Commit d579c468 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing updates from Steven Rostedt:

 - User events are finally ready!

   After lots of collaboration between various parties, we finally
   locked down on a stable interface for user events that can also work
   with user space only tracing.

   This is implemented by telling the kernel (or user space library, but
   that part is user space only and not part of this patch set), where
   the variable is that the application uses to know if something is
   listening to the trace.

   There's also an interface to tell the kernel about these events,
   which will show up in the /sys/kernel/tracing/events/user_events/
   directory, where it can be enabled.

   When it's enabled, the kernel will update the variable, to tell the
   application to start writing to the kernel.

   See https://lwn.net/Articles/927595/

 - Cleaned up the direct trampolines code to simplify arm64 addition of
   direct trampolines.

   Direct trampolines use the ftrace interface but instead of jumping to
   the ftrace trampoline, applications (mostly BPF) can register their
   own trampoline for performance reasons.

 - Some updates to the fprobe infrastructure. fprobes are more efficient
   than kprobes, as it does not need to save all the registers that
   kprobes on ftrace do. More work needs to be done before the fprobes
   will be exposed as dynamic events.

 - More updates to references to the obsolete path of
   /sys/kernel/debug/tracing for the new /sys/kernel/tracing path.

 - Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer
   line by line instead of all at once.

   There are users in production kernels that have a large data dump
   that originally used printk() directly, but the data dump was larger
   than what printk() allowed as a single print.

   Using seq_buf() to do the printing fixes that.

 - Add /sys/kernel/tracing/touched_functions that shows all functions
   that was every traced by ftrace or a direct trampoline. This is used
   for debugging issues where a traced function could have caused a
   crash by a bpf program or live patching.

 - Add a "fields" option that is similar to "raw" but outputs the fields
   of the events. It's easier to read by humans.

 - Some minor fixes and clean ups.

* tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (41 commits)
  ring-buffer: Sync IRQ works before buffer destruction
  tracing: Add missing spaces in trace_print_hex_seq()
  ring-buffer: Ensure proper resetting of atomic variables in ring_buffer_reset_online_cpus
  recordmcount: Fix memory leaks in the uwrite function
  tracing/user_events: Limit max fault-in attempts
  tracing/user_events: Prevent same address and bit per process
  tracing/user_events: Ensure bit is cleared on unregister
  tracing/user_events: Ensure write index cannot be negative
  seq_buf: Add seq_buf_do_printk() helper
  tracing: Fix print_fields() for __dyn_loc/__rel_loc
  tracing/user_events: Set event filter_type from type
  ring-buffer: Clearly check null ptr returned by rb_set_head_page()
  tracing: Unbreak user events
  tracing/user_events: Use print_format_fields() for trace output
  tracing/user_events: Align structs with tabs for readability
  tracing/user_events: Limit global user_event count
  tracing/user_events: Charge event allocs to cgroups
  tracing/user_events: Update documentation for ABI
  tracing/user_events: Use write ABI in example
  tracing/user_events: Add ABI self-test
  ...
parents f20730ef 675751bb
......@@ -87,14 +87,16 @@ returns as same as unregister_ftrace_function().
The fprobe entry/exit handler
=============================
The prototype of the entry/exit callback function is as follows:
The prototype of the entry/exit callback function are as follows:
.. code-block:: c
void callback_func(struct fprobe *fp, unsigned long entry_ip, struct pt_regs *regs);
int entry_callback(struct fprobe *fp, unsigned long entry_ip, struct pt_regs *regs, void *entry_data);
Note that both entry and exit callbacks have same ptototype. The @entry_ip is
saved at function entry and passed to exit handler.
void exit_callback(struct fprobe *fp, unsigned long entry_ip, struct pt_regs *regs, void *entry_data);
Note that the @entry_ip is saved at function entry and passed to exit handler.
If the entry callback function returns !0, the corresponding exit callback will be cancelled.
@fp
This is the address of `fprobe` data structure related to this handler.
......@@ -113,6 +115,12 @@ saved at function entry and passed to exit handler.
to use @entry_ip. On the other hand, in the exit_handler, the instruction
pointer of @regs is set to the currect return address.
@entry_data
This is a local storage to share the data between entry and exit handlers.
This storage is NULL by default. If the user specify `exit_handler` field
and `entry_data_size` field when registering the fprobe, the storage is
allocated and passed to both `entry_handler` and `exit_handler`.
Share the callbacks with kprobes
================================
......
......@@ -1027,6 +1027,7 @@ To see what is available, simply cat the file::
nohex
nobin
noblock
nofields
trace_printk
annotate
nouserstacktrace
......@@ -1110,6 +1111,11 @@ Here are the available options:
block
When set, reading trace_pipe will not block when polled.
fields
Print the fields as described by their types. This is a better
option than using hex, bin or raw, as it gives a better parsing
of the content of the event.
trace_printk
Can disable trace_printk() from writing into the buffer.
......
......@@ -20,11 +20,10 @@ dynamic_events is the same as the ioctl with the u: prefix applied.
Typically programs will register a set of events that they wish to expose to
tools that can read trace_events (such as ftrace and perf). The registration
process gives back two ints to the program for each event. The first int is
the status bit. This describes which bit in little-endian format in the
/sys/kernel/tracing/user_events_status file represents this event. The
second int is the write index which describes the data when a write() or
writev() is called on the /sys/kernel/tracing/user_events_data file.
process tells the kernel which address and bit to reflect if any tool has
enabled the event and data should be written. The registration will give back
a write index which describes the data when a write() or writev() is called
on the /sys/kernel/tracing/user_events_data file.
The structures referenced in this document are contained within the
/include/uapi/linux/user_events.h file in the source tree.
......@@ -41,23 +40,64 @@ DIAG_IOCSREG.
This command takes a packed struct user_reg as an argument::
struct user_reg {
u32 size;
u64 name_args;
u32 status_bit;
u32 write_index;
};
/* Input: Size of the user_reg structure being used */
__u32 size;
/* Input: Bit in enable address to use */
__u8 enable_bit;
/* Input: Enable size in bytes at address */
__u8 enable_size;
/* Input: Flags for future use, set to 0 */
__u16 flags;
/* Input: Address to update when enabled */
__u64 enable_addr;
/* Input: Pointer to string with event name, description and flags */
__u64 name_args;
/* Output: Index of the event to use when writing data */
__u32 write_index;
} __attribute__((__packed__));
The struct user_reg requires all the above inputs to be set appropriately.
+ size: This must be set to sizeof(struct user_reg).
The struct user_reg requires two inputs, the first is the size of the structure
to ensure forward and backward compatibility. The second is the command string
to issue for registering. Upon success two outputs are set, the status bit
and the write index.
+ enable_bit: The bit to reflect the event status at the address specified by
enable_addr.
+ enable_size: The size of the value specified by enable_addr.
This must be 4 (32-bit) or 8 (64-bit). 64-bit values are only allowed to be
used on 64-bit kernels, however, 32-bit can be used on all kernels.
+ flags: The flags to use, if any. For the initial version this must be 0.
Callers should first attempt to use flags and retry without flags to ensure
support for lower versions of the kernel. If a flag is not supported -EINVAL
is returned.
+ enable_addr: The address of the value to use to reflect event status. This
must be naturally aligned and write accessible within the user program.
+ name_args: The name and arguments to describe the event, see command format
for details.
Upon successful registration the following is set.
+ write_index: The index to use for this file descriptor that represents this
event when writing out data. The index is unique to this instance of the file
descriptor that was used for the registration. See writing data for details.
User based events show up under tracefs like any other event under the
subsystem named "user_events". This means tools that wish to attach to the
events need to use /sys/kernel/tracing/events/user_events/[name]/enable
or perf record -e user_events:[name] when attaching/recording.
**NOTE:** *The write_index returned is only valid for the FD that was used*
**NOTE:** The event subsystem name by default is "user_events". Callers should
not assume it will always be "user_events". Operators reserve the right in the
future to change the subsystem name per-process to accomodate event isolation.
Command Format
^^^^^^^^^^^^^^
......@@ -94,7 +134,7 @@ Would be represented by the following field::
struct mytype myname 20
Deleting
-----------
--------
Deleting an event from within a user process is done via ioctl() out to the
/sys/kernel/tracing/user_events_data file. The command to issue is
DIAG_IOCSDEL.
......@@ -104,92 +144,79 @@ its name. Delete will only succeed if there are no references left to the
event (in both user and kernel space). User programs should use a separate file
to request deletes than the one used for registration due to this.
Status
------
When tools attach/record user based events the status of the event is updated
in realtime. This allows user programs to only incur the cost of the write() or
writev() calls when something is actively attached to the event.
User programs call mmap() on /sys/kernel/tracing/user_events_status to
check the status for each event that is registered. The bit to check in the
file is given back after the register ioctl() via user_reg.status_bit. The bit
is always in little-endian format. Programs can check if the bit is set either
using a byte-wise index with a mask or a long-wise index with a little-endian
mask.
Unregistering
-------------
If after registering an event it is no longer wanted to be updated then it can
be disabled via ioctl() out to the /sys/kernel/tracing/user_events_data file.
The command to issue is DIAG_IOCSUNREG. This is different than deleting, where
deleting actually removes the event from the system. Unregistering simply tells
the kernel your process is no longer interested in updates to the event.
Currently the size of user_events_status is a single page, however, custom
kernel configurations can change this size to allow more user based events. In
all cases the size of the file is a multiple of a page size.
This command takes a packed struct user_unreg as an argument::
For example, if the register ioctl() gives back a status_bit of 3 you would
check byte 0 (3 / 8) of the returned mmap data and then AND the result with 8
(1 << (3 % 8)) to see if anything is attached to that event.
struct user_unreg {
/* Input: Size of the user_unreg structure being used */
__u32 size;
A byte-wise index check is performed as follows::
/* Input: Bit to unregister */
__u8 disable_bit;
int index, mask;
char *status_page;
/* Input: Reserved, set to 0 */
__u8 __reserved;
index = status_bit / 8;
mask = 1 << (status_bit % 8);
...
/* Input: Reserved, set to 0 */
__u16 __reserved2;
if (status_page[index] & mask) {
/* Enabled */
}
/* Input: Address to unregister */
__u64 disable_addr;
} __attribute__((__packed__));
A long-wise index check is performed as follows::
The struct user_unreg requires all the above inputs to be set appropriately.
#include <asm/bitsperlong.h>
#include <endian.h>
+ size: This must be set to sizeof(struct user_unreg).
#if __BITS_PER_LONG == 64
#define endian_swap(x) htole64(x)
#else
#define endian_swap(x) htole32(x)
#endif
+ disable_bit: This must be set to the bit to disable (same bit that was
previously registered via enable_bit).
long index, mask, *status_page;
+ disable_addr: This must be set to the address to disable (same address that was
previously registered via enable_addr).
index = status_bit / __BITS_PER_LONG;
mask = 1L << (status_bit % __BITS_PER_LONG);
mask = endian_swap(mask);
**NOTE:** Events are automatically unregistered when execve() is invoked. During
fork() the registered events will be retained and must be unregistered manually
in each process if wanted.
...
Status
------
When tools attach/record user based events the status of the event is updated
in realtime. This allows user programs to only incur the cost of the write() or
writev() calls when something is actively attached to the event.
if (status_page[index] & mask) {
/* Enabled */
}
The kernel will update the specified bit that was registered for the event as
tools attach/detach from the event. User programs simply check if the bit is set
to see if something is attached or not.
Administrators can easily check the status of all registered events by reading
the user_events_status file directly via a terminal. The output is as follows::
Byte:Name [# Comments]
Name [# Comments]
...
Active: ActiveCount
Busy: BusyCount
Max: MaxCount
For example, on a system that has a single event the output looks like this::
1:test
test
Active: 1
Busy: 0
Max: 32768
If a user enables the user event via ftrace, the output would change to this::
1:test # Used by ftrace
test # Used by ftrace
Active: 1
Busy: 1
Max: 32768
**NOTE:** *A status bit of 0 will never be returned. This allows user programs
to have a bit that can be used on error cases.*
Writing Data
------------
......@@ -217,7 +244,7 @@ For example, if I have a struct like this::
int src;
int dst;
int flags;
};
} __attribute__((__packed__));
It's advised for user programs to do the following::
......
......@@ -65,6 +65,7 @@
#include <linux/syscall_user_dispatch.h>
#include <linux/coredump.h>
#include <linux/time_namespace.h>
#include <linux/user_events.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
......@@ -1859,6 +1860,7 @@ static int bprm_execve(struct linux_binprm *bprm,
current->fs->in_exec = 0;
current->in_execve = 0;
rseq_execve(current);
user_events_execve(current);
acct_update_integrals(current);
task_numa_free(current, false);
return retval;
......
......@@ -13,6 +13,8 @@
* @nmissed: The counter for missing events.
* @flags: The status flag.
* @rethook: The rethook data structure. (internal data)
* @entry_data_size: The private data storage size.
* @nr_maxactive: The max number of active functions.
* @entry_handler: The callback function for function entry.
* @exit_handler: The callback function for function exit.
*/
......@@ -29,9 +31,13 @@ struct fprobe {
unsigned long nmissed;
unsigned int flags;
struct rethook *rethook;
size_t entry_data_size;
int nr_maxactive;
void (*entry_handler)(struct fprobe *fp, unsigned long entry_ip, struct pt_regs *regs);
void (*exit_handler)(struct fprobe *fp, unsigned long entry_ip, struct pt_regs *regs);
int (*entry_handler)(struct fprobe *fp, unsigned long entry_ip,
struct pt_regs *regs, void *entry_data);
void (*exit_handler)(struct fprobe *fp, unsigned long entry_ip,
struct pt_regs *regs, void *entry_data);
};
/* This fprobe is soft-disabled. */
......
......@@ -548,6 +548,7 @@ bool is_ftrace_trampoline(unsigned long addr);
* DIRECT - there is a direct function to call
* CALL_OPS - the record can use callsite-specific ops
* CALL_OPS_EN - the function is set up to use callsite-specific ops
* TOUCHED - A callback was added since boot up
*
* When a new ftrace_ops is registered and wants a function to save
* pt_regs, the rec->flags REGS is set. When the function has been
......@@ -567,9 +568,10 @@ enum {
FTRACE_FL_DIRECT_EN = (1UL << 23),
FTRACE_FL_CALL_OPS = (1UL << 22),
FTRACE_FL_CALL_OPS_EN = (1UL << 21),
FTRACE_FL_TOUCHED = (1UL << 20),
};
#define FTRACE_REF_MAX_SHIFT 21
#define FTRACE_REF_MAX_SHIFT 20
#define FTRACE_REF_MAX ((1UL << FTRACE_REF_MAX_SHIFT) - 1)
#define ftrace_rec_count(rec) ((rec)->flags & FTRACE_REF_MAX)
......@@ -628,6 +630,7 @@ enum {
FTRACE_ITER_PROBE = (1 << 4),
FTRACE_ITER_MOD = (1 << 5),
FTRACE_ITER_ENABLED = (1 << 6),
FTRACE_ITER_TOUCHED = (1 << 7),
};
void arch_ftrace_update_code(int command);
......
......@@ -70,6 +70,7 @@ struct sighand_struct;
struct signal_struct;
struct task_delay_info;
struct task_group;
struct user_event_mm;
/*
* Task state bitmask. NOTE! These bits are also
......@@ -1529,6 +1530,10 @@ struct task_struct {
union rv_task_monitor rv[RV_PER_TASK_MONITORS];
#endif
#ifdef CONFIG_USER_EVENTS
struct user_event_mm *user_event_mm;
#endif
/*
* New fields for task_struct should be added above here, so that
* they are included in the randomized portion of task_struct.
......
......@@ -159,4 +159,6 @@ extern int
seq_buf_bprintf(struct seq_buf *s, const char *fmt, const u32 *binary);
#endif
void seq_buf_do_printk(struct seq_buf *s, const char *lvl);
#endif /* _LINUX_SEQ_BUF_H */
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (c) 2021, Microsoft Corporation.
* Copyright (c) 2022, Microsoft Corporation.
*
* Authors:
* Beau Belgrave <beaub@linux.microsoft.com>
*/
#ifndef _UAPI_LINUX_USER_EVENTS_H
#define _UAPI_LINUX_USER_EVENTS_H
#include <linux/types.h>
#include <linux/ioctl.h>
#ifndef _LINUX_USER_EVENTS_H
#define _LINUX_USER_EVENTS_H
#ifdef __KERNEL__
#include <linux/uio.h>
#else
#include <sys/uio.h>
#endif
#include <linux/list.h>
#include <linux/refcount.h>
#include <linux/mm_types.h>
#include <linux/workqueue.h>
#include <uapi/linux/user_events.h>
#define USER_EVENTS_SYSTEM "user_events"
#define USER_EVENTS_PREFIX "u:"
#ifdef CONFIG_USER_EVENTS
struct user_event_mm {
struct list_head link;
struct list_head enablers;
struct mm_struct *mm;
struct user_event_mm *next;
refcount_t refcnt;
refcount_t tasks;
struct rcu_work put_rwork;
};
/* Create dynamic location entry within a 32-bit value */
#define DYN_LOC(offset, size) ((size) << 16 | (offset))
extern void user_event_mm_dup(struct task_struct *t,
struct user_event_mm *old_mm);
/*
* Describes an event registration and stores the results of the registration.
* This structure is passed to the DIAG_IOCSREG ioctl, callers at a minimum
* must set the size and name_args before invocation.
*/
struct user_reg {
extern void user_event_mm_remove(struct task_struct *t);
static inline void user_events_fork(struct task_struct *t,
unsigned long clone_flags)
{
struct user_event_mm *old_mm;
/* Input: Size of the user_reg structure being used */
__u32 size;
if (!t || !current->user_event_mm)
return;
/* Input: Pointer to string with event name, description and flags */
__u64 name_args;
old_mm = current->user_event_mm;
/* Output: Bitwise index of the event within the status page */
__u32 status_bit;
if (clone_flags & CLONE_VM) {
t->user_event_mm = old_mm;
refcount_inc(&old_mm->tasks);
return;
}
/* Output: Index of the event to use when writing data */
__u32 write_index;
} __attribute__((__packed__));
user_event_mm_dup(t, old_mm);
}
#define DIAG_IOC_MAGIC '*'
static inline void user_events_execve(struct task_struct *t)
{
if (!t || !t->user_event_mm)
return;
user_event_mm_remove(t);
}
static inline void user_events_exit(struct task_struct *t)
{
if (!t || !t->user_event_mm)
return;
user_event_mm_remove(t);
}
#else
static inline void user_events_fork(struct task_struct *t,
unsigned long clone_flags)
{
}
/* Requests to register a user_event */
#define DIAG_IOCSREG _IOWR(DIAG_IOC_MAGIC, 0, struct user_reg*)
static inline void user_events_execve(struct task_struct *t)
{
}
/* Requests to delete a user_event */
#define DIAG_IOCSDEL _IOW(DIAG_IOC_MAGIC, 1, char*)
static inline void user_events_exit(struct task_struct *t)
{
}
#endif /* CONFIG_USER_EVENTS */
#endif /* _UAPI_LINUX_USER_EVENTS_H */
#endif /* _LINUX_USER_EVENTS_H */
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
/*
* Copyright (c) 2021-2022, Microsoft Corporation.
*
* Authors:
* Beau Belgrave <beaub@linux.microsoft.com>
*/
#ifndef _UAPI_LINUX_USER_EVENTS_H
#define _UAPI_LINUX_USER_EVENTS_H
#include <linux/types.h>
#include <linux/ioctl.h>
#define USER_EVENTS_SYSTEM "user_events"
#define USER_EVENTS_PREFIX "u:"
/* Create dynamic location entry within a 32-bit value */
#define DYN_LOC(offset, size) ((size) << 16 | (offset))
/*
* Describes an event registration and stores the results of the registration.
* This structure is passed to the DIAG_IOCSREG ioctl, callers at a minimum
* must set the size and name_args before invocation.
*/
struct user_reg {
/* Input: Size of the user_reg structure being used */
__u32 size;
/* Input: Bit in enable address to use */
__u8 enable_bit;
/* Input: Enable size in bytes at address */
__u8 enable_size;
/* Input: Flags for future use, set to 0 */
__u16 flags;
/* Input: Address to update when enabled */
__u64 enable_addr;
/* Input: Pointer to string with event name, description and flags */
__u64 name_args;
/* Output: Index of the event to use when writing data */
__u32 write_index;
} __attribute__((__packed__));
/*
* Describes an event unregister, callers must set the size, address and bit.
* This structure is passed to the DIAG_IOCSUNREG ioctl to disable bit updates.
*/
struct user_unreg {
/* Input: Size of the user_unreg structure being used */
__u32 size;
/* Input: Bit to unregister */
__u8 disable_bit;
/* Input: Reserved, set to 0 */
__u8 __reserved;
/* Input: Reserved, set to 0 */
__u16 __reserved2;
/* Input: Address to unregister */
__u64 disable_addr;
} __attribute__((__packed__));
#define DIAG_IOC_MAGIC '*'
/* Request to register a user_event */
#define DIAG_IOCSREG _IOWR(DIAG_IOC_MAGIC, 0, struct user_reg *)
/* Request to delete a user_event */
#define DIAG_IOCSDEL _IOW(DIAG_IOC_MAGIC, 1, char *)
/* Requests to unregister a user_event */
#define DIAG_IOCSUNREG _IOW(DIAG_IOC_MAGIC, 2, struct user_unreg*)
#endif /* _UAPI_LINUX_USER_EVENTS_H */
......@@ -68,6 +68,7 @@
#include <linux/kprobes.h>
#include <linux/rethook.h>
#include <linux/sysfs.h>
#include <linux/user_events.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
......@@ -818,6 +819,7 @@ void __noreturn do_exit(long code)
coredump_task_exit(tsk);
ptrace_event(PTRACE_EVENT_EXIT, code);
user_events_exit(tsk);
validate_creds_for_do_exit(tsk);
......
......@@ -97,6 +97,7 @@
#include <linux/io_uring.h>
#include <linux/bpf.h>
#include <linux/stackprotector.h>
#include <linux/user_events.h>
#include <asm/pgalloc.h>
#include <linux/uaccess.h>
......@@ -2735,6 +2736,7 @@ __latent_entropy struct task_struct *copy_process(
trace_task_newtask(p, clone_flags);
uprobe_copy_process(p, clone_flags);
user_events_fork(p, clone_flags);
copy_oom_score_adj(clone_flags, p);
......
......@@ -792,15 +792,15 @@ config USER_EVENTS
bool "User trace events"
select TRACING
select DYNAMIC_EVENTS
depends on BROKEN || COMPILE_TEST # API needs to be straighten out
help
User trace events are user-defined trace events that
can be used like an existing kernel trace event. User trace
events are generated by writing to a tracefs file. User
processes can determine if their tracing events should be
generated by memory mapping a tracefs file and checking for
an associated byte being non-zero.
generated by registering a value and bit with the kernel
that reflects when it is enabled or not.
See Documentation/trace/user_events.rst.
If in doubt, say N.
config HIST_TRIGGERS
......
......@@ -2640,9 +2640,20 @@ kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
return err;
}
static void
static int
kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
struct pt_regs *regs)
struct pt_regs *regs, void *data)
{
struct bpf_kprobe_multi_link *link;
link = container_of(fp, struct bpf_kprobe_multi_link, fp);
kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs);
return 0;
}
static void
kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
struct pt_regs *regs, void *data)
{
struct bpf_kprobe_multi_link *link;
......@@ -2844,7 +2855,7 @@ int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *pr
goto error;
if (flags & BPF_F_KPROBE_MULTI_RETURN)
link->fp.exit_handler = kprobe_multi_link_handler;
link->fp.exit_handler = kprobe_multi_link_exit_handler;
else
link->fp.entry_handler = kprobe_multi_link_handler;
......
......@@ -17,15 +17,17 @@
struct fprobe_rethook_node {
struct rethook_node node;
unsigned long entry_ip;
char data[];
};
static void fprobe_handler(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ops, struct ftrace_regs *fregs)
{
struct fprobe_rethook_node *fpr;
struct rethook_node *rh;
struct rethook_node *rh = NULL;
struct fprobe *fp;
int bit;
void *entry_data = NULL;
int bit, ret;
fp = container_of(ops, struct fprobe, ops);
if (fprobe_disabled(fp))
......@@ -37,9 +39,6 @@ static void fprobe_handler(unsigned long ip, unsigned long parent_ip,
return;
}
if (fp->entry_handler)
fp->entry_handler(fp, ip, ftrace_get_regs(fregs));
if (fp->exit_handler) {
rh = rethook_try_get(fp->rethook);
if (!rh) {
......@@ -48,9 +47,20 @@ static void fprobe_handler(unsigned long ip, unsigned long parent_ip,
}
fpr = container_of(rh, struct fprobe_rethook_node, node);
fpr->entry_ip = ip;
rethook_hook(rh, ftrace_get_regs(fregs), true);
if (fp->entry_data_size)
entry_data = fpr->data;
}
if (fp->entry_handler)
ret = fp->entry_handler(fp, ip, ftrace_get_regs(fregs), entry_data);
/* If entry_handler returns !0, nmissed is not counted. */
if (rh) {
if (ret)
rethook_recycle(rh);
else
rethook_hook(rh, ftrace_get_regs(fregs), true);
}
out:
ftrace_test_recursion_unlock(bit);
}
......@@ -81,7 +91,8 @@ static void fprobe_exit_handler(struct rethook_node *rh, void *data,
fpr = container_of(rh, struct fprobe_rethook_node, node);
fp->exit_handler(fp, fpr->entry_ip, regs);
fp->exit_handler(fp, fpr->entry_ip, regs,
fp->entry_data_size ? (void *)fpr->data : NULL);
}
NOKPROBE_SYMBOL(fprobe_exit_handler);
......@@ -136,7 +147,10 @@ static int fprobe_init_rethook(struct fprobe *fp, int num)
}
/* Initialize rethook if needed */
size = num * num_possible_cpus() * 2;
if (fp->nr_maxactive)
size = fp->nr_maxactive;
else
size = num * num_possible_cpus() * 2;
if (size < 0)
return -E2BIG;
......@@ -146,7 +160,7 @@ static int fprobe_init_rethook(struct fprobe *fp, int num)
for (i = 0; i < size; i++) {
struct fprobe_rethook_node *node;
node = kzalloc(sizeof(*node), GFP_KERNEL);
node = kzalloc(sizeof(*node) + fp->entry_data_size, GFP_KERNEL);
if (!node) {
rethook_free(fp->rethook);
fp->rethook = NULL;
......
......@@ -45,6 +45,9 @@
#include "trace_output.h"
#include "trace_stat.h"
/* Flags that do not get reset */
#define FTRACE_NOCLEAR_FLAGS (FTRACE_FL_DISABLED | FTRACE_FL_TOUCHED)
#define FTRACE_INVALID_FUNCTION "__ftrace_invalid_address__"
#define FTRACE_WARN_ON(cond) \
......@@ -2256,7 +2259,7 @@ static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
flag ^= rec->flags & FTRACE_FL_ENABLED;
if (update) {
rec->flags |= FTRACE_FL_ENABLED;
rec->flags |= FTRACE_FL_ENABLED | FTRACE_FL_TOUCHED;
if (flag & FTRACE_FL_REGS) {
if (rec->flags & FTRACE_FL_REGS)
rec->flags |= FTRACE_FL_REGS_EN;
......@@ -2326,7 +2329,7 @@ static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
if (update) {
/* If there's no more users, clear all flags */
if (!ftrace_rec_count(rec))
rec->flags &= FTRACE_FL_DISABLED;
rec->flags &= FTRACE_NOCLEAR_FLAGS;
else
/*
* Just disable the record, but keep the ops TRAMP
......@@ -3147,7 +3150,7 @@ int ftrace_shutdown(struct ftrace_ops *ops, int command)
struct dyn_ftrace *rec;
do_for_each_ftrace_rec(pg, rec) {
if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_NOCLEAR_FLAGS))
pr_warn(" %pS flags:%lx\n",
(void *)rec->ip, rec->flags);
} while_for_each_ftrace_rec();
......@@ -3598,7 +3601,10 @@ t_func_next(struct seq_file *m, loff_t *pos)
!ftrace_lookup_ip(iter->hash, rec->ip)) ||
((iter->flags & FTRACE_ITER_ENABLED) &&
!(rec->flags & FTRACE_FL_ENABLED))) {
!(rec->flags & FTRACE_FL_ENABLED)) ||
((iter->flags & FTRACE_ITER_TOUCHED) &&
!(rec->flags & FTRACE_FL_TOUCHED))) {
rec = NULL;
goto retry;
......@@ -3857,7 +3863,7 @@ static int t_show(struct seq_file *m, void *v)
return 0;
}
if (iter->flags & FTRACE_ITER_ENABLED) {
if (iter->flags & (FTRACE_ITER_ENABLED | FTRACE_ITER_TOUCHED)) {
struct ftrace_ops *ops;
seq_printf(m, " (%ld)%s%s%s%s",
......@@ -3959,6 +3965,31 @@ ftrace_enabled_open(struct inode *inode, struct file *file)
return 0;
}
static int
ftrace_touched_open(struct inode *inode, struct file *file)
{
struct ftrace_iterator *iter;
/*
* This shows us what functions have ever been enabled
* (traced, direct, patched, etc). Not sure if we want lockdown
* to hide such critical information for an admin.
* Although, perhaps it can show information we don't
* want people to see, but if something had traced
* something, we probably want to know about it.
*/
iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
if (!iter)
return -ENOMEM;
iter->pg = ftrace_pages_start;
iter->flags = FTRACE_ITER_TOUCHED;
iter->ops = &global_ops;
return 0;
}
/**
* ftrace_regex_open - initialize function tracer filter files
* @ops: The ftrace_ops that hold the hash filters
......@@ -5872,6 +5903,13 @@ static const struct file_operations ftrace_enabled_fops = {
.release = seq_release_private,
};
static const struct file_operations ftrace_touched_fops = {
.open = ftrace_touched_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
static const struct file_operations ftrace_filter_fops = {
.open = ftrace_filter_open,
.read = seq_read,
......@@ -6336,6 +6374,9 @@ static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
trace_create_file("enabled_functions", TRACE_MODE_READ,
d_tracer, NULL, &ftrace_enabled_fops);
trace_create_file("touched_functions", TRACE_MODE_READ,
d_tracer, NULL, &ftrace_touched_fops);
ftrace_create_filter_files(&global_ops, d_tracer);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
......
......@@ -163,7 +163,7 @@ enum {
#define extended_time(event) \
(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
static inline int rb_null_event(struct ring_buffer_event *event)
static inline bool rb_null_event(struct ring_buffer_event *event)
{
return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
}
......@@ -363,11 +363,9 @@ static void free_buffer_page(struct buffer_page *bpage)
/*
* We need to fit the time_stamp delta into 27 bits.
*/
static inline int test_time_stamp(u64 delta)
static inline bool test_time_stamp(u64 delta)
{
if (delta & TS_DELTA_TEST)
return 1;
return 0;
return !!(delta & TS_DELTA_TEST);
}
#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
......@@ -696,7 +694,7 @@ rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
return ret == expect;
}
static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
{
unsigned long cnt, top, bottom, msb;
unsigned long cnt2, top2, bottom2, msb2;
......@@ -1486,7 +1484,7 @@ rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
return NULL;
}
static int rb_head_page_replace(struct buffer_page *old,
static bool rb_head_page_replace(struct buffer_page *old,
struct buffer_page *new)
{
unsigned long *ptr = (unsigned long *)&old->list.prev->next;
......@@ -1565,15 +1563,12 @@ static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
}
}
static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
struct buffer_page *bpage)
{
unsigned long val = (unsigned long)bpage;
if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
return 1;
return 0;
RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
}
/**
......@@ -1583,30 +1578,28 @@ static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
* As a safety measure we check to make sure the data pages have not
* been corrupted.
*/
static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
{
struct list_head *head = rb_list_head(cpu_buffer->pages);
struct list_head *tmp;
if (RB_WARN_ON(cpu_buffer,
rb_list_head(rb_list_head(head->next)->prev) != head))
return -1;
return;
if (RB_WARN_ON(cpu_buffer,
rb_list_head(rb_list_head(head->prev)->next) != head))
return -1;
return;
for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
if (RB_WARN_ON(cpu_buffer,
rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
return -1;
return;
if (RB_WARN_ON(cpu_buffer,
rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
return -1;
return;
}
return 0;
}
static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
......@@ -1774,6 +1767,8 @@ static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
struct list_head *head = cpu_buffer->pages;
struct buffer_page *bpage, *tmp;
irq_work_sync(&cpu_buffer->irq_work.work);
free_buffer_page(cpu_buffer->reader_page);
if (head) {
......@@ -1880,6 +1875,8 @@ ring_buffer_free(struct trace_buffer *buffer)
cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
irq_work_sync(&buffer->irq_work.work);
for_each_buffer_cpu(buffer, cpu)
rb_free_cpu_buffer(buffer->buffers[cpu]);
......@@ -1918,7 +1915,7 @@ static inline unsigned long rb_page_write(struct buffer_page *bpage)
return local_read(&bpage->write) & RB_WRITE_MASK;
}
static int
static bool
rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
{
struct list_head *tail_page, *to_remove, *next_page;
......@@ -2031,12 +2028,13 @@ rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
return nr_removed == 0;
}
static int
static bool
rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
{
struct list_head *pages = &cpu_buffer->new_pages;
int retries, success;
unsigned long flags;
bool success;
int retries;
/* Can be called at early boot up, where interrupts must not been enabled */
raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
......@@ -2055,15 +2053,16 @@ rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
* spinning.
*/
retries = 10;
success = 0;
success = false;
while (retries--) {
struct list_head *head_page, *prev_page, *r;
struct list_head *last_page, *first_page;
struct list_head *head_page_with_bit;
struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
head_page = &rb_set_head_page(cpu_buffer)->list;
if (!head_page)
if (!hpage)
break;
head_page = &hpage->list;
prev_page = head_page->prev;
first_page = pages->next;
......@@ -2084,7 +2083,7 @@ rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
* pointer to point to end of list
*/
head_page->prev = last_page;
success = 1;
success = true;
break;
}
}
......@@ -2112,7 +2111,7 @@ rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
{
int success;
bool success;
if (cpu_buffer->nr_pages_to_update > 0)
success = rb_insert_pages(cpu_buffer);
......@@ -2995,7 +2994,7 @@ static u64 rb_time_delta(struct ring_buffer_event *event)
}
}
static inline int
static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
struct ring_buffer_event *event)
{
......@@ -3016,7 +3015,7 @@ rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
delta = rb_time_delta(event);
if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
return 0;
return false;
/* Make sure the write stamp is read before testing the location */
barrier();
......@@ -3029,7 +3028,7 @@ rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
/* Something came in, can't discard */
if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
write_stamp, write_stamp - delta))
return 0;
return false;
/*
* It's possible that the event time delta is zero
......@@ -3062,12 +3061,12 @@ rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
if (index == old_index) {
/* update counters */
local_sub(event_length, &cpu_buffer->entries_bytes);
return 1;
return true;
}
}
/* could not discard */
return 0;
return false;
}
static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
......@@ -3288,7 +3287,7 @@ rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
* Note: The TRANSITION bit only handles a single transition between context.
*/
static __always_inline int
static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
{
unsigned int val = cpu_buffer->current_context;
......@@ -3305,14 +3304,14 @@ trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
bit = RB_CTX_TRANSITION;
if (val & (1 << (bit + cpu_buffer->nest))) {
do_ring_buffer_record_recursion();
return 1;
return true;
}
}
val |= (1 << (bit + cpu_buffer->nest));
cpu_buffer->current_context = val;
return 0;
return false;
}
static __always_inline void
......@@ -4069,10 +4068,10 @@ void ring_buffer_record_off(struct trace_buffer *buffer)
unsigned int rd;
unsigned int new_rd;
rd = atomic_read(&buffer->record_disabled);
do {
rd = atomic_read(&buffer->record_disabled);
new_rd = rd | RB_BUFFER_OFF;
} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
}
EXPORT_SYMBOL_GPL(ring_buffer_record_off);
......@@ -4092,10 +4091,10 @@ void ring_buffer_record_on(struct trace_buffer *buffer)
unsigned int rd;
unsigned int new_rd;
rd = atomic_read(&buffer->record_disabled);
do {
rd = atomic_read(&buffer->record_disabled);
new_rd = rd & ~RB_BUFFER_OFF;
} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
}
EXPORT_SYMBOL_GPL(ring_buffer_record_on);
......@@ -4502,7 +4501,6 @@ rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
default:
RB_WARN_ON(cpu_buffer, 1);
}
return;
}
static void
......@@ -4533,7 +4531,6 @@ rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
default:
RB_WARN_ON(iter->cpu_buffer, 1);
}
return;
}
static struct buffer_page *
......@@ -4543,7 +4540,7 @@ rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
unsigned long overwrite;
unsigned long flags;
int nr_loops = 0;
int ret;
bool ret;
local_irq_save(flags);
arch_spin_lock(&cpu_buffer->lock);
......@@ -4953,7 +4950,6 @@ rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
{
if (likely(locked))
raw_spin_unlock(&cpu_buffer->reader_lock);
return;
}
/**
......@@ -5345,6 +5341,9 @@ void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
}
EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
/* Flag to ensure proper resetting of atomic variables */
#define RESET_BIT (1 << 30)
/**
* ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
* @buffer: The ring buffer to reset a per cpu buffer of
......@@ -5361,20 +5360,27 @@ void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
for_each_online_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
atomic_inc(&cpu_buffer->resize_disabled);
atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
atomic_inc(&cpu_buffer->record_disabled);
}
/* Make sure all commits have finished */
synchronize_rcu();
for_each_online_buffer_cpu(buffer, cpu) {
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
/*
* If a CPU came online during the synchronize_rcu(), then
* ignore it.
*/
if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
continue;
reset_disabled_cpu_buffer(cpu_buffer);
atomic_dec(&cpu_buffer->record_disabled);
atomic_dec(&cpu_buffer->resize_disabled);
atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
}
mutex_unlock(&buffer->mutex);
......@@ -5424,8 +5430,8 @@ bool ring_buffer_empty(struct trace_buffer *buffer)
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long flags;
bool dolock;
bool ret;
int cpu;
int ret;
/* yes this is racy, but if you don't like the race, lock the buffer */
for_each_buffer_cpu(buffer, cpu) {
......@@ -5454,7 +5460,7 @@ bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long flags;
bool dolock;
int ret;
bool ret;
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return true;
......
......@@ -3726,7 +3726,7 @@ __find_next_entry(struct trace_iterator *iter, int *ent_cpu,
#define STATIC_FMT_BUF_SIZE 128
static char static_fmt_buf[STATIC_FMT_BUF_SIZE];
static char *trace_iter_expand_format(struct trace_iterator *iter)
char *trace_iter_expand_format(struct trace_iterator *iter)
{
char *tmp;
......@@ -4446,8 +4446,11 @@ static enum print_line_t print_trace_fmt(struct trace_iterator *iter)
if (trace_seq_has_overflowed(s))
return TRACE_TYPE_PARTIAL_LINE;
if (event)
if (event) {
if (tr->trace_flags & TRACE_ITER_FIELDS)
return print_event_fields(iter, event);
return event->funcs->trace(iter, sym_flags, event);
}
trace_seq_printf(s, "Unknown type %d\n", entry->type);
......
......@@ -619,6 +619,7 @@ bool trace_is_tracepoint_string(const char *str);
const char *trace_event_format(struct trace_iterator *iter, const char *fmt);
void trace_check_vprintf(struct trace_iterator *iter, const char *fmt,
va_list ap) __printf(2, 0);
char *trace_iter_expand_format(struct trace_iterator *iter);
int trace_empty(struct trace_iterator *iter);
......@@ -1199,6 +1200,7 @@ extern int trace_get_user(struct trace_parser *parser, const char __user *ubuf,
C(HEX, "hex"), \
C(BIN, "bin"), \
C(BLOCK, "block"), \
C(FIELDS, "fields"), \
C(PRINTK, "trace_printk"), \
C(ANNOTATE, "annotate"), \
C(USERSTACKTRACE, "userstacktrace"), \
......
......@@ -19,14 +19,12 @@
#include <linux/tracefs.h>
#include <linux/types.h>
#include <linux/uaccess.h>
/* Reminder to move to uapi when everything works */
#ifdef CONFIG_COMPILE_TEST
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/user_events.h>
#else
#include <uapi/linux/user_events.h>
#endif
#include "trace.h"
#include "trace_dynevent.h"
#include "trace_output.h"
#include "trace.h"
#define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
......@@ -34,34 +32,11 @@
#define FIELD_DEPTH_NAME 1
#define FIELD_DEPTH_SIZE 2
/*
* Limits how many trace_event calls user processes can create:
* Must be a power of two of PAGE_SIZE.
*/
#define MAX_PAGE_ORDER 0
#define MAX_PAGES (1 << MAX_PAGE_ORDER)
#define MAX_BYTES (MAX_PAGES * PAGE_SIZE)
#define MAX_EVENTS (MAX_BYTES * 8)
/* Limit how long of an event name plus args within the subsystem. */
#define MAX_EVENT_DESC 512
#define EVENT_NAME(user_event) ((user_event)->tracepoint.name)
#define MAX_FIELD_ARRAY_SIZE 1024
/*
* The MAP_STATUS_* macros are used for taking a index and determining the
* appropriate byte and the bit in the byte to set/reset for an event.
*
* The lower 3 bits of the index decide which bit to set.
* The remaining upper bits of the index decide which byte to use for the bit.
*
* This is used when an event has a probe attached/removed to reflect live
* status of the event wanting tracing or not to user-programs via shared
* memory maps.
*/
#define MAP_STATUS_BYTE(index) ((index) >> 3)
#define MAP_STATUS_MASK(index) BIT((index) & 7)
/*
* Internal bits (kernel side only) to keep track of connected probes:
* These are used when status is requested in text form about an event. These
......@@ -75,25 +50,25 @@
#define EVENT_STATUS_OTHER BIT(7)
/*
* Stores the pages, tables, and locks for a group of events.
* Each logical grouping of events has its own group, with a
* matching page for status checks within user programs. This
* allows for isolation of events to user programs by various
* means.
* Stores the system name, tables, and locks for a group of events. This
* allows isolation for events by various means.
*/
struct user_event_group {
struct page *pages;
char *register_page_data;
char *system_name;
struct hlist_node node;
struct mutex reg_mutex;
char *system_name;
struct hlist_node node;
struct mutex reg_mutex;
DECLARE_HASHTABLE(register_table, 8);
DECLARE_BITMAP(page_bitmap, MAX_EVENTS);
};
/* Group for init_user_ns mapping, top-most group */
static struct user_event_group *init_group;
/* Max allowed events for the whole system */
static unsigned int max_user_events = 32768;
/* Current number of events on the whole system */
static unsigned int current_user_events;
/*
* Stores per-event properties, as users register events
* within a file a user_event might be created if it does not
......@@ -102,21 +77,61 @@ static struct user_event_group *init_group;
* refcnt reaches one.
*/
struct user_event {
struct user_event_group *group;
struct tracepoint tracepoint;
struct trace_event_call call;
struct trace_event_class class;
struct dyn_event devent;
struct hlist_node node;
struct list_head fields;
struct list_head validators;
refcount_t refcnt;
int index;
int flags;
int min_size;
char status;
struct user_event_group *group;
struct tracepoint tracepoint;
struct trace_event_call call;
struct trace_event_class class;
struct dyn_event devent;
struct hlist_node node;
struct list_head fields;
struct list_head validators;
refcount_t refcnt;
int min_size;
char status;
};
/*
* Stores per-mm/event properties that enable an address to be
* updated properly for each task. As tasks are forked, we use
* these to track enablement sites that are tied to an event.
*/
struct user_event_enabler {
struct list_head link;
struct user_event *event;
unsigned long addr;
/* Track enable bit, flags, etc. Aligned for bitops. */
unsigned int values;
};
/* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
#define ENABLE_VAL_BIT_MASK 0x3F
/* Bit 6 is for faulting status of enablement */
#define ENABLE_VAL_FAULTING_BIT 6
/* Bit 7 is for freeing status of enablement */
#define ENABLE_VAL_FREEING_BIT 7
/* Only duplicate the bit value */
#define ENABLE_VAL_DUP_MASK ENABLE_VAL_BIT_MASK
#define ENABLE_BITOPS(e) ((unsigned long *)&(e)->values)
/* Used for asynchronous faulting in of pages */
struct user_event_enabler_fault {
struct work_struct work;
struct user_event_mm *mm;
struct user_event_enabler *enabler;
int attempt;
};
static struct kmem_cache *fault_cache;
/* Global list of memory descriptors using user_events */
static LIST_HEAD(user_event_mms);
static DEFINE_SPINLOCK(user_event_mms_lock);
/*
* Stores per-file events references, as users register events
* within a file this structure is modified and freed via RCU.
......@@ -124,23 +139,23 @@ struct user_event {
* These are not shared and only accessible by the file that created it.
*/
struct user_event_refs {
struct rcu_head rcu;
int count;
struct user_event *events[];
struct rcu_head rcu;
int count;
struct user_event *events[];
};
struct user_event_file_info {
struct user_event_group *group;
struct user_event_refs *refs;
struct user_event_group *group;
struct user_event_refs *refs;
};
#define VALIDATOR_ENSURE_NULL (1 << 0)
#define VALIDATOR_REL (1 << 1)
struct user_event_validator {
struct list_head link;
int offset;
int flags;
struct list_head link;
int offset;
int flags;
};
typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
......@@ -150,33 +165,17 @@ static int user_event_parse(struct user_event_group *group, char *name,
char *args, char *flags,
struct user_event **newuser);
static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
static void user_event_mm_put(struct user_event_mm *mm);
static u32 user_event_key(char *name)
{
return jhash(name, strlen(name), 0);
}
static void set_page_reservations(char *pages, bool set)
{
int page;
for (page = 0; page < MAX_PAGES; ++page) {
void *addr = pages + (PAGE_SIZE * page);
if (set)
SetPageReserved(virt_to_page(addr));
else
ClearPageReserved(virt_to_page(addr));
}
}
static void user_event_group_destroy(struct user_event_group *group)
{
if (group->register_page_data)
set_page_reservations(group->register_page_data, false);
if (group->pages)
__free_pages(group->pages, MAX_PAGE_ORDER);
kfree(group->system_name);
kfree(group);
}
......@@ -247,19 +246,6 @@ static struct user_event_group
if (!group->system_name)
goto error;
group->pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, MAX_PAGE_ORDER);
if (!group->pages)
goto error;
group->register_page_data = page_address(group->pages);
set_page_reservations(group->register_page_data, true);
/* Zero all bits beside 0 (which is reserved for failures) */
bitmap_zero(group->page_bitmap, MAX_EVENTS);
set_bit(0, group->page_bitmap);
mutex_init(&group->reg_mutex);
hash_init(group->register_table);
......@@ -271,20 +257,514 @@ static struct user_event_group
return NULL;
};
static __always_inline
void user_event_register_set(struct user_event *user)
static void user_event_enabler_destroy(struct user_event_enabler *enabler)
{
list_del_rcu(&enabler->link);
/* No longer tracking the event via the enabler */
refcount_dec(&enabler->event->refcnt);
kfree(enabler);
}
static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
int attempt)
{
bool unlocked;
int ret;
/*
* Normally this is low, ensure that it cannot be taken advantage of by
* bad user processes to cause excessive looping.
*/
if (attempt > 10)
return -EFAULT;
mmap_read_lock(mm->mm);
/* Ensure MM has tasks, cannot use after exit_mm() */
if (refcount_read(&mm->tasks) == 0) {
ret = -ENOENT;
goto out;
}
ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
&unlocked);
out:
mmap_read_unlock(mm->mm);
return ret;
}
static int user_event_enabler_write(struct user_event_mm *mm,
struct user_event_enabler *enabler,
bool fixup_fault, int *attempt);
static void user_event_enabler_fault_fixup(struct work_struct *work)
{
struct user_event_enabler_fault *fault = container_of(
work, struct user_event_enabler_fault, work);
struct user_event_enabler *enabler = fault->enabler;
struct user_event_mm *mm = fault->mm;
unsigned long uaddr = enabler->addr;
int attempt = fault->attempt;
int ret;
ret = user_event_mm_fault_in(mm, uaddr, attempt);
if (ret && ret != -ENOENT) {
struct user_event *user = enabler->event;
pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
}
/* Prevent state changes from racing */
mutex_lock(&event_mutex);
/* User asked for enabler to be removed during fault */
if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
user_event_enabler_destroy(enabler);
goto out;
}
/*
* If we managed to get the page, re-issue the write. We do not
* want to get into a possible infinite loop, which is why we only
* attempt again directly if the page came in. If we couldn't get
* the page here, then we will try again the next time the event is
* enabled/disabled.
*/
clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
if (!ret) {
mmap_read_lock(mm->mm);
user_event_enabler_write(mm, enabler, true, &attempt);
mmap_read_unlock(mm->mm);
}
out:
mutex_unlock(&event_mutex);
/* In all cases we no longer need the mm or fault */
user_event_mm_put(mm);
kmem_cache_free(fault_cache, fault);
}
static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
struct user_event_enabler *enabler,
int attempt)
{
struct user_event_enabler_fault *fault;
fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
if (!fault)
return false;
INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
fault->mm = user_event_mm_get(mm);
fault->enabler = enabler;
fault->attempt = attempt;
/* Don't try to queue in again while we have a pending fault */
set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
if (!schedule_work(&fault->work)) {
/* Allow another attempt later */
clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
user_event_mm_put(mm);
kmem_cache_free(fault_cache, fault);
return false;
}
return true;
}
static int user_event_enabler_write(struct user_event_mm *mm,
struct user_event_enabler *enabler,
bool fixup_fault, int *attempt)
{
unsigned long uaddr = enabler->addr;
unsigned long *ptr;
struct page *page;
void *kaddr;
int ret;
lockdep_assert_held(&event_mutex);
mmap_assert_locked(mm->mm);
*attempt += 1;
/* Ensure MM has tasks, cannot use after exit_mm() */
if (refcount_read(&mm->tasks) == 0)
return -ENOENT;
if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
return -EBUSY;
ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
&page, NULL, NULL);
if (unlikely(ret <= 0)) {
if (!fixup_fault)
return -EFAULT;
if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
pr_warn("user_events: Unable to queue fault handler\n");
return -EFAULT;
}
kaddr = kmap_local_page(page);
ptr = kaddr + (uaddr & ~PAGE_MASK);
/* Update bit atomically, user tracers must be atomic as well */
if (enabler->event && enabler->event->status)
set_bit(enabler->values & ENABLE_VAL_BIT_MASK, ptr);
else
clear_bit(enabler->values & ENABLE_VAL_BIT_MASK, ptr);
kunmap_local(kaddr);
unpin_user_pages_dirty_lock(&page, 1, true);
return 0;
}
static bool user_event_enabler_exists(struct user_event_mm *mm,
unsigned long uaddr, unsigned char bit)
{
int i = user->index;
struct user_event_enabler *enabler;
struct user_event_enabler *next;
user->group->register_page_data[MAP_STATUS_BYTE(i)] |= MAP_STATUS_MASK(i);
list_for_each_entry_safe(enabler, next, &mm->enablers, link) {
if (enabler->addr == uaddr &&
(enabler->values & ENABLE_VAL_BIT_MASK) == bit)
return true;
}
return false;
}
static __always_inline
void user_event_register_clear(struct user_event *user)
static void user_event_enabler_update(struct user_event *user)
{
int i = user->index;
struct user_event_enabler *enabler;
struct user_event_mm *mm = user_event_mm_get_all(user);
struct user_event_mm *next;
int attempt;
while (mm) {
next = mm->next;
mmap_read_lock(mm->mm);
rcu_read_lock();
user->group->register_page_data[MAP_STATUS_BYTE(i)] &= ~MAP_STATUS_MASK(i);
list_for_each_entry_rcu(enabler, &mm->enablers, link) {
if (enabler->event == user) {
attempt = 0;
user_event_enabler_write(mm, enabler, true, &attempt);
}
}
rcu_read_unlock();
mmap_read_unlock(mm->mm);
user_event_mm_put(mm);
mm = next;
}
}
static bool user_event_enabler_dup(struct user_event_enabler *orig,
struct user_event_mm *mm)
{
struct user_event_enabler *enabler;
/* Skip pending frees */
if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
return true;
enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
if (!enabler)
return false;
enabler->event = orig->event;
enabler->addr = orig->addr;
/* Only dup part of value (ignore future flags, etc) */
enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
refcount_inc(&enabler->event->refcnt);
list_add_rcu(&enabler->link, &mm->enablers);
return true;
}
static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
{
refcount_inc(&mm->refcnt);
return mm;
}
static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
{
struct user_event_mm *found = NULL;
struct user_event_enabler *enabler;
struct user_event_mm *mm;
/*
* We do not want to block fork/exec while enablements are being
* updated, so we use RCU to walk the current tasks that have used
* user_events ABI for 1 or more events. Each enabler found in each
* task that matches the event being updated has a write to reflect
* the kernel state back into the process. Waits/faults must not occur
* during this. So we scan the list under RCU for all the mm that have
* the event within it. This is needed because mm_read_lock() can wait.
* Each user mm returned has a ref inc to handle remove RCU races.
*/
rcu_read_lock();
list_for_each_entry_rcu(mm, &user_event_mms, link)
list_for_each_entry_rcu(enabler, &mm->enablers, link)
if (enabler->event == user) {
mm->next = found;
found = user_event_mm_get(mm);
break;
}
rcu_read_unlock();
return found;
}
static struct user_event_mm *user_event_mm_create(struct task_struct *t)
{
struct user_event_mm *user_mm;
unsigned long flags;
user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
if (!user_mm)
return NULL;
user_mm->mm = t->mm;
INIT_LIST_HEAD(&user_mm->enablers);
refcount_set(&user_mm->refcnt, 1);
refcount_set(&user_mm->tasks, 1);
spin_lock_irqsave(&user_event_mms_lock, flags);
list_add_rcu(&user_mm->link, &user_event_mms);
spin_unlock_irqrestore(&user_event_mms_lock, flags);
t->user_event_mm = user_mm;
/*
* The lifetime of the memory descriptor can slightly outlast
* the task lifetime if a ref to the user_event_mm is taken
* between list_del_rcu() and call_rcu(). Therefore we need
* to take a reference to it to ensure it can live this long
* under this corner case. This can also occur in clones that
* outlast the parent.
*/
mmgrab(user_mm->mm);
return user_mm;
}
static struct user_event_mm *current_user_event_mm(void)
{
struct user_event_mm *user_mm = current->user_event_mm;
if (user_mm)
goto inc;
user_mm = user_event_mm_create(current);
if (!user_mm)
goto error;
inc:
refcount_inc(&user_mm->refcnt);
error:
return user_mm;
}
static void user_event_mm_destroy(struct user_event_mm *mm)
{
struct user_event_enabler *enabler, *next;
list_for_each_entry_safe(enabler, next, &mm->enablers, link)
user_event_enabler_destroy(enabler);
mmdrop(mm->mm);
kfree(mm);
}
static void user_event_mm_put(struct user_event_mm *mm)
{
if (mm && refcount_dec_and_test(&mm->refcnt))
user_event_mm_destroy(mm);
}
static void delayed_user_event_mm_put(struct work_struct *work)
{
struct user_event_mm *mm;
mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
user_event_mm_put(mm);
}
void user_event_mm_remove(struct task_struct *t)
{
struct user_event_mm *mm;
unsigned long flags;
might_sleep();
mm = t->user_event_mm;
t->user_event_mm = NULL;
/* Clone will increment the tasks, only remove if last clone */
if (!refcount_dec_and_test(&mm->tasks))
return;
/* Remove the mm from the list, so it can no longer be enabled */
spin_lock_irqsave(&user_event_mms_lock, flags);
list_del_rcu(&mm->link);
spin_unlock_irqrestore(&user_event_mms_lock, flags);
/*
* We need to wait for currently occurring writes to stop within
* the mm. This is required since exit_mm() snaps the current rss
* stats and clears them. On the final mmdrop(), check_mm() will
* report a bug if these increment.
*
* All writes/pins are done under mmap_read lock, take the write
* lock to ensure in-progress faults have completed. Faults that
* are pending but yet to run will check the task count and skip
* the fault since the mm is going away.
*/
mmap_write_lock(mm->mm);
mmap_write_unlock(mm->mm);
/*
* Put for mm must be done after RCU delay to handle new refs in
* between the list_del_rcu() and now. This ensures any get refs
* during rcu_read_lock() are accounted for during list removal.
*
* CPU A | CPU B
* ---------------------------------------------------------------
* user_event_mm_remove() | rcu_read_lock();
* list_del_rcu() | list_for_each_entry_rcu();
* call_rcu() | refcount_inc();
* . | rcu_read_unlock();
* schedule_work() | .
* user_event_mm_put() | .
*
* mmdrop() cannot be called in the softirq context of call_rcu()
* so we use a work queue after call_rcu() to run within.
*/
INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
queue_rcu_work(system_wq, &mm->put_rwork);
}
void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
{
struct user_event_mm *mm = user_event_mm_create(t);
struct user_event_enabler *enabler;
if (!mm)
return;
rcu_read_lock();
list_for_each_entry_rcu(enabler, &old_mm->enablers, link)
if (!user_event_enabler_dup(enabler, mm))
goto error;
rcu_read_unlock();
return;
error:
rcu_read_unlock();
user_event_mm_remove(t);
}
static bool current_user_event_enabler_exists(unsigned long uaddr,
unsigned char bit)
{
struct user_event_mm *user_mm = current_user_event_mm();
bool exists;
if (!user_mm)
return false;
exists = user_event_enabler_exists(user_mm, uaddr, bit);
user_event_mm_put(user_mm);
return exists;
}
static struct user_event_enabler
*user_event_enabler_create(struct user_reg *reg, struct user_event *user,
int *write_result)
{
struct user_event_enabler *enabler;
struct user_event_mm *user_mm;
unsigned long uaddr = (unsigned long)reg->enable_addr;
int attempt = 0;
user_mm = current_user_event_mm();
if (!user_mm)
return NULL;
enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
if (!enabler)
goto out;
enabler->event = user;
enabler->addr = uaddr;
enabler->values = reg->enable_bit;
retry:
/* Prevents state changes from racing with new enablers */
mutex_lock(&event_mutex);
/* Attempt to reflect the current state within the process */
mmap_read_lock(user_mm->mm);
*write_result = user_event_enabler_write(user_mm, enabler, false,
&attempt);
mmap_read_unlock(user_mm->mm);
/*
* If the write works, then we will track the enabler. A ref to the
* underlying user_event is held by the enabler to prevent it going
* away while the enabler is still in use by a process. The ref is
* removed when the enabler is destroyed. This means a event cannot
* be forcefully deleted from the system until all tasks using it
* exit or run exec(), which includes forks and clones.
*/
if (!*write_result) {
refcount_inc(&enabler->event->refcnt);
list_add_rcu(&enabler->link, &user_mm->enablers);
}
mutex_unlock(&event_mutex);
if (*write_result) {
/* Attempt to fault-in and retry if it worked */
if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
goto retry;
kfree(enabler);
enabler = NULL;
}
out:
user_event_mm_put(user_mm);
return enabler;
}
static __always_inline __must_check
......@@ -449,7 +929,7 @@ static int user_event_add_field(struct user_event *user, const char *type,
struct ftrace_event_field *field;
int validator_flags = 0;
field = kmalloc(sizeof(*field), GFP_KERNEL);
field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
if (!field)
return -ENOMEM;
......@@ -468,7 +948,7 @@ static int user_event_add_field(struct user_event *user, const char *type,
if (strstr(type, "char") != NULL)
validator_flags |= VALIDATOR_ENSURE_NULL;
validator = kmalloc(sizeof(*validator), GFP_KERNEL);
validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
if (!validator) {
kfree(field);
......@@ -489,6 +969,9 @@ static int user_event_add_field(struct user_event *user, const char *type,
field->is_signed = is_signed;
field->filter_type = filter_type;
if (filter_type == FILTER_OTHER)
field->filter_type = filter_assign_type(type);
list_add(&field->link, &user->fields);
/*
......@@ -754,7 +1237,7 @@ static int user_event_create_print_fmt(struct user_event *user)
len = user_event_set_print_fmt(user, NULL, 0);
print_fmt = kmalloc(len, GFP_KERNEL);
print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
if (!print_fmt)
return -ENOMEM;
......@@ -770,11 +1253,7 @@ static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
int flags,
struct trace_event *event)
{
/* Unsafe to try to decode user provided print_fmt, use hex */
trace_print_hex_dump_seq(&iter->seq, "", DUMP_PREFIX_OFFSET, 16,
1, iter->ent, iter->ent_size, true);
return trace_handle_return(&iter->seq);
return print_event_fields(iter, event);
}
static struct trace_event_functions user_event_funcs = {
......@@ -820,6 +1299,8 @@ static int destroy_user_event(struct user_event *user)
{
int ret = 0;
lockdep_assert_held(&event_mutex);
/* Must destroy fields before call removal */
user_event_destroy_fields(user);
......@@ -829,9 +1310,6 @@ static int destroy_user_event(struct user_event *user)
return ret;
dyn_event_remove(&user->devent);
user_event_register_clear(user);
clear_bit(user->index, user->group->page_bitmap);
hash_del(&user->node);
user_event_destroy_validators(user);
......@@ -839,6 +1317,11 @@ static int destroy_user_event(struct user_event *user)
kfree(EVENT_NAME(user));
kfree(user);
if (current_user_events > 0)
current_user_events--;
else
pr_alert("BUG: Bad current_user_events\n");
return ret;
}
......@@ -977,9 +1460,9 @@ static void user_event_perf(struct user_event *user, struct iov_iter *i,
#endif
/*
* Update the register page that is shared between user processes.
* Update the enabled bit among all user processes.
*/
static void update_reg_page_for(struct user_event *user)
static void update_enable_bit_for(struct user_event *user)
{
struct tracepoint *tp = &user->tracepoint;
char status = 0;
......@@ -1010,12 +1493,9 @@ static void update_reg_page_for(struct user_event *user)
rcu_read_unlock_sched();
}
if (status)
user_event_register_set(user);
else
user_event_register_clear(user);
user->status = status;
user_event_enabler_update(user);
}
/*
......@@ -1072,10 +1552,10 @@ static int user_event_reg(struct trace_event_call *call,
return ret;
inc:
refcount_inc(&user->refcnt);
update_reg_page_for(user);
update_enable_bit_for(user);
return 0;
dec:
update_reg_page_for(user);
update_enable_bit_for(user);
refcount_dec(&user->refcnt);
return 0;
}
......@@ -1093,7 +1573,7 @@ static int user_event_create(const char *raw_command)
raw_command += USER_EVENTS_PREFIX_LEN;
raw_command = skip_spaces(raw_command);
name = kstrdup(raw_command, GFP_KERNEL);
name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
if (!name)
return -ENOMEM;
......@@ -1271,7 +1751,6 @@ static int user_event_parse(struct user_event_group *group, char *name,
struct user_event **newuser)
{
int ret;
int index;
u32 key;
struct user_event *user;
......@@ -1290,12 +1769,7 @@ static int user_event_parse(struct user_event_group *group, char *name,
return 0;
}
index = find_first_zero_bit(group->page_bitmap, MAX_EVENTS);
if (index == MAX_EVENTS)
return -EMFILE;
user = kzalloc(sizeof(*user), GFP_KERNEL);
user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
if (!user)
return -ENOMEM;
......@@ -1335,20 +1809,23 @@ static int user_event_parse(struct user_event_group *group, char *name,
mutex_lock(&event_mutex);
if (current_user_events >= max_user_events) {
ret = -EMFILE;
goto put_user_lock;
}
ret = user_event_trace_register(user);
if (ret)
goto put_user_lock;
user->index = index;
/* Ensure we track self ref and caller ref (2) */
refcount_set(&user->refcnt, 2);
dyn_event_init(&user->devent, &user_event_dops);
dyn_event_add(&user->devent, &user->call);
set_bit(user->index, group->page_bitmap);
hash_add(group->register_table, &user->node, key);
current_user_events++;
mutex_unlock(&event_mutex);
......@@ -1398,6 +1875,9 @@ static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
return -EFAULT;
if (idx < 0)
return -EINVAL;
rcu_read_lock_sched();
refs = rcu_dereference_sched(info->refs);
......@@ -1468,7 +1948,7 @@ static int user_events_open(struct inode *node, struct file *file)
if (!group)
return -ENOENT;
info = kzalloc(sizeof(*info), GFP_KERNEL);
info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
if (!info)
return -ENOMEM;
......@@ -1521,7 +2001,7 @@ static int user_events_ref_add(struct user_event_file_info *info,
size = struct_size(refs, events, count + 1);
new_refs = kzalloc(size, GFP_KERNEL);
new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
if (!new_refs)
return -ENOMEM;
......@@ -1564,6 +2044,37 @@ static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
if (ret)
return ret;
/* Ensure no flags, since we don't support any yet */
if (kreg->flags != 0)
return -EINVAL;
/* Ensure supported size */
switch (kreg->enable_size) {
case 4:
/* 32-bit */
break;
#if BITS_PER_LONG >= 64
case 8:
/* 64-bit */
break;
#endif
default:
return -EINVAL;
}
/* Ensure natural alignment */
if (kreg->enable_addr % kreg->enable_size)
return -EINVAL;
/* Ensure bit range for size */
if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
return -EINVAL;
/* Ensure accessible */
if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
kreg->enable_size))
return -EFAULT;
kreg->size = size;
return 0;
......@@ -1578,14 +2089,26 @@ static long user_events_ioctl_reg(struct user_event_file_info *info,
struct user_reg __user *ureg = (struct user_reg __user *)uarg;
struct user_reg reg;
struct user_event *user;
struct user_event_enabler *enabler;
char *name;
long ret;
int write_result;
ret = user_reg_get(ureg, &reg);
if (ret)
return ret;
/*
* Prevent users from using the same address and bit multiple times
* within the same mm address space. This can cause unexpected behavior
* for user processes that is far easier to debug if this is explictly
* an error upon registering.
*/
if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
reg.enable_bit))
return -EADDRINUSE;
name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
MAX_EVENT_DESC);
......@@ -1610,8 +2133,28 @@ static long user_events_ioctl_reg(struct user_event_file_info *info,
if (ret < 0)
return ret;
/*
* user_events_ref_add succeeded:
* At this point we have a user_event, it's lifetime is bound by the
* reference count, not this file. If anything fails, the user_event
* still has a reference until the file is released. During release
* any remaining references (from user_events_ref_add) are decremented.
*
* Attempt to create an enabler, which too has a lifetime tied in the
* same way for the event. Once the task that caused the enabler to be
* created exits or issues exec() then the enablers it has created
* will be destroyed and the ref to the event will be decremented.
*/
enabler = user_event_enabler_create(&reg, user, &write_result);
if (!enabler)
return -ENOMEM;
/* Write failed/faulted, give error back to caller */
if (write_result)
return write_result;
put_user((u32)ret, &ureg->write_index);
put_user(user->index, &ureg->status_bit);
return 0;
}
......@@ -1641,6 +2184,114 @@ static long user_events_ioctl_del(struct user_event_file_info *info,
return ret;
}
static long user_unreg_get(struct user_unreg __user *ureg,
struct user_unreg *kreg)
{
u32 size;
long ret;
ret = get_user(size, &ureg->size);
if (ret)
return ret;
if (size > PAGE_SIZE)
return -E2BIG;
if (size < offsetofend(struct user_unreg, disable_addr))
return -EINVAL;
ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
/* Ensure no reserved values, since we don't support any yet */
if (kreg->__reserved || kreg->__reserved2)
return -EINVAL;
return ret;
}
static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
unsigned long uaddr, unsigned char bit)
{
struct user_event_enabler enabler;
int result;
int attempt = 0;
memset(&enabler, 0, sizeof(enabler));
enabler.addr = uaddr;
enabler.values = bit;
retry:
/* Prevents state changes from racing with new enablers */
mutex_lock(&event_mutex);
/* Force the bit to be cleared, since no event is attached */
mmap_read_lock(user_mm->mm);
result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
mmap_read_unlock(user_mm->mm);
mutex_unlock(&event_mutex);
if (result) {
/* Attempt to fault-in and retry if it worked */
if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
goto retry;
}
return result;
}
/*
* Unregisters an enablement address/bit within a task/user mm.
*/
static long user_events_ioctl_unreg(unsigned long uarg)
{
struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
struct user_event_mm *mm = current->user_event_mm;
struct user_event_enabler *enabler, *next;
struct user_unreg reg;
long ret;
ret = user_unreg_get(ureg, &reg);
if (ret)
return ret;
if (!mm)
return -ENOENT;
ret = -ENOENT;
/*
* Flags freeing and faulting are used to indicate if the enabler is in
* use at all. When faulting is set a page-fault is occurring asyncly.
* During async fault if freeing is set, the enabler will be destroyed.
* If no async fault is happening, we can destroy it now since we hold
* the event_mutex during these checks.
*/
mutex_lock(&event_mutex);
list_for_each_entry_safe(enabler, next, &mm->enablers, link)
if (enabler->addr == reg.disable_addr &&
(enabler->values & ENABLE_VAL_BIT_MASK) == reg.disable_bit) {
set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
user_event_enabler_destroy(enabler);
/* Removed at least one */
ret = 0;
}
mutex_unlock(&event_mutex);
/* Ensure bit is now cleared for user, regardless of event status */
if (!ret)
ret = user_event_mm_clear_bit(mm, reg.disable_addr,
reg.disable_bit);
return ret;
}
/*
* Handles the ioctl from user mode to register or alter operations.
*/
......@@ -1663,6 +2314,12 @@ static long user_events_ioctl(struct file *file, unsigned int cmd,
ret = user_events_ioctl_del(info, uarg);
mutex_unlock(&group->reg_mutex);
break;
case DIAG_IOCSUNREG:
mutex_lock(&group->reg_mutex);
ret = user_events_ioctl_unreg(uarg);
mutex_unlock(&group->reg_mutex);
break;
}
return ret;
......@@ -1718,45 +2375,13 @@ static int user_events_release(struct inode *node, struct file *file)
}
static const struct file_operations user_data_fops = {
.open = user_events_open,
.write = user_events_write,
.write_iter = user_events_write_iter,
.open = user_events_open,
.write = user_events_write,
.write_iter = user_events_write_iter,
.unlocked_ioctl = user_events_ioctl,
.release = user_events_release,
.release = user_events_release,
};
static struct user_event_group *user_status_group(struct file *file)
{
struct seq_file *m = file->private_data;
if (!m)
return NULL;
return m->private;
}
/*
* Maps the shared page into the user process for checking if event is enabled.
*/
static int user_status_mmap(struct file *file, struct vm_area_struct *vma)
{
char *pages;
struct user_event_group *group = user_status_group(file);
unsigned long size = vma->vm_end - vma->vm_start;
if (size != MAX_BYTES)
return -EINVAL;
if (!group)
return -EINVAL;
pages = group->register_page_data;
return remap_pfn_range(vma, vma->vm_start,
virt_to_phys(pages) >> PAGE_SHIFT,
size, vm_get_page_prot(VM_READ));
}
static void *user_seq_start(struct seq_file *m, loff_t *pos)
{
if (*pos)
......@@ -1780,7 +2405,7 @@ static int user_seq_show(struct seq_file *m, void *p)
struct user_event_group *group = m->private;
struct user_event *user;
char status;
int i, active = 0, busy = 0, flags;
int i, active = 0, busy = 0;
if (!group)
return -EINVAL;
......@@ -1789,11 +2414,10 @@ static int user_seq_show(struct seq_file *m, void *p)
hash_for_each(group->register_table, i, user, node) {
status = user->status;
flags = user->flags;
seq_printf(m, "%d:%s", user->index, EVENT_NAME(user));
seq_printf(m, "%s", EVENT_NAME(user));
if (flags != 0 || status != 0)
if (status != 0)
seq_puts(m, " #");
if (status != 0) {
......@@ -1816,16 +2440,15 @@ static int user_seq_show(struct seq_file *m, void *p)
seq_puts(m, "\n");
seq_printf(m, "Active: %d\n", active);
seq_printf(m, "Busy: %d\n", busy);
seq_printf(m, "Max: %ld\n", MAX_EVENTS);
return 0;
}
static const struct seq_operations user_seq_ops = {
.start = user_seq_start,
.next = user_seq_next,
.stop = user_seq_stop,
.show = user_seq_show,
.start = user_seq_start,
.next = user_seq_next,
.stop = user_seq_stop,
.show = user_seq_show,
};
static int user_status_open(struct inode *node, struct file *file)
......@@ -1851,11 +2474,10 @@ static int user_status_open(struct inode *node, struct file *file)
}
static const struct file_operations user_status_fops = {
.open = user_status_open,
.mmap = user_status_mmap,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
.open = user_status_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release,
};
/*
......@@ -1873,8 +2495,7 @@ static int create_user_tracefs(void)
goto err;
}
/* mmap with MAP_SHARED requires writable fd */
emmap = tracefs_create_file("user_events_status", TRACE_MODE_WRITE,
emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
NULL, NULL, &user_status_fops);
if (!emmap) {
......@@ -1888,20 +2509,53 @@ static int create_user_tracefs(void)
return -ENODEV;
}
static int set_max_user_events_sysctl(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int ret;
mutex_lock(&event_mutex);
ret = proc_douintvec(table, write, buffer, lenp, ppos);
mutex_unlock(&event_mutex);
return ret;
}
static struct ctl_table user_event_sysctls[] = {
{
.procname = "user_events_max",
.data = &max_user_events,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = set_max_user_events_sysctl,
},
{}
};
static int __init trace_events_user_init(void)
{
int ret;
fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
if (!fault_cache)
return -ENOMEM;
init_group = user_event_group_create(&init_user_ns);
if (!init_group)
if (!init_group) {
kmem_cache_destroy(fault_cache);
return -ENOMEM;
}
ret = create_user_tracefs();
if (ret) {
pr_warn("user_events could not register with tracefs\n");
user_event_group_destroy(init_group);
kmem_cache_destroy(fault_cache);
init_group = NULL;
return ret;
}
......@@ -1909,6 +2563,8 @@ static int __init trace_events_user_init(void)
if (dyn_event_register(&user_event_dops))
pr_warn("user_events could not register with dyn_events\n");
register_sysctl_init("kernel", user_event_sysctls);
return 0;
}
......
......@@ -221,8 +221,11 @@ trace_print_hex_seq(struct trace_seq *p, const unsigned char *buf, int buf_len,
const char *ret = trace_seq_buffer_ptr(p);
const char *fmt = concatenate ? "%*phN" : "%*ph";
for (i = 0; i < buf_len; i += 16)
for (i = 0; i < buf_len; i += 16) {
if (!concatenate && i != 0)
trace_seq_putc(p, ' ');
trace_seq_printf(p, fmt, min(buf_len - i, 16), &buf[i]);
}
trace_seq_putc(p, 0);
return ret;
......@@ -808,6 +811,176 @@ EXPORT_SYMBOL_GPL(unregister_trace_event);
* Standard events
*/
static void print_array(struct trace_iterator *iter, void *pos,
struct ftrace_event_field *field)
{
int offset;
int len;
int i;
offset = *(int *)pos & 0xffff;
len = *(int *)pos >> 16;
if (field)
offset += field->offset + sizeof(int);
if (offset + len > iter->ent_size) {
trace_seq_puts(&iter->seq, "<OVERFLOW>");
return;
}
pos = (void *)iter->ent + offset;
for (i = 0; i < len; i++, pos++) {
if (i)
trace_seq_putc(&iter->seq, ',');
trace_seq_printf(&iter->seq, "%02x", *(unsigned char *)pos);
}
}
static void print_fields(struct trace_iterator *iter, struct trace_event_call *call,
struct list_head *head)
{
struct ftrace_event_field *field;
int offset;
int len;
int ret;
void *pos;
list_for_each_entry(field, head, link) {
trace_seq_printf(&iter->seq, " %s=", field->name);
if (field->offset + field->size > iter->ent_size) {
trace_seq_puts(&iter->seq, "<OVERFLOW>");
continue;
}
pos = (void *)iter->ent + field->offset;
switch (field->filter_type) {
case FILTER_COMM:
case FILTER_STATIC_STRING:
trace_seq_printf(&iter->seq, "%.*s", field->size, (char *)pos);
break;
case FILTER_RDYN_STRING:
case FILTER_DYN_STRING:
offset = *(int *)pos & 0xffff;
len = *(int *)pos >> 16;
if (field->filter_type == FILTER_RDYN_STRING)
offset += field->offset + sizeof(int);
if (offset + len > iter->ent_size) {
trace_seq_puts(&iter->seq, "<OVERFLOW>");
break;
}
pos = (void *)iter->ent + offset;
trace_seq_printf(&iter->seq, "%.*s", len, (char *)pos);
break;
case FILTER_PTR_STRING:
if (!iter->fmt_size)
trace_iter_expand_format(iter);
pos = *(void **)pos;
ret = strncpy_from_kernel_nofault(iter->fmt, pos,
iter->fmt_size);
if (ret < 0)
trace_seq_printf(&iter->seq, "(0x%px)", pos);
else
trace_seq_printf(&iter->seq, "(0x%px:%s)",
pos, iter->fmt);
break;
case FILTER_TRACE_FN:
pos = *(void **)pos;
trace_seq_printf(&iter->seq, "%pS", pos);
break;
case FILTER_CPU:
case FILTER_OTHER:
switch (field->size) {
case 1:
if (isprint(*(char *)pos)) {
trace_seq_printf(&iter->seq, "'%c'",
*(unsigned char *)pos);
}
trace_seq_printf(&iter->seq, "(%d)",
*(unsigned char *)pos);
break;
case 2:
trace_seq_printf(&iter->seq, "0x%x (%d)",
*(unsigned short *)pos,
*(unsigned short *)pos);
break;
case 4:
/* dynamic array info is 4 bytes */
if (strstr(field->type, "__data_loc")) {
print_array(iter, pos, NULL);
break;
}
if (strstr(field->type, "__rel_loc")) {
print_array(iter, pos, field);
break;
}
trace_seq_printf(&iter->seq, "0x%x (%d)",
*(unsigned int *)pos,
*(unsigned int *)pos);
break;
case 8:
trace_seq_printf(&iter->seq, "0x%llx (%lld)",
*(unsigned long long *)pos,
*(unsigned long long *)pos);
break;
default:
trace_seq_puts(&iter->seq, "<INVALID-SIZE>");
break;
}
break;
default:
trace_seq_puts(&iter->seq, "<INVALID-TYPE>");
}
}
trace_seq_putc(&iter->seq, '\n');
}
enum print_line_t print_event_fields(struct trace_iterator *iter,
struct trace_event *event)
{
struct trace_event_call *call;
struct list_head *head;
/* ftrace defined events have separate call structures */
if (event->type <= __TRACE_LAST_TYPE) {
bool found = false;
down_read(&trace_event_sem);
list_for_each_entry(call, &ftrace_events, list) {
if (call->event.type == event->type) {
found = true;
break;
}
/* No need to search all events */
if (call->event.type > __TRACE_LAST_TYPE)
break;
}
up_read(&trace_event_sem);
if (!found) {
trace_seq_printf(&iter->seq, "UNKNOWN TYPE %d\n", event->type);
goto out;
}
} else {
call = container_of(event, struct trace_event_call, event);
}
head = trace_get_fields(call);
trace_seq_printf(&iter->seq, "%s:", trace_event_name(call));
if (head && !list_empty(head))
print_fields(iter, call, head);
else
trace_seq_puts(&iter->seq, "No fields found\n");
out:
return trace_handle_return(&iter->seq);
}
enum print_line_t trace_nop_print(struct trace_iterator *iter, int flags,
struct trace_event *event)
{
......
......@@ -19,6 +19,8 @@ seq_print_ip_sym(struct trace_seq *s, unsigned long ip,
extern void trace_seq_print_sym(struct trace_seq *s, unsigned long address, bool offset);
extern int trace_print_context(struct trace_iterator *iter);
extern int trace_print_lat_context(struct trace_iterator *iter);
extern enum print_line_t print_event_fields(struct trace_iterator *iter,
struct trace_event *event);
extern void trace_event_read_lock(void);
extern void trace_event_read_unlock(void);
......
......@@ -93,6 +93,38 @@ int seq_buf_printf(struct seq_buf *s, const char *fmt, ...)
}
EXPORT_SYMBOL_GPL(seq_buf_printf);
/**
* seq_buf_do_printk - printk seq_buf line by line
* @s: seq_buf descriptor
* @lvl: printk level
*
* printk()-s a multi-line sequential buffer line by line. The function
* makes sure that the buffer in @s is nul terminated and safe to read
* as a string.
*/
void seq_buf_do_printk(struct seq_buf *s, const char *lvl)
{
const char *start, *lf;
if (s->size == 0 || s->len == 0)
return;
seq_buf_terminate(s);
start = s->buffer;
while ((lf = strchr(start, '\n'))) {
int len = lf - start + 1;
printk("%s%.*s", lvl, len, start);
start = ++lf;
}
/* No trailing LF */
if (start < s->buffer + s->len)
printk("%s%s\n", lvl, start);
}
EXPORT_SYMBOL_GPL(seq_buf_do_printk);
#ifdef CONFIG_BINARY_PRINTF
/**
* seq_buf_bprintf - Write the printf string from binary arguments
......
......@@ -17,8 +17,11 @@ static u32 rand1, entry_val, exit_val;
/* Use indirect calls to avoid inlining the target functions */
static u32 (*target)(u32 value);
static u32 (*target2)(u32 value);
static u32 (*target_nest)(u32 value, u32 (*nest)(u32));
static unsigned long target_ip;
static unsigned long target2_ip;
static unsigned long target_nest_ip;
static int entry_return_value;
static noinline u32 fprobe_selftest_target(u32 value)
{
......@@ -30,16 +33,31 @@ static noinline u32 fprobe_selftest_target2(u32 value)
return (value / div_factor) + 1;
}
static notrace void fp_entry_handler(struct fprobe *fp, unsigned long ip, struct pt_regs *regs)
static noinline u32 fprobe_selftest_nest_target(u32 value, u32 (*nest)(u32))
{
return nest(value + 2);
}
static notrace int fp_entry_handler(struct fprobe *fp, unsigned long ip,
struct pt_regs *regs, void *data)
{
KUNIT_EXPECT_FALSE(current_test, preemptible());
/* This can be called on the fprobe_selftest_target and the fprobe_selftest_target2 */
if (ip != target_ip)
KUNIT_EXPECT_EQ(current_test, ip, target2_ip);
entry_val = (rand1 / div_factor);
if (fp->entry_data_size) {
KUNIT_EXPECT_NOT_NULL(current_test, data);
if (data)
*(u32 *)data = entry_val;
} else
KUNIT_EXPECT_NULL(current_test, data);
return entry_return_value;
}
static notrace void fp_exit_handler(struct fprobe *fp, unsigned long ip, struct pt_regs *regs)
static notrace void fp_exit_handler(struct fprobe *fp, unsigned long ip,
struct pt_regs *regs, void *data)
{
unsigned long ret = regs_return_value(regs);
......@@ -51,6 +69,26 @@ static notrace void fp_exit_handler(struct fprobe *fp, unsigned long ip, struct
KUNIT_EXPECT_EQ(current_test, ret, (rand1 / div_factor));
KUNIT_EXPECT_EQ(current_test, entry_val, (rand1 / div_factor));
exit_val = entry_val + div_factor;
if (fp->entry_data_size) {
KUNIT_EXPECT_NOT_NULL(current_test, data);
if (data)
KUNIT_EXPECT_EQ(current_test, *(u32 *)data, entry_val);
} else
KUNIT_EXPECT_NULL(current_test, data);
}
static notrace int nest_entry_handler(struct fprobe *fp, unsigned long ip,
struct pt_regs *regs, void *data)
{
KUNIT_EXPECT_FALSE(current_test, preemptible());
return 0;
}
static notrace void nest_exit_handler(struct fprobe *fp, unsigned long ip,
struct pt_regs *regs, void *data)
{
KUNIT_EXPECT_FALSE(current_test, preemptible());
KUNIT_EXPECT_EQ(current_test, ip, target_nest_ip);
}
/* Test entry only (no rethook) */
......@@ -132,6 +170,64 @@ static void test_fprobe_syms(struct kunit *test)
KUNIT_EXPECT_EQ(test, 0, unregister_fprobe(&fp));
}
/* Test private entry_data */
static void test_fprobe_data(struct kunit *test)
{
struct fprobe fp = {
.entry_handler = fp_entry_handler,
.exit_handler = fp_exit_handler,
.entry_data_size = sizeof(u32),
};
current_test = test;
KUNIT_EXPECT_EQ(test, 0, register_fprobe(&fp, "fprobe_selftest_target", NULL));
target(rand1);
KUNIT_EXPECT_EQ(test, 0, unregister_fprobe(&fp));
}
/* Test nr_maxactive */
static void test_fprobe_nest(struct kunit *test)
{
static const char *syms[] = {"fprobe_selftest_target", "fprobe_selftest_nest_target"};
struct fprobe fp = {
.entry_handler = nest_entry_handler,
.exit_handler = nest_exit_handler,
.nr_maxactive = 1,
};
current_test = test;
KUNIT_EXPECT_EQ(test, 0, register_fprobe_syms(&fp, syms, 2));
target_nest(rand1, target);
KUNIT_EXPECT_EQ(test, 1, fp.nmissed);
KUNIT_EXPECT_EQ(test, 0, unregister_fprobe(&fp));
}
static void test_fprobe_skip(struct kunit *test)
{
struct fprobe fp = {
.entry_handler = fp_entry_handler,
.exit_handler = fp_exit_handler,
};
current_test = test;
KUNIT_EXPECT_EQ(test, 0, register_fprobe(&fp, "fprobe_selftest_target", NULL));
entry_return_value = 1;
entry_val = 0;
exit_val = 0;
target(rand1);
KUNIT_EXPECT_NE(test, 0, entry_val);
KUNIT_EXPECT_EQ(test, 0, exit_val);
KUNIT_EXPECT_EQ(test, 0, fp.nmissed);
entry_return_value = 0;
KUNIT_EXPECT_EQ(test, 0, unregister_fprobe(&fp));
}
static unsigned long get_ftrace_location(void *func)
{
unsigned long size, addr = (unsigned long)func;
......@@ -147,8 +243,10 @@ static int fprobe_test_init(struct kunit *test)
rand1 = get_random_u32_above(div_factor);
target = fprobe_selftest_target;
target2 = fprobe_selftest_target2;
target_nest = fprobe_selftest_nest_target;
target_ip = get_ftrace_location(target);
target2_ip = get_ftrace_location(target2);
target_nest_ip = get_ftrace_location(target_nest);
return 0;
}
......@@ -157,6 +255,9 @@ static struct kunit_case fprobe_testcases[] = {
KUNIT_CASE(test_fprobe_entry),
KUNIT_CASE(test_fprobe),
KUNIT_CASE(test_fprobe_syms),
KUNIT_CASE(test_fprobe_data),
KUNIT_CASE(test_fprobe_nest),
KUNIT_CASE(test_fprobe_skip),
{}
};
......
......@@ -48,7 +48,8 @@ static void show_backtrace(void)
stack_trace_print(stacks, len, 24);
}
static void sample_entry_handler(struct fprobe *fp, unsigned long ip, struct pt_regs *regs)
static int sample_entry_handler(struct fprobe *fp, unsigned long ip,
struct pt_regs *regs, void *data)
{
if (use_trace)
/*
......@@ -61,9 +62,11 @@ static void sample_entry_handler(struct fprobe *fp, unsigned long ip, struct pt_
nhit++;
if (stackdump)
show_backtrace();
return 0;
}
static void sample_exit_handler(struct fprobe *fp, unsigned long ip, struct pt_regs *regs)
static void sample_exit_handler(struct fprobe *fp, unsigned long ip, struct pt_regs *regs,
void *data)
{
unsigned long rip = instruction_pointer(regs);
......
......@@ -9,51 +9,28 @@
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/uio.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <asm/bitsperlong.h>
#include <endian.h>
#include <linux/user_events.h>
#if __BITS_PER_LONG == 64
#define endian_swap(x) htole64(x)
#else
#define endian_swap(x) htole32(x)
#endif
/* Assumes debugfs is mounted */
const char *data_file = "/sys/kernel/tracing/user_events_data";
const char *status_file = "/sys/kernel/tracing/user_events_status";
int enabled = 0;
static int event_status(long **status)
{
int fd = open(status_file, O_RDONLY);
*status = mmap(NULL, sysconf(_SC_PAGESIZE), PROT_READ,
MAP_SHARED, fd, 0);
close(fd);
if (*status == MAP_FAILED)
return -1;
return 0;
}
static int event_reg(int fd, const char *command, long *index, long *mask,
int *write)
static int event_reg(int fd, const char *command, int *write, int *enabled)
{
struct user_reg reg = {0};
reg.size = sizeof(reg);
reg.enable_bit = 31;
reg.enable_size = sizeof(*enabled);
reg.enable_addr = (__u64)enabled;
reg.name_args = (__u64)command;
if (ioctl(fd, DIAG_IOCSREG, &reg) == -1)
return -1;
*index = reg.status_bit / __BITS_PER_LONG;
*mask = endian_swap(1L << (reg.status_bit % __BITS_PER_LONG));
*write = reg.write_index;
return 0;
......@@ -62,17 +39,12 @@ static int event_reg(int fd, const char *command, long *index, long *mask,
int main(int argc, char **argv)
{
int data_fd, write;
long index, mask;
long *status_page;
struct iovec io[2];
__u32 count = 0;
if (event_status(&status_page) == -1)
return errno;
data_fd = open(data_file, O_RDWR);
if (event_reg(data_fd, "test u32 count", &index, &mask, &write) == -1)
if (event_reg(data_fd, "test u32 count", &write, &enabled) == -1)
return errno;
/* Setup iovec */
......@@ -80,13 +52,12 @@ int main(int argc, char **argv)
io[0].iov_len = sizeof(write);
io[1].iov_base = &count;
io[1].iov_len = sizeof(count);
ask:
printf("Press enter to check status...\n");
getchar();
/* Check if anyone is listening */
if (status_page[index] & mask) {
if (enabled) {
/* Yep, trace out our data */
writev(data_fd, (const struct iovec *)io, 2);
......
......@@ -61,6 +61,7 @@ my @skip_abs = (
'/proc/device-tree',
'/proc/1/syscall',
'/sys/firmware/devicetree',
'/sys/kernel/tracing/trace_pipe',
'/sys/kernel/debug/tracing/trace_pipe',
'/sys/kernel/security/apparmor/revision');
......
......@@ -110,6 +110,7 @@ static ssize_t uwrite(void const *const buf, size_t const count)
{
size_t cnt = count;
off_t idx = 0;
void *p = NULL;
file_updated = 1;
......@@ -117,7 +118,10 @@ static ssize_t uwrite(void const *const buf, size_t const count)
off_t aoffset = (file_ptr + count) - file_end;
if (aoffset > file_append_size) {
file_append = realloc(file_append, aoffset);
p = realloc(file_append, aoffset);
if (!p)
free(file_append);
file_append = p;
file_append_size = aoffset;
}
if (!file_append) {
......
......@@ -627,7 +627,7 @@ class TracepointProvider(Provider):
name)'.
All available events have directories under
/sys/kernel/debug/tracing/events/ which export information
/sys/kernel/tracing/events/ which export information
about the specific event. Therefore, listing the dirs gives us
a list of all available events.
......
......@@ -98,7 +98,7 @@ int tracing_root_ok(void)
void tracing_on(void)
{
#if CONTROL_TRACING > 0
#define TRACEDIR "/sys/kernel/debug/tracing"
#define TRACEDIR "/sys/kernel/tracing"
char pidstr[32];
if (!tracing_root_ok())
......@@ -124,7 +124,7 @@ void tracing_off(void)
#if CONTROL_TRACING > 0
if (!tracing_root_ok())
return;
cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
cat_into_file("0", "/sys/kernel/tracing/tracing_on");
#endif
}
......
......@@ -10,7 +10,7 @@ LDLIBS += -lrt -lpthread -lm
# This test will not compile until user_events.h is added
# back to uapi.
TEST_GEN_PROGS = ftrace_test dyn_test perf_test
TEST_GEN_PROGS = ftrace_test dyn_test perf_test abi_test
TEST_FILES := settings
......
// SPDX-License-Identifier: GPL-2.0
/*
* User Events ABI Test Program
*
* Copyright (c) 2022 Beau Belgrave <beaub@linux.microsoft.com>
*/
#define _GNU_SOURCE
#include <sched.h>
#include <errno.h>
#include <linux/user_events.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <asm/unistd.h>
#include "../kselftest_harness.h"
const char *data_file = "/sys/kernel/tracing/user_events_data";
const char *enable_file = "/sys/kernel/tracing/events/user_events/__abi_event/enable";
static int change_event(bool enable)
{
int fd = open(enable_file, O_RDWR);
int ret;
if (fd < 0)
return -1;
if (enable)
ret = write(fd, "1", 1);
else
ret = write(fd, "0", 1);
close(fd);
if (ret == 1)
ret = 0;
else
ret = -1;
return ret;
}
static int reg_enable(long *enable, int size, int bit)
{
struct user_reg reg = {0};
int fd = open(data_file, O_RDWR);
int ret;
if (fd < 0)
return -1;
reg.size = sizeof(reg);
reg.name_args = (__u64)"__abi_event";
reg.enable_bit = bit;
reg.enable_addr = (__u64)enable;
reg.enable_size = size;
ret = ioctl(fd, DIAG_IOCSREG, &reg);
close(fd);
return ret;
}
static int reg_disable(long *enable, int bit)
{
struct user_unreg reg = {0};
int fd = open(data_file, O_RDWR);
int ret;
if (fd < 0)
return -1;
reg.size = sizeof(reg);
reg.disable_bit = bit;
reg.disable_addr = (__u64)enable;
ret = ioctl(fd, DIAG_IOCSUNREG, &reg);
close(fd);
return ret;
}
FIXTURE(user) {
long check;
};
FIXTURE_SETUP(user) {
change_event(false);
self->check = 0;
}
FIXTURE_TEARDOWN(user) {
}
TEST_F(user, enablement) {
/* Changes should be reflected immediately */
ASSERT_EQ(0, self->check);
ASSERT_EQ(0, reg_enable(&self->check, sizeof(int), 0));
ASSERT_EQ(0, change_event(true));
ASSERT_EQ(1, self->check);
ASSERT_EQ(0, change_event(false));
ASSERT_EQ(0, self->check);
/* Ensure kernel clears bit after disable */
ASSERT_EQ(0, change_event(true));
ASSERT_EQ(1, self->check);
ASSERT_EQ(0, reg_disable(&self->check, 0));
ASSERT_EQ(0, self->check);
/* Ensure doesn't change after unreg */
ASSERT_EQ(0, change_event(true));
ASSERT_EQ(0, self->check);
ASSERT_EQ(0, change_event(false));
}
TEST_F(user, bit_sizes) {
/* Allow 0-31 bits for 32-bit */
ASSERT_EQ(0, reg_enable(&self->check, sizeof(int), 0));
ASSERT_EQ(0, reg_enable(&self->check, sizeof(int), 31));
ASSERT_NE(0, reg_enable(&self->check, sizeof(int), 32));
ASSERT_EQ(0, reg_disable(&self->check, 0));
ASSERT_EQ(0, reg_disable(&self->check, 31));
#if BITS_PER_LONG == 8
/* Allow 0-64 bits for 64-bit */
ASSERT_EQ(0, reg_enable(&self->check, sizeof(long), 63));
ASSERT_NE(0, reg_enable(&self->check, sizeof(long), 64));
ASSERT_EQ(0, reg_disable(&self->check, 63));
#endif
/* Disallowed sizes (everything beside 4 and 8) */
ASSERT_NE(0, reg_enable(&self->check, 1, 0));
ASSERT_NE(0, reg_enable(&self->check, 2, 0));
ASSERT_NE(0, reg_enable(&self->check, 3, 0));
ASSERT_NE(0, reg_enable(&self->check, 5, 0));
ASSERT_NE(0, reg_enable(&self->check, 6, 0));
ASSERT_NE(0, reg_enable(&self->check, 7, 0));
ASSERT_NE(0, reg_enable(&self->check, 9, 0));
ASSERT_NE(0, reg_enable(&self->check, 128, 0));
}
TEST_F(user, forks) {
int i;
/* Ensure COW pages get updated after fork */
ASSERT_EQ(0, reg_enable(&self->check, sizeof(int), 0));
ASSERT_EQ(0, self->check);
if (fork() == 0) {
/* Force COW */
self->check = 0;
/* Up to 1 sec for enablement */
for (i = 0; i < 10; ++i) {
usleep(100000);
if (self->check)
exit(0);
}
exit(1);
}
/* Allow generous time for COW, then enable */
usleep(100000);
ASSERT_EQ(0, change_event(true));
ASSERT_NE(-1, wait(&i));
ASSERT_EQ(0, WEXITSTATUS(i));
/* Ensure child doesn't disable parent */
if (fork() == 0)
exit(reg_disable(&self->check, 0));
ASSERT_NE(-1, wait(&i));
ASSERT_EQ(0, WEXITSTATUS(i));
ASSERT_EQ(1, self->check);
ASSERT_EQ(0, change_event(false));
ASSERT_EQ(0, self->check);
}
/* Waits up to 1 sec for enablement */
static int clone_check(void *check)
{
int i;
for (i = 0; i < 10; ++i) {
usleep(100000);
if (*(long *)check)
return 0;
}
return 1;
}
TEST_F(user, clones) {
int i, stack_size = 4096;
void *stack = mmap(NULL, stack_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK,
-1, 0);
ASSERT_NE(MAP_FAILED, stack);
ASSERT_EQ(0, reg_enable(&self->check, sizeof(int), 0));
ASSERT_EQ(0, self->check);
/* Shared VM should see enablements */
ASSERT_NE(-1, clone(&clone_check, stack + stack_size,
CLONE_VM | SIGCHLD, &self->check));
ASSERT_EQ(0, change_event(true));
ASSERT_NE(-1, wait(&i));
ASSERT_EQ(0, WEXITSTATUS(i));
munmap(stack, stack_size);
ASSERT_EQ(0, change_event(false));
}
int main(int argc, char **argv)
{
return test_harness_run(argc, argv);
}
......@@ -16,7 +16,7 @@
#include "../kselftest_harness.h"
const char *dyn_file = "/sys/kernel/debug/tracing/dynamic_events";
const char *dyn_file = "/sys/kernel/tracing/dynamic_events";
const char *clear = "!u:__test_event";
static int Append(const char *value)
......
......@@ -12,20 +12,16 @@
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <unistd.h>
#include "../kselftest_harness.h"
const char *data_file = "/sys/kernel/debug/tracing/user_events_data";
const char *status_file = "/sys/kernel/debug/tracing/user_events_status";
const char *enable_file = "/sys/kernel/debug/tracing/events/user_events/__test_event/enable";
const char *trace_file = "/sys/kernel/debug/tracing/trace";
const char *fmt_file = "/sys/kernel/debug/tracing/events/user_events/__test_event/format";
static inline int status_check(char *status_page, int status_bit)
{
return status_page[status_bit >> 3] & (1 << (status_bit & 7));
}
const char *data_file = "/sys/kernel/tracing/user_events_data";
const char *status_file = "/sys/kernel/tracing/user_events_status";
const char *enable_file = "/sys/kernel/tracing/events/user_events/__test_event/enable";
const char *trace_file = "/sys/kernel/tracing/trace";
const char *fmt_file = "/sys/kernel/tracing/events/user_events/__test_event/format";
static int trace_bytes(void)
{
......@@ -106,13 +102,23 @@ static int get_print_fmt(char *buffer, int len)
return -1;
}
static int clear(void)
static int clear(int *check)
{
struct user_unreg unreg = {0};
unreg.size = sizeof(unreg);
unreg.disable_bit = 31;
unreg.disable_addr = (__u64)check;
int fd = open(data_file, O_RDWR);
if (fd == -1)
return -1;
if (ioctl(fd, DIAG_IOCSUNREG, &unreg) == -1)
if (errno != ENOENT)
return -1;
if (ioctl(fd, DIAG_IOCSDEL, "__test_event") == -1)
if (errno != ENOENT)
return -1;
......@@ -122,7 +128,7 @@ static int clear(void)
return 0;
}
static int check_print_fmt(const char *event, const char *expected)
static int check_print_fmt(const char *event, const char *expected, int *check)
{
struct user_reg reg = {0};
char print_fmt[256];
......@@ -130,7 +136,7 @@ static int check_print_fmt(const char *event, const char *expected)
int fd;
/* Ensure cleared */
ret = clear();
ret = clear(check);
if (ret != 0)
return ret;
......@@ -142,14 +148,19 @@ static int check_print_fmt(const char *event, const char *expected)
reg.size = sizeof(reg);
reg.name_args = (__u64)event;
reg.enable_bit = 31;
reg.enable_addr = (__u64)check;
reg.enable_size = sizeof(*check);
/* Register should work */
ret = ioctl(fd, DIAG_IOCSREG, &reg);
close(fd);
if (ret != 0)
if (ret != 0) {
printf("Reg failed in fmt\n");
return ret;
}
/* Ensure correct print_fmt */
ret = get_print_fmt(print_fmt, sizeof(print_fmt));
......@@ -164,6 +175,7 @@ FIXTURE(user) {
int status_fd;
int data_fd;
int enable_fd;
int check;
};
FIXTURE_SETUP(user) {
......@@ -185,59 +197,63 @@ FIXTURE_TEARDOWN(user) {
close(self->enable_fd);
}
ASSERT_EQ(0, clear());
if (clear(&self->check) != 0)
printf("WARNING: Clear didn't work!\n");
}
TEST_F(user, register_events) {
struct user_reg reg = {0};
int page_size = sysconf(_SC_PAGESIZE);
char *status_page;
struct user_unreg unreg = {0};
reg.size = sizeof(reg);
reg.name_args = (__u64)"__test_event u32 field1; u32 field2";
reg.enable_bit = 31;
reg.enable_addr = (__u64)&self->check;
reg.enable_size = sizeof(self->check);
status_page = mmap(NULL, page_size, PROT_READ, MAP_SHARED,
self->status_fd, 0);
unreg.size = sizeof(unreg);
unreg.disable_bit = 31;
unreg.disable_addr = (__u64)&self->check;
/* Register should work */
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSREG, &reg));
ASSERT_EQ(0, reg.write_index);
ASSERT_NE(0, reg.status_bit);
/* Multiple registers should result in same index */
/* Multiple registers to the same addr + bit should fail */
ASSERT_EQ(-1, ioctl(self->data_fd, DIAG_IOCSREG, &reg));
ASSERT_EQ(EADDRINUSE, errno);
/* Multiple registers to same name should result in same index */
reg.enable_bit = 30;
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSREG, &reg));
ASSERT_EQ(0, reg.write_index);
ASSERT_NE(0, reg.status_bit);
/* Ensure disabled */
self->enable_fd = open(enable_file, O_RDWR);
ASSERT_NE(-1, self->enable_fd);
ASSERT_NE(-1, write(self->enable_fd, "0", sizeof("0")))
/* MMAP should work and be zero'd */
ASSERT_NE(MAP_FAILED, status_page);
ASSERT_NE(NULL, status_page);
ASSERT_EQ(0, status_check(status_page, reg.status_bit));
/* Enable event and ensure bits updated in status */
ASSERT_NE(-1, write(self->enable_fd, "1", sizeof("1")))
ASSERT_NE(0, status_check(status_page, reg.status_bit));
ASSERT_EQ(1 << reg.enable_bit, self->check);
/* Disable event and ensure bits updated in status */
ASSERT_NE(-1, write(self->enable_fd, "0", sizeof("0")))
ASSERT_EQ(0, status_check(status_page, reg.status_bit));
ASSERT_EQ(0, self->check);
/* File still open should return -EBUSY for delete */
ASSERT_EQ(-1, ioctl(self->data_fd, DIAG_IOCSDEL, "__test_event"));
ASSERT_EQ(EBUSY, errno);
/* Delete should work only after close */
/* Unregister */
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSUNREG, &unreg));
unreg.disable_bit = 30;
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSUNREG, &unreg));
/* Delete should work only after close and unregister */
close(self->data_fd);
self->data_fd = open(data_file, O_RDWR);
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSDEL, "__test_event"));
/* Unmap should work */
ASSERT_EQ(0, munmap(status_page, page_size));
}
TEST_F(user, write_events) {
......@@ -245,11 +261,12 @@ TEST_F(user, write_events) {
struct iovec io[3];
__u32 field1, field2;
int before = 0, after = 0;
int page_size = sysconf(_SC_PAGESIZE);
char *status_page;
reg.size = sizeof(reg);
reg.name_args = (__u64)"__test_event u32 field1; u32 field2";
reg.enable_bit = 31;
reg.enable_addr = (__u64)&self->check;
reg.enable_size = sizeof(self->check);
field1 = 1;
field2 = 2;
......@@ -261,18 +278,10 @@ TEST_F(user, write_events) {
io[2].iov_base = &field2;
io[2].iov_len = sizeof(field2);
status_page = mmap(NULL, page_size, PROT_READ, MAP_SHARED,
self->status_fd, 0);
/* Register should work */
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSREG, &reg));
ASSERT_EQ(0, reg.write_index);
ASSERT_NE(0, reg.status_bit);
/* MMAP should work and be zero'd */
ASSERT_NE(MAP_FAILED, status_page);
ASSERT_NE(NULL, status_page);
ASSERT_EQ(0, status_check(status_page, reg.status_bit));
ASSERT_EQ(0, self->check);
/* Write should fail on invalid slot with ENOENT */
io[0].iov_base = &field2;
......@@ -287,13 +296,18 @@ TEST_F(user, write_events) {
ASSERT_NE(-1, write(self->enable_fd, "1", sizeof("1")))
/* Event should now be enabled */
ASSERT_NE(0, status_check(status_page, reg.status_bit));
ASSERT_NE(1 << reg.enable_bit, self->check);
/* Write should make it out to ftrace buffers */
before = trace_bytes();
ASSERT_NE(-1, writev(self->data_fd, (const struct iovec *)io, 3));
after = trace_bytes();
ASSERT_GT(after, before);
/* Negative index should fail with EINVAL */
reg.write_index = -1;
ASSERT_EQ(-1, writev(self->data_fd, (const struct iovec *)io, 3));
ASSERT_EQ(EINVAL, errno);
}
TEST_F(user, write_fault) {
......@@ -304,6 +318,9 @@ TEST_F(user, write_fault) {
reg.size = sizeof(reg);
reg.name_args = (__u64)"__test_event u64 anon";
reg.enable_bit = 31;
reg.enable_addr = (__u64)&self->check;
reg.enable_size = sizeof(self->check);
anon = mmap(NULL, l, PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
ASSERT_NE(MAP_FAILED, anon);
......@@ -316,7 +333,6 @@ TEST_F(user, write_fault) {
/* Register should work */
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSREG, &reg));
ASSERT_EQ(0, reg.write_index);
ASSERT_NE(0, reg.status_bit);
/* Write should work normally */
ASSERT_NE(-1, writev(self->data_fd, (const struct iovec *)io, 2));
......@@ -333,24 +349,17 @@ TEST_F(user, write_validator) {
int loc, bytes;
char data[8];
int before = 0, after = 0;
int page_size = sysconf(_SC_PAGESIZE);
char *status_page;
status_page = mmap(NULL, page_size, PROT_READ, MAP_SHARED,
self->status_fd, 0);
reg.size = sizeof(reg);
reg.name_args = (__u64)"__test_event __rel_loc char[] data";
reg.enable_bit = 31;
reg.enable_addr = (__u64)&self->check;
reg.enable_size = sizeof(self->check);
/* Register should work */
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSREG, &reg));
ASSERT_EQ(0, reg.write_index);
ASSERT_NE(0, reg.status_bit);
/* MMAP should work and be zero'd */
ASSERT_NE(MAP_FAILED, status_page);
ASSERT_NE(NULL, status_page);
ASSERT_EQ(0, status_check(status_page, reg.status_bit));
ASSERT_EQ(0, self->check);
io[0].iov_base = &reg.write_index;
io[0].iov_len = sizeof(reg.write_index);
......@@ -369,7 +378,7 @@ TEST_F(user, write_validator) {
ASSERT_NE(-1, write(self->enable_fd, "1", sizeof("1")))
/* Event should now be enabled */
ASSERT_NE(0, status_check(status_page, reg.status_bit));
ASSERT_EQ(1 << reg.enable_bit, self->check);
/* Full in-bounds write should work */
before = trace_bytes();
......@@ -409,71 +418,88 @@ TEST_F(user, print_fmt) {
int ret;
ret = check_print_fmt("__test_event __rel_loc char[] data",
"print fmt: \"data=%s\", __get_rel_str(data)");
"print fmt: \"data=%s\", __get_rel_str(data)",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event __data_loc char[] data",
"print fmt: \"data=%s\", __get_str(data)");
"print fmt: \"data=%s\", __get_str(data)",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event s64 data",
"print fmt: \"data=%lld\", REC->data");
"print fmt: \"data=%lld\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event u64 data",
"print fmt: \"data=%llu\", REC->data");
"print fmt: \"data=%llu\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event s32 data",
"print fmt: \"data=%d\", REC->data");
"print fmt: \"data=%d\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event u32 data",
"print fmt: \"data=%u\", REC->data");
"print fmt: \"data=%u\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event int data",
"print fmt: \"data=%d\", REC->data");
"print fmt: \"data=%d\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event unsigned int data",
"print fmt: \"data=%u\", REC->data");
"print fmt: \"data=%u\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event s16 data",
"print fmt: \"data=%d\", REC->data");
"print fmt: \"data=%d\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event u16 data",
"print fmt: \"data=%u\", REC->data");
"print fmt: \"data=%u\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event short data",
"print fmt: \"data=%d\", REC->data");
"print fmt: \"data=%d\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event unsigned short data",
"print fmt: \"data=%u\", REC->data");
"print fmt: \"data=%u\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event s8 data",
"print fmt: \"data=%d\", REC->data");
"print fmt: \"data=%d\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event u8 data",
"print fmt: \"data=%u\", REC->data");
"print fmt: \"data=%u\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event char data",
"print fmt: \"data=%d\", REC->data");
"print fmt: \"data=%d\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event unsigned char data",
"print fmt: \"data=%u\", REC->data");
"print fmt: \"data=%u\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
ret = check_print_fmt("__test_event char[4] data",
"print fmt: \"data=%s\", REC->data");
"print fmt: \"data=%s\", REC->data",
&self->check);
ASSERT_EQ(0, ret);
}
......
......@@ -18,10 +18,9 @@
#include "../kselftest_harness.h"
const char *data_file = "/sys/kernel/debug/tracing/user_events_data";
const char *status_file = "/sys/kernel/debug/tracing/user_events_status";
const char *id_file = "/sys/kernel/debug/tracing/events/user_events/__test_event/id";
const char *fmt_file = "/sys/kernel/debug/tracing/events/user_events/__test_event/format";
const char *data_file = "/sys/kernel/tracing/user_events_data";
const char *id_file = "/sys/kernel/tracing/events/user_events/__test_event/id";
const char *fmt_file = "/sys/kernel/tracing/events/user_events/__test_event/format";
struct event {
__u32 index;
......@@ -35,11 +34,6 @@ static long perf_event_open(struct perf_event_attr *pe, pid_t pid,
return syscall(__NR_perf_event_open, pe, pid, cpu, group_fd, flags);
}
static inline int status_check(char *status_page, int status_bit)
{
return status_page[status_bit >> 3] & (1 << (status_bit & 7));
}
static int get_id(void)
{
FILE *fp = fopen(id_file, "r");
......@@ -88,45 +82,38 @@ static int get_offset(void)
}
FIXTURE(user) {
int status_fd;
int data_fd;
int check;
};
FIXTURE_SETUP(user) {
self->status_fd = open(status_file, O_RDONLY);
ASSERT_NE(-1, self->status_fd);
self->data_fd = open(data_file, O_RDWR);
ASSERT_NE(-1, self->data_fd);
}
FIXTURE_TEARDOWN(user) {
close(self->status_fd);
close(self->data_fd);
}
TEST_F(user, perf_write) {
struct perf_event_attr pe = {0};
struct user_reg reg = {0};
int page_size = sysconf(_SC_PAGESIZE);
char *status_page;
struct event event;
struct perf_event_mmap_page *perf_page;
int page_size = sysconf(_SC_PAGESIZE);
int id, fd, offset;
__u32 *val;
reg.size = sizeof(reg);
reg.name_args = (__u64)"__test_event u32 field1; u32 field2";
status_page = mmap(NULL, page_size, PROT_READ, MAP_SHARED,
self->status_fd, 0);
ASSERT_NE(MAP_FAILED, status_page);
reg.enable_bit = 31;
reg.enable_addr = (__u64)&self->check;
reg.enable_size = sizeof(self->check);
/* Register should work */
ASSERT_EQ(0, ioctl(self->data_fd, DIAG_IOCSREG, &reg));
ASSERT_EQ(0, reg.write_index);
ASSERT_NE(0, reg.status_bit);
ASSERT_EQ(0, status_check(status_page, reg.status_bit));
ASSERT_EQ(0, self->check);
/* Id should be there */
id = get_id();
......@@ -149,7 +136,7 @@ TEST_F(user, perf_write) {
ASSERT_NE(MAP_FAILED, perf_page);
/* Status should be updated */
ASSERT_NE(0, status_check(status_page, reg.status_bit));
ASSERT_EQ(1 << reg.enable_bit, self->check);
event.index = reg.write_index;
event.field1 = 0xc001;
......@@ -165,6 +152,12 @@ TEST_F(user, perf_write) {
/* Ensure correct */
ASSERT_EQ(event.field1, *val++);
ASSERT_EQ(event.field2, *val++);
munmap(perf_page, page_size * 2);
close(fd);
/* Status should be updated */
ASSERT_EQ(0, self->check);
}
int main(int argc, char **argv)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment