_dev(ndev), "event status = 0x%x.\n", status); dev_info(dev, "event status = 0x%x.\n", status);
break; break;
} }
} }
static irqreturn_t ndev_interrupt(struct amd_ntb_dev *ndev, int vec) static irqreturn_t ndev_interrupt(struct amd_ntb_dev *ndev, int vec)
{ {
dev_dbg(ndev_dev(ndev), "vec %d\n", vec); dev_dbg(&ndev->ntb.pdev->dev, "vec %d\n", vec);
if (vec > (AMD_DB_CNT - 1) || (ndev->msix_vec_count == 1)) if (vec > (AMD_DB_CNT - 1) || (ndev->msix_vec_count == 1))
amd_handle_event(ndev, vec); amd_handle_event(ndev, vec);
...@@ -541,7 +576,7 @@ static irqreturn_t ndev_irq_isr(int irq, void *dev) ...@@ -541,7 +576,7 @@ static irqreturn_t ndev_irq_isr(int irq, void *dev)
{ {
struct amd_ntb_dev *ndev = dev; struct amd_ntb_dev *ndev = dev;
return ndev_interrupt(ndev, irq - ndev_pdev(ndev)->irq); return ndev_interrupt(ndev, irq - ndev->ntb.pdev->irq);
} }
static int ndev_init_isr(struct amd_ntb_dev *ndev, static int ndev_init_isr(struct amd_ntb_dev *ndev,
...@@ -550,7 +585,7 @@ static int ndev_init_isr(struct amd_ntb_dev *ndev, ...@@ -550,7 +585,7 @@ static int ndev_init_isr(struct amd_ntb_dev *ndev,
struct pci_dev *pdev; struct pci_dev *pdev;
int rc, i, msix_count, node; int rc, i, msix_count, node;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
node = dev_to_node(&pdev->dev); node = dev_to_node(&pdev->dev);
...@@ -592,7 +627,7 @@ static int ndev_init_isr(struct amd_ntb_dev *ndev, ...@@ -592,7 +627,7 @@ static int ndev_init_isr(struct amd_ntb_dev *ndev,
goto err_msix_request; goto err_msix_request;
} }
dev_dbg(ndev_dev(ndev), "Using msix interrupts\n"); dev_dbg(&pdev->dev, "Using msix interrupts\n");
ndev->db_count = msix_min; ndev->db_count = msix_min;
ndev->msix_vec_count = msix_max; ndev->msix_vec_count = msix_max;
return 0; return 0;
...@@ -619,7 +654,7 @@ static int ndev_init_isr(struct amd_ntb_dev *ndev, ...@@ -619,7 +654,7 @@ static int ndev_init_isr(struct amd_ntb_dev *ndev,
if (rc) if (rc)
goto err_msi_request; goto err_msi_request;
dev_dbg(ndev_dev(ndev), "Using msi interrupts\n"); dev_dbg(&pdev->dev, "Using msi interrupts\n");
ndev->db_count = 1; ndev->db_count = 1;
ndev->msix_vec_count = 1; ndev->msix_vec_count = 1;
return 0; return 0;
...@@ -636,7 +671,7 @@ static int ndev_init_isr(struct amd_ntb_dev *ndev, ...@@ -636,7 +671,7 @@ static int ndev_init_isr(struct amd_ntb_dev *ndev,
if (rc) if (rc)
goto err_intx_request; goto err_intx_request;
dev_dbg(ndev_dev(ndev), "Using intx interrupts\n"); dev_dbg(&pdev->dev, "Using intx interrupts\n");
ndev->db_count = 1; ndev->db_count = 1;
ndev->msix_vec_count = 1; ndev->msix_vec_count = 1;
return 0; return 0;
...@@ -651,7 +686,7 @@ static void ndev_deinit_isr(struct amd_ntb_dev *ndev) ...@@ -651,7 +686,7 @@ static void ndev_deinit_isr(struct amd_ntb_dev *ndev)
void __iomem *mmio = ndev->self_mmio; void __iomem *mmio = ndev->self_mmio;
int i; int i;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
/* Mask all doorbell interrupts */ /* Mask all doorbell interrupts */
ndev->db_mask = ndev->db_valid_mask; ndev->db_mask = ndev->db_valid_mask;
...@@ -777,7 +812,8 @@ static void ndev_init_debugfs(struct amd_ntb_dev *ndev) ...@@ -777,7 +812,8 @@ static void ndev_init_debugfs(struct amd_ntb_dev *ndev)
ndev->debugfs_info = NULL; ndev->debugfs_info = NULL;
} else { } else {
ndev->debugfs_dir = ndev->debugfs_dir =
debugfs_create_dir(ndev_name(ndev), debugfs_dir); debugfs_create_dir(pci_name(ndev->ntb.pdev),
debugfs_dir);
if (!ndev->debugfs_dir) if (!ndev->debugfs_dir)
ndev->debugfs_info = NULL; ndev->debugfs_info = NULL;
else else
...@@ -812,7 +848,7 @@ static int amd_poll_link(struct amd_ntb_dev *ndev) ...@@ -812,7 +848,7 @@ static int amd_poll_link(struct amd_ntb_dev *ndev)
reg = readl(mmio + AMD_SIDEINFO_OFFSET); reg = readl(mmio + AMD_SIDEINFO_OFFSET);
reg &= NTB_LIN_STA_ACTIVE_BIT; reg &= NTB_LIN_STA_ACTIVE_BIT;
dev_dbg(ndev_dev(ndev), "%s: reg_val = 0x%x.\n", __func__, reg); dev_dbg(&ndev->ntb.pdev->dev, "%s: reg_val = 0x%x.\n", __func__, reg);
if (reg == ndev->cntl_sta) if (reg == ndev->cntl_sta)
return 0; return 0;
...@@ -894,7 +930,8 @@ static int amd_init_ntb(struct amd_ntb_dev *ndev) ...@@ -894,7 +930,8 @@ static int amd_init_ntb(struct amd_ntb_dev *ndev)
break; break;
default: default:
dev_err(ndev_dev(ndev), "AMD NTB does not support B2B mode.\n"); dev_err(&ndev->ntb.pdev->dev,
"AMD NTB does not support B2B mode.\n");
return -EINVAL; return -EINVAL;
} }
...@@ -923,10 +960,10 @@ static int amd_init_dev(struct amd_ntb_dev *ndev) ...@@ -923,10 +960,10 @@ static int amd_init_dev(struct amd_ntb_dev *ndev)
struct pci_dev *pdev; struct pci_dev *pdev;
int rc = 0; int rc = 0;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
ndev->ntb.topo = amd_get_topo(ndev); ndev->ntb.topo = amd_get_topo(ndev);
dev_dbg(ndev_dev(ndev), "AMD NTB topo is %s\n", dev_dbg(&pdev->dev, "AMD NTB topo is %s\n",
ntb_topo_string(ndev->ntb.topo)); ntb_topo_string(ndev->ntb.topo));
rc = amd_init_ntb(ndev); rc = amd_init_ntb(ndev);
...@@ -935,7 +972,7 @@ static int amd_init_dev(struct amd_ntb_dev *ndev) ...@@ -935,7 +972,7 @@ static int amd_init_dev(struct amd_ntb_dev *ndev)
rc = amd_init_isr(ndev); rc = amd_init_isr(ndev);
if (rc) { if (rc) {
dev_err(ndev_dev(ndev), "fail to init isr.\n"); dev_err(&pdev->dev, "fail to init isr.\n");
return rc; return rc;
} }
...@@ -973,7 +1010,7 @@ static int amd_ntb_init_pci(struct amd_ntb_dev *ndev, ...@@ -973,7 +1010,7 @@ static int amd_ntb_init_pci(struct amd_ntb_dev *ndev,
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc) if (rc)
goto err_dma_mask; goto err_dma_mask;
dev_warn(ndev_dev(ndev), "Cannot DMA highmem\n"); dev_warn(&pdev->dev, "Cannot DMA highmem\n");
} }
rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
...@@ -981,7 +1018,7 @@ static int amd_ntb_init_pci(struct amd_ntb_dev *ndev, ...@@ -981,7 +1018,7 @@ static int amd_ntb_init_pci(struct amd_ntb_dev *ndev,
rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc) if (rc)
goto err_dma_mask; goto err_dma_mask;
dev_warn(ndev_dev(ndev), "Cannot DMA consistent highmem\n"); dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n");
} }
ndev->self_mmio = pci_iomap(pdev, 0, 0); ndev->self_mmio = pci_iomap(pdev, 0, 0);
...@@ -1004,7 +1041,7 @@ static int amd_ntb_init_pci(struct amd_ntb_dev *ndev, ...@@ -1004,7 +1041,7 @@ static int amd_ntb_init_pci(struct amd_ntb_dev *ndev,
static void amd_ntb_deinit_pci(struct amd_ntb_dev *ndev) static void amd_ntb_deinit_pci(struct amd_ntb_dev *ndev)
{ {
struct pci_dev *pdev = ndev_pdev(ndev); struct pci_dev *pdev = ndev->ntb.pdev;
pci_iounmap(pdev, ndev->self_mmio); pci_iounmap(pdev, ndev->self_mmio);
......
...@@ -211,9 +211,6 @@ struct amd_ntb_dev { ...@@ -211,9 +211,6 @@ struct amd_ntb_dev {
struct dentry *debugfs_info; struct dentry *debugfs_info;
}; };
#define ndev_pdev(ndev) ((ndev)->ntb.pdev)
#define ndev_name(ndev) pci_name(ndev_pdev(ndev))
#define ndev_dev(ndev) (&ndev_pdev(ndev)->dev)
#define ntb_ndev(__ntb) container_of(__ntb, struct amd_ntb_dev, ntb) #define ntb_ndev(__ntb) container_of(__ntb, struct amd_ntb_dev, ntb)
#define hb_ndev(__work) container_of(__work, struct amd_ntb_dev, hb_timer.work) #define hb_ndev(__work) container_of(__work, struct amd_ntb_dev, hb_timer.work)
......
config NTB_IDT
tristate "IDT PCIe-switch Non-Transparent Bridge support"
depends on PCI
help
This driver supports NTB of cappable IDT PCIe-switches.
Some of the pre-initializations must be made before IDT PCIe-switch
exposes it NT-functions correctly. It should be done by either proper
initialisation of EEPROM connected to master smbus of the switch or
by BIOS using slave-SMBus interface changing corresponding registers
value. Evidently it must be done before PCI bus enumeration is
finished in Linux kernel.
First of all partitions must be activated and properly assigned to all
the ports with NT-functions intended to be activated (see SWPARTxCTL
and SWPORTxCTL registers). Then all NT-function BARs must be enabled
with chosen valid aperture. For memory windows related BARs the
aperture settings shall determine the maximum size of memory windows
accepted by a BAR. Note that BAR0 must map PCI configuration space
registers.
It's worth to note, that since a part of this driver relies on the
BAR settings of peer NT-functions, the BAR setups can't be done over
kernel PCI fixups. That's why the alternative pre-initialization
techniques like BIOS using SMBus interface or EEPROM should be
utilized. Additionally if one needs to have temperature sensor
information printed to system log, the corresponding registers must
be initialized within BIOS/EEPROM as well.
If unsure, say N.
obj-$(CONFIG_NTB_IDT) += ntb_hw_idt.o
/*
* This file is provided under a GPLv2 license. When using or
* redistributing this file, you may do so under that license.
*
* GPL LICENSE SUMMARY
*
* Copyright (C) 2016 T-Platforms All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, one can be found http://www.gnu.org/licenses/.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* IDT PCIe-switch NTB Linux driver
*
* Contact Information:
* Serge Semin <fancer.lancer@gmail.com>, <Sergey.Semin@t-platforms.ru>
*/
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/sizes.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/debugfs.h>
#include <linux/ntb.h>
#include "ntb_hw_idt.h"
#define NTB_NAME "ntb_hw_idt"
#define NTB_DESC "IDT PCI-E Non-Transparent Bridge Driver"
#define NTB_VER "2.0"
#define NTB_IRQNAME "ntb_irq_idt"
MODULE_DESCRIPTION(NTB_DESC);
MODULE_VERSION(NTB_VER);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("T-platforms");
/*
* NT Endpoint registers table simplifying a loop access to the functionally
* related registers
*/
static const struct idt_ntb_regs ntdata_tbl = {
{ {IDT_NT_BARSETUP0, IDT_NT_BARLIMIT0,
IDT_NT_BARLTBASE0, IDT_NT_BARUTBASE0},
{IDT_NT_BARSETUP1, IDT_NT_BARLIMIT1,
IDT_NT_BARLTBASE1, IDT_NT_BARUTBASE1},
{IDT_NT_BARSETUP2, IDT_NT_BARLIMIT2,
IDT_NT_BARLTBASE2, IDT_NT_BARUTBASE2},
{IDT_NT_BARSETUP3, IDT_NT_BARLIMIT3,
IDT_NT_BARLTBASE3, IDT_NT_BARUTBASE3},
{IDT_NT_BARSETUP4, IDT_NT_BARLIMIT4,
IDT_NT_BARLTBASE4, IDT_NT_BARUTBASE4},
{IDT_NT_BARSETUP5, IDT_NT_BARLIMIT5,
IDT_NT_BARLTBASE5, IDT_NT_BARUTBASE5} },
{ {IDT_NT_INMSG0, IDT_NT_OUTMSG0, IDT_NT_INMSGSRC0},
{IDT_NT_INMSG1, IDT_NT_OUTMSG1, IDT_NT_INMSGSRC1},
{IDT_NT_INMSG2, IDT_NT_OUTMSG2, IDT_NT_INMSGSRC2},
{IDT_NT_INMSG3, IDT_NT_OUTMSG3, IDT_NT_INMSGSRC3} }
};
/*
* NT Endpoint ports data table with the corresponding pcie command, link
* status, control and BAR-related registers
*/
static const struct idt_ntb_port portdata_tbl[IDT_MAX_NR_PORTS] = {
/*0*/ { IDT_SW_NTP0_PCIECMDSTS, IDT_SW_NTP0_PCIELCTLSTS,
IDT_SW_NTP0_NTCTL,
IDT_SW_SWPORT0CTL, IDT_SW_SWPORT0STS,
{ {IDT_SW_NTP0_BARSETUP0, IDT_SW_NTP0_BARLIMIT0,
IDT_SW_NTP0_BARLTBASE0, IDT_SW_NTP0_BARUTBASE0},
{IDT_SW_NTP0_BARSETUP1, IDT_SW_NTP0_BARLIMIT1,
IDT_SW_NTP0_BARLTBASE1, IDT_SW_NTP0_BARUTBASE1},
{IDT_SW_NTP0_BARSETUP2, IDT_SW_NTP0_BARLIMIT2,
IDT_SW_NTP0_BARLTBASE2, IDT_SW_NTP0_BARUTBASE2},
{IDT_SW_NTP0_BARSETUP3, IDT_SW_NTP0_BARLIMIT3,
IDT_SW_NTP0_BARLTBASE3, IDT_SW_NTP0_BARUTBASE3},
{IDT_SW_NTP0_BARSETUP4, IDT_SW_NTP0_BARLIMIT4,
IDT_SW_NTP0_BARLTBASE4, IDT_SW_NTP0_BARUTBASE4},
{IDT_SW_NTP0_BARSETUP5, IDT_SW_NTP0_BARLIMIT5,
IDT_SW_NTP0_BARLTBASE5, IDT_SW_NTP0_BARUTBASE5} } },
/*1*/ {0},
/*2*/ { IDT_SW_NTP2_PCIECMDSTS, IDT_SW_NTP2_PCIELCTLSTS,
IDT_SW_NTP2_NTCTL,
IDT_SW_SWPORT2CTL, IDT_SW_SWPORT2STS,
{ {IDT_SW_NTP2_BARSETUP0, IDT_SW_NTP2_BARLIMIT0,
IDT_SW_NTP2_BARLTBASE0, IDT_SW_NTP2_BARUTBASE0},
{IDT_SW_NTP2_BARSETUP1, IDT_SW_NTP2_BARLIMIT1,
IDT_SW_NTP2_BARLTBASE1, IDT_SW_NTP2_BARUTBASE1},
{IDT_SW_NTP2_BARSETUP2, IDT_SW_NTP2_BARLIMIT2,
IDT_SW_NTP2_BARLTBASE2, IDT_SW_NTP2_BARUTBASE2},
{IDT_SW_NTP2_BARSETUP3, IDT_SW_NTP2_BARLIMIT3,
IDT_SW_NTP2_BARLTBASE3, IDT_SW_NTP2_BARUTBASE3},
{IDT_SW_NTP2_BARSETUP4, IDT_SW_NTP2_BARLIMIT4,
IDT_SW_NTP2_BARLTBASE4, IDT_SW_NTP2_BARUTBASE4},
{IDT_SW_NTP2_BARSETUP5, IDT_SW_NTP2_BARLIMIT5,
IDT_SW_NTP2_BARLTBASE5, IDT_SW_NTP2_BARUTBASE5} } },
/*3*/ {0},
/*4*/ { IDT_SW_NTP4_PCIECMDSTS, IDT_SW_NTP4_PCIELCTLSTS,
IDT_SW_NTP4_NTCTL,
IDT_SW_SWPORT4CTL, IDT_SW_SWPORT4STS,
{ {IDT_SW_NTP4_BARSETUP0, IDT_SW_NTP4_BARLIMIT0,
IDT_SW_NTP4_BARLTBASE0, IDT_SW_NTP4_BARUTBASE0},
{IDT_SW_NTP4_BARSETUP1, IDT_SW_NTP4_BARLIMIT1,
IDT_SW_NTP4_BARLTBASE1, IDT_SW_NTP4_BARUTBASE1},
{IDT_SW_NTP4_BARSETUP2, IDT_SW_NTP4_BARLIMIT2,
IDT_SW_NTP4_BARLTBASE2, IDT_SW_NTP4_BARUTBASE2},
{IDT_SW_NTP4_BARSETUP3, IDT_SW_NTP4_BARLIMIT3,
IDT_SW_NTP4_BARLTBASE3, IDT_SW_NTP4_BARUTBASE3},
{IDT_SW_NTP4_BARSETUP4, IDT_SW_NTP4_BARLIMIT4,
IDT_SW_NTP4_BARLTBASE4, IDT_SW_NTP4_BARUTBASE4},
{IDT_SW_NTP4_BARSETUP5, IDT_SW_NTP4_BARLIMIT5,
IDT_SW_NTP4_BARLTBASE5, IDT_SW_NTP4_BARUTBASE5} } },
/*5*/ {0},
/*6*/ { IDT_SW_NTP6_PCIECMDSTS, IDT_SW_NTP6_PCIELCTLSTS,
IDT_SW_NTP6_NTCTL,
IDT_SW_SWPORT6CTL, IDT_SW_SWPORT6STS,
{ {IDT_SW_NTP6_BARSETUP0, IDT_SW_NTP6_BARLIMIT0,
IDT_SW_NTP6_BARLTBASE0, IDT_SW_NTP6_BARUTBASE0},
{IDT_SW_NTP6_BARSETUP1, IDT_SW_NTP6_BARLIMIT1,
IDT_SW_NTP6_BARLTBASE1, IDT_SW_NTP6_BARUTBASE1},
{IDT_SW_NTP6_BARSETUP2, IDT_SW_NTP6_BARLIMIT2,
IDT_SW_NTP6_BARLTBASE2, IDT_SW_NTP6_BARUTBASE2},
{IDT_SW_NTP6_BARSETUP3, IDT_SW_NTP6_BARLIMIT3,
IDT_SW_NTP6_BARLTBASE3, IDT_SW_NTP6_BARUTBASE3},
{IDT_SW_NTP6_BARSETUP4, IDT_SW_NTP6_BARLIMIT4,
IDT_SW_NTP6_BARLTBASE4, IDT_SW_NTP6_BARUTBASE4},
{IDT_SW_NTP6_BARSETUP5, IDT_SW_NTP6_BARLIMIT5,
IDT_SW_NTP6_BARLTBASE5, IDT_SW_NTP6_BARUTBASE5} } },
/*7*/ {0},
/*8*/ { IDT_SW_NTP8_PCIECMDSTS, IDT_SW_NTP8_PCIELCTLSTS,
IDT_SW_NTP8_NTCTL,
IDT_SW_SWPORT8CTL, IDT_SW_SWPORT8STS,
{ {IDT_SW_NTP8_BARSETUP0, IDT_SW_NTP8_BARLIMIT0,
IDT_SW_NTP8_BARLTBASE0, IDT_SW_NTP8_BARUTBASE0},
{IDT_SW_NTP8_BARSETUP1, IDT_SW_NTP8_BARLIMIT1,
IDT_SW_NTP8_BARLTBASE1, IDT_SW_NTP8_BARUTBASE1},
{IDT_SW_NTP8_BARSETUP2, IDT_SW_NTP8_BARLIMIT2,
IDT_SW_NTP8_BARLTBASE2, IDT_SW_NTP8_BARUTBASE2},
{IDT_SW_NTP8_BARSETUP3, IDT_SW_NTP8_BARLIMIT3,
IDT_SW_NTP8_BARLTBASE3, IDT_SW_NTP8_BARUTBASE3},
{IDT_SW_NTP8_BARSETUP4, IDT_SW_NTP8_BARLIMIT4,
IDT_SW_NTP8_BARLTBASE4, IDT_SW_NTP8_BARUTBASE4},
{IDT_SW_NTP8_BARSETUP5, IDT_SW_NTP8_BARLIMIT5,
IDT_SW_NTP8_BARLTBASE5, IDT_SW_NTP8_BARUTBASE5} } },
/*9*/ {0},
/*10*/ {0},
/*11*/ {0},
/*12*/ { IDT_SW_NTP12_PCIECMDSTS, IDT_SW_NTP12_PCIELCTLSTS,
IDT_SW_NTP12_NTCTL,
IDT_SW_SWPORT12CTL, IDT_SW_SWPORT12STS,
{ {IDT_SW_NTP12_BARSETUP0, IDT_SW_NTP12_BARLIMIT0,
IDT_SW_NTP12_BARLTBASE0, IDT_SW_NTP12_BARUTBASE0},
{IDT_SW_NTP12_BARSETUP1, IDT_SW_NTP12_BARLIMIT1,
IDT_SW_NTP12_BARLTBASE1, IDT_SW_NTP12_BARUTBASE1},
{IDT_SW_NTP12_BARSETUP2, IDT_SW_NTP12_BARLIMIT2,
IDT_SW_NTP12_BARLTBASE2, IDT_SW_NTP12_BARUTBASE2},
{IDT_SW_NTP12_BARSETUP3, IDT_SW_NTP12_BARLIMIT3,
IDT_SW_NTP12_BARLTBASE3, IDT_SW_NTP12_BARUTBASE3},
{IDT_SW_NTP12_BARSETUP4, IDT_SW_NTP12_BARLIMIT4,
IDT_SW_NTP12_BARLTBASE4, IDT_SW_NTP12_BARUTBASE4},
{IDT_SW_NTP12_BARSETUP5, IDT_SW_NTP12_BARLIMIT5,
IDT_SW_NTP12_BARLTBASE5, IDT_SW_NTP12_BARUTBASE5} } },
/*13*/ {0},
/*14*/ {0},
/*15*/ {0},
/*16*/ { IDT_SW_NTP16_PCIECMDSTS, IDT_SW_NTP16_PCIELCTLSTS,
IDT_SW_NTP16_NTCTL,
IDT_SW_SWPORT16CTL, IDT_SW_SWPORT16STS,
{ {IDT_SW_NTP16_BARSETUP0, IDT_SW_NTP16_BARLIMIT0,
IDT_SW_NTP16_BARLTBASE0, IDT_SW_NTP16_BARUTBASE0},
{IDT_SW_NTP16_BARSETUP1, IDT_SW_NTP16_BARLIMIT1,
IDT_SW_NTP16_BARLTBASE1, IDT_SW_NTP16_BARUTBASE1},
{IDT_SW_NTP16_BARSETUP2, IDT_SW_NTP16_BARLIMIT2,
IDT_SW_NTP16_BARLTBASE2, IDT_SW_NTP16_BARUTBASE2},
{IDT_SW_NTP16_BARSETUP3, IDT_SW_NTP16_BARLIMIT3,
IDT_SW_NTP16_BARLTBASE3, IDT_SW_NTP16_BARUTBASE3},
{IDT_SW_NTP16_BARSETUP4, IDT_SW_NTP16_BARLIMIT4,
IDT_SW_NTP16_BARLTBASE4, IDT_SW_NTP16_BARUTBASE4},
{IDT_SW_NTP16_BARSETUP5, IDT_SW_NTP16_BARLIMIT5,
IDT_SW_NTP16_BARLTBASE5, IDT_SW_NTP16_BARUTBASE5} } },
/*17*/ {0},
/*18*/ {0},
/*19*/ {0},
/*20*/ { IDT_SW_NTP20_PCIECMDSTS, IDT_SW_NTP20_PCIELCTLSTS,
IDT_SW_NTP20_NTCTL,
IDT_SW_SWPORT20CTL, IDT_SW_SWPORT20STS,
{ {IDT_SW_NTP20_BARSETUP0, IDT_SW_NTP20_BARLIMIT0,
IDT_SW_NTP20_BARLTBASE0, IDT_SW_NTP20_BARUTBASE0},
{IDT_SW_NTP20_BARSETUP1, IDT_SW_NTP20_BARLIMIT1,
IDT_SW_NTP20_BARLTBASE1, IDT_SW_NTP20_BARUTBASE1},
{IDT_SW_NTP20_BARSETUP2, IDT_SW_NTP20_BARLIMIT2,
IDT_SW_NTP20_BARLTBASE2, IDT_SW_NTP20_BARUTBASE2},
{IDT_SW_NTP20_BARSETUP3, IDT_SW_NTP20_BARLIMIT3,
IDT_SW_NTP20_BARLTBASE3, IDT_SW_NTP20_BARUTBASE3},
{IDT_SW_NTP20_BARSETUP4, IDT_SW_NTP20_BARLIMIT4,
IDT_SW_NTP20_BARLTBASE4, IDT_SW_NTP20_BARUTBASE4},
{IDT_SW_NTP20_BARSETUP5, IDT_SW_NTP20_BARLIMIT5,
IDT_SW_NTP20_BARLTBASE5, IDT_SW_NTP20_BARUTBASE5} } },
/*21*/ {0},
/*22*/ {0},
/*23*/ {0}
};
/*
* IDT PCIe-switch partitions table with the corresponding control, status
* and messages control registers
*/
static const struct idt_ntb_part partdata_tbl[IDT_MAX_NR_PARTS] = {
/*0*/ { IDT_SW_SWPART0CTL, IDT_SW_SWPART0STS,
{IDT_SW_SWP0MSGCTL0, IDT_SW_SWP0MSGCTL1,
IDT_SW_SWP0MSGCTL2, IDT_SW_SWP0MSGCTL3} },
/*1*/ { IDT_SW_SWPART1CTL, IDT_SW_SWPART1STS,
{IDT_SW_SWP1MSGCTL0, IDT_SW_SWP1MSGCTL1,
IDT_SW_SWP1MSGCTL2, IDT_SW_SWP1MSGCTL3} },
/*2*/ { IDT_SW_SWPART2CTL, IDT_SW_SWPART2STS,
{IDT_SW_SWP2MSGCTL0, IDT_SW_SWP2MSGCTL1,
IDT_SW_SWP2MSGCTL2, IDT_SW_SWP2MSGCTL3} },
/*3*/ { IDT_SW_SWPART3CTL, IDT_SW_SWPART3STS,
{IDT_SW_SWP3MSGCTL0, IDT_SW_SWP3MSGCTL1,
IDT_SW_SWP3MSGCTL2, IDT_SW_SWP3MSGCTL3} },
/*4*/ { IDT_SW_SWPART4CTL, IDT_SW_SWPART4STS,
{IDT_SW_SWP4MSGCTL0, IDT_SW_SWP4MSGCTL1,
IDT_SW_SWP4MSGCTL2, IDT_SW_SWP4MSGCTL3} },
/*5*/ { IDT_SW_SWPART5CTL, IDT_SW_SWPART5STS,
{IDT_SW_SWP5MSGCTL0, IDT_SW_SWP5MSGCTL1,
IDT_SW_SWP5MSGCTL2, IDT_SW_SWP5MSGCTL3} },
/*6*/ { IDT_SW_SWPART6CTL, IDT_SW_SWPART6STS,
{IDT_SW_SWP6MSGCTL0, IDT_SW_SWP6MSGCTL1,
IDT_SW_SWP6MSGCTL2, IDT_SW_SWP6MSGCTL3} },
/*7*/ { IDT_SW_SWPART7CTL, IDT_SW_SWPART7STS,
{IDT_SW_SWP7MSGCTL0, IDT_SW_SWP7MSGCTL1,
IDT_SW_SWP7MSGCTL2, IDT_SW_SWP7MSGCTL3} }
};
/*
* DebugFS directory to place the driver debug file
*/
static struct dentry *dbgfs_topdir;
/*=============================================================================
* 1. IDT PCIe-switch registers IO-functions
*
* Beside ordinary configuration space registers IDT PCIe-switch expose
* global configuration registers, which are used to determine state of other
* device ports as well as being notified of some switch-related events.
* Additionally all the configuration space registers of all the IDT
* PCIe-switch functions are mapped to the Global Address space, so each
* function can determine a configuration of any other PCI-function.
* Functions declared in this chapter are created to encapsulate access
* to configuration and global registers, so the driver code just need to
* provide IDT NTB hardware descriptor and a register address.
*=============================================================================
*/
/*
* idt_nt_write() - PCI configuration space registers write method
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to write data to
* @data: Value to write to the register
*
* IDT PCIe-switch registers are all Little endian.
*/
static void idt_nt_write(struct idt_ntb_dev *ndev,
const unsigned int reg, const u32 data)
{
/*
* It's obvious bug to request a register exceeding the maximum possible
* value as well as to have it unaligned.
*/
if (WARN_ON(reg > IDT_REG_PCI_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
return;
/* Just write the value to the specified register */
iowrite32(data, ndev->cfgspc + (ptrdiff_t)reg);
}
/*
* idt_nt_read() - PCI configuration space registers read method
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to write data to
*
* IDT PCIe-switch Global configuration registers are all Little endian.
*
* Return: register value
*/
static u32 idt_nt_read(struct idt_ntb_dev *ndev, const unsigned int reg)
{
/*
* It's obvious bug to request a register exceeding the maximum possible
* value as well as to have it unaligned.
*/
if (WARN_ON(reg > IDT_REG_PCI_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
return ~0;
/* Just read the value from the specified register */
return ioread32(ndev->cfgspc + (ptrdiff_t)reg);
}
/*
* idt_sw_write() - Global registers write method
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to write data to
* @data: Value to write to the register
*
* IDT PCIe-switch Global configuration registers are all Little endian.
*/
static void idt_sw_write(struct idt_ntb_dev *ndev,
const unsigned int reg, const u32 data)
{
unsigned long irqflags;
/*
* It's obvious bug to request a register exceeding the maximum possible
* value as well as to have it unaligned.
*/
if (WARN_ON(reg > IDT_REG_SW_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
return;
/* Lock GASA registers operations */
spin_lock_irqsave(&ndev->gasa_lock, irqflags);
/* Set the global register address */
iowrite32((u32)reg, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASAADDR);
/* Put the new value of the register */
iowrite32(data, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASADATA);
/* Make sure the PCIe transactions are executed */
mmiowb();
/* Unlock GASA registers operations */
spin_unlock_irqrestore(&ndev->gasa_lock, irqflags);
}
/*
* idt_sw_read() - Global registers read method
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to write data to
*
* IDT PCIe-switch Global configuration registers are all Little endian.
*
* Return: register value
*/
static u32 idt_sw_read(struct idt_ntb_dev *ndev, const unsigned int reg)
{
unsigned long irqflags;
u32 data;
/*
* It's obvious bug to request a register exceeding the maximum possible
* value as well as to have it unaligned.
*/
if (WARN_ON(reg > IDT_REG_SW_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
return ~0;
/* Lock GASA registers operations */
spin_lock_irqsave(&ndev->gasa_lock, irqflags);
/* Set the global register address */
iowrite32((u32)reg, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASAADDR);
/* Get the data of the register (read ops acts as MMIO barrier) */
data = ioread32(ndev->cfgspc + (ptrdiff_t)IDT_NT_GASADATA);
/* Unlock GASA registers operations */
spin_unlock_irqrestore(&ndev->gasa_lock, irqflags);
return data;
}
/*
* idt_reg_set_bits() - set bits of a passed register
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to change bits of
* @reg_lock: Register access spin lock
* @valid_mask: Mask of valid bits
* @set_bits: Bitmask to set
*
* Helper method to check whether a passed bitfield is valid and set
* corresponding bits of a register.
*
* WARNING! Make sure the passed register isn't accessed over plane
* idt_nt_write() method (read method is ok to be used concurrently).
*
* Return: zero on success, negative error on invalid bitmask.
*/
static inline int idt_reg_set_bits(struct idt_ntb_dev *ndev, unsigned int reg,
spinlock_t *reg_lock,
u64 valid_mask, u64 set_bits)
{
unsigned long irqflags;
u32 data;
if (set_bits & ~(u64)valid_mask)
return -EINVAL;
/* Lock access to the register unless the change is written back */
spin_lock_irqsave(reg_lock, irqflags);
data = idt_nt_read(ndev, reg) | (u32)set_bits;
idt_nt_write(ndev, reg, data);
/* Unlock the register */
spin_unlock_irqrestore(reg_lock, irqflags);
return 0;
}
/*
* idt_reg_clear_bits() - clear bits of a passed register
* @ndev: IDT NTB hardware driver descriptor
* @reg: Register to change bits of
* @reg_lock: Register access spin lock
* @set_bits: Bitmask to clear
*
* Helper method to check whether a passed bitfield is valid and clear
* corresponding bits of a register.
*
* NOTE! Invalid bits are always considered cleared so it's not an error
* to clear them over.
*
* WARNING! Make sure the passed register isn't accessed over plane
* idt_nt_write() method (read method is ok to use concurrently).
*/
static inline void idt_reg_clear_bits(struct idt_ntb_dev *ndev,
unsigned int reg, spinlock_t *reg_lock,
u64 clear_bits)
{
unsigned long irqflags;
u32 data;
/* Lock access to the register unless the change is written back */
spin_lock_irqsave(reg_lock, irqflags);
data = idt_nt_read(ndev, reg) & ~(u32)clear_bits;
idt_nt_write(ndev, reg, data);
/* Unlock the register */
spin_unlock_irqrestore(reg_lock, irqflags);
}
/*===========================================================================
* 2. Ports operations
*
* IDT PCIe-switches can have from 3 up to 8 ports with possible
* NT-functions enabled. So all the possible ports need to be scanned looking
* for NTB activated. NTB API will have enumerated only the ports with NTB.
*===========================================================================
*/
/*
* idt_scan_ports() - scan IDT PCIe-switch ports collecting info in the tables
* @ndev: Pointer to the PCI device descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_scan_ports(struct idt_ntb_dev *ndev)
{
unsigned char pidx, port, part;
u32 data, portsts, partsts;
/* Retrieve the local port number */
data = idt_nt_read(ndev, IDT_NT_PCIELCAP);
ndev->port = GET_FIELD(PCIELCAP_PORTNUM, data);
/* Retrieve the local partition number */
portsts = idt_sw_read(ndev, portdata_tbl[ndev->port].sts);
ndev->part = GET_FIELD(SWPORTxSTS_SWPART, portsts);
/* Initialize port/partition -> index tables with invalid values */
memset(ndev->port_idx_map, -EINVAL, sizeof(ndev->port_idx_map));
memset(ndev->part_idx_map, -EINVAL, sizeof(ndev->part_idx_map));
/*
* Walk over all the possible ports checking whether any of them has
* NT-function activated
*/
ndev->peer_cnt = 0;
for (pidx = 0; pidx < ndev->swcfg->port_cnt; pidx++) {
port = ndev->swcfg->ports[pidx];
/* Skip local port */
if (port == ndev->port)
continue;
/* Read the port status register to get it partition */
portsts = idt_sw_read(ndev, portdata_tbl[port].sts);
part = GET_FIELD(SWPORTxSTS_SWPART, portsts);
/* Retrieve the partition status */
partsts = idt_sw_read(ndev, partdata_tbl[part].sts);
/* Check if partition state is active and port has NTB */
if (IS_FLD_SET(SWPARTxSTS_STATE, partsts, ACT) &&
(IS_FLD_SET(SWPORTxSTS_MODE, portsts, NT) ||
IS_FLD_SET(SWPORTxSTS_MODE, portsts, USNT) ||
IS_FLD_SET(SWPORTxSTS_MODE, portsts, USNTDMA) ||
IS_FLD_SET(SWPORTxSTS_MODE, portsts, NTDMA))) {
/* Save the port and partition numbers */
ndev->peers[ndev->peer_cnt].port = port;
ndev->peers[ndev->peer_cnt].part = part;
/* Fill in the port/partition -> index tables */
ndev->port_idx_map[port] = ndev->peer_cnt;
ndev->part_idx_map[part] = ndev->peer_cnt;
ndev->peer_cnt++;
}
}
dev_dbg(&ndev->ntb.pdev->dev, "Local port: %hhu, num of peers: %hhu\n",
ndev->port, ndev->peer_cnt);
/* It's useless to have this driver loaded if there is no any peer */
if (ndev->peer_cnt == 0) {
dev_warn(&ndev->ntb.pdev->dev, "No active peer found\n");
return -ENODEV;
}
return 0;
}
/*
* idt_ntb_port_number() - get the local port number
* @ntb: NTB device context.
*
* Return: the local port number
*/
static int idt_ntb_port_number(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return ndev->port;
}
/*
* idt_ntb_peer_port_count() - get the number of peer ports
* @ntb: NTB device context.
*
* Return the count of detected peer NT-functions.
*
* Return: number of peer ports
*/
static int idt_ntb_peer_port_count(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return ndev->peer_cnt;
}
/*
* idt_ntb_peer_port_number() - get peer port by given index
* @ntb: NTB device context.
* @pidx: Peer port index.
*
* Return: peer port or negative error
*/
static int idt_ntb_peer_port_number(struct ntb_dev *ntb, int pidx)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
/* Return the detected NT-function port number */
return ndev->peers[pidx].port;
}
/*
* idt_ntb_peer_port_idx() - get peer port index by given port number
* @ntb: NTB device context.
* @port: Peer port number.
*
* Internal port -> index table is pre-initialized with -EINVAL values,
* so we just need to return it value
*
* Return: peer NT-function port index or negative error
*/
static int idt_ntb_peer_port_idx(struct ntb_dev *ntb, int port)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (port < 0 || IDT_MAX_NR_PORTS <= port)
return -EINVAL;
return ndev->port_idx_map[port];
}
/*===========================================================================
* 3. Link status operations
* There is no any ready-to-use method to have peer ports notified if NTB
* link is set up or got down. Instead global signal can be used instead.
* In case if any one of ports changes local NTB link state, it sends
* global signal and clears corresponding global state bit. Then all the ports
* receive a notification of that, so to make client driver being aware of
* possible NTB link change.
* Additionally each of active NT-functions is subscribed to PCIe-link
* state changes of peer ports.
*===========================================================================
*/
static void idt_ntb_local_link_disable(struct idt_ntb_dev *ndev);
/*
* idt_init_link() - Initialize NTB link state notification subsystem
* @ndev: IDT NTB hardware driver descriptor
*
* Function performs the basic initialization of some global registers
* needed to enable IRQ-based notifications of PCIe Link Up/Down and
* Global Signal events.
* NOTE Since it's not possible to determine when all the NTB peer drivers are
* unloaded as well as have those registers accessed concurrently, we must
* preinitialize them with the same value and leave it uncleared on local
* driver unload.
*/
static void idt_init_link(struct idt_ntb_dev *ndev)
{
u32 part_mask, port_mask, se_mask;
unsigned char pidx;
/* Initialize spin locker of Mapping Table access registers */
spin_lock_init(&ndev->mtbl_lock);
/* Walk over all detected peers collecting port and partition masks */
port_mask = ~BIT(ndev->port);
part_mask = ~BIT(ndev->part);
for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
port_mask &= ~BIT(ndev->peers[pidx].port);
part_mask &= ~BIT(ndev->peers[pidx].part);
}
/* Clean the Link Up/Down and GLobal Signal status registers */
idt_sw_write(ndev, IDT_SW_SELINKUPSTS, (u32)-1);
idt_sw_write(ndev, IDT_SW_SELINKDNSTS, (u32)-1);
idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)-1);
/* Unmask NT-activated partitions to receive Global Switch events */
idt_sw_write(ndev, IDT_SW_SEPMSK, part_mask);
/* Enable PCIe Link Up events of NT-activated ports */
idt_sw_write(ndev, IDT_SW_SELINKUPMSK, port_mask);
/* Enable PCIe Link Down events of NT-activated ports */
idt_sw_write(ndev, IDT_SW_SELINKDNMSK, port_mask);
/* Unmask NT-activated partitions to receive Global Signal events */
idt_sw_write(ndev, IDT_SW_SEGSIGMSK, part_mask);
/* Unmask Link Up/Down and Global Switch Events */
se_mask = ~(IDT_SEMSK_LINKUP | IDT_SEMSK_LINKDN | IDT_SEMSK_GSIGNAL);
idt_sw_write(ndev, IDT_SW_SEMSK, se_mask);
dev_dbg(&ndev->ntb.pdev->dev, "NTB link status events initialized");
}
/*
* idt_deinit_link() - deinitialize link subsystem
* @ndev: IDT NTB hardware driver descriptor
*
* Just disable the link back.
*/
static void idt_deinit_link(struct idt_ntb_dev *ndev)
{
/* Disable the link */
idt_ntb_local_link_disable(ndev);
dev_dbg(&ndev->ntb.pdev->dev, "NTB link status events deinitialized");
}
/*
* idt_se_isr() - switch events ISR
* @ndev: IDT NTB hardware driver descriptor
* @ntint_sts: NT-function interrupt status
*
* This driver doesn't support IDT PCIe-switch dynamic reconfigurations,
* Failover capability, etc, so switch events are utilized to notify of
* PCIe and NTB link events.
* The method is called from PCIe ISR bottom-half routine.
*/
static void idt_se_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
{
u32 sests;
/* Read Switch Events status */
sests = idt_sw_read(ndev, IDT_SW_SESTS);
/* Clean the Link Up/Down and Global Signal status registers */
idt_sw_write(ndev, IDT_SW_SELINKUPSTS, (u32)-1);
idt_sw_write(ndev, IDT_SW_SELINKDNSTS, (u32)-1);
idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)-1);
/* Clean the corresponding interrupt bit */
idt_nt_write(ndev, IDT_NT_NTINTSTS, IDT_NTINTSTS_SEVENT);
dev_dbg(&ndev->ntb.pdev->dev, "SE IRQ detected %#08x (SESTS %#08x)",
ntint_sts, sests);
/* Notify the client driver of possible link state change */
ntb_link_event(&ndev->ntb);
}
/*
* idt_ntb_local_link_enable() - enable the local NTB link.
* @ndev: IDT NTB hardware driver descriptor
*
* In order to enable the NTB link we need:
* - enable Completion TLPs translation
* - initialize mapping table to enable the Request ID translation
* - notify peers of NTB link state change
*/
static void idt_ntb_local_link_enable(struct idt_ntb_dev *ndev)
{
u32 reqid, mtbldata = 0;
unsigned long irqflags;
/* Enable the ID protection and Completion TLPs translation */
idt_nt_write(ndev, IDT_NT_NTCTL, IDT_NTCTL_CPEN);
/* Retrieve the current Requester ID (Bus:Device:Function) */
reqid = idt_nt_read(ndev, IDT_NT_REQIDCAP);
/*
* Set the corresponding NT Mapping table entry of port partition index
* with the data to perform the Request ID translation
*/
mtbldata = SET_FIELD(NTMTBLDATA_REQID, 0, reqid) |
SET_FIELD(NTMTBLDATA_PART, 0, ndev->part) |
IDT_NTMTBLDATA_VALID;
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
idt_nt_write(ndev, IDT_NT_NTMTBLDATA, mtbldata);
mmiowb();
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
/* Notify the peers by setting and clearing the global signal bit */
idt_nt_write(ndev, IDT_NT_NTGSIGNAL, IDT_NTGSIGNAL_SET);
idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)1 << ndev->part);
}
/*
* idt_ntb_local_link_disable() - disable the local NTB link.
* @ndev: IDT NTB hardware driver descriptor
*
* In order to enable the NTB link we need:
* - disable Completion TLPs translation
* - clear corresponding mapping table entry
* - notify peers of NTB link state change
*/
static void idt_ntb_local_link_disable(struct idt_ntb_dev *ndev)
{
unsigned long irqflags;
/* Disable Completion TLPs translation */
idt_nt_write(ndev, IDT_NT_NTCTL, 0);
/* Clear the corresponding NT Mapping table entry */
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
idt_nt_write(ndev, IDT_NT_NTMTBLDATA, 0);
mmiowb();
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
/* Notify the peers by setting and clearing the global signal bit */
idt_nt_write(ndev, IDT_NT_NTGSIGNAL, IDT_NTGSIGNAL_SET);
idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)1 << ndev->part);
}
/*
* idt_ntb_local_link_is_up() - test wethter local NTB link is up
* @ndev: IDT NTB hardware driver descriptor
*
* Local link is up under the following conditions:
* - Bus mastering is enabled
* - NTCTL has Completion TLPs translation enabled
* - Mapping table permits Request TLPs translation
* NOTE: We don't need to check PCIe link state since it's obviously
* up while we are able to communicate with IDT PCIe-switch
*
* Return: true if link is up, otherwise false
*/
static bool idt_ntb_local_link_is_up(struct idt_ntb_dev *ndev)
{
unsigned long irqflags;
u32 data;
/* Read the local Bus Master Enable status */
data = idt_nt_read(ndev, IDT_NT_PCICMDSTS);
if (!(data & IDT_PCICMDSTS_BME))
return false;
/* Read the local Completion TLPs translation enable status */
data = idt_nt_read(ndev, IDT_NT_NTCTL);
if (!(data & IDT_NTCTL_CPEN))
return false;
/* Read Mapping table entry corresponding to the local partition */
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
return !!(data & IDT_NTMTBLDATA_VALID);
}
/*
* idt_ntb_peer_link_is_up() - test whether peer NTB link is up
* @ndev: IDT NTB hardware driver descriptor
* @pidx: Peer port index
*
* Peer link is up under the following conditions:
* - PCIe link is up
* - Bus mastering is enabled
* - NTCTL has Completion TLPs translation enabled
* - Mapping table permits Request TLPs translation
*
* Return: true if link is up, otherwise false
*/
static bool idt_ntb_peer_link_is_up(struct idt_ntb_dev *ndev, int pidx)
{
unsigned long irqflags;
unsigned char port;
u32 data;
/* Retrieve the device port number */
port = ndev->peers[pidx].port;
/* Check whether PCIe link is up */
data = idt_sw_read(ndev, portdata_tbl[port].sts);
if (!(data & IDT_SWPORTxSTS_LINKUP))
return false;
/* Check whether bus mastering is enabled on the peer port */
data = idt_sw_read(ndev, portdata_tbl[port].pcicmdsts);
if (!(data & IDT_PCICMDSTS_BME))
return false;
/* Check if Completion TLPs translation is enabled on the peer port */
data = idt_sw_read(ndev, portdata_tbl[port].ntctl);
if (!(data & IDT_NTCTL_CPEN))
return false;
/* Read Mapping table entry corresponding to the peer partition */
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->peers[pidx].part);
data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
return !!(data & IDT_NTMTBLDATA_VALID);
}
/*
* idt_ntb_link_is_up() - get the current ntb link state (NTB API callback)
* @ntb: NTB device context.
* @speed: OUT - The link speed expressed as PCIe generation number.
* @width: OUT - The link width expressed as the number of PCIe lanes.
*
* Get the bitfield of NTB link states for all peer ports
*
* Return: bitfield of indexed ports link state: bit is set/cleared if the
* link is up/down respectively.
*/
static u64 idt_ntb_link_is_up(struct ntb_dev *ntb,
enum ntb_speed *speed, enum ntb_width *width)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
unsigned char pidx;
u64 status;
u32 data;
/* Retrieve the local link speed and width */
if (speed != NULL || width != NULL) {
data = idt_nt_read(ndev, IDT_NT_PCIELCTLSTS);
if (speed != NULL)
*speed = GET_FIELD(PCIELCTLSTS_CLS, data);
if (width != NULL)
*width = GET_FIELD(PCIELCTLSTS_NLW, data);
}
/* If local NTB link isn't up then all the links are considered down */
if (!idt_ntb_local_link_is_up(ndev))
return 0;
/* Collect all the peer ports link states into the bitfield */
status = 0;
for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
if (idt_ntb_peer_link_is_up(ndev, pidx))
status |= ((u64)1 << pidx);
}
return status;
}
/*
* idt_ntb_link_enable() - enable local port ntb link (NTB API callback)
* @ntb: NTB device context.
* @max_speed: The maximum link speed expressed as PCIe generation number.
* @max_width: The maximum link width expressed as the number of PCIe lanes.
*
* Enable just local NTB link. PCIe link parameters are ignored.
*
* Return: always zero.
*/
static int idt_ntb_link_enable(struct ntb_dev *ntb, enum ntb_speed speed,
enum ntb_width width)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
/* Just enable the local NTB link */
idt_ntb_local_link_enable(ndev);
dev_dbg(&ndev->ntb.pdev->dev, "Local NTB link enabled");
return 0;
}
/*
* idt_ntb_link_disable() - disable local port ntb link (NTB API callback)
* @ntb: NTB device context.
*
* Disable just local NTB link.
*
* Return: always zero.
*/
static int idt_ntb_link_disable(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
/* Just disable the local NTB link */
idt_ntb_local_link_disable(ndev);
dev_dbg(&ndev->ntb.pdev->dev, "Local NTB link disabled");
return 0;
}
/*=============================================================================
* 4. Memory Window operations
*
* IDT PCIe-switches have two types of memory windows: MWs with direct
* address translation and MWs with LUT based translation. The first type of
* MWs is simple map of corresponding BAR address space to a memory space
* of specified target port. So it implemets just ont-to-one mapping. Lookup
* table in its turn can map one BAR address space to up to 24 different
* memory spaces of different ports.
* NT-functions BARs can be turned on to implement either direct or lookup
* table based address translations, so:
* BAR0 - NT configuration registers space/direct address translation
* BAR1 - direct address translation/upper address of BAR0x64
* BAR2 - direct address translation/Lookup table with either 12 or 24 entries
* BAR3 - direct address translation/upper address of BAR2x64
* BAR4 - direct address translation/Lookup table with either 12 or 24 entries
* BAR5 - direct address translation/upper address of BAR4x64
* Additionally BAR2 and BAR4 can't have 24-entries LUT enabled at the same
* time. Since the BARs setup can be rather complicated this driver implements
* a scanning algorithm to have all the possible memory windows configuration
* covered.
*
* NOTE 1 BAR setup must be done before Linux kernel enumerated NT-function
* of any port, so this driver would have memory windows configurations fixed.
* In this way all initializations must be performed either by platform BIOS
* or using EEPROM connected to IDT PCIe-switch master SMBus.
*
* NOTE 2 This driver expects BAR0 mapping NT-function configuration space.
* Easy calculation can give us an upper boundary of 29 possible memory windows
* per each NT-function if all the BARs are of 32bit type.
*=============================================================================
*/
/*
* idt_get_mw_count() - get memory window count
* @mw_type: Memory window type
*
* Return: number of memory windows with respect to the BAR type
*/
static inline unsigned char idt_get_mw_count(enum idt_mw_type mw_type)
{
switch (mw_type) {
case IDT_MW_DIR:
return 1;
case IDT_MW_LUT12:
return 12;
case IDT_MW_LUT24:
return 24;
default:
break;
}
return 0;
}
/*
* idt_get_mw_name() - get memory window name
* @mw_type: Memory window type
*
* Return: pointer to a string with name
*/
static inline char *idt_get_mw_name(enum idt_mw_type mw_type)
{
switch (mw_type) {
case IDT_MW_DIR:
return "DIR ";
case IDT_MW_LUT12:
return "LUT12";
case IDT_MW_LUT24:
return "LUT24";
default:
break;
}
return "unknown";
}
/*
* idt_scan_mws() - scan memory windows of the port
* @ndev: IDT NTB hardware driver descriptor
* @port: Port to get number of memory windows for
* @mw_cnt: Out - number of memory windows
*
* It walks over BAR setup registers of the specified port and determines
* the memory windows parameters if any activated.
*
* Return: array of memory windows
*/
static struct idt_mw_cfg *idt_scan_mws(struct idt_ntb_dev *ndev, int port,
unsigned char *mw_cnt)
{
struct idt_mw_cfg mws[IDT_MAX_NR_MWS], *ret_mws;
const struct idt_ntb_bar *bars;
enum idt_mw_type mw_type;
unsigned char widx, bidx, en_cnt;
bool bar_64bit = false;
int aprt_size;
u32 data;
/* Retrieve the array of the BARs registers */
bars = portdata_tbl[port].bars;
/* Scan all the BARs belonging to the port */
*mw_cnt = 0;
for (bidx = 0; bidx < IDT_BAR_CNT; bidx += 1 + bar_64bit) {
/* Read BARSETUP register value */
data = idt_sw_read(ndev, bars[bidx].setup);
/* Skip disabled BARs */
if (!(data & IDT_BARSETUP_EN)) {
bar_64bit = false;
continue;
}
/* Skip next BARSETUP if current one has 64bit addressing */
bar_64bit = IS_FLD_SET(BARSETUP_TYPE, data, 64);
/* Skip configuration space mapping BARs */
if (data & IDT_BARSETUP_MODE_CFG)
continue;
/* Retrieve MW type/entries count and aperture size */
mw_type = GET_FIELD(BARSETUP_ATRAN, data);
en_cnt = idt_get_mw_count(mw_type);
aprt_size = (u64)1 << GET_FIELD(BARSETUP_SIZE, data);
/* Save configurations of all available memory windows */
for (widx = 0; widx < en_cnt; widx++, (*mw_cnt)++) {
/*
* IDT can expose a limited number of MWs, so it's bug
* to have more than the driver expects
*/
if (*mw_cnt >= IDT_MAX_NR_MWS)
return ERR_PTR(-EINVAL);
/* Save basic MW info */
mws[*mw_cnt].type = mw_type;
mws[*mw_cnt].bar = bidx;
mws[*mw_cnt].idx = widx;
/* It's always DWORD aligned */
mws[*mw_cnt].addr_align = IDT_TRANS_ALIGN;
/* DIR and LUT approachs differently configure MWs */
if (mw_type == IDT_MW_DIR)
mws[*mw_cnt].size_max = aprt_size;
else if (mw_type == IDT_MW_LUT12)
mws[*mw_cnt].size_max = aprt_size / 16;
else
mws[*mw_cnt].size_max = aprt_size / 32;
mws[*mw_cnt].size_align = (mw_type == IDT_MW_DIR) ?
IDT_DIR_SIZE_ALIGN : mws[*mw_cnt].size_max;
}
}
/* Allocate memory for memory window descriptors */
ret_mws = devm_kcalloc(&ndev->ntb.pdev->dev, *mw_cnt,
sizeof(*ret_mws), GFP_KERNEL);
if (IS_ERR_OR_NULL(ret_mws))
return ERR_PTR(-ENOMEM);
/* Copy the info of detected memory windows */
memcpy(ret_mws, mws, (*mw_cnt)*sizeof(*ret_mws));
return ret_mws;
}
/*
* idt_init_mws() - initialize memory windows subsystem
* @ndev: IDT NTB hardware driver descriptor
*
* Scan BAR setup registers of local and peer ports to determine the
* outbound and inbound memory windows parameters
*
* Return: zero on success, otherwise a negative error number
*/
static int idt_init_mws(struct idt_ntb_dev *ndev)
{
struct idt_ntb_peer *peer;
unsigned char pidx;
/* Scan memory windows of the local port */
ndev->mws = idt_scan_mws(ndev, ndev->port, &ndev->mw_cnt);
if (IS_ERR(ndev->mws)) {
dev_err(&ndev->ntb.pdev->dev,
"Failed to scan mws of local port %hhu", ndev->port);
return PTR_ERR(ndev->mws);
}
/* Scan memory windows of the peer ports */
for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
peer = &ndev->peers[pidx];
peer->mws = idt_scan_mws(ndev, peer->port, &peer->mw_cnt);
if (IS_ERR(peer->mws)) {
dev_err(&ndev->ntb.pdev->dev,
"Failed to scan mws of port %hhu", peer->port);
return PTR_ERR(peer->mws);
}
}
/* Initialize spin locker of the LUT registers */
spin_lock_init(&ndev->lut_lock);
dev_dbg(&ndev->ntb.pdev->dev, "Outbound and inbound MWs initialized");
return 0;
}
/*
* idt_ntb_mw_count() - number of inbound memory windows (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device.
*
* The value is returned for the specified peer, so generally speaking it can
* be different for different port depending on the IDT PCIe-switch
* initialization.
*
* Return: the number of memory windows.
*/
static int idt_ntb_mw_count(struct ntb_dev *ntb, int pidx)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
return ndev->peers[pidx].mw_cnt;
}
/*
* idt_ntb_mw_get_align() - inbound memory window parameters (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device.
* @widx: Memory window index.
* @addr_align: OUT - the base alignment for translating the memory window
* @size_align: OUT - the size alignment for translating the memory window
* @size_max: OUT - the maximum size of the memory window
*
* The peer memory window parameters have already been determined, so just
* return the corresponding values, which mustn't change within session.
*
* Return: Zero on success, otherwise a negative error number.
*/
static int idt_ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int widx,
resource_size_t *addr_align,
resource_size_t *size_align,
resource_size_t *size_max)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
struct idt_ntb_peer *peer;
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
peer = &ndev->peers[pidx];
if (widx < 0 || peer->mw_cnt <= widx)
return -EINVAL;
if (addr_align != NULL)
*addr_align = peer->mws[widx].addr_align;
if (size_align != NULL)
*size_align = peer->mws[widx].size_align;
if (size_max != NULL)
*size_max = peer->mws[widx].size_max;
return 0;
}
/*
* idt_ntb_peer_mw_count() - number of outbound memory windows
* (NTB API callback)
* @ntb: NTB device context.
*
* Outbound memory windows parameters have been determined based on the
* BAR setup registers value, which are mostly constants within one session.
*
* Return: the number of memory windows.
*/
static int idt_ntb_peer_mw_count(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return ndev->mw_cnt;
}
/*
* idt_ntb_peer_mw_get_addr() - get map address of an outbound memory window
* (NTB API callback)
* @ntb: NTB device context.
* @widx: Memory window index (within ntb_peer_mw_count() return value).
* @base: OUT - the base address of mapping region.
* @size: OUT - the size of mapping region.
*
* Return just parameters of BAR resources mapping. Size reflects just the size
* of the resource
*
* Return: Zero on success, otherwise a negative error number.
*/
static int idt_ntb_peer_mw_get_addr(struct ntb_dev *ntb, int widx,
phys_addr_t *base, resource_size_t *size)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (widx < 0 || ndev->mw_cnt <= widx)
return -EINVAL;
/* Mapping address is just properly shifted BAR resource start */
if (base != NULL)
*base = pci_resource_start(ntb->pdev, ndev->mws[widx].bar) +
ndev->mws[widx].idx * ndev->mws[widx].size_max;
/* Mapping size has already been calculated at MWs scanning */
if (size != NULL)
*size = ndev->mws[widx].size_max;
return 0;
}
/*
* idt_ntb_peer_mw_set_trans() - set a translation address of a memory window
* (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device the translation address received from.
* @widx: Memory window index.
* @addr: The dma address of the shared memory to access.
* @size: The size of the shared memory to access.
*
* The Direct address translation and LUT base translation is initialized a
* bit differenet. Although the parameters restriction are now determined by
* the same code.
*
* Return: Zero on success, otherwise an error number.
*/
static int idt_ntb_peer_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx,
u64 addr, resource_size_t size)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
struct idt_mw_cfg *mw_cfg;
u32 data = 0, lutoff = 0;
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
if (widx < 0 || ndev->mw_cnt <= widx)
return -EINVAL;
/*
* Retrieve the memory window config to make sure the passed arguments
* fit it restrictions
*/
mw_cfg = &ndev->mws[widx];
if (!IS_ALIGNED(addr, mw_cfg->addr_align))
return -EINVAL;
if (!IS_ALIGNED(size, mw_cfg->size_align) || size > mw_cfg->size_max)
return -EINVAL;
/* DIR and LUT based translations are initialized differently */
if (mw_cfg->type == IDT_MW_DIR) {
const struct idt_ntb_bar *bar = &ntdata_tbl.bars[mw_cfg->bar];
u64 limit;
/* Set destination partition of translation */
data = idt_nt_read(ndev, bar->setup);
data = SET_FIELD(BARSETUP_TPART, data, ndev->peers[pidx].part);
idt_nt_write(ndev, bar->setup, data);
/* Set translation base address */
idt_nt_write(ndev, bar->ltbase, (u32)addr);
idt_nt_write(ndev, bar->utbase, (u32)(addr >> 32));
/* Set the custom BAR aperture limit */
limit = pci_resource_start(ntb->pdev, mw_cfg->bar) + size;
idt_nt_write(ndev, bar->limit, (u32)limit);
if (IS_FLD_SET(BARSETUP_TYPE, data, 64))
idt_nt_write(ndev, (bar + 1)->limit, (limit >> 32));
} else {
unsigned long irqflags;
/* Initialize corresponding LUT entry */
lutoff = SET_FIELD(LUTOFFSET_INDEX, 0, mw_cfg->idx) |
SET_FIELD(LUTOFFSET_BAR, 0, mw_cfg->bar);
data = SET_FIELD(LUTUDATA_PART, 0, ndev->peers[pidx].part) |
IDT_LUTUDATA_VALID;
spin_lock_irqsave(&ndev->lut_lock, irqflags);
idt_nt_write(ndev, IDT_NT_LUTOFFSET, lutoff);
idt_nt_write(ndev, IDT_NT_LUTLDATA, (u32)addr);
idt_nt_write(ndev, IDT_NT_LUTMDATA, (u32)(addr >> 32));
idt_nt_write(ndev, IDT_NT_LUTUDATA, data);
mmiowb();
spin_unlock_irqrestore(&ndev->lut_lock, irqflags);
/* Limit address isn't specified since size is fixed for LUT */
}
return 0;
}
/*
* idt_ntb_peer_mw_clear_trans() - clear the outbound MW translation address
* (NTB API callback)
* @ntb: NTB device context.
* @pidx: Port index of peer device.
* @widx: Memory window index.
*
* It effectively disables the translation over the specified outbound MW.
*
* Return: Zero on success, otherwise an error number.
*/
static int idt_ntb_peer_mw_clear_trans(struct ntb_dev *ntb, int pidx,
int widx)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
struct idt_mw_cfg *mw_cfg;
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
if (widx < 0 || ndev->mw_cnt <= widx)
return -EINVAL;
mw_cfg = &ndev->mws[widx];
/* DIR and LUT based translations are initialized differently */
if (mw_cfg->type == IDT_MW_DIR) {
const struct idt_ntb_bar *bar = &ntdata_tbl.bars[mw_cfg->bar];
u32 data;
/* Read BARSETUP to check BAR type */
data = idt_nt_read(ndev, bar->setup);
/* Disable translation by specifying zero BAR limit */
idt_nt_write(ndev, bar->limit, 0);
if (IS_FLD_SET(BARSETUP_TYPE, data, 64))
idt_nt_write(ndev, (bar + 1)->limit, 0);
} else {
unsigned long irqflags;
u32 lutoff;
/* Clear the corresponding LUT entry up */
lutoff = SET_FIELD(LUTOFFSET_INDEX, 0, mw_cfg->idx) |
SET_FIELD(LUTOFFSET_BAR, 0, mw_cfg->bar);
spin_lock_irqsave(&ndev->lut_lock, irqflags);
idt_nt_write(ndev, IDT_NT_LUTOFFSET, lutoff);
idt_nt_write(ndev, IDT_NT_LUTLDATA, 0);
idt_nt_write(ndev, IDT_NT_LUTMDATA, 0);
idt_nt_write(ndev, IDT_NT_LUTUDATA, 0);
mmiowb();
spin_unlock_irqrestore(&ndev->lut_lock, irqflags);
}
return 0;
}
/*=============================================================================
* 5. Doorbell operations
*
* Doorbell functionality of IDT PCIe-switches is pretty unusual. First of
* all there is global doorbell register which state can by changed by any
* NT-function of the IDT device in accordance with global permissions. These
* permissions configs are not supported by NTB API, so it must be done by
* either BIOS or EEPROM settings. In the same way the state of the global
* doorbell is reflected to the NT-functions local inbound doorbell registers.
* It can lead to situations when client driver sets some peer doorbell bits
* and get them bounced back to local inbound doorbell if permissions are
* granted.
* Secondly there is just one IRQ vector for Doorbell, Message, Temperature
* and Switch events, so if client driver left any of Doorbell bits set and
* some other event occurred, the driver will be notified of Doorbell event
* again.
*=============================================================================
*/
/*
* idt_db_isr() - doorbell event ISR
* @ndev: IDT NTB hardware driver descriptor
* @ntint_sts: NT-function interrupt status
*
* Doorbell event happans when DBELL bit of NTINTSTS switches from 0 to 1.
* It happens only when unmasked doorbell bits are set to ones on completely
* zeroed doorbell register.
* The method is called from PCIe ISR bottom-half routine.
*/
static void idt_db_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
{
/*
* Doorbell IRQ status will be cleaned only when client
* driver unsets all the doorbell bits.
*/
dev_dbg(&ndev->ntb.pdev->dev, "DB IRQ detected %#08x", ntint_sts);
/* Notify the client driver of possible doorbell state change */
ntb_db_event(&ndev->ntb, 0);
}
/*
* idt_ntb_db_valid_mask() - get a mask of doorbell bits supported by the ntb
* (NTB API callback)
* @ntb: NTB device context.
*
* IDT PCIe-switches expose just one Doorbell register of DWORD size.
*
* Return: A mask of doorbell bits supported by the ntb.
*/
static u64 idt_ntb_db_valid_mask(struct ntb_dev *ntb)
{
return IDT_DBELL_MASK;
}
/*
* idt_ntb_db_read() - read the local doorbell register (NTB API callback)
* @ntb: NTB device context.
*
* There is just on inbound doorbell register of each NT-function, so
* this method return it value.
*
* Return: The bits currently set in the local doorbell register.
*/
static u64 idt_ntb_db_read(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_nt_read(ndev, IDT_NT_INDBELLSTS);
}
/*
* idt_ntb_db_clear() - clear bits in the local doorbell register
* (NTB API callback)
* @ntb: NTB device context.
* @db_bits: Doorbell bits to clear.
*
* Clear bits of inbound doorbell register by writing ones to it.
*
* NOTE! Invalid bits are always considered cleared so it's not an error
* to clear them over.
*
* Return: always zero as success.
*/
static int idt_ntb_db_clear(struct ntb_dev *ntb, u64 db_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
idt_nt_write(ndev, IDT_NT_INDBELLSTS, (u32)db_bits);
return 0;
}
/*
* idt_ntb_db_read_mask() - read the local doorbell mask (NTB API callback)
* @ntb: NTB device context.
*
* Each inbound doorbell bit can be masked from generating IRQ by setting
* the corresponding bit in inbound doorbell mask. So this method returns
* the value of the register.
*
* Return: The bits currently set in the local doorbell mask register.
*/
static u64 idt_ntb_db_read_mask(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_nt_read(ndev, IDT_NT_INDBELLMSK);
}
/*
* idt_ntb_db_set_mask() - set bits in the local doorbell mask
* (NTB API callback)
* @ntb: NTB device context.
* @db_bits: Doorbell mask bits to set.
*
* The inbound doorbell register mask value must be read, then OR'ed with
* passed field and only then set back.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_reg_set_bits(ndev, IDT_NT_INDBELLMSK, &ndev->db_mask_lock,
IDT_DBELL_MASK, db_bits);
}
/*
* idt_ntb_db_clear_mask() - clear bits in the local doorbell mask
* (NTB API callback)
* @ntb: NTB device context.
* @db_bits: Doorbell bits to clear.
*
* The method just clears the set bits up in accordance with the passed
* bitfield. IDT PCIe-switch shall generate an interrupt if there hasn't
* been any unmasked bit set before current unmasking. Otherwise IRQ won't
* be generated since there is only one IRQ vector for all doorbells.
*
* Return: always zero as success
*/
static int idt_ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
idt_reg_clear_bits(ndev, IDT_NT_INDBELLMSK, &ndev->db_mask_lock,
db_bits);
return 0;
}
/*
* idt_ntb_peer_db_set() - set bits in the peer doorbell register
* (NTB API callback)
* @ntb: NTB device context.
* @db_bits: Doorbell bits to set.
*
* IDT PCIe-switches exposes local outbound doorbell register to change peer
* inbound doorbell register state.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (db_bits & ~(u64)IDT_DBELL_MASK)
return -EINVAL;
idt_nt_write(ndev, IDT_NT_OUTDBELLSET, (u32)db_bits);
return 0;
}
/*=============================================================================
* 6. Messaging operations
*
* Each NT-function of IDT PCIe-switch has four inbound and four outbound
* message registers. Each outbound message register can be connected to one or
* even more than one peer inbound message registers by setting global
* configurations. Since NTB API permits one-on-one message registers mapping
* only, the driver acts in according with that restriction.
*=============================================================================
*/
/*
* idt_init_msg() - initialize messaging interface
* @ndev: IDT NTB hardware driver descriptor
*
* Just initialize the message registers routing tables locker.
*/
static void idt_init_msg(struct idt_ntb_dev *ndev)
{
unsigned char midx;
/* Init the messages routing table lockers */
for (midx = 0; midx < IDT_MSG_CNT; midx++)
spin_lock_init(&ndev->msg_locks[midx]);
dev_dbg(&ndev->ntb.pdev->dev, "NTB Messaging initialized");
}
/*
* idt_msg_isr() - message event ISR
* @ndev: IDT NTB hardware driver descriptor
* @ntint_sts: NT-function interrupt status
*
* Message event happens when MSG bit of NTINTSTS switches from 0 to 1.
* It happens only when unmasked message status bits are set to ones on
* completely zeroed message status register.
* The method is called from PCIe ISR bottom-half routine.
*/
static void idt_msg_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
{
/*
* Message IRQ status will be cleaned only when client
* driver unsets all the message status bits.
*/
dev_dbg(&ndev->ntb.pdev->dev, "Message IRQ detected %#08x", ntint_sts);
/* Notify the client driver of possible message status change */
ntb_msg_event(&ndev->ntb);
}
/*
* idt_ntb_msg_count() - get the number of message registers (NTB API callback)
* @ntb: NTB device context.
*
* IDT PCIe-switches support four message registers.
*
* Return: the number of message registers.
*/
static int idt_ntb_msg_count(struct ntb_dev *ntb)
{
return IDT_MSG_CNT;
}
/*
* idt_ntb_msg_inbits() - get a bitfield of inbound message registers status
* (NTB API callback)
* @ntb: NTB device context.
*
* NT message status register is shared between inbound and outbound message
* registers status
*
* Return: bitfield of inbound message registers.
*/
static u64 idt_ntb_msg_inbits(struct ntb_dev *ntb)
{
return (u64)IDT_INMSG_MASK;
}
/*
* idt_ntb_msg_outbits() - get a bitfield of outbound message registers status
* (NTB API callback)
* @ntb: NTB device context.
*
* NT message status register is shared between inbound and outbound message
* registers status
*
* Return: bitfield of outbound message registers.
*/
static u64 idt_ntb_msg_outbits(struct ntb_dev *ntb)
{
return (u64)IDT_OUTMSG_MASK;
}
/*
* idt_ntb_msg_read_sts() - read the message registers status (NTB API callback)
* @ntb: NTB device context.
*
* IDT PCIe-switches expose message status registers to notify drivers of
* incoming data and failures in case if peer message register isn't freed.
*
* Return: status bits of message registers
*/
static u64 idt_ntb_msg_read_sts(struct ntb_dev *ntb)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_nt_read(ndev, IDT_NT_MSGSTS);
}
/*
* idt_ntb_msg_clear_sts() - clear status bits of message registers
* (NTB API callback)
* @ntb: NTB device context.
* @sts_bits: Status bits to clear.
*
* Clear bits in the status register by writing ones.
*
* NOTE! Invalid bits are always considered cleared so it's not an error
* to clear them over.
*
* Return: always zero as success.
*/
static int idt_ntb_msg_clear_sts(struct ntb_dev *ntb, u64 sts_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
idt_nt_write(ndev, IDT_NT_MSGSTS, sts_bits);
return 0;
}
/*
* idt_ntb_msg_set_mask() - set mask of message register status bits
* (NTB API callback)
* @ntb: NTB device context.
* @mask_bits: Mask bits.
*
* Mask the message status bits from raising an IRQ.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_msg_set_mask(struct ntb_dev *ntb, u64 mask_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
return idt_reg_set_bits(ndev, IDT_NT_MSGSTSMSK, &ndev->msg_mask_lock,
IDT_MSG_MASK, mask_bits);
}
/*
* idt_ntb_msg_clear_mask() - clear message registers mask
* (NTB API callback)
* @ntb: NTB device context.
* @mask_bits: Mask bits.
*
* Clear mask of message status bits IRQs.
*
* Return: always zero as success.
*/
static int idt_ntb_msg_clear_mask(struct ntb_dev *ntb, u64 mask_bits)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
idt_reg_clear_bits(ndev, IDT_NT_MSGSTSMSK, &ndev->msg_mask_lock,
mask_bits);
return 0;
}
/*
* idt_ntb_msg_read() - read message register with specified index
* (NTB API callback)
* @ntb: NTB device context.
* @midx: Message register index
* @pidx: OUT - Port index of peer device a message retrieved from
* @msg: OUT - Data
*
* Read data from the specified message register and source register.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_msg_read(struct ntb_dev *ntb, int midx, int *pidx, u32 *msg)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
if (midx < 0 || IDT_MSG_CNT <= midx)
return -EINVAL;
/* Retrieve source port index of the message */
if (pidx != NULL) {
u32 srcpart;
srcpart = idt_nt_read(ndev, ntdata_tbl.msgs[midx].src);
*pidx = ndev->part_idx_map[srcpart];
/* Sanity check partition index (for initial case) */
if (*pidx == -EINVAL)
*pidx = 0;
}
/* Retrieve data of the corresponding message register */
if (msg != NULL)
*msg = idt_nt_read(ndev, ntdata_tbl.msgs[midx].in);
return 0;
}
/*
* idt_ntb_msg_write() - write data to the specified message register
* (NTB API callback)
* @ntb: NTB device context.
* @midx: Message register index
* @pidx: Port index of peer device a message being sent to
* @msg: Data to send
*
* Just try to send data to a peer. Message status register should be
* checked by client driver.
*
* Return: zero on success, negative error if invalid argument passed.
*/
static int idt_ntb_msg_write(struct ntb_dev *ntb, int midx, int pidx, u32 msg)
{
struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
unsigned long irqflags;
u32 swpmsgctl = 0;
if (midx < 0 || IDT_MSG_CNT <= midx)
return -EINVAL;
if (pidx < 0 || ndev->peer_cnt <= pidx)
return -EINVAL;
/* Collect the routing information */
swpmsgctl = SET_FIELD(SWPxMSGCTL_REG, 0, midx) |
SET_FIELD(SWPxMSGCTL_PART, 0, ndev->peers[pidx].part);
/* Lock the messages routing table of the specified register */
spin_lock_irqsave(&ndev->msg_locks[midx], irqflags);
/* Set the route and send the data */
idt_sw_write(ndev, partdata_tbl[ndev->part].msgctl[midx], swpmsgctl);
idt_nt_write(ndev, ntdata_tbl.msgs[midx].out, msg);
mmiowb();
/* Unlock the messages routing table */
spin_unlock_irqrestore(&ndev->msg_locks[midx], irqflags);
/* Client driver shall check the status register */
return 0;
}
/*=============================================================================
* 7. Temperature sensor operations
*
* IDT PCIe-switch has an embedded temperature sensor, which can be used to
* warn a user-space of possible chip overheating. Since workload temperature
* can be different on different platforms, temperature thresholds as well as
* general sensor settings must be setup in the framework of BIOS/EEPROM
* initializations. It includes the actual sensor enabling as well.
*=============================================================================
*/
/*
* idt_read_temp() - read temperature from chip sensor
* @ntb: NTB device context.
* @val: OUT - integer value of temperature
* @frac: OUT - fraction
*/
static void idt_read_temp(struct idt_ntb_dev *ndev, unsigned char *val,
unsigned char *frac)
{
u32 data;
/* Read the data from TEMP field of the TMPSTS register */
data = idt_sw_read(ndev, IDT_SW_TMPSTS);
data = GET_FIELD(TMPSTS_TEMP, data);
/* TEMP field has one fractional bit and seven integer bits */
*val = data >> 1;
*frac = ((data & 0x1) ? 5 : 0);
}
/*
* idt_temp_isr() - temperature sensor alarm events ISR
* @ndev: IDT NTB hardware driver descriptor
* @ntint_sts: NT-function interrupt status
*
* It handles events of temperature crossing alarm thresholds. Since reading
* of TMPALARM register clears it up, the function doesn't analyze the
* read value, instead the current temperature value just warningly printed to
* log.
* The method is called from PCIe ISR bottom-half routine.
*/
static void idt_temp_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
{
unsigned char val, frac;
/* Read the current temperature value */
idt_read_temp(ndev, &val, &frac);
/* Read the temperature alarm to clean the alarm status out */
/*(void)idt_sw_read(ndev, IDT_SW_TMPALARM);*/
/* Clean the corresponding interrupt bit */
idt_nt_write(ndev, IDT_NT_NTINTSTS, IDT_NTINTSTS_TMPSENSOR);
dev_dbg(&ndev->ntb.pdev->dev,
"Temp sensor IRQ detected %#08x", ntint_sts);
/* Print temperature value to log */
dev_warn(&ndev->ntb.pdev->dev, "Temperature %hhu.%hhu", val, frac);
}
/*=============================================================================
* 8. ISRs related operations
*
* IDT PCIe-switch has strangely developed IRQ system. There is just one
* interrupt vector for doorbell and message registers. So the hardware driver
* can't determine actual source of IRQ if, for example, message event happened
* while any of unmasked doorbell is still set. The similar situation may be if
* switch or temperature sensor events pop up. The difference is that SEVENT
* and TMPSENSOR bits of NT interrupt status register can be cleaned by
* IRQ handler so a next interrupt request won't have false handling of
* corresponding events.
* The hardware driver has only bottom-half handler of the IRQ, since if any
* of events happened the device won't raise it again before the last one is
* handled by clearing of corresponding NTINTSTS bit.
*=============================================================================
*/
static irqreturn_t idt_thread_isr(int irq, void *devid);
/*
* idt_init_isr() - initialize PCIe interrupt handler
* @ndev: IDT NTB hardware driver descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_init_isr(struct idt_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
u32 ntint_mask;
int ret;
/* Allocate just one interrupt vector for the ISR */
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
if (ret != 1) {
dev_err(&pdev->dev, "Failed to allocate IRQ vector");
return ret;
}
/* Retrieve the IRQ vector */
ret = pci_irq_vector(pdev, 0);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get IRQ vector");
goto err_free_vectors;
}
/* Set the IRQ handler */
ret = devm_request_threaded_irq(&pdev->dev, ret, NULL, idt_thread_isr,
IRQF_ONESHOT, NTB_IRQNAME, ndev);
if (ret != 0) {
dev_err(&pdev->dev, "Failed to set MSI IRQ handler, %d", ret);
goto err_free_vectors;
}
/* Unmask Message/Doorbell/SE/Temperature interrupts */
ntint_mask = idt_nt_read(ndev, IDT_NT_NTINTMSK) & ~IDT_NTINTMSK_ALL;
idt_nt_write(ndev, IDT_NT_NTINTMSK, ntint_mask);
/* From now on the interrupts are enabled */
dev_dbg(&pdev->dev, "NTB interrupts initialized");
return 0;
err_free_vectors:
pci_free_irq_vectors(pdev);
return ret;
}
/*
* idt_deinit_ist() - deinitialize PCIe interrupt handler
* @ndev: IDT NTB hardware driver descriptor
*
* Disable corresponding interrupts and free allocated IRQ vectors.
*/
static void idt_deinit_isr(struct idt_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
u32 ntint_mask;
/* Mask interrupts back */
ntint_mask = idt_nt_read(ndev, IDT_NT_NTINTMSK) | IDT_NTINTMSK_ALL;
idt_nt_write(ndev, IDT_NT_NTINTMSK, ntint_mask);
/* Manually free IRQ otherwise PCI free irq vectors will fail */
devm_free_irq(&pdev->dev, pci_irq_vector(pdev, 0), ndev);
/* Free allocated IRQ vectors */
pci_free_irq_vectors(pdev);
dev_dbg(&pdev->dev, "NTB interrupts deinitialized");
}
/*
* idt_thread_isr() - NT function interrupts handler
* @irq: IRQ number
* @devid: Custom buffer
*
* It reads current NT interrupts state register and handles all the event
* it declares.
* The method is bottom-half routine of actual default PCIe IRQ handler.
*/
static irqreturn_t idt_thread_isr(int irq, void *devid)
{
struct idt_ntb_dev *ndev = devid;
bool handled = false;
u32 ntint_sts;
/* Read the NT interrupts status register */
ntint_sts = idt_nt_read(ndev, IDT_NT_NTINTSTS);
/* Handle messaging interrupts */
if (ntint_sts & IDT_NTINTSTS_MSG) {
idt_msg_isr(ndev, ntint_sts);
handled = true;
}
/* Handle doorbell interrupts */
if (ntint_sts & IDT_NTINTSTS_DBELL) {
idt_db_isr(ndev, ntint_sts);
handled = true;
}
/* Handle switch event interrupts */
if (ntint_sts & IDT_NTINTSTS_SEVENT) {
idt_se_isr(ndev, ntint_sts);
handled = true;
}
/* Handle temperature sensor interrupt */
if (ntint_sts & IDT_NTINTSTS_TMPSENSOR) {
idt_temp_isr(ndev, ntint_sts);
handled = true;
}
dev_dbg(&ndev->ntb.pdev->dev, "IDT IRQs 0x%08x handled", ntint_sts);
return handled ? IRQ_HANDLED : IRQ_NONE;
}
/*===========================================================================
* 9. NTB hardware driver initialization
*===========================================================================
*/
/*
* NTB API operations
*/
static const struct ntb_dev_ops idt_ntb_ops = {
.port_number = idt_ntb_port_number,
.peer_port_count = idt_ntb_peer_port_count,
.peer_port_number = idt_ntb_peer_port_number,
.peer_port_idx = idt_ntb_peer_port_idx,
.link_is_up = idt_ntb_link_is_up,
.link_enable = idt_ntb_link_enable,
.link_disable = idt_ntb_link_disable,
.mw_count = idt_ntb_mw_count,
.mw_get_align = idt_ntb_mw_get_align,
.peer_mw_count = idt_ntb_peer_mw_count,
.peer_mw_get_addr = idt_ntb_peer_mw_get_addr,
.peer_mw_set_trans = idt_ntb_peer_mw_set_trans,
.peer_mw_clear_trans = idt_ntb_peer_mw_clear_trans,
.db_valid_mask = idt_ntb_db_valid_mask,
.db_read = idt_ntb_db_read,
.db_clear = idt_ntb_db_clear,
.db_read_mask = idt_ntb_db_read_mask,
.db_set_mask = idt_ntb_db_set_mask,
.db_clear_mask = idt_ntb_db_clear_mask,
.peer_db_set = idt_ntb_peer_db_set,
.msg_count = idt_ntb_msg_count,
.msg_inbits = idt_ntb_msg_inbits,
.msg_outbits = idt_ntb_msg_outbits,
.msg_read_sts = idt_ntb_msg_read_sts,
.msg_clear_sts = idt_ntb_msg_clear_sts,
.msg_set_mask = idt_ntb_msg_set_mask,
.msg_clear_mask = idt_ntb_msg_clear_mask,
.msg_read = idt_ntb_msg_read,
.msg_write = idt_ntb_msg_write
};
/*
* idt_register_device() - register IDT NTB device
* @ndev: IDT NTB hardware driver descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_register_device(struct idt_ntb_dev *ndev)
{
int ret;
/* Initialize the rest of NTB device structure and register it */
ndev->ntb.ops = &idt_ntb_ops;
ndev->ntb.topo = NTB_TOPO_PRI;
ret = ntb_register_device(&ndev->ntb);
if (ret != 0) {
dev_err(&ndev->ntb.pdev->dev, "Failed to register NTB device");
return ret;
}
dev_dbg(&ndev->ntb.pdev->dev, "NTB device successfully registered");
return 0;
}
/*
* idt_unregister_device() - unregister IDT NTB device
* @ndev: IDT NTB hardware driver descriptor
*/
static void idt_unregister_device(struct idt_ntb_dev *ndev)
{
/* Just unregister the NTB device */
ntb_unregister_device(&ndev->ntb);
dev_dbg(&ndev->ntb.pdev->dev, "NTB device unregistered");
}
/*=============================================================================
* 10. DebugFS node initialization
*=============================================================================
*/
static ssize_t idt_dbgfs_info_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp);
/*
* Driver DebugFS info file operations
*/
static const struct file_operations idt_dbgfs_info_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = idt_dbgfs_info_read
};
/*
* idt_dbgfs_info_read() - DebugFS read info node callback
* @file: File node descriptor.
* @ubuf: User-space buffer to put data to
* @count: Size of the buffer
* @offp: Offset within the buffer
*/
static ssize_t idt_dbgfs_info_read(struct file *filp, char __user *ubuf,
size_t count, loff_t *offp)
{
struct idt_ntb_dev *ndev = filp->private_data;
unsigned char temp, frac, idx, pidx, cnt;
ssize_t ret = 0, off = 0;
unsigned long irqflags;
enum ntb_speed speed;
enum ntb_width width;
char *strbuf;
size_t size;
u32 data;
/* Lets limit the buffer size the way the Intel/AMD drivers do */
size = min_t(size_t, count, 0x1000U);
/* Allocate the memory for the buffer */
strbuf = kmalloc(size, GFP_KERNEL);
if (strbuf == NULL)
return -ENOMEM;
/* Put the data into the string buffer */
off += scnprintf(strbuf + off, size - off,
"\n\t\tIDT NTB device Information:\n\n");
/* General local device configurations */
off += scnprintf(strbuf + off, size - off,
"Local Port %hhu, Partition %hhu\n", ndev->port, ndev->part);
/* Peer ports information */
off += scnprintf(strbuf + off, size - off, "Peers:\n");
for (idx = 0; idx < ndev->peer_cnt; idx++) {
off += scnprintf(strbuf + off, size - off,
"\t%hhu. Port %hhu, Partition %hhu\n",
idx, ndev->peers[idx].port, ndev->peers[idx].part);
}
/* Links status */
data = idt_ntb_link_is_up(&ndev->ntb, &speed, &width);
off += scnprintf(strbuf + off, size - off,
"NTB link status\t- 0x%08x, ", data);
off += scnprintf(strbuf + off, size - off, "PCIe Gen %d x%d lanes\n",
speed, width);
/* Mapping table entries */
off += scnprintf(strbuf + off, size - off, "NTB Mapping Table:\n");
for (idx = 0; idx < IDT_MTBL_ENTRY_CNT; idx++) {
spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
idt_nt_write(ndev, IDT_NT_NTMTBLADDR, idx);
data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
/* Print valid entries only */
if (data & IDT_NTMTBLDATA_VALID) {
off += scnprintf(strbuf + off, size - off,
"\t%hhu. Partition %d, Requester ID 0x%04x\n",
idx, GET_FIELD(NTMTBLDATA_PART, data),
GET_FIELD(NTMTBLDATA_REQID, data));
}
}
off += scnprintf(strbuf + off, size - off, "\n");
/* Outbound memory windows information */
off += scnprintf(strbuf + off, size - off,
"Outbound Memory Windows:\n");
for (idx = 0; idx < ndev->mw_cnt; idx += cnt) {
data = ndev->mws[idx].type;
cnt = idt_get_mw_count(data);
/* Print Memory Window information */
if (data == IDT_MW_DIR)
off += scnprintf(strbuf + off, size - off,
"\t%hhu.\t", idx);
else
off += scnprintf(strbuf + off, size - off,
"\t%hhu-%hhu.\t", idx, idx + cnt - 1);
off += scnprintf(strbuf + off, size - off, "%s BAR%hhu, ",
idt_get_mw_name(data), ndev->mws[idx].bar);
off += scnprintf(strbuf + off, size - off,
"Address align 0x%08llx, ", ndev->mws[idx].addr_align);
off += scnprintf(strbuf + off, size - off,
"Size align 0x%08llx, Size max %llu\n",
ndev->mws[idx].size_align, ndev->mws[idx].size_max);
}
/* Inbound memory windows information */
for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
off += scnprintf(strbuf + off, size - off,
"Inbound Memory Windows for peer %hhu (Port %hhu):\n",
pidx, ndev->peers[pidx].port);
/* Print Memory Windows information */
for (idx = 0; idx < ndev->peers[pidx].mw_cnt; idx += cnt) {
data = ndev->peers[pidx].mws[idx].type;
cnt = idt_get_mw_count(data);
if (data == IDT_MW_DIR)
off += scnprintf(strbuf + off, size - off,
"\t%hhu.\t", idx);
else
off += scnprintf(strbuf + off, size - off,
"\t%hhu-%hhu.\t", idx, idx + cnt - 1);
off += scnprintf(strbuf + off, size - off,
"%s BAR%hhu, ", idt_get_mw_name(data),
ndev->peers[pidx].mws[idx].bar);
off += scnprintf(strbuf + off, size - off,
"Address align 0x%08llx, ",
ndev->peers[pidx].mws[idx].addr_align);
off += scnprintf(strbuf + off, size - off,
"Size align 0x%08llx, Size max %llu\n",
ndev->peers[pidx].mws[idx].size_align,
ndev->peers[pidx].mws[idx].size_max);
}
}
off += scnprintf(strbuf + off, size - off, "\n");
/* Doorbell information */
data = idt_sw_read(ndev, IDT_SW_GDBELLSTS);
off += scnprintf(strbuf + off, size - off,
"Global Doorbell state\t- 0x%08x\n", data);
data = idt_ntb_db_read(&ndev->ntb);
off += scnprintf(strbuf + off, size - off,
"Local Doorbell state\t- 0x%08x\n", data);
data = idt_nt_read(ndev, IDT_NT_INDBELLMSK);
off += scnprintf(strbuf + off, size - off,
"Local Doorbell mask\t- 0x%08x\n", data);
off += scnprintf(strbuf + off, size - off, "\n");
/* Messaging information */
off += scnprintf(strbuf + off, size - off,
"Message event valid\t- 0x%08x\n", IDT_MSG_MASK);
data = idt_ntb_msg_read_sts(&ndev->ntb);
off += scnprintf(strbuf + off, size - off,
"Message event status\t- 0x%08x\n", data);
data = idt_nt_read(ndev, IDT_NT_MSGSTSMSK);
off += scnprintf(strbuf + off, size - off,
"Message event mask\t- 0x%08x\n", data);
off += scnprintf(strbuf + off, size - off,
"Message data:\n");
for (idx = 0; idx < IDT_MSG_CNT; idx++) {
int src;
(void)idt_ntb_msg_read(&ndev->ntb, idx, &src, &data);
off += scnprintf(strbuf + off, size - off,
"\t%hhu. 0x%08x from peer %hhu (Port %hhu)\n",
idx, data, src, ndev->peers[src].port);
}
off += scnprintf(strbuf + off, size - off, "\n");
/* Current temperature */
idt_read_temp(ndev, &temp, &frac);
off += scnprintf(strbuf + off, size - off,
"Switch temperature\t\t- %hhu.%hhuC\n", temp, frac);
/* Copy the buffer to the User Space */
ret = simple_read_from_buffer(ubuf, count, offp, strbuf, off);
kfree(strbuf);
return ret;
}
/*
* idt_init_dbgfs() - initialize DebugFS node
* @ndev: IDT NTB hardware driver descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_init_dbgfs(struct idt_ntb_dev *ndev)
{
char devname[64];
/* If the top directory is not created then do nothing */
if (IS_ERR_OR_NULL(dbgfs_topdir)) {
dev_info(&ndev->ntb.pdev->dev, "Top DebugFS directory absent");
return PTR_ERR(dbgfs_topdir);
}
/* Create the info file node */
snprintf(devname, 64, "info:%s", pci_name(ndev->ntb.pdev));
ndev->dbgfs_info = debugfs_create_file(devname, 0400, dbgfs_topdir,
ndev, &idt_dbgfs_info_ops);
if (IS_ERR(ndev->dbgfs_info)) {
dev_dbg(&ndev->ntb.pdev->dev, "Failed to create DebugFS node");
return PTR_ERR(ndev->dbgfs_info);
}
dev_dbg(&ndev->ntb.pdev->dev, "NTB device DebugFS node created");
return 0;
}
/*
* idt_deinit_dbgfs() - deinitialize DebugFS node
* @ndev: IDT NTB hardware driver descriptor
*
* Just discard the info node from DebugFS
*/
static void idt_deinit_dbgfs(struct idt_ntb_dev *ndev)
{
debugfs_remove(ndev->dbgfs_info);
dev_dbg(&ndev->ntb.pdev->dev, "NTB device DebugFS node discarded");
}
/*=============================================================================
* 11. Basic PCIe device initialization
*=============================================================================
*/
/*
* idt_check_setup() - Check whether the IDT PCIe-swtich is properly
* pre-initialized
* @pdev: Pointer to the PCI device descriptor
*
* Return: zero on success, otherwise a negative error number.
*/
static int idt_check_setup(struct pci_dev *pdev)
{
u32 data;
int ret;
/* Read the BARSETUP0 */
ret = pci_read_config_dword(pdev, IDT_NT_BARSETUP0, &data);
if (ret != 0) {
dev_err(&pdev->dev,
"Failed to read BARSETUP0 config register");
return ret;
}
/* Check whether the BAR0 register is enabled to be of config space */
if (!(data & IDT_BARSETUP_EN) || !(data & IDT_BARSETUP_MODE_CFG)) {
dev_err(&pdev->dev, "BAR0 doesn't map config space");
return -EINVAL;
}
/* Configuration space BAR0 must have certain size */
if ((data & IDT_BARSETUP_SIZE_MASK) != IDT_BARSETUP_SIZE_CFG) {
dev_err(&pdev->dev, "Invalid size of config space");
return -EINVAL;
}
dev_dbg(&pdev->dev, "NTB device pre-initialized correctly");
return 0;
}
/*
* Create the IDT PCIe-switch driver descriptor
* @pdev: Pointer to the PCI device descriptor
* @id: IDT PCIe-device configuration
*
* It just allocates a memory for IDT PCIe-switch device structure and
* initializes some commonly used fields.
*
* No need of release method, since managed device resource is used for
* memory allocation.
*
* Return: pointer to the descriptor, otherwise a negative error number.
*/
static struct idt_ntb_dev *idt_create_dev(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct idt_ntb_dev *ndev;
/* Allocate memory for the IDT PCIe-device descriptor */
ndev = devm_kzalloc(&pdev->dev, sizeof(*ndev), GFP_KERNEL);
if (IS_ERR_OR_NULL(ndev)) {
dev_err(&pdev->dev, "Memory allocation failed for descriptor");
return ERR_PTR(-ENOMEM);
}
/* Save the IDT PCIe-switch ports configuration */
ndev->swcfg = (struct idt_89hpes_cfg *)id->driver_data;
/* Save the PCI-device pointer inside the NTB device structure */
ndev->ntb.pdev = pdev;
/* Initialize spin locker of Doorbell, Message and GASA registers */
spin_lock_init(&ndev->db_mask_lock);
spin_lock_init(&ndev->msg_mask_lock);
spin_lock_init(&ndev->gasa_lock);
dev_info(&pdev->dev, "IDT %s discovered", ndev->swcfg->name);
dev_dbg(&pdev->dev, "NTB device descriptor created");
return ndev;
}
/*
* idt_init_pci() - initialize the basic PCI-related subsystem
* @ndev: Pointer to the IDT PCIe-switch driver descriptor
*
* Managed device resources will be freed automatically in case of failure or
* driver detachment.
*
* Return: zero on success, otherwise negative error number.
*/
static int idt_init_pci(struct idt_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
int ret;
/* Initialize the bit mask of DMA */
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (ret != 0) {
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret != 0) {
dev_err(&pdev->dev, "Failed to set DMA bit mask\n");
return ret;
}
dev_warn(&pdev->dev, "Cannot set DMA highmem bit mask\n");
}
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (ret != 0) {
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret != 0) {
dev_err(&pdev->dev,
"Failed to set consistent DMA bit mask\n");
return ret;
}
dev_warn(&pdev->dev,
"Cannot set consistent DMA highmem bit mask\n");
}
/*
* Enable the device advanced error reporting. It's not critical to
* have AER disabled in the kernel.
*/
ret = pci_enable_pcie_error_reporting(pdev);
if (ret != 0)
dev_warn(&pdev->dev, "PCIe AER capability disabled\n");
else /* Cleanup uncorrectable error status before getting to init */
pci_cleanup_aer_uncorrect_error_status(pdev);
/* First enable the PCI device */
ret = pcim_enable_device(pdev);
if (ret != 0) {
dev_err(&pdev->dev, "Failed to enable PCIe device\n");
goto err_disable_aer;
}
/*
* Enable the bus mastering, which effectively enables MSI IRQs and
* Request TLPs translation
*/
pci_set_master(pdev);
/* Request all BARs resources and map BAR0 only */
ret = pcim_iomap_regions_request_all(pdev, 1, NTB_NAME);
if (ret != 0) {
dev_err(&pdev->dev, "Failed to request resources\n");
goto err_clear_master;
}
/* Retrieve virtual address of BAR0 - PCI configuration space */
ndev->cfgspc = pcim_iomap_table(pdev)[0];
/* Put the IDT driver data pointer to the PCI-device private pointer */
pci_set_drvdata(pdev, ndev);
dev_dbg(&pdev->dev, "NT-function PCIe interface initialized");
return 0;
err_clear_master:
pci_clear_master(pdev);
err_disable_aer:
(void)pci_disable_pcie_error_reporting(pdev);
return ret;
}
/*
* idt_deinit_pci() - deinitialize the basic PCI-related subsystem
* @ndev: Pointer to the IDT PCIe-switch driver descriptor
*
* Managed resources will be freed on the driver detachment
*/
static void idt_deinit_pci(struct idt_ntb_dev *ndev)
{
struct pci_dev *pdev = ndev->ntb.pdev;
/* Clean up the PCI-device private data pointer */
pci_set_drvdata(pdev, NULL);
/* Clear the bus master disabling the Request TLPs translation */
pci_clear_master(pdev);
/* Disable the AER capability */
(void)pci_disable_pcie_error_reporting(pdev);
dev_dbg(&pdev->dev, "NT-function PCIe interface cleared");
}
/*===========================================================================
* 12. PCI bus callback functions
*===========================================================================
*/
/*
* idt_pci_probe() - PCI device probe callback
* @pdev: Pointer to PCI device structure
* @id: PCIe device custom descriptor
*
* Return: zero on success, otherwise negative error number
*/
static int idt_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct idt_ntb_dev *ndev;
int ret;
/* Check whether IDT PCIe-switch is properly pre-initialized */
ret = idt_check_setup(pdev);
if (ret != 0)
return ret;
/* Allocate the memory for IDT NTB device data */
ndev = idt_create_dev(pdev, id);
if (IS_ERR_OR_NULL(ndev))
return PTR_ERR(ndev);
/* Initialize the basic PCI subsystem of the device */
ret = idt_init_pci(ndev);
if (ret != 0)
return ret;
/* Scan ports of the IDT PCIe-switch */
(void)idt_scan_ports(ndev);
/* Initialize NTB link events subsystem */
idt_init_link(ndev);
/* Initialize MWs subsystem */
ret = idt_init_mws(ndev);
if (ret != 0)
goto err_deinit_link;
/* Initialize Messaging subsystem */
idt_init_msg(ndev);
/* Initialize IDT interrupts handler */
ret = idt_init_isr(ndev);
if (ret != 0)
goto err_deinit_link;
/* Register IDT NTB devices on the NTB bus */
ret = idt_register_device(ndev);
if (ret != 0)
goto err_deinit_isr;
/* Initialize DebugFS info node */
(void)idt_init_dbgfs(ndev);
/* IDT PCIe-switch NTB driver is finally initialized */
dev_info(&pdev->dev, "IDT NTB device is ready");
/* May the force be with us... */
return 0;
err_deinit_isr:
idt_deinit_isr(ndev);
err_deinit_link:
idt_deinit_link(ndev);
idt_deinit_pci(ndev);
return ret;
}
/*
* idt_pci_probe() - PCI device remove callback
* @pdev: Pointer to PCI device structure
*/
static void idt_pci_remove(struct pci_dev *pdev)
{
struct idt_ntb_dev *ndev = pci_get_drvdata(pdev);
/* Deinit the DebugFS node */
idt_deinit_dbgfs(ndev);
/* Unregister NTB device */
idt_unregister_device(ndev);
/* Stop the interrupts handling */
idt_deinit_isr(ndev);
/* Deinitialize link event subsystem */
idt_deinit_link(ndev);
/* Deinit basic PCI subsystem */
idt_deinit_pci(ndev);
/* IDT PCIe-switch NTB driver is finally initialized */
dev_info(&pdev->dev, "IDT NTB device is removed");
/* Sayonara... */
}
/*
* IDT PCIe-switch models ports configuration structures
*/
static struct idt_89hpes_cfg idt_89hpes24nt6ag2_config = {
.name = "89HPES24NT6AG2",
.port_cnt = 6, .ports = {0, 2, 4, 6, 8, 12}
};
static struct idt_89hpes_cfg idt_89hpes32nt8ag2_config = {
.name = "89HPES32NT8AG2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
static struct idt_89hpes_cfg idt_89hpes32nt8bg2_config = {
.name = "89HPES32NT8BG2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
static struct idt_89hpes_cfg idt_89hpes12nt12g2_config = {
.name = "89HPES12NT12G2",
.port_cnt = 3, .ports = {0, 8, 16}
};
static struct idt_89hpes_cfg idt_89hpes16nt16g2_config = {
.name = "89HPES16NT16G2",
.port_cnt = 4, .ports = {0, 8, 12, 16}
};
static struct idt_89hpes_cfg idt_89hpes24nt24g2_config = {
.name = "89HPES24NT24G2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
static struct idt_89hpes_cfg idt_89hpes32nt24ag2_config = {
.name = "89HPES32NT24AG2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
static struct idt_89hpes_cfg idt_89hpes32nt24bg2_config = {
.name = "89HPES32NT24BG2",
.port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
};
/*
* PCI-ids table of the supported IDT PCIe-switch devices
*/
static const struct pci_device_id idt_pci_tbl[] = {
{IDT_PCI_DEVICE_IDS(89HPES24NT6AG2, idt_89hpes24nt6ag2_config)},
{IDT_PCI_DEVICE_IDS(89HPES32NT8AG2, idt_89hpes32nt8ag2_config)},
{IDT_PCI_DEVICE_IDS(89HPES32NT8BG2, idt_89hpes32nt8bg2_config)},
{IDT_PCI_DEVICE_IDS(89HPES12NT12G2, idt_89hpes12nt12g2_config)},
{IDT_PCI_DEVICE_IDS(89HPES16NT16G2, idt_89hpes16nt16g2_config)},
{IDT_PCI_DEVICE_IDS(89HPES24NT24G2, idt_89hpes24nt24g2_config)},
{IDT_PCI_DEVICE_IDS(89HPES32NT24AG2, idt_89hpes32nt24ag2_config)},
{IDT_PCI_DEVICE_IDS(89HPES32NT24BG2, idt_89hpes32nt24bg2_config)},
{0}
};
MODULE_DEVICE_TABLE(pci, idt_pci_tbl);
/*
* IDT PCIe-switch NT-function device driver structure definition
*/
static struct pci_driver idt_pci_driver = {
.name = KBUILD_MODNAME,
.probe = idt_pci_probe,
.remove = idt_pci_remove,
.id_table = idt_pci_tbl,
};
static int __init idt_pci_driver_init(void)
{
pr_info("%s %s\n", NTB_DESC, NTB_VER);
/* Create the top DebugFS directory if the FS is initialized */
if (debugfs_initialized())
dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL);
/* Register the NTB hardware driver to handle the PCI device */
return pci_register_driver(&idt_pci_driver);
}
module_init(idt_pci_driver_init);
static void __exit idt_pci_driver_exit(void)
{
/* Unregister the NTB hardware driver */
pci_unregister_driver(&idt_pci_driver);
/* Discard the top DebugFS directory */
debugfs_remove_recursive(dbgfs_topdir);
}
module_exit(idt_pci_driver_exit);
/*
* This file is provided under a GPLv2 license. When using or
* redistributing this file, you may do so under that license.
*
* GPL LICENSE SUMMARY
*
* Copyright (C) 2016 T-Platforms All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, one can be found http://www.gnu.org/licenses/.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* IDT PCIe-switch NTB Linux driver
*
* Contact Information:
* Serge Semin <fancer.lancer@gmail.com>, <Sergey.Semin@t-platforms.ru>
*/
#ifndef NTB_HW_IDT_H
#define NTB_HW_IDT_H
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/ntb.h>
/*
* Macro is used to create the struct pci_device_id that matches
* the supported IDT PCIe-switches
* @devname: Capitalized name of the particular device
* @data: Variable passed to the driver of the particular device
*/
#define IDT_PCI_DEVICE_IDS(devname, data) \
.vendor = PCI_VENDOR_ID_IDT, .device = PCI_DEVICE_ID_IDT_##devname, \
.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, \
.class = (PCI_CLASS_BRIDGE_OTHER << 8), .class_mask = (0xFFFF00), \
.driver_data = (kernel_ulong_t)&data
/*
* IDT PCIe-switches device IDs
*/
#define PCI_DEVICE_ID_IDT_89HPES24NT6AG2 0x8091
#define PCI_DEVICE_ID_IDT_89HPES32NT8AG2 0x808F
#define PCI_DEVICE_ID_IDT_89HPES32NT8BG2 0x8088
#define PCI_DEVICE_ID_IDT_89HPES12NT12G2 0x8092
#define PCI_DEVICE_ID_IDT_89HPES16NT16G2 0x8090
#define PCI_DEVICE_ID_IDT_89HPES24NT24G2 0x808E
#define PCI_DEVICE_ID_IDT_89HPES32NT24AG2 0x808C
#define PCI_DEVICE_ID_IDT_89HPES32NT24BG2 0x808A
/*
* NT-function Configuration Space registers
* NOTE 1) The IDT PCIe-switch internal data is little-endian
* so it must be taken into account in the driver
* internals.
* 2) Additionally the registers should be accessed either
* with byte-enables corresponding to their native size or
* the size of one DWORD
*
* So to simplify the driver code, there is only DWORD-sized read/write
* operations utilized.
*/
/* PCI Express Configuration Space */
/* PCI Express command/status register (DWORD) */
#define IDT_NT_PCICMDSTS 0x00004U
/* PCI Express Device Capabilities (DWORD) */
#define IDT_NT_PCIEDCAP 0x00044U
/* PCI Express Device Control/Status (WORD+WORD) */
#define IDT_NT_PCIEDCTLSTS 0x00048U
/* PCI Express Link Capabilities (DWORD) */
#define IDT_NT_PCIELCAP 0x0004CU
/* PCI Express Link Control/Status (WORD+WORD) */
#define IDT_NT_PCIELCTLSTS 0x00050U
/* PCI Express Device Capabilities 2 (DWORD) */
#define IDT_NT_PCIEDCAP2 0x00064U
/* PCI Express Device Control 2 (WORD+WORD) */
#define IDT_NT_PCIEDCTL2 0x00068U
/* PCI Power Management Control and Status (DWORD) */
#define IDT_NT_PMCSR 0x000C4U
/*==========================================*/
/* IDT Proprietary NT-port-specific registers */
/* NT-function main control registers */
/* NT Endpoint Control (DWORD) */
#define IDT_NT_NTCTL 0x00400U
/* NT Endpoint Interrupt Status/Mask (DWORD) */
#define IDT_NT_NTINTSTS 0x00404U
#define IDT_NT_NTINTMSK 0x00408U
/* NT Endpoint Signal Data (DWORD) */
#define IDT_NT_NTSDATA 0x0040CU
/* NT Endpoint Global Signal (DWORD) */
#define IDT_NT_NTGSIGNAL 0x00410U
/* Internal Error Reporting Mask 0/1 (DWORD) */
#define IDT_NT_NTIERRORMSK0 0x00414U
#define IDT_NT_NTIERRORMSK1 0x00418U
/* Doorbel registers */
/* NT Outbound Doorbell Set (DWORD) */
#define IDT_NT_OUTDBELLSET 0x00420U
/* NT Inbound Doorbell Status/Mask (DWORD) */
#define IDT_NT_INDBELLSTS 0x00428U
#define IDT_NT_INDBELLMSK 0x0042CU
/* Message registers */
/* Outbound Message N (DWORD) */
#define IDT_NT_OUTMSG0 0x00430U
#define IDT_NT_OUTMSG1 0x00434U
#define IDT_NT_OUTMSG2 0x00438U
#define IDT_NT_OUTMSG3 0x0043CU
/* Inbound Message N (DWORD) */
#define IDT_NT_INMSG0 0x00440U
#define IDT_NT_INMSG1 0x00444U
#define IDT_NT_INMSG2 0x00448U
#define IDT_NT_INMSG3 0x0044CU
/* Inbound Message Source N (DWORD) */
#define IDT_NT_INMSGSRC0 0x00450U
#define IDT_NT_INMSGSRC1 0x00454U
#define IDT_NT_INMSGSRC2 0x00458U
#define IDT_NT_INMSGSRC3 0x0045CU
/* Message Status (DWORD) */
#define IDT_NT_MSGSTS 0x00460U
/* Message Status Mask (DWORD) */
#define IDT_NT_MSGSTSMSK 0x00464U
/* BAR-setup registers */
/* BAR N Setup/Limit Address/Lower and Upper Translated Base Address (DWORD) */
#define IDT_NT_BARSETUP0 0x00470U
#define IDT_NT_BARLIMIT0 0x00474U
#define IDT_NT_BARLTBASE0 0x00478U
#define IDT_NT_BARUTBASE0 0x0047CU
#define IDT_NT_BARSETUP1 0x00480U
#define IDT_NT_BARLIMIT1 0x00484U
#define IDT_NT_BARLTBASE1 0x00488U
#define IDT_NT_BARUTBASE1 0x0048CU
#define IDT_NT_BARSETUP2 0x00490U
#define IDT_NT_BARLIMIT2 0x00494U
#define IDT_NT_BARLTBASE2 0x00498U
#define IDT_NT_BARUTBASE2 0x0049CU
#define IDT_NT_BARSETUP3 0x004A0U
#define IDT_NT_BARLIMIT3 0x004A4U
#define IDT_NT_BARLTBASE3 0x004A8U
#define IDT_NT_BARUTBASE3 0x004ACU
#define IDT_NT_BARSETUP4 0x004B0U
#define IDT_NT_BARLIMIT4 0x004B4U
#define IDT_NT_BARLTBASE4 0x004B8U
#define IDT_NT_BARUTBASE4 0x004BCU
#define IDT_NT_BARSETUP5 0x004C0U
#define IDT_NT_BARLIMIT5 0x004C4U
#define IDT_NT_BARLTBASE5 0x004C8U
#define IDT_NT_BARUTBASE5 0x004CCU
/* NT mapping table registers */
/* NT Mapping Table Address/Status/Data (DWORD) */
#define IDT_NT_NTMTBLADDR 0x004D0U
#define IDT_NT_NTMTBLSTS 0x004D4U
#define IDT_NT_NTMTBLDATA 0x004D8U
/* Requester ID (Bus:Device:Function) Capture (DWORD) */
#define IDT_NT_REQIDCAP 0x004DCU
/* Memory Windows Lookup table registers */
/* Lookup Table Offset/Lower, Middle and Upper data (DWORD) */
#define IDT_NT_LUTOFFSET 0x004E0U
#define IDT_NT_LUTLDATA 0x004E4U
#define IDT_NT_LUTMDATA 0x004E8U
#define IDT_NT_LUTUDATA 0x004ECU
/* NT Endpoint Uncorrectable/Correctable Errors Emulation registers (DWORD) */
#define IDT_NT_NTUEEM 0x004F0U
#define IDT_NT_NTCEEM 0x004F4U
/* Global Address Space Access/Data registers (DWARD) */
#define IDT_NT_GASAADDR 0x00FF8U
#define IDT_NT_GASADATA 0x00FFCU
/*
* IDT PCIe-switch Global Configuration and Status registers
*/
/* Port N Configuration register in global space */
/* PCI Express command/status and link control/status registers (WORD+WORD) */
#define IDT_SW_NTP0_PCIECMDSTS 0x01004U
#define IDT_SW_NTP0_PCIELCTLSTS 0x01050U
/* NT-function control register (DWORD) */
#define IDT_SW_NTP0_NTCTL 0x01400U
/* BAR setup/limit/base address registers (DWORD) */
#define IDT_SW_NTP0_BARSETUP0 0x01470U
#define IDT_SW_NTP0_BARLIMIT0 0x01474U
#define IDT_SW_NTP0_BARLTBASE0 0x01478U
#define IDT_SW_NTP0_BARUTBASE0 0x0147CU
#define IDT_SW_NTP0_BARSETUP1 0x01480U
#define IDT_SW_NTP0_BARLIMIT1 0x01484U
#define IDT_SW_NTP0_BARLTBASE1 0x01488U
#define IDT_SW_NTP0_BARUTBASE1 0x0148CU
#define IDT_SW_NTP0_BARSETUP2 0x01490U
#define IDT_SW_NTP0_BARLIMIT2 0x01494U
#define IDT_SW_NTP0_BARLTBASE2 0x01498U
#define IDT_SW_NTP0_BARUTBASE2 0x0149CU
#define IDT_SW_NTP0_BARSETUP3 0x014A0U
#define IDT_SW_NTP0_BARLIMIT3 0x014A4U
#define IDT_SW_NTP0_BARLTBASE3 0x014A8U
#define IDT_SW_NTP0_BARUTBASE3 0x014ACU
#define IDT_SW_NTP0_BARSETUP4 0x014B0U
#define IDT_SW_NTP0_BARLIMIT4 0x014B4U
#define IDT_SW_NTP0_BARLTBASE4 0x014B8U
#define IDT_SW_NTP0_BARUTBASE4 0x014BCU
#define IDT_SW_NTP0_BARSETUP5 0x014C0U
#define IDT_SW_NTP0_BARLIMIT5 0x014C4U
#define IDT_SW_NTP0_BARLTBASE5 0x014C8U
#define IDT_SW_NTP0_BARUTBASE5 0x014CCU
/* PCI Express command/status and link control/status registers (WORD+WORD) */
#define IDT_SW_NTP2_PCIECMDSTS 0x05004U
#define IDT_SW_NTP2_PCIELCTLSTS 0x05050U
/* NT-function control register (DWORD) */
#define IDT_SW_NTP2_NTCTL 0x05400U
/* BAR setup/limit/base address registers (DWORD) */
#define IDT_SW_NTP2_BARSETUP0 0x05470U
#define IDT_SW_NTP2_BARLIMIT0 0x05474U
#define IDT_SW_NTP2_BARLTBASE0 0x05478U
#define IDT_SW_NTP2_BARUTBASE0 0x0547CU
#define IDT_SW_NTP2_BARSETUP1 0x05480U
#define IDT_SW_NTP2_BARLIMIT1 0x05484U
#define IDT_SW_NTP2_BARLTBASE1 0x05488U
#define IDT_SW_NTP2_BARUTBASE1 0x0548CU
#define IDT_SW_NTP2_BARSETUP2 0x05490U
#define IDT_SW_NTP2_BARLIMIT2 0x05494U
#define IDT_SW_NTP2_BARLTBASE2 0x05498U
#define IDT_SW_NTP2_BARUTBASE2 0x0549CU
#define IDT_SW_NTP2_BARSETUP3 0x054A0U
#define IDT_SW_NTP2_BARLIMIT3 0x054A4U
#define IDT_SW_NTP2_BARLTBASE3 0x054A8U
#define IDT_SW_NTP2_BARUTBASE3 0x054ACU
#define IDT_SW_NTP2_BARSETUP4 0x054B0U
#define IDT_SW_NTP2_BARLIMIT4 0x054B4U
#define IDT_SW_NTP2_BARLTBASE4 0x054B8U
#define IDT_SW_NTP2_BARUTBASE4 0x054BCU
#define IDT_SW_NTP2_BARSETUP5 0x054C0U
#define IDT_SW_NTP2_BARLIMIT5 0x054C4U
#define IDT_SW_NTP2_BARLTBASE5 0x054C8U
#define IDT_SW_NTP2_BARUTBASE5 0x054CCU
/* PCI Express command/status and link control/status registers (WORD+WORD) */
#define IDT_SW_NTP4_PCIECMDSTS 0x09004U
#define IDT_SW_NTP4_PCIELCTLSTS 0x09050U
/* NT-function control register (DWORD) */
#define IDT_SW_NTP4_NTCTL 0x09400U
/* BAR setup/limit/base address registers (DWORD) */
#define IDT_SW_NTP4_BARSETUP0 0x09470U
#define IDT_SW_NTP4_BARLIMIT0 0x09474U
#define IDT_SW_NTP4_BARLTBASE0 0x09478U
#define IDT_SW_NTP4_BARUTBASE0 0x0947CU
#define IDT_SW_NTP4_BARSETUP1 0x09480U
#define IDT_SW_NTP4_BARLIMIT1 0x09484U
#define IDT_SW_NTP4_BARLTBASE1 0x09488U
#define IDT_SW_NTP4_BARUTBASE1 0x0948CU
#define IDT_SW_NTP4_BARSETUP2 0x09490U
#define IDT_SW_NTP4_BARLIMIT2 0x09494U
#define IDT_SW_NTP4_BARLTBASE2 0x09498U
#define IDT_SW_NTP4_BARUTBASE2 0x0949CU
#define IDT_SW_NTP4_BARSETUP3 0x094A0U
#define IDT_SW_NTP4_BARLIMIT3 0x094A4U
#define IDT_SW_NTP4_BARLTBASE3 0x094A8U
#define IDT_SW_NTP4_BARUTBASE3 0x094ACU
#define IDT_SW_NTP4_BARSETUP4 0x094B0U
#define IDT_SW_NTP4_BARLIMIT4 0x094B4U
#define IDT_SW_NTP4_BARLTBASE4 0x094B8U
#define IDT_SW_NTP4_BARUTBASE4 0x094BCU
#define IDT_SW_NTP4_BARSETUP5 0x094C0U
#define IDT_SW_NTP4_BARLIMIT5 0x094C4U
#define IDT_SW_NTP4_BARLTBASE5 0x094C8U
#define IDT_SW_NTP4_BARUTBASE5 0x094CCU
/* PCI Express command/status and link control/status registers (WORD+WORD) */
#define IDT_SW_NTP6_PCIECMDSTS 0x0D004U
#define IDT_SW_NTP6_PCIELCTLSTS 0x0D050U
/* NT-function control register (DWORD) */
#define IDT_SW_NTP6_NTCTL 0x0D400U
/* BAR setup/limit/base address registers (DWORD) */
#define IDT_SW_NTP6_BARSETUP0 0x0D470U
#define IDT_SW_NTP6_BARLIMIT0 0x0D474U
#define IDT_SW_NTP6_BARLTBASE0 0x0D478U
#define IDT_SW_NTP6_BARUTBASE0 0x0D47CU
#define IDT_SW_NTP6_BARSETUP1 0x0D480U
#define IDT_SW_NTP6_BARLIMIT1 0x0D484U
#define IDT_SW_NTP6_BARLTBASE1 0x0D488U
#define IDT_SW_NTP6_BARUTBASE1 0x0D48CU
#define IDT_SW_NTP6_BARSETUP2 0x0D490U
#define IDT_SW_NTP6_BARLIMIT2 0x0D494U
#define IDT_SW_NTP6_BARLTBASE2 0x0D498U
#define IDT_SW_NTP6_BARUTBASE2 0x0D49CU
#define IDT_SW_NTP6_BARSETUP3 0x0D4A0U
#define IDT_SW_NTP6_BARLIMIT3 0x0D4A4U
#define IDT_SW_NTP6_BARLTBASE3 0x0D4A8U
#define IDT_SW_NTP6_BARUTBASE3 0x0D4ACU
#define IDT_SW_NTP6_BARSETUP4 0x0D4B0U
#define IDT_SW_NTP6_BARLIMIT4 0x0D4B4U
#define IDT_SW_NTP6_BARLTBASE4 0x0D4B8U
#define IDT_SW_NTP6_BARUTBASE4 0x0D4BCU
#define IDT_SW_NTP6_BARSETUP5 0x0D4C0U
#define IDT_SW_NTP6_BARLIMIT5 0x0D4C4U
#define IDT_SW_NTP6_BARLTBASE5 0x0D4C8U
#define IDT_SW_NTP6_BARUTBASE5 0x0D4CCU
/* PCI Express command/status and link control/status registers (WORD+WORD) */
#define IDT_SW_NTP8_PCIECMDSTS 0x11004U
#define IDT_SW_NTP8_PCIELCTLSTS 0x11050U
/* NT-function control register (DWORD) */
#define IDT_SW_NTP8_NTCTL 0x11400U
/* BAR setup/limit/base address registers (DWORD) */
#define IDT_SW_NTP8_BARSETUP0 0x11470U
#define IDT_SW_NTP8_BARLIMIT0 0x11474U
#define IDT_SW_NTP8_BARLTBASE0 0x11478U
#define IDT_SW_NTP8_BARUTBASE0 0x1147CU
#define IDT_SW_NTP8_BARSETUP1 0x11480U
#define IDT_SW_NTP8_BARLIMIT1 0x11484U
#define IDT_SW_NTP8_BARLTBASE1 0x11488U
#define IDT_SW_NTP8_BARUTBASE1 0x1148CU
#define IDT_SW_NTP8_BARSETUP2 0x11490U
#define IDT_SW_NTP8_BARLIMIT2 0x11494U
#define IDT_SW_NTP8_BARLTBASE2 0x11498U
#define IDT_SW_NTP8_BARUTBASE2 0x1149CU
#define IDT_SW_NTP8_BARSETUP3 0x114A0U
#define IDT_SW_NTP8_BARLIMIT3 0x114A4U
#define IDT_SW_NTP8_BARLTBASE3 0x114A8U
#define IDT_SW_NTP8_BARUTBASE3 0x114ACU
#define IDT_SW_NTP8_BARSETUP4 0x114B0U
#define IDT_SW_NTP8_BARLIMIT4 0x114B4U
#define IDT_SW_NTP8_BARLTBASE4 0x114B8U
#define IDT_SW_NTP8_BARUTBASE4 0x114BCU
#define IDT_SW_NTP8_BARSETUP5 0x114C0U
#define IDT_SW_NTP8_BARLIMIT5 0x114C4U
#define IDT_SW_NTP8_BARLTBASE5 0x114C8U
#define IDT_SW_NTP8_BARUTBASE5 0x114CCU
/* PCI Express command/status and link control/status registers (WORD+WORD) */
#define IDT_SW_NTP12_PCIECMDSTS 0x19004U
#define IDT_SW_NTP12_PCIELCTLSTS 0x19050U
/* NT-function control register (DWORD) */
#define IDT_SW_NTP12_NTCTL 0x19400U
/* BAR setup/limit/base address registers (DWORD) */
#define IDT_SW_NTP12_BARSETUP0 0x19470U
#define IDT_SW_NTP12_BARLIMIT0 0x19474U
#define IDT_SW_NTP12_BARLTBASE0 0x19478U
#define IDT_SW_NTP12_BARUTBASE0 0x1947CU
#define IDT_SW_NTP12_BARSETUP1 0x19480U
#define IDT_SW_NTP12_BARLIMIT1 0x19484U
#define IDT_SW_NTP12_BARLTBASE1 0x19488U
#define IDT_SW_NTP12_BARUTBASE1 0x1948CU
#define IDT_SW_NTP12_BARSETUP2 0x19490U
#define IDT_SW_NTP12_BARLIMIT2 0x19494U
#define IDT_SW_NTP12_BARLTBASE2 0x19498U
#define IDT_SW_NTP12_BARUTBASE2 0x1949CU
#define IDT_SW_NTP12_BARSETUP3 0x194A0U
#define IDT_SW_NTP12_BARLIMIT3 0x194A4U
#define IDT_SW_NTP12_BARLTBASE3 0x194A8U
#define IDT_SW_NTP12_BARUTBASE3 0x194ACU
#define IDT_SW_NTP12_BARSETUP4 0x194B0U
#define IDT_SW_NTP12_BARLIMIT4 0x194B4U
#define IDT_SW_NTP12_BARLTBASE4 0x194B8U
#define IDT_SW_NTP12_BARUTBASE4 0x194BCU
#define IDT_SW_NTP12_BARSETUP5 0x194C0U
#define IDT_SW_NTP12_BARLIMIT5 0x194C4U
#define IDT_SW_NTP12_BARLTBASE5 0x194C8U
#define IDT_SW_NTP12_BARUTBASE5 0x194CCU
/* PCI Express command/status and link control/status registers (WORD+WORD) */
#define IDT_SW_NTP16_PCIECMDSTS 0x21004U
#define IDT_SW_NTP16_PCIELCTLSTS 0x21050U
/* NT-function control register (DWORD) */
#define IDT_SW_NTP16_NTCTL 0x21400U
/* BAR setup/limit/base address registers (DWORD) */
#define IDT_SW_NTP16_BARSETUP0 0x21470U
#define IDT_SW_NTP16_BARLIMIT0 0x21474U
#define IDT_SW_NTP16_BARLTBASE0 0x21478U
#define IDT_SW_NTP16_BARUTBASE0 0x2147CU
#define IDT_SW_NTP16_BARSETUP1 0x21480U
#define IDT_SW_NTP16_BARLIMIT1 0x21484U
#define IDT_SW_NTP16_BARLTBASE1 0x21488U
#define IDT_SW_NTP16_BARUTBASE1 0x2148CU
#define IDT_SW_NTP16_BARSETUP2 0x21490U
#define IDT_SW_NTP16_BARLIMIT2 0x21494U
#define IDT_SW_NTP16_BARLTBASE2 0x21498U
#define IDT_SW_NTP16_BARUTBASE2 0x2149CU
#define IDT_SW_NTP16_BARSETUP3 0x214A0U
#define IDT_SW_NTP16_BARLIMIT3 0x214A4U
#define IDT_SW_NTP16_BARLTBASE3 0x214A8U
#define IDT_SW_NTP16_BARUTBASE3 0x214ACU
#define IDT_SW_NTP16_BARSETUP4 0x214B0U
#define IDT_SW_NTP16_BARLIMIT4 0x214B4U
#define IDT_SW_NTP16_BARLTBASE4 0x214B8U
#define IDT_SW_NTP16_BARUTBASE4 0x214BCU
#define IDT_SW_NTP16_BARSETUP5 0x214C0U
#define IDT_SW_NTP16_BARLIMIT5 0x214C4U
#define IDT_SW_NTP16_BARLTBASE5 0x214C8U
#define IDT_SW_NTP16_BARUTBASE5 0x214CCU
/* PCI Express command/status and link control/status registers (WORD+WORD) */
#define IDT_SW_NTP20_PCIECMDSTS 0x29004U
#define IDT_SW_NTP20_PCIELCTLSTS 0x29050U
/* NT-function control register (DWORD) */
#define IDT_SW_NTP20_NTCTL 0x29400U
/* BAR setup/limit/base address registers (DWORD) */
#define IDT_SW_NTP20_BARSETUP0 0x29470U
#define IDT_SW_NTP20_BARLIMIT0 0x29474U
#define IDT_SW_NTP20_BARLTBASE0 0x29478U
#define IDT_SW_NTP20_BARUTBASE0 0x2947CU
#define IDT_SW_NTP20_BARSETUP1 0x29480U
#define IDT_SW_NTP20_BARLIMIT1 0x29484U
#define IDT_SW_NTP20_BARLTBASE1 0x29488U
#define IDT_SW_NTP20_BARUTBASE1 0x2948CU
#define IDT_SW_NTP20_BARSETUP2 0x29490U
#define IDT_SW_NTP20_BARLIMIT2 0x29494U
#define IDT_SW_NTP20_BARLTBASE2 0x29498U
#define IDT_SW_NTP20_BARUTBASE2 0x2949CU
#define IDT_SW_NTP20_BARSETUP3 0x294A0U
#define IDT_SW_NTP20_BARLIMIT3 0x294A4U
#define IDT_SW_NTP20_BARLTBASE3 0x294A8U
#define IDT_SW_NTP20_BARUTBASE3 0x294ACU
#define IDT_SW_NTP20_BARSETUP4 0x294B0U
#define IDT_SW_NTP20_BARLIMIT4 0x294B4U
#define IDT_SW_NTP20_BARLTBASE4 0x294B8U
#define IDT_SW_NTP20_BARUTBASE4 0x294BCU
#define IDT_SW_NTP20_BARSETUP5 0x294C0U
#define IDT_SW_NTP20_BARLIMIT5 0x294C4U
#define IDT_SW_NTP20_BARLTBASE5 0x294C8U
#define IDT_SW_NTP20_BARUTBASE5 0x294CCU
/* IDT PCIe-switch control register (DWORD) */
#define IDT_SW_CTL 0x3E000U
/* Boot Configuration Vector Status (DWORD) */
#define IDT_SW_BCVSTS 0x3E004U
/* Port Clocking Mode (DWORD) */
#define IDT_SW_PCLKMODE 0x3E008U
/* Reset Drain Delay (DWORD) */
#define IDT_SW_RDRAINDELAY 0x3E080U
/* Port Operating Mode Change Drain Delay (DWORD) */
#define IDT_SW_POMCDELAY 0x3E084U
/* Side Effect Delay (DWORD) */
#define IDT_SW_SEDELAY 0x3E088U
/* Upstream Secondary Bus Reset Delay (DWORD) */
#define IDT_SW_SSBRDELAY 0x3E08CU
/* Switch partition N Control/Status/Failover registers */
#define IDT_SW_SWPART0CTL 0x3E100U
#define IDT_SW_SWPART0STS 0x3E104U
#define IDT_SW_SWPART0FCTL 0x3E108U
#define IDT_SW_SWPART1CTL 0x3E120U
#define IDT_SW_SWPART1STS 0x3E124U
#define IDT_SW_SWPART1FCTL 0x3E128U
#define IDT_SW_SWPART2CTL 0x3E140U
#define IDT_SW_SWPART2STS 0x3E144U
#define IDT_SW_SWPART2FCTL 0x3E148U
#define IDT_SW_SWPART3CTL 0x3E160U
#define IDT_SW_SWPART3STS 0x3E164U
#define IDT_SW_SWPART3FCTL 0x3E168U
#define IDT_SW_SWPART4CTL 0x3E180U
#define IDT_SW_SWPART4STS 0x3E184U
#define IDT_SW_SWPART4FCTL 0x3E188U
#define IDT_SW_SWPART5CTL 0x3E1A0U
#define IDT_SW_SWPART5STS 0x3E1A4U
#define IDT_SW_SWPART5FCTL 0x3E1A8U
#define IDT_SW_SWPART6CTL 0x3E1C0U
#define IDT_SW_SWPART6STS 0x3E1C4U
#define IDT_SW_SWPART6FCTL 0x3E1C8U
#define IDT_SW_SWPART7CTL 0x3E1E0U
#define IDT_SW_SWPART7STS 0x3E1E4U
#define IDT_SW_SWPART7FCTL 0x3E1E8U
/* Switch port N control and status registers */
#define IDT_SW_SWPORT0CTL 0x3E200U
#define IDT_SW_SWPORT0STS 0x3E204U
#define IDT_SW_SWPORT0FCTL 0x3E208U
#define IDT_SW_SWPORT2CTL 0x3E240U
#define IDT_SW_SWPORT2STS 0x3E244U
#define IDT_SW_SWPORT2FCTL 0x3E248U
#define IDT_SW_SWPORT4CTL 0x3E280U
#define IDT_SW_SWPORT4STS 0x3E284U
#define IDT_SW_SWPORT4FCTL 0x3E288U
#define IDT_SW_SWPORT6CTL 0x3E2C0U
#define IDT_SW_SWPORT6STS 0x3E2C4U
#define IDT_SW_SWPORT6FCTL 0x3E2C8U
#define IDT_SW_SWPORT8CTL 0x3E300U
#define IDT_SW_SWPORT8STS 0x3E304U
#define IDT_SW_SWPORT8FCTL 0x3E308U
#define IDT_SW_SWPORT12CTL 0x3E380U
#define IDT_SW_SWPORT12STS 0x3E384U
#define IDT_SW_SWPORT12FCTL 0x3E388U
#define IDT_SW_SWPORT16CTL 0x3E400U
#define IDT_SW_SWPORT16STS 0x3E404U
#define IDT_SW_SWPORT16FCTL 0x3E408U
#define IDT_SW_SWPORT20CTL 0x3E480U
#define IDT_SW_SWPORT20STS 0x3E484U
#define IDT_SW_SWPORT20FCTL 0x3E488U
/* Switch Event registers */
/* Switch Event Status/Mask/Partition mask (DWORD) */
#define IDT_SW_SESTS 0x3EC00U
#define IDT_SW_SEMSK 0x3EC04U
#define IDT_SW_SEPMSK 0x3EC08U
/* Switch Event Link Up/Down Status/Mask (DWORD) */
#define IDT_SW_SELINKUPSTS 0x3EC0CU
#define IDT_SW_SELINKUPMSK 0x3EC10U
#define IDT_SW_SELINKDNSTS 0x3EC14U
#define IDT_SW_SELINKDNMSK 0x3EC18U
/* Switch Event Fundamental Reset Status/Mask (DWORD) */
#define IDT_SW_SEFRSTSTS 0x3EC1CU
#define IDT_SW_SEFRSTMSK 0x3EC20U
/* Switch Event Hot Reset Status/Mask (DWORD) */
#define IDT_SW_SEHRSTSTS 0x3EC24U
#define IDT_SW_SEHRSTMSK 0x3EC28U
/* Switch Event Failover Mask (DWORD) */
#define IDT_SW_SEFOVRMSK 0x3EC2CU
/* Switch Event Global Signal Status/Mask (DWORD) */
#define IDT_SW_SEGSIGSTS 0x3EC30U
#define IDT_SW_SEGSIGMSK 0x3EC34U
/* NT Global Doorbell Status (DWORD) */
#define IDT_SW_GDBELLSTS 0x3EC3CU
/* Switch partition N message M control (msgs routing table) (DWORD) */
#define IDT_SW_SWP0MSGCTL0 0x3EE00U
#define IDT_SW_SWP1MSGCTL0 0x3EE04U
#define IDT_SW_SWP2MSGCTL0 0x3EE08U
#define IDT_SW_SWP3MSGCTL0 0x3EE0CU
#define IDT_SW_SWP4MSGCTL0 0x3EE10U
#define IDT_SW_SWP5MSGCTL0 0x3EE14U
#define IDT_SW_SWP6MSGCTL0 0x3EE18U
#define IDT_SW_SWP7MSGCTL0 0x3EE1CU
#define IDT_SW_SWP0MSGCTL1 0x3EE20U
#define IDT_SW_SWP1MSGCTL1 0x3EE24U
#define IDT_SW_SWP2MSGCTL1 0x3EE28U
#define IDT_SW_SWP3MSGCTL1 0x3EE2CU
#define IDT_SW_SWP4MSGCTL1 0x3EE30U
#define IDT_SW_SWP5MSGCTL1 0x3EE34U
#define IDT_SW_SWP6MSGCTL1 0x3EE38U
#define IDT_SW_SWP7MSGCTL1 0x3EE3CU
#define IDT_SW_SWP0MSGCTL2 0x3EE40U
#define IDT_SW_SWP1MSGCTL2 0x3EE44U
#define IDT_SW_SWP2MSGCTL2 0x3EE48U
#define IDT_SW_SWP3MSGCTL2 0x3EE4CU
#define IDT_SW_SWP4MSGCTL2 0x3EE50U
#define IDT_SW_SWP5MSGCTL2 0x3EE54U
#define IDT_SW_SWP6MSGCTL2 0x3EE58U
#define IDT_SW_SWP7MSGCTL2 0x3EE5CU
#define IDT_SW_SWP0MSGCTL3 0x3EE60U
#define IDT_SW_SWP1MSGCTL3 0x3EE64U
#define IDT_SW_SWP2MSGCTL3 0x3EE68U
#define IDT_SW_SWP3MSGCTL3 0x3EE6CU
#define IDT_SW_SWP4MSGCTL3 0x3EE70U
#define IDT_SW_SWP5MSGCTL3 0x3EE74U
#define IDT_SW_SWP6MSGCTL3 0x3EE78U
#define IDT_SW_SWP7MSGCTL3 0x3EE7CU
/* SMBus Status and Control registers (DWORD) */
#define IDT_SW_SMBUSSTS 0x3F188U
#define IDT_SW_SMBUSCTL 0x3F18CU
/* Serial EEPROM Interface (DWORD) */
#define IDT_SW_EEPROMINTF 0x3F190U
/* MBus I/O Expander Address N (DWORD) */
#define IDT_SW_IOEXPADDR0 0x3F198U
#define IDT_SW_IOEXPADDR1 0x3F19CU
#define IDT_SW_IOEXPADDR2 0x3F1A0U
#define IDT_SW_IOEXPADDR3 0x3F1A4U
#define IDT_SW_IOEXPADDR4 0x3F1A8U
#define IDT_SW_IOEXPADDR5 0x3F1ACU
/* General Purpose Events Control and Status registers (DWORD) */
#define IDT_SW_GPECTL 0x3F1B0U
#define IDT_SW_GPESTS 0x3F1B4U
/* Temperature sensor Control/Status/Alarm/Adjustment/Slope registers */
#define IDT_SW_TMPCTL 0x3F1D4U
#define IDT_SW_TMPSTS 0x3F1D8U
#define IDT_SW_TMPALARM 0x3F1DCU
#define IDT_SW_TMPADJ 0x3F1E0U
#define IDT_SW_TSSLOPE 0x3F1E4U
/* SMBus Configuration Block header log (DWORD) */
#define IDT_SW_SMBUSCBHL 0x3F1E8U
/*
* Common registers related constants
* @IDT_REG_ALIGN: Registers alignment used in the driver
* @IDT_REG_PCI_MAX: Maximum PCI configuration space register value
* @IDT_REG_SW_MAX: Maximum global register value
*/
#define IDT_REG_ALIGN 4
#define IDT_REG_PCI_MAX 0x00FFFU
#define IDT_REG_SW_MAX 0x3FFFFU
/*
* PCICMDSTS register fields related constants
* @IDT_PCICMDSTS_IOAE: I/O access enable
* @IDT_PCICMDSTS_MAE: Memory access enable
* @IDT_PCICMDSTS_BME: Bus master enable
*/
#define IDT_PCICMDSTS_IOAE 0x00000001U
#define IDT_PCICMDSTS_MAE 0x00000002U
#define IDT_PCICMDSTS_BME 0x00000004U
/*
* PCIEDCAP register fields related constants
* @IDT_PCIEDCAP_MPAYLOAD_MASK: Maximum payload size mask
* @IDT_PCIEDCAP_MPAYLOAD_FLD: Maximum payload size field offset
* @IDT_PCIEDCAP_MPAYLOAD_S128: Max supported payload size of 128 bytes
* @IDT_PCIEDCAP_MPAYLOAD_S256: Max supported payload size of 256 bytes
* @IDT_PCIEDCAP_MPAYLOAD_S512: Max supported payload size of 512 bytes
* @IDT_PCIEDCAP_MPAYLOAD_S1024: Max supported payload size of 1024 bytes
* @IDT_PCIEDCAP_MPAYLOAD_S2048: Max supported payload size of 2048 bytes
*/
#define IDT_PCIEDCAP_MPAYLOAD_MASK 0x00000007U
#define IDT_PCIEDCAP_MPAYLOAD_FLD 0
#define IDT_PCIEDCAP_MPAYLOAD_S128 0x00000000U
#define IDT_PCIEDCAP_MPAYLOAD_S256 0x00000001U
#define IDT_PCIEDCAP_MPAYLOAD_S512 0x00000002U
#define IDT_PCIEDCAP_MPAYLOAD_S1024 0x00000003U
#define IDT_PCIEDCAP_MPAYLOAD_S2048 0x00000004U
/*
* PCIEDCTLSTS registers fields related constants
* @IDT_PCIEDCTL_MPS_MASK: Maximum payload size mask
* @IDT_PCIEDCTL_MPS_FLD: MPS field offset
* @IDT_PCIEDCTL_MPS_S128: Max payload size of 128 bytes
* @IDT_PCIEDCTL_MPS_S256: Max payload size of 256 bytes
* @IDT_PCIEDCTL_MPS_S512: Max payload size of 512 bytes
* @IDT_PCIEDCTL_MPS_S1024: Max payload size of 1024 bytes
* @IDT_PCIEDCTL_MPS_S2048: Max payload size of 2048 bytes
* @IDT_PCIEDCTL_MPS_S4096: Max payload size of 4096 bytes
*/
#define IDT_PCIEDCTLSTS_MPS_MASK 0x000000E0U
#define IDT_PCIEDCTLSTS_MPS_FLD 5
#define IDT_PCIEDCTLSTS_MPS_S128 0x00000000U
#define IDT_PCIEDCTLSTS_MPS_S256 0x00000020U
#define IDT_PCIEDCTLSTS_MPS_S512 0x00000040U
#define IDT_PCIEDCTLSTS_MPS_S1024 0x00000060U
#define IDT_PCIEDCTLSTS_MPS_S2048 0x00000080U
#define IDT_PCIEDCTLSTS_MPS_S4096 0x000000A0U
/*
* PCIELCAP register fields related constants
* @IDT_PCIELCAP_PORTNUM_MASK: Port number field mask
* @IDT_PCIELCAP_PORTNUM_FLD: Port number field offset
*/
#define IDT_PCIELCAP_PORTNUM_MASK 0xFF000000U
#define IDT_PCIELCAP_PORTNUM_FLD 24
/*
* PCIELCTLSTS registers fields related constants
* @IDT_PCIELSTS_CLS_MASK: Current link speed mask
* @IDT_PCIELSTS_CLS_FLD: Current link speed field offset
* @IDT_PCIELSTS_NLW_MASK: Negotiated link width mask
* @IDT_PCIELSTS_NLW_FLD: Negotiated link width field offset
* @IDT_PCIELSTS_SCLK_COM: Common slot clock configuration
*/
#define IDT_PCIELCTLSTS_CLS_MASK 0x000F0000U
#define IDT_PCIELCTLSTS_CLS_FLD 16
#define IDT_PCIELCTLSTS_NLW_MASK 0x03F00000U
#define IDT_PCIELCTLSTS_NLW_FLD 20
#define IDT_PCIELCTLSTS_SCLK_COM 0x10000000U
/*
* NTCTL register fields related constants
* @IDT_NTCTL_IDPROTDIS: ID Protection check disable (disable MTBL)
* @IDT_NTCTL_CPEN: Completion enable
* @IDT_NTCTL_RNS: Request no snoop processing (if MTBL disabled)
* @IDT_NTCTL_ATP: Address type processing (if MTBL disabled)
*/
#define IDT_NTCTL_IDPROTDIS 0x00000001U
#define IDT_NTCTL_CPEN 0x00000002U
#define IDT_NTCTL_RNS 0x00000004U
#define IDT_NTCTL_ATP 0x00000008U
/*
* NTINTSTS register fields related constants
* @IDT_NTINTSTS_MSG: Message interrupt bit
* @IDT_NTINTSTS_DBELL: Doorbell interrupt bit
* @IDT_NTINTSTS_SEVENT: Switch Event interrupt bit
* @IDT_NTINTSTS_TMPSENSOR: Temperature sensor interrupt bit
*/
#define IDT_NTINTSTS_MSG 0x00000001U
#define IDT_NTINTSTS_DBELL 0x00000002U
#define IDT_NTINTSTS_SEVENT 0x00000008U
#define IDT_NTINTSTS_TMPSENSOR 0x00000080U
/*
* NTINTMSK register fields related constants
* @IDT_NTINTMSK_MSG: Message interrupt mask bit
* @IDT_NTINTMSK_DBELL: Doorbell interrupt mask bit
* @IDT_NTINTMSK_SEVENT: Switch Event interrupt mask bit
* @IDT_NTINTMSK_TMPSENSOR: Temperature sensor interrupt mask bit
* @IDT_NTINTMSK_ALL: All the useful interrupts mask
*/
#define IDT_NTINTMSK_MSG 0x00000001U
#define IDT_NTINTMSK_DBELL 0x00000002U
#define IDT_NTINTMSK_SEVENT 0x00000008U
#define IDT_NTINTMSK_TMPSENSOR 0x00000080U
#define IDT_NTINTMSK_ALL \
(IDT_NTINTMSK_MSG | IDT_NTINTMSK_DBELL | \
IDT_NTINTMSK_SEVENT | IDT_NTINTMSK_TMPSENSOR)
/*
* NTGSIGNAL register fields related constants
* @IDT_NTGSIGNAL_SET: Set global signal of the local partition
*/
#define IDT_NTGSIGNAL_SET 0x00000001U
/*
* BARSETUP register fields related constants
* @IDT_BARSETUP_TYPE_MASK: Mask of the TYPE field
* @IDT_BARSETUP_TYPE_32: 32-bit addressing BAR
* @IDT_BARSETUP_TYPE_64: 64-bit addressing BAR
* @IDT_BARSETUP_PREF: Value of the BAR prefetchable field
* @IDT_BARSETUP_SIZE_MASK: Mask of the SIZE field
* @IDT_BARSETUP_SIZE_FLD: SIZE field offset
* @IDT_BARSETUP_SIZE_CFG: SIZE field value in case of config space MODE
* @IDT_BARSETUP_MODE_CFG: Configuration space BAR mode
* @IDT_BARSETUP_ATRAN_MASK: ATRAN field mask
* @IDT_BARSETUP_ATRAN_FLD: ATRAN field offset
* @IDT_BARSETUP_ATRAN_DIR: Direct address translation memory window
* @IDT_BARSETUP_ATRAN_LUT12: 12-entry lookup table
* @IDT_BARSETUP_ATRAN_LUT24: 24-entry lookup table
* @IDT_BARSETUP_TPART_MASK: TPART field mask
* @IDT_BARSETUP_TPART_FLD: TPART field offset
* @IDT_BARSETUP_EN: BAR enable bit
*/
#define IDT_BARSETUP_TYPE_MASK 0x00000006U
#define IDT_BARSETUP_TYPE_FLD 0
#define IDT_BARSETUP_TYPE_32 0x00000000U
#define IDT_BARSETUP_TYPE_64 0x00000004U
#define IDT_BARSETUP_PREF 0x00000008U
#define IDT_BARSETUP_SIZE_MASK 0x000003F0U
#define IDT_BARSETUP_SIZE_FLD 4
#define IDT_BARSETUP_SIZE_CFG 0x000000C0U
#define IDT_BARSETUP_MODE_CFG 0x00000400U
#define IDT_BARSETUP_ATRAN_MASK 0x00001800U
#define IDT_BARSETUP_ATRAN_FLD 11
#define IDT_BARSETUP_ATRAN_DIR 0x00000000U
#define IDT_BARSETUP_ATRAN_LUT12 0x00000800U
#define IDT_BARSETUP_ATRAN_LUT24 0x00001000U
#define IDT_BARSETUP_TPART_MASK 0x0000E000U
#define IDT_BARSETUP_TPART_FLD 13
#define IDT_BARSETUP_EN 0x80000000U
/*
* NTMTBLDATA register fields related constants
* @IDT_NTMTBLDATA_VALID: Set the MTBL entry being valid
* @IDT_NTMTBLDATA_REQID_MASK: Bus:Device:Function field mask
* @IDT_NTMTBLDATA_REQID_FLD: Bus:Device:Function field offset
* @IDT_NTMTBLDATA_PART_MASK: Partition field mask
* @IDT_NTMTBLDATA_PART_FLD: Partition field offset
* @IDT_NTMTBLDATA_ATP_TRANS: Enable AT field translation on request TLPs
* @IDT_NTMTBLDATA_CNS_INV: Enable No Snoop attribute inversion of
* Completion TLPs
* @IDT_NTMTBLDATA_RNS_INV: Enable No Snoop attribute inversion of
* Request TLPs
*/
#define IDT_NTMTBLDATA_VALID 0x00000001U
#define IDT_NTMTBLDATA_REQID_MASK 0x0001FFFEU
#define IDT_NTMTBLDATA_REQID_FLD 1
#define IDT_NTMTBLDATA_PART_MASK 0x000E0000U
#define IDT_NTMTBLDATA_PART_FLD 17
#define IDT_NTMTBLDATA_ATP_TRANS 0x20000000U
#define IDT_NTMTBLDATA_CNS_INV 0x40000000U
#define IDT_NTMTBLDATA_RNS_INV 0x80000000U
/*
* REQIDCAP register fields related constants
* @IDT_REQIDCAP_REQID_MASK: Request ID field mask
* @IDT_REQIDCAP_REQID_FLD: Request ID field offset
*/
#define IDT_REQIDCAP_REQID_MASK 0x0000FFFFU
#define IDT_REQIDCAP_REQID_FLD 0
/*
* LUTOFFSET register fields related constants
* @IDT_LUTOFFSET_INDEX_MASK: Lookup table index field mask
* @IDT_LUTOFFSET_INDEX_FLD: Lookup table index field offset
* @IDT_LUTOFFSET_BAR_MASK: Lookup table BAR select field mask
* @IDT_LUTOFFSET_BAR_FLD: Lookup table BAR select field offset
*/
#define IDT_LUTOFFSET_INDEX_MASK 0x0000001FU
#define IDT_LUTOFFSET_INDEX_FLD 0
#define IDT_LUTOFFSET_BAR_MASK 0x00000700U
#define IDT_LUTOFFSET_BAR_FLD 8
/*
* LUTUDATA register fields related constants
* @IDT_LUTUDATA_PART_MASK: Partition field mask
* @IDT_LUTUDATA_PART_FLD: Partition field offset
* @IDT_LUTUDATA_VALID: Lookup table entry valid bit
*/
#define IDT_LUTUDATA_PART_MASK 0x0000000FU
#define IDT_LUTUDATA_PART_FLD 0
#define IDT_LUTUDATA_VALID 0x80000000U
/*
* SWPARTxSTS register fields related constants
* @IDT_SWPARTxSTS_SCI: Switch partition state change initiated
* @IDT_SWPARTxSTS_SCC: Switch partition state change completed
* @IDT_SWPARTxSTS_STATE_MASK: Switch partition state mask
* @IDT_SWPARTxSTS_STATE_FLD: Switch partition state field offset
* @IDT_SWPARTxSTS_STATE_DIS: Switch partition disabled
* @IDT_SWPARTxSTS_STATE_ACT: Switch partition enabled
* @IDT_SWPARTxSTS_STATE_RES: Switch partition in reset
* @IDT_SWPARTxSTS_US: Switch partition has upstream port
* @IDT_SWPARTxSTS_USID_MASK: Switch partition upstream port ID mask
* @IDT_SWPARTxSTS_USID_FLD: Switch partition upstream port ID field offset
* @IDT_SWPARTxSTS_NT: Upstream port has NT function
* @IDT_SWPARTxSTS_DMA: Upstream port has DMA function
*/
#define IDT_SWPARTxSTS_SCI 0x00000001U
#define IDT_SWPARTxSTS_SCC 0x00000002U
#define IDT_SWPARTxSTS_STATE_MASK 0x00000060U
#define IDT_SWPARTxSTS_STATE_FLD 5
#define IDT_SWPARTxSTS_STATE_DIS 0x00000000U
#define IDT_SWPARTxSTS_STATE_ACT 0x00000020U
#define IDT_SWPARTxSTS_STATE_RES 0x00000060U
#define IDT_SWPARTxSTS_US 0x00000100U
#define IDT_SWPARTxSTS_USID_MASK 0x00003E00U
#define IDT_SWPARTxSTS_USID_FLD 9
#define IDT_SWPARTxSTS_NT 0x00004000U
#define IDT_SWPARTxSTS_DMA 0x00008000U
/*
* SWPORTxSTS register fields related constants
* @IDT_SWPORTxSTS_OMCI: Operation mode change initiated
* @IDT_SWPORTxSTS_OMCC: Operation mode change completed
* @IDT_SWPORTxSTS_LINKUP: Link up status
* @IDT_SWPORTxSTS_DS: Port lanes behave as downstream lanes
* @IDT_SWPORTxSTS_MODE_MASK: Port mode field mask
* @IDT_SWPORTxSTS_MODE_FLD: Port mode field offset
* @IDT_SWPORTxSTS_MODE_DIS: Port mode - disabled
* @IDT_SWPORTxSTS_MODE_DS: Port mode - downstream switch port
* @IDT_SWPORTxSTS_MODE_US: Port mode - upstream switch port
* @IDT_SWPORTxSTS_MODE_NT: Port mode - NT function
* @IDT_SWPORTxSTS_MODE_USNT: Port mode - upstream switch port with NTB
* @IDT_SWPORTxSTS_MODE_UNAT: Port mode - unattached
* @IDT_SWPORTxSTS_MODE_USDMA: Port mode - upstream switch port with DMA
* @IDT_SWPORTxSTS_MODE_USNTDMA:Port mode - upstream port with NTB and DMA
* @IDT_SWPORTxSTS_MODE_NTDMA: Port mode - NT function with DMA
* @IDT_SWPORTxSTS_SWPART_MASK: Port partition field mask
* @IDT_SWPORTxSTS_SWPART_FLD: Port partition field offset
* @IDT_SWPORTxSTS_DEVNUM_MASK: Port device number field mask
* @IDT_SWPORTxSTS_DEVNUM_FLD: Port device number field offset
*/
#define IDT_SWPORTxSTS_OMCI 0x00000001U
#define IDT_SWPORTxSTS_OMCC 0x00000002U
#define IDT_SWPORTxSTS_LINKUP 0x00000010U
#define IDT_SWPORTxSTS_DS 0x00000020U
#define IDT_SWPORTxSTS_MODE_MASK 0x000003C0U
#define IDT_SWPORTxSTS_MODE_FLD 6
#define IDT_SWPORTxSTS_MODE_DIS 0x00000000U
#define IDT_SWPORTxSTS_MODE_DS 0x00000040U
#define IDT_SWPORTxSTS_MODE_US 0x00000080U
#define IDT_SWPORTxSTS_MODE_NT 0x000000C0U
#define IDT_SWPORTxSTS_MODE_USNT 0x00000100U
#define IDT_SWPORTxSTS_MODE_UNAT 0x00000140U
#define IDT_SWPORTxSTS_MODE_USDMA 0x00000180U
#define IDT_SWPORTxSTS_MODE_USNTDMA 0x000001C0U
#define IDT_SWPORTxSTS_MODE_NTDMA 0x00000200U
#define IDT_SWPORTxSTS_SWPART_MASK 0x00001C00U
#define IDT_SWPORTxSTS_SWPART_FLD 10
#define IDT_SWPORTxSTS_DEVNUM_MASK 0x001F0000U
#define IDT_SWPORTxSTS_DEVNUM_FLD 16
/*
* SEMSK register fields related constants
* @IDT_SEMSK_LINKUP: Link Up event mask bit
* @IDT_SEMSK_LINKDN: Link Down event mask bit
* @IDT_SEMSK_GSIGNAL: Global Signal event mask bit
*/
#define IDT_SEMSK_LINKUP 0x00000001U
#define IDT_SEMSK_LINKDN 0x00000002U
#define IDT_SEMSK_GSIGNAL 0x00000020U
/*
* SWPxMSGCTL register fields related constants
* @IDT_SWPxMSGCTL_REG_MASK: Register select field mask
* @IDT_SWPxMSGCTL_REG_FLD: Register select field offset
* @IDT_SWPxMSGCTL_PART_MASK: Partition select field mask
* @IDT_SWPxMSGCTL_PART_FLD: Partition select field offset
*/
#define IDT_SWPxMSGCTL_REG_MASK 0x00000003U
#define IDT_SWPxMSGCTL_REG_FLD 0
#define IDT_SWPxMSGCTL_PART_MASK 0x00000070U
#define IDT_SWPxMSGCTL_PART_FLD 4
/*
* TMPSTS register fields related constants
* @IDT_TMPSTS_TEMP_MASK: Current temperature field mask
* @IDT_TMPSTS_TEMP_FLD: Current temperature field offset
*/
#define IDT_TMPSTS_TEMP_MASK 0x000000FFU
#define IDT_TMPSTS_TEMP_FLD 0
/*
* Helper macro to get/set the corresponding field value
* @GET_FIELD: Retrieve the value of the corresponding field
* @SET_FIELD: Set the specified field up
* @IS_FLD_SET: Check whether a field is set with value
*/
#define GET_FIELD(field, data) \
(((u32)(data) & IDT_ ##field## _MASK) >> IDT_ ##field## _FLD)
#define SET_FIELD(field, data, value) \
(((u32)(data) & ~IDT_ ##field## _MASK) | \
((u32)(value) << IDT_ ##field## _FLD))
#define IS_FLD_SET(field, data, value) \
(((u32)(data) & IDT_ ##field## _MASK) == IDT_ ##field## _ ##value)
/*
* Useful registers masks:
* @IDT_DBELL_MASK: Doorbell bits mask
* @IDT_OUTMSG_MASK: Out messages status bits mask
* @IDT_INMSG_MASK: In messages status bits mask
* @IDT_MSG_MASK: Any message status bits mask
*/
#define IDT_DBELL_MASK ((u32)0xFFFFFFFFU)
#define IDT_OUTMSG_MASK ((u32)0x0000000FU)
#define IDT_INMSG_MASK ((u32)0x000F0000U)
#define IDT_MSG_MASK (IDT_INMSG_MASK | IDT_OUTMSG_MASK)
/*
* Number of IDT NTB resources:
* @IDT_MSG_CNT: Number of Message registers
* @IDT_BAR_CNT: Number of BARs of each port
* @IDT_MTBL_ENTRY_CNT: Number mapping table entries
*/
#define IDT_MSG_CNT 4
#define IDT_BAR_CNT 6
#define IDT_MTBL_ENTRY_CNT 64
/*
* General IDT PCIe-switch constant
* @IDT_MAX_NR_PORTS: Maximum number of ports per IDT PCIe-switch
* @IDT_MAX_NR_PARTS: Maximum number of partitions per IDT PCIe-switch
* @IDT_MAX_NR_PEERS: Maximum number of NT-peers per IDT PCIe-switch
* @IDT_MAX_NR_MWS: Maximum number of Memory Widows
* @IDT_PCIE_REGSIZE: Size of the registers in bytes
* @IDT_TRANS_ALIGN: Alignment of translated base address
* @IDT_DIR_SIZE_ALIGN: Alignment of size setting for direct translated MWs.
* Even though the lower 10 bits are reserved, they are
* treated by IDT as one's so basically there is no any
* alignment of size limit for DIR address translation.
*/
#define IDT_MAX_NR_PORTS 24
#define IDT_MAX_NR_PARTS 8
#define IDT_MAX_NR_PEERS 8
#define IDT_MAX_NR_MWS 29
#define IDT_PCIE_REGSIZE 4
#define IDT_TRANS_ALIGN 4
#define IDT_DIR_SIZE_ALIGN 1
/*
* IDT Memory Windows type. Depending on the device settings, IDT supports
* Direct Address Translation MW registers and Lookup Table registers
* @IDT_MW_DIR: Direct address translation
* @IDT_MW_LUT12: 12-entry lookup table entry
* @IDT_MW_LUT24: 24-entry lookup table entry
*
* NOTE These values are exactly the same as one of the BARSETUP ATRAN field
*/
enum idt_mw_type {
IDT_MW_DIR = 0x0,
IDT_MW_LUT12 = 0x1,
IDT_MW_LUT24 = 0x2
};
/*
* IDT PCIe-switch model private data
* @name: Device name
* @port_cnt: Total number of NT endpoint ports
* @ports: Port ids
*/
struct idt_89hpes_cfg {
char *name;
unsigned char port_cnt;
unsigned char ports[];
};
/*
* Memory window configuration structure
* @type: Type of the memory window (direct address translation or lookup
* table)
*
* @bar: PCIe BAR the memory window referenced to
* @idx: Index of the memory window within the BAR
*
* @addr_align: Alignment of translated address
* @size_align: Alignment of memory window size
* @size_max: Maximum size of memory window
*/
struct idt_mw_cfg {
enum idt_mw_type type;
unsigned char bar;
unsigned char idx;
u64 addr_align;
u64 size_align;
u64 size_max;
};
/*
* Description structure of peer IDT NT-functions:
* @port: NT-function port
* @part: NT-function partition
*
* @mw_cnt: Number of memory windows supported by NT-function
* @mws: Array of memory windows descriptors
*/
struct idt_ntb_peer {
unsigned char port;
unsigned char part;
unsigned char mw_cnt;
struct idt_mw_cfg *mws;
};
/*
* Description structure of local IDT NT-function:
* @ntb: Linux NTB-device description structure
* @swcfg: Pointer to the structure of local IDT PCIe-switch
* specific cofnfigurations
*
* @port: Local NT-function port
* @part: Local NT-function partition
*
* @peer_cnt: Number of peers with activated NTB-function
* @peers: Array of peers descripting structures
* @port_idx_map: Map of port number -> peer index
* @part_idx_map: Map of partition number -> peer index
*
* @mtbl_lock: Mapping table access lock
*
* @mw_cnt: Number of memory windows supported by NT-function
* @mws: Array of memory windows descriptors
* @lut_lock: Lookup table access lock
*
* @msg_locks: Message registers mapping table lockers
*
* @cfgspc: Virtual address of the memory mapped configuration
* space of the NT-function
* @db_mask_lock: Doorbell mask register lock
* @msg_mask_lock: Message mask register lock
* @gasa_lock: GASA registers access lock
*
* @dbgfs_info: DebugFS info node
*/
struct idt_ntb_dev {
struct ntb_dev ntb;
struct idt_89hpes_cfg *swcfg;
unsigned char port;
unsigned char part;
unsigned char peer_cnt;
struct idt_ntb_peer peers[IDT_MAX_NR_PEERS];
char port_idx_map[IDT_MAX_NR_PORTS];
char part_idx_map[IDT_MAX_NR_PARTS];
spinlock_t mtbl_lock;
unsigned char mw_cnt;
struct idt_mw_cfg *mws;
spinlock_t lut_lock;
spinlock_t msg_locks[IDT_MSG_CNT];
void __iomem *cfgspc;
spinlock_t db_mask_lock;
spinlock_t msg_mask_lock;
spinlock_t gasa_lock;
struct dentry *dbgfs_info;
};
#define to_ndev_ntb(__ntb) container_of(__ntb, struct idt_ntb_dev, ntb)
/*
* Descriptor of the IDT PCIe-switch BAR resources
* @setup: BAR setup register
* @limit: BAR limit register
* @ltbase: Lower translated base address
* @utbase: Upper translated base address
*/
struct idt_ntb_bar {
unsigned int setup;
unsigned int limit;
unsigned int ltbase;
unsigned int utbase;
};
/*
* Descriptor of the IDT PCIe-switch message resources
* @in: Inbound message register
* @out: Outbound message register
* @src: Source of inbound message register
*/
struct idt_ntb_msg {
unsigned int in;
unsigned int out;
unsigned int src;
};
/*
* Descriptor of the IDT PCIe-switch NT-function specific parameters in the
* PCI Configuration Space
* @bars: BARs related registers
* @msgs: Messaging related registers
*/
struct idt_ntb_regs {
struct idt_ntb_bar bars[IDT_BAR_CNT];
struct idt_ntb_msg msgs[IDT_MSG_CNT];
};
/*
* Descriptor of the IDT PCIe-switch port specific parameters in the
* Global Configuration Space
* @pcicmdsts: PCI command/status register
* @pcielctlsts: PCIe link control/status
*
* @ctl: Port control register
* @sts: Port status register
*
* @bars: BARs related registers
*/
struct idt_ntb_port {
unsigned int pcicmdsts;
unsigned int pcielctlsts;
unsigned int ntctl;
unsigned int ctl;
unsigned int sts;
struct idt_ntb_bar bars[IDT_BAR_CNT];
};
/*
* Descriptor of the IDT PCIe-switch partition specific parameters.
* @ctl: Partition control register in the Global Address Space
* @sts: Partition status register in the Global Address Space
* @msgctl: Messages control registers
*/
struct idt_ntb_part {
unsigned int ctl;
unsigned int sts;
unsigned int msgctl[IDT_MSG_CNT];
};
#endif /* NTB_HW_IDT_H */
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
* *
* Copyright(c) 2012 Intel Corporation. All rights reserved. * Copyright(c) 2012 Intel Corporation. All rights reserved.
* Copyright (C) 2015 EMC Corporation. All Rights Reserved. * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as * it under the terms of version 2 of the GNU General Public License as
...@@ -15,6 +16,7 @@ ...@@ -15,6 +16,7 @@
* *
* Copyright(c) 2012 Intel Corporation. All rights reserved. * Copyright(c) 2012 Intel Corporation. All rights reserved.
* Copyright (C) 2015 EMC Corporation. All Rights Reserved. * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions * modification, are permitted provided that the following conditions
...@@ -270,12 +272,12 @@ static inline int ndev_db_addr(struct intel_ntb_dev *ndev, ...@@ -270,12 +272,12 @@ static inline int ndev_db_addr(struct intel_ntb_dev *ndev,
if (db_addr) { if (db_addr) {
*db_addr = reg_addr + reg; *db_addr = reg_addr + reg;
dev_dbg(ndev_dev(ndev), "Peer db addr %llx\n", *db_addr); dev_dbg(&ndev->ntb.pdev->dev, "Peer db addr %llx\n", *db_addr);
} }
if (db_size) { if (db_size) {
*db_size = ndev->reg->db_size; *db_size = ndev->reg->db_size;
dev_dbg(ndev_dev(ndev), "Peer db size %llx\n", *db_size); dev_dbg(&ndev->ntb.pdev->dev, "Peer db size %llx\n", *db_size);
} }
return 0; return 0;
...@@ -368,7 +370,8 @@ static inline int ndev_spad_addr(struct intel_ntb_dev *ndev, int idx, ...@@ -368,7 +370,8 @@ static inline int ndev_spad_addr(struct intel_ntb_dev *ndev, int idx,
if (spad_addr) { if (spad_addr) {
*spad_addr = reg_addr + reg + (idx << 2); *spad_addr = reg_addr + reg + (idx << 2);
dev_dbg(ndev_dev(ndev), "Peer spad addr %llx\n", *spad_addr); dev_dbg(&ndev->ntb.pdev->dev, "Peer spad addr %llx\n",
*spad_addr);
} }
return 0; return 0;
...@@ -409,7 +412,7 @@ static irqreturn_t ndev_interrupt(struct intel_ntb_dev *ndev, int vec) ...@@ -409,7 +412,7 @@ static irqreturn_t ndev_interrupt(struct intel_ntb_dev *ndev, int vec)
if ((ndev->hwerr_flags & NTB_HWERR_MSIX_VECTOR32_BAD) && (vec == 31)) if ((ndev->hwerr_flags & NTB_HWERR_MSIX_VECTOR32_BAD) && (vec == 31))
vec_mask |= ndev->db_link_mask; vec_mask |= ndev->db_link_mask;
dev_dbg(ndev_dev(ndev), "vec %d vec_mask %llx\n", vec, vec_mask); dev_dbg(&ndev->ntb.pdev->dev, "vec %d vec_mask %llx\n", vec, vec_mask);
ndev->last_ts = jiffies; ndev->last_ts = jiffies;
...@@ -428,7 +431,7 @@ static irqreturn_t ndev_vec_isr(int irq, void *dev) ...@@ -428,7 +431,7 @@ static irqreturn_t ndev_vec_isr(int irq, void *dev)
{ {
struct intel_ntb_vec *nvec = dev; struct intel_ntb_vec *nvec = dev;
dev_dbg(ndev_dev(nvec->ndev), "irq: %d nvec->num: %d\n", dev_dbg(&nvec->ndev->ntb.pdev->dev, "irq: %d nvec->num: %d\n",
irq, nvec->num); irq, nvec->num);
return ndev_interrupt(nvec->ndev, nvec->num); return ndev_interrupt(nvec->ndev, nvec->num);
...@@ -438,7 +441,7 @@ static irqreturn_t ndev_irq_isr(int irq, void *dev) ...@@ -438,7 +441,7 @@ static irqreturn_t ndev_irq_isr(int irq, void *dev)
{ {
struct intel_ntb_dev *ndev = dev; struct intel_ntb_dev *ndev = dev;
return ndev_interrupt(ndev, irq - ndev_pdev(ndev)->irq); return ndev_interrupt(ndev, irq - ndev->ntb.pdev->irq);
} }
static int ndev_init_isr(struct intel_ntb_dev *ndev, static int ndev_init_isr(struct intel_ntb_dev *ndev,
...@@ -448,7 +451,7 @@ static int ndev_init_isr(struct intel_ntb_dev *ndev, ...@@ -448,7 +451,7 @@ static int ndev_init_isr(struct intel_ntb_dev *ndev,
struct pci_dev *pdev; struct pci_dev *pdev;
int rc, i, msix_count, node; int rc, i, msix_count, node;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
node = dev_to_node(&pdev->dev); node = dev_to_node(&pdev->dev);
...@@ -487,7 +490,7 @@ static int ndev_init_isr(struct intel_ntb_dev *ndev, ...@@ -487,7 +490,7 @@ static int ndev_init_isr(struct intel_ntb_dev *ndev,
goto err_msix_request; goto err_msix_request;
} }
dev_dbg(ndev_dev(ndev), "Using %d msix interrupts\n", msix_count); dev_dbg(&pdev->dev, "Using %d msix interrupts\n", msix_count);
ndev->db_vec_count = msix_count; ndev->db_vec_count = msix_count;
ndev->db_vec_shift = msix_shift; ndev->db_vec_shift = msix_shift;
return 0; return 0;
...@@ -515,7 +518,7 @@ static int ndev_init_isr(struct intel_ntb_dev *ndev, ...@@ -515,7 +518,7 @@ static int ndev_init_isr(struct intel_ntb_dev *ndev,
if (rc) if (rc)
goto err_msi_request; goto err_msi_request;
dev_dbg(ndev_dev(ndev), "Using msi interrupts\n"); dev_dbg(&pdev->dev, "Using msi interrupts\n");
ndev->db_vec_count = 1; ndev->db_vec_count = 1;
ndev->db_vec_shift = total_shift; ndev->db_vec_shift = total_shift;
return 0; return 0;
...@@ -533,7 +536,7 @@ static int ndev_init_isr(struct intel_ntb_dev *ndev, ...@@ -533,7 +536,7 @@ static int ndev_init_isr(struct intel_ntb_dev *ndev,
if (rc) if (rc)
goto err_intx_request; goto err_intx_request;
dev_dbg(ndev_dev(ndev), "Using intx interrupts\n"); dev_dbg(&pdev->dev, "Using intx interrupts\n");
ndev->db_vec_count = 1; ndev->db_vec_count = 1;
ndev->db_vec_shift = total_shift; ndev->db_vec_shift = total_shift;
return 0; return 0;
...@@ -547,7 +550,7 @@ static void ndev_deinit_isr(struct intel_ntb_dev *ndev) ...@@ -547,7 +550,7 @@ static void ndev_deinit_isr(struct intel_ntb_dev *ndev)
struct pci_dev *pdev; struct pci_dev *pdev;
int i; int i;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
/* Mask all doorbell interrupts */ /* Mask all doorbell interrupts */
ndev->db_mask = ndev->db_valid_mask; ndev->db_mask = ndev->db_valid_mask;
...@@ -744,7 +747,7 @@ static ssize_t ndev_ntb_debugfs_read(struct file *filp, char __user *ubuf, ...@@ -744,7 +747,7 @@ static ssize_t ndev_ntb_debugfs_read(struct file *filp, char __user *ubuf,
union { u64 v64; u32 v32; u16 v16; u8 v8; } u; union { u64 v64; u32 v32; u16 v16; u8 v8; } u;
ndev = filp->private_data; ndev = filp->private_data;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
mmio = ndev->self_mmio; mmio = ndev->self_mmio;
buf_size = min(count, 0x800ul); buf_size = min(count, 0x800ul);
...@@ -1019,7 +1022,8 @@ static void ndev_init_debugfs(struct intel_ntb_dev *ndev) ...@@ -1019,7 +1022,8 @@ static void ndev_init_debugfs(struct intel_ntb_dev *ndev)
ndev->debugfs_info = NULL; ndev->debugfs_info = NULL;
} else { } else {
ndev->debugfs_dir = ndev->debugfs_dir =
debugfs_create_dir(ndev_name(ndev), debugfs_dir); debugfs_create_dir(pci_name(ndev->ntb.pdev),
debugfs_dir);
if (!ndev->debugfs_dir) if (!ndev->debugfs_dir)
ndev->debugfs_info = NULL; ndev->debugfs_info = NULL;
else else
...@@ -1035,20 +1039,26 @@ static void ndev_deinit_debugfs(struct intel_ntb_dev *ndev) ...@@ -1035,20 +1039,26 @@ static void ndev_deinit_debugfs(struct intel_ntb_dev *ndev)
debugfs_remove_recursive(ndev->debugfs_dir); debugfs_remove_recursive(ndev->debugfs_dir);
} }
static int intel_ntb_mw_count(struct ntb_dev *ntb) static int intel_ntb_mw_count(struct ntb_dev *ntb, int pidx)
{ {
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
return ntb_ndev(ntb)->mw_count; return ntb_ndev(ntb)->mw_count;
} }
static int intel_ntb_mw_get_range(struct ntb_dev *ntb, int idx, static int intel_ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int idx,
phys_addr_t *base, resource_size_t *addr_align,
resource_size_t *size, resource_size_t *size_align,
resource_size_t *align, resource_size_t *size_max)
resource_size_t *align_size)
{ {
struct intel_ntb_dev *ndev = ntb_ndev(ntb); struct intel_ntb_dev *ndev = ntb_ndev(ntb);
resource_size_t bar_size, mw_size;
int bar; int bar;
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
if (idx >= ndev->b2b_idx && !ndev->b2b_off) if (idx >= ndev->b2b_idx && !ndev->b2b_off)
idx += 1; idx += 1;
...@@ -1056,24 +1066,26 @@ static int intel_ntb_mw_get_range(struct ntb_dev *ntb, int idx, ...@@ -1056,24 +1066,26 @@ static int intel_ntb_mw_get_range(struct ntb_dev *ntb, int idx,
if (bar < 0) if (bar < 0)
return bar; return bar;
if (base) bar_size = pci_resource_len(ndev->ntb.pdev, bar);
*base = pci_resource_start(ndev->ntb.pdev, bar) +
(idx == ndev->b2b_idx ? ndev->b2b_off : 0);
if (size) if (idx == ndev->b2b_idx)
*size = pci_resource_len(ndev->ntb.pdev, bar) - mw_size = bar_size - ndev->b2b_off;
(idx == ndev->b2b_idx ? ndev->b2b_off : 0); else
mw_size = bar_size;
if (addr_align)
*addr_align = pci_resource_len(ndev->ntb.pdev, bar);
if (align) if (size_align)
*align = pci_resource_len(ndev->ntb.pdev, bar); *size_align = 1;
if (align_size) if (size_max)
*align_size = 1; *size_max = mw_size;
return 0; return 0;
} }
static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx, static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int pidx, int idx,
dma_addr_t addr, resource_size_t size) dma_addr_t addr, resource_size_t size)
{ {
struct intel_ntb_dev *ndev = ntb_ndev(ntb); struct intel_ntb_dev *ndev = ntb_ndev(ntb);
...@@ -1083,6 +1095,9 @@ static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx, ...@@ -1083,6 +1095,9 @@ static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx,
u64 base, limit, reg_val; u64 base, limit, reg_val;
int bar; int bar;
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
if (idx >= ndev->b2b_idx && !ndev->b2b_off) if (idx >= ndev->b2b_idx && !ndev->b2b_off)
idx += 1; idx += 1;
...@@ -1171,7 +1186,7 @@ static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx, ...@@ -1171,7 +1186,7 @@ static int intel_ntb_mw_set_trans(struct ntb_dev *ntb, int idx,
return 0; return 0;
} }
static int intel_ntb_link_is_up(struct ntb_dev *ntb, static u64 intel_ntb_link_is_up(struct ntb_dev *ntb,
enum ntb_speed *speed, enum ntb_speed *speed,
enum ntb_width *width) enum ntb_width *width)
{ {
...@@ -1206,13 +1221,13 @@ static int intel_ntb_link_enable(struct ntb_dev *ntb, ...@@ -1206,13 +1221,13 @@ static int intel_ntb_link_enable(struct ntb_dev *ntb,
if (ndev->ntb.topo == NTB_TOPO_SEC) if (ndev->ntb.topo == NTB_TOPO_SEC)
return -EINVAL; return -EINVAL;
dev_dbg(ndev_dev(ndev), dev_dbg(&ntb->pdev->dev,
"Enabling link with max_speed %d max_width %d\n", "Enabling link with max_speed %d max_width %d\n",
max_speed, max_width); max_speed, max_width);
if (max_speed != NTB_SPEED_AUTO) if (max_speed != NTB_SPEED_AUTO)
dev_dbg(ndev_dev(ndev), "ignoring max_speed %d\n", max_speed); dev_dbg(&ntb->pdev->dev, "ignoring max_speed %d\n", max_speed);
if (max_width != NTB_WIDTH_AUTO) if (max_width != NTB_WIDTH_AUTO)
dev_dbg(ndev_dev(ndev), "ignoring max_width %d\n", max_width); dev_dbg(&ntb->pdev->dev, "ignoring max_width %d\n", max_width);
ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl); ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl);
ntb_ctl &= ~(NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK); ntb_ctl &= ~(NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK);
...@@ -1235,7 +1250,7 @@ static int intel_ntb_link_disable(struct ntb_dev *ntb) ...@@ -1235,7 +1250,7 @@ static int intel_ntb_link_disable(struct ntb_dev *ntb)
if (ndev->ntb.topo == NTB_TOPO_SEC) if (ndev->ntb.topo == NTB_TOPO_SEC)
return -EINVAL; return -EINVAL;
dev_dbg(ndev_dev(ndev), "Disabling link\n"); dev_dbg(&ntb->pdev->dev, "Disabling link\n");
/* Bring NTB link down */ /* Bring NTB link down */
ntb_cntl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl); ntb_cntl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl);
...@@ -1249,6 +1264,36 @@ static int intel_ntb_link_disable(struct ntb_dev *ntb) ...@@ -1249,6 +1264,36 @@ static int intel_ntb_link_disable(struct ntb_dev *ntb)
return 0; return 0;
} }
static int intel_ntb_peer_mw_count(struct ntb_dev *ntb)
{
/* Numbers of inbound and outbound memory windows match */
return ntb_ndev(ntb)->mw_count;
}
static int intel_ntb_peer_mw_get_addr(struct ntb_dev *ntb, int idx,
phys_addr_t *base, resource_size_t *size)
{
struct intel_ntb_dev *ndev = ntb_ndev(ntb);
int bar;
if (idx >= ndev->b2b_idx && !ndev->b2b_off)
idx += 1;
bar = ndev_mw_to_bar(ndev, idx);
if (bar < 0)
return bar;
if (base)
*base = pci_resource_start(ndev->ntb.pdev, bar) +
(idx == ndev->b2b_idx ? ndev->b2b_off : 0);
if (size)
*size = pci_resource_len(ndev->ntb.pdev, bar) -
(idx == ndev->b2b_idx ? ndev->b2b_off : 0);
return 0;
}
static int intel_ntb_db_is_unsafe(struct ntb_dev *ntb) static int intel_ntb_db_is_unsafe(struct ntb_dev *ntb)
{ {
return ndev_ignore_unsafe(ntb_ndev(ntb), NTB_UNSAFE_DB); return ndev_ignore_unsafe(ntb_ndev(ntb), NTB_UNSAFE_DB);
...@@ -1366,30 +1411,30 @@ static int intel_ntb_spad_write(struct ntb_dev *ntb, ...@@ -1366,30 +1411,30 @@ static int intel_ntb_spad_write(struct ntb_dev *ntb,
ndev->self_reg->spad); ndev->self_reg->spad);
} }
static int intel_ntb_peer_spad_addr(struct ntb_dev *ntb, int idx, static int intel_ntb_peer_spad_addr(struct ntb_dev *ntb, int pidx, int sidx,
phys_addr_t *spad_addr) phys_addr_t *spad_addr)
{ {
struct intel_ntb_dev *ndev = ntb_ndev(ntb); struct intel_ntb_dev *ndev = ntb_ndev(ntb);
return ndev_spad_addr(ndev, idx, spad_addr, ndev->peer_addr, return ndev_spad_addr(ndev, sidx, spad_addr, ndev->peer_addr,
ndev->peer_reg->spad); ndev->peer_reg->spad);
} }
static u32 intel_ntb_peer_spad_read(struct ntb_dev *ntb, int idx) static u32 intel_ntb_peer_spad_read(struct ntb_dev *ntb, int pidx, int sidx)
{ {
struct intel_ntb_dev *ndev = ntb_ndev(ntb); struct intel_ntb_dev *ndev = ntb_ndev(ntb);
return ndev_spad_read(ndev, idx, return ndev_spad_read(ndev, sidx,
ndev->peer_mmio + ndev->peer_mmio +
ndev->peer_reg->spad); ndev->peer_reg->spad);
} }
static int intel_ntb_peer_spad_write(struct ntb_dev *ntb, static int intel_ntb_peer_spad_write(struct ntb_dev *ntb, int pidx,
int idx, u32 val) int sidx, u32 val)
{ {
struct intel_ntb_dev *ndev = ntb_ndev(ntb); struct intel_ntb_dev *ndev = ntb_ndev(ntb);
return ndev_spad_write(ndev, idx, val, return ndev_spad_write(ndev, sidx, val,
ndev->peer_mmio + ndev->peer_mmio +
ndev->peer_reg->spad); ndev->peer_reg->spad);
} }
...@@ -1442,30 +1487,33 @@ static int atom_link_is_err(struct intel_ntb_dev *ndev) ...@@ -1442,30 +1487,33 @@ static int atom_link_is_err(struct intel_ntb_dev *ndev)
static inline enum ntb_topo atom_ppd_topo(struct intel_ntb_dev *ndev, u32 ppd) static inline enum ntb_topo atom_ppd_topo(struct intel_ntb_dev *ndev, u32 ppd)
{ {
struct device *dev = &ndev->ntb.pdev->dev;
switch (ppd & ATOM_PPD_TOPO_MASK) { switch (ppd & ATOM_PPD_TOPO_MASK) {
case ATOM_PPD_TOPO_B2B_USD: case ATOM_PPD_TOPO_B2B_USD:
dev_dbg(ndev_dev(ndev), "PPD %d B2B USD\n", ppd); dev_dbg(dev, "PPD %d B2B USD\n", ppd);
return NTB_TOPO_B2B_USD; return NTB_TOPO_B2B_USD;
case ATOM_PPD_TOPO_B2B_DSD: case ATOM_PPD_TOPO_B2B_DSD:
dev_dbg(ndev_dev(ndev), "PPD %d B2B DSD\n", ppd); dev_dbg(dev, "PPD %d B2B DSD\n", ppd);
return NTB_TOPO_B2B_DSD; return NTB_TOPO_B2B_DSD;
case ATOM_PPD_TOPO_PRI_USD: case ATOM_PPD_TOPO_PRI_USD:
case ATOM_PPD_TOPO_PRI_DSD: /* accept bogus PRI_DSD */ case ATOM_PPD_TOPO_PRI_DSD: /* accept bogus PRI_DSD */
case ATOM_PPD_TOPO_SEC_USD: case ATOM_PPD_TOPO_SEC_USD:
case ATOM_PPD_TOPO_SEC_DSD: /* accept bogus SEC_DSD */ case ATOM_PPD_TOPO_SEC_DSD: /* accept bogus SEC_DSD */
dev_dbg(ndev_dev(ndev), "PPD %d non B2B disabled\n", ppd); dev_dbg(dev, "PPD %d non B2B disabled\n", ppd);
return NTB_TOPO_NONE; return NTB_TOPO_NONE;
} }
dev_dbg(ndev_dev(ndev), "PPD %d invalid\n", ppd); dev_dbg(dev, "PPD %d invalid\n", ppd);
return NTB_TOPO_NONE; return NTB_TOPO_NONE;
} }
static void atom_link_hb(struct work_struct *work) static void atom_link_hb(struct work_struct *work)
{ {
struct intel_ntb_dev *ndev = hb_ndev(work); struct intel_ntb_dev *ndev = hb_ndev(work);
struct device *dev = &ndev->ntb.pdev->dev;
unsigned long poll_ts; unsigned long poll_ts;
void __iomem *mmio; void __iomem *mmio;
u32 status32; u32 status32;
...@@ -1503,30 +1551,30 @@ static void atom_link_hb(struct work_struct *work) ...@@ -1503,30 +1551,30 @@ static void atom_link_hb(struct work_struct *work)
/* Clear AER Errors, write to clear */ /* Clear AER Errors, write to clear */
status32 = ioread32(mmio + ATOM_ERRCORSTS_OFFSET); status32 = ioread32(mmio + ATOM_ERRCORSTS_OFFSET);
dev_dbg(ndev_dev(ndev), "ERRCORSTS = %x\n", status32); dev_dbg(dev, "ERRCORSTS = %x\n", status32);
status32 &= PCI_ERR_COR_REP_ROLL; status32 &= PCI_ERR_COR_REP_ROLL;
iowrite32(status32, mmio + ATOM_ERRCORSTS_OFFSET); iowrite32(status32, mmio + ATOM_ERRCORSTS_OFFSET);
/* Clear unexpected electrical idle event in LTSSM, write to clear */ /* Clear unexpected electrical idle event in LTSSM, write to clear */
status32 = ioread32(mmio + ATOM_LTSSMERRSTS0_OFFSET); status32 = ioread32(mmio + ATOM_LTSSMERRSTS0_OFFSET);
dev_dbg(ndev_dev(ndev), "LTSSMERRSTS0 = %x\n", status32); dev_dbg(dev, "LTSSMERRSTS0 = %x\n", status32);
status32 |= ATOM_LTSSMERRSTS0_UNEXPECTEDEI; status32 |= ATOM_LTSSMERRSTS0_UNEXPECTEDEI;
iowrite32(status32, mmio + ATOM_LTSSMERRSTS0_OFFSET); iowrite32(status32, mmio + ATOM_LTSSMERRSTS0_OFFSET);
/* Clear DeSkew Buffer error, write to clear */ /* Clear DeSkew Buffer error, write to clear */
status32 = ioread32(mmio + ATOM_DESKEWSTS_OFFSET); status32 = ioread32(mmio + ATOM_DESKEWSTS_OFFSET);
dev_dbg(ndev_dev(ndev), "DESKEWSTS = %x\n", status32); dev_dbg(dev, "DESKEWSTS = %x\n", status32);
status32 |= ATOM_DESKEWSTS_DBERR; status32 |= ATOM_DESKEWSTS_DBERR;
iowrite32(status32, mmio + ATOM_DESKEWSTS_OFFSET); iowrite32(status32, mmio + ATOM_DESKEWSTS_OFFSET);
status32 = ioread32(mmio + ATOM_IBSTERRRCRVSTS0_OFFSET); status32 = ioread32(mmio + ATOM_IBSTERRRCRVSTS0_OFFSET);
dev_dbg(ndev_dev(ndev), "IBSTERRRCRVSTS0 = %x\n", status32); dev_dbg(dev, "IBSTERRRCRVSTS0 = %x\n", status32);
status32 &= ATOM_IBIST_ERR_OFLOW; status32 &= ATOM_IBIST_ERR_OFLOW;
iowrite32(status32, mmio + ATOM_IBSTERRRCRVSTS0_OFFSET); iowrite32(status32, mmio + ATOM_IBSTERRRCRVSTS0_OFFSET);
/* Releases the NTB state machine to allow the link to retrain */ /* Releases the NTB state machine to allow the link to retrain */
status32 = ioread32(mmio + ATOM_LTSSMSTATEJMP_OFFSET); status32 = ioread32(mmio + ATOM_LTSSMSTATEJMP_OFFSET);
dev_dbg(ndev_dev(ndev), "LTSSMSTATEJMP = %x\n", status32); dev_dbg(dev, "LTSSMSTATEJMP = %x\n", status32);
status32 &= ~ATOM_LTSSMSTATEJMP_FORCEDETECT; status32 &= ~ATOM_LTSSMSTATEJMP_FORCEDETECT;
iowrite32(status32, mmio + ATOM_LTSSMSTATEJMP_OFFSET); iowrite32(status32, mmio + ATOM_LTSSMSTATEJMP_OFFSET);
...@@ -1699,11 +1747,11 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -1699,11 +1747,11 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev,
int b2b_bar; int b2b_bar;
u8 bar_sz; u8 bar_sz;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
mmio = ndev->self_mmio; mmio = ndev->self_mmio;
if (ndev->b2b_idx == UINT_MAX) { if (ndev->b2b_idx == UINT_MAX) {
dev_dbg(ndev_dev(ndev), "not using b2b mw\n"); dev_dbg(&pdev->dev, "not using b2b mw\n");
b2b_bar = 0; b2b_bar = 0;
ndev->b2b_off = 0; ndev->b2b_off = 0;
} else { } else {
...@@ -1711,24 +1759,21 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -1711,24 +1759,21 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev,
if (b2b_bar < 0) if (b2b_bar < 0)
return -EIO; return -EIO;
dev_dbg(ndev_dev(ndev), "using b2b mw bar %d\n", b2b_bar); dev_dbg(&pdev->dev, "using b2b mw bar %d\n", b2b_bar);
bar_size = pci_resource_len(ndev->ntb.pdev, b2b_bar); bar_size = pci_resource_len(ndev->ntb.pdev, b2b_bar);
dev_dbg(ndev_dev(ndev), "b2b bar size %#llx\n", bar_size); dev_dbg(&pdev->dev, "b2b bar size %#llx\n", bar_size);
if (b2b_mw_share && ((bar_size >> 1) >= XEON_B2B_MIN_SIZE)) { if (b2b_mw_share && ((bar_size >> 1) >= XEON_B2B_MIN_SIZE)) {
dev_dbg(ndev_dev(ndev), dev_dbg(&pdev->dev, "b2b using first half of bar\n");
"b2b using first half of bar\n");
ndev->b2b_off = bar_size >> 1; ndev->b2b_off = bar_size >> 1;
} else if (bar_size >= XEON_B2B_MIN_SIZE) { } else if (bar_size >= XEON_B2B_MIN_SIZE) {
dev_dbg(ndev_dev(ndev), dev_dbg(&pdev->dev, "b2b using whole bar\n");
"b2b using whole bar\n");
ndev->b2b_off = 0; ndev->b2b_off = 0;
--ndev->mw_count; --ndev->mw_count;
} else { } else {
dev_dbg(ndev_dev(ndev), dev_dbg(&pdev->dev, "b2b bar size is too small\n");
"b2b bar size is too small\n");
return -EIO; return -EIO;
} }
} }
...@@ -1738,7 +1783,7 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -1738,7 +1783,7 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev,
* except disable or halve the size of the b2b secondary bar. * except disable or halve the size of the b2b secondary bar.
*/ */
pci_read_config_byte(pdev, SKX_IMBAR1SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, SKX_IMBAR1SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "IMBAR1SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "IMBAR1SZ %#x\n", bar_sz);
if (b2b_bar == 1) { if (b2b_bar == 1) {
if (ndev->b2b_off) if (ndev->b2b_off)
bar_sz -= 1; bar_sz -= 1;
...@@ -1748,10 +1793,10 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -1748,10 +1793,10 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev,
pci_write_config_byte(pdev, SKX_EMBAR1SZ_OFFSET, bar_sz); pci_write_config_byte(pdev, SKX_EMBAR1SZ_OFFSET, bar_sz);
pci_read_config_byte(pdev, SKX_EMBAR1SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, SKX_EMBAR1SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "EMBAR1SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "EMBAR1SZ %#x\n", bar_sz);
pci_read_config_byte(pdev, SKX_IMBAR2SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, SKX_IMBAR2SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "IMBAR2SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "IMBAR2SZ %#x\n", bar_sz);
if (b2b_bar == 2) { if (b2b_bar == 2) {
if (ndev->b2b_off) if (ndev->b2b_off)
bar_sz -= 1; bar_sz -= 1;
...@@ -1761,7 +1806,7 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -1761,7 +1806,7 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev,
pci_write_config_byte(pdev, SKX_EMBAR2SZ_OFFSET, bar_sz); pci_write_config_byte(pdev, SKX_EMBAR2SZ_OFFSET, bar_sz);
pci_read_config_byte(pdev, SKX_EMBAR2SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, SKX_EMBAR2SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "EMBAR2SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "EMBAR2SZ %#x\n", bar_sz);
/* SBAR01 hit by first part of the b2b bar */ /* SBAR01 hit by first part of the b2b bar */
if (b2b_bar == 0) if (b2b_bar == 0)
...@@ -1777,12 +1822,12 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -1777,12 +1822,12 @@ static int skx_setup_b2b_mw(struct intel_ntb_dev *ndev,
bar_addr = addr->bar2_addr64 + (b2b_bar == 1 ? ndev->b2b_off : 0); bar_addr = addr->bar2_addr64 + (b2b_bar == 1 ? ndev->b2b_off : 0);
iowrite64(bar_addr, mmio + SKX_IMBAR1XLMT_OFFSET); iowrite64(bar_addr, mmio + SKX_IMBAR1XLMT_OFFSET);
bar_addr = ioread64(mmio + SKX_IMBAR1XLMT_OFFSET); bar_addr = ioread64(mmio + SKX_IMBAR1XLMT_OFFSET);
dev_dbg(ndev_dev(ndev), "IMBAR1XLMT %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "IMBAR1XLMT %#018llx\n", bar_addr);
bar_addr = addr->bar4_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0); bar_addr = addr->bar4_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0);
iowrite64(bar_addr, mmio + SKX_IMBAR2XLMT_OFFSET); iowrite64(bar_addr, mmio + SKX_IMBAR2XLMT_OFFSET);
bar_addr = ioread64(mmio + SKX_IMBAR2XLMT_OFFSET); bar_addr = ioread64(mmio + SKX_IMBAR2XLMT_OFFSET);
dev_dbg(ndev_dev(ndev), "IMBAR2XLMT %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "IMBAR2XLMT %#018llx\n", bar_addr);
/* zero incoming translation addrs */ /* zero incoming translation addrs */
iowrite64(0, mmio + SKX_IMBAR1XBASE_OFFSET); iowrite64(0, mmio + SKX_IMBAR1XBASE_OFFSET);
...@@ -1852,7 +1897,7 @@ static int skx_init_dev(struct intel_ntb_dev *ndev) ...@@ -1852,7 +1897,7 @@ static int skx_init_dev(struct intel_ntb_dev *ndev)
u8 ppd; u8 ppd;
int rc; int rc;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
ndev->reg = &skx_reg; ndev->reg = &skx_reg;
...@@ -1861,7 +1906,7 @@ static int skx_init_dev(struct intel_ntb_dev *ndev) ...@@ -1861,7 +1906,7 @@ static int skx_init_dev(struct intel_ntb_dev *ndev)
return -EIO; return -EIO;
ndev->ntb.topo = xeon_ppd_topo(ndev, ppd); ndev->ntb.topo = xeon_ppd_topo(ndev, ppd);
dev_dbg(ndev_dev(ndev), "ppd %#x topo %s\n", ppd, dev_dbg(&pdev->dev, "ppd %#x topo %s\n", ppd,
ntb_topo_string(ndev->ntb.topo)); ntb_topo_string(ndev->ntb.topo));
if (ndev->ntb.topo == NTB_TOPO_NONE) if (ndev->ntb.topo == NTB_TOPO_NONE)
return -EINVAL; return -EINVAL;
...@@ -1885,14 +1930,14 @@ static int intel_ntb3_link_enable(struct ntb_dev *ntb, ...@@ -1885,14 +1930,14 @@ static int intel_ntb3_link_enable(struct ntb_dev *ntb,
ndev = container_of(ntb, struct intel_ntb_dev, ntb); ndev = container_of(ntb, struct intel_ntb_dev, ntb);
dev_dbg(ndev_dev(ndev), dev_dbg(&ntb->pdev->dev,
"Enabling link with max_speed %d max_width %d\n", "Enabling link with max_speed %d max_width %d\n",
max_speed, max_width); max_speed, max_width);
if (max_speed != NTB_SPEED_AUTO) if (max_speed != NTB_SPEED_AUTO)
dev_dbg(ndev_dev(ndev), "ignoring max_speed %d\n", max_speed); dev_dbg(&ntb->pdev->dev, "ignoring max_speed %d\n", max_speed);
if (max_width != NTB_WIDTH_AUTO) if (max_width != NTB_WIDTH_AUTO)
dev_dbg(ndev_dev(ndev), "ignoring max_width %d\n", max_width); dev_dbg(&ntb->pdev->dev, "ignoring max_width %d\n", max_width);
ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl); ntb_ctl = ioread32(ndev->self_mmio + ndev->reg->ntb_ctl);
ntb_ctl &= ~(NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK); ntb_ctl &= ~(NTB_CTL_DISABLE | NTB_CTL_CFG_LOCK);
...@@ -1902,7 +1947,7 @@ static int intel_ntb3_link_enable(struct ntb_dev *ntb, ...@@ -1902,7 +1947,7 @@ static int intel_ntb3_link_enable(struct ntb_dev *ntb,
return 0; return 0;
} }
static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx, static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int pidx, int idx,
dma_addr_t addr, resource_size_t size) dma_addr_t addr, resource_size_t size)
{ {
struct intel_ntb_dev *ndev = ntb_ndev(ntb); struct intel_ntb_dev *ndev = ntb_ndev(ntb);
...@@ -1912,6 +1957,9 @@ static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx, ...@@ -1912,6 +1957,9 @@ static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx,
u64 base, limit, reg_val; u64 base, limit, reg_val;
int bar; int bar;
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
if (idx >= ndev->b2b_idx && !ndev->b2b_off) if (idx >= ndev->b2b_idx && !ndev->b2b_off)
idx += 1; idx += 1;
...@@ -1953,7 +2001,7 @@ static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx, ...@@ -1953,7 +2001,7 @@ static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx,
return -EIO; return -EIO;
} }
dev_dbg(ndev_dev(ndev), "BAR %d IMBARXBASE: %#Lx\n", bar, reg_val); dev_dbg(&ntb->pdev->dev, "BAR %d IMBARXBASE: %#Lx\n", bar, reg_val);
/* set and verify setting the limit */ /* set and verify setting the limit */
iowrite64(limit, mmio + limit_reg); iowrite64(limit, mmio + limit_reg);
...@@ -1964,7 +2012,7 @@ static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx, ...@@ -1964,7 +2012,7 @@ static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx,
return -EIO; return -EIO;
} }
dev_dbg(ndev_dev(ndev), "BAR %d IMBARXLMT: %#Lx\n", bar, reg_val); dev_dbg(&ntb->pdev->dev, "BAR %d IMBARXLMT: %#Lx\n", bar, reg_val);
/* setup the EP */ /* setup the EP */
limit_reg = ndev->xlat_reg->bar2_limit + (idx * 0x10) + 0x4000; limit_reg = ndev->xlat_reg->bar2_limit + (idx * 0x10) + 0x4000;
...@@ -1985,7 +2033,7 @@ static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx, ...@@ -1985,7 +2033,7 @@ static int intel_ntb3_mw_set_trans(struct ntb_dev *ntb, int idx,
return -EIO; return -EIO;
} }
dev_dbg(ndev_dev(ndev), "BAR %d EMBARXLMT: %#Lx\n", bar, reg_val); dev_dbg(&ntb->pdev->dev, "BAR %d EMBARXLMT: %#Lx\n", bar, reg_val);
return 0; return 0;
} }
...@@ -2092,7 +2140,7 @@ static inline enum ntb_topo xeon_ppd_topo(struct intel_ntb_dev *ndev, u8 ppd) ...@@ -2092,7 +2140,7 @@ static inline enum ntb_topo xeon_ppd_topo(struct intel_ntb_dev *ndev, u8 ppd)
static inline int xeon_ppd_bar4_split(struct intel_ntb_dev *ndev, u8 ppd) static inline int xeon_ppd_bar4_split(struct intel_ntb_dev *ndev, u8 ppd)
{ {
if (ppd & XEON_PPD_SPLIT_BAR_MASK) { if (ppd & XEON_PPD_SPLIT_BAR_MASK) {
dev_dbg(ndev_dev(ndev), "PPD %d split bar\n", ppd); dev_dbg(&ndev->ntb.pdev->dev, "PPD %d split bar\n", ppd);
return 1; return 1;
} }
return 0; return 0;
...@@ -2122,11 +2170,11 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2122,11 +2170,11 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
int b2b_bar; int b2b_bar;
u8 bar_sz; u8 bar_sz;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
mmio = ndev->self_mmio; mmio = ndev->self_mmio;
if (ndev->b2b_idx == UINT_MAX) { if (ndev->b2b_idx == UINT_MAX) {
dev_dbg(ndev_dev(ndev), "not using b2b mw\n"); dev_dbg(&pdev->dev, "not using b2b mw\n");
b2b_bar = 0; b2b_bar = 0;
ndev->b2b_off = 0; ndev->b2b_off = 0;
} else { } else {
...@@ -2134,24 +2182,21 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2134,24 +2182,21 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
if (b2b_bar < 0) if (b2b_bar < 0)
return -EIO; return -EIO;
dev_dbg(ndev_dev(ndev), "using b2b mw bar %d\n", b2b_bar); dev_dbg(&pdev->dev, "using b2b mw bar %d\n", b2b_bar);
bar_size = pci_resource_len(ndev->ntb.pdev, b2b_bar); bar_size = pci_resource_len(ndev->ntb.pdev, b2b_bar);
dev_dbg(ndev_dev(ndev), "b2b bar size %#llx\n", bar_size); dev_dbg(&pdev->dev, "b2b bar size %#llx\n", bar_size);
if (b2b_mw_share && XEON_B2B_MIN_SIZE <= bar_size >> 1) { if (b2b_mw_share && XEON_B2B_MIN_SIZE <= bar_size >> 1) {
dev_dbg(ndev_dev(ndev), dev_dbg(&pdev->dev, "b2b using first half of bar\n");
"b2b using first half of bar\n");
ndev->b2b_off = bar_size >> 1; ndev->b2b_off = bar_size >> 1;
} else if (XEON_B2B_MIN_SIZE <= bar_size) { } else if (XEON_B2B_MIN_SIZE <= bar_size) {
dev_dbg(ndev_dev(ndev), dev_dbg(&pdev->dev, "b2b using whole bar\n");
"b2b using whole bar\n");
ndev->b2b_off = 0; ndev->b2b_off = 0;
--ndev->mw_count; --ndev->mw_count;
} else { } else {
dev_dbg(ndev_dev(ndev), dev_dbg(&pdev->dev, "b2b bar size is too small\n");
"b2b bar size is too small\n");
return -EIO; return -EIO;
} }
} }
...@@ -2163,7 +2208,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2163,7 +2208,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
* offsets are not in a consistent order (bar5sz comes after ppd, odd). * offsets are not in a consistent order (bar5sz comes after ppd, odd).
*/ */
pci_read_config_byte(pdev, XEON_PBAR23SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, XEON_PBAR23SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "PBAR23SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "PBAR23SZ %#x\n", bar_sz);
if (b2b_bar == 2) { if (b2b_bar == 2) {
if (ndev->b2b_off) if (ndev->b2b_off)
bar_sz -= 1; bar_sz -= 1;
...@@ -2172,11 +2217,11 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2172,11 +2217,11 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
} }
pci_write_config_byte(pdev, XEON_SBAR23SZ_OFFSET, bar_sz); pci_write_config_byte(pdev, XEON_SBAR23SZ_OFFSET, bar_sz);
pci_read_config_byte(pdev, XEON_SBAR23SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, XEON_SBAR23SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "SBAR23SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "SBAR23SZ %#x\n", bar_sz);
if (!ndev->bar4_split) { if (!ndev->bar4_split) {
pci_read_config_byte(pdev, XEON_PBAR45SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, XEON_PBAR45SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "PBAR45SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "PBAR45SZ %#x\n", bar_sz);
if (b2b_bar == 4) { if (b2b_bar == 4) {
if (ndev->b2b_off) if (ndev->b2b_off)
bar_sz -= 1; bar_sz -= 1;
...@@ -2185,10 +2230,10 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2185,10 +2230,10 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
} }
pci_write_config_byte(pdev, XEON_SBAR45SZ_OFFSET, bar_sz); pci_write_config_byte(pdev, XEON_SBAR45SZ_OFFSET, bar_sz);
pci_read_config_byte(pdev, XEON_SBAR45SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, XEON_SBAR45SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "SBAR45SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "SBAR45SZ %#x\n", bar_sz);
} else { } else {
pci_read_config_byte(pdev, XEON_PBAR4SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, XEON_PBAR4SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "PBAR4SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "PBAR4SZ %#x\n", bar_sz);
if (b2b_bar == 4) { if (b2b_bar == 4) {
if (ndev->b2b_off) if (ndev->b2b_off)
bar_sz -= 1; bar_sz -= 1;
...@@ -2197,10 +2242,10 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2197,10 +2242,10 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
} }
pci_write_config_byte(pdev, XEON_SBAR4SZ_OFFSET, bar_sz); pci_write_config_byte(pdev, XEON_SBAR4SZ_OFFSET, bar_sz);
pci_read_config_byte(pdev, XEON_SBAR4SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, XEON_SBAR4SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "SBAR4SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "SBAR4SZ %#x\n", bar_sz);
pci_read_config_byte(pdev, XEON_PBAR5SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, XEON_PBAR5SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "PBAR5SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "PBAR5SZ %#x\n", bar_sz);
if (b2b_bar == 5) { if (b2b_bar == 5) {
if (ndev->b2b_off) if (ndev->b2b_off)
bar_sz -= 1; bar_sz -= 1;
...@@ -2209,7 +2254,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2209,7 +2254,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
} }
pci_write_config_byte(pdev, XEON_SBAR5SZ_OFFSET, bar_sz); pci_write_config_byte(pdev, XEON_SBAR5SZ_OFFSET, bar_sz);
pci_read_config_byte(pdev, XEON_SBAR5SZ_OFFSET, &bar_sz); pci_read_config_byte(pdev, XEON_SBAR5SZ_OFFSET, &bar_sz);
dev_dbg(ndev_dev(ndev), "SBAR5SZ %#x\n", bar_sz); dev_dbg(&pdev->dev, "SBAR5SZ %#x\n", bar_sz);
} }
/* SBAR01 hit by first part of the b2b bar */ /* SBAR01 hit by first part of the b2b bar */
...@@ -2226,7 +2271,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2226,7 +2271,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
else else
return -EIO; return -EIO;
dev_dbg(ndev_dev(ndev), "SBAR01 %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR01 %#018llx\n", bar_addr);
iowrite64(bar_addr, mmio + XEON_SBAR0BASE_OFFSET); iowrite64(bar_addr, mmio + XEON_SBAR0BASE_OFFSET);
/* Other SBAR are normally hit by the PBAR xlat, except for b2b bar. /* Other SBAR are normally hit by the PBAR xlat, except for b2b bar.
...@@ -2237,26 +2282,26 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2237,26 +2282,26 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
bar_addr = addr->bar2_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0); bar_addr = addr->bar2_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0);
iowrite64(bar_addr, mmio + XEON_SBAR23BASE_OFFSET); iowrite64(bar_addr, mmio + XEON_SBAR23BASE_OFFSET);
bar_addr = ioread64(mmio + XEON_SBAR23BASE_OFFSET); bar_addr = ioread64(mmio + XEON_SBAR23BASE_OFFSET);
dev_dbg(ndev_dev(ndev), "SBAR23 %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR23 %#018llx\n", bar_addr);
if (!ndev->bar4_split) { if (!ndev->bar4_split) {
bar_addr = addr->bar4_addr64 + bar_addr = addr->bar4_addr64 +
(b2b_bar == 4 ? ndev->b2b_off : 0); (b2b_bar == 4 ? ndev->b2b_off : 0);
iowrite64(bar_addr, mmio + XEON_SBAR45BASE_OFFSET); iowrite64(bar_addr, mmio + XEON_SBAR45BASE_OFFSET);
bar_addr = ioread64(mmio + XEON_SBAR45BASE_OFFSET); bar_addr = ioread64(mmio + XEON_SBAR45BASE_OFFSET);
dev_dbg(ndev_dev(ndev), "SBAR45 %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR45 %#018llx\n", bar_addr);
} else { } else {
bar_addr = addr->bar4_addr32 + bar_addr = addr->bar4_addr32 +
(b2b_bar == 4 ? ndev->b2b_off : 0); (b2b_bar == 4 ? ndev->b2b_off : 0);
iowrite32(bar_addr, mmio + XEON_SBAR4BASE_OFFSET); iowrite32(bar_addr, mmio + XEON_SBAR4BASE_OFFSET);
bar_addr = ioread32(mmio + XEON_SBAR4BASE_OFFSET); bar_addr = ioread32(mmio + XEON_SBAR4BASE_OFFSET);
dev_dbg(ndev_dev(ndev), "SBAR4 %#010llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR4 %#010llx\n", bar_addr);
bar_addr = addr->bar5_addr32 + bar_addr = addr->bar5_addr32 +
(b2b_bar == 5 ? ndev->b2b_off : 0); (b2b_bar == 5 ? ndev->b2b_off : 0);
iowrite32(bar_addr, mmio + XEON_SBAR5BASE_OFFSET); iowrite32(bar_addr, mmio + XEON_SBAR5BASE_OFFSET);
bar_addr = ioread32(mmio + XEON_SBAR5BASE_OFFSET); bar_addr = ioread32(mmio + XEON_SBAR5BASE_OFFSET);
dev_dbg(ndev_dev(ndev), "SBAR5 %#010llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR5 %#010llx\n", bar_addr);
} }
/* setup incoming bar limits == base addrs (zero length windows) */ /* setup incoming bar limits == base addrs (zero length windows) */
...@@ -2264,26 +2309,26 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2264,26 +2309,26 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
bar_addr = addr->bar2_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0); bar_addr = addr->bar2_addr64 + (b2b_bar == 2 ? ndev->b2b_off : 0);
iowrite64(bar_addr, mmio + XEON_SBAR23LMT_OFFSET); iowrite64(bar_addr, mmio + XEON_SBAR23LMT_OFFSET);
bar_addr = ioread64(mmio + XEON_SBAR23LMT_OFFSET); bar_addr = ioread64(mmio + XEON_SBAR23LMT_OFFSET);
dev_dbg(ndev_dev(ndev), "SBAR23LMT %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR23LMT %#018llx\n", bar_addr);
if (!ndev->bar4_split) { if (!ndev->bar4_split) {
bar_addr = addr->bar4_addr64 + bar_addr = addr->bar4_addr64 +
(b2b_bar == 4 ? ndev->b2b_off : 0); (b2b_bar == 4 ? ndev->b2b_off : 0);
iowrite64(bar_addr, mmio + XEON_SBAR45LMT_OFFSET); iowrite64(bar_addr, mmio + XEON_SBAR45LMT_OFFSET);
bar_addr = ioread64(mmio + XEON_SBAR45LMT_OFFSET); bar_addr = ioread64(mmio + XEON_SBAR45LMT_OFFSET);
dev_dbg(ndev_dev(ndev), "SBAR45LMT %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR45LMT %#018llx\n", bar_addr);
} else { } else {
bar_addr = addr->bar4_addr32 + bar_addr = addr->bar4_addr32 +
(b2b_bar == 4 ? ndev->b2b_off : 0); (b2b_bar == 4 ? ndev->b2b_off : 0);
iowrite32(bar_addr, mmio + XEON_SBAR4LMT_OFFSET); iowrite32(bar_addr, mmio + XEON_SBAR4LMT_OFFSET);
bar_addr = ioread32(mmio + XEON_SBAR4LMT_OFFSET); bar_addr = ioread32(mmio + XEON_SBAR4LMT_OFFSET);
dev_dbg(ndev_dev(ndev), "SBAR4LMT %#010llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR4LMT %#010llx\n", bar_addr);
bar_addr = addr->bar5_addr32 + bar_addr = addr->bar5_addr32 +
(b2b_bar == 5 ? ndev->b2b_off : 0); (b2b_bar == 5 ? ndev->b2b_off : 0);
iowrite32(bar_addr, mmio + XEON_SBAR5LMT_OFFSET); iowrite32(bar_addr, mmio + XEON_SBAR5LMT_OFFSET);
bar_addr = ioread32(mmio + XEON_SBAR5LMT_OFFSET); bar_addr = ioread32(mmio + XEON_SBAR5LMT_OFFSET);
dev_dbg(ndev_dev(ndev), "SBAR5LMT %#05llx\n", bar_addr); dev_dbg(&pdev->dev, "SBAR5LMT %#05llx\n", bar_addr);
} }
/* zero incoming translation addrs */ /* zero incoming translation addrs */
...@@ -2309,23 +2354,23 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2309,23 +2354,23 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
bar_addr = peer_addr->bar2_addr64; bar_addr = peer_addr->bar2_addr64;
iowrite64(bar_addr, mmio + XEON_PBAR23XLAT_OFFSET); iowrite64(bar_addr, mmio + XEON_PBAR23XLAT_OFFSET);
bar_addr = ioread64(mmio + XEON_PBAR23XLAT_OFFSET); bar_addr = ioread64(mmio + XEON_PBAR23XLAT_OFFSET);
dev_dbg(ndev_dev(ndev), "PBAR23XLAT %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "PBAR23XLAT %#018llx\n", bar_addr);
if (!ndev->bar4_split) { if (!ndev->bar4_split) {
bar_addr = peer_addr->bar4_addr64; bar_addr = peer_addr->bar4_addr64;
iowrite64(bar_addr, mmio + XEON_PBAR45XLAT_OFFSET); iowrite64(bar_addr, mmio + XEON_PBAR45XLAT_OFFSET);
bar_addr = ioread64(mmio + XEON_PBAR45XLAT_OFFSET); bar_addr = ioread64(mmio + XEON_PBAR45XLAT_OFFSET);
dev_dbg(ndev_dev(ndev), "PBAR45XLAT %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "PBAR45XLAT %#018llx\n", bar_addr);
} else { } else {
bar_addr = peer_addr->bar4_addr32; bar_addr = peer_addr->bar4_addr32;
iowrite32(bar_addr, mmio + XEON_PBAR4XLAT_OFFSET); iowrite32(bar_addr, mmio + XEON_PBAR4XLAT_OFFSET);
bar_addr = ioread32(mmio + XEON_PBAR4XLAT_OFFSET); bar_addr = ioread32(mmio + XEON_PBAR4XLAT_OFFSET);
dev_dbg(ndev_dev(ndev), "PBAR4XLAT %#010llx\n", bar_addr); dev_dbg(&pdev->dev, "PBAR4XLAT %#010llx\n", bar_addr);
bar_addr = peer_addr->bar5_addr32; bar_addr = peer_addr->bar5_addr32;
iowrite32(bar_addr, mmio + XEON_PBAR5XLAT_OFFSET); iowrite32(bar_addr, mmio + XEON_PBAR5XLAT_OFFSET);
bar_addr = ioread32(mmio + XEON_PBAR5XLAT_OFFSET); bar_addr = ioread32(mmio + XEON_PBAR5XLAT_OFFSET);
dev_dbg(ndev_dev(ndev), "PBAR5XLAT %#010llx\n", bar_addr); dev_dbg(&pdev->dev, "PBAR5XLAT %#010llx\n", bar_addr);
} }
/* set the translation offset for b2b registers */ /* set the translation offset for b2b registers */
...@@ -2343,7 +2388,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2343,7 +2388,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
return -EIO; return -EIO;
/* B2B_XLAT_OFFSET is 64bit, but can only take 32bit writes */ /* B2B_XLAT_OFFSET is 64bit, but can only take 32bit writes */
dev_dbg(ndev_dev(ndev), "B2BXLAT %#018llx\n", bar_addr); dev_dbg(&pdev->dev, "B2BXLAT %#018llx\n", bar_addr);
iowrite32(bar_addr, mmio + XEON_B2B_XLAT_OFFSETL); iowrite32(bar_addr, mmio + XEON_B2B_XLAT_OFFSETL);
iowrite32(bar_addr >> 32, mmio + XEON_B2B_XLAT_OFFSETU); iowrite32(bar_addr >> 32, mmio + XEON_B2B_XLAT_OFFSETU);
...@@ -2362,6 +2407,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev, ...@@ -2362,6 +2407,7 @@ static int xeon_setup_b2b_mw(struct intel_ntb_dev *ndev,
static int xeon_init_ntb(struct intel_ntb_dev *ndev) static int xeon_init_ntb(struct intel_ntb_dev *ndev)
{ {
struct device *dev = &ndev->ntb.pdev->dev;
int rc; int rc;
u32 ntb_ctl; u32 ntb_ctl;
...@@ -2377,7 +2423,7 @@ static int xeon_init_ntb(struct intel_ntb_dev *ndev) ...@@ -2377,7 +2423,7 @@ static int xeon_init_ntb(struct intel_ntb_dev *ndev)
switch (ndev->ntb.topo) { switch (ndev->ntb.topo) {
case NTB_TOPO_PRI: case NTB_TOPO_PRI:
if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) { if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) {
dev_err(ndev_dev(ndev), "NTB Primary config disabled\n"); dev_err(dev, "NTB Primary config disabled\n");
return -EINVAL; return -EINVAL;
} }
...@@ -2395,7 +2441,7 @@ static int xeon_init_ntb(struct intel_ntb_dev *ndev) ...@@ -2395,7 +2441,7 @@ static int xeon_init_ntb(struct intel_ntb_dev *ndev)
case NTB_TOPO_SEC: case NTB_TOPO_SEC:
if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) { if (ndev->hwerr_flags & NTB_HWERR_SDOORBELL_LOCKUP) {
dev_err(ndev_dev(ndev), "NTB Secondary config disabled\n"); dev_err(dev, "NTB Secondary config disabled\n");
return -EINVAL; return -EINVAL;
} }
/* use half the spads for the peer */ /* use half the spads for the peer */
...@@ -2420,18 +2466,17 @@ static int xeon_init_ntb(struct intel_ntb_dev *ndev) ...@@ -2420,18 +2466,17 @@ static int xeon_init_ntb(struct intel_ntb_dev *ndev)
ndev->b2b_idx = b2b_mw_idx; ndev->b2b_idx = b2b_mw_idx;
if (ndev->b2b_idx >= ndev->mw_count) { if (ndev->b2b_idx >= ndev->mw_count) {
dev_dbg(ndev_dev(ndev), dev_dbg(dev,
"b2b_mw_idx %d invalid for mw_count %u\n", "b2b_mw_idx %d invalid for mw_count %u\n",
b2b_mw_idx, ndev->mw_count); b2b_mw_idx, ndev->mw_count);
return -EINVAL; return -EINVAL;
} }
dev_dbg(ndev_dev(ndev), dev_dbg(dev, "setting up b2b mw idx %d means %d\n",
"setting up b2b mw idx %d means %d\n",
b2b_mw_idx, ndev->b2b_idx); b2b_mw_idx, ndev->b2b_idx);
} else if (ndev->hwerr_flags & NTB_HWERR_B2BDOORBELL_BIT14) { } else if (ndev->hwerr_flags & NTB_HWERR_B2BDOORBELL_BIT14) {
dev_warn(ndev_dev(ndev), "Reduce doorbell count by 1\n"); dev_warn(dev, "Reduce doorbell count by 1\n");
ndev->db_count -= 1; ndev->db_count -= 1;
} }
...@@ -2472,7 +2517,7 @@ static int xeon_init_dev(struct intel_ntb_dev *ndev) ...@@ -2472,7 +2517,7 @@ static int xeon_init_dev(struct intel_ntb_dev *ndev)
u8 ppd; u8 ppd;
int rc, mem; int rc, mem;
pdev = ndev_pdev(ndev); pdev = ndev->ntb.pdev;
switch (pdev->device) { switch (pdev->device) {
/* There is a Xeon hardware errata related to writes to SDOORBELL or /* There is a Xeon hardware errata related to writes to SDOORBELL or
...@@ -2548,14 +2593,14 @@ static int xeon_init_dev(struct intel_ntb_dev *ndev) ...@@ -2548,14 +2593,14 @@ static int xeon_init_dev(struct intel_ntb_dev *ndev)
return -EIO; return -EIO;
ndev->ntb.topo = xeon_ppd_topo(ndev, ppd); ndev->ntb.topo = xeon_ppd_topo(ndev, ppd);
dev_dbg(ndev_dev(ndev), "ppd %#x topo %s\n", ppd, dev_dbg(&pdev->dev, "ppd %#x topo %s\n", ppd,
ntb_topo_string(ndev->ntb.topo)); ntb_topo_string(ndev->ntb.topo));
if (ndev->ntb.topo == NTB_TOPO_NONE) if (ndev->ntb.topo == NTB_TOPO_NONE)
return -EINVAL; return -EINVAL;
if (ndev->ntb.topo != NTB_TOPO_SEC) { if (ndev->ntb.topo != NTB_TOPO_SEC) {
ndev->bar4_split = xeon_ppd_bar4_split(ndev, ppd); ndev->bar4_split = xeon_ppd_bar4_split(ndev, ppd);
dev_dbg(ndev_dev(ndev), "ppd %#x bar4_split %d\n", dev_dbg(&pdev->dev, "ppd %#x bar4_split %d\n",
ppd, ndev->bar4_split); ppd, ndev->bar4_split);
} else { } else {
/* This is a way for transparent BAR to figure out if we are /* This is a way for transparent BAR to figure out if we are
...@@ -2565,7 +2610,7 @@ static int xeon_init_dev(struct intel_ntb_dev *ndev) ...@@ -2565,7 +2610,7 @@ static int xeon_init_dev(struct intel_ntb_dev *ndev)
mem = pci_select_bars(pdev, IORESOURCE_MEM); mem = pci_select_bars(pdev, IORESOURCE_MEM);
ndev->bar4_split = hweight32(mem) == ndev->bar4_split = hweight32(mem) ==
HSX_SPLIT_BAR_MW_COUNT + 1; HSX_SPLIT_BAR_MW_COUNT + 1;
dev_dbg(ndev_dev(ndev), "mem %#x bar4_split %d\n", dev_dbg(&pdev->dev, "mem %#x bar4_split %d\n",
mem, ndev->bar4_split); mem, ndev->bar4_split);
} }
...@@ -2602,7 +2647,7 @@ static int intel_ntb_init_pci(struct intel_ntb_dev *ndev, struct pci_dev *pdev) ...@@ -2602,7 +2647,7 @@ static int intel_ntb_init_pci(struct intel_ntb_dev *ndev, struct pci_dev *pdev)
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc) if (rc)
goto err_dma_mask; goto err_dma_mask;
dev_warn(ndev_dev(ndev), "Cannot DMA highmem\n"); dev_warn(&pdev->dev, "Cannot DMA highmem\n");
} }
rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
...@@ -2610,7 +2655,7 @@ static int intel_ntb_init_pci(struct intel_ntb_dev *ndev, struct pci_dev *pdev) ...@@ -2610,7 +2655,7 @@ static int intel_ntb_init_pci(struct intel_ntb_dev *ndev, struct pci_dev *pdev)
rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc) if (rc)
goto err_dma_mask; goto err_dma_mask;
dev_warn(ndev_dev(ndev), "Cannot DMA consistent highmem\n"); dev_warn(&pdev->dev, "Cannot DMA consistent highmem\n");
} }
ndev->self_mmio = pci_iomap(pdev, 0, 0); ndev->self_mmio = pci_iomap(pdev, 0, 0);
...@@ -2636,7 +2681,7 @@ static int intel_ntb_init_pci(struct intel_ntb_dev *ndev, struct pci_dev *pdev) ...@@ -2636,7 +2681,7 @@ static int intel_ntb_init_pci(struct intel_ntb_dev *ndev, struct pci_dev *pdev)
static void intel_ntb_deinit_pci(struct intel_ntb_dev *ndev) static void intel_ntb_deinit_pci(struct intel_ntb_dev *ndev)
{ {
struct pci_dev *pdev = ndev_pdev(ndev); struct pci_dev *pdev = ndev->ntb.pdev;
if (ndev->peer_mmio && ndev->peer_mmio != ndev->self_mmio) if (ndev->peer_mmio && ndev->peer_mmio != ndev->self_mmio)
pci_iounmap(pdev, ndev->peer_mmio); pci_iounmap(pdev, ndev->peer_mmio);
...@@ -2906,8 +2951,10 @@ static const struct intel_ntb_xlat_reg skx_sec_xlat = { ...@@ -2906,8 +2951,10 @@ static const struct intel_ntb_xlat_reg skx_sec_xlat = {
/* operations for primary side of local ntb */ /* operations for primary side of local ntb */
static const struct ntb_dev_ops intel_ntb_ops = { static const struct ntb_dev_ops intel_ntb_ops = {
.mw_count = intel_ntb_mw_count, .mw_count = intel_ntb_mw_count,
.mw_get_range = intel_ntb_mw_get_range, .mw_get_align = intel_ntb_mw_get_align,
.mw_set_trans = intel_ntb_mw_set_trans, .mw_set_trans = intel_ntb_mw_set_trans,
.peer_mw_count = intel_ntb_peer_mw_count,
.peer_mw_get_addr = intel_ntb_peer_mw_get_addr,
.link_is_up = intel_ntb_link_is_up, .link_is_up = intel_ntb_link_is_up,
.link_enable = intel_ntb_link_enable, .link_enable = intel_ntb_link_enable,
.link_disable = intel_ntb_link_disable, .link_disable = intel_ntb_link_disable,
...@@ -2932,8 +2979,10 @@ static const struct ntb_dev_ops intel_ntb_ops = { ...@@ -2932,8 +2979,10 @@ static const struct ntb_dev_ops intel_ntb_ops = {
static const struct ntb_dev_ops intel_ntb3_ops = { static const struct ntb_dev_ops intel_ntb3_ops = {
.mw_count = intel_ntb_mw_count, .mw_count = intel_ntb_mw_count,
.mw_get_range = intel_ntb_mw_get_range, .mw_get_align = intel_ntb_mw_get_align,
.mw_set_trans = intel_ntb3_mw_set_trans, .mw_set_trans = intel_ntb3_mw_set_trans,
.peer_mw_count = intel_ntb_peer_mw_count,
.peer_mw_get_addr = intel_ntb_peer_mw_get_addr,
.link_is_up = intel_ntb_link_is_up, .link_is_up = intel_ntb_link_is_up,
.link_enable = intel_ntb3_link_enable, .link_enable = intel_ntb3_link_enable,
.link_disable = intel_ntb_link_disable, .link_disable = intel_ntb_link_disable,
...@@ -3008,4 +3057,3 @@ static void __exit intel_ntb_pci_driver_exit(void) ...@@ -3008,4 +3057,3 @@ static void __exit intel_ntb_pci_driver_exit(void)
debugfs_remove_recursive(debugfs_dir); debugfs_remove_recursive(debugfs_dir);
} }
module_exit(intel_ntb_pci_driver_exit); module_exit(intel_ntb_pci_driver_exit);
...@@ -382,9 +382,6 @@ struct intel_ntb_dev { ...@@ -382,9 +382,6 @@ struct intel_ntb_dev {
struct dentry *debugfs_info; struct dentry *debugfs_info;
}; };
#define ndev_pdev(ndev) ((ndev)->ntb.pdev)
#define ndev_name(ndev) pci_name(ndev_pdev(ndev))
#define ndev_dev(ndev) (&ndev_pdev(ndev)->dev)
#define ntb_ndev(__ntb) container_of(__ntb, struct intel_ntb_dev, ntb) #define ntb_ndev(__ntb) container_of(__ntb, struct intel_ntb_dev, ntb)
#define hb_ndev(__work) container_of(__work, struct intel_ntb_dev, \ #define hb_ndev(__work) container_of(__work, struct intel_ntb_dev, \
hb_timer.work) hb_timer.work)
......
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
* GPL LICENSE SUMMARY * GPL LICENSE SUMMARY
* *
* Copyright (C) 2015 EMC Corporation. All Rights Reserved. * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as * it under the terms of version 2 of the GNU General Public License as
...@@ -18,6 +19,7 @@ ...@@ -18,6 +19,7 @@
* BSD LICENSE * BSD LICENSE
* *
* Copyright (C) 2015 EMC Corporation. All Rights Reserved. * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions * modification, are permitted provided that the following conditions
...@@ -191,6 +193,73 @@ void ntb_db_event(struct ntb_dev *ntb, int vector) ...@@ -191,6 +193,73 @@ void ntb_db_event(struct ntb_dev *ntb, int vector)
} }
EXPORT_SYMBOL(ntb_db_event); EXPORT_SYMBOL(ntb_db_event);
void ntb_msg_event(struct ntb_dev *ntb)
{
unsigned long irqflags;
spin_lock_irqsave(&ntb->ctx_lock, irqflags);
{
if (ntb->ctx_ops && ntb->ctx_ops->msg_event)
ntb->ctx_ops->msg_event(ntb->ctx);
}
spin_unlock_irqrestore(&ntb->ctx_lock, irqflags);
}
EXPORT_SYMBOL(ntb_msg_event);
int ntb_default_port_number(struct ntb_dev *ntb)
{
switch (ntb->topo) {
case NTB_TOPO_PRI:
case NTB_TOPO_B2B_USD:
return NTB_PORT_PRI_USD;
case NTB_TOPO_SEC:
case NTB_TOPO_B2B_DSD:
return NTB_PORT_SEC_DSD;
default:
break;
}
return -EINVAL;
}
EXPORT_SYMBOL(ntb_default_port_number);
int ntb_default_peer_port_count(struct ntb_dev *ntb)
{
return NTB_DEF_PEER_CNT;
}
EXPORT_SYMBOL(ntb_default_peer_port_count);
int ntb_default_peer_port_number(struct ntb_dev *ntb, int pidx)
{
if (pidx != NTB_DEF_PEER_IDX)
return -EINVAL;
switch (ntb->topo) {
case NTB_TOPO_PRI:
case NTB_TOPO_B2B_USD:
return NTB_PORT_SEC_DSD;
case NTB_TOPO_SEC:
case NTB_TOPO_B2B_DSD:
return NTB_PORT_PRI_USD;
default:
break;
}
return -EINVAL;
}
EXPORT_SYMBOL(ntb_default_peer_port_number);
int ntb_default_peer_port_idx(struct ntb_dev *ntb, int port)
{
int peer_port = ntb_default_peer_port_number(ntb, NTB_DEF_PEER_IDX);
if (peer_port == -EINVAL || port != peer_port)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(ntb_default_peer_port_idx);
static int ntb_probe(struct device *dev) static int ntb_probe(struct device *dev)
{ {
struct ntb_dev *ntb; struct ntb_dev *ntb;
......
...@@ -95,6 +95,9 @@ MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy"); ...@@ -95,6 +95,9 @@ MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
static struct dentry *nt_debugfs_dir; static struct dentry *nt_debugfs_dir;
/* Only two-ports NTB devices are supported */
#define PIDX NTB_DEF_PEER_IDX
struct ntb_queue_entry { struct ntb_queue_entry {
/* ntb_queue list reference */ /* ntb_queue list reference */
struct list_head entry; struct list_head entry;
...@@ -670,7 +673,7 @@ static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) ...@@ -670,7 +673,7 @@ static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
if (!mw->virt_addr) if (!mw->virt_addr)
return; return;
ntb_mw_clear_trans(nt->ndev, num_mw); ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
dma_free_coherent(&pdev->dev, mw->buff_size, dma_free_coherent(&pdev->dev, mw->buff_size,
mw->virt_addr, mw->dma_addr); mw->virt_addr, mw->dma_addr);
mw->xlat_size = 0; mw->xlat_size = 0;
...@@ -727,7 +730,8 @@ static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, ...@@ -727,7 +730,8 @@ static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
} }
/* Notify HW the memory location of the receive buffer */ /* Notify HW the memory location of the receive buffer */
rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size); rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
mw->xlat_size);
if (rc) { if (rc) {
dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw); dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
ntb_free_mw(nt, num_mw); ntb_free_mw(nt, num_mw);
...@@ -858,17 +862,17 @@ static void ntb_transport_link_work(struct work_struct *work) ...@@ -858,17 +862,17 @@ static void ntb_transport_link_work(struct work_struct *work)
size = max_mw_size; size = max_mw_size;
spad = MW0_SZ_HIGH + (i * 2); spad = MW0_SZ_HIGH + (i * 2);
ntb_peer_spad_write(ndev, spad, upper_32_bits(size)); ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
spad = MW0_SZ_LOW + (i * 2); spad = MW0_SZ_LOW + (i * 2);
ntb_peer_spad_write(ndev, spad, lower_32_bits(size)); ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
} }
ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count); ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count); ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION); ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
/* Query the remote side for its info */ /* Query the remote side for its info */
val = ntb_spad_read(ndev, VERSION); val = ntb_spad_read(ndev, VERSION);
...@@ -944,7 +948,7 @@ static void ntb_qp_link_work(struct work_struct *work) ...@@ -944,7 +948,7 @@ static void ntb_qp_link_work(struct work_struct *work)
val = ntb_spad_read(nt->ndev, QP_LINKS); val = ntb_spad_read(nt->ndev, QP_LINKS);
ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num)); ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
/* query remote spad for qp ready bits */ /* query remote spad for qp ready bits */
dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val); dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
...@@ -1055,7 +1059,12 @@ static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev) ...@@ -1055,7 +1059,12 @@ static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
int node; int node;
int rc, i; int rc, i;
mw_count = ntb_mw_count(ndev); mw_count = ntb_mw_count(ndev, PIDX);
if (!ndev->ops->mw_set_trans) {
dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
return -EINVAL;
}
if (ntb_db_is_unsafe(ndev)) if (ntb_db_is_unsafe(ndev))
dev_dbg(&ndev->dev, dev_dbg(&ndev->dev,
...@@ -1064,6 +1073,9 @@ static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev) ...@@ -1064,6 +1073,9 @@ static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
dev_dbg(&ndev->dev, dev_dbg(&ndev->dev,
"scratchpad is unsafe, proceed anyway...\n"); "scratchpad is unsafe, proceed anyway...\n");
if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
node = dev_to_node(&ndev->dev); node = dev_to_node(&ndev->dev);
nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node); nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
...@@ -1094,8 +1106,13 @@ static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev) ...@@ -1094,8 +1106,13 @@ static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
for (i = 0; i < mw_count; i++) { for (i = 0; i < mw_count; i++) {
mw = &nt->mw_vec[i]; mw = &nt->mw_vec[i];
rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size, rc = ntb_mw_get_align(ndev, PIDX, i, &mw->xlat_align,
&mw->xlat_align, &mw->xlat_align_size); &mw->xlat_align_size, NULL);
if (rc)
goto err1;
rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
&mw->phys_size);
if (rc) if (rc)
goto err1; goto err1;
...@@ -2091,8 +2108,7 @@ void ntb_transport_link_down(struct ntb_transport_qp *qp) ...@@ -2091,8 +2108,7 @@ void ntb_transport_link_down(struct ntb_transport_qp *qp)
val = ntb_spad_read(qp->ndev, QP_LINKS); val = ntb_spad_read(qp->ndev, QP_LINKS);
ntb_peer_spad_write(qp->ndev, QP_LINKS, ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
val & ~BIT(qp->qp_num));
if (qp->link_is_up) if (qp->link_is_up)
ntb_send_link_down(qp); ntb_send_link_down(qp);
......
...@@ -76,6 +76,7 @@ ...@@ -76,6 +76,7 @@
#define DMA_RETRIES 20 #define DMA_RETRIES 20
#define SZ_4G (1ULL << 32) #define SZ_4G (1ULL << 32)
#define MAX_SEG_ORDER 20 /* no larger than 1M for kmalloc buffer */ #define MAX_SEG_ORDER 20 /* no larger than 1M for kmalloc buffer */
#define PIDX NTB_DEF_PEER_IDX
MODULE_LICENSE(DRIVER_LICENSE); MODULE_LICENSE(DRIVER_LICENSE);
MODULE_VERSION(DRIVER_VERSION); MODULE_VERSION(DRIVER_VERSION);
...@@ -100,6 +101,10 @@ static bool use_dma; /* default to 0 */ ...@@ -100,6 +101,10 @@ static bool use_dma; /* default to 0 */
module_param(use_dma, bool, 0644); module_param(use_dma, bool, 0644);
MODULE_PARM_DESC(use_dma, "Using DMA engine to measure performance"); MODULE_PARM_DESC(use_dma, "Using DMA engine to measure performance");
static bool on_node = true; /* default to 1 */
module_param(on_node, bool, 0644);
MODULE_PARM_DESC(on_node, "Run threads only on NTB device node (default: true)");
struct perf_mw { struct perf_mw {
phys_addr_t phys_addr; phys_addr_t phys_addr;
resource_size_t phys_size; resource_size_t phys_size;
...@@ -135,9 +140,6 @@ struct perf_ctx { ...@@ -135,9 +140,6 @@ struct perf_ctx {
bool link_is_up; bool link_is_up;
struct delayed_work link_work; struct delayed_work link_work;
wait_queue_head_t link_wq; wait_queue_head_t link_wq;
struct dentry *debugfs_node_dir;
struct dentry *debugfs_run;
struct dentry *debugfs_threads;
u8 perf_threads; u8 perf_threads;
/* mutex ensures only one set of threads run at once */ /* mutex ensures only one set of threads run at once */
struct mutex run_mutex; struct mutex run_mutex;
...@@ -344,6 +346,10 @@ static int perf_move_data(struct pthr_ctx *pctx, char __iomem *dst, char *src, ...@@ -344,6 +346,10 @@ static int perf_move_data(struct pthr_ctx *pctx, char __iomem *dst, char *src,
static bool perf_dma_filter_fn(struct dma_chan *chan, void *node) static bool perf_dma_filter_fn(struct dma_chan *chan, void *node)
{ {
/* Is the channel required to be on the same node as the device? */
if (!on_node)
return true;
return dev_to_node(&chan->dev->device) == (int)(unsigned long)node; return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
} }
...@@ -361,7 +367,7 @@ static int ntb_perf_thread(void *data) ...@@ -361,7 +367,7 @@ static int ntb_perf_thread(void *data)
pr_debug("kthread %s starting...\n", current->comm); pr_debug("kthread %s starting...\n", current->comm);
node = dev_to_node(&pdev->dev); node = on_node ? dev_to_node(&pdev->dev) : NUMA_NO_NODE;
if (use_dma && !pctx->dma_chan) { if (use_dma && !pctx->dma_chan) {
dma_cap_mask_t dma_mask; dma_cap_mask_t dma_mask;
...@@ -454,7 +460,7 @@ static void perf_free_mw(struct perf_ctx *perf) ...@@ -454,7 +460,7 @@ static void perf_free_mw(struct perf_ctx *perf)
if (!mw->virt_addr) if (!mw->virt_addr)
return; return;
ntb_mw_clear_trans(perf->ntb, 0); ntb_mw_clear_trans(perf->ntb, PIDX, 0);
dma_free_coherent(&pdev->dev, mw->buf_size, dma_free_coherent(&pdev->dev, mw->buf_size,
mw->virt_addr, mw->dma_addr); mw->virt_addr, mw->dma_addr);
mw->xlat_size = 0; mw->xlat_size = 0;
...@@ -490,7 +496,7 @@ static int perf_set_mw(struct perf_ctx *perf, resource_size_t size) ...@@ -490,7 +496,7 @@ static int perf_set_mw(struct perf_ctx *perf, resource_size_t size)
mw->buf_size = 0; mw->buf_size = 0;
} }
rc = ntb_mw_set_trans(perf->ntb, 0, mw->dma_addr, mw->xlat_size); rc = ntb_mw_set_trans(perf->ntb, PIDX, 0, mw->dma_addr, mw->xlat_size);
if (rc) { if (rc) {
dev_err(&perf->ntb->dev, "Unable to set mw0 translation\n"); dev_err(&perf->ntb->dev, "Unable to set mw0 translation\n");
perf_free_mw(perf); perf_free_mw(perf);
...@@ -517,9 +523,9 @@ static void perf_link_work(struct work_struct *work) ...@@ -517,9 +523,9 @@ static void perf_link_work(struct work_struct *work)
if (max_mw_size && size > max_mw_size) if (max_mw_size && size > max_mw_size)
size = max_mw_size; size = max_mw_size;
ntb_peer_spad_write(ndev, MW_SZ_HIGH, upper_32_bits(size)); ntb_peer_spad_write(ndev, PIDX, MW_SZ_HIGH, upper_32_bits(size));
ntb_peer_spad_write(ndev, MW_SZ_LOW, lower_32_bits(size)); ntb_peer_spad_write(ndev, PIDX, MW_SZ_LOW, lower_32_bits(size));
ntb_peer_spad_write(ndev, VERSION, PERF_VERSION); ntb_peer_spad_write(ndev, PIDX, VERSION, PERF_VERSION);
/* now read what peer wrote */ /* now read what peer wrote */
val = ntb_spad_read(ndev, VERSION); val = ntb_spad_read(ndev, VERSION);
...@@ -561,8 +567,12 @@ static int perf_setup_mw(struct ntb_dev *ntb, struct perf_ctx *perf) ...@@ -561,8 +567,12 @@ static int perf_setup_mw(struct ntb_dev *ntb, struct perf_ctx *perf)
mw = &perf->mw; mw = &perf->mw;
rc = ntb_mw_get_range(ntb, 0, &mw->phys_addr, &mw->phys_size, rc = ntb_mw_get_align(ntb, PIDX, 0, &mw->xlat_align,
&mw->xlat_align, &mw->xlat_align_size); &mw->xlat_align_size, NULL);
if (rc)
return rc;
rc = ntb_peer_mw_get_addr(ntb, 0, &mw->phys_addr, &mw->phys_size);
if (rc) if (rc)
return rc; return rc;
...@@ -677,7 +687,8 @@ static ssize_t debugfs_run_write(struct file *filp, const char __user *ubuf, ...@@ -677,7 +687,8 @@ static ssize_t debugfs_run_write(struct file *filp, const char __user *ubuf,
pr_info("Fix run_order to %u\n", run_order); pr_info("Fix run_order to %u\n", run_order);
} }
node = dev_to_node(&perf->ntb->pdev->dev); node = on_node ? dev_to_node(&perf->ntb->pdev->dev)
: NUMA_NO_NODE;
atomic_set(&perf->tdone, 0); atomic_set(&perf->tdone, 0);
/* launch kernel thread */ /* launch kernel thread */
...@@ -723,34 +734,71 @@ static const struct file_operations ntb_perf_debugfs_run = { ...@@ -723,34 +734,71 @@ static const struct file_operations ntb_perf_debugfs_run = {
static int perf_debugfs_setup(struct perf_ctx *perf) static int perf_debugfs_setup(struct perf_ctx *perf)
{ {
struct pci_dev *pdev = perf->ntb->pdev; struct pci_dev *pdev = perf->ntb->pdev;
struct dentry *debugfs_node_dir;
struct dentry *debugfs_run;
struct dentry *debugfs_threads;
struct dentry *debugfs_seg_order;
struct dentry *debugfs_run_order;
struct dentry *debugfs_use_dma;
struct dentry *debugfs_on_node;
if (!debugfs_initialized()) if (!debugfs_initialized())
return -ENODEV; return -ENODEV;
/* Assumpion: only one NTB device in the system */
if (!perf_debugfs_dir) { if (!perf_debugfs_dir) {
perf_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); perf_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
if (!perf_debugfs_dir) if (!perf_debugfs_dir)
return -ENODEV; return -ENODEV;
} }
perf->debugfs_node_dir = debugfs_create_dir(pci_name(pdev), debugfs_node_dir = debugfs_create_dir(pci_name(pdev),
perf_debugfs_dir); perf_debugfs_dir);
if (!perf->debugfs_node_dir) if (!debugfs_node_dir)
return -ENODEV; goto err;
perf->debugfs_run = debugfs_create_file("run", S_IRUSR | S_IWUSR, debugfs_run = debugfs_create_file("run", S_IRUSR | S_IWUSR,
perf->debugfs_node_dir, perf, debugfs_node_dir, perf,
&ntb_perf_debugfs_run); &ntb_perf_debugfs_run);
if (!perf->debugfs_run) if (!debugfs_run)
return -ENODEV; goto err;
perf->debugfs_threads = debugfs_create_u8("threads", S_IRUSR | S_IWUSR, debugfs_threads = debugfs_create_u8("threads", S_IRUSR | S_IWUSR,
perf->debugfs_node_dir, debugfs_node_dir,
&perf->perf_threads); &perf->perf_threads);
if (!perf->debugfs_threads) if (!debugfs_threads)
return -ENODEV; goto err;
debugfs_seg_order = debugfs_create_u32("seg_order", 0600,
debugfs_node_dir,
&seg_order);
if (!debugfs_seg_order)
goto err;
debugfs_run_order = debugfs_create_u32("run_order", 0600,
debugfs_node_dir,
&run_order);
if (!debugfs_run_order)
goto err;
debugfs_use_dma = debugfs_create_bool("use_dma", 0600,
debugfs_node_dir,
&use_dma);
if (!debugfs_use_dma)
goto err;
debugfs_on_node = debugfs_create_bool("on_node", 0600,
debugfs_node_dir,
&on_node);
if (!debugfs_on_node)
goto err;
return 0; return 0;
err:
debugfs_remove_recursive(perf_debugfs_dir);
perf_debugfs_dir = NULL;
return -ENODEV;
} }
static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb) static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
...@@ -766,8 +814,15 @@ static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb) ...@@ -766,8 +814,15 @@ static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
return -EIO; return -EIO;
} }
node = dev_to_node(&pdev->dev); if (!ntb->ops->mw_set_trans) {
dev_err(&ntb->dev, "Need inbound MW based NTB API\n");
return -EINVAL;
}
if (ntb_peer_port_count(ntb) != NTB_DEF_PEER_CNT)
dev_warn(&ntb->dev, "Multi-port NTB devices unsupported\n");
node = on_node ? dev_to_node(&pdev->dev) : NUMA_NO_NODE;
perf = kzalloc_node(sizeof(*perf), GFP_KERNEL, node); perf = kzalloc_node(sizeof(*perf), GFP_KERNEL, node);
if (!perf) { if (!perf) {
rc = -ENOMEM; rc = -ENOMEM;
......
...@@ -90,6 +90,9 @@ static unsigned long db_init = 0x7; ...@@ -90,6 +90,9 @@ static unsigned long db_init = 0x7;
module_param(db_init, ulong, 0644); module_param(db_init, ulong, 0644);
MODULE_PARM_DESC(db_init, "Initial doorbell bits to ring on the peer"); MODULE_PARM_DESC(db_init, "Initial doorbell bits to ring on the peer");
/* Only two-ports NTB devices are supported */
#define PIDX NTB_DEF_PEER_IDX
struct pp_ctx { struct pp_ctx {
struct ntb_dev *ntb; struct ntb_dev *ntb;
u64 db_bits; u64 db_bits;
...@@ -135,7 +138,7 @@ static void pp_ping(unsigned long ctx) ...@@ -135,7 +138,7 @@ static void pp_ping(unsigned long ctx)
"Ping bits %#llx read %#x write %#x\n", "Ping bits %#llx read %#x write %#x\n",
db_bits, spad_rd, spad_wr); db_bits, spad_rd, spad_wr);
ntb_peer_spad_write(pp->ntb, 0, spad_wr); ntb_peer_spad_write(pp->ntb, PIDX, 0, spad_wr);
ntb_peer_db_set(pp->ntb, db_bits); ntb_peer_db_set(pp->ntb, db_bits);
ntb_db_clear_mask(pp->ntb, db_mask); ntb_db_clear_mask(pp->ntb, db_mask);
...@@ -222,6 +225,12 @@ static int pp_probe(struct ntb_client *client, ...@@ -222,6 +225,12 @@ static int pp_probe(struct ntb_client *client,
} }
} }
if (ntb_spad_count(ntb) < 1) {
dev_dbg(&ntb->dev, "no enough scratchpads\n");
rc = -EINVAL;
goto err_pp;
}
if (ntb_spad_is_unsafe(ntb)) { if (ntb_spad_is_unsafe(ntb)) {
dev_dbg(&ntb->dev, "scratchpad is unsafe\n"); dev_dbg(&ntb->dev, "scratchpad is unsafe\n");
if (!unsafe) { if (!unsafe) {
...@@ -230,6 +239,9 @@ static int pp_probe(struct ntb_client *client, ...@@ -230,6 +239,9 @@ static int pp_probe(struct ntb_client *client,
} }
} }
if (ntb_peer_port_count(ntb) != NTB_DEF_PEER_CNT)
dev_warn(&ntb->dev, "multi-port NTB is unsupported\n");
pp = kmalloc(sizeof(*pp), GFP_KERNEL); pp = kmalloc(sizeof(*pp), GFP_KERNEL);
if (!pp) { if (!pp) {
rc = -ENOMEM; rc = -ENOMEM;
......
...@@ -119,7 +119,10 @@ MODULE_VERSION(DRIVER_VERSION); ...@@ -119,7 +119,10 @@ MODULE_VERSION(DRIVER_VERSION);
MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESCRIPTION); MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
#define MAX_MWS 16 /* It is rare to have hadrware with greater than six MWs */
#define MAX_MWS 6
/* Only two-ports devices are supported */
#define PIDX NTB_DEF_PEER_IDX
static struct dentry *tool_dbgfs; static struct dentry *tool_dbgfs;
...@@ -459,13 +462,22 @@ static TOOL_FOPS_RDWR(tool_spad_fops, ...@@ -459,13 +462,22 @@ static TOOL_FOPS_RDWR(tool_spad_fops,
tool_spad_read, tool_spad_read,
tool_spad_write); tool_spad_write);
static u32 ntb_tool_peer_spad_read(struct ntb_dev *ntb, int sidx)
{
return ntb_peer_spad_read(ntb, PIDX, sidx);
}
static ssize_t tool_peer_spad_read(struct file *filep, char __user *ubuf, static ssize_t tool_peer_spad_read(struct file *filep, char __user *ubuf,
size_t size, loff_t *offp) size_t size, loff_t *offp)
{ {
struct tool_ctx *tc = filep->private_data; struct tool_ctx *tc = filep->private_data;
return tool_spadfn_read(tc, ubuf, size, offp, return tool_spadfn_read(tc, ubuf, size, offp, ntb_tool_peer_spad_read);
tc->ntb->ops->peer_spad_read); }
static int ntb_tool_peer_spad_write(struct ntb_dev *ntb, int sidx, u32 val)
{
return ntb_peer_spad_write(ntb, PIDX, sidx, val);
} }
static ssize_t tool_peer_spad_write(struct file *filep, const char __user *ubuf, static ssize_t tool_peer_spad_write(struct file *filep, const char __user *ubuf,
...@@ -474,7 +486,7 @@ static ssize_t tool_peer_spad_write(struct file *filep, const char __user *ubuf, ...@@ -474,7 +486,7 @@ static ssize_t tool_peer_spad_write(struct file *filep, const char __user *ubuf,
struct tool_ctx *tc = filep->private_data; struct tool_ctx *tc = filep->private_data;
return tool_spadfn_write(tc, ubuf, size, offp, return tool_spadfn_write(tc, ubuf, size, offp,
tc->ntb->ops->peer_spad_write); ntb_tool_peer_spad_write);
} }
static TOOL_FOPS_RDWR(tool_peer_spad_fops, static TOOL_FOPS_RDWR(tool_peer_spad_fops,
...@@ -668,28 +680,27 @@ static int tool_setup_mw(struct tool_ctx *tc, int idx, size_t req_size) ...@@ -668,28 +680,27 @@ static int tool_setup_mw(struct tool_ctx *tc, int idx, size_t req_size)
{ {
int rc; int rc;
struct tool_mw *mw = &tc->mws[idx]; struct tool_mw *mw = &tc->mws[idx];
phys_addr_t base; resource_size_t size, align_addr, align_size;
resource_size_t size, align, align_size;
char buf[16]; char buf[16];
if (mw->peer) if (mw->peer)
return 0; return 0;
rc = ntb_mw_get_range(tc->ntb, idx, &base, &size, &align, rc = ntb_mw_get_align(tc->ntb, PIDX, idx, &align_addr,
&align_size); &align_size, &size);
if (rc) if (rc)
return rc; return rc;
mw->size = min_t(resource_size_t, req_size, size); mw->size = min_t(resource_size_t, req_size, size);
mw->size = round_up(mw->size, align); mw->size = round_up(mw->size, align_addr);
mw->size = round_up(mw->size, align_size); mw->size = round_up(mw->size, align_size);
mw->peer = dma_alloc_coherent(&tc->ntb->pdev->dev, mw->size, mw->peer = dma_alloc_coherent(&tc->ntb->pdev->dev, mw->size,
&mw->peer_dma, GFP_KERNEL); &mw->peer_dma, GFP_KERNEL);
if (!mw->peer) if (!mw->peer || !IS_ALIGNED(mw->peer_dma, align_addr))
return -ENOMEM; return -ENOMEM;
rc = ntb_mw_set_trans(tc->ntb, idx, mw->peer_dma, mw->size); rc = ntb_mw_set_trans(tc->ntb, PIDX, idx, mw->peer_dma, mw->size);
if (rc) if (rc)
goto err_free_dma; goto err_free_dma;
...@@ -716,7 +727,7 @@ static void tool_free_mw(struct tool_ctx *tc, int idx) ...@@ -716,7 +727,7 @@ static void tool_free_mw(struct tool_ctx *tc, int idx)
struct tool_mw *mw = &tc->mws[idx]; struct tool_mw *mw = &tc->mws[idx];
if (mw->peer) { if (mw->peer) {
ntb_mw_clear_trans(tc->ntb, idx); ntb_mw_clear_trans(tc->ntb, PIDX, idx);
dma_free_coherent(&tc->ntb->pdev->dev, mw->size, dma_free_coherent(&tc->ntb->pdev->dev, mw->size,
mw->peer, mw->peer,
mw->peer_dma); mw->peer_dma);
...@@ -742,8 +753,9 @@ static ssize_t tool_peer_mw_trans_read(struct file *filep, ...@@ -742,8 +753,9 @@ static ssize_t tool_peer_mw_trans_read(struct file *filep,
phys_addr_t base; phys_addr_t base;
resource_size_t mw_size; resource_size_t mw_size;
resource_size_t align; resource_size_t align_addr;
resource_size_t align_size; resource_size_t align_size;
resource_size_t max_size;
buf_size = min_t(size_t, size, 512); buf_size = min_t(size_t, size, 512);
...@@ -751,8 +763,9 @@ static ssize_t tool_peer_mw_trans_read(struct file *filep, ...@@ -751,8 +763,9 @@ static ssize_t tool_peer_mw_trans_read(struct file *filep,
if (!buf) if (!buf)
return -ENOMEM; return -ENOMEM;
ntb_mw_get_range(mw->tc->ntb, mw->idx, ntb_mw_get_align(mw->tc->ntb, PIDX, mw->idx,
&base, &mw_size, &align, &align_size); &align_addr, &align_size, &max_size);
ntb_peer_mw_get_addr(mw->tc->ntb, mw->idx, &base, &mw_size);
off += scnprintf(buf + off, buf_size - off, off += scnprintf(buf + off, buf_size - off,
"Peer MW %d Information:\n", mw->idx); "Peer MW %d Information:\n", mw->idx);
...@@ -767,12 +780,16 @@ static ssize_t tool_peer_mw_trans_read(struct file *filep, ...@@ -767,12 +780,16 @@ static ssize_t tool_peer_mw_trans_read(struct file *filep,
off += scnprintf(buf + off, buf_size - off, off += scnprintf(buf + off, buf_size - off,
"Alignment \t%lld\n", "Alignment \t%lld\n",
(unsigned long long)align); (unsigned long long)align_addr);
off += scnprintf(buf + off, buf_size - off, off += scnprintf(buf + off, buf_size - off,
"Size Alignment \t%lld\n", "Size Alignment \t%lld\n",
(unsigned long long)align_size); (unsigned long long)align_size);
off += scnprintf(buf + off, buf_size - off,
"Size Max \t%lld\n",
(unsigned long long)max_size);
off += scnprintf(buf + off, buf_size - off, off += scnprintf(buf + off, buf_size - off,
"Ready \t%c\n", "Ready \t%c\n",
(mw->peer) ? 'Y' : 'N'); (mw->peer) ? 'Y' : 'N');
...@@ -827,8 +844,7 @@ static int tool_init_mw(struct tool_ctx *tc, int idx) ...@@ -827,8 +844,7 @@ static int tool_init_mw(struct tool_ctx *tc, int idx)
phys_addr_t base; phys_addr_t base;
int rc; int rc;
rc = ntb_mw_get_range(tc->ntb, idx, &base, &mw->win_size, rc = ntb_peer_mw_get_addr(tc->ntb, idx, &base, &mw->win_size);
NULL, NULL);
if (rc) if (rc)
return rc; return rc;
...@@ -913,12 +929,27 @@ static int tool_probe(struct ntb_client *self, struct ntb_dev *ntb) ...@@ -913,12 +929,27 @@ static int tool_probe(struct ntb_client *self, struct ntb_dev *ntb)
int rc; int rc;
int i; int i;
if (!ntb->ops->mw_set_trans) {
dev_dbg(&ntb->dev, "need inbound MW based NTB API\n");
rc = -EINVAL;
goto err_tc;
}
if (ntb_spad_count(ntb) < 1) {
dev_dbg(&ntb->dev, "no enough scratchpads\n");
rc = -EINVAL;
goto err_tc;
}
if (ntb_db_is_unsafe(ntb)) if (ntb_db_is_unsafe(ntb))
dev_dbg(&ntb->dev, "doorbell is unsafe\n"); dev_dbg(&ntb->dev, "doorbell is unsafe\n");
if (ntb_spad_is_unsafe(ntb)) if (ntb_spad_is_unsafe(ntb))
dev_dbg(&ntb->dev, "scratchpad is unsafe\n"); dev_dbg(&ntb->dev, "scratchpad is unsafe\n");
if (ntb_peer_port_count(ntb) != NTB_DEF_PEER_CNT)
dev_warn(&ntb->dev, "multi-port NTB is unsupported\n");
tc = kzalloc(sizeof(*tc), GFP_KERNEL); tc = kzalloc(sizeof(*tc), GFP_KERNEL);
if (!tc) { if (!tc) {
rc = -ENOMEM; rc = -ENOMEM;
...@@ -928,7 +959,7 @@ static int tool_probe(struct ntb_client *self, struct ntb_dev *ntb) ...@@ -928,7 +959,7 @@ static int tool_probe(struct ntb_client *self, struct ntb_dev *ntb)
tc->ntb = ntb; tc->ntb = ntb;
init_waitqueue_head(&tc->link_wq); init_waitqueue_head(&tc->link_wq);
tc->mw_count = min(ntb_mw_count(tc->ntb), MAX_MWS); tc->mw_count = min(ntb_mw_count(tc->ntb, PIDX), MAX_MWS);
for (i = 0; i < tc->mw_count; i++) { for (i = 0; i < tc->mw_count; i++) {
rc = tool_init_mw(tc, i); rc = tool_init_mw(tc, i);
if (rc) if (rc)
......
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
* GPL LICENSE SUMMARY * GPL LICENSE SUMMARY
* *
* Copyright (C) 2015 EMC Corporation. All Rights Reserved. * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as * it under the terms of version 2 of the GNU General Public License as
...@@ -18,6 +19,7 @@ ...@@ -18,6 +19,7 @@
* BSD LICENSE * BSD LICENSE
* *
* Copyright (C) 2015 EMC Corporation. All Rights Reserved. * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
* Copyright (C) 2016 T-Platforms. All Rights Reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions * modification, are permitted provided that the following conditions
...@@ -106,6 +108,7 @@ static inline char *ntb_topo_string(enum ntb_topo topo) ...@@ -106,6 +108,7 @@ static inline char *ntb_topo_string(enum ntb_topo topo)
* @NTB_SPEED_GEN1: Link is trained to gen1 speed. * @NTB_SPEED_GEN1: Link is trained to gen1 speed.
* @NTB_SPEED_GEN2: Link is trained to gen2 speed. * @NTB_SPEED_GEN2: Link is trained to gen2 speed.
* @NTB_SPEED_GEN3: Link is trained to gen3 speed. * @NTB_SPEED_GEN3: Link is trained to gen3 speed.
* @NTB_SPEED_GEN4: Link is trained to gen4 speed.
*/ */
enum ntb_speed { enum ntb_speed {
NTB_SPEED_AUTO = -1, NTB_SPEED_AUTO = -1,
...@@ -113,6 +116,7 @@ enum ntb_speed { ...@@ -113,6 +116,7 @@ enum ntb_speed {
NTB_SPEED_GEN1 = 1, NTB_SPEED_GEN1 = 1,
NTB_SPEED_GEN2 = 2, NTB_SPEED_GEN2 = 2,
NTB_SPEED_GEN3 = 3, NTB_SPEED_GEN3 = 3,
NTB_SPEED_GEN4 = 4
}; };
/** /**
...@@ -139,6 +143,20 @@ enum ntb_width { ...@@ -139,6 +143,20 @@ enum ntb_width {
NTB_WIDTH_32 = 32, NTB_WIDTH_32 = 32,
}; };
/**
* enum ntb_default_port - NTB default port number
* @NTB_PORT_PRI_USD: Default port of the NTB_TOPO_PRI/NTB_TOPO_B2B_USD
* topologies
* @NTB_PORT_SEC_DSD: Default port of the NTB_TOPO_SEC/NTB_TOPO_B2B_DSD
* topologies
*/
enum ntb_default_port {
NTB_PORT_PRI_USD,
NTB_PORT_SEC_DSD
};
#define NTB_DEF_PEER_CNT (1)
#define NTB_DEF_PEER_IDX (0)
/** /**
* struct ntb_client_ops - ntb client operations * struct ntb_client_ops - ntb client operations
* @probe: Notify client of a new device. * @probe: Notify client of a new device.
...@@ -162,10 +180,12 @@ static inline int ntb_client_ops_is_valid(const struct ntb_client_ops *ops) ...@@ -162,10 +180,12 @@ static inline int ntb_client_ops_is_valid(const struct ntb_client_ops *ops)
* struct ntb_ctx_ops - ntb driver context operations * struct ntb_ctx_ops - ntb driver context operations
* @link_event: See ntb_link_event(). * @link_event: See ntb_link_event().
* @db_event: See ntb_db_event(). * @db_event: See ntb_db_event().
* @msg_event: See ntb_msg_event().
*/ */
struct ntb_ctx_ops { struct ntb_ctx_ops {
void (*link_event)(void *ctx); void (*link_event)(void *ctx);
void (*db_event)(void *ctx, int db_vector); void (*db_event)(void *ctx, int db_vector);
void (*msg_event)(void *ctx);
}; };
static inline int ntb_ctx_ops_is_valid(const struct ntb_ctx_ops *ops) static inline int ntb_ctx_ops_is_valid(const struct ntb_ctx_ops *ops)
...@@ -174,18 +194,27 @@ static inline int ntb_ctx_ops_is_valid(const struct ntb_ctx_ops *ops) ...@@ -174,18 +194,27 @@ static inline int ntb_ctx_ops_is_valid(const struct ntb_ctx_ops *ops)
return return
/* ops->link_event && */ /* ops->link_event && */
/* ops->db_event && */ /* ops->db_event && */
/* ops->msg_event && */
1; 1;
} }
/** /**
* struct ntb_ctx_ops - ntb device operations * struct ntb_ctx_ops - ntb device operations
* @mw_count: See ntb_mw_count(). * @port_number: See ntb_port_number().
* @mw_get_range: See ntb_mw_get_range(). * @peer_port_count: See ntb_peer_port_count().
* @mw_set_trans: See ntb_mw_set_trans(). * @peer_port_number: See ntb_peer_port_number().
* @mw_clear_trans: See ntb_mw_clear_trans(). * @peer_port_idx: See ntb_peer_port_idx().
* @link_is_up: See ntb_link_is_up(). * @link_is_up: See ntb_link_is_up().
* @link_enable: See ntb_link_enable(). * @link_enable: See ntb_link_enable().
* @link_disable: See ntb_link_disable(). * @link_disable: See ntb_link_disable().
* @mw_count: See ntb_mw_count().
* @mw_get_align: See ntb_mw_get_align().
* @mw_set_trans: See ntb_mw_set_trans().
* @mw_clear_trans: See ntb_mw_clear_trans().
* @peer_mw_count: See ntb_peer_mw_count().
* @peer_mw_get_addr: See ntb_peer_mw_get_addr().
* @peer_mw_set_trans: See ntb_peer_mw_set_trans().
* @peer_mw_clear_trans:See ntb_peer_mw_clear_trans().
* @db_is_unsafe: See ntb_db_is_unsafe(). * @db_is_unsafe: See ntb_db_is_unsafe().
* @db_valid_mask: See ntb_db_valid_mask(). * @db_valid_mask: See ntb_db_valid_mask().
* @db_vector_count: See ntb_db_vector_count(). * @db_vector_count: See ntb_db_vector_count().
...@@ -210,22 +239,43 @@ static inline int ntb_ctx_ops_is_valid(const struct ntb_ctx_ops *ops) ...@@ -210,22 +239,43 @@ static inline int ntb_ctx_ops_is_valid(const struct ntb_ctx_ops *ops)
* @peer_spad_addr: See ntb_peer_spad_addr(). * @peer_spad_addr: See ntb_peer_spad_addr().
* @peer_spad_read: See ntb_peer_spad_read(). * @peer_spad_read: See ntb_peer_spad_read().
* @peer_spad_write: See ntb_peer_spad_write(). * @peer_spad_write: See ntb_peer_spad_write().
* @msg_count: See ntb_msg_count().
* @msg_inbits: See ntb_msg_inbits().
* @msg_outbits: See ntb_msg_outbits().
* @msg_read_sts: See ntb_msg_read_sts().
* @msg_clear_sts: See ntb_msg_clear_sts().
* @msg_set_mask: See ntb_msg_set_mask().
* @msg_clear_mask: See ntb_msg_clear_mask().
* @msg_read: See ntb_msg_read().
* @msg_write: See ntb_msg_write().
*/ */
struct ntb_dev_ops { struct ntb_dev_ops {
int (*mw_count)(struct ntb_dev *ntb); int (*port_number)(struct ntb_dev *ntb);
int (*mw_get_range)(struct ntb_dev *ntb, int idx, int (*peer_port_count)(struct ntb_dev *ntb);
phys_addr_t *base, resource_size_t *size, int (*peer_port_number)(struct ntb_dev *ntb, int pidx);
resource_size_t *align, resource_size_t *align_size); int (*peer_port_idx)(struct ntb_dev *ntb, int port);
int (*mw_set_trans)(struct ntb_dev *ntb, int idx,
dma_addr_t addr, resource_size_t size);
int (*mw_clear_trans)(struct ntb_dev *ntb, int idx);
int (*link_is_up)(struct ntb_dev *ntb, u64 (*link_is_up)(struct ntb_dev *ntb,
enum ntb_speed *speed, enum ntb_width *width); enum ntb_speed *speed, enum ntb_width *width);
int (*link_enable)(struct ntb_dev *ntb, int (*link_enable)(struct ntb_dev *ntb,
enum ntb_speed max_speed, enum ntb_width max_width); enum ntb_speed max_speed, enum ntb_width max_width);
int (*link_disable)(struct ntb_dev *ntb); int (*link_disable)(struct ntb_dev *ntb);
int (*mw_count)(struct ntb_dev *ntb, int pidx);
int (*mw_get_align)(struct ntb_dev *ntb, int pidx, int widx,
resource_size_t *addr_align,
resource_size_t *size_align,
resource_size_t *size_max);
int (*mw_set_trans)(struct ntb_dev *ntb, int pidx, int widx,
dma_addr_t addr, resource_size_t size);
int (*mw_clear_trans)(struct ntb_dev *ntb, int pidx, int widx);
int (*peer_mw_count)(struct ntb_dev *ntb);
int (*peer_mw_get_addr)(struct ntb_dev *ntb, int widx,
phys_addr_t *base, resource_size_t *size);
int (*peer_mw_set_trans)(struct ntb_dev *ntb, int pidx, int widx,
u64 addr, resource_size_t size);
int (*peer_mw_clear_trans)(struct ntb_dev *ntb, int pidx, int widx);
int (*db_is_unsafe)(struct ntb_dev *ntb); int (*db_is_unsafe)(struct ntb_dev *ntb);
u64 (*db_valid_mask)(struct ntb_dev *ntb); u64 (*db_valid_mask)(struct ntb_dev *ntb);
int (*db_vector_count)(struct ntb_dev *ntb); int (*db_vector_count)(struct ntb_dev *ntb);
...@@ -252,32 +302,55 @@ struct ntb_dev_ops { ...@@ -252,32 +302,55 @@ struct ntb_dev_ops {
int (*spad_is_unsafe)(struct ntb_dev *ntb); int (*spad_is_unsafe)(struct ntb_dev *ntb);
int (*spad_count)(struct ntb_dev *ntb); int (*spad_count)(struct ntb_dev *ntb);
u32 (*spad_read)(struct ntb_dev *ntb, int idx); u32 (*spad_read)(struct ntb_dev *ntb, int sidx);
int (*spad_write)(struct ntb_dev *ntb, int idx, u32 val); int (*spad_write)(struct ntb_dev *ntb, int sidx, u32 val);
int (*peer_spad_addr)(struct ntb_dev *ntb, int idx, int (*peer_spad_addr)(struct ntb_dev *ntb, int pidx, int sidx,
phys_addr_t *spad_addr); phys_addr_t *spad_addr);
u32 (*peer_spad_read)(struct ntb_dev *ntb, int idx); u32 (*peer_spad_read)(struct ntb_dev *ntb, int pidx, int sidx);
int (*peer_spad_write)(struct ntb_dev *ntb, int idx, u32 val); int (*peer_spad_write)(struct ntb_dev *ntb, int pidx, int sidx,
u32 val);
int (*msg_count)(struct ntb_dev *ntb);
u64 (*msg_inbits)(struct ntb_dev *ntb);
u64 (*msg_outbits)(struct ntb_dev *ntb);
u64 (*msg_read_sts)(struct ntb_dev *ntb);
int (*msg_clear_sts)(struct ntb_dev *ntb, u64 sts_bits);
int (*msg_set_mask)(struct ntb_dev *ntb, u64 mask_bits);
int (*msg_clear_mask)(struct ntb_dev *ntb, u64 mask_bits);
int (*msg_read)(struct ntb_dev *ntb, int midx, int *pidx, u32 *msg);
int (*msg_write)(struct ntb_dev *ntb, int midx, int pidx, u32 msg);
}; };
static inline int ntb_dev_ops_is_valid(const struct ntb_dev_ops *ops) static inline int ntb_dev_ops_is_valid(const struct ntb_dev_ops *ops)
{ {
/* commented callbacks are not required: */ /* commented callbacks are not required: */
return return
ops->mw_count && /* Port operations are required for multiport devices */
ops->mw_get_range && !ops->peer_port_count == !ops->port_number &&
ops->mw_set_trans && !ops->peer_port_number == !ops->port_number &&
/* ops->mw_clear_trans && */ !ops->peer_port_idx == !ops->port_number &&
/* Link operations are required */
ops->link_is_up && ops->link_is_up &&
ops->link_enable && ops->link_enable &&
ops->link_disable && ops->link_disable &&
/* One or both MW interfaces should be developed */
ops->mw_count &&
ops->mw_get_align &&
(ops->mw_set_trans ||
ops->peer_mw_set_trans) &&
/* ops->mw_clear_trans && */
ops->peer_mw_count &&
ops->peer_mw_get_addr &&
/* ops->peer_mw_clear_trans && */
/* Doorbell operations are mostly required */
/* ops->db_is_unsafe && */ /* ops->db_is_unsafe && */
ops->db_valid_mask && ops->db_valid_mask &&
/* both set, or both unset */ /* both set, or both unset */
(!ops->db_vector_count == !ops->db_vector_mask) && (!ops->db_vector_count == !ops->db_vector_mask) &&
ops->db_read && ops->db_read &&
/* ops->db_set && */ /* ops->db_set && */
ops->db_clear && ops->db_clear &&
...@@ -291,13 +364,24 @@ static inline int ntb_dev_ops_is_valid(const struct ntb_dev_ops *ops) ...@@ -291,13 +364,24 @@ static inline int ntb_dev_ops_is_valid(const struct ntb_dev_ops *ops)
/* ops->peer_db_read_mask && */ /* ops->peer_db_read_mask && */
/* ops->peer_db_set_mask && */ /* ops->peer_db_set_mask && */
/* ops->peer_db_clear_mask && */ /* ops->peer_db_clear_mask && */
/* ops->spad_is_unsafe && */
ops->spad_count && /* Scrachpads interface is optional */
ops->spad_read && /* !ops->spad_is_unsafe == !ops->spad_count && */
ops->spad_write && !ops->spad_read == !ops->spad_count &&
/* ops->peer_spad_addr && */ !ops->spad_write == !ops->spad_count &&
/* ops->peer_spad_read && */ /* !ops->peer_spad_addr == !ops->spad_count && */
ops->peer_spad_write && /* !ops->peer_spad_read == !ops->spad_count && */
!ops->peer_spad_write == !ops->spad_count &&
/* Messaging interface is optional */
!ops->msg_inbits == !ops->msg_count &&
!ops->msg_outbits == !ops->msg_count &&
!ops->msg_read_sts == !ops->msg_count &&
!ops->msg_clear_sts == !ops->msg_count &&
/* !ops->msg_set_mask == !ops->msg_count && */
/* !ops->msg_clear_mask == !ops->msg_count && */
!ops->msg_read == !ops->msg_count &&
!ops->msg_write == !ops->msg_count &&
1; 1;
} }
...@@ -310,13 +394,12 @@ struct ntb_client { ...@@ -310,13 +394,12 @@ struct ntb_client {
struct device_driver drv; struct device_driver drv;
const struct ntb_client_ops ops; const struct ntb_client_ops ops;
}; };
#define drv_ntb_client(__drv) container_of((__drv), struct ntb_client, drv) #define drv_ntb_client(__drv) container_of((__drv), struct ntb_client, drv)
/** /**
* struct ntb_device - ntb device * struct ntb_device - ntb device
* @dev: Linux device object. * @dev: Linux device object.
* @pdev: Pci device entry of the ntb. * @pdev: PCI device entry of the ntb.
* @topo: Detected topology of the ntb. * @topo: Detected topology of the ntb.
* @ops: See &ntb_dev_ops. * @ops: See &ntb_dev_ops.
* @ctx: See &ntb_ctx_ops. * @ctx: See &ntb_ctx_ops.
...@@ -337,7 +420,6 @@ struct ntb_dev { ...@@ -337,7 +420,6 @@ struct ntb_dev {
/* block unregister until device is fully released */ /* block unregister until device is fully released */
struct completion released; struct completion released;
}; };
#define dev_ntb(__dev) container_of((__dev), struct ntb_dev, dev) #define dev_ntb(__dev) container_of((__dev), struct ntb_dev, dev)
/** /**
...@@ -434,86 +516,152 @@ void ntb_link_event(struct ntb_dev *ntb); ...@@ -434,86 +516,152 @@ void ntb_link_event(struct ntb_dev *ntb);
* multiple interrupt vectors for doorbells, the vector number indicates which * multiple interrupt vectors for doorbells, the vector number indicates which
* vector received the interrupt. The vector number is relative to the first * vector received the interrupt. The vector number is relative to the first
* vector used for doorbells, starting at zero, and must be less than * vector used for doorbells, starting at zero, and must be less than
** ntb_db_vector_count(). The driver may call ntb_db_read() to check which * ntb_db_vector_count(). The driver may call ntb_db_read() to check which
* doorbell bits need service, and ntb_db_vector_mask() to determine which of * doorbell bits need service, and ntb_db_vector_mask() to determine which of
* those bits are associated with the vector number. * those bits are associated with the vector number.
*/ */
void ntb_db_event(struct ntb_dev *ntb, int vector); void ntb_db_event(struct ntb_dev *ntb, int vector);
/** /**
* ntb_mw_count() - get the number of memory windows * ntb_msg_event() - notify driver context of a message event
* @ntb: NTB device context. * @ntb: NTB device context.
* *
* Hardware and topology may support a different number of memory windows. * Notify the driver context of a message event. If hardware supports
* message registers, this event indicates, that a new message arrived in
* some incoming message register or last sent message couldn't be delivered.
* The events can be masked/unmasked by the methods ntb_msg_set_mask() and
* ntb_msg_clear_mask().
*/
void ntb_msg_event(struct ntb_dev *ntb);
/**
* ntb_default_port_number() - get the default local port number
* @ntb: NTB device context.
* *
* Return: the number of memory windows. * If hardware driver doesn't specify port_number() callback method, the NTB
* is considered with just two ports. So this method returns default local
* port number in compliance with topology.
*
* NOTE Don't call this method directly. The ntb_port_number() function should
* be used instead.
*
* Return: the default local port number
*/
int ntb_default_port_number(struct ntb_dev *ntb);
/**
* ntb_default_port_count() - get the default number of peer device ports
* @ntb: NTB device context.
*
* By default hardware driver supports just one peer device.
*
* NOTE Don't call this method directly. The ntb_peer_port_count() function
* should be used instead.
*
* Return: the default number of peer ports
*/
int ntb_default_peer_port_count(struct ntb_dev *ntb);
/**
* ntb_default_peer_port_number() - get the default peer port by given index
* @ntb: NTB device context.
* @idx: Peer port index (should not differ from zero).
*
* By default hardware driver supports just one peer device, so this method
* shall return the corresponding value from enum ntb_default_port.
*
* NOTE Don't call this method directly. The ntb_peer_port_number() function
* should be used instead.
*
* Return: the peer device port or negative value indicating an error
*/
int ntb_default_peer_port_number(struct ntb_dev *ntb, int pidx);
/**
* ntb_default_peer_port_idx() - get the default peer device port index by
* given port number
* @ntb: NTB device context.
* @port: Peer port number (should be one of enum ntb_default_port).
*
* By default hardware driver supports just one peer device, so while
* specified port-argument indicates peer port from enum ntb_default_port,
* the return value shall be zero.
*
* NOTE Don't call this method directly. The ntb_peer_port_idx() function
* should be used instead.
*
* Return: the peer port index or negative value indicating an error
*/
int ntb_default_peer_port_idx(struct ntb_dev *ntb, int port);
/**
* ntb_port_number() - get the local port number
* @ntb: NTB device context.
*
* Hardware must support at least simple two-ports ntb connection
*
* Return: the local port number
*/ */
static inline int ntb_mw_count(struct ntb_dev *ntb) static inline int ntb_port_number(struct ntb_dev *ntb)
{ {
return ntb->ops->mw_count(ntb); if (!ntb->ops->port_number)
return ntb_default_port_number(ntb);
return ntb->ops->port_number(ntb);
} }
/** /**
* ntb_mw_get_range() - get the range of a memory window * ntb_peer_port_count() - get the number of peer device ports
* @ntb: NTB device context. * @ntb: NTB device context.
* @idx: Memory window number.
* @base: OUT - the base address for mapping the memory window
* @size: OUT - the size for mapping the memory window
* @align: OUT - the base alignment for translating the memory window
* @align_size: OUT - the size alignment for translating the memory window
* *
* Get the range of a memory window. NULL may be given for any output * Hardware may support an access to memory of several remote domains
* parameter if the value is not needed. The base and size may be used for * over multi-port NTB devices. This method returns the number of peers,
* mapping the memory window, to access the peer memory. The alignment and * local device can have shared memory with.
* size may be used for translating the memory window, for the peer to access
* memory on the local system.
* *
* Return: Zero on success, otherwise an error number. * Return: the number of peer ports
*/ */
static inline int ntb_mw_get_range(struct ntb_dev *ntb, int idx, static inline int ntb_peer_port_count(struct ntb_dev *ntb)
phys_addr_t *base, resource_size_t *size,
resource_size_t *align, resource_size_t *align_size)
{ {
return ntb->ops->mw_get_range(ntb, idx, base, size, if (!ntb->ops->peer_port_count)
align, align_size); return ntb_default_peer_port_count(ntb);
return ntb->ops->peer_port_count(ntb);
} }
/** /**
* ntb_mw_set_trans() - set the translation of a memory window * ntb_peer_port_number() - get the peer port by given index
* @ntb: NTB device context. * @ntb: NTB device context.
* @idx: Memory window number. * @pidx: Peer port index.
* @addr: The dma address local memory to expose to the peer.
* @size: The size of the local memory to expose to the peer.
* *
* Set the translation of a memory window. The peer may access local memory * Peer ports are continuously enumerated by NTB API logic, so this method
* through the window starting at the address, up to the size. The address * lets to retrieve port real number by its index.
* must be aligned to the alignment specified by ntb_mw_get_range(). The size
* must be aligned to the size alignment specified by ntb_mw_get_range().
* *
* Return: Zero on success, otherwise an error number. * Return: the peer device port or negative value indicating an error
*/ */
static inline int ntb_mw_set_trans(struct ntb_dev *ntb, int idx, static inline int ntb_peer_port_number(struct ntb_dev *ntb, int pidx)
dma_addr_t addr, resource_size_t size)
{ {
return ntb->ops->mw_set_trans(ntb, idx, addr, size); if (!ntb->ops->peer_port_number)
return ntb_default_peer_port_number(ntb, pidx);
return ntb->ops->peer_port_number(ntb, pidx);
} }
/** /**
* ntb_mw_clear_trans() - clear the translation of a memory window * ntb_peer_port_idx() - get the peer device port index by given port number
* @ntb: NTB device context. * @ntb: NTB device context.
* @idx: Memory window number. * @port: Peer port number.
* *
* Clear the translation of a memory window. The peer may no longer access * Inverse operation of ntb_peer_port_number(), so one can get port index
* local memory through the window. * by specified port number.
* *
* Return: Zero on success, otherwise an error number. * Return: the peer port index or negative value indicating an error
*/ */
static inline int ntb_mw_clear_trans(struct ntb_dev *ntb, int idx) static inline int ntb_peer_port_idx(struct ntb_dev *ntb, int port)
{ {
if (!ntb->ops->mw_clear_trans) if (!ntb->ops->peer_port_idx)
return ntb->ops->mw_set_trans(ntb, idx, 0, 0); return ntb_default_peer_port_idx(ntb, port);
return ntb->ops->mw_clear_trans(ntb, idx); return ntb->ops->peer_port_idx(ntb, port);
} }
/** /**
...@@ -526,25 +674,26 @@ static inline int ntb_mw_clear_trans(struct ntb_dev *ntb, int idx) ...@@ -526,25 +674,26 @@ static inline int ntb_mw_clear_trans(struct ntb_dev *ntb, int idx)
* state once after every link event. It is safe to query the link state in * state once after every link event. It is safe to query the link state in
* the context of the link event callback. * the context of the link event callback.
* *
* Return: One if the link is up, zero if the link is down, otherwise a * Return: bitfield of indexed ports link state: bit is set/cleared if the
* negative value indicating the error number. * link is up/down respectively.
*/ */
static inline int ntb_link_is_up(struct ntb_dev *ntb, static inline u64 ntb_link_is_up(struct ntb_dev *ntb,
enum ntb_speed *speed, enum ntb_width *width) enum ntb_speed *speed, enum ntb_width *width)
{ {
return ntb->ops->link_is_up(ntb, speed, width); return ntb->ops->link_is_up(ntb, speed, width);
} }
/** /**
* ntb_link_enable() - enable the link on the secondary side of the ntb * ntb_link_enable() - enable the local port ntb connection
* @ntb: NTB device context. * @ntb: NTB device context.
* @max_speed: The maximum link speed expressed as PCIe generation number. * @max_speed: The maximum link speed expressed as PCIe generation number.
* @max_width: The maximum link width expressed as the number of PCIe lanes. * @max_width: The maximum link width expressed as the number of PCIe lanes.
* *
* Enable the link on the secondary side of the ntb. This can only be done * Enable the NTB/PCIe link on the local or remote (for bridge-to-bridge
* from the primary side of the ntb in primary or b2b topology. The ntb device * topology) side of the bridge. If it's supported the ntb device should train
* should train the link to its maximum speed and width, or the requested speed * the link to its maximum speed and width, or the requested speed and width,
* and width, whichever is smaller, if supported. * whichever is smaller. Some hardware doesn't support PCIe link training, so
* the last two arguments will be ignored then.
* *
* Return: Zero on success, otherwise an error number. * Return: Zero on success, otherwise an error number.
*/ */
...@@ -556,14 +705,14 @@ static inline int ntb_link_enable(struct ntb_dev *ntb, ...@@ -556,14 +705,14 @@ static inline int ntb_link_enable(struct ntb_dev *ntb,
} }
/** /**
* ntb_link_disable() - disable the link on the secondary side of the ntb * ntb_link_disable() - disable the local port ntb connection
* @ntb: NTB device context. * @ntb: NTB device context.
* *
* Disable the link on the secondary side of the ntb. This can only be * Disable the link on the local or remote (for b2b topology) of the ntb.
* done from the primary side of the ntb in primary or b2b topology. The ntb * The ntb device should disable the link. Returning from this call must
* device should disable the link. Returning from this call must indicate that * indicate that a barrier has passed, though with no more writes may pass in
* a barrier has passed, though with no more writes may pass in either * either direction across the link, except if this call returns an error
* direction across the link, except if this call returns an error number. * number.
* *
* Return: Zero on success, otherwise an error number. * Return: Zero on success, otherwise an error number.
*/ */
...@@ -572,6 +721,183 @@ static inline int ntb_link_disable(struct ntb_dev *ntb) ...@@ -572,6 +721,183 @@ static inline int ntb_link_disable(struct ntb_dev *ntb)
return ntb->ops->link_disable(ntb); return ntb->ops->link_disable(ntb);
} }
/**
* ntb_mw_count() - get the number of inbound memory windows, which could
* be created for a specified peer device
* @ntb: NTB device context.
* @pidx: Port index of peer device.
*
* Hardware and topology may support a different number of memory windows.
* Moreover different peer devices can support different number of memory
* windows. Simply speaking this method returns the number of possible inbound
* memory windows to share with specified peer device.
*
* Return: the number of memory windows.
*/
static inline int ntb_mw_count(struct ntb_dev *ntb, int pidx)
{
return ntb->ops->mw_count(ntb, pidx);
}
/**
* ntb_mw_get_align() - get the restriction parameters of inbound memory window
* @ntb: NTB device context.
* @pidx: Port index of peer device.
* @widx: Memory window index.
* @addr_align: OUT - the base alignment for translating the memory window
* @size_align: OUT - the size alignment for translating the memory window
* @size_max: OUT - the maximum size of the memory window
*
* Get the alignments of an inbound memory window with specified index.
* NULL may be given for any output parameter if the value is not needed.
* The alignment and size parameters may be used for allocation of proper
* shared memory.
*
* Return: Zero on success, otherwise a negative error number.
*/
static inline int ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int widx,
resource_size_t *addr_align,
resource_size_t *size_align,
resource_size_t *size_max)
{
return ntb->ops->mw_get_align(ntb, pidx, widx, addr_align, size_align,
size_max);
}
/**
* ntb_mw_set_trans() - set the translation of an inbound memory window
* @ntb: NTB device context.
* @pidx: Port index of peer device.
* @widx: Memory window index.
* @addr: The dma address of local memory to expose to the peer.
* @size: The size of the local memory to expose to the peer.
*
* Set the translation of a memory window. The peer may access local memory
* through the window starting at the address, up to the size. The address
* and size must be aligned in compliance with restrictions of
* ntb_mw_get_align(). The region size should not exceed the size_max parameter
* of that method.
*
* This method may not be implemented due to the hardware specific memory
* windows interface.
*
* Return: Zero on success, otherwise an error number.
*/
static inline int ntb_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx,
dma_addr_t addr, resource_size_t size)
{
if (!ntb->ops->mw_set_trans)
return 0;
return ntb->ops->mw_set_trans(ntb, pidx, widx, addr, size);
}
/**
* ntb_mw_clear_trans() - clear the translation address of an inbound memory
* window
* @ntb: NTB device context.
* @pidx: Port index of peer device.
* @widx: Memory window index.
*
* Clear the translation of an inbound memory window. The peer may no longer
* access local memory through the window.
*
* Return: Zero on success, otherwise an error number.
*/
static inline int ntb_mw_clear_trans(struct ntb_dev *ntb, int pidx, int widx)
{
if (!ntb->ops->mw_clear_trans)
return ntb_mw_set_trans(ntb, pidx, widx, 0, 0);
return ntb->ops->mw_clear_trans(ntb, pidx, widx);
}
/**
* ntb_peer_mw_count() - get the number of outbound memory windows, which could
* be mapped to access a shared memory
* @ntb: NTB device context.
*
* Hardware and topology may support a different number of memory windows.
* This method returns the number of outbound memory windows supported by
* local device.
*
* Return: the number of memory windows.
*/
static inline int ntb_peer_mw_count(struct ntb_dev *ntb)
{
return ntb->ops->peer_mw_count(ntb);
}
/**
* ntb_peer_mw_get_addr() - get map address of an outbound memory window
* @ntb: NTB device context.
* @widx: Memory window index (within ntb_peer_mw_count() return value).
* @base: OUT - the base address of mapping region.
* @size: OUT - the size of mapping region.
*
* Get base and size of memory region to map. NULL may be given for any output
* parameter if the value is not needed. The base and size may be used for
* mapping the memory window, to access the peer memory.
*
* Return: Zero on success, otherwise a negative error number.
*/
static inline int ntb_peer_mw_get_addr(struct ntb_dev *ntb, int widx,
phys_addr_t *base, resource_size_t *size)
{
return ntb->ops->peer_mw_get_addr(ntb, widx, base, size);
}
/**
* ntb_peer_mw_set_trans() - set a translation address of a memory window
* retrieved from a peer device
* @ntb: NTB device context.
* @pidx: Port index of peer device the translation address received from.
* @widx: Memory window index.
* @addr: The dma address of the shared memory to access.
* @size: The size of the shared memory to access.
*
* Set the translation of an outbound memory window. The local device may
* access shared memory allocated by a peer device sent the address.
*
* This method may not be implemented due to the hardware specific memory
* windows interface, so a translation address can be only set on the side,
* where shared memory (inbound memory windows) is allocated.
*
* Return: Zero on success, otherwise an error number.
*/
static inline int ntb_peer_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx,
u64 addr, resource_size_t size)
{
if (!ntb->ops->peer_mw_set_trans)
return 0;
return ntb->ops->peer_mw_set_trans(ntb, pidx, widx, addr, size);
}
/**
* ntb_peer_mw_clear_trans() - clear the translation address of an outbound
* memory window
* @ntb: NTB device context.
* @pidx: Port index of peer device.
* @widx: Memory window index.
*
* Clear the translation of a outbound memory window. The local device may no
* longer access a shared memory through the window.
*
* This method may not be implemented due to the hardware specific memory
* windows interface.
*
* Return: Zero on success, otherwise an error number.
*/
static inline int ntb_peer_mw_clear_trans(struct ntb_dev *ntb, int pidx,
int widx)
{
if (!ntb->ops->peer_mw_clear_trans)
return ntb_peer_mw_set_trans(ntb, pidx, widx, 0, 0);
return ntb->ops->peer_mw_clear_trans(ntb, pidx, widx);
}
/** /**
* ntb_db_is_unsafe() - check if it is safe to use hardware doorbell * ntb_db_is_unsafe() - check if it is safe to use hardware doorbell
* @ntb: NTB device context. * @ntb: NTB device context.
...@@ -900,47 +1226,58 @@ static inline int ntb_spad_is_unsafe(struct ntb_dev *ntb) ...@@ -900,47 +1226,58 @@ static inline int ntb_spad_is_unsafe(struct ntb_dev *ntb)
* @ntb: NTB device context. * @ntb: NTB device context.
* *
* Hardware and topology may support a different number of scratchpads. * Hardware and topology may support a different number of scratchpads.
* Although it must be the same for all ports per NTB device.
* *
* Return: the number of scratchpads. * Return: the number of scratchpads.
*/ */
static inline int ntb_spad_count(struct ntb_dev *ntb) static inline int ntb_spad_count(struct ntb_dev *ntb)
{ {
if (!ntb->ops->spad_count)
return 0;
return ntb->ops->spad_count(ntb); return ntb->ops->spad_count(ntb);
} }
/** /**
* ntb_spad_read() - read the local scratchpad register * ntb_spad_read() - read the local scratchpad register
* @ntb: NTB device context. * @ntb: NTB device context.
* @idx: Scratchpad index. * @sidx: Scratchpad index.
* *
* Read the local scratchpad register, and return the value. * Read the local scratchpad register, and return the value.
* *
* Return: The value of the local scratchpad register. * Return: The value of the local scratchpad register.
*/ */
static inline u32 ntb_spad_read(struct ntb_dev *ntb, int idx) static inline u32 ntb_spad_read(struct ntb_dev *ntb, int sidx)
{ {
return ntb->ops->spad_read(ntb, idx); if (!ntb->ops->spad_read)
return ~(u32)0;
return ntb->ops->spad_read(ntb, sidx);
} }
/** /**
* ntb_spad_write() - write the local scratchpad register * ntb_spad_write() - write the local scratchpad register
* @ntb: NTB device context. * @ntb: NTB device context.
* @idx: Scratchpad index. * @sidx: Scratchpad index.
* @val: Scratchpad value. * @val: Scratchpad value.
* *
* Write the value to the local scratchpad register. * Write the value to the local scratchpad register.
* *
* Return: Zero on success, otherwise an error number. * Return: Zero on success, otherwise an error number.
*/ */
static inline int ntb_spad_write(struct ntb_dev *ntb, int idx, u32 val) static inline int ntb_spad_write(struct ntb_dev *ntb, int sidx, u32 val)
{ {
return ntb->ops->spad_write(ntb, idx, val); if (!ntb->ops->spad_write)
return -EINVAL;
return ntb->ops->spad_write(ntb, sidx, val);
} }
/** /**
* ntb_peer_spad_addr() - address of the peer scratchpad register * ntb_peer_spad_addr() - address of the peer scratchpad register
* @ntb: NTB device context. * @ntb: NTB device context.
* @idx: Scratchpad index. * @pidx: Port index of peer device.
* @sidx: Scratchpad index.
* @spad_addr: OUT - The address of the peer scratchpad register. * @spad_addr: OUT - The address of the peer scratchpad register.
* *
* Return the address of the peer doorbell register. This may be used, for * Return the address of the peer doorbell register. This may be used, for
...@@ -948,45 +1285,213 @@ static inline int ntb_spad_write(struct ntb_dev *ntb, int idx, u32 val) ...@@ -948,45 +1285,213 @@ static inline int ntb_spad_write(struct ntb_dev *ntb, int idx, u32 val)
* *
* Return: Zero on success, otherwise an error number. * Return: Zero on success, otherwise an error number.
*/ */
static inline int ntb_peer_spad_addr(struct ntb_dev *ntb, int idx, static inline int ntb_peer_spad_addr(struct ntb_dev *ntb, int pidx, int sidx,
phys_addr_t *spad_addr) phys_addr_t *spad_addr)
{ {
if (!ntb->ops->peer_spad_addr) if (!ntb->ops->peer_spad_addr)
return -EINVAL; return -EINVAL;
return ntb->ops->peer_spad_addr(ntb, idx, spad_addr); return ntb->ops->peer_spad_addr(ntb, pidx, sidx, spad_addr);
} }
/** /**
* ntb_peer_spad_read() - read the peer scratchpad register * ntb_peer_spad_read() - read the peer scratchpad register
* @ntb: NTB device context. * @ntb: NTB device context.
* @idx: Scratchpad index. * @pidx: Port index of peer device.
* @sidx: Scratchpad index.
* *
* Read the peer scratchpad register, and return the value. * Read the peer scratchpad register, and return the value.
* *
* Return: The value of the local scratchpad register. * Return: The value of the local scratchpad register.
*/ */
static inline u32 ntb_peer_spad_read(struct ntb_dev *ntb, int idx) static inline u32 ntb_peer_spad_read(struct ntb_dev *ntb, int pidx, int sidx)
{ {
if (!ntb->ops->peer_spad_read) if (!ntb->ops->peer_spad_read)
return 0; return ~(u32)0;
return ntb->ops->peer_spad_read(ntb, idx); return ntb->ops->peer_spad_read(ntb, pidx, sidx);
} }
/** /**
* ntb_peer_spad_write() - write the peer scratchpad register * ntb_peer_spad_write() - write the peer scratchpad register
* @ntb: NTB device context. * @ntb: NTB device context.
* @idx: Scratchpad index. * @pidx: Port index of peer device.
* @sidx: Scratchpad index.
* @val: Scratchpad value. * @val: Scratchpad value.
* *
* Write the value to the peer scratchpad register. * Write the value to the peer scratchpad register.
* *
* Return: Zero on success, otherwise an error number. * Return: Zero on success, otherwise an error number.
*/ */
static inline int ntb_peer_spad_write(struct ntb_dev *ntb, int idx, u32 val) static inline int ntb_peer_spad_write(struct ntb_dev *ntb, int pidx, int sidx,
u32 val)
{
if (!ntb->ops->peer_spad_write)
return -EINVAL;
return ntb->ops->peer_spad_write(ntb, pidx, sidx, val);
}
/**
* ntb_msg_count() - get the number of message registers
* @ntb: NTB device context.
*
* Hardware may support a different number of message registers.
*
* Return: the number of message registers.
*/
static inline int ntb_msg_count(struct ntb_dev *ntb)
{
if (!ntb->ops->msg_count)
return 0;
return ntb->ops->msg_count(ntb);
}
/**
* ntb_msg_inbits() - get a bitfield of inbound message registers status
* @ntb: NTB device context.
*
* The method returns the bitfield of status and mask registers, which related
* to inbound message registers.
*
* Return: bitfield of inbound message registers.
*/
static inline u64 ntb_msg_inbits(struct ntb_dev *ntb)
{ {
return ntb->ops->peer_spad_write(ntb, idx, val); if (!ntb->ops->msg_inbits)
return 0;
return ntb->ops->msg_inbits(ntb);
}
/**
* ntb_msg_outbits() - get a bitfield of outbound message registers status
* @ntb: NTB device context.
*
* The method returns the bitfield of status and mask registers, which related
* to outbound message registers.
*
* Return: bitfield of outbound message registers.
*/
static inline u64 ntb_msg_outbits(struct ntb_dev *ntb)
{
if (!ntb->ops->msg_outbits)
return 0;
return ntb->ops->msg_outbits(ntb);
}
/**
* ntb_msg_read_sts() - read the message registers status
* @ntb: NTB device context.
*
* Read the status of message register. Inbound and outbound message registers
* related bits can be filtered by masks retrieved from ntb_msg_inbits() and
* ntb_msg_outbits().
*
* Return: status bits of message registers
*/
static inline u64 ntb_msg_read_sts(struct ntb_dev *ntb)
{
if (!ntb->ops->msg_read_sts)
return 0;
return ntb->ops->msg_read_sts(ntb);
}
/**
* ntb_msg_clear_sts() - clear status bits of message registers
* @ntb: NTB device context.
* @sts_bits: Status bits to clear.
*
* Clear bits in the status register.
*
* Return: Zero on success, otherwise a negative error number.
*/
static inline int ntb_msg_clear_sts(struct ntb_dev *ntb, u64 sts_bits)
{
if (!ntb->ops->msg_clear_sts)
return -EINVAL;
return ntb->ops->msg_clear_sts(ntb, sts_bits);
}
/**
* ntb_msg_set_mask() - set mask of message register status bits
* @ntb: NTB device context.
* @mask_bits: Mask bits.
*
* Mask the message registers status bits from raising the message event.
*
* Return: Zero on success, otherwise a negative error number.
*/
static inline int ntb_msg_set_mask(struct ntb_dev *ntb, u64 mask_bits)
{
if (!ntb->ops->msg_set_mask)
return -EINVAL;
return ntb->ops->msg_set_mask(ntb, mask_bits);
}
/**
* ntb_msg_clear_mask() - clear message registers mask
* @ntb: NTB device context.
* @mask_bits: Mask bits to clear.
*
* Clear bits in the message events mask register.
*
* Return: Zero on success, otherwise a negative error number.
*/
static inline int ntb_msg_clear_mask(struct ntb_dev *ntb, u64 mask_bits)
{
if (!ntb->ops->msg_clear_mask)
return -EINVAL;
return ntb->ops->msg_clear_mask(ntb, mask_bits);
}
/**
* ntb_msg_read() - read message register with specified index
* @ntb: NTB device context.
* @midx: Message register index
* @pidx: OUT - Port index of peer device a message retrieved from
* @msg: OUT - Data
*
* Read data from the specified message register. Source port index of a
* message is retrieved as well.
*
* Return: Zero on success, otherwise a negative error number.
*/
static inline int ntb_msg_read(struct ntb_dev *ntb, int midx, int *pidx,
u32 *msg)
{
if (!ntb->ops->msg_read)
return -EINVAL;
return ntb->ops->msg_read(ntb, midx, pidx, msg);
}
/**
* ntb_msg_write() - write data to the specified message register
* @ntb: NTB device context.
* @midx: Message register index
* @pidx: Port index of peer device a message being sent to
* @msg: Data to send
*
* Send data to a specified peer device using the defined message register.
* Message event can be raised if the midx registers isn't empty while
* calling this method and the corresponding interrupt isn't masked.
*
* Return: Zero on success, otherwise a negative error number.
*/
static inline int ntb_msg_write(struct ntb_dev *ntb, int midx, int pidx,
u32 msg)
{
if (!ntb->ops->msg_write)
return -EINVAL;
return ntb->ops->msg_write(ntb, midx, pidx, msg);
} }
#endif #endif
...@@ -18,6 +18,7 @@ LIST_DEVS=FALSE ...@@ -18,6 +18,7 @@ LIST_DEVS=FALSE
DEBUGFS=${DEBUGFS-/sys/kernel/debug} DEBUGFS=${DEBUGFS-/sys/kernel/debug}
DB_BITMASK=0x7FFF
PERF_RUN_ORDER=32 PERF_RUN_ORDER=32
MAX_MW_SIZE=0 MAX_MW_SIZE=0
RUN_DMA_TESTS= RUN_DMA_TESTS=
...@@ -38,6 +39,7 @@ function show_help() ...@@ -38,6 +39,7 @@ function show_help()
echo "be highly recommended." echo "be highly recommended."
echo echo
echo "Options:" echo "Options:"
echo " -b BITMASK doorbell clear bitmask for ntb_tool"
echo " -C don't cleanup ntb modules on exit" echo " -C don't cleanup ntb modules on exit"
echo " -d run dma tests" echo " -d run dma tests"
echo " -h show this help message" echo " -h show this help message"
...@@ -52,8 +54,9 @@ function show_help() ...@@ -52,8 +54,9 @@ function show_help()
function parse_args() function parse_args()
{ {
OPTIND=0 OPTIND=0
while getopts "Cdhlm:r:p:w:" opt; do while getopts "b:Cdhlm:r:p:w:" opt; do
case "$opt" in case "$opt" in
b) DB_BITMASK=${OPTARG} ;;
C) DONT_CLEANUP=1 ;; C) DONT_CLEANUP=1 ;;
d) RUN_DMA_TESTS=1 ;; d) RUN_DMA_TESTS=1 ;;
h) show_help; exit 0 ;; h) show_help; exit 0 ;;
...@@ -85,6 +88,10 @@ set -e ...@@ -85,6 +88,10 @@ set -e
function _modprobe() function _modprobe()
{ {
modprobe "$@" modprobe "$@"
if [[ "$REMOTE_HOST" != "" ]]; then
ssh "$REMOTE_HOST" modprobe "$@"
fi
} }
function split_remote() function split_remote()
...@@ -154,7 +161,7 @@ function doorbell_test() ...@@ -154,7 +161,7 @@ function doorbell_test()
echo "Running db tests on: $(basename $LOC) / $(basename $REM)" echo "Running db tests on: $(basename $LOC) / $(basename $REM)"
write_file "c 0xFFFFFFFF" "$REM/db" write_file "c $DB_BITMASK" "$REM/db"
for ((i=1; i <= 8; i++)); do for ((i=1; i <= 8; i++)); do
let DB=$(read_file "$REM/db") || true let DB=$(read_file "$REM/db") || true
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment