Commit dd7b7972 authored by Linus Walleij's avatar Linus Walleij Committed by Herbert Xu

crypto: ux500/hash - delete driver

It turns out we can just modify the newer STM32 HASH driver
to be used with Ux500 and now that we have done that, delete
the old and sparsely maintained Ux500 HASH driver.
Signed-off-by: default avatarLinus Walleij <linus.walleij@linaro.org>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent b56403a2
...@@ -390,16 +390,6 @@ if CRYPTO_DEV_NX ...@@ -390,16 +390,6 @@ if CRYPTO_DEV_NX
source "drivers/crypto/nx/Kconfig" source "drivers/crypto/nx/Kconfig"
endif endif
config CRYPTO_DEV_UX500
tristate "Driver for ST-Ericsson UX500 crypto hardware acceleration"
depends on ARCH_U8500
help
Driver for ST-Ericsson UX500 crypto engine.
if CRYPTO_DEV_UX500
source "drivers/crypto/ux500/Kconfig"
endif # if CRYPTO_DEV_UX500
config CRYPTO_DEV_ATMEL_AUTHENC config CRYPTO_DEV_ATMEL_AUTHENC
bool "Support for Atmel IPSEC/SSL hw accelerator" bool "Support for Atmel IPSEC/SSL hw accelerator"
depends on ARCH_AT91 || COMPILE_TEST depends on ARCH_AT91 || COMPILE_TEST
......
...@@ -43,7 +43,6 @@ obj-$(CONFIG_CRYPTO_DEV_SAHARA) += sahara.o ...@@ -43,7 +43,6 @@ obj-$(CONFIG_CRYPTO_DEV_SAHARA) += sahara.o
obj-$(CONFIG_CRYPTO_DEV_SL3516) += gemini/ obj-$(CONFIG_CRYPTO_DEV_SL3516) += gemini/
obj-y += stm32/ obj-y += stm32/
obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
obj-$(CONFIG_CRYPTO_DEV_UX500) += ux500/
obj-$(CONFIG_CRYPTO_DEV_VIRTIO) += virtio/ obj-$(CONFIG_CRYPTO_DEV_VIRTIO) += virtio/
obj-$(CONFIG_CRYPTO_DEV_VMX) += vmx/ obj-$(CONFIG_CRYPTO_DEV_VMX) += vmx/
obj-$(CONFIG_CRYPTO_DEV_BCM_SPU) += bcm/ obj-$(CONFIG_CRYPTO_DEV_BCM_SPU) += bcm/
......
# SPDX-License-Identifier: GPL-2.0-only
#
# Copyright (C) ST-Ericsson SA 2010
# Author: Shujuan Chen (shujuan.chen@stericsson.com)
#
config CRYPTO_DEV_UX500_HASH
tristate "UX500 crypto driver for HASH block"
depends on CRYPTO_DEV_UX500
select CRYPTO_HASH
select CRYPTO_SHA1
select CRYPTO_SHA256
help
This selects the hash driver for the UX500_HASH hardware.
Depends on UX500/STM DMA if running in DMA mode.
config CRYPTO_DEV_UX500_DEBUG
bool "Activate debug-mode for UX500 crypto driver for HASH block"
depends on CRYPTO_DEV_UX500_HASH
help
Say Y if you want to add debug prints to ux500_hash devices.
# SPDX-License-Identifier: GPL-2.0-only
#
# Copyright (C) ST-Ericsson SA 2010
# Author: Shujuan Chen (shujuan.chen@stericsson.com)
#
obj-$(CONFIG_CRYPTO_DEV_UX500_HASH) += hash/
# SPDX-License-Identifier: GPL-2.0-only
#
# Copyright (C) ST-Ericsson SA 2010
# Author: Shujuan Chen (shujuan.chen@stericsson.com)
#
ifdef CONFIG_CRYPTO_DEV_UX500_DEBUG
CFLAGS_hash_core.o := -DDEBUG
endif
obj-$(CONFIG_CRYPTO_DEV_UX500_HASH) += ux500_hash.o
ux500_hash-objs := hash_core.o
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen (shujuan.chen@stericsson.com)
* Author: Joakim Bech (joakim.xx.bech@stericsson.com)
* Author: Berne Hebark (berne.hebark@stericsson.com))
*/
#ifndef _HASH_ALG_H
#define _HASH_ALG_H
#include <linux/bitops.h>
#define HASH_BLOCK_SIZE 64
#define HASH_DMA_FIFO 4
#define HASH_DMA_ALIGN_SIZE 4
#define HASH_DMA_PERFORMANCE_MIN_SIZE 1024
#define HASH_BYTES_PER_WORD 4
/* Maximum value of the length's high word */
#define HASH_HIGH_WORD_MAX_VAL 0xFFFFFFFFUL
/* Power on Reset values HASH registers */
#define HASH_RESET_CR_VALUE 0x0
#define HASH_RESET_STR_VALUE 0x0
/* Number of context swap registers */
#define HASH_CSR_COUNT 52
#define HASH_RESET_CSRX_REG_VALUE 0x0
#define HASH_RESET_CSFULL_REG_VALUE 0x0
#define HASH_RESET_CSDATAIN_REG_VALUE 0x0
#define HASH_RESET_INDEX_VAL 0x0
#define HASH_RESET_BIT_INDEX_VAL 0x0
#define HASH_RESET_BUFFER_VAL 0x0
#define HASH_RESET_LEN_HIGH_VAL 0x0
#define HASH_RESET_LEN_LOW_VAL 0x0
/* Control register bitfields */
#define HASH_CR_RESUME_MASK 0x11FCF
#define HASH_CR_SWITCHON_POS 31
#define HASH_CR_SWITCHON_MASK BIT(31)
#define HASH_CR_EMPTYMSG_POS 20
#define HASH_CR_EMPTYMSG_MASK BIT(20)
#define HASH_CR_DINF_POS 12
#define HASH_CR_DINF_MASK BIT(12)
#define HASH_CR_NBW_POS 8
#define HASH_CR_NBW_MASK 0x00000F00UL
#define HASH_CR_LKEY_POS 16
#define HASH_CR_LKEY_MASK BIT(16)
#define HASH_CR_ALGO_POS 7
#define HASH_CR_ALGO_MASK BIT(7)
#define HASH_CR_MODE_POS 6
#define HASH_CR_MODE_MASK BIT(6)
#define HASH_CR_DATAFORM_POS 4
#define HASH_CR_DATAFORM_MASK (BIT(4) | BIT(5))
#define HASH_CR_DMAE_POS 3
#define HASH_CR_DMAE_MASK BIT(3)
#define HASH_CR_INIT_POS 2
#define HASH_CR_INIT_MASK BIT(2)
#define HASH_CR_PRIVN_POS 1
#define HASH_CR_PRIVN_MASK BIT(1)
#define HASH_CR_SECN_POS 0
#define HASH_CR_SECN_MASK BIT(0)
/* Start register bitfields */
#define HASH_STR_DCAL_POS 8
#define HASH_STR_DCAL_MASK BIT(8)
#define HASH_STR_DEFAULT 0x0
#define HASH_STR_NBLW_POS 0
#define HASH_STR_NBLW_MASK 0x0000001FUL
#define HASH_NBLW_MAX_VAL 0x1F
/* PrimeCell IDs */
#define HASH_P_ID0 0xE0
#define HASH_P_ID1 0x05
#define HASH_P_ID2 0x38
#define HASH_P_ID3 0x00
#define HASH_CELL_ID0 0x0D
#define HASH_CELL_ID1 0xF0
#define HASH_CELL_ID2 0x05
#define HASH_CELL_ID3 0xB1
#define HASH_SET_BITS(reg_name, mask) \
writel_relaxed((readl_relaxed(reg_name) | mask), reg_name)
#define HASH_CLEAR_BITS(reg_name, mask) \
writel_relaxed((readl_relaxed(reg_name) & ~mask), reg_name)
#define HASH_PUT_BITS(reg, val, shift, mask) \
writel_relaxed(((readl(reg) & ~(mask)) | \
(((u32)val << shift) & (mask))), reg)
#define HASH_SET_DIN(val, len) writesl(&device_data->base->din, (val), (len))
#define HASH_INITIALIZE \
HASH_PUT_BITS( \
&device_data->base->cr, \
0x01, HASH_CR_INIT_POS, \
HASH_CR_INIT_MASK)
#define HASH_SET_DATA_FORMAT(data_format) \
HASH_PUT_BITS( \
&device_data->base->cr, \
(u32) (data_format), HASH_CR_DATAFORM_POS, \
HASH_CR_DATAFORM_MASK)
#define HASH_SET_NBLW(val) \
HASH_PUT_BITS( \
&device_data->base->str, \
(u32) (val), HASH_STR_NBLW_POS, \
HASH_STR_NBLW_MASK)
#define HASH_SET_DCAL \
HASH_PUT_BITS( \
&device_data->base->str, \
0x01, HASH_STR_DCAL_POS, \
HASH_STR_DCAL_MASK)
/* Hardware access method */
enum hash_mode {
HASH_MODE_CPU,
HASH_MODE_DMA
};
/**
* struct uint64 - Structure to handle 64 bits integers.
* @high_word: Most significant bits.
* @low_word: Least significant bits.
*
* Used to handle 64 bits integers.
*/
struct uint64 {
u32 high_word;
u32 low_word;
};
/**
* struct hash_register - Contains all registers in ux500 hash hardware.
* @cr: HASH control register (0x000).
* @din: HASH data input register (0x004).
* @str: HASH start register (0x008).
* @hx: HASH digest register 0..7 (0x00c-0x01C).
* @padding0: Reserved (0x02C).
* @itcr: Integration test control register (0x080).
* @itip: Integration test input register (0x084).
* @itop: Integration test output register (0x088).
* @padding1: Reserved (0x08C).
* @csfull: HASH context full register (0x0F8).
* @csdatain: HASH context swap data input register (0x0FC).
* @csrx: HASH context swap register 0..51 (0x100-0x1CC).
* @padding2: Reserved (0x1D0).
* @periphid0: HASH peripheral identification register 0 (0xFE0).
* @periphid1: HASH peripheral identification register 1 (0xFE4).
* @periphid2: HASH peripheral identification register 2 (0xFE8).
* @periphid3: HASH peripheral identification register 3 (0xFEC).
* @cellid0: HASH PCell identification register 0 (0xFF0).
* @cellid1: HASH PCell identification register 1 (0xFF4).
* @cellid2: HASH PCell identification register 2 (0xFF8).
* @cellid3: HASH PCell identification register 3 (0xFFC).
*
* The device communicates to the HASH via 32-bit-wide control registers
* accessible via the 32-bit width AMBA rev. 2.0 AHB Bus. Below is a structure
* with the registers used.
*/
struct hash_register {
u32 cr;
u32 din;
u32 str;
u32 hx[8];
u32 padding0[(0x080 - 0x02C) / sizeof(u32)];
u32 itcr;
u32 itip;
u32 itop;
u32 padding1[(0x0F8 - 0x08C) / sizeof(u32)];
u32 csfull;
u32 csdatain;
u32 csrx[HASH_CSR_COUNT];
u32 padding2[(0xFE0 - 0x1D0) / sizeof(u32)];
u32 periphid0;
u32 periphid1;
u32 periphid2;
u32 periphid3;
u32 cellid0;
u32 cellid1;
u32 cellid2;
u32 cellid3;
};
/**
* struct hash_state - Hash context state.
* @temp_cr: Temporary HASH Control Register.
* @str_reg: HASH Start Register.
* @din_reg: HASH Data Input Register.
* @csr[52]: HASH Context Swap Registers 0-39.
* @csfull: HASH Context Swap Registers 40 ie Status flags.
* @csdatain: HASH Context Swap Registers 41 ie Input data.
* @buffer: Working buffer for messages going to the hardware.
* @length: Length of the part of message hashed so far (floor(N/64) * 64).
* @index: Valid number of bytes in buffer (N % 64).
* @bit_index: Valid number of bits in buffer (N % 8).
*
* This structure is used between context switches, i.e. when ongoing jobs are
* interupted with new jobs. When this happens we need to store intermediate
* results in software.
*
* WARNING: "index" is the member of the structure, to be sure that "buffer"
* is aligned on a 4-bytes boundary. This is highly implementation dependent
* and MUST be checked whenever this code is ported on new platforms.
*/
struct hash_state {
u32 temp_cr;
u32 str_reg;
u32 din_reg;
u32 csr[52];
u32 csfull;
u32 csdatain;
u32 buffer[HASH_BLOCK_SIZE / sizeof(u32)];
struct uint64 length;
u8 index;
u8 bit_index;
};
/**
* enum hash_device_id - HASH device ID.
* @HASH_DEVICE_ID_0: Hash hardware with ID 0
* @HASH_DEVICE_ID_1: Hash hardware with ID 1
*/
enum hash_device_id {
HASH_DEVICE_ID_0 = 0,
HASH_DEVICE_ID_1 = 1
};
/**
* enum hash_data_format - HASH data format.
* @HASH_DATA_32_BITS: 32 bits data format
* @HASH_DATA_16_BITS: 16 bits data format
* @HASH_DATA_8_BITS: 8 bits data format.
* @HASH_DATA_1_BITS: 1 bit data format.
*/
enum hash_data_format {
HASH_DATA_32_BITS = 0x0,
HASH_DATA_16_BITS = 0x1,
HASH_DATA_8_BITS = 0x2,
HASH_DATA_1_BIT = 0x3
};
/**
* enum hash_algo - Enumeration for selecting between SHA1 or SHA2 algorithm.
* @HASH_ALGO_SHA1: Indicates that SHA1 is used.
* @HASH_ALGO_SHA2: Indicates that SHA2 (SHA256) is used.
*/
enum hash_algo {
HASH_ALGO_SHA1 = 0x0,
HASH_ALGO_SHA256 = 0x1
};
/**
* enum hash_op - Enumeration for selecting between HASH or HMAC mode.
* @HASH_OPER_MODE_HASH: Indicates usage of normal HASH mode.
* @HASH_OPER_MODE_HMAC: Indicates usage of HMAC.
*/
enum hash_op {
HASH_OPER_MODE_HASH = 0x0,
HASH_OPER_MODE_HMAC = 0x1
};
/**
* struct hash_config - Configuration data for the hardware.
* @data_format: Format of data entered into the hash data in register.
* @algorithm: Algorithm selection bit.
* @oper_mode: Operating mode selection bit.
*/
struct hash_config {
int data_format;
int algorithm;
int oper_mode;
};
/**
* struct hash_dma - Structure used for dma.
* @mask: DMA capabilities bitmap mask.
* @complete: Used to maintain state for a "completion".
* @chan_mem2hash: DMA channel.
* @cfg_mem2hash: DMA channel configuration.
* @sg_len: Scatterlist length.
* @sg: Scatterlist.
* @nents: Number of sg entries.
*/
struct hash_dma {
dma_cap_mask_t mask;
struct completion complete;
struct dma_chan *chan_mem2hash;
void *cfg_mem2hash;
int sg_len;
struct scatterlist *sg;
int nents;
};
/**
* struct hash_ctx - The context used for hash calculations.
* @key: The key used in the operation.
* @keylen: The length of the key.
* @state: The state of the current calculations.
* @config: The current configuration.
* @digestsize: The size of current digest.
* @device: Pointer to the device structure.
*/
struct hash_ctx {
u8 *key;
u32 keylen;
struct hash_config config;
int digestsize;
struct hash_device_data *device;
};
/**
* struct hash_ctx - The request context used for hash calculations.
* @state: The state of the current calculations.
* @dma_mode: Used in special cases (workaround), e.g. need to change to
* cpu mode, if not supported/working in dma mode.
* @updated: Indicates if hardware is initialized for new operations.
*/
struct hash_req_ctx {
struct hash_state state;
bool dma_mode;
u8 updated;
};
/**
* struct hash_device_data - structure for a hash device.
* @base: Pointer to virtual base address of the hash device.
* @phybase: Pointer to physical memory location of the hash device.
* @list_node: For inclusion in klist.
* @dev: Pointer to the device dev structure.
* @ctx_lock: Spinlock for current_ctx.
* @current_ctx: Pointer to the currently allocated context.
* @power_state: TRUE = power state on, FALSE = power state off.
* @power_state_lock: Spinlock for power_state.
* @regulator: Pointer to the device's power control.
* @clk: Pointer to the device's clock control.
* @restore_dev_state: TRUE = saved state, FALSE = no saved state.
* @dma: Structure used for dma.
*/
struct hash_device_data {
struct hash_register __iomem *base;
phys_addr_t phybase;
struct klist_node list_node;
struct device *dev;
spinlock_t ctx_lock;
struct hash_ctx *current_ctx;
bool power_state;
spinlock_t power_state_lock;
struct regulator *regulator;
struct clk *clk;
bool restore_dev_state;
struct hash_state state; /* Used for saving and resuming state */
struct hash_dma dma;
};
int hash_check_hw(struct hash_device_data *device_data);
int hash_setconfiguration(struct hash_device_data *device_data,
struct hash_config *config);
void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx);
void hash_get_digest(struct hash_device_data *device_data,
u8 *digest, int algorithm);
int hash_hw_update(struct ahash_request *req);
int hash_save_state(struct hash_device_data *device_data,
struct hash_state *state);
int hash_resume_state(struct hash_device_data *device_data,
const struct hash_state *state);
#endif
// SPDX-License-Identifier: GPL-2.0-only
/*
* Cryptographic API.
* Support for Nomadik hardware crypto engine.
* Copyright (C) ST-Ericsson SA 2010
* Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
* Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
* Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
* Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
* Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
*/
#define pr_fmt(fmt) "hashX hashX: " fmt
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/klist.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/crypto.h>
#include <linux/regulator/consumer.h>
#include <linux/dmaengine.h>
#include <linux/bitops.h>
#include <crypto/internal/hash.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/scatterwalk.h>
#include <crypto/algapi.h>
#include <linux/platform_data/crypto-ux500.h>
#include "hash_alg.h"
static int hash_mode;
module_param(hash_mode, int, 0);
MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
/* HMAC-SHA1, no key */
static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
0x70, 0x69, 0x0e, 0x1d
};
/* HMAC-SHA256, no key */
static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
};
/**
* struct hash_driver_data - data specific to the driver.
*
* @device_list: A list of registered devices to choose from.
* @device_allocation: A semaphore initialized with number of devices.
*/
struct hash_driver_data {
struct klist device_list;
struct semaphore device_allocation;
};
static struct hash_driver_data driver_data;
/* Declaration of functions */
/**
* hash_messagepad - Pads a message and write the nblw bits.
* @device_data: Structure for the hash device.
* @message: Last word of a message
* @index_bytes: The number of bytes in the last message
*
* This function manages the final part of the digest calculation, when less
* than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
*
*/
static void hash_messagepad(struct hash_device_data *device_data,
const u32 *message, u8 index_bytes);
/**
* release_hash_device - Releases a previously allocated hash device.
* @device_data: Structure for the hash device.
*
*/
static void release_hash_device(struct hash_device_data *device_data)
{
spin_lock(&device_data->ctx_lock);
device_data->current_ctx->device = NULL;
device_data->current_ctx = NULL;
spin_unlock(&device_data->ctx_lock);
/*
* The down_interruptible part for this semaphore is called in
* cryp_get_device_data.
*/
up(&driver_data.device_allocation);
}
static void hash_dma_setup_channel(struct hash_device_data *device_data,
struct device *dev)
{
struct hash_platform_data *platform_data = dev->platform_data;
struct dma_slave_config conf = {
.direction = DMA_MEM_TO_DEV,
.dst_addr = device_data->phybase + HASH_DMA_FIFO,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
.dst_maxburst = 16,
};
dma_cap_zero(device_data->dma.mask);
dma_cap_set(DMA_SLAVE, device_data->dma.mask);
device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
device_data->dma.chan_mem2hash =
dma_request_channel(device_data->dma.mask,
platform_data->dma_filter,
device_data->dma.cfg_mem2hash);
dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
init_completion(&device_data->dma.complete);
}
static void hash_dma_callback(void *data)
{
struct hash_ctx *ctx = data;
complete(&ctx->device->dma.complete);
}
static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
int len, enum dma_data_direction direction)
{
struct dma_async_tx_descriptor *desc = NULL;
struct dma_chan *channel = NULL;
if (direction != DMA_TO_DEVICE) {
dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
__func__);
return -EFAULT;
}
sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
channel = ctx->device->dma.chan_mem2hash;
ctx->device->dma.sg = sg;
ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
ctx->device->dma.sg, ctx->device->dma.nents,
direction);
if (!ctx->device->dma.sg_len) {
dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
__func__);
return -EFAULT;
}
dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
__func__);
desc = dmaengine_prep_slave_sg(channel,
ctx->device->dma.sg, ctx->device->dma.sg_len,
DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(ctx->device->dev,
"%s: dmaengine_prep_slave_sg() failed!\n", __func__);
return -EFAULT;
}
desc->callback = hash_dma_callback;
desc->callback_param = ctx;
dmaengine_submit(desc);
dma_async_issue_pending(channel);
return 0;
}
static void hash_dma_done(struct hash_ctx *ctx)
{
struct dma_chan *chan;
chan = ctx->device->dma.chan_mem2hash;
dmaengine_terminate_all(chan);
dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
ctx->device->dma.nents, DMA_TO_DEVICE);
}
static int hash_dma_write(struct hash_ctx *ctx,
struct scatterlist *sg, int len)
{
int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
if (error) {
dev_dbg(ctx->device->dev,
"%s: hash_set_dma_transfer() failed\n", __func__);
return error;
}
return len;
}
/**
* get_empty_message_digest - Returns a pre-calculated digest for
* the empty message.
* @device_data: Structure for the hash device.
* @zero_hash: Buffer to return the empty message digest.
* @zero_hash_size: Hash size of the empty message digest.
* @zero_digest: True if zero_digest returned.
*/
static int get_empty_message_digest(
struct hash_device_data *device_data,
u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
{
int ret = 0;
struct hash_ctx *ctx = device_data->current_ctx;
*zero_digest = false;
/**
* Caller responsible for ctx != NULL.
*/
if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
memcpy(zero_hash, &sha1_zero_message_hash[0],
SHA1_DIGEST_SIZE);
*zero_hash_size = SHA1_DIGEST_SIZE;
*zero_digest = true;
} else if (HASH_ALGO_SHA256 ==
ctx->config.algorithm) {
memcpy(zero_hash, &sha256_zero_message_hash[0],
SHA256_DIGEST_SIZE);
*zero_hash_size = SHA256_DIGEST_SIZE;
*zero_digest = true;
} else {
dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
__func__);
ret = -EINVAL;
goto out;
}
} else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
if (!ctx->keylen) {
if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
memcpy(zero_hash, &zero_message_hmac_sha1[0],
SHA1_DIGEST_SIZE);
*zero_hash_size = SHA1_DIGEST_SIZE;
*zero_digest = true;
} else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
memcpy(zero_hash, &zero_message_hmac_sha256[0],
SHA256_DIGEST_SIZE);
*zero_hash_size = SHA256_DIGEST_SIZE;
*zero_digest = true;
} else {
dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
__func__);
ret = -EINVAL;
goto out;
}
} else {
dev_dbg(device_data->dev,
"%s: Continue hash calculation, since hmac key available\n",
__func__);
}
}
out:
return ret;
}
/**
* hash_disable_power - Request to disable power and clock.
* @device_data: Structure for the hash device.
* @save_device_state: If true, saves the current hw state.
*
* This function request for disabling power (regulator) and clock,
* and could also save current hw state.
*/
static int hash_disable_power(struct hash_device_data *device_data,
bool save_device_state)
{
int ret = 0;
struct device *dev = device_data->dev;
spin_lock(&device_data->power_state_lock);
if (!device_data->power_state)
goto out;
if (save_device_state) {
hash_save_state(device_data,
&device_data->state);
device_data->restore_dev_state = true;
}
clk_disable(device_data->clk);
ret = regulator_disable(device_data->regulator);
if (ret)
dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
device_data->power_state = false;
out:
spin_unlock(&device_data->power_state_lock);
return ret;
}
/**
* hash_enable_power - Request to enable power and clock.
* @device_data: Structure for the hash device.
* @restore_device_state: If true, restores a previous saved hw state.
*
* This function request for enabling power (regulator) and clock,
* and could also restore a previously saved hw state.
*/
static int hash_enable_power(struct hash_device_data *device_data,
bool restore_device_state)
{
int ret = 0;
struct device *dev = device_data->dev;
spin_lock(&device_data->power_state_lock);
if (!device_data->power_state) {
ret = regulator_enable(device_data->regulator);
if (ret) {
dev_err(dev, "%s: regulator_enable() failed!\n",
__func__);
goto out;
}
ret = clk_enable(device_data->clk);
if (ret) {
dev_err(dev, "%s: clk_enable() failed!\n", __func__);
ret = regulator_disable(
device_data->regulator);
goto out;
}
device_data->power_state = true;
}
if (device_data->restore_dev_state) {
if (restore_device_state) {
device_data->restore_dev_state = false;
hash_resume_state(device_data, &device_data->state);
}
}
out:
spin_unlock(&device_data->power_state_lock);
return ret;
}
/**
* hash_get_device_data - Checks for an available hash device and return it.
* @ctx: Structure for the hash context.
* @device_data: Structure for the hash device.
*
* This function check for an available hash device and return it to
* the caller.
* Note! Caller need to release the device, calling up().
*/
static int hash_get_device_data(struct hash_ctx *ctx,
struct hash_device_data **device_data)
{
int ret;
struct klist_iter device_iterator;
struct klist_node *device_node;
struct hash_device_data *local_device_data = NULL;
/* Wait until a device is available */
ret = down_interruptible(&driver_data.device_allocation);
if (ret)
return ret; /* Interrupted */
/* Select a device */
klist_iter_init(&driver_data.device_list, &device_iterator);
device_node = klist_next(&device_iterator);
while (device_node) {
local_device_data = container_of(device_node,
struct hash_device_data, list_node);
spin_lock(&local_device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (local_device_data->current_ctx) {
device_node = klist_next(&device_iterator);
} else {
local_device_data->current_ctx = ctx;
ctx->device = local_device_data;
spin_unlock(&local_device_data->ctx_lock);
break;
}
spin_unlock(&local_device_data->ctx_lock);
}
klist_iter_exit(&device_iterator);
if (!device_node) {
/**
* No free device found.
* Since we allocated a device with down_interruptible, this
* should not be able to happen.
* Number of available devices, which are contained in
* device_allocation, is therefore decremented by not doing
* an up(device_allocation).
*/
return -EBUSY;
}
*device_data = local_device_data;
return 0;
}
/**
* hash_hw_write_key - Writes the key to the hardware registries.
*
* @device_data: Structure for the hash device.
* @key: Key to be written.
* @keylen: The lengt of the key.
*
* Note! This function DOES NOT write to the NBLW registry, even though
* specified in the hw design spec. Either due to incorrect info in the
* spec or due to a bug in the hw.
*/
static void hash_hw_write_key(struct hash_device_data *device_data,
const u8 *key, unsigned int keylen)
{
u32 word = 0;
int nwords = 1;
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
while (keylen >= 4) {
u32 *key_word = (u32 *)key;
HASH_SET_DIN(key_word, nwords);
keylen -= 4;
key += 4;
}
/* Take care of the remaining bytes in the last word */
if (keylen) {
word = 0;
while (keylen) {
word |= (key[keylen - 1] << (8 * (keylen - 1)));
keylen--;
}
HASH_SET_DIN(&word, nwords);
}
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
HASH_SET_DCAL;
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
}
/**
* init_hash_hw - Initialise the hash hardware for a new calculation.
* @device_data: Structure for the hash device.
* @ctx: The hash context.
*
* This function will enable the bits needed to clear and start a new
* calculation.
*/
static int init_hash_hw(struct hash_device_data *device_data,
struct hash_ctx *ctx)
{
int ret = 0;
ret = hash_setconfiguration(device_data, &ctx->config);
if (ret) {
dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
__func__);
return ret;
}
hash_begin(device_data, ctx);
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
hash_hw_write_key(device_data, ctx->key, ctx->keylen);
return ret;
}
/**
* hash_get_nents - Return number of entries (nents) in scatterlist (sg).
*
* @sg: Scatterlist.
* @size: Size in bytes.
* @aligned: True if sg data aligned to work in DMA mode.
*
*/
static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
{
int nents = 0;
bool aligned_data = true;
while (size > 0 && sg) {
nents++;
size -= sg->length;
/* hash_set_dma_transfer will align last nent */
if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
(!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
aligned_data = false;
sg = sg_next(sg);
}
if (aligned)
*aligned = aligned_data;
if (size != 0)
return -EFAULT;
return nents;
}
/**
* hash_dma_valid_data - checks for dma valid sg data.
* @sg: Scatterlist.
* @datasize: Datasize in bytes.
*
* NOTE! This function checks for dma valid sg data, since dma
* only accept datasizes of even wordsize.
*/
static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
{
bool aligned;
/* Need to include at least one nent, else error */
if (hash_get_nents(sg, datasize, &aligned) < 1)
return false;
return aligned;
}
/**
* ux500_hash_init - Common hash init function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*
* Initialize structures.
*/
static int ux500_hash_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
if (!ctx->key)
ctx->keylen = 0;
memset(&req_ctx->state, 0, sizeof(struct hash_state));
req_ctx->updated = 0;
if (hash_mode == HASH_MODE_DMA) {
if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
req_ctx->dma_mode = false; /* Don't use DMA */
pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
__func__, HASH_DMA_ALIGN_SIZE);
} else {
if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
hash_dma_valid_data(req->src, req->nbytes)) {
req_ctx->dma_mode = true;
} else {
req_ctx->dma_mode = false;
pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
__func__,
HASH_DMA_PERFORMANCE_MIN_SIZE);
}
}
}
return 0;
}
/**
* hash_processblock - This function processes a single block of 512 bits (64
* bytes), word aligned, starting at message.
* @device_data: Structure for the hash device.
* @message: Block (512 bits) of message to be written to
* the HASH hardware.
* @length: Message length
*
*/
static void hash_processblock(struct hash_device_data *device_data,
const u32 *message, int length)
{
int len = length / HASH_BYTES_PER_WORD;
/*
* NBLW bits. Reset the number of bits in last word (NBLW).
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
/*
* Write message data to the HASH_DIN register.
*/
HASH_SET_DIN(message, len);
}
/**
* hash_messagepad - Pads a message and write the nblw bits.
* @device_data: Structure for the hash device.
* @message: Last word of a message.
* @index_bytes: The number of bytes in the last message.
*
* This function manages the final part of the digest calculation, when less
* than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
*
*/
static void hash_messagepad(struct hash_device_data *device_data,
const u32 *message, u8 index_bytes)
{
int nwords = 1;
/*
* Clear hash str register, only clear NBLW
* since DCAL will be reset by hardware.
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
/* Main loop */
while (index_bytes >= 4) {
HASH_SET_DIN(message, nwords);
index_bytes -= 4;
message++;
}
if (index_bytes)
HASH_SET_DIN(message, nwords);
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
/* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
HASH_SET_NBLW(index_bytes * 8);
dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
__func__, readl_relaxed(&device_data->base->din),
readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
HASH_SET_DCAL;
dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
__func__, readl_relaxed(&device_data->base->din),
readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
}
/**
* hash_incrementlength - Increments the length of the current message.
* @ctx: Hash context
* @incr: Length of message processed already
*
* Overflow cannot occur, because conditions for overflow are checked in
* hash_hw_update.
*/
static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
{
ctx->state.length.low_word += incr;
/* Check for wrap-around */
if (ctx->state.length.low_word < incr)
ctx->state.length.high_word++;
}
/**
* hash_setconfiguration - Sets the required configuration for the hash
* hardware.
* @device_data: Structure for the hash device.
* @config: Pointer to a configuration structure.
*/
int hash_setconfiguration(struct hash_device_data *device_data,
struct hash_config *config)
{
int ret = 0;
if (config->algorithm != HASH_ALGO_SHA1 &&
config->algorithm != HASH_ALGO_SHA256)
return -EPERM;
/*
* DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
* to be written to HASH_DIN is considered as 32 bits.
*/
HASH_SET_DATA_FORMAT(config->data_format);
/*
* ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
*/
switch (config->algorithm) {
case HASH_ALGO_SHA1:
HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
break;
case HASH_ALGO_SHA256:
HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
break;
default:
dev_err(device_data->dev, "%s: Incorrect algorithm\n",
__func__);
return -EPERM;
}
/*
* MODE bit. This bit selects between HASH or HMAC mode for the
* selected algorithm. 0b0 = HASH and 0b1 = HMAC.
*/
if (HASH_OPER_MODE_HASH == config->oper_mode)
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_MODE_MASK);
else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
/* Truncate key to blocksize */
dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_LKEY_MASK);
} else {
dev_dbg(device_data->dev, "%s: LKEY cleared\n",
__func__);
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_LKEY_MASK);
}
} else { /* Wrong hash mode */
ret = -EPERM;
dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
__func__);
}
return ret;
}
/**
* hash_begin - This routine resets some globals and initializes the hash
* hardware.
* @device_data: Structure for the hash device.
* @ctx: Hash context.
*/
void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
{
/* HW and SW initializations */
/* Note: there is no need to initialize buffer and digest members */
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
/*
* INIT bit. Set this bit to 0b1 to reset the HASH processor core and
* prepare the initialize the HASH accelerator to compute the message
* digest of a new message.
*/
HASH_INITIALIZE;
/*
* NBLW bits. Reset the number of bits in last word (NBLW).
*/
HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
}
static int hash_process_data(struct hash_device_data *device_data,
struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
int msg_length, u8 *data_buffer, u8 *buffer,
u8 *index)
{
int ret = 0;
u32 count;
do {
if ((*index + msg_length) < HASH_BLOCK_SIZE) {
for (count = 0; count < msg_length; count++) {
buffer[*index + count] =
*(data_buffer + count);
}
*index += msg_length;
msg_length = 0;
} else {
if (req_ctx->updated) {
ret = hash_resume_state(device_data,
&device_data->state);
memmove(req_ctx->state.buffer,
device_data->state.buffer,
HASH_BLOCK_SIZE);
if (ret) {
dev_err(device_data->dev,
"%s: hash_resume_state() failed!\n",
__func__);
goto out;
}
} else {
ret = init_hash_hw(device_data, ctx);
if (ret) {
dev_err(device_data->dev,
"%s: init_hash_hw() failed!\n",
__func__);
goto out;
}
req_ctx->updated = 1;
}
/*
* If 'data_buffer' is four byte aligned and
* local buffer does not have any data, we can
* write data directly from 'data_buffer' to
* HW peripheral, otherwise we first copy data
* to a local buffer
*/
if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
(0 == *index))
hash_processblock(device_data,
(const u32 *)data_buffer,
HASH_BLOCK_SIZE);
else {
for (count = 0;
count < (u32)(HASH_BLOCK_SIZE - *index);
count++) {
buffer[*index + count] =
*(data_buffer + count);
}
hash_processblock(device_data,
(const u32 *)buffer,
HASH_BLOCK_SIZE);
}
hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
data_buffer += (HASH_BLOCK_SIZE - *index);
msg_length -= (HASH_BLOCK_SIZE - *index);
*index = 0;
ret = hash_save_state(device_data,
&device_data->state);
memmove(device_data->state.buffer,
req_ctx->state.buffer,
HASH_BLOCK_SIZE);
if (ret) {
dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
__func__);
goto out;
}
}
} while (msg_length != 0);
out:
return ret;
}
/**
* hash_dma_final - The hash dma final function for SHA1/SHA256.
* @req: The hash request for the job.
*/
static int hash_dma_final(struct ahash_request *req)
{
int ret = 0;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct hash_device_data *device_data;
u8 digest[SHA256_DIGEST_SIZE];
int bytes_written = 0;
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
(unsigned long)ctx);
if (req_ctx->updated) {
ret = hash_resume_state(device_data, &device_data->state);
if (ret) {
dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
__func__);
goto out;
}
} else {
ret = hash_setconfiguration(device_data, &ctx->config);
if (ret) {
dev_err(device_data->dev,
"%s: hash_setconfiguration() failed!\n",
__func__);
goto out;
}
/* Enable DMA input */
if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
HASH_CLEAR_BITS(&device_data->base->cr,
HASH_CR_DMAE_MASK);
} else {
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_DMAE_MASK);
HASH_SET_BITS(&device_data->base->cr,
HASH_CR_PRIVN_MASK);
}
HASH_INITIALIZE;
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
hash_hw_write_key(device_data, ctx->key, ctx->keylen);
/* Number of bits in last word = (nbytes * 8) % 32 */
HASH_SET_NBLW((req->nbytes * 8) % 32);
req_ctx->updated = 1;
}
/* Store the nents in the dma struct. */
ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
if (!ctx->device->dma.nents) {
dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
__func__);
ret = ctx->device->dma.nents;
goto out;
}
bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
if (bytes_written != req->nbytes) {
dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
__func__);
ret = bytes_written;
goto out;
}
wait_for_completion(&ctx->device->dma.complete);
hash_dma_done(ctx);
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
unsigned int keylen = ctx->keylen;
u8 *key = ctx->key;
dev_dbg(device_data->dev, "%s: keylen: %d\n",
__func__, ctx->keylen);
hash_hw_write_key(device_data, key, keylen);
}
hash_get_digest(device_data, digest, ctx->config.algorithm);
memcpy(req->result, digest, ctx->digestsize);
out:
release_hash_device(device_data);
/**
* Allocated in setkey, and only used in HMAC.
*/
kfree(ctx->key);
return ret;
}
/**
* hash_hw_final - The final hash calculation function
* @req: The hash request for the job.
*/
static int hash_hw_final(struct ahash_request *req)
{
int ret = 0;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct hash_device_data *device_data;
u8 digest[SHA256_DIGEST_SIZE];
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
(unsigned long)ctx);
if (req_ctx->updated) {
ret = hash_resume_state(device_data, &device_data->state);
if (ret) {
dev_err(device_data->dev,
"%s: hash_resume_state() failed!\n", __func__);
goto out;
}
} else if (req->nbytes == 0 && ctx->keylen == 0) {
u8 zero_hash[SHA256_DIGEST_SIZE];
u32 zero_hash_size = 0;
bool zero_digest = false;
/**
* Use a pre-calculated empty message digest
* (workaround since hw return zeroes, hw bug!?)
*/
ret = get_empty_message_digest(device_data, &zero_hash[0],
&zero_hash_size, &zero_digest);
if (!ret && likely(zero_hash_size == ctx->digestsize) &&
zero_digest) {
memcpy(req->result, &zero_hash[0], ctx->digestsize);
goto out;
} else if (!ret && !zero_digest) {
dev_dbg(device_data->dev,
"%s: HMAC zero msg with key, continue...\n",
__func__);
} else {
dev_err(device_data->dev,
"%s: ret=%d, or wrong digest size? %s\n",
__func__, ret,
zero_hash_size == ctx->digestsize ?
"true" : "false");
/* Return error */
goto out;
}
} else if (req->nbytes == 0 && ctx->keylen > 0) {
ret = -EPERM;
dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
__func__);
goto out;
}
if (!req_ctx->updated) {
ret = init_hash_hw(device_data, ctx);
if (ret) {
dev_err(device_data->dev,
"%s: init_hash_hw() failed!\n", __func__);
goto out;
}
}
if (req_ctx->state.index) {
hash_messagepad(device_data, req_ctx->state.buffer,
req_ctx->state.index);
} else {
HASH_SET_DCAL;
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
}
if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
unsigned int keylen = ctx->keylen;
u8 *key = ctx->key;
dev_dbg(device_data->dev, "%s: keylen: %d\n",
__func__, ctx->keylen);
hash_hw_write_key(device_data, key, keylen);
}
hash_get_digest(device_data, digest, ctx->config.algorithm);
memcpy(req->result, digest, ctx->digestsize);
out:
release_hash_device(device_data);
/**
* Allocated in setkey, and only used in HMAC.
*/
kfree(ctx->key);
return ret;
}
/**
* hash_hw_update - Updates current HASH computation hashing another part of
* the message.
* @req: Byte array containing the message to be hashed (caller
* allocated).
*/
int hash_hw_update(struct ahash_request *req)
{
int ret = 0;
u8 index = 0;
u8 *buffer;
struct hash_device_data *device_data;
u8 *data_buffer;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_hash_walk walk;
int msg_length;
index = req_ctx->state.index;
buffer = (u8 *)req_ctx->state.buffer;
ret = hash_get_device_data(ctx, &device_data);
if (ret)
return ret;
msg_length = crypto_hash_walk_first(req, &walk);
/* Empty message ("") is correct indata */
if (msg_length == 0) {
ret = 0;
goto release_dev;
}
/* Check if ctx->state.length + msg_length
overflows */
if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
ret = crypto_hash_walk_done(&walk, -EPERM);
goto release_dev;
}
/* Main loop */
while (0 != msg_length) {
data_buffer = walk.data;
ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
data_buffer, buffer, &index);
if (ret) {
dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
__func__);
crypto_hash_walk_done(&walk, ret);
goto release_dev;
}
msg_length = crypto_hash_walk_done(&walk, 0);
}
req_ctx->state.index = index;
dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
__func__, req_ctx->state.index, req_ctx->state.bit_index);
release_dev:
release_hash_device(device_data);
return ret;
}
/**
* hash_resume_state - Function that resumes the state of an calculation.
* @device_data: Pointer to the device structure.
* @device_state: The state to be restored in the hash hardware
*/
int hash_resume_state(struct hash_device_data *device_data,
const struct hash_state *device_state)
{
u32 temp_cr;
s32 count;
int hash_mode = HASH_OPER_MODE_HASH;
if (NULL == device_state) {
dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
__func__);
return -EPERM;
}
/* Check correctness of index and length members */
if (device_state->index > HASH_BLOCK_SIZE ||
(device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
__func__);
return -EPERM;
}
/*
* INIT bit. Set this bit to 0b1 to reset the HASH processor core and
* prepare the initialize the HASH accelerator to compute the message
* digest of a new message.
*/
HASH_INITIALIZE;
temp_cr = device_state->temp_cr;
writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
hash_mode = HASH_OPER_MODE_HMAC;
else
hash_mode = HASH_OPER_MODE_HASH;
for (count = 0; count < HASH_CSR_COUNT; count++) {
if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
break;
writel_relaxed(device_state->csr[count],
&device_data->base->csrx[count]);
}
writel_relaxed(device_state->csfull, &device_data->base->csfull);
writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
writel_relaxed(device_state->str_reg, &device_data->base->str);
writel_relaxed(temp_cr, &device_data->base->cr);
return 0;
}
/**
* hash_save_state - Function that saves the state of hardware.
* @device_data: Pointer to the device structure.
* @device_state: The strucure where the hardware state should be saved.
*/
int hash_save_state(struct hash_device_data *device_data,
struct hash_state *device_state)
{
u32 temp_cr;
u32 count;
int hash_mode = HASH_OPER_MODE_HASH;
if (NULL == device_state) {
dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
__func__);
return -ENOTSUPP;
}
/* Write dummy value to force digest intermediate calculation. This
* actually makes sure that there isn't any ongoing calculation in the
* hardware.
*/
while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
cpu_relax();
temp_cr = readl_relaxed(&device_data->base->cr);
device_state->str_reg = readl_relaxed(&device_data->base->str);
device_state->din_reg = readl_relaxed(&device_data->base->din);
if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
hash_mode = HASH_OPER_MODE_HMAC;
else
hash_mode = HASH_OPER_MODE_HASH;
for (count = 0; count < HASH_CSR_COUNT; count++) {
if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
break;
device_state->csr[count] =
readl_relaxed(&device_data->base->csrx[count]);
}
device_state->csfull = readl_relaxed(&device_data->base->csfull);
device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
device_state->temp_cr = temp_cr;
return 0;
}
/**
* hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
* @device_data:
*
*/
int hash_check_hw(struct hash_device_data *device_data)
{
/* Checking Peripheral Ids */
if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
return 0;
}
dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
return -ENOTSUPP;
}
/**
* hash_get_digest - Gets the digest.
* @device_data: Pointer to the device structure.
* @digest: User allocated byte array for the calculated digest.
* @algorithm: The algorithm in use.
*/
void hash_get_digest(struct hash_device_data *device_data,
u8 *digest, int algorithm)
{
u32 temp_hx_val, count;
int loop_ctr;
if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
__func__, algorithm);
return;
}
if (algorithm == HASH_ALGO_SHA1)
loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
else
loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
__func__, (unsigned long)digest);
/* Copy result into digest array */
for (count = 0; count < loop_ctr; count++) {
temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
}
}
/**
* ahash_update - The hash update function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*/
static int ahash_update(struct ahash_request *req)
{
int ret = 0;
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
ret = hash_hw_update(req);
/* Skip update for DMA, all data will be passed to DMA in final */
if (ret) {
pr_err("%s: hash_hw_update() failed!\n", __func__);
}
return ret;
}
/**
* ahash_final - The hash final function for SHA1/SHA2 (SHA256).
* @req: The hash request for the job.
*/
static int ahash_final(struct ahash_request *req)
{
int ret = 0;
struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
pr_debug("%s: data size: %d\n", __func__, req->nbytes);
if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
ret = hash_dma_final(req);
else
ret = hash_hw_final(req);
if (ret) {
pr_err("%s: hash_hw/dma_final() failed\n", __func__);
}
return ret;
}
static int hash_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen, int alg)
{
int ret = 0;
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
/**
* Freed in final.
*/
ctx->key = kmemdup(key, keylen, GFP_KERNEL);
if (!ctx->key) {
pr_err("%s: Failed to allocate ctx->key for %d\n",
__func__, alg);
return -ENOMEM;
}
ctx->keylen = keylen;
return ret;
}
static int ahash_sha1_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA1;
ctx->config.oper_mode = HASH_OPER_MODE_HASH;
ctx->digestsize = SHA1_DIGEST_SIZE;
return ux500_hash_init(req);
}
static int ahash_sha256_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA256;
ctx->config.oper_mode = HASH_OPER_MODE_HASH;
ctx->digestsize = SHA256_DIGEST_SIZE;
return ux500_hash_init(req);
}
static int ahash_sha1_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = ahash_sha1_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int ahash_sha256_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = ahash_sha256_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int ahash_noimport(struct ahash_request *req, const void *in)
{
return -ENOSYS;
}
static int ahash_noexport(struct ahash_request *req, void *out)
{
return -ENOSYS;
}
static int hmac_sha1_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA1;
ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
ctx->digestsize = SHA1_DIGEST_SIZE;
return ux500_hash_init(req);
}
static int hmac_sha256_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = HASH_ALGO_SHA256;
ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
ctx->digestsize = SHA256_DIGEST_SIZE;
return ux500_hash_init(req);
}
static int hmac_sha1_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = hmac_sha1_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int hmac_sha256_digest(struct ahash_request *req)
{
int ret2, ret1;
ret1 = hmac_sha256_init(req);
if (ret1)
goto out;
ret1 = ahash_update(req);
ret2 = ahash_final(req);
out:
return ret1 ? ret1 : ret2;
}
static int hmac_sha1_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen)
{
return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
}
static int hmac_sha256_setkey(struct crypto_ahash *tfm,
const u8 *key, unsigned int keylen)
{
return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
}
struct hash_algo_template {
struct hash_config conf;
struct ahash_alg hash;
};
static int hash_cra_init(struct crypto_tfm *tfm)
{
struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct hash_algo_template *hash_alg;
hash_alg = container_of(__crypto_ahash_alg(alg),
struct hash_algo_template,
hash);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct hash_req_ctx));
ctx->config.data_format = HASH_DATA_8_BITS;
ctx->config.algorithm = hash_alg->conf.algorithm;
ctx->config.oper_mode = hash_alg->conf.oper_mode;
ctx->digestsize = hash_alg->hash.halg.digestsize;
return 0;
}
static struct hash_algo_template hash_algs[] = {
{
.conf.algorithm = HASH_ALGO_SHA1,
.conf.oper_mode = HASH_OPER_MODE_HASH,
.hash = {
.init = ux500_hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = ahash_sha1_digest,
.export = ahash_noexport,
.import = ahash_noimport,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-ux500",
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA256,
.conf.oper_mode = HASH_OPER_MODE_HASH,
.hash = {
.init = ux500_hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = ahash_sha256_digest,
.export = ahash_noexport,
.import = ahash_noimport,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-ux500",
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA1,
.conf.oper_mode = HASH_OPER_MODE_HMAC,
.hash = {
.init = ux500_hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = hmac_sha1_digest,
.setkey = hmac_sha1_setkey,
.export = ahash_noexport,
.import = ahash_noimport,
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "hmac-sha1-ux500",
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
},
{
.conf.algorithm = HASH_ALGO_SHA256,
.conf.oper_mode = HASH_OPER_MODE_HMAC,
.hash = {
.init = ux500_hash_init,
.update = ahash_update,
.final = ahash_final,
.digest = hmac_sha256_digest,
.setkey = hmac_sha256_setkey,
.export = ahash_noexport,
.import = ahash_noimport,
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct hash_ctx),
.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "hmac-sha256-ux500",
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct hash_ctx),
.cra_init = hash_cra_init,
.cra_module = THIS_MODULE,
}
}
}
};
static int ahash_algs_register_all(struct hash_device_data *device_data)
{
int ret;
int i;
int count;
for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
ret = crypto_register_ahash(&hash_algs[i].hash);
if (ret) {
count = i;
dev_err(device_data->dev, "%s: alg registration failed\n",
hash_algs[i].hash.halg.base.cra_driver_name);
goto unreg;
}
}
return 0;
unreg:
for (i = 0; i < count; i++)
crypto_unregister_ahash(&hash_algs[i].hash);
return ret;
}
static void ahash_algs_unregister_all(struct hash_device_data *device_data)
{
int i;
for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
crypto_unregister_ahash(&hash_algs[i].hash);
}
/**
* ux500_hash_probe - Function that probes the hash hardware.
* @pdev: The platform device.
*/
static int ux500_hash_probe(struct platform_device *pdev)
{
int ret = 0;
struct resource *res = NULL;
struct hash_device_data *device_data;
struct device *dev = &pdev->dev;
device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_KERNEL);
if (!device_data) {
ret = -ENOMEM;
goto out;
}
device_data->dev = dev;
device_data->current_ctx = NULL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
ret = -ENODEV;
goto out;
}
device_data->phybase = res->start;
device_data->base = devm_ioremap_resource(dev, res);
if (IS_ERR(device_data->base)) {
ret = PTR_ERR(device_data->base);
goto out;
}
spin_lock_init(&device_data->ctx_lock);
spin_lock_init(&device_data->power_state_lock);
/* Enable power for HASH1 hardware block */
device_data->regulator = regulator_get(dev, "v-ape");
if (IS_ERR(device_data->regulator)) {
dev_err(dev, "%s: regulator_get() failed!\n", __func__);
ret = PTR_ERR(device_data->regulator);
device_data->regulator = NULL;
goto out;
}
/* Enable the clock for HASH1 hardware block */
device_data->clk = devm_clk_get(dev, NULL);
if (IS_ERR(device_data->clk)) {
dev_err(dev, "%s: clk_get() failed!\n", __func__);
ret = PTR_ERR(device_data->clk);
goto out_regulator;
}
ret = clk_prepare(device_data->clk);
if (ret) {
dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
goto out_regulator;
}
/* Enable device power (and clock) */
ret = hash_enable_power(device_data, false);
if (ret) {
dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
goto out_clk_unprepare;
}
ret = hash_check_hw(device_data);
if (ret) {
dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
goto out_power;
}
if (hash_mode == HASH_MODE_DMA)
hash_dma_setup_channel(device_data, dev);
platform_set_drvdata(pdev, device_data);
/* Put the new device into the device list... */
klist_add_tail(&device_data->list_node, &driver_data.device_list);
/* ... and signal that a new device is available. */
up(&driver_data.device_allocation);
ret = ahash_algs_register_all(device_data);
if (ret) {
dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
__func__);
goto out_power;
}
dev_info(dev, "successfully registered\n");
return 0;
out_power:
hash_disable_power(device_data, false);
out_clk_unprepare:
clk_unprepare(device_data->clk);
out_regulator:
regulator_put(device_data->regulator);
out:
return ret;
}
/**
* ux500_hash_remove - Function that removes the hash device from the platform.
* @pdev: The platform device.
*/
static int ux500_hash_remove(struct platform_device *pdev)
{
struct hash_device_data *device_data;
struct device *dev = &pdev->dev;
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
return -ENOMEM;
}
/* Try to decrease the number of available devices. */
if (down_trylock(&driver_data.device_allocation))
return -EBUSY;
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (device_data->current_ctx) {
/* The device is busy */
spin_unlock(&device_data->ctx_lock);
/* Return the device to the pool. */
up(&driver_data.device_allocation);
return -EBUSY;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
ahash_algs_unregister_all(device_data);
if (hash_disable_power(device_data, false))
dev_err(dev, "%s: hash_disable_power() failed\n",
__func__);
clk_unprepare(device_data->clk);
regulator_put(device_data->regulator);
return 0;
}
/**
* ux500_hash_shutdown - Function that shutdown the hash device.
* @pdev: The platform device
*/
static void ux500_hash_shutdown(struct platform_device *pdev)
{
struct hash_device_data *device_data;
device_data = platform_get_drvdata(pdev);
if (!device_data) {
dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
__func__);
return;
}
/* Check that the device is free */
spin_lock(&device_data->ctx_lock);
/* current_ctx allocates a device, NULL = unallocated */
if (!device_data->current_ctx) {
if (down_trylock(&driver_data.device_allocation))
dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
__func__);
/**
* (Allocate the device)
* Need to set this to non-null (dummy) value,
* to avoid usage if context switching.
*/
device_data->current_ctx++;
}
spin_unlock(&device_data->ctx_lock);
/* Remove the device from the list */
if (klist_node_attached(&device_data->list_node))
klist_remove(&device_data->list_node);
/* If this was the last device, remove the services */
if (list_empty(&driver_data.device_list.k_list))
ahash_algs_unregister_all(device_data);
if (hash_disable_power(device_data, false))
dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
__func__);
}
#ifdef CONFIG_PM_SLEEP
/**
* ux500_hash_suspend - Function that suspends the hash device.
* @dev: Device to suspend.
*/
static int ux500_hash_suspend(struct device *dev)
{
int ret;
struct hash_device_data *device_data;
struct hash_ctx *temp_ctx = NULL;
device_data = dev_get_drvdata(dev);
if (!device_data) {
dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
return -ENOMEM;
}
spin_lock(&device_data->ctx_lock);
if (!device_data->current_ctx)
device_data->current_ctx++;
spin_unlock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx) {
if (down_interruptible(&driver_data.device_allocation))
dev_dbg(dev, "%s: down_interruptible() failed\n",
__func__);
ret = hash_disable_power(device_data, false);
} else {
ret = hash_disable_power(device_data, true);
}
if (ret)
dev_err(dev, "%s: hash_disable_power()\n", __func__);
return ret;
}
/**
* ux500_hash_resume - Function that resume the hash device.
* @dev: Device to resume.
*/
static int ux500_hash_resume(struct device *dev)
{
int ret = 0;
struct hash_device_data *device_data;
struct hash_ctx *temp_ctx = NULL;
device_data = dev_get_drvdata(dev);
if (!device_data) {
dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
return -ENOMEM;
}
spin_lock(&device_data->ctx_lock);
if (device_data->current_ctx == ++temp_ctx)
device_data->current_ctx = NULL;
spin_unlock(&device_data->ctx_lock);
if (!device_data->current_ctx)
up(&driver_data.device_allocation);
else
ret = hash_enable_power(device_data, true);
if (ret)
dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
return ret;
}
#endif
static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
static const struct of_device_id ux500_hash_match[] = {
{ .compatible = "stericsson,ux500-hash" },
{ },
};
MODULE_DEVICE_TABLE(of, ux500_hash_match);
static struct platform_driver hash_driver = {
.probe = ux500_hash_probe,
.remove = ux500_hash_remove,
.shutdown = ux500_hash_shutdown,
.driver = {
.name = "hash1",
.of_match_table = ux500_hash_match,
.pm = &ux500_hash_pm,
}
};
/**
* ux500_hash_mod_init - The kernel module init function.
*/
static int __init ux500_hash_mod_init(void)
{
klist_init(&driver_data.device_list, NULL, NULL);
/* Initialize the semaphore to 0 devices (locked state) */
sema_init(&driver_data.device_allocation, 0);
return platform_driver_register(&hash_driver);
}
/**
* ux500_hash_mod_fini - The kernel module exit function.
*/
static void __exit ux500_hash_mod_fini(void)
{
platform_driver_unregister(&hash_driver);
}
module_init(ux500_hash_mod_init);
module_exit(ux500_hash_mod_fini);
MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("sha1-all");
MODULE_ALIAS_CRYPTO("sha256-all");
MODULE_ALIAS_CRYPTO("hmac-sha1-all");
MODULE_ALIAS_CRYPTO("hmac-sha256-all");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment