Commit da3bbdd4 authored by Kentaro Makita's avatar Kentaro Makita Committed by Linus Torvalds

fix soft lock up at NFS mount via per-SB LRU-list of unused dentries

[Summary]

 Split LRU-list of unused dentries to one per superblock to avoid soft
 lock up during NFS mounts and remounting of any filesystem.

 Previously I posted here:
 http://lkml.org/lkml/2008/3/5/590

[Descriptions]

- background

  dentry_unused is a list of dentries which are not referenced.
  dentry_unused grows up when references on directories or files are
  released.  This list can be very long if there is huge free memory.

- the problem

  When shrink_dcache_sb() is called, it scans all dentry_unused linearly
  under spin_lock(), and if dentry->d_sb is differnt from given
  superblock, scan next dentry.  This scan costs very much if there are
  many entries, and very ineffective if there are many superblocks.

  IOW, When we need to shrink unused dentries on one dentry, but scans
  unused dentries on all superblocks in the system.  For example, we scan
  500 dentries to unmount a filesystem, but scans 1,000,000 or more unused
  dentries on other superblocks.

  In our case , At mounting NFS*, shrink_dcache_sb() is called to shrink
  unused dentries on NFS, but scans 100,000,000 unused dentries on
  superblocks in the system such as local ext3 filesystems.  I hear NFS
  mounting took 1 min on some system in use.

* : NFS uses virtual filesystem in rpc layer, so NFS is affected by
  this problem.

  100,000,000 is possible number on large systems.

  Per-superblock LRU of unused dentried can reduce the cost in
  reasonable manner.

- How to fix

  I found this problem is solved by David Chinner's "Per-superblock
  unused dentry LRU lists V3"(1), so I rebase it and add some fix to
  reclaim with fairness, which is in Andrew Morton's comments(2).

  1) http://lkml.org/lkml/2006/5/25/318
  2) http://lkml.org/lkml/2006/5/25/320

  Split LRU-list of unused dentries to each superblocks.  Then, NFS
  mounting will check dentries under a superblock instead of all.  But
  this spliting will break LRU of dentry-unused.  So, I've attempted to
  make reclaim unused dentrins with fairness by calculate number of
  dentries to scan on this sb based on following way

  number of dentries to scan on this sb =
  count * (number of dentries on this sb / number of dentries in the machine)

- ToDo
 - I have to measuring performance number and do stress tests.

 - When unmount occurs during prune_dcache(), scanning on same
  superblock, It is unable to reach next superblock because it is gone
  away.  We restart scannig superblock from first one, it causes
  unfairness of reclaim unused dentries on first superblock.  But I think
  this happens very rarely.

- Test Results

  Result on 6GB boxes with excessive unused dentries.

Without patch:

$ cat /proc/sys/fs/dentry-state
10181835        10180203        45      0       0       0
# mount -t nfs 10.124.60.70:/work/kernel-src nfs
real    0m1.830s
user    0m0.001s
sys     0m1.653s

 With this patch:
$ cat /proc/sys/fs/dentry-state
10236610        10234751        45      0       0       0
# mount -t nfs 10.124.60.70:/work/kernel-src nfs
real    0m0.106s
user    0m0.002s
sys     0m0.032s

[akpm@linux-foundation.org: fix comments]
Signed-off-by: default avatarKentaro Makita <k-makita@np.css.fujitsu.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: David Chinner <dgc@sgi.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 3c82d0ce
This diff is collapsed.
...@@ -70,6 +70,7 @@ static struct super_block *alloc_super(struct file_system_type *type) ...@@ -70,6 +70,7 @@ static struct super_block *alloc_super(struct file_system_type *type)
INIT_LIST_HEAD(&s->s_instances); INIT_LIST_HEAD(&s->s_instances);
INIT_HLIST_HEAD(&s->s_anon); INIT_HLIST_HEAD(&s->s_anon);
INIT_LIST_HEAD(&s->s_inodes); INIT_LIST_HEAD(&s->s_inodes);
INIT_LIST_HEAD(&s->s_dentry_lru);
init_rwsem(&s->s_umount); init_rwsem(&s->s_umount);
mutex_init(&s->s_lock); mutex_init(&s->s_lock);
lockdep_set_class(&s->s_umount, &type->s_umount_key); lockdep_set_class(&s->s_umount, &type->s_umount_key);
......
...@@ -1025,6 +1025,7 @@ extern int send_sigurg(struct fown_struct *fown); ...@@ -1025,6 +1025,7 @@ extern int send_sigurg(struct fown_struct *fown);
extern struct list_head super_blocks; extern struct list_head super_blocks;
extern spinlock_t sb_lock; extern spinlock_t sb_lock;
#define sb_entry(list) list_entry((list), struct super_block, s_list)
#define S_BIAS (1<<30) #define S_BIAS (1<<30)
struct super_block { struct super_block {
struct list_head s_list; /* Keep this first */ struct list_head s_list; /* Keep this first */
...@@ -1058,6 +1059,9 @@ struct super_block { ...@@ -1058,6 +1059,9 @@ struct super_block {
struct list_head s_more_io; /* parked for more writeback */ struct list_head s_more_io; /* parked for more writeback */
struct hlist_head s_anon; /* anonymous dentries for (nfs) exporting */ struct hlist_head s_anon; /* anonymous dentries for (nfs) exporting */
struct list_head s_files; struct list_head s_files;
/* s_dentry_lru and s_nr_dentry_unused are protected by dcache_lock */
struct list_head s_dentry_lru; /* unused dentry lru */
int s_nr_dentry_unused; /* # of dentry on lru */
struct block_device *s_bdev; struct block_device *s_bdev;
struct mtd_info *s_mtd; struct mtd_info *s_mtd;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment