Commit d8515652 authored by Ian Abbott's avatar Ian Abbott Committed by Greg Kroah-Hartman

staging: comedi: s626: prefix macros in s626.h

Prefix the names of all the macros defined in "s626.h" with `S626_`.
Signed-off-by: default avatarIan Abbott <abbotti@mev.co.uk>
Reviewed-by: default avatarH Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 676921c9
......@@ -194,7 +194,7 @@ static bool s626_mc_test(struct comedi_device *dev,
#define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4)
/* Write a time slot control record to TSL2. */
#define S626_VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
#define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2))
static const struct comedi_lrange s626_range_table = {
2, {
......@@ -211,17 +211,17 @@ static void s626_debi_transfer(struct comedi_device *dev)
struct s626_private *devpriv = dev->private;
/* Initiate upload of shadow RAM to DEBI control register */
s626_mc_enable(dev, MC2_UPLD_DEBI, P_MC2);
s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
/*
* Wait for completion of upload from shadow RAM to
* DEBI control register.
*/
while (!s626_mc_test(dev, MC2_UPLD_DEBI, P_MC2))
while (!s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
;
/* Wait until DEBI transfer is done */
while (readl(devpriv->mmio + P_PSR) & PSR_DEBI_S)
while (readl(devpriv->mmio + S626_P_PSR) & S626_PSR_DEBI_S)
;
}
......@@ -233,12 +233,12 @@ static uint16_t s626_debi_read(struct comedi_device *dev, uint16_t addr)
struct s626_private *devpriv = dev->private;
/* Set up DEBI control register value in shadow RAM */
writel(DEBI_CMD_RDWORD | addr, devpriv->mmio + P_DEBICMD);
writel(S626_DEBI_CMD_RDWORD | addr, devpriv->mmio + S626_P_DEBICMD);
/* Execute the DEBI transfer. */
s626_debi_transfer(dev);
return readl(devpriv->mmio + P_DEBIAD);
return readl(devpriv->mmio + S626_P_DEBIAD);
}
/*
......@@ -250,8 +250,8 @@ static void s626_debi_write(struct comedi_device *dev, uint16_t addr,
struct s626_private *devpriv = dev->private;
/* Set up DEBI control register value in shadow RAM */
writel(DEBI_CMD_WRWORD | addr, devpriv->mmio + P_DEBICMD);
writel(wdata, devpriv->mmio + P_DEBIAD);
writel(S626_DEBI_CMD_WRWORD | addr, devpriv->mmio + S626_P_DEBICMD);
writel(wdata, devpriv->mmio + S626_P_DEBIAD);
/* Execute the DEBI transfer. */
s626_debi_transfer(dev);
......@@ -269,14 +269,14 @@ static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
unsigned int val;
addr &= 0xffff;
writel(DEBI_CMD_RDWORD | addr, devpriv->mmio + P_DEBICMD);
writel(S626_DEBI_CMD_RDWORD | addr, devpriv->mmio + S626_P_DEBICMD);
s626_debi_transfer(dev);
writel(DEBI_CMD_WRWORD | addr, devpriv->mmio + P_DEBICMD);
val = readl(devpriv->mmio + P_DEBIAD);
writel(S626_DEBI_CMD_WRWORD | addr, devpriv->mmio + S626_P_DEBICMD);
val = readl(devpriv->mmio + S626_P_DEBIAD);
val &= mask;
val |= wdata;
writel(val & 0xffff, devpriv->mmio + P_DEBIAD);
writel(val & 0xffff, devpriv->mmio + S626_P_DEBIAD);
s626_debi_transfer(dev);
}
......@@ -288,23 +288,23 @@ static uint32_t s626_i2c_handshake(struct comedi_device *dev, uint32_t val)
unsigned int ctrl;
/* Write I2C command to I2C Transfer Control shadow register */
writel(val, devpriv->mmio + P_I2CCTRL);
writel(val, devpriv->mmio + S626_P_I2CCTRL);
/*
* Upload I2C shadow registers into working registers and
* wait for upload confirmation.
*/
s626_mc_enable(dev, MC2_UPLD_IIC, P_MC2);
while (!s626_mc_test(dev, MC2_UPLD_IIC, P_MC2))
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
while (!s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2))
;
/* Wait until I2C bus transfer is finished or an error occurs */
do {
ctrl = readl(devpriv->mmio + P_I2CCTRL);
} while ((ctrl & (I2C_BUSY | I2C_ERR)) == I2C_BUSY);
ctrl = readl(devpriv->mmio + S626_P_I2CCTRL);
} while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
/* Return non-zero if I2C error occurred */
return ctrl & I2C_ERR;
return ctrl & S626_I2C_ERR;
}
/* Read uint8_t from EEPROM. */
......@@ -318,9 +318,10 @@ static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
* Byte1 = EEPROM internal target address.
* Byte0 = Not sent.
*/
if (s626_i2c_handshake(dev, I2C_B2(I2C_ATTRSTART, devpriv->i2c_adrs) |
I2C_B1(I2C_ATTRSTOP, addr) |
I2C_B0(I2C_ATTRNOP, 0)))
if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
devpriv->i2c_adrs) |
S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
/* Abort function and declare error if handshake failed. */
return 0;
......@@ -330,14 +331,14 @@ static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
* Byte1 receives uint8_t from EEPROM.
* Byte0 = Not sent.
*/
if (s626_i2c_handshake(dev, I2C_B2(I2C_ATTRSTART,
if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
(devpriv->i2c_adrs | 1)) |
I2C_B1(I2C_ATTRSTOP, 0) |
I2C_B0(I2C_ATTRNOP, 0)))
S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
/* Abort function and declare error if handshake failed. */
return 0;
return (readl(devpriv->mmio + P_I2CCTRL) >> 16) & 0xff;
return (readl(devpriv->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
}
/* *********** DAC FUNCTIONS *********** */
......@@ -371,7 +372,7 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* the trailing edge of WS1/WS3 (which turns off the signals), thus
* causing the signals to be inactive during the DAC write.
*/
s626_debi_write(dev, LP_DACPOL, devpriv->dacpol);
s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
......@@ -385,7 +386,7 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* then immediately terminate because the protection address is
* reached upon transfer of the first DWORD value.
*/
s626_mc_enable(dev, MC1_A2OUT, P_MC1);
s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
/* While the DMA transfer is executing ... */
......@@ -394,7 +395,7 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* other FIFO underflow/overflow flags). When set, this flag
* will indicate that we have emerged from slot 0.
*/
writel(ISR_AFOU, devpriv->mmio + P_ISR);
writel(S626_ISR_AFOU, devpriv->mmio + S626_P_ISR);
/*
* Wait for the DMA transfer to finish so that there will be data
......@@ -403,7 +404,7 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* Done by polling the DMAC enable flag; this flag is automatically
* cleared when the transfer has finished.
*/
while (readl(devpriv->mmio + P_MC1) & MC1_A2OUT)
while (readl(devpriv->mmio + S626_P_MC1) & S626_MC1_A2OUT)
;
/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
......@@ -414,7 +415,8 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
* detection.
*/
writel(XSD2 | RSD3 | SIB_A2, devpriv->mmio + S626_VECTPORT(0));
writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
devpriv->mmio + S626_VECTPORT(0));
/*
* Wait for slot 1 to execute to ensure that the Packet will be
......@@ -423,7 +425,7 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* finished transferring the DAC's data DWORD from the output FIFO
* to the output buffer register.
*/
while (!(readl(devpriv->mmio + P_SSR) & SSR_AF2_OUT))
while (!(readl(devpriv->mmio + S626_P_SSR) & S626_SSR_AF2_OUT))
;
/*
......@@ -433,7 +435,7 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* stored in the last byte to be shifted out of the FIFO's DWORD
* buffer register.
*/
writel(XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS,
writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
devpriv->mmio + S626_VECTPORT(0));
/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
......@@ -456,7 +458,7 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
* the TSL has not yet finished executing slot 5 ...
*/
if (readl(devpriv->mmio + P_FB_BUFFER2) & 0xff000000) {
if (readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
/*
* The trap was set on time and we are still executing somewhere
* in slots 2-5, so we now wait for slot 0 to execute and trap
......@@ -464,7 +466,7 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* from 0xFF to 0x00, which slot 0 causes to happen by shifting
* out/in on SD2 the 0x00 that is always referenced by slot 5.
*/
while (readl(devpriv->mmio + P_FB_BUFFER2) & 0xff000000)
while (readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000)
;
}
/*
......@@ -476,14 +478,15 @@ static void s626_send_dac(struct comedi_device *dev, uint32_t val)
* In order to do this, we reprogram slot 0 so that it will shift in
* SD3, which is driven only by a pull-up resistor.
*/
writel(RSD3 | SIB_A2 | EOS, devpriv->mmio + S626_VECTPORT(0));
writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
devpriv->mmio + S626_VECTPORT(0));
/*
* Wait for slot 0 to execute, at which time the TSL is setup for
* the next DAC write. This is detected when FB_BUFFER2 MSB changes
* from 0x00 to 0xFF.
*/
while (!(readl(devpriv->mmio + P_FB_BUFFER2) & 0xff000000))
while (!(readl(devpriv->mmio + S626_P_FB_BUFFER2) & 0xff000000))
;
}
......@@ -525,15 +528,19 @@ static void s626_set_dac(struct comedi_device *dev, uint16_t chan,
*/
/* Choose DAC chip select to be asserted */
ws_image = (chan & 2) ? WS1 : WS2;
ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
/* Slot 2: Transmit high data byte to target DAC */
writel(XSD2 | XFIFO_1 | ws_image, devpriv->mmio + S626_VECTPORT(2));
writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
devpriv->mmio + S626_VECTPORT(2));
/* Slot 3: Transmit low data byte to target DAC */
writel(XSD2 | XFIFO_0 | ws_image, devpriv->mmio + S626_VECTPORT(3));
writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
devpriv->mmio + S626_VECTPORT(3));
/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
writel(XSD2 | XFIFO_3 | WS3, devpriv->mmio + S626_VECTPORT(4));
writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
devpriv->mmio + S626_VECTPORT(4));
/* Slot 5: running after writing target DAC's low data byte */
writel(XSD2 | XFIFO_2 | WS3 | EOS, devpriv->mmio + S626_VECTPORT(5));
writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
devpriv->mmio + S626_VECTPORT(5));
/*
* Construct and transmit target DAC's serial packet:
......@@ -574,13 +581,17 @@ static void s626_write_trim_dac(struct comedi_device *dev, uint8_t logical_chan,
*/
/* Slot 2: Send high uint8_t to target TrimDac */
writel(XSD2 | XFIFO_1 | WS3, devpriv->mmio + S626_VECTPORT(2));
writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
devpriv->mmio + S626_VECTPORT(2));
/* Slot 3: Send low uint8_t to target TrimDac */
writel(XSD2 | XFIFO_0 | WS3, devpriv->mmio + S626_VECTPORT(3));
writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
devpriv->mmio + S626_VECTPORT(3));
/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
writel(XSD2 | XFIFO_3 | WS1, devpriv->mmio + S626_VECTPORT(4));
writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
devpriv->mmio + S626_VECTPORT(4));
/* Slot 5: Send NOP low uint8_t to DAC0 */
writel(XSD2 | XFIFO_2 | WS1 | EOS, devpriv->mmio + S626_VECTPORT(5));
writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
devpriv->mmio + S626_VECTPORT(5));
/*
* Construct and transmit target DAC's serial packet:
......@@ -643,8 +654,9 @@ static uint32_t s626_read_latch(struct comedi_device *dev,
static void s626_set_latch_source(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
s626_debi_replace(dev, k->my_crb, ~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC),
value << CRBBIT_LATCHSRC);
s626_debi_replace(dev, k->my_crb,
~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
value << S626_CRBBIT_LATCHSRC);
}
/*
......@@ -665,15 +677,15 @@ static void s626_preload(struct comedi_device *dev,
static void s626_reset_cap_flags_a(struct comedi_device *dev,
const struct s626_enc_info *k)
{
s626_debi_replace(dev, k->my_crb, ~CRBMSK_INTCTRL,
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_A);
}
static void s626_reset_cap_flags_b(struct comedi_device *dev,
const struct s626_enc_info *k)
{
s626_debi_replace(dev, k->my_crb, ~CRBMSK_INTCTRL,
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_B);
}
/*
......@@ -695,41 +707,43 @@ static uint16_t s626_get_mode_a(struct comedi_device *dev,
* Populate the standardized counter setup bit fields.
* Note: IndexSrc is restricted to ENC_X or IndxPol.
*/
setup = (cra & STDMSK_LOADSRC) | /* LoadSrc = LoadSrcA. */
((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) &
STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcA. */
((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) &
STDMSK_INTSRC) | /* IntSrc = IntSrcA. */
((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) &
STDMSK_INDXSRC) | /* IndxSrc = IndxSrcA<1>. */
((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) &
STDMSK_INDXPOL) | /* IndxPol = IndxPolA. */
((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) &
STDMSK_CLKENAB); /* ClkEnab = ClkEnabA. */
setup = (cra & S626_STDMSK_LOADSRC) | /* LoadSrc = LoadSrcA. */
((crb << (S626_STDBIT_LATCHSRC - S626_CRBBIT_LATCHSRC)) &
S626_STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcA. */
((cra << (S626_STDBIT_INTSRC - S626_CRABIT_INTSRC_A)) &
S626_STDMSK_INTSRC) | /* IntSrc = IntSrcA. */
((cra << (S626_STDBIT_INDXSRC - (S626_CRABIT_INDXSRC_A + 1))) &
S626_STDMSK_INDXSRC) | /* IndxSrc = IndxSrcA<1>. */
((cra >> (S626_CRABIT_INDXPOL_A - S626_STDBIT_INDXPOL)) &
S626_STDMSK_INDXPOL) | /* IndxPol = IndxPolA. */
((crb >> (S626_CRBBIT_CLKENAB_A - S626_STDBIT_CLKENAB)) &
S626_STDMSK_CLKENAB); /* ClkEnab = ClkEnabA. */
/* Adjust mode-dependent parameters. */
if (cra & (2 << CRABIT_CLKSRC_A)) {
if (cra & (2 << S626_CRABIT_CLKSRC_A)) {
/* Timer mode (ClkSrcA<1> == 1): */
/* Indicate Timer mode. */
setup |= CLKSRC_TIMER << STDBIT_CLKSRC;
setup |= S626_CLKSRC_TIMER << S626_STDBIT_CLKSRC;
/* Set ClkPol to indicate count direction (ClkSrcA<0>). */
setup |= (cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) &
STDMSK_CLKPOL;
setup |= (cra << (S626_STDBIT_CLKPOL - S626_CRABIT_CLKSRC_A)) &
S626_STDMSK_CLKPOL;
/* ClkMult must be 1x in Timer mode. */
setup |= MULT_X1 << STDBIT_CLKMULT;
setup |= S626_MULT_X1 << S626_STDBIT_CLKMULT;
} else {
/* Counter mode (ClkSrcA<1> == 0): */
/* Indicate Counter mode. */
setup |= CLKSRC_COUNTER << STDBIT_CLKSRC;
setup |= S626_CLKSRC_COUNTER << S626_STDBIT_CLKSRC;
/* Pass through ClkPol. */
setup |= (cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) &
STDMSK_CLKPOL;
setup |= (cra >> (S626_CRABIT_CLKPOL_A - S626_STDBIT_CLKPOL)) &
S626_STDMSK_CLKPOL;
/* Force ClkMult to 1x if not legal, else pass through. */
if ((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A))
setup |= MULT_X1 << STDBIT_CLKMULT;
if ((cra & S626_CRAMSK_CLKMULT_A) ==
(S626_MULT_X0 << S626_CRABIT_CLKMULT_A))
setup |= S626_MULT_X1 << S626_STDBIT_CLKMULT;
else
setup |= (cra >> (CRABIT_CLKMULT_A - STDBIT_CLKMULT)) &
STDMSK_CLKMULT;
setup |= (cra >> (S626_CRABIT_CLKMULT_A -
S626_STDBIT_CLKMULT)) &
S626_STDMSK_CLKMULT;
}
/* Return adjusted counter setup. */
......@@ -751,48 +765,49 @@ static uint16_t s626_get_mode_b(struct comedi_device *dev,
* Populate the standardized counter setup bit fields.
* Note: IndexSrc is restricted to ENC_X or IndxPol.
*/
setup = ((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) &
STDMSK_INTSRC) | /* IntSrc = IntSrcB. */
((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) &
STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcB. */
((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) &
STDMSK_LOADSRC) | /* LoadSrc = LoadSrcB. */
((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) &
STDMSK_INDXPOL) | /* IndxPol = IndxPolB. */
((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) &
STDMSK_CLKENAB) | /* ClkEnab = ClkEnabB. */
((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) &
STDMSK_INDXSRC); /* IndxSrc = IndxSrcB<1>. */
setup = ((crb << (S626_STDBIT_INTSRC - S626_CRBBIT_INTSRC_B)) &
S626_STDMSK_INTSRC) | /* IntSrc = IntSrcB. */
((crb << (S626_STDBIT_LATCHSRC - S626_CRBBIT_LATCHSRC)) &
S626_STDMSK_LATCHSRC) | /* LatchSrc = LatchSrcB. */
((crb << (S626_STDBIT_LOADSRC - S626_CRBBIT_LOADSRC_B)) &
S626_STDMSK_LOADSRC) | /* LoadSrc = LoadSrcB. */
((crb << (S626_STDBIT_INDXPOL - S626_CRBBIT_INDXPOL_B)) &
S626_STDMSK_INDXPOL) | /* IndxPol = IndxPolB. */
((crb >> (S626_CRBBIT_CLKENAB_B - S626_STDBIT_CLKENAB)) &
S626_STDMSK_CLKENAB) | /* ClkEnab = ClkEnabB. */
((cra >> ((S626_CRABIT_INDXSRC_B + 1) - S626_STDBIT_INDXSRC)) &
S626_STDMSK_INDXSRC); /* IndxSrc = IndxSrcB<1>. */
/* Adjust mode-dependent parameters. */
if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) {
/* Extender mode (ClkMultB == MULT_X0): */
if ((crb & S626_CRBMSK_CLKMULT_B) ==
(S626_MULT_X0 << S626_CRBBIT_CLKMULT_B)) {
/* Extender mode (ClkMultB == S626_MULT_X0): */
/* Indicate Extender mode. */
setup |= CLKSRC_EXTENDER << STDBIT_CLKSRC;
setup |= S626_CLKSRC_EXTENDER << S626_STDBIT_CLKSRC;
/* Indicate multiplier is 1x. */
setup |= MULT_X1 << STDBIT_CLKMULT;
setup |= S626_MULT_X1 << S626_STDBIT_CLKMULT;
/* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
setup |= (cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) &
STDMSK_CLKPOL;
} else if (cra & (2 << CRABIT_CLKSRC_B)) {
setup |= (cra >> (S626_CRABIT_CLKSRC_B - S626_STDBIT_CLKPOL)) &
S626_STDMSK_CLKPOL;
} else if (cra & (2 << S626_CRABIT_CLKSRC_B)) {
/* Timer mode (ClkSrcB<1> == 1): */
/* Indicate Timer mode. */
setup |= CLKSRC_TIMER << STDBIT_CLKSRC;
setup |= S626_CLKSRC_TIMER << S626_STDBIT_CLKSRC;
/* Indicate multiplier is 1x. */
setup |= MULT_X1 << STDBIT_CLKMULT;
setup |= S626_MULT_X1 << S626_STDBIT_CLKMULT;
/* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
setup |= (cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) &
STDMSK_CLKPOL;
setup |= (cra >> (S626_CRABIT_CLKSRC_B - S626_STDBIT_CLKPOL)) &
S626_STDMSK_CLKPOL;
} else {
/* If Counter mode (ClkSrcB<1> == 0): */
/* Indicate Timer mode. */
setup |= CLKSRC_COUNTER << STDBIT_CLKSRC;
setup |= S626_CLKSRC_COUNTER << S626_STDBIT_CLKSRC;
/* Clock multiplier is passed through. */
setup |= (crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) &
STDMSK_CLKMULT;
setup |= (crb >> (S626_CRBBIT_CLKMULT_B -
S626_STDBIT_CLKMULT)) & S626_STDMSK_CLKMULT;
/* Clock polarity is passed through. */
setup |= (crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) &
STDMSK_CLKPOL;
setup |= (crb << (S626_STDBIT_CLKPOL - S626_CRBBIT_CLKPOL_B)) &
S626_STDMSK_CLKPOL;
}
/* Return adjusted counter setup. */
......@@ -815,49 +830,51 @@ static void s626_set_mode_a(struct comedi_device *dev,
/* Initialize CRA and CRB images. */
/* Preload trigger is passed through. */
cra = setup & CRAMSK_LOADSRC_A;
cra = setup & S626_CRAMSK_LOADSRC_A;
/* IndexSrc is restricted to ENC_X or IndxPol. */
cra |= ((setup & STDMSK_INDXSRC) >>
(STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)));
cra |= (setup & S626_STDMSK_INDXSRC) >>
(S626_STDBIT_INDXSRC - (S626_CRABIT_INDXSRC_A + 1));
/* Reset any pending CounterA event captures. */
crb = CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A;
crb = S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_A;
/* Clock enable is passed through. */
crb |= (setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB);
crb |= (setup & S626_STDMSK_CLKENAB) <<
(S626_CRBBIT_CLKENAB_A - S626_STDBIT_CLKENAB);
/* Force IntSrc to Disabled if disable_int_src is asserted. */
if (!disable_int_src)
cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
CRABIT_INTSRC_A));
cra |= (setup & S626_STDMSK_INTSRC) >>
(S626_STDBIT_INTSRC - S626_CRABIT_INTSRC_A);
/* Populate all mode-dependent attributes of CRA & CRB images. */
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode
* (Extender valid only for B counters). */
/* Fall through to case CLKSRC_TIMER: */
case CLKSRC_TIMER: /* Timer Mode: */
switch ((setup & S626_STDMSK_CLKSRC) >> S626_STDBIT_CLKSRC) {
case S626_CLKSRC_EXTENDER: /* Extender Mode: */
/* Force to Timer mode (Extender valid only for B counters). */
/* Fall through to case S626_CLKSRC_TIMER: */
case S626_CLKSRC_TIMER: /* Timer Mode: */
/* ClkSrcA<1> selects system clock */
cra |= 2 << CRABIT_CLKSRC_A;
cra |= 2 << S626_CRABIT_CLKSRC_A;
/* Count direction (ClkSrcA<0>) obtained from ClkPol. */
cra |= (setup & STDMSK_CLKPOL) >>
(STDBIT_CLKPOL - CRABIT_CLKSRC_A);
cra |= (setup & S626_STDMSK_CLKPOL) >>
(S626_STDBIT_CLKPOL - S626_CRABIT_CLKSRC_A);
/* ClkPolA behaves as always-on clock enable. */
cra |= 1 << CRABIT_CLKPOL_A;
cra |= 1 << S626_CRABIT_CLKPOL_A;
/* ClkMult must be 1x. */
cra |= MULT_X1 << CRABIT_CLKMULT_A;
cra |= S626_MULT_X1 << S626_CRABIT_CLKMULT_A;
break;
default: /* Counter Mode: */
/* Select ENC_C and ENC_D as clock/direction inputs. */
cra |= CLKSRC_COUNTER;
cra |= S626_CLKSRC_COUNTER;
/* Clock polarity is passed through. */
cra |= (setup & STDMSK_CLKPOL) <<
(CRABIT_CLKPOL_A - STDBIT_CLKPOL);
cra |= (setup & S626_STDMSK_CLKPOL) <<
(S626_CRABIT_CLKPOL_A - S626_STDBIT_CLKPOL);
/* Force multiplier to x1 if not legal, else pass through. */
if ((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT))
cra |= MULT_X1 << CRABIT_CLKMULT_A;
if ((setup & S626_STDMSK_CLKMULT) ==
(S626_MULT_X0 << S626_STDBIT_CLKMULT))
cra |= S626_MULT_X1 << S626_CRABIT_CLKMULT_A;
else
cra |= (setup & STDMSK_CLKMULT) <<
(CRABIT_CLKMULT_A - STDBIT_CLKMULT);
cra |= (setup & S626_STDMSK_CLKMULT) <<
(S626_CRABIT_CLKMULT_A - S626_STDBIT_CLKMULT);
break;
}
......@@ -865,9 +882,9 @@ static void s626_set_mode_a(struct comedi_device *dev,
* Force positive index polarity if IndxSrc is software-driven only,
* otherwise pass it through.
*/
if (~setup & STDMSK_INDXSRC)
cra |= (setup & STDMSK_INDXPOL) <<
(CRABIT_INDXPOL_A - STDBIT_INDXPOL);
if (~setup & S626_STDMSK_INDXSRC)
cra |= (setup & S626_STDMSK_INDXPOL) <<
(S626_CRABIT_INDXPOL_A - S626_STDBIT_INDXPOL);
/*
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
......@@ -880,10 +897,10 @@ static void s626_set_mode_a(struct comedi_device *dev,
* While retaining CounterB and LatchSrc configurations, program the
* new counter operating mode.
*/
s626_debi_replace(dev, k->my_cra, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B,
cra);
s626_debi_replace(dev, k->my_crb, ~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A),
crb);
s626_debi_replace(dev, k->my_cra,
S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CLKSRC_B, cra);
s626_debi_replace(dev, k->my_crb,
~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
}
static void s626_set_mode_b(struct comedi_device *dev,
......@@ -896,57 +913,60 @@ static void s626_set_mode_b(struct comedi_device *dev,
/* Initialize CRA and CRB images. */
/* IndexSrc field is restricted to ENC_X or IndxPol. */
cra = (setup & STDMSK_INDXSRC) <<
(CRABIT_INDXSRC_B + 1 - STDBIT_INDXSRC);
cra = (setup & S626_STDMSK_INDXSRC) <<
(S626_CRABIT_INDXSRC_B + 1 - S626_STDBIT_INDXSRC);
/* Reset event captures and disable interrupts. */
crb = CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B;
crb = S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_B;
/* Clock enable is passed through. */
crb |= (setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB);
crb |= (setup & S626_STDMSK_CLKENAB) <<
(S626_CRBBIT_CLKENAB_B - S626_STDBIT_CLKENAB);
/* Preload trigger source is passed through. */
crb |= (setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B);
crb |= (setup & S626_STDMSK_LOADSRC) >>
(S626_STDBIT_LOADSRC - S626_CRBBIT_LOADSRC_B);
/* Force IntSrc to Disabled if disable_int_src is asserted. */
if (!disable_int_src)
crb |= (setup & STDMSK_INTSRC) >>
(STDBIT_INTSRC - CRBBIT_INTSRC_B);
crb |= (setup & S626_STDMSK_INTSRC) >>
(S626_STDBIT_INTSRC - S626_CRBBIT_INTSRC_B);
/* Populate all mode-dependent attributes of CRA & CRB images. */
switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
case CLKSRC_TIMER: /* Timer Mode: */
switch ((setup & S626_STDMSK_CLKSRC) >> S626_STDBIT_CLKSRC) {
case S626_CLKSRC_TIMER: /* Timer Mode: */
/* ClkSrcB<1> selects system clock */
cra |= 2 << CRABIT_CLKSRC_B;
cra |= 2 << S626_CRABIT_CLKSRC_B;
/* with direction (ClkSrcB<0>) obtained from ClkPol. */
cra |= (setup & STDMSK_CLKPOL) <<
(CRABIT_CLKSRC_B - STDBIT_CLKPOL);
cra |= (setup & S626_STDMSK_CLKPOL) <<
(S626_CRABIT_CLKSRC_B - S626_STDBIT_CLKPOL);
/* ClkPolB behaves as always-on clock enable. */
crb |= 1 << CRBBIT_CLKPOL_B;
crb |= 1 << S626_CRBBIT_CLKPOL_B;
/* ClkMultB must be 1x. */
crb |= MULT_X1 << CRBBIT_CLKMULT_B;
crb |= S626_MULT_X1 << S626_CRBBIT_CLKMULT_B;
break;
case CLKSRC_EXTENDER: /* Extender Mode: */
case S626_CLKSRC_EXTENDER: /* Extender Mode: */
/* ClkSrcB source is OverflowA (same as "timer") */
cra |= 2 << CRABIT_CLKSRC_B;
cra |= 2 << S626_CRABIT_CLKSRC_B;
/* with direction obtained from ClkPol. */
cra |= (setup & STDMSK_CLKPOL) <<
(CRABIT_CLKSRC_B - STDBIT_CLKPOL);
cra |= (setup & S626_STDMSK_CLKPOL) <<
(S626_CRABIT_CLKSRC_B - S626_STDBIT_CLKPOL);
/* ClkPolB controls IndexB -- always set to active. */
crb |= 1 << CRBBIT_CLKPOL_B;
crb |= 1 << S626_CRBBIT_CLKPOL_B;
/* ClkMultB selects OverflowA as the clock source. */
crb |= MULT_X0 << CRBBIT_CLKMULT_B;
crb |= S626_MULT_X0 << S626_CRBBIT_CLKMULT_B;
break;
default: /* Counter Mode: */
/* Select ENC_C and ENC_D as clock/direction inputs. */
cra |= CLKSRC_COUNTER << CRABIT_CLKSRC_B;
cra |= S626_CLKSRC_COUNTER << S626_CRABIT_CLKSRC_B;
/* ClkPol is passed through. */
crb |= (setup & STDMSK_CLKPOL) >>
(STDBIT_CLKPOL - CRBBIT_CLKPOL_B);
crb |= (setup & S626_STDMSK_CLKPOL) >>
(S626_STDBIT_CLKPOL - S626_CRBBIT_CLKPOL_B);
/* Force ClkMult to x1 if not legal, otherwise pass through. */
if ((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT))
crb |= MULT_X1 << CRBBIT_CLKMULT_B;
if ((setup & S626_STDMSK_CLKMULT) ==
(S626_MULT_X0 << S626_STDBIT_CLKMULT))
crb |= S626_MULT_X1 << S626_CRBBIT_CLKMULT_B;
else
crb |= (setup & STDMSK_CLKMULT) <<
(CRBBIT_CLKMULT_B - STDBIT_CLKMULT);
crb |= (setup & S626_STDMSK_CLKMULT) <<
(S626_CRBBIT_CLKMULT_B - S626_STDBIT_CLKMULT);
break;
}
......@@ -954,9 +974,9 @@ static void s626_set_mode_b(struct comedi_device *dev,
* Force positive index polarity if IndxSrc is software-driven only,
* otherwise pass it through.
*/
if (~setup & STDMSK_INDXSRC)
crb |= (setup & STDMSK_INDXPOL) >>
(STDBIT_INDXPOL - CRBBIT_INDXPOL_B);
if (~setup & S626_STDMSK_INDXSRC)
crb |= (setup & S626_STDMSK_INDXPOL) >>
(S626_STDBIT_INDXPOL - S626_CRBBIT_INDXPOL_B);
/*
* If IntSrc has been forced to Disabled, update the MISC2 interrupt
......@@ -969,10 +989,10 @@ static void s626_set_mode_b(struct comedi_device *dev,
* While retaining CounterA and LatchSrc configurations, program the
* new counter operating mode.
*/
s626_debi_replace(dev, k->my_cra, ~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B),
cra);
s626_debi_replace(dev, k->my_crb, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC,
crb);
s626_debi_replace(dev, k->my_cra,
~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CLKSRC_B), cra);
s626_debi_replace(dev, k->my_crb,
S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
}
/*
......@@ -981,34 +1001,36 @@ static void s626_set_mode_b(struct comedi_device *dev,
static void s626_set_enable_a(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t enab)
{
s626_debi_replace(dev, k->my_crb, ~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A),
enab << CRBBIT_CLKENAB_A);
s626_debi_replace(dev, k->my_crb,
~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A),
enab << S626_CRBBIT_CLKENAB_A);
}
static void s626_set_enable_b(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t enab)
{
s626_debi_replace(dev, k->my_crb, ~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B),
enab << CRBBIT_CLKENAB_B);
s626_debi_replace(dev, k->my_crb,
~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_B),
enab << S626_CRBBIT_CLKENAB_B);
}
static uint16_t s626_get_enable_a(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (s626_debi_read(dev, k->my_crb) >> CRBBIT_CLKENAB_A) & 1;
return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_CLKENAB_A) & 1;
}
static uint16_t s626_get_enable_b(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (s626_debi_read(dev, k->my_crb) >> CRBBIT_CLKENAB_B) & 1;
return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_CLKENAB_B) & 1;
}
#ifdef unused
static uint16_t s626_get_latch_source(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (s626_debi_read(dev, k->my_crb) >> CRBBIT_LATCHSRC) & 3;
return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_LATCHSRC) & 3;
}
#endif
......@@ -1020,27 +1042,28 @@ static uint16_t s626_get_latch_source(struct comedi_device *dev,
static void s626_set_load_trig_a(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t trig)
{
s626_debi_replace(dev, k->my_cra, ~CRAMSK_LOADSRC_A,
trig << CRABIT_LOADSRC_A);
s626_debi_replace(dev, k->my_cra, ~S626_CRAMSK_LOADSRC_A,
trig << S626_CRABIT_LOADSRC_A);
}
static void s626_set_load_trig_b(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t trig)
{
s626_debi_replace(dev, k->my_crb, ~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL),
trig << CRBBIT_LOADSRC_B);
s626_debi_replace(dev, k->my_crb,
~(S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL),
trig << S626_CRBBIT_LOADSRC_B);
}
static uint16_t s626_get_load_trig_a(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (s626_debi_read(dev, k->my_cra) >> CRABIT_LOADSRC_A) & 3;
return (s626_debi_read(dev, k->my_cra) >> S626_CRABIT_LOADSRC_A) & 3;
}
static uint16_t s626_get_load_trig_b(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (s626_debi_read(dev, k->my_crb) >> CRBBIT_LOADSRC_B) & 3;
return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_LOADSRC_B) & 3;
}
/*
......@@ -1055,12 +1078,12 @@ static void s626_set_int_src_a(struct comedi_device *dev,
struct s626_private *devpriv = dev->private;
/* Reset any pending counter overflow or index captures. */
s626_debi_replace(dev, k->my_crb, ~CRBMSK_INTCTRL,
CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
s626_debi_replace(dev, k->my_crb, ~S626_CRBMSK_INTCTRL,
S626_CRBMSK_INTRESETCMD | S626_CRBMSK_INTRESET_A);
/* Program counter interrupt source. */
s626_debi_replace(dev, k->my_cra, ~CRAMSK_INTSRC_A,
int_source << CRABIT_INTSRC_A);
s626_debi_replace(dev, k->my_cra, ~S626_CRAMSK_INTSRC_A,
int_source << S626_CRABIT_INTSRC_A);
/* Update MISC2 interrupt enable mask. */
devpriv->counter_int_enabs =
......@@ -1076,16 +1099,16 @@ static void s626_set_int_src_b(struct comedi_device *dev,
uint16_t crb;
/* Cache writeable CRB register image. */
crb = s626_debi_read(dev, k->my_crb) & ~CRBMSK_INTCTRL;
crb = s626_debi_read(dev, k->my_crb) & ~S626_CRBMSK_INTCTRL;
/* Reset any pending counter overflow or index captures. */
s626_debi_write(dev, k->my_crb,
(crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
s626_debi_write(dev, k->my_crb, (crb | S626_CRBMSK_INTRESETCMD |
S626_CRBMSK_INTRESET_B));
/* Program counter interrupt source. */
s626_debi_write(dev, k->my_crb,
((crb & ~CRBMSK_INTSRC_B) |
(int_source << CRBBIT_INTSRC_B)));
((crb & ~S626_CRBMSK_INTSRC_B) |
(int_source << S626_CRBBIT_INTSRC_B)));
/* Update MISC2 interrupt enable mask. */
devpriv->counter_int_enabs =
......@@ -1096,13 +1119,13 @@ static void s626_set_int_src_b(struct comedi_device *dev,
static uint16_t s626_get_int_src_a(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (s626_debi_read(dev, k->my_cra) >> CRABIT_INTSRC_A) & 3;
return (s626_debi_read(dev, k->my_cra) >> S626_CRABIT_INTSRC_A) & 3;
}
static uint16_t s626_get_int_src_b(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (s626_debi_read(dev, k->my_crb) >> CRBBIT_INTSRC_B) & 3;
return (s626_debi_read(dev, k->my_crb) >> S626_CRBBIT_INTSRC_B) & 3;
}
#ifdef unused
......@@ -1112,14 +1135,14 @@ static uint16_t s626_get_int_src_b(struct comedi_device *dev,
static void s626_set_clk_mult(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_CLKMULT) |
(value << STDBIT_CLKMULT)), false);
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKMULT) |
(value << S626_STDBIT_CLKMULT)), false);
}
static uint16_t s626_get_clk_mult(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (k->get_mode(dev, k) >> STDBIT_CLKMULT) & 3;
return (k->get_mode(dev, k) >> S626_STDBIT_CLKMULT) & 3;
}
/*
......@@ -1128,14 +1151,14 @@ static uint16_t s626_get_clk_mult(struct comedi_device *dev,
static void s626_set_clk_pol(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_CLKPOL) |
(value << STDBIT_CLKPOL)), false);
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKPOL) |
(value << S626_STDBIT_CLKPOL)), false);
}
static uint16_t s626_get_clk_pol(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (k->get_mode(dev, k) >> STDBIT_CLKPOL) & 1;
return (k->get_mode(dev, k) >> S626_STDBIT_CLKPOL) & 1;
}
/*
......@@ -1144,14 +1167,14 @@ static uint16_t s626_get_clk_pol(struct comedi_device *dev,
static void s626_set_clk_src(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_CLKSRC) |
(value << STDBIT_CLKSRC)), false);
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_CLKSRC) |
(value << S626_STDBIT_CLKSRC)), false);
}
static uint16_t s626_get_clk_src(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (k->get_mode(dev, k) >> STDBIT_CLKSRC) & 3;
return (k->get_mode(dev, k) >> S626_STDBIT_CLKSRC) & 3;
}
/*
......@@ -1160,14 +1183,14 @@ static uint16_t s626_get_clk_src(struct comedi_device *dev,
static void s626_set_index_pol(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_INDXPOL) |
((value != 0) << STDBIT_INDXPOL)), false);
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_INDXPOL) |
((value != 0) << S626_STDBIT_INDXPOL)), false);
}
static uint16_t s626_get_index_pol(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (k->get_mode(dev, k) >> STDBIT_INDXPOL) & 1;
return (k->get_mode(dev, k) >> S626_STDBIT_INDXPOL) & 1;
}
/*
......@@ -1176,14 +1199,14 @@ static uint16_t s626_get_index_pol(struct comedi_device *dev,
static void s626_set_index_src(struct comedi_device *dev,
const struct s626_enc_info *k, uint16_t value)
{
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~STDMSK_INDXSRC) |
((value != 0) << STDBIT_INDXSRC)), false);
k->set_mode(dev, k, ((k->get_mode(dev, k) & ~S626_STDMSK_INDXSRC) |
((value != 0) << S626_STDBIT_INDXSRC)), false);
}
static uint16_t s626_get_index_src(struct comedi_device *dev,
const struct s626_enc_info *k)
{
return (k->get_mode(dev, k) >> STDBIT_INDXSRC) & 1;
return (k->get_mode(dev, k) >> S626_STDBIT_INDXSRC) & 1;
}
#endif
......@@ -1197,7 +1220,7 @@ static void s626_pulse_index_a(struct comedi_device *dev,
cra = s626_debi_read(dev, k->my_cra);
/* Pulse index. */
s626_debi_write(dev, k->my_cra, (cra ^ CRAMSK_INDXPOL_A));
s626_debi_write(dev, k->my_cra, (cra ^ S626_CRAMSK_INDXPOL_A));
s626_debi_write(dev, k->my_cra, cra);
}
......@@ -1206,9 +1229,9 @@ static void s626_pulse_index_b(struct comedi_device *dev,
{
uint16_t crb;
crb = s626_debi_read(dev, k->my_crb) & ~CRBMSK_INTCTRL;
crb = s626_debi_read(dev, k->my_crb) & ~S626_CRBMSK_INTCTRL;
/* Pulse index. */
s626_debi_write(dev, k->my_crb, (crb ^ CRBMSK_INDXPOL_B));
s626_debi_write(dev, k->my_crb, (crb ^ S626_CRBMSK_INDXPOL_B));
s626_debi_write(dev, k->my_crb, crb);
}
......@@ -1224,9 +1247,9 @@ static const struct s626_enc_info s626_enc_chan_info[] = {
.set_load_trig = s626_set_load_trig_a,
.set_mode = s626_set_mode_a,
.reset_cap_flags = s626_reset_cap_flags_a,
.my_cra = LP_CR0A,
.my_crb = LP_CR0B,
.my_latch_lsw = LP_CNTR0ALSW,
.my_cra = S626_LP_CR0A,
.my_crb = S626_LP_CR0B,
.my_latch_lsw = S626_LP_CNTR0ALSW,
.my_event_bits = S626_EVBITS(0),
}, {
.get_enable = s626_get_enable_a,
......@@ -1239,9 +1262,9 @@ static const struct s626_enc_info s626_enc_chan_info[] = {
.set_load_trig = s626_set_load_trig_a,
.set_mode = s626_set_mode_a,
.reset_cap_flags = s626_reset_cap_flags_a,
.my_cra = LP_CR1A,
.my_crb = LP_CR1B,
.my_latch_lsw = LP_CNTR1ALSW,
.my_cra = S626_LP_CR1A,
.my_crb = S626_LP_CR1B,
.my_latch_lsw = S626_LP_CNTR1ALSW,
.my_event_bits = S626_EVBITS(1),
}, {
.get_enable = s626_get_enable_a,
......@@ -1254,9 +1277,9 @@ static const struct s626_enc_info s626_enc_chan_info[] = {
.set_load_trig = s626_set_load_trig_a,
.set_mode = s626_set_mode_a,
.reset_cap_flags = s626_reset_cap_flags_a,
.my_cra = LP_CR2A,
.my_crb = LP_CR2B,
.my_latch_lsw = LP_CNTR2ALSW,
.my_cra = S626_LP_CR2A,
.my_crb = S626_LP_CR2B,
.my_latch_lsw = S626_LP_CNTR2ALSW,
.my_event_bits = S626_EVBITS(2),
}, {
.get_enable = s626_get_enable_b,
......@@ -1269,9 +1292,9 @@ static const struct s626_enc_info s626_enc_chan_info[] = {
.set_load_trig = s626_set_load_trig_b,
.set_mode = s626_set_mode_b,
.reset_cap_flags = s626_reset_cap_flags_b,
.my_cra = LP_CR0A,
.my_crb = LP_CR0B,
.my_latch_lsw = LP_CNTR0BLSW,
.my_cra = S626_LP_CR0A,
.my_crb = S626_LP_CR0B,
.my_latch_lsw = S626_LP_CNTR0BLSW,
.my_event_bits = S626_EVBITS(3),
}, {
.get_enable = s626_get_enable_b,
......@@ -1284,9 +1307,9 @@ static const struct s626_enc_info s626_enc_chan_info[] = {
.set_load_trig = s626_set_load_trig_b,
.set_mode = s626_set_mode_b,
.reset_cap_flags = s626_reset_cap_flags_b,
.my_cra = LP_CR1A,
.my_crb = LP_CR1B,
.my_latch_lsw = LP_CNTR1BLSW,
.my_cra = S626_LP_CR1A,
.my_crb = S626_LP_CR1B,
.my_latch_lsw = S626_LP_CNTR1BLSW,
.my_event_bits = S626_EVBITS(4),
}, {
.get_enable = s626_get_enable_b,
......@@ -1299,9 +1322,9 @@ static const struct s626_enc_info s626_enc_chan_info[] = {
.set_load_trig = s626_set_load_trig_b,
.set_mode = s626_set_mode_b,
.reset_cap_flags = s626_reset_cap_flags_b,
.my_cra = LP_CR2A,
.my_crb = LP_CR2B,
.my_latch_lsw = LP_CNTR2BLSW,
.my_cra = S626_LP_CR2A,
.my_crb = S626_LP_CR2B,
.my_latch_lsw = S626_LP_CNTR2BLSW,
.my_event_bits = S626_EVBITS(5),
},
};
......@@ -1326,19 +1349,19 @@ static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
unsigned int status;
/* set channel to capture positive edge */
status = s626_debi_read(dev, LP_RDEDGSEL(group));
s626_debi_write(dev, LP_WREDGSEL(group), mask | status);
status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
/* enable interrupt on selected channel */
status = s626_debi_read(dev, LP_RDINTSEL(group));
s626_debi_write(dev, LP_WRINTSEL(group), mask | status);
status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
/* enable edge capture write command */
s626_debi_write(dev, LP_MISC1, MISC1_EDCAP);
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
/* enable edge capture on selected channel */
status = s626_debi_read(dev, LP_RDCAPSEL(group));
s626_debi_write(dev, LP_WRCAPSEL(group), mask | status);
status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
return 0;
}
......@@ -1347,10 +1370,10 @@ static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
unsigned int mask)
{
/* disable edge capture write command */
s626_debi_write(dev, LP_MISC1, MISC1_NOEDCAP);
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* enable edge capture on selected channel */
s626_debi_write(dev, LP_WRCAPSEL(group), mask);
s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
return 0;
}
......@@ -1360,11 +1383,11 @@ static int s626_dio_clear_irq(struct comedi_device *dev)
unsigned int group;
/* disable edge capture write command */
s626_debi_write(dev, LP_MISC1, MISC1_NOEDCAP);
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* clear all dio pending events and interrupt */
for (group = 0; group < S626_DIO_BANKS; group++)
s626_debi_write(dev, LP_WRCAPSEL(group), 0xffff);
s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
return 0;
}
......@@ -1383,7 +1406,7 @@ static void s626_handle_dio_interrupt(struct comedi_device *dev,
if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
cmd->start_src == TRIG_EXT) {
/* Start executing the RPS program */
s626_mc_enable(dev, MC1_ERPS1, P_MC1);
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
if (cmd->scan_begin_src == TRIG_EXT)
s626_dio_set_irq(dev, cmd->scan_begin_arg);
......@@ -1391,7 +1414,7 @@ static void s626_handle_dio_interrupt(struct comedi_device *dev,
if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
cmd->scan_begin_src == TRIG_EXT) {
/* Trigger ADC scan loop start */
s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
if (cmd->convert_src == TRIG_EXT) {
devpriv->ai_convert_count = cmd->chanlist_len;
......@@ -1404,13 +1427,13 @@ static void s626_handle_dio_interrupt(struct comedi_device *dev,
&s626_enc_chan_info[5];
devpriv->ai_convert_count = cmd->chanlist_len;
k->set_enable(dev, k, CLKENAB_ALWAYS);
k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
}
}
if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
cmd->convert_src == TRIG_EXT) {
/* Trigger ADC scan loop start */
s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count > 0)
......@@ -1427,7 +1450,7 @@ static void s626_check_dio_interrupts(struct comedi_device *dev)
for (group = 0; group < S626_DIO_BANKS; group++) {
irqbit = 0;
/* read interrupt type */
irqbit = s626_debi_read(dev, LP_RDCAPFLG(group));
irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
/* check if interrupt is generated from dio channels */
if (irqbit) {
......@@ -1447,34 +1470,34 @@ static void s626_check_counter_interrupts(struct comedi_device *dev)
uint16_t irqbit;
/* read interrupt type */
irqbit = s626_debi_read(dev, LP_RDMISC2);
irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
/* check interrupt on counters */
if (irqbit & IRQ_COINT1A) {
if (irqbit & S626_IRQ_COINT1A) {
k = &s626_enc_chan_info[0];
/* clear interrupt capture flag */
k->reset_cap_flags(dev, k);
}
if (irqbit & IRQ_COINT2A) {
if (irqbit & S626_IRQ_COINT2A) {
k = &s626_enc_chan_info[1];
/* clear interrupt capture flag */
k->reset_cap_flags(dev, k);
}
if (irqbit & IRQ_COINT3A) {
if (irqbit & S626_IRQ_COINT3A) {
k = &s626_enc_chan_info[2];
/* clear interrupt capture flag */
k->reset_cap_flags(dev, k);
}
if (irqbit & IRQ_COINT1B) {
if (irqbit & S626_IRQ_COINT1B) {
k = &s626_enc_chan_info[3];
/* clear interrupt capture flag */
k->reset_cap_flags(dev, k);
}
if (irqbit & IRQ_COINT2B) {
if (irqbit & S626_IRQ_COINT2B) {
k = &s626_enc_chan_info[4];
/* clear interrupt capture flag */
......@@ -1483,15 +1506,16 @@ static void s626_check_counter_interrupts(struct comedi_device *dev)
if (devpriv->ai_convert_count > 0) {
devpriv->ai_convert_count--;
if (devpriv->ai_convert_count == 0)
k->set_enable(dev, k, CLKENAB_INDEX);
k->set_enable(dev, k, S626_CLKENAB_INDEX);
if (cmd->convert_src == TRIG_TIMER) {
/* Trigger ADC scan loop start */
s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
s626_mc_enable(dev, S626_MC2_ADC_RPS,
S626_P_MC2);
}
}
}
if (irqbit & IRQ_COINT3B) {
if (irqbit & S626_IRQ_COINT3B) {
k = &s626_enc_chan_info[5];
/* clear interrupt capture flag */
......@@ -1499,13 +1523,13 @@ static void s626_check_counter_interrupts(struct comedi_device *dev)
if (cmd->scan_begin_src == TRIG_TIMER) {
/* Trigger ADC scan loop start */
s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
}
if (cmd->convert_src == TRIG_TIMER) {
k = &s626_enc_chan_info[4];
devpriv->ai_convert_count = cmd->chanlist_len;
k->set_enable(dev, k, CLKENAB_ALWAYS);
k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
}
}
}
......@@ -1550,7 +1574,7 @@ static bool s626_handle_eos_interrupt(struct comedi_device *dev)
devpriv->ai_cmd_running = 0;
/* Stop RPS program */
s626_mc_disable(dev, MC1_ERPS1, P_MC1);
s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
/* send end of acquisition */
async->events |= COMEDI_CB_EOA;
......@@ -1581,23 +1605,23 @@ static irqreturn_t s626_irq_handler(int irq, void *d)
spin_lock_irqsave(&dev->spinlock, flags);
/* save interrupt enable register state */
irqstatus = readl(devpriv->mmio + P_IER);
irqstatus = readl(devpriv->mmio + S626_P_IER);
/* read interrupt type */
irqtype = readl(devpriv->mmio + P_ISR);
irqtype = readl(devpriv->mmio + S626_P_ISR);
/* disable master interrupt */
writel(0, devpriv->mmio + P_IER);
writel(0, devpriv->mmio + S626_P_IER);
/* clear interrupt */
writel(irqtype, devpriv->mmio + P_ISR);
writel(irqtype, devpriv->mmio + S626_P_ISR);
switch (irqtype) {
case IRQ_RPS1: /* end_of_scan occurs */
case S626_IRQ_RPS1: /* end_of_scan occurs */
if (s626_handle_eos_interrupt(dev))
irqstatus = 0;
break;
case IRQ_GPIO3: /* check dio and counter interrupt */
case S626_IRQ_GPIO3: /* check dio and counter interrupt */
/* s626_dio_clear_irq(dev); */
s626_check_dio_interrupts(dev);
s626_check_counter_interrupts(dev);
......@@ -1605,7 +1629,7 @@ static irqreturn_t s626_irq_handler(int irq, void *d)
}
/* enable interrupt */
writel(irqstatus, devpriv->mmio + P_IER);
writel(irqstatus, devpriv->mmio + S626_P_IER);
spin_unlock_irqrestore(&dev->spinlock, flags);
return IRQ_HANDLED;
......@@ -1625,20 +1649,20 @@ static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
struct comedi_cmd *cmd = &dev->subdevices->async->cmd;
/* Stop RPS program in case it is currently running */
s626_mc_disable(dev, MC1_ERPS1, P_MC1);
s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
/* Set starting logical address to write RPS commands. */
rps = (uint32_t *)devpriv->rps_buf.logical_base;
/* Initialize RPS instruction pointer */
writel((uint32_t)devpriv->rps_buf.physical_base,
devpriv->mmio + P_RPSADDR1);
devpriv->mmio + S626_P_RPSADDR1);
/* Construct RPS program in rps_buf DMA buffer */
if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
/* Wait for Start trigger. */
*rps++ = RPS_PAUSE | RPS_SIGADC;
*rps++ = RPS_CLRSIGNAL | RPS_SIGADC;
*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
}
/*
......@@ -1650,20 +1674,22 @@ static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
* the previously programmed value.
*/
/* Write DEBI Write command and address to shadow RAM. */
*rps++ = RPS_LDREG | (P_DEBICMD >> 2);
*rps++ = DEBI_CMD_WRWORD | LP_GSEL;
*rps++ = RPS_LDREG | (P_DEBIAD >> 2);
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM: */
*rps++ = GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
*rps++ = RPS_CLRSIGNAL | RPS_DEBI;
*rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Reset "shadow RAM uploaded" flag. */
*rps++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
*rps++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
/* Invoke shadow RAM upload. */
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
/* Wait for shadow upload to finish. */
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/*
* Digitize all slots in the poll list. This is implemented as a
* for loop to limit the slot count to 16 in case the application
* forgot to set the EOPL flag in the final slot.
* forgot to set the S626_EOPL flag in the final slot.
*/
for (devpriv->adc_items = 0; devpriv->adc_items < 16;
devpriv->adc_items++) {
......@@ -1673,77 +1699,80 @@ static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
* (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
* +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
*/
local_ppl = (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
GSEL_BIPOLAR10V);
local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
S626_GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
/* Write DEBI command and address to shadow RAM. */
*rps++ = RPS_LDREG | (P_DEBICMD >> 2);
*rps++ = DEBI_CMD_WRWORD | LP_GSEL;
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
/* Write DEBI immediate data to shadow RAM. */
*rps++ = RPS_LDREG | (P_DEBIAD >> 2);
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
*rps++ = local_ppl;
/* Reset "shadow RAM uploaded" flag. */
*rps++ = RPS_CLRSIGNAL | RPS_DEBI;
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Invoke shadow RAM upload. */
*rps++ = RPS_UPLOAD | RPS_DEBI;
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
/* Wait for shadow upload to finish. */
*rps++ = RPS_PAUSE | RPS_DEBI;
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/* Select ADC analog input channel. */
*rps++ = RPS_LDREG | (P_DEBICMD >> 2);
*rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
/* Write DEBI command and address to shadow RAM. */
*rps++ = DEBI_CMD_WRWORD | LP_ISEL;
*rps++ = RPS_LDREG | (P_DEBIAD >> 2);
*rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
*rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
/* Write DEBI immediate data to shadow RAM. */
*rps++ = local_ppl;
/* Reset "shadow RAM uploaded" flag. */
*rps++ = RPS_CLRSIGNAL | RPS_DEBI;
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
/* Invoke shadow RAM upload. */
*rps++ = RPS_UPLOAD | RPS_DEBI;
*rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
/* Wait for shadow upload to finish. */
*rps++ = RPS_PAUSE | RPS_DEBI;
*rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
/*
* Delay at least 10 microseconds for analog input settling.
* Instead of padding with NOPs, we use RPS_JUMP instructions
* here; this allows us to produce a longer delay than is
* possible with NOPs because each RPS_JUMP flushes the RPS'
* instruction prefetch pipeline.
* Instead of padding with NOPs, we use S626_RPS_JUMP
* instructions here; this allows us to produce a longer delay
* than is possible with NOPs because each S626_RPS_JUMP
* flushes the RPS' instruction prefetch pipeline.
*/
jmp_adrs =
(uint32_t)devpriv->rps_buf.physical_base +
(uint32_t)((unsigned long)rps -
(unsigned long)devpriv->
rps_buf.logical_base);
for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
jmp_adrs += 8; /* Repeat to implement time delay: */
*rps++ = RPS_JUMP; /* Jump to next RPS instruction. */
/* Jump to next RPS instruction. */
*rps++ = S626_RPS_JUMP;
*rps++ = jmp_adrs;
}
if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
/* Wait for Start trigger. */
*rps++ = RPS_PAUSE | RPS_SIGADC;
*rps++ = RPS_CLRSIGNAL | RPS_SIGADC;
*rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
*rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
}
/* Start ADC by pulsing GPIO1. */
/* Begin ADC Start pulse. */
*rps++ = RPS_LDREG | (P_GPIO >> 2);
*rps++ = GPIO_BASE | GPIO1_LO;
*rps++ = RPS_NOP;
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
*rps++ = S626_RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
/* End ADC Start pulse. */
*rps++ = RPS_LDREG | (P_GPIO >> 2);
*rps++ = GPIO_BASE | GPIO1_HI;
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
/*
* Wait for ADC to complete (GPIO2 is asserted high when ADC not
* busy) and for data from previous conversion to shift into FB
* BUFFER 1 register.
*/
*rps++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
/* Wait for ADC done. */
*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
/* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
*rps++ = RPS_STREG | (S626_BUGFIX_STREG(P_FB_BUFFER1) >> 2);
*rps++ = S626_RPS_STREG |
(S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
*rps++ = (uint32_t)devpriv->ana_buf.physical_base +
(devpriv->adc_items << 2);
......@@ -1751,7 +1780,7 @@ static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
* If this slot's EndOfPollList flag is set, all channels have
* now been processed.
*/
if (*ppl++ & EOPL) {
if (*ppl++ & S626_EOPL) {
devpriv->adc_items++; /* Adjust poll list item count. */
break; /* Exit poll list processing loop. */
}
......@@ -1765,41 +1794,42 @@ static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
* conversion. Without this delay, the last conversion's data value
* is sometimes set to the previous conversion's data value.
*/
for (n = 0; n < (2 * RPSCLK_PER_US); n++)
*rps++ = RPS_NOP;
for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
*rps++ = S626_RPS_NOP;
/*
* Start a dummy conversion to cause the data from the last
* conversion of interest to be shifted in.
*/
*rps++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
*rps++ = GPIO_BASE | GPIO1_LO;
*rps++ = RPS_NOP;
/* Begin ADC Start pulse. */
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
*rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
*rps++ = S626_RPS_NOP;
/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
*rps++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
*rps++ = GPIO_BASE | GPIO1_HI;
*rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
*rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
/*
* Wait for the data from the last conversion of interest to arrive
* in FB BUFFER 1 register.
*/
*rps++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
*rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */
/* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
*rps++ = RPS_STREG | (S626_BUGFIX_STREG(P_FB_BUFFER1) >> 2);
*rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
*rps++ = (uint32_t)devpriv->ana_buf.physical_base +
(devpriv->adc_items << 2);
/* Indicate ADC scan loop is finished. */
/* Signal ReadADC() that scan is done. */
/* *rps++= RPS_CLRSIGNAL | RPS_SIGADC; */
/* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
/* invoke interrupt */
if (devpriv->ai_cmd_running == 1)
*rps++ = RPS_IRQ;
*rps++ = S626_RPS_IRQ;
/* Restart RPS program at its beginning. */
*rps++ = RPS_JUMP; /* Branch to start of RPS program. */
*rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
*rps++ = (uint32_t)devpriv->rps_buf.physical_base;
/* End of RPS program build */
......@@ -1816,10 +1846,10 @@ static int s626_ai_rinsn(struct comedi_device *dev,
int32_t *readaddr;
/* Trigger ADC scan loop start */
s626_mc_enable(dev, MC2_ADC_RPS, P_MC2);
s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
/* Wait until ADC scan loop is finished (RPS Signal 0 reset) */
while (s626_mc_test(dev, MC2_ADC_RPS, P_MC2))
while (s626_mc_test(dev, S626_MC2_ADC_RPS, S626_P_MC2))
;
/*
......@@ -1859,29 +1889,32 @@ static int s626_ai_insn_read(struct comedi_device *dev,
* appropriate for register programming.
*/
if (range == 0)
adc_spec = (chan << 8) | (GSEL_BIPOLAR5V);
adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
else
adc_spec = (chan << 8) | (GSEL_BIPOLAR10V);
adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
/* Switch ADC analog gain. */
s626_debi_write(dev, LP_GSEL, adc_spec); /* Set gain. */
s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */
/* Select ADC analog input channel. */
s626_debi_write(dev, LP_ISEL, adc_spec); /* Select channel. */
s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */
for (n = 0; n < insn->n; n++) {
/* Delay 10 microseconds for analog input settling. */
udelay(10);
/* Start ADC by pulsing GPIO1 low */
gpio_image = readl(devpriv->mmio + P_GPIO);
gpio_image = readl(devpriv->mmio + S626_P_GPIO);
/* Assert ADC Start command */
writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
writel(gpio_image & ~S626_GPIO1_HI,
devpriv->mmio + S626_P_GPIO);
/* and stretch it out */
writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
writel(gpio_image & ~S626_GPIO1_HI,
devpriv->mmio + S626_P_GPIO);
writel(gpio_image & ~S626_GPIO1_HI,
devpriv->mmio + S626_P_GPIO);
/* Negate ADC Start command */
writel(gpio_image | GPIO1_HI, devpriv->mmio + P_GPIO);
writel(gpio_image | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/*
* Wait for ADC to complete (GPIO2 is asserted high when
......@@ -1890,12 +1923,12 @@ static int s626_ai_insn_read(struct comedi_device *dev,
*/
/* Wait for ADC done */
while (!(readl(devpriv->mmio + P_PSR) & PSR_GPIO2))
while (!(readl(devpriv->mmio + S626_P_PSR) & S626_PSR_GPIO2))
;
/* Fetch ADC data */
if (n != 0) {
tmp = readl(devpriv->mmio + P_FB_BUFFER1);
tmp = readl(devpriv->mmio + S626_P_FB_BUFFER1);
data[n - 1] = s626_ai_reg_to_uint(tmp);
}
......@@ -1915,26 +1948,26 @@ static int s626_ai_insn_read(struct comedi_device *dev,
* Start a dummy conversion to cause the data from the
* previous conversion to be shifted in.
*/
gpio_image = readl(devpriv->mmio + P_GPIO);
gpio_image = readl(devpriv->mmio + S626_P_GPIO);
/* Assert ADC Start command */
writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/* and stretch it out */
writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
writel(gpio_image & ~GPIO1_HI, devpriv->mmio + P_GPIO);
writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
writel(gpio_image & ~S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/* Negate ADC Start command */
writel(gpio_image | GPIO1_HI, devpriv->mmio + P_GPIO);
writel(gpio_image | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/* Wait for the data to arrive in FB BUFFER 1 register. */
/* Wait for ADC done */
while (!(readl(devpriv->mmio + P_PSR) & PSR_GPIO2))
while (!(readl(devpriv->mmio + S626_P_PSR) & S626_PSR_GPIO2))
;
/* Fetch ADC data from audio interface's input shift register. */
/* Fetch ADC data */
if (n != 0) {
tmp = readl(devpriv->mmio + P_FB_BUFFER1);
tmp = readl(devpriv->mmio + S626_P_FB_BUFFER1);
data[n - 1] = s626_ai_reg_to_uint(tmp);
}
......@@ -1947,12 +1980,12 @@ static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
for (n = 0; n < cmd->chanlist_len; n++) {
if (CR_RANGE(cmd->chanlist[n]) == 0)
ppl[n] = CR_CHAN(cmd->chanlist[n]) | RANGE_5V;
ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
else
ppl[n] = CR_CHAN(cmd->chanlist[n]) | RANGE_10V;
ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
}
if (n != 0)
ppl[n - 1] |= EOPL;
ppl[n - 1] |= S626_EOPL;
return n;
}
......@@ -1964,7 +1997,7 @@ static int s626_ai_inttrig(struct comedi_device *dev,
return -EINVAL;
/* Start executing the RPS program */
s626_mc_enable(dev, MC1_ERPS1, P_MC1);
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
s->async->inttrig = NULL;
......@@ -2005,15 +2038,21 @@ static void s626_timer_load(struct comedi_device *dev,
const struct s626_enc_info *k, int tick)
{
uint16_t setup =
(LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
(CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
(CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
(CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
(CLKENAB_INDEX << BF_CLKENAB);
uint16_t value_latchsrc = LATCHSRC_A_INDXA;
/* uint16_t enab = CLKENAB_ALWAYS; */
/* Preload upon index. */
(S626_LOADSRC_INDX << S626_BF_LOADSRC) |
/* Disable hardware index. */
(S626_INDXSRC_SOFT << S626_BF_INDXSRC) |
/* Operating mode is Timer. */
(S626_CLKSRC_TIMER << S626_BF_CLKSRC) |
/* Active high clock. */
(S626_CLKPOL_POS << S626_BF_CLKPOL) |
/* Count direction is Down. */
(S626_CNTDIR_DOWN << S626_BF_CLKPOL) |
/* Clock multiplier is 1x. */
(S626_CLKMULT_1X << S626_BF_CLKMULT) |
(S626_CLKENAB_INDEX << S626_BF_CLKENAB);
uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
/* uint16_t enab = S626_CLKENAB_ALWAYS; */
k->set_mode(dev, k, setup, false);
......@@ -2031,7 +2070,7 @@ static void s626_timer_load(struct comedi_device *dev,
k->set_load_trig(dev, k, 1);
/* set interrupt on overflow */
k->set_int_src(dev, k, INTSRC_OVER);
k->set_int_src(dev, k, S626_INTSRC_OVER);
s626_set_latch_source(dev, k, value_latchsrc);
/* k->set_enable(dev, k, (uint16_t)(enab != 0)); */
......@@ -2052,10 +2091,10 @@ static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
return -EBUSY;
}
/* disable interrupt */
writel(0, devpriv->mmio + P_IER);
writel(0, devpriv->mmio + S626_P_IER);
/* clear interrupt request */
writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->mmio + P_ISR);
writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, devpriv->mmio + S626_P_ISR);
/* clear any pending interrupt */
s626_dio_clear_irq(dev);
......@@ -2092,7 +2131,7 @@ static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
/* load timer value and enable interrupt */
s626_timer_load(dev, k, tick);
k->set_enable(dev, k, CLKENAB_ALWAYS);
k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
break;
case TRIG_EXT:
/* set the digital line and interrupt for scan trigger */
......@@ -2115,7 +2154,7 @@ static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
/* load timer value and enable interrupt */
s626_timer_load(dev, k, tick);
k->set_enable(dev, k, CLKENAB_INDEX);
k->set_enable(dev, k, S626_CLKENAB_INDEX);
break;
case TRIG_EXT:
/* set the digital line and interrupt for convert trigger */
......@@ -2143,10 +2182,10 @@ static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
switch (cmd->start_src) {
case TRIG_NOW:
/* Trigger ADC scan loop start */
/* s626_mc_enable(dev, MC2_ADC_RPS, P_MC2); */
/* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
/* Start executing the RPS program */
s626_mc_enable(dev, MC1_ERPS1, P_MC1);
s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
s->async->inttrig = NULL;
break;
case TRIG_EXT:
......@@ -2160,7 +2199,7 @@ static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
}
/* enable interrupt */
writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->mmio + P_IER);
writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, devpriv->mmio + S626_P_IER);
return 0;
}
......@@ -2278,10 +2317,10 @@ static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
struct s626_private *devpriv = dev->private;
/* Stop RPS program in case it is currently running */
s626_mc_disable(dev, MC1_ERPS1, P_MC1);
s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
/* disable master interrupt */
writel(0, devpriv->mmio + P_IER);
writel(0, devpriv->mmio + S626_P_IER);
devpriv->ai_cmd_running = 0;
......@@ -2332,18 +2371,18 @@ static void s626_dio_init(struct comedi_device *dev)
uint16_t group;
/* Prepare to treat writes to WRCapSel as capture disables. */
s626_debi_write(dev, LP_MISC1, MISC1_NOEDCAP);
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
/* For each group of sixteen channels ... */
for (group = 0; group < S626_DIO_BANKS; group++) {
/* Disable all interrupts */
s626_debi_write(dev, LP_WRINTSEL(group), 0);
s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
/* Disable all event captures */
s626_debi_write(dev, LP_WRCAPSEL(group), 0xffff);
s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
/* Init all DIOs to default edge polarity */
s626_debi_write(dev, LP_WREDGSEL(group), 0);
s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
/* Program all outputs to inactive state */
s626_debi_write(dev, LP_WRDOUT(group), 0);
s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
}
}
......@@ -2355,9 +2394,9 @@ static int s626_dio_insn_bits(struct comedi_device *dev,
unsigned long group = (unsigned long)s->private;
if (comedi_dio_update_state(s, data))
s626_debi_write(dev, LP_WRDOUT(group), s->state);
s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
data[1] = s626_debi_read(dev, LP_RDDIN(group));
data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
return insn->n;
}
......@@ -2374,7 +2413,7 @@ static int s626_dio_insn_config(struct comedi_device *dev,
if (ret)
return ret;
s626_debi_write(dev, LP_WRDOUT(group), s->io_bits);
s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
return insn->n;
}
......@@ -2393,16 +2432,21 @@ static int s626_enc_insn_config(struct comedi_device *dev,
struct comedi_insn *insn, unsigned int *data)
{
uint16_t setup =
(LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
(CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
(CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
(CLKENAB_INDEX << BF_CLKENAB);
/* Preload upon index. */
(S626_LOADSRC_INDX << S626_BF_LOADSRC) |
/* Disable hardware index. */
(S626_INDXSRC_SOFT << S626_BF_INDXSRC) |
/* Operating mode is Counter. */
(S626_CLKSRC_COUNTER << S626_BF_CLKSRC) |
/* Active high clock. */
(S626_CLKPOL_POS << S626_BF_CLKPOL) |
/* Clock multiplier is 1x. */
(S626_CLKMULT_1X << S626_BF_CLKMULT) |
(S626_CLKENAB_INDEX << S626_BF_CLKENAB);
/* uint16_t disable_int_src = true; */
/* uint32_t Preloadvalue; //Counter initial value */
uint16_t value_latchsrc = LATCHSRC_AB_READ;
uint16_t enab = CLKENAB_ALWAYS;
uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
uint16_t enab = S626_CLKENAB_ALWAYS;
const struct s626_enc_info *k =
&s626_enc_chan_info[CR_CHAN(insn->chanspec)];
......@@ -2454,9 +2498,9 @@ static int s626_enc_insn_write(struct comedi_device *dev,
static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
{
s626_debi_write(dev, LP_MISC1, MISC1_WENABLE);
s626_debi_write(dev, LP_WRMISC2, new_image);
s626_debi_write(dev, LP_MISC1, MISC1_WDISABLE);
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
s626_debi_write(dev, S626_LP_WRMISC2, new_image);
s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
}
static void s626_close_dma_b(struct comedi_device *dev,
......@@ -2484,13 +2528,20 @@ static void s626_counters_init(struct comedi_device *dev)
int chan;
const struct s626_enc_info *k;
uint16_t setup =
(LOADSRC_INDX << BF_LOADSRC) | /* Preload upon index. */
(INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
(CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
(CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
(CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
(CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
(CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
/* Preload upon index. */
(S626_LOADSRC_INDX << S626_BF_LOADSRC) |
/* Disable hardware index. */
(S626_INDXSRC_SOFT << S626_BF_INDXSRC) |
/* Operating mode is counter. */
(S626_CLKSRC_COUNTER << S626_BF_CLKSRC) |
/* Active high clock. */
(S626_CLKPOL_POS << S626_BF_CLKPOL) |
/* Count direction is up. */
(S626_CNTDIR_UP << S626_BF_CLKPOL) |
/* Clock multiplier is 1x. */
(S626_CLKMULT_1X << S626_BF_CLKMULT) |
/* Enabled by index */
(S626_CLKENAB_INDEX << S626_BF_CLKENAB);
/*
* Disable all counter interrupts and clear any captured counter events.
......@@ -2500,7 +2551,7 @@ static void s626_counters_init(struct comedi_device *dev)
k->set_mode(dev, k, setup, true);
k->set_int_src(dev, k, 0);
k->reset_cap_flags(dev, k);
k->set_enable(dev, k, CLKENAB_ALWAYS);
k->set_enable(dev, k, S626_CLKENAB_ALWAYS);
}
}
......@@ -2511,13 +2562,13 @@ static int s626_allocate_dma_buffers(struct comedi_device *dev)
void *addr;
dma_addr_t appdma;
addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
if (!addr)
return -ENOMEM;
devpriv->ana_buf.logical_base = addr;
devpriv->ana_buf.physical_base = appdma;
addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma);
addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
if (!addr)
return -ENOMEM;
devpriv->rps_buf.logical_base = addr;
......@@ -2534,7 +2585,8 @@ static void s626_initialize(struct comedi_device *dev)
int i;
/* Enable DEBI and audio pins, enable I2C interface */
s626_mc_enable(dev, MC1_DEBI | MC1_AUDIO | MC1_I2C, P_MC1);
s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
S626_P_MC1);
/*
* Configure DEBI operating mode
......@@ -2544,14 +2596,15 @@ static void s626_initialize(struct comedi_device *dev)
* Set up byte lane steering
* Intel-compatible local bus (DEBI never times out)
*/
writel(DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
DEBI_SWAP | DEBI_CFG_INTEL, devpriv->mmio + P_DEBICFG);
writel(S626_DEBI_CFG_SLAVE16 |
(S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
S626_DEBI_CFG_INTEL, devpriv->mmio + S626_P_DEBICFG);
/* Disable MMU paging */
writel(DEBI_PAGE_DISABLE, devpriv->mmio + P_DEBIPAGE);
writel(S626_DEBI_PAGE_DISABLE, devpriv->mmio + S626_P_DEBIPAGE);
/* Init GPIO so that ADC Start* is negated */
writel(GPIO_BASE | GPIO1_HI, devpriv->mmio + P_GPIO);
writel(S626_GPIO_BASE | S626_GPIO1_HI, devpriv->mmio + S626_P_GPIO);
/* I2C device address for onboard eeprom (revb) */
devpriv->i2c_adrs = 0xA0;
......@@ -2560,9 +2613,10 @@ static void s626_initialize(struct comedi_device *dev)
* Issue an I2C ABORT command to halt any I2C
* operation in progress and reset BUSY flag.
*/
writel(I2C_CLKSEL | I2C_ABORT, devpriv->mmio + P_I2CSTAT);
s626_mc_enable(dev, MC2_UPLD_IIC, P_MC2);
while (!(readl(devpriv->mmio + P_MC2) & MC2_UPLD_IIC))
writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
devpriv->mmio + S626_P_I2CSTAT);
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
while (!(readl(devpriv->mmio + S626_P_MC2) & S626_MC2_UPLD_IIC))
;
/*
......@@ -2570,9 +2624,9 @@ static void s626_initialize(struct comedi_device *dev)
* reg twice to reset all I2C error flags.
*/
for (i = 0; i < 2; i++) {
writel(I2C_CLKSEL, devpriv->mmio + P_I2CSTAT);
s626_mc_enable(dev, MC2_UPLD_IIC, P_MC2);
while (!s626_mc_test(dev, MC2_UPLD_IIC, P_MC2))
writel(S626_I2C_CLKSEL, devpriv->mmio + S626_P_I2CSTAT);
s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
while (!s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2))
;
}
......@@ -2582,19 +2636,20 @@ static void s626_initialize(struct comedi_device *dev)
* DAC data setup times are satisfied, enable DAC serial
* clock out.
*/
writel(ACON2_INIT, devpriv->mmio + P_ACON2);
writel(S626_ACON2_INIT, devpriv->mmio + S626_P_ACON2);
/*
* Set up TSL1 slot list, which is used to control the
* accumulation of ADC data: RSD1 = shift data in on SD1.
* SIB_A1 = store data uint8_t at next available location
* accumulation of ADC data: S626_RSD1 = shift data in on SD1.
* S626_SIB_A1 = store data uint8_t at next available location
* in FB BUFFER1 register.
*/
writel(RSD1 | SIB_A1, devpriv->mmio + P_TSL1);
writel(RSD1 | SIB_A1 | EOS, devpriv->mmio + P_TSL1 + 4);
writel(S626_RSD1 | S626_SIB_A1, devpriv->mmio + S626_P_TSL1);
writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
devpriv->mmio + S626_P_TSL1 + 4);
/* Enable TSL1 slot list so that it executes all the time */
writel(ACON1_ADCSTART, devpriv->mmio + P_ACON1);
writel(S626_ACON1_ADCSTART, devpriv->mmio + S626_P_ACON1);
/*
* Initialize RPS registers used for ADC
......@@ -2602,11 +2657,11 @@ static void s626_initialize(struct comedi_device *dev)
/* Physical start of RPS program */
writel((uint32_t)devpriv->rps_buf.physical_base,
devpriv->mmio + P_RPSADDR1);
devpriv->mmio + S626_P_RPSADDR1);
/* RPS program performs no explicit mem writes */
writel(0, devpriv->mmio + P_RPSPAGE1);
writel(0, devpriv->mmio + S626_P_RPSPAGE1);
/* Disable RPS timeouts */
writel(0, devpriv->mmio + P_RPS1_TOUT);
writel(0, devpriv->mmio + S626_P_RPS1_TOUT);
#if 0
/*
......@@ -2626,7 +2681,7 @@ static void s626_initialize(struct comedi_device *dev)
unsigned int data[16];
/* Create a simple polling list for analog input channel 0 */
poll_list = EOPL;
poll_list = S626_EOPL;
s626_reset_adc(dev, &poll_list);
/* Get initial ADC value */
......@@ -2661,7 +2716,7 @@ static void s626_initialize(struct comedi_device *dev)
* burst length = 1 DWORD
* threshold = 1 DWORD.
*/
writel(0, devpriv->mmio + P_PCI_BT_A);
writel(0, devpriv->mmio + S626_P_PCI_BT_A);
/*
* Init Audio2's output DMA physical addresses. The protection
......@@ -2670,17 +2725,17 @@ static void s626_initialize(struct comedi_device *dev)
* enabled.
*/
phys_buf = devpriv->ana_buf.physical_base +
(DAC_WDMABUF_OS * sizeof(uint32_t));
writel((uint32_t)phys_buf, devpriv->mmio + P_BASEA2_OUT);
(S626_DAC_WDMABUF_OS * sizeof(uint32_t));
writel((uint32_t)phys_buf, devpriv->mmio + S626_P_BASEA2_OUT);
writel((uint32_t)(phys_buf + sizeof(uint32_t)),
devpriv->mmio + P_PROTA2_OUT);
devpriv->mmio + S626_P_PROTA2_OUT);
/*
* Cache Audio2's output DMA buffer logical address. This is
* where DAC data is buffered for A2 output DMA transfers.
*/
devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
DAC_WDMABUF_OS;
S626_DAC_WDMABUF_OS;
/*
* Audio2's output channels does not use paging. The
......@@ -2688,7 +2743,7 @@ static void s626_initialize(struct comedi_device *dev)
* DMAC will automatically halt and its PCI address pointer
* will be reset when the protection address is reached.
*/
writel(8, devpriv->mmio + P_PAGEA2_OUT);
writel(8, devpriv->mmio + S626_P_PAGEA2_OUT);
/*
* Initialize time slot list 2 (TSL2), which is used to control
......@@ -2703,7 +2758,8 @@ static void s626_initialize(struct comedi_device *dev)
*/
/* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
writel(XSD2 | RSD3 | SIB_A2 | EOS, devpriv->mmio + S626_VECTPORT(0));
writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
devpriv->mmio + S626_VECTPORT(0));
/*
* Initialize slot 1, which is constant. Slot 1 causes a
......@@ -2715,10 +2771,10 @@ static void s626_initialize(struct comedi_device *dev)
*/
/* Slot 1: Fetch DWORD from Audio2's output FIFO */
writel(LF_A2, devpriv->mmio + S626_VECTPORT(1));
writel(S626_LF_A2, devpriv->mmio + S626_VECTPORT(1));
/* Start DAC's audio interface (TSL2) running */
writel(ACON1_DACSTART, devpriv->mmio + P_ACON1);
writel(S626_ACON1_DACSTART, devpriv->mmio + S626_P_ACON1);
/*
* Init Trim DACs to calibrated values. Do it twice because the
......@@ -2752,8 +2808,8 @@ static void s626_initialize(struct comedi_device *dev)
* standard DIO (vs. counter overflow) mode, disable the battery
* charger, and reset the watchdog interval selector to zero.
*/
s626_write_misc2(dev, (s626_debi_read(dev, LP_RDMISC2) &
MISC2_BATT_ENABLE));
s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
S626_MISC2_BATT_ENABLE));
/* Initialize the digital I/O subsystem */
s626_dio_init(dev);
......@@ -2780,10 +2836,10 @@ static int s626_auto_attach(struct comedi_device *dev,
return -ENOMEM;
/* disable master interrupt */
writel(0, devpriv->mmio + P_IER);
writel(0, devpriv->mmio + S626_P_IER);
/* soft reset */
writel(MC1_SOFT_RESET, devpriv->mmio + P_MC1);
writel(S626_MC1_SOFT_RESET, devpriv->mmio + S626_P_MC1);
/* DMA FIXME DMA// */
......@@ -2894,20 +2950,22 @@ static void s626_detach(struct comedi_device *dev)
if (devpriv->mmio) {
/* interrupt mask */
/* Disable master interrupt */
writel(0, devpriv->mmio + P_IER);
writel(0, devpriv->mmio + S626_P_IER);
/* Clear board's IRQ status flag */
writel(IRQ_GPIO3 | IRQ_RPS1,
devpriv->mmio + P_ISR);
writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
devpriv->mmio + S626_P_ISR);
/* Disable the watchdog timer and battery charger. */
s626_write_misc2(dev, 0);
/* Close all interfaces on 7146 device */
writel(MC1_SHUTDOWN, devpriv->mmio + P_MC1);
writel(ACON1_BASE, devpriv->mmio + P_ACON1);
writel(S626_MC1_SHUTDOWN, devpriv->mmio + S626_P_MC1);
writel(S626_ACON1_BASE, devpriv->mmio + S626_P_ACON1);
s626_close_dma_b(dev, &devpriv->rps_buf, DMABUF_SIZE);
s626_close_dma_b(dev, &devpriv->ana_buf, DMABUF_SIZE);
s626_close_dma_b(dev, &devpriv->rps_buf,
S626_DMABUF_SIZE);
s626_close_dma_b(dev, &devpriv->ana_buf,
S626_DMABUF_SIZE);
}
if (dev->irq)
......
......@@ -22,8 +22,7 @@
#ifndef S626_H_INCLUDED
#define S626_H_INCLUDED
#define S626_SIZE 0x200
#define DMABUF_SIZE 4096 /* 4k pages */
#define S626_DMABUF_SIZE 4096 /* 4k pages */
#define S626_ADC_CHANNELS 16
#define S626_DAC_CHANNELS 4
......@@ -33,585 +32,575 @@
#define S626_DIO_EXTCHANS 40 /* Number of extended-capability
* DIO channels. */
#define NUM_TRIMDACS 12 /* Number of valid TrimDAC channels. */
#define S626_NUM_TRIMDACS 12 /* Number of valid TrimDAC channels. */
/* PCI bus interface types. */
#define INTEL 1 /* Intel bus type. */
#define MOTOROLA 2 /* Motorola bus type. */
#define S626_INTEL 1 /* Intel bus type. */
#define S626_MOTOROLA 2 /* Motorola bus type. */
#define PLATFORM INTEL /* *** SELECT PLATFORM TYPE *** */
#define S626_PLATFORM S626_INTEL /* *** SELECT PLATFORM TYPE *** */
#define RANGE_5V 0x10 /* +/-5V range */
#define RANGE_10V 0x00 /* +/-10V range */
#define S626_RANGE_5V 0x10 /* +/-5V range */
#define S626_RANGE_10V 0x00 /* +/-10V range */
#define EOPL 0x80 /* End of ADC poll list marker. */
#define GSEL_BIPOLAR5V 0x00F0 /* LP_GSEL setting for 5V bipolar. */
#define GSEL_BIPOLAR10V 0x00A0 /* LP_GSEL setting for 10V bipolar. */
#define S626_EOPL 0x80 /* End of ADC poll list marker. */
#define S626_GSEL_BIPOLAR5V 0x00F0 /* S626_LP_GSEL setting 5V bipolar. */
#define S626_GSEL_BIPOLAR10V 0x00A0 /* S626_LP_GSEL setting 10V bipolar. */
/* Error codes that must be visible to this base class. */
#define ERR_ILLEGAL_PARM 0x00010000 /* Illegal function parameter
#define S626_ERR_ILLEGAL_PARM 0x00010000 /* Illegal function parameter
* value was specified. */
#define ERR_I2C 0x00020000 /* I2C error. */
#define ERR_COUNTERSETUP 0x00200000 /* Illegal setup specified for
#define S626_ERR_I2C 0x00020000 /* I2C error. */
#define S626_ERR_COUNTERSETUP 0x00200000 /* Illegal setup specified for
* counter channel. */
#define ERR_DEBI_TIMEOUT 0x00400000 /* DEBI transfer timed out. */
#define S626_ERR_DEBI_TIMEOUT 0x00400000 /* DEBI transfer timed out. */
/*
* Organization (physical order) and size (in DWORDs) of logical DMA buffers
* contained by ANA_DMABUF.
*/
#define ADC_DMABUF_DWORDS 40 /* ADC DMA buffer must hold 16 samples,
#define S626_ADC_DMABUF_DWORDS 40 /* ADC DMA buffer must hold 16 samples,
* plus pre/post garbage samples. */
#define DAC_WDMABUF_DWORDS 1 /* DAC output DMA buffer holds a single
#define S626_DAC_WDMABUF_DWORDS 1 /* DAC output DMA buffer holds a single
* sample. */
/* All remaining space in 4KB DMA buffer is available for the RPS1 program. */
/* Address offsets, in DWORDS, from base of DMA buffer. */
#define DAC_WDMABUF_OS ADC_DMABUF_DWORDS
#define S626_DAC_WDMABUF_OS S626_ADC_DMABUF_DWORDS
/* Interrupt enable bit in ISR and IER. */
#define IRQ_GPIO3 0x00000040 /* IRQ enable for GPIO3. */
#define IRQ_RPS1 0x10000000
#define ISR_AFOU 0x00000800
#define S626_IRQ_GPIO3 0x00000040 /* IRQ enable for GPIO3. */
#define S626_IRQ_RPS1 0x10000000
#define S626_ISR_AFOU 0x00000800
/* Audio fifo under/overflow detected. */
#define IRQ_COINT1A 0x0400 /* counter 1A overflow interrupt mask */
#define IRQ_COINT1B 0x0800 /* counter 1B overflow interrupt mask */
#define IRQ_COINT2A 0x1000 /* counter 2A overflow interrupt mask */
#define IRQ_COINT2B 0x2000 /* counter 2B overflow interrupt mask */
#define IRQ_COINT3A 0x4000 /* counter 3A overflow interrupt mask */
#define IRQ_COINT3B 0x8000 /* counter 3B overflow interrupt mask */
#define S626_IRQ_COINT1A 0x0400 /* counter 1A overflow interrupt mask */
#define S626_IRQ_COINT1B 0x0800 /* counter 1B overflow interrupt mask */
#define S626_IRQ_COINT2A 0x1000 /* counter 2A overflow interrupt mask */
#define S626_IRQ_COINT2B 0x2000 /* counter 2B overflow interrupt mask */
#define S626_IRQ_COINT3A 0x4000 /* counter 3A overflow interrupt mask */
#define S626_IRQ_COINT3B 0x8000 /* counter 3B overflow interrupt mask */
/* RPS command codes. */
#define RPS_CLRSIGNAL 0x00000000 /* CLEAR SIGNAL */
#define RPS_SETSIGNAL 0x10000000 /* SET SIGNAL */
#define RPS_NOP 0x00000000 /* NOP */
#define RPS_PAUSE 0x20000000 /* PAUSE */
#define RPS_UPLOAD 0x40000000 /* UPLOAD */
#define RPS_JUMP 0x80000000 /* JUMP */
#define RPS_LDREG 0x90000100 /* LDREG (1 uint32_t only) */
#define RPS_STREG 0xA0000100 /* STREG (1 uint32_t only) */
#define RPS_STOP 0x50000000 /* STOP */
#define RPS_IRQ 0x60000000 /* IRQ */
#define RPS_LOGICAL_OR 0x08000000 /* Logical OR conditionals. */
#define RPS_INVERT 0x04000000 /* Test for negated
#define S626_RPS_CLRSIGNAL 0x00000000 /* CLEAR SIGNAL */
#define S626_RPS_SETSIGNAL 0x10000000 /* SET SIGNAL */
#define S626_RPS_NOP 0x00000000 /* NOP */
#define S626_RPS_PAUSE 0x20000000 /* PAUSE */
#define S626_RPS_UPLOAD 0x40000000 /* UPLOAD */
#define S626_RPS_JUMP 0x80000000 /* JUMP */
#define S626_RPS_LDREG 0x90000100 /* LDREG (1 uint32_t only) */
#define S626_RPS_STREG 0xA0000100 /* STREG (1 uint32_t only) */
#define S626_RPS_STOP 0x50000000 /* STOP */
#define S626_RPS_IRQ 0x60000000 /* IRQ */
#define S626_RPS_LOGICAL_OR 0x08000000 /* Logical OR conditionals. */
#define S626_RPS_INVERT 0x04000000 /* Test for negated
* semaphores. */
#define RPS_DEBI 0x00000002 /* DEBI done */
#define S626_RPS_DEBI 0x00000002 /* DEBI done */
#define RPS_SIG0 0x00200000 /* RPS semaphore 0
#define S626_RPS_SIG0 0x00200000 /* RPS semaphore 0
* (used by ADC). */
#define RPS_SIG1 0x00400000 /* RPS semaphore 1
#define S626_RPS_SIG1 0x00400000 /* RPS semaphore 1
* (used by DAC). */
#define RPS_SIG2 0x00800000 /* RPS semaphore 2
#define S626_RPS_SIG2 0x00800000 /* RPS semaphore 2
* (not used). */
#define RPS_GPIO2 0x00080000 /* RPS GPIO2 */
#define RPS_GPIO3 0x00100000 /* RPS GPIO3 */
#define S626_RPS_GPIO2 0x00080000 /* RPS GPIO2 */
#define S626_RPS_GPIO3 0x00100000 /* RPS GPIO3 */
#define RPS_SIGADC RPS_SIG0 /* Trigger/status for
#define S626_RPS_SIGADC S626_RPS_SIG0 /* Trigger/status for
* ADC's RPS program. */
#define RPS_SIGDAC RPS_SIG1 /* Trigger/status for
#define S626_RPS_SIGDAC S626_RPS_SIG1 /* Trigger/status for
* DAC's RPS program. */
/* RPS clock parameters. */
#define RPSCLK_SCALAR 8 /* This is apparent ratio of
#define S626_RPSCLK_SCALAR 8 /* This is apparent ratio of
* PCI/RPS clks (undocumented!!). */
#define RPSCLK_PER_US (33 / RPSCLK_SCALAR)
#define S626_RPSCLK_PER_US (33 / S626_RPSCLK_SCALAR)
/* Number of RPS clocks in one
* microsecond. */
/* Event counter source addresses. */
#define SBA_RPS_A0 0x27 /* Time of RPS0 busy, in PCI clocks. */
#define S626_SBA_RPS_A0 0x27 /* Time of RPS0 busy, in PCI clocks. */
/* GPIO constants. */
#define GPIO_BASE 0x10004000 /* GPIO 0,2,3 = inputs,
#define S626_GPIO_BASE 0x10004000 /* GPIO 0,2,3 = inputs,
* GPIO3 = IRQ; GPIO1 = out. */
#define GPIO1_LO 0x00000000 /* GPIO1 set to LOW. */
#define GPIO1_HI 0x00001000 /* GPIO1 set to HIGH. */
#define S626_GPIO1_LO 0x00000000 /* GPIO1 set to LOW. */
#define S626_GPIO1_HI 0x00001000 /* GPIO1 set to HIGH. */
/* Primary Status Register (PSR) constants. */
#define PSR_DEBI_E 0x00040000 /* DEBI event flag. */
#define PSR_DEBI_S 0x00080000 /* DEBI status flag. */
#define PSR_A2_IN 0x00008000 /* Audio output DMA2 protection
#define S626_PSR_DEBI_E 0x00040000 /* DEBI event flag. */
#define S626_PSR_DEBI_S 0x00080000 /* DEBI status flag. */
#define S626_PSR_A2_IN 0x00008000 /* Audio output DMA2 protection
* address reached. */
#define PSR_AFOU 0x00000800 /* Audio FIFO under/overflow
#define S626_PSR_AFOU 0x00000800 /* Audio FIFO under/overflow
* detected. */
#define PSR_GPIO2 0x00000020 /* GPIO2 input pin: 0=AdcBusy,
#define S626_PSR_GPIO2 0x00000020 /* GPIO2 input pin: 0=AdcBusy,
* 1=AdcIdle. */
#define PSR_EC0S 0x00000001 /* Event counter 0 threshold
#define S626_PSR_EC0S 0x00000001 /* Event counter 0 threshold
* reached. */
/* Secondary Status Register (SSR) constants. */
#define SSR_AF2_OUT 0x00000200 /* Audio 2 output FIFO
#define S626_SSR_AF2_OUT 0x00000200 /* Audio 2 output FIFO
* under/overflow detected. */
/* Master Control Register 1 (MC1) constants. */
#define MC1_SOFT_RESET 0x80000000 /* Invoke 7146 soft reset. */
#define MC1_SHUTDOWN 0x3FFF0000 /* Shut down all MC1-controlled
#define S626_MC1_SOFT_RESET 0x80000000 /* Invoke 7146 soft reset. */
#define S626_MC1_SHUTDOWN 0x3FFF0000 /* Shut down all MC1-controlled
* enables. */
#define MC1_ERPS1 0x2000 /* Enab/disable RPS task 1. */
#define MC1_ERPS0 0x1000 /* Enab/disable RPS task 0. */
#define MC1_DEBI 0x0800 /* Enab/disable DEBI pins. */
#define MC1_AUDIO 0x0200 /* Enab/disable audio port pins. */
#define MC1_I2C 0x0100 /* Enab/disable I2C interface. */
#define MC1_A2OUT 0x0008 /* Enab/disable transfer on A2 out. */
#define MC1_A2IN 0x0004 /* Enab/disable transfer on A2 in. */
#define MC1_A1IN 0x0001 /* Enab/disable transfer on A1 in. */
#define S626_MC1_ERPS1 0x2000 /* Enab/disable RPS task 1. */
#define S626_MC1_ERPS0 0x1000 /* Enab/disable RPS task 0. */
#define S626_MC1_DEBI 0x0800 /* Enab/disable DEBI pins. */
#define S626_MC1_AUDIO 0x0200 /* Enab/disable audio port pins. */
#define S626_MC1_I2C 0x0100 /* Enab/disable I2C interface. */
#define S626_MC1_A2OUT 0x0008 /* Enab/disable transfer on A2 out. */
#define S626_MC1_A2IN 0x0004 /* Enab/disable transfer on A2 in. */
#define S626_MC1_A1IN 0x0001 /* Enab/disable transfer on A1 in. */
/* Master Control Register 2 (MC2) constants. */
#define MC2_UPLD_DEBI 0x0002 /* Upload DEBI. */
#define MC2_UPLD_IIC 0x0001 /* Upload I2C. */
#define MC2_RPSSIG2 0x2000 /* RPS signal 2 (not used). */
#define MC2_RPSSIG1 0x1000 /* RPS signal 1 (DAC RPS busy). */
#define MC2_RPSSIG0 0x0800 /* RPS signal 0 (ADC RPS busy). */
#define S626_MC2_UPLD_DEBI 0x0002 /* Upload DEBI. */
#define S626_MC2_UPLD_IIC 0x0001 /* Upload I2C. */
#define S626_MC2_RPSSIG2 0x2000 /* RPS signal 2 (not used). */
#define S626_MC2_RPSSIG1 0x1000 /* RPS signal 1 (DAC RPS busy). */
#define S626_MC2_RPSSIG0 0x0800 /* RPS signal 0 (ADC RPS busy). */
#define MC2_ADC_RPS MC2_RPSSIG0 /* ADC RPS busy. */
#define MC2_DAC_RPS MC2_RPSSIG1 /* DAC RPS busy. */
#define S626_MC2_ADC_RPS S626_MC2_RPSSIG0 /* ADC RPS busy. */
#define S626_MC2_DAC_RPS S626_MC2_RPSSIG1 /* DAC RPS busy. */
/* PCI BUS (SAA7146) REGISTER ADDRESS OFFSETS */
#define P_PCI_BT_A 0x004C /* Audio DMA burst/threshold control. */
#define P_DEBICFG 0x007C /* DEBI configuration. */
#define P_DEBICMD 0x0080 /* DEBI command. */
#define P_DEBIPAGE 0x0084 /* DEBI page. */
#define P_DEBIAD 0x0088 /* DEBI target address. */
#define P_I2CCTRL 0x008C /* I2C control. */
#define P_I2CSTAT 0x0090 /* I2C status. */
#define P_BASEA2_IN 0x00AC /* Audio input 2 base physical DMAbuf
#define S626_P_PCI_BT_A 0x004C /* Audio DMA burst/threshold control. */
#define S626_P_DEBICFG 0x007C /* DEBI configuration. */
#define S626_P_DEBICMD 0x0080 /* DEBI command. */
#define S626_P_DEBIPAGE 0x0084 /* DEBI page. */
#define S626_P_DEBIAD 0x0088 /* DEBI target address. */
#define S626_P_I2CCTRL 0x008C /* I2C control. */
#define S626_P_I2CSTAT 0x0090 /* I2C status. */
#define S626_P_BASEA2_IN 0x00AC /* Audio input 2 base physical DMAbuf
* address. */
#define P_PROTA2_IN 0x00B0 /* Audio input 2 physical DMAbuf
#define S626_P_PROTA2_IN 0x00B0 /* Audio input 2 physical DMAbuf
* protection address. */
#define P_PAGEA2_IN 0x00B4 /* Audio input 2 paging attributes. */
#define P_BASEA2_OUT 0x00B8 /* Audio output 2 base physical DMAbuf
#define S626_P_PAGEA2_IN 0x00B4 /* Audio input 2 paging attributes. */
#define S626_P_BASEA2_OUT 0x00B8 /* Audio output 2 base physical DMAbuf
* address. */
#define P_PROTA2_OUT 0x00BC /* Audio output 2 physical DMAbuf
#define S626_P_PROTA2_OUT 0x00BC /* Audio output 2 physical DMAbuf
* protection address. */
#define P_PAGEA2_OUT 0x00C0 /* Audio output 2 paging attributes. */
#define P_RPSPAGE0 0x00C4 /* RPS0 page. */
#define P_RPSPAGE1 0x00C8 /* RPS1 page. */
#define P_RPS0_TOUT 0x00D4 /* RPS0 time-out. */
#define P_RPS1_TOUT 0x00D8 /* RPS1 time-out. */
#define P_IER 0x00DC /* Interrupt enable. */
#define P_GPIO 0x00E0 /* General-purpose I/O. */
#define P_EC1SSR 0x00E4 /* Event counter set 1 source select. */
#define P_ECT1R 0x00EC /* Event counter threshold set 1. */
#define P_ACON1 0x00F4 /* Audio control 1. */
#define P_ACON2 0x00F8 /* Audio control 2. */
#define P_MC1 0x00FC /* Master control 1. */
#define P_MC2 0x0100 /* Master control 2. */
#define P_RPSADDR0 0x0104 /* RPS0 instruction pointer. */
#define P_RPSADDR1 0x0108 /* RPS1 instruction pointer. */
#define P_ISR 0x010C /* Interrupt status. */
#define P_PSR 0x0110 /* Primary status. */
#define P_SSR 0x0114 /* Secondary status. */
#define P_EC1R 0x0118 /* Event counter set 1. */
#define P_ADP4 0x0138 /* Logical audio DMA pointer of audio
#define S626_P_PAGEA2_OUT 0x00C0 /* Audio output 2 paging attributes. */
#define S626_P_RPSPAGE0 0x00C4 /* RPS0 page. */
#define S626_P_RPSPAGE1 0x00C8 /* RPS1 page. */
#define S626_P_RPS0_TOUT 0x00D4 /* RPS0 time-out. */
#define S626_P_RPS1_TOUT 0x00D8 /* RPS1 time-out. */
#define S626_P_IER 0x00DC /* Interrupt enable. */
#define S626_P_GPIO 0x00E0 /* General-purpose I/O. */
#define S626_P_EC1SSR 0x00E4 /* Event counter set 1 source select. */
#define S626_P_ECT1R 0x00EC /* Event counter threshold set 1. */
#define S626_P_ACON1 0x00F4 /* Audio control 1. */
#define S626_P_ACON2 0x00F8 /* Audio control 2. */
#define S626_P_MC1 0x00FC /* Master control 1. */
#define S626_P_MC2 0x0100 /* Master control 2. */
#define S626_P_RPSADDR0 0x0104 /* RPS0 instruction pointer. */
#define S626_P_RPSADDR1 0x0108 /* RPS1 instruction pointer. */
#define S626_P_ISR 0x010C /* Interrupt status. */
#define S626_P_PSR 0x0110 /* Primary status. */
#define S626_P_SSR 0x0114 /* Secondary status. */
#define S626_P_EC1R 0x0118 /* Event counter set 1. */
#define S626_P_ADP4 0x0138 /* Logical audio DMA pointer of audio
* input FIFO A2_IN. */
#define P_FB_BUFFER1 0x0144 /* Audio feedback buffer 1. */
#define P_FB_BUFFER2 0x0148 /* Audio feedback buffer 2. */
#define P_TSL1 0x0180 /* Audio time slot list 1. */
#define P_TSL2 0x01C0 /* Audio time slot list 2. */
#define S626_P_FB_BUFFER1 0x0144 /* Audio feedback buffer 1. */
#define S626_P_FB_BUFFER2 0x0148 /* Audio feedback buffer 2. */
#define S626_P_TSL1 0x0180 /* Audio time slot list 1. */
#define S626_P_TSL2 0x01C0 /* Audio time slot list 2. */
/* LOCAL BUS (GATE ARRAY) REGISTER ADDRESS OFFSETS */
/* Analog I/O registers: */
#define LP_DACPOL 0x0082 /* Write DAC polarity. */
#define LP_GSEL 0x0084 /* Write ADC gain. */
#define LP_ISEL 0x0086 /* Write ADC channel select. */
#define S626_LP_DACPOL 0x0082 /* Write DAC polarity. */
#define S626_LP_GSEL 0x0084 /* Write ADC gain. */
#define S626_LP_ISEL 0x0086 /* Write ADC channel select. */
/* Digital I/O registers */
#define LP_RDDIN(x) (0x0040 + (x) * 0x10) /* R: digital input */
#define LP_WRINTSEL(x) (0x0042 + (x) * 0x10) /* W: int enable */
#define LP_WREDGSEL(x) (0x0044 + (x) * 0x10) /* W: edge selection */
#define LP_WRCAPSEL(x) (0x0046 + (x) * 0x10) /* W: capture enable */
#define LP_RDCAPFLG(x) (0x0048 + (x) * 0x10) /* R: edges captured */
#define LP_WRDOUT(x) (0x0048 + (x) * 0x10) /* W: digital output */
#define LP_RDINTSEL(x) (0x004a + (x) * 0x10) /* R: int enable */
#define LP_RDEDGSEL(x) (0x004c + (x) * 0x10) /* R: edge selection */
#define LP_RDCAPSEL(x) (0x004e + (x) * 0x10) /* R: capture enable */
#define S626_LP_RDDIN(x) (0x0040 + (x) * 0x10) /* R: digital input */
#define S626_LP_WRINTSEL(x) (0x0042 + (x) * 0x10) /* W: int enable */
#define S626_LP_WREDGSEL(x) (0x0044 + (x) * 0x10) /* W: edge selection */
#define S626_LP_WRCAPSEL(x) (0x0046 + (x) * 0x10) /* W: capture enable */
#define S626_LP_RDCAPFLG(x) (0x0048 + (x) * 0x10) /* R: edges captured */
#define S626_LP_WRDOUT(x) (0x0048 + (x) * 0x10) /* W: digital output */
#define S626_LP_RDINTSEL(x) (0x004a + (x) * 0x10) /* R: int enable */
#define S626_LP_RDEDGSEL(x) (0x004c + (x) * 0x10) /* R: edge selection */
#define S626_LP_RDCAPSEL(x) (0x004e + (x) * 0x10) /* R: capture enable */
/* Counter Registers (read/write): */
#define LP_CR0A 0x0000 /* 0A setup register. */
#define LP_CR0B 0x0002 /* 0B setup register. */
#define LP_CR1A 0x0004 /* 1A setup register. */
#define LP_CR1B 0x0006 /* 1B setup register. */
#define LP_CR2A 0x0008 /* 2A setup register. */
#define LP_CR2B 0x000A /* 2B setup register. */
#define S626_LP_CR0A 0x0000 /* 0A setup register. */
#define S626_LP_CR0B 0x0002 /* 0B setup register. */
#define S626_LP_CR1A 0x0004 /* 1A setup register. */
#define S626_LP_CR1B 0x0006 /* 1B setup register. */
#define S626_LP_CR2A 0x0008 /* 2A setup register. */
#define S626_LP_CR2B 0x000A /* 2B setup register. */
/* Counter PreLoad (write) and Latch (read) Registers: */
#define LP_CNTR0ALSW 0x000C /* 0A lsw. */
#define LP_CNTR0AMSW 0x000E /* 0A msw. */
#define LP_CNTR0BLSW 0x0010 /* 0B lsw. */
#define LP_CNTR0BMSW 0x0012 /* 0B msw. */
#define LP_CNTR1ALSW 0x0014 /* 1A lsw. */
#define LP_CNTR1AMSW 0x0016 /* 1A msw. */
#define LP_CNTR1BLSW 0x0018 /* 1B lsw. */
#define LP_CNTR1BMSW 0x001A /* 1B msw. */
#define LP_CNTR2ALSW 0x001C /* 2A lsw. */
#define LP_CNTR2AMSW 0x001E /* 2A msw. */
#define LP_CNTR2BLSW 0x0020 /* 2B lsw. */
#define LP_CNTR2BMSW 0x0022 /* 2B msw. */
#define S626_LP_CNTR0ALSW 0x000C /* 0A lsw. */
#define S626_LP_CNTR0AMSW 0x000E /* 0A msw. */
#define S626_LP_CNTR0BLSW 0x0010 /* 0B lsw. */
#define S626_LP_CNTR0BMSW 0x0012 /* 0B msw. */
#define S626_LP_CNTR1ALSW 0x0014 /* 1A lsw. */
#define S626_LP_CNTR1AMSW 0x0016 /* 1A msw. */
#define S626_LP_CNTR1BLSW 0x0018 /* 1B lsw. */
#define S626_LP_CNTR1BMSW 0x001A /* 1B msw. */
#define S626_LP_CNTR2ALSW 0x001C /* 2A lsw. */
#define S626_LP_CNTR2AMSW 0x001E /* 2A msw. */
#define S626_LP_CNTR2BLSW 0x0020 /* 2B lsw. */
#define S626_LP_CNTR2BMSW 0x0022 /* 2B msw. */
/* Miscellaneous Registers (read/write): */
#define LP_MISC1 0x0088 /* Read/write Misc1. */
#define LP_WRMISC2 0x0090 /* Write Misc2. */
#define LP_RDMISC2 0x0082 /* Read Misc2. */
#define S626_LP_MISC1 0x0088 /* Read/write Misc1. */
#define S626_LP_WRMISC2 0x0090 /* Write Misc2. */
#define S626_LP_RDMISC2 0x0082 /* Read Misc2. */
/* Bit masks for MISC1 register that are the same for reads and writes. */
#define MISC1_WENABLE 0x8000 /* enab writes to MISC2 (except Clear
#define S626_MISC1_WENABLE 0x8000 /* enab writes to MISC2 (except Clear
* Watchdog bit). */
#define MISC1_WDISABLE 0x0000 /* Disable writes to MISC2. */
#define MISC1_EDCAP 0x1000 /* Enable edge capture on DIO chans
* specified by LP_WRCAPSELx. */
#define MISC1_NOEDCAP 0x0000 /* Disable edge capture on specified
#define S626_MISC1_WDISABLE 0x0000 /* Disable writes to MISC2. */
#define S626_MISC1_EDCAP 0x1000 /* Enable edge capture on DIO chans
* specified by S626_LP_WRCAPSELx. */
#define S626_MISC1_NOEDCAP 0x0000 /* Disable edge capture on specified
* DIO chans. */
/* Bit masks for MISC1 register reads. */
#define RDMISC1_WDTIMEOUT 0x4000 /* Watchdog timer timed out. */
#define S626_RDMISC1_WDTIMEOUT 0x4000 /* Watchdog timer timed out. */
/* Bit masks for MISC2 register writes. */
#define WRMISC2_WDCLEAR 0x8000 /* Reset watchdog timer to zero. */
#define WRMISC2_CHARGE_ENABLE 0x4000 /* Enable battery trickle charging. */
#define S626_WRMISC2_WDCLEAR 0x8000 /* Reset watchdog timer to zero. */
#define S626_WRMISC2_CHARGE_ENABLE 0x4000 /* Enable battery trickle charging. */
/* Bit masks for MISC2 register that are the same for reads and writes. */
#define MISC2_BATT_ENABLE 0x0008 /* Backup battery enable. */
#define MISC2_WDENABLE 0x0004 /* Watchdog timer enable. */
#define MISC2_WDPERIOD_MASK 0x0003 /* Watchdog interval select mask. */
#define S626_MISC2_BATT_ENABLE 0x0008 /* Backup battery enable. */
#define S626_MISC2_WDENABLE 0x0004 /* Watchdog timer enable. */
#define S626_MISC2_WDPERIOD_MASK 0x0003 /* Watchdog interval select mask. */
/* Bit masks for ACON1 register. */
#define A2_RUN 0x40000000 /* Run A2 based on TSL2. */
#define A1_RUN 0x20000000 /* Run A1 based on TSL1. */
#define A1_SWAP 0x00200000 /* Use big-endian for A1. */
#define A2_SWAP 0x00100000 /* Use big-endian for A2. */
#define WS_MODES 0x00019999 /* WS0 = TSL1 trigger input,
#define S626_A2_RUN 0x40000000 /* Run A2 based on TSL2. */
#define S626_A1_RUN 0x20000000 /* Run A1 based on TSL1. */
#define S626_A1_SWAP 0x00200000 /* Use big-endian for A1. */
#define S626_A2_SWAP 0x00100000 /* Use big-endian for A2. */
#define S626_WS_MODES 0x00019999 /* WS0 = TSL1 trigger input,
* WS1-WS4 = CS* outputs. */
#if PLATFORM == INTEL /* Base ACON1 config: always run A1 based
* on TSL1. */
#define ACON1_BASE (WS_MODES | A1_RUN)
#elif PLATFORM == MOTOROLA
#define ACON1_BASE (WS_MODES | A1_RUN | A1_SWAP | A2_SWAP)
#if S626_PLATFORM == S626_INTEL /* Base ACON1 config: always run
* A1 based on TSL1. */
#define S626_ACON1_BASE (S626_WS_MODES | S626_A1_RUN)
#elif S626_PLATFORM == S626_MOTOROLA
#define S626_ACON1_BASE \
(S626_WS_MODES | S626_A1_RUN | S626_A1_SWAP | S626_A2_SWAP)
#endif
#define ACON1_ADCSTART ACON1_BASE /* Start ADC: run A1
#define S626_ACON1_ADCSTART S626_ACON1_BASE /* Start ADC: run A1
* based on TSL1. */
#define ACON1_DACSTART (ACON1_BASE | A2_RUN)
#define S626_ACON1_DACSTART (S626_ACON1_BASE | S626_A2_RUN)
/* Start transmit to DAC: run A2 based on TSL2. */
#define ACON1_DACSTOP ACON1_BASE /* Halt A2. */
#define S626_ACON1_DACSTOP S626_ACON1_BASE /* Halt A2. */
/* Bit masks for ACON2 register. */
#define A1_CLKSRC_BCLK1 0x00000000 /* A1 bit rate = BCLK1 (ADC). */
#define A2_CLKSRC_X1 0x00800000 /* A2 bit rate = ACLK/1
#define S626_A1_CLKSRC_BCLK1 0x00000000 /* A1 bit rate = BCLK1 (ADC). */
#define S626_A2_CLKSRC_X1 0x00800000 /* A2 bit rate = ACLK/1
* (DACs). */
#define A2_CLKSRC_X2 0x00C00000 /* A2 bit rate = ACLK/2
#define S626_A2_CLKSRC_X2 0x00C00000 /* A2 bit rate = ACLK/2
* (DACs). */
#define A2_CLKSRC_X4 0x01400000 /* A2 bit rate = ACLK/4
#define S626_A2_CLKSRC_X4 0x01400000 /* A2 bit rate = ACLK/4
* (DACs). */
#define INVERT_BCLK2 0x00100000 /* Invert BCLK2 (DACs). */
#define BCLK2_OE 0x00040000 /* Enable BCLK2 (DACs). */
#define ACON2_XORMASK 0x000C0000 /* XOR mask for ACON2
#define S626_INVERT_BCLK2 0x00100000 /* Invert BCLK2 (DACs). */
#define S626_BCLK2_OE 0x00040000 /* Enable BCLK2 (DACs). */
#define S626_ACON2_XORMASK 0x000C0000 /* XOR mask for ACON2
* active-low bits. */
#define ACON2_INIT (ACON2_XORMASK ^ \
(A1_CLKSRC_BCLK1 | A2_CLKSRC_X2 | \
INVERT_BCLK2 | BCLK2_OE))
#define S626_ACON2_INIT (S626_ACON2_XORMASK ^ \
(S626_A1_CLKSRC_BCLK1 | S626_A2_CLKSRC_X2 | \
S626_INVERT_BCLK2 | S626_BCLK2_OE))
/* Bit masks for timeslot records. */
#define WS1 0x40000000 /* WS output to assert. */
#define WS2 0x20000000
#define WS3 0x10000000
#define WS4 0x08000000
#define RSD1 0x01000000 /* Shift A1 data in on SD1. */
#define SDW_A1 0x00800000 /* Store rcv'd char at next char
#define S626_WS1 0x40000000 /* WS output to assert. */
#define S626_WS2 0x20000000
#define S626_WS3 0x10000000
#define S626_WS4 0x08000000
#define S626_RSD1 0x01000000 /* Shift A1 data in on SD1. */
#define S626_SDW_A1 0x00800000 /* Store rcv'd char at next char
* slot of DWORD1 buffer. */
#define SIB_A1 0x00400000 /* Store rcv'd char at next
#define S626_SIB_A1 0x00400000 /* Store rcv'd char at next
* char slot of FB1 buffer. */
#define SF_A1 0x00200000 /* Write unsigned long
#define S626_SF_A1 0x00200000 /* Write unsigned long
* buffer to input FIFO. */
/* Select parallel-to-serial converter's data source: */
#define XFIFO_0 0x00000000 /* Data fifo byte 0. */
#define XFIFO_1 0x00000010 /* Data fifo byte 1. */
#define XFIFO_2 0x00000020 /* Data fifo byte 2. */
#define XFIFO_3 0x00000030 /* Data fifo byte 3. */
#define XFB0 0x00000040 /* FB_BUFFER byte 0. */
#define XFB1 0x00000050 /* FB_BUFFER byte 1. */
#define XFB2 0x00000060 /* FB_BUFFER byte 2. */
#define XFB3 0x00000070 /* FB_BUFFER byte 3. */
#define SIB_A2 0x00000200 /* Store next dword from A2's
#define S626_XFIFO_0 0x00000000 /* Data fifo byte 0. */
#define S626_XFIFO_1 0x00000010 /* Data fifo byte 1. */
#define S626_XFIFO_2 0x00000020 /* Data fifo byte 2. */
#define S626_XFIFO_3 0x00000030 /* Data fifo byte 3. */
#define S626_XFB0 0x00000040 /* FB_BUFFER byte 0. */
#define S626_XFB1 0x00000050 /* FB_BUFFER byte 1. */
#define S626_XFB2 0x00000060 /* FB_BUFFER byte 2. */
#define S626_XFB3 0x00000070 /* FB_BUFFER byte 3. */
#define S626_SIB_A2 0x00000200 /* Store next dword from A2's
* input shifter to FB2
* buffer. */
#define SF_A2 0x00000100 /* Store next dword from A2's
#define S626_SF_A2 0x00000100 /* Store next dword from A2's
* input shifter to its input
* fifo. */
#define LF_A2 0x00000080 /* Load next dword from A2's
#define S626_LF_A2 0x00000080 /* Load next dword from A2's
* output fifo into its
* output dword buffer. */
#define XSD2 0x00000008 /* Shift data out on SD2. */
#define RSD3 0x00001800 /* Shift data in on SD3. */
#define RSD2 0x00001000 /* Shift data in on SD2. */
#define LOW_A2 0x00000002 /* Drive last SD low for 7 clks,
#define S626_XSD2 0x00000008 /* Shift data out on SD2. */
#define S626_RSD3 0x00001800 /* Shift data in on SD3. */
#define S626_RSD2 0x00001000 /* Shift data in on SD2. */
#define S626_LOW_A2 0x00000002 /* Drive last SD low for 7 clks,
* then tri-state. */
#define EOS 0x00000001 /* End of superframe. */
#define S626_EOS 0x00000001 /* End of superframe. */
/* I2C configuration constants. */
#define I2C_CLKSEL 0x0400 /* I2C bit rate =
#define S626_I2C_CLKSEL 0x0400 /* I2C bit rate =
* PCIclk/480 = 68.75 KHz. */
#define I2C_BITRATE 68.75 /* I2C bus data bit rate
* (determined by I2C_CLKSEL)
* in KHz. */
#define I2C_WRTIME 15.0 /* Worst case time, in msec,
#define S626_I2C_BITRATE 68.75 /* I2C bus data bit rate
* (determined by
* S626_I2C_CLKSEL) in KHz. */
#define S626_I2C_WRTIME 15.0 /* Worst case time, in msec,
* for EEPROM internal write
* op. */
/* I2C manifest constants. */
/* Max retries to wait for EEPROM write. */
#define I2C_RETRIES (I2C_WRTIME * I2C_BITRATE / 9.0)
#define I2C_ERR 0x0002 /* I2C control/status flag ERROR. */
#define I2C_BUSY 0x0001 /* I2C control/status flag BUSY. */
#define I2C_ABORT 0x0080 /* I2C status flag ABORT. */
#define I2C_ATTRSTART 0x3 /* I2C attribute START. */
#define I2C_ATTRCONT 0x2 /* I2C attribute CONT. */
#define I2C_ATTRSTOP 0x1 /* I2C attribute STOP. */
#define I2C_ATTRNOP 0x0 /* I2C attribute NOP. */
#define S626_I2C_RETRIES (S626_I2C_WRTIME * S626_I2C_BITRATE / 9.0)
#define S626_I2C_ERR 0x0002 /* I2C control/status flag ERROR. */
#define S626_I2C_BUSY 0x0001 /* I2C control/status flag BUSY. */
#define S626_I2C_ABORT 0x0080 /* I2C status flag ABORT. */
#define S626_I2C_ATTRSTART 0x3 /* I2C attribute START. */
#define S626_I2C_ATTRCONT 0x2 /* I2C attribute CONT. */
#define S626_I2C_ATTRSTOP 0x1 /* I2C attribute STOP. */
#define S626_I2C_ATTRNOP 0x0 /* I2C attribute NOP. */
/* Code macros used for constructing I2C command bytes. */
#define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
#define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
#define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
#define S626_I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
#define S626_I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
#define S626_I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
/* DEBI command constants. */
#define DEBI_CMD_SIZE16 (2 << 17) /* Transfer size is always
#define S626_DEBI_CMD_SIZE16 (2 << 17) /* Transfer size is always
* 2 bytes. */
#define DEBI_CMD_READ 0x00010000 /* Read operation. */
#define DEBI_CMD_WRITE 0x00000000 /* Write operation. */
#define S626_DEBI_CMD_READ 0x00010000 /* Read operation. */
#define S626_DEBI_CMD_WRITE 0x00000000 /* Write operation. */
/* Read immediate 2 bytes. */
#define DEBI_CMD_RDWORD (DEBI_CMD_READ | DEBI_CMD_SIZE16)
#define S626_DEBI_CMD_RDWORD (S626_DEBI_CMD_READ | S626_DEBI_CMD_SIZE16)
/* Write immediate 2 bytes. */
#define DEBI_CMD_WRWORD (DEBI_CMD_WRITE | DEBI_CMD_SIZE16)
#define S626_DEBI_CMD_WRWORD (S626_DEBI_CMD_WRITE | S626_DEBI_CMD_SIZE16)
/* DEBI configuration constants. */
#define DEBI_CFG_XIRQ_EN 0x80000000 /* Enable external interrupt
#define S626_DEBI_CFG_XIRQ_EN 0x80000000 /* Enable external interrupt
* on GPIO3. */
#define DEBI_CFG_XRESUME 0x40000000 /* Resume block */
#define S626_DEBI_CFG_XRESUME 0x40000000 /* Resume block */
/* Transfer when XIRQ
* deasserted. */
#define DEBI_CFG_TOQ 0x03C00000 /* Timeout (15 PCI cycles). */
#define DEBI_CFG_FAST 0x10000000 /* Fast mode enable. */
#define S626_DEBI_CFG_TOQ 0x03C00000 /* Timeout (15 PCI cycles). */
#define S626_DEBI_CFG_FAST 0x10000000 /* Fast mode enable. */
/* 4-bit field that specifies DEBI timeout value in PCI clock cycles: */
#define DEBI_CFG_TOUT_BIT 22 /* Finish DEBI cycle after this many
#define S626_DEBI_CFG_TOUT_BIT 22 /* Finish DEBI cycle after this many
* clocks. */
/* 2-bit field that specifies Endian byte lane steering: */
#define DEBI_CFG_SWAP_NONE 0x00000000 /* Straight - don't swap any
#define S626_DEBI_CFG_SWAP_NONE 0x00000000 /* Straight - don't swap any
* bytes (Intel). */
#define DEBI_CFG_SWAP_2 0x00100000 /* 2-byte swap (Motorola). */
#define DEBI_CFG_SWAP_4 0x00200000 /* 4-byte swap. */
#define DEBI_CFG_SLAVE16 0x00080000 /* Slave is able to serve
#define S626_DEBI_CFG_SWAP_2 0x00100000 /* 2-byte swap (Motorola). */
#define S626_DEBI_CFG_SWAP_4 0x00200000 /* 4-byte swap. */
#define S626_DEBI_CFG_SLAVE16 0x00080000 /* Slave is able to serve
* 16-bit cycles. */
#define DEBI_CFG_INC 0x00040000 /* Enable address increment
#define S626_DEBI_CFG_INC 0x00040000 /* Enable address increment
* for block transfers. */
#define DEBI_CFG_INTEL 0x00020000 /* Intel style local bus. */
#define DEBI_CFG_TIMEROFF 0x00010000 /* Disable timer. */
#define S626_DEBI_CFG_INTEL 0x00020000 /* Intel style local bus. */
#define S626_DEBI_CFG_TIMEROFF 0x00010000 /* Disable timer. */
#if PLATFORM == INTEL
#if S626_PLATFORM == S626_INTEL
#define DEBI_TOUT 7 /* Wait 7 PCI clocks (212 ns) before
#define S626_DEBI_TOUT 7 /* Wait 7 PCI clocks (212 ns) before
* polling RDY. */
/* Intel byte lane steering (pass through all byte lanes). */
#define DEBI_SWAP DEBI_CFG_SWAP_NONE
#define S626_DEBI_SWAP S626_DEBI_CFG_SWAP_NONE
#elif PLATFORM == MOTOROLA
#elif S626_PLATFORM == S626_MOTOROLA
#define DEBI_TOUT 15 /* Wait 15 PCI clocks (454 ns) maximum
#define S626_DEBI_TOUT 15 /* Wait 15 PCI clocks (454 ns) maximum
* before timing out. */
/* Motorola byte lane steering. */
#define DEBI_SWAP DEBI_CFG_SWAP_2
#define S626_DEBI_SWAP S626_DEBI_CFG_SWAP_2
#endif
/* DEBI page table constants. */
#define DEBI_PAGE_DISABLE 0x00000000 /* Paging disable. */
#define S626_DEBI_PAGE_DISABLE 0x00000000 /* Paging disable. */
/* ******* EXTRA FROM OTHER SENSORAY * .h ******* */
/* LoadSrc values: */
#define LOADSRC_INDX 0 /* Preload core in response to Index. */
#define LOADSRC_OVER 1 /* Preload core in response to
#define S626_LOADSRC_INDX 0 /* Preload core in response to Index. */
#define S626_LOADSRC_OVER 1 /* Preload core in response to
* Overflow. */
#define LOADSRCB_OVERA 2 /* Preload B core in response to
#define S626_LOADSRCB_OVERA 2 /* Preload B core in response to
* A Overflow. */
#define LOADSRC_NONE 3 /* Never preload core. */
#define S626_LOADSRC_NONE 3 /* Never preload core. */
/* IntSrc values: */
#define INTSRC_NONE 0 /* Interrupts disabled. */
#define INTSRC_OVER 1 /* Interrupt on Overflow. */
#define INTSRC_INDX 2 /* Interrupt on Index. */
#define INTSRC_BOTH 3 /* Interrupt on Index or Overflow. */
#define S626_INTSRC_NONE 0 /* Interrupts disabled. */
#define S626_INTSRC_OVER 1 /* Interrupt on Overflow. */
#define S626_INTSRC_INDX 2 /* Interrupt on Index. */
#define S626_INTSRC_BOTH 3 /* Interrupt on Index or Overflow. */
/* LatchSrc values: */
#define LATCHSRC_AB_READ 0 /* Latch on read. */
#define LATCHSRC_A_INDXA 1 /* Latch A on A Index. */
#define LATCHSRC_B_INDXB 2 /* Latch B on B Index. */
#define LATCHSRC_B_OVERA 3 /* Latch B on A Overflow. */
#define S626_LATCHSRC_AB_READ 0 /* Latch on read. */
#define S626_LATCHSRC_A_INDXA 1 /* Latch A on A Index. */
#define S626_LATCHSRC_B_INDXB 2 /* Latch B on B Index. */
#define S626_LATCHSRC_B_OVERA 3 /* Latch B on A Overflow. */
/* IndxSrc values: */
#define INDXSRC_HARD 0 /* Hardware or software index. */
#define INDXSRC_SOFT 1 /* Software index only. */
#define S626_INDXSRC_HARD 0 /* Hardware or software index. */
#define S626_INDXSRC_SOFT 1 /* Software index only. */
/* IndxPol values: */
#define INDXPOL_POS 0 /* Index input is active high. */
#define INDXPOL_NEG 1 /* Index input is active low. */
#define S626_INDXPOL_POS 0 /* Index input is active high. */
#define S626_INDXPOL_NEG 1 /* Index input is active low. */
/* ClkSrc values: */
#define CLKSRC_COUNTER 0 /* Counter mode. */
#define CLKSRC_TIMER 2 /* Timer mode. */
#define CLKSRC_EXTENDER 3 /* Extender mode. */
#define S626_CLKSRC_COUNTER 0 /* Counter mode. */
#define S626_CLKSRC_TIMER 2 /* Timer mode. */
#define S626_CLKSRC_EXTENDER 3 /* Extender mode. */
/* ClkPol values: */
#define CLKPOL_POS 0 /* Counter/Extender clock is
#define S626_CLKPOL_POS 0 /* Counter/Extender clock is
* active high. */
#define CLKPOL_NEG 1 /* Counter/Extender clock is
#define S626_CLKPOL_NEG 1 /* Counter/Extender clock is
* active low. */
#define CNTDIR_UP 0 /* Timer counts up. */
#define CNTDIR_DOWN 1 /* Timer counts down. */
#define S626_CNTDIR_UP 0 /* Timer counts up. */
#define S626_CNTDIR_DOWN 1 /* Timer counts down. */
/* ClkEnab values: */
#define CLKENAB_ALWAYS 0 /* Clock always enabled. */
#define CLKENAB_INDEX 1 /* Clock is enabled by index. */
#define S626_CLKENAB_ALWAYS 0 /* Clock always enabled. */
#define S626_CLKENAB_INDEX 1 /* Clock is enabled by index. */
/* ClkMult values: */
#define CLKMULT_4X 0 /* 4x clock multiplier. */
#define CLKMULT_2X 1 /* 2x clock multiplier. */
#define CLKMULT_1X 2 /* 1x clock multiplier. */
#define S626_CLKMULT_4X 0 /* 4x clock multiplier. */
#define S626_CLKMULT_2X 1 /* 2x clock multiplier. */
#define S626_CLKMULT_1X 2 /* 1x clock multiplier. */
/* Bit Field positions in COUNTER_SETUP structure: */
#define BF_LOADSRC 9 /* Preload trigger. */
#define BF_INDXSRC 7 /* Index source. */
#define BF_INDXPOL 6 /* Index polarity. */
#define BF_CLKSRC 4 /* Clock source. */
#define BF_CLKPOL 3 /* Clock polarity/count direction. */
#define BF_CLKMULT 1 /* Clock multiplier. */
#define BF_CLKENAB 0 /* Clock enable. */
/*
* Enumerated counter operating modes specified by ClkSrc bit field in
* a COUNTER_SETUP.
*/
#define CLKSRC_COUNTER 0 /* Counter: ENC_C clock,
* ENC_D direction. */
#define CLKSRC_TIMER 2 /* Timer: SYS_C clock, direction
* specified by ClkPol. */
#define CLKSRC_EXTENDER 3 /* Extender: OVR_A clock,
* ENC_D direction. */
#define S626_BF_LOADSRC 9 /* Preload trigger. */
#define S626_BF_INDXSRC 7 /* Index source. */
#define S626_BF_INDXPOL 6 /* Index polarity. */
#define S626_BF_CLKSRC 4 /* Clock source. */
#define S626_BF_CLKPOL 3 /* Clock polarity/count direction. */
#define S626_BF_CLKMULT 1 /* Clock multiplier. */
#define S626_BF_CLKENAB 0 /* Clock enable. */
/* Enumerated counter clock multipliers. */
#define MULT_X0 0x0003 /* Supports no multipliers;
#define S626_MULT_X0 0x0003 /* Supports no multipliers;
* fixed physical multiplier = 3. */
#define MULT_X1 0x0002 /* Supports multiplier x1;
#define S626_MULT_X1 0x0002 /* Supports multiplier x1;
* fixed physical multiplier = 2. */
#define MULT_X2 0x0001 /* Supports multipliers x1, x2;
#define S626_MULT_X2 0x0001 /* Supports multipliers x1, x2;
* physical multipliers = 1 or 2. */
#define MULT_X4 0x0000 /* Supports multipliers x1, x2, x4;
#define S626_MULT_X4 0x0000 /* Supports multipliers x1, x2, x4;
* physical multipliers = 0, 1 or 2. */
/* Sanity-check limits for parameters. */
#define NUM_COUNTERS 6 /* Maximum valid counter
#define S626_NUM_COUNTERS 6 /* Maximum valid counter
* logical channel number. */
#define NUM_INTSOURCES 4
#define NUM_LATCHSOURCES 4
#define NUM_CLKMULTS 4
#define NUM_CLKSOURCES 4
#define NUM_CLKPOLS 2
#define NUM_INDEXPOLS 2
#define NUM_INDEXSOURCES 2
#define NUM_LOADTRIGS 4
#define S626_NUM_INTSOURCES 4
#define S626_NUM_LATCHSOURCES 4
#define S626_NUM_CLKMULTS 4
#define S626_NUM_CLKSOURCES 4
#define S626_NUM_CLKPOLS 2
#define S626_NUM_INDEXPOLS 2
#define S626_NUM_INDEXSOURCES 2
#define S626_NUM_LOADTRIGS 4
/* Bit field positions in CRA and CRB counter control registers. */
/* Bit field positions in CRA: */
#define CRABIT_INDXSRC_B 14 /* B index source. */
#define CRABIT_CLKSRC_B 12 /* B clock source. */
#define CRABIT_INDXPOL_A 11 /* A index polarity. */
#define CRABIT_LOADSRC_A 9 /* A preload trigger. */
#define CRABIT_CLKMULT_A 7 /* A clock multiplier. */
#define CRABIT_INTSRC_A 5 /* A interrupt source. */
#define CRABIT_CLKPOL_A 4 /* A clock polarity. */
#define CRABIT_INDXSRC_A 2 /* A index source. */
#define CRABIT_CLKSRC_A 0 /* A clock source. */
#define S626_CRABIT_INDXSRC_B 14 /* B index source. */
#define S626_CRABIT_CLKSRC_B 12 /* B clock source. */
#define S626_CRABIT_INDXPOL_A 11 /* A index polarity. */
#define S626_CRABIT_LOADSRC_A 9 /* A preload trigger. */
#define S626_CRABIT_CLKMULT_A 7 /* A clock multiplier. */
#define S626_CRABIT_INTSRC_A 5 /* A interrupt source. */
#define S626_CRABIT_CLKPOL_A 4 /* A clock polarity. */
#define S626_CRABIT_INDXSRC_A 2 /* A index source. */
#define S626_CRABIT_CLKSRC_A 0 /* A clock source. */
/* Bit field positions in CRB: */
#define CRBBIT_INTRESETCMD 15 /* Interrupt reset command. */
#define CRBBIT_INTRESET_B 14 /* B interrupt reset enable. */
#define CRBBIT_INTRESET_A 13 /* A interrupt reset enable. */
#define CRBBIT_CLKENAB_A 12 /* A clock enable. */
#define CRBBIT_INTSRC_B 10 /* B interrupt source. */
#define CRBBIT_LATCHSRC 8 /* A/B latch source. */
#define CRBBIT_LOADSRC_B 6 /* B preload trigger. */
#define CRBBIT_CLKMULT_B 3 /* B clock multiplier. */
#define CRBBIT_CLKENAB_B 2 /* B clock enable. */
#define CRBBIT_INDXPOL_B 1 /* B index polarity. */
#define CRBBIT_CLKPOL_B 0 /* B clock polarity. */
#define S626_CRBBIT_INTRESETCMD 15 /* Interrupt reset command. */
#define S626_CRBBIT_INTRESET_B 14 /* B interrupt reset enable. */
#define S626_CRBBIT_INTRESET_A 13 /* A interrupt reset enable. */
#define S626_CRBBIT_CLKENAB_A 12 /* A clock enable. */
#define S626_CRBBIT_INTSRC_B 10 /* B interrupt source. */
#define S626_CRBBIT_LATCHSRC 8 /* A/B latch source. */
#define S626_CRBBIT_LOADSRC_B 6 /* B preload trigger. */
#define S626_CRBBIT_CLKMULT_B 3 /* B clock multiplier. */
#define S626_CRBBIT_CLKENAB_B 2 /* B clock enable. */
#define S626_CRBBIT_INDXPOL_B 1 /* B index polarity. */
#define S626_CRBBIT_CLKPOL_B 0 /* B clock polarity. */
/* Bit field masks for CRA and CRB. */
#define CRAMSK_INDXSRC_B (3 << CRABIT_INDXSRC_B)
#define CRAMSK_CLKSRC_B (3 << CRABIT_CLKSRC_B)
#define CRAMSK_INDXPOL_A (1 << CRABIT_INDXPOL_A)
#define CRAMSK_LOADSRC_A (3 << CRABIT_LOADSRC_A)
#define CRAMSK_CLKMULT_A (3 << CRABIT_CLKMULT_A)
#define CRAMSK_INTSRC_A (3 << CRABIT_INTSRC_A)
#define CRAMSK_CLKPOL_A (3 << CRABIT_CLKPOL_A)
#define CRAMSK_INDXSRC_A (3 << CRABIT_INDXSRC_A)
#define CRAMSK_CLKSRC_A (3 << CRABIT_CLKSRC_A)
#define CRBMSK_INTRESETCMD (1 << CRBBIT_INTRESETCMD)
#define CRBMSK_INTRESET_B (1 << CRBBIT_INTRESET_B)
#define CRBMSK_INTRESET_A (1 << CRBBIT_INTRESET_A)
#define CRBMSK_CLKENAB_A (1 << CRBBIT_CLKENAB_A)
#define CRBMSK_INTSRC_B (3 << CRBBIT_INTSRC_B)
#define CRBMSK_LATCHSRC (3 << CRBBIT_LATCHSRC)
#define CRBMSK_LOADSRC_B (3 << CRBBIT_LOADSRC_B)
#define CRBMSK_CLKMULT_B (3 << CRBBIT_CLKMULT_B)
#define CRBMSK_CLKENAB_B (1 << CRBBIT_CLKENAB_B)
#define CRBMSK_INDXPOL_B (1 << CRBBIT_INDXPOL_B)
#define CRBMSK_CLKPOL_B (1 << CRBBIT_CLKPOL_B)
#define S626_CRAMSK_INDXSRC_B (3 << S626_CRABIT_INDXSRC_B)
#define S626_CRAMSK_CLKSRC_B (3 << S626_CRABIT_CLKSRC_B)
#define S626_CRAMSK_INDXPOL_A (1 << S626_CRABIT_INDXPOL_A)
#define S626_CRAMSK_LOADSRC_A (3 << S626_CRABIT_LOADSRC_A)
#define S626_CRAMSK_CLKMULT_A (3 << S626_CRABIT_CLKMULT_A)
#define S626_CRAMSK_INTSRC_A (3 << S626_CRABIT_INTSRC_A)
#define S626_CRAMSK_CLKPOL_A (3 << S626_CRABIT_CLKPOL_A)
#define S626_CRAMSK_INDXSRC_A (3 << S626_CRABIT_INDXSRC_A)
#define S626_CRAMSK_CLKSRC_A (3 << S626_CRABIT_CLKSRC_A)
#define S626_CRBMSK_INTRESETCMD (1 << S626_CRBBIT_INTRESETCMD)
#define S626_CRBMSK_INTRESET_B (1 << S626_CRBBIT_INTRESET_B)
#define S626_CRBMSK_INTRESET_A (1 << S626_CRBBIT_INTRESET_A)
#define S626_CRBMSK_CLKENAB_A (1 << S626_CRBBIT_CLKENAB_A)
#define S626_CRBMSK_INTSRC_B (3 << S626_CRBBIT_INTSRC_B)
#define S626_CRBMSK_LATCHSRC (3 << S626_CRBBIT_LATCHSRC)
#define S626_CRBMSK_LOADSRC_B (3 << S626_CRBBIT_LOADSRC_B)
#define S626_CRBMSK_CLKMULT_B (3 << S626_CRBBIT_CLKMULT_B)
#define S626_CRBMSK_CLKENAB_B (1 << S626_CRBBIT_CLKENAB_B)
#define S626_CRBMSK_INDXPOL_B (1 << S626_CRBBIT_INDXPOL_B)
#define S626_CRBMSK_CLKPOL_B (1 << S626_CRBBIT_CLKPOL_B)
/* Interrupt reset control bits. */
#define CRBMSK_INTCTRL \
(CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A | CRBMSK_INTRESET_B)
#define S626_CRBMSK_INTCTRL (S626_CRBMSK_INTRESETCMD | \
S626_CRBMSK_INTRESET_A | \
S626_CRBMSK_INTRESET_B)
/* Bit field positions for standardized SETUP structure. */
#define STDBIT_INTSRC 13
#define STDBIT_LATCHSRC 11
#define STDBIT_LOADSRC 9
#define STDBIT_INDXSRC 7
#define STDBIT_INDXPOL 6
#define STDBIT_CLKSRC 4
#define STDBIT_CLKPOL 3
#define STDBIT_CLKMULT 1
#define STDBIT_CLKENAB 0
#define S626_STDBIT_INTSRC 13
#define S626_STDBIT_LATCHSRC 11
#define S626_STDBIT_LOADSRC 9
#define S626_STDBIT_INDXSRC 7
#define S626_STDBIT_INDXPOL 6
#define S626_STDBIT_CLKSRC 4
#define S626_STDBIT_CLKPOL 3
#define S626_STDBIT_CLKMULT 1
#define S626_STDBIT_CLKENAB 0
/* Bit field masks for standardized SETUP structure. */
#define STDMSK_INTSRC (3 << STDBIT_INTSRC)
#define STDMSK_LATCHSRC (3 << STDBIT_LATCHSRC)
#define STDMSK_LOADSRC (3 << STDBIT_LOADSRC)
#define STDMSK_INDXSRC (1 << STDBIT_INDXSRC)
#define STDMSK_INDXPOL (1 << STDBIT_INDXPOL)
#define STDMSK_CLKSRC (3 << STDBIT_CLKSRC)
#define STDMSK_CLKPOL (1 << STDBIT_CLKPOL)
#define STDMSK_CLKMULT (3 << STDBIT_CLKMULT)
#define STDMSK_CLKENAB (1 << STDBIT_CLKENAB)
#define S626_STDMSK_INTSRC (3 << S626_STDBIT_INTSRC)
#define S626_STDMSK_LATCHSRC (3 << S626_STDBIT_LATCHSRC)
#define S626_STDMSK_LOADSRC (3 << S626_STDBIT_LOADSRC)
#define S626_STDMSK_INDXSRC (1 << S626_STDBIT_INDXSRC)
#define S626_STDMSK_INDXPOL (1 << S626_STDBIT_INDXPOL)
#define S626_STDMSK_CLKSRC (3 << S626_STDBIT_CLKSRC)
#define S626_STDMSK_CLKPOL (1 << S626_STDBIT_CLKPOL)
#define S626_STDMSK_CLKMULT (3 << S626_STDBIT_CLKMULT)
#define S626_STDMSK_CLKENAB (1 << S626_STDBIT_CLKENAB)
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment