Commit e1a00373 authored by David S. Miller's avatar David S. Miller

Merge tag 'linux-can-next-for-6.9-20240213' of...

Merge tag 'linux-can-next-for-6.9-20240213' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next

Marc Kleine-Budde says:

====================
linux-can-next-for-6.9-20240213

this is a pull request of 23 patches for net-next/master.

The first patch is by Nicolas Maier and targets the CAN Broadcast
Manager (bcm), it adds message flags to distinguish between own local
and remote traffic.

Oliver Hartkopp contributes a patch for the CAN ISOTP protocol that
adds dynamic flow control parameters.

Stefan Mätje's patch series add support for the esd PCIe/402 CAN
interface family.

Markus Schneider-Pargmann contributes 14 patches for the m_can to
optimize for the SPI attached tcan4x5x controller.

A patch by Vincent Mailhol replaces Wolfgang Grandegger by Vincent
Mailhol as the CAN drivers Co-Maintainer.

Jimmy Assarsson's patch add support for the Kvaser M.2 PCIe 4xCAN
adapter.

A patch by Daniil Dulov removed a redundant NULL check in the softing
driver.

Oliver Hartkopp contributes a patch to add CANXL virtual CAN network
identifier support.

A patch by myself removes Naga Sureshkumar Relli as the maintainer of
the xilinx_can driver, as their email bounces.
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents f77581bf 73b8f501
......@@ -444,6 +444,24 @@ definitions are specified for CAN specific MTUs in include/linux/can.h:
#define CANFD_MTU (sizeof(struct canfd_frame)) == 72 => CAN FD frame
Returned Message Flags
----------------------
When using the system call recvmsg(2) on a RAW or a BCM socket, the
msg->msg_flags field may contain the following flags:
MSG_DONTROUTE:
set when the received frame was created on the local host.
MSG_CONFIRM:
set when the frame was sent via the socket it is received on.
This flag can be interpreted as a 'transmission confirmation' when the
CAN driver supports the echo of frames on driver level, see
:ref:`socketcan-local-loopback1` and :ref:`socketcan-local-loopback2`.
(Note: In order to receive such messages on a RAW socket,
CAN_RAW_RECV_OWN_MSGS must be set.)
.. _socketcan-raw-sockets:
RAW Protocol Sockets with can_filters (SOCK_RAW)
......@@ -693,22 +711,6 @@ where the CAN_INV_FILTER flag is set in order to notch single CAN IDs or
CAN ID ranges from the incoming traffic.
RAW Socket Returned Message Flags
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When using recvmsg() call, the msg->msg_flags may contain following flags:
MSG_DONTROUTE:
set when the received frame was created on the local host.
MSG_CONFIRM:
set when the frame was sent via the socket it is received on.
This flag can be interpreted as a 'transmission confirmation' when the
CAN driver supports the echo of frames on driver level, see
:ref:`socketcan-local-loopback1` and :ref:`socketcan-local-loopback2`.
In order to receive such messages, CAN_RAW_RECV_OWN_MSGS must be set.
Broadcast Manager Protocol Sockets (SOCK_DGRAM)
-----------------------------------------------
......
......@@ -4632,8 +4632,8 @@ S: Maintained
F: net/sched/sch_cake.c
CAN NETWORK DRIVERS
M: Wolfgang Grandegger <wg@grandegger.com>
M: Marc Kleine-Budde <mkl@pengutronix.de>
M: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
L: linux-can@vger.kernel.org
S: Maintained
W: https://github.com/linux-can
......@@ -7887,6 +7887,13 @@ S: Maintained
F: include/linux/errseq.h
F: lib/errseq.c
ESD CAN NETWORK DRIVERS
M: Stefan Mätje <stefan.maetje@esd.eu>
R: socketcan@esd.eu
L: linux-can@vger.kernel.org
S: Maintained
F: drivers/net/can/esd/
ESD CAN/USB DRIVERS
M: Frank Jungclaus <frank.jungclaus@esd.eu>
R: socketcan@esd.eu
......@@ -24142,7 +24149,6 @@ F: drivers/net/ethernet/xilinx/xilinx_axienet*
XILINX CAN DRIVER
M: Appana Durga Kedareswara rao <appana.durga.rao@xilinx.com>
R: Naga Sureshkumar Relli <naga.sureshkumar.relli@xilinx.com>
L: linux-can@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/net/can/xilinx,can.yaml
......
......@@ -168,6 +168,7 @@ config CAN_KVASER_PCIEFD
Kvaser Mini PCI Express 2xHS v2
Kvaser Mini PCI Express 1xCAN v3
Kvaser Mini PCI Express 2xCAN v3
Kvaser M.2 PCIe 4xCAN
config CAN_SLCAN
tristate "Serial / USB serial CAN Adaptors (slcan)"
......@@ -218,6 +219,7 @@ config CAN_XILINXCAN
source "drivers/net/can/c_can/Kconfig"
source "drivers/net/can/cc770/Kconfig"
source "drivers/net/can/ctucanfd/Kconfig"
source "drivers/net/can/esd/Kconfig"
source "drivers/net/can/ifi_canfd/Kconfig"
source "drivers/net/can/m_can/Kconfig"
source "drivers/net/can/mscan/Kconfig"
......
......@@ -8,6 +8,7 @@ obj-$(CONFIG_CAN_VXCAN) += vxcan.o
obj-$(CONFIG_CAN_SLCAN) += slcan/
obj-y += dev/
obj-y += esd/
obj-y += rcar/
obj-y += spi/
obj-y += usb/
......
# SPDX-License-Identifier: GPL-2.0-only
config CAN_ESD_402_PCI
tristate "esd electronics gmbh CAN-PCI(e)/402 family"
depends on PCI && HAS_DMA
help
Support for C402 card family from esd electronics gmbh.
This card family is based on the ESDACC CAN controller and
available in several form factors: PCI, PCIe, PCIe Mini,
M.2 PCIe, CPCIserial, PMC, XMC (see https://esd.eu/en)
This driver can also be built as a module. In this case the
module will be called esd_402_pci.
# SPDX-License-Identifier: GPL-2.0-only
#
# Makefile for esd gmbh ESDACC controller driver
#
esd_402_pci-objs := esdacc.o esd_402_pci-core.o
obj-$(CONFIG_CAN_ESD_402_PCI) += esd_402_pci.o
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2015 - 2016 Thomas Körper, esd electronic system design gmbh
* Copyright (C) 2017 - 2023 Stefan Mätje, esd electronics gmbh
*/
#include <linux/can/dev.h>
#include <linux/can.h>
#include <linux/can/netlink.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/ethtool.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include "esdacc.h"
#define ESD_PCI_DEVICE_ID_PCIE402 0x0402
#define PCI402_FPGA_VER_MIN 0x003d
#define PCI402_MAX_CORES 6
#define PCI402_BAR 0
#define PCI402_IO_OV_OFFS 0
#define PCI402_IO_PCIEP_OFFS 0x10000
#define PCI402_IO_LEN_TOTAL 0x20000
#define PCI402_IO_LEN_CORE 0x2000
#define PCI402_PCICFG_MSICAP 0x50
#define PCI402_DMA_MASK DMA_BIT_MASK(32)
#define PCI402_DMA_SIZE ALIGN(0x10000, PAGE_SIZE)
#define PCI402_PCIEP_OF_INT_ENABLE 0x0050
#define PCI402_PCIEP_OF_BM_ADDR_LO 0x1000
#define PCI402_PCIEP_OF_BM_ADDR_HI 0x1004
#define PCI402_PCIEP_OF_MSI_ADDR_LO 0x1008
#define PCI402_PCIEP_OF_MSI_ADDR_HI 0x100c
struct pci402_card {
/* Actually mapped io space, all other iomem derived from this */
void __iomem *addr;
void __iomem *addr_pciep;
void *dma_buf;
dma_addr_t dma_hnd;
struct acc_ov ov;
struct acc_core *cores;
bool msi_enabled;
};
/* The BTR register capabilities described by the can_bittiming_const structures
* below are valid since esdACC version 0x0032.
*/
/* Used if the esdACC FPGA is built as CAN-Classic version. */
static const struct can_bittiming_const pci402_bittiming_const = {
.name = "esd_402",
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 512,
.brp_inc = 1,
};
/* Used if the esdACC FPGA is built as CAN-FD version. */
static const struct can_bittiming_const pci402_bittiming_const_canfd = {
.name = "esd_402fd",
.tseg1_min = 1,
.tseg1_max = 256,
.tseg2_min = 1,
.tseg2_max = 128,
.sjw_max = 128,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
static const struct net_device_ops pci402_acc_netdev_ops = {
.ndo_open = acc_open,
.ndo_stop = acc_close,
.ndo_start_xmit = acc_start_xmit,
.ndo_change_mtu = can_change_mtu,
.ndo_eth_ioctl = can_eth_ioctl_hwts,
};
static const struct ethtool_ops pci402_acc_ethtool_ops = {
.get_ts_info = can_ethtool_op_get_ts_info_hwts,
};
static irqreturn_t pci402_interrupt(int irq, void *dev_id)
{
struct pci_dev *pdev = dev_id;
struct pci402_card *card = pci_get_drvdata(pdev);
irqreturn_t irq_status;
irq_status = acc_card_interrupt(&card->ov, card->cores);
return irq_status;
}
static int pci402_set_msiconfig(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
u32 addr_lo_offs = 0;
u32 addr_lo = 0;
u32 addr_hi = 0;
u32 data = 0;
u16 csr = 0;
int err;
/* The FPGA hard IP PCIe core implements a 64-bit MSI Capability
* Register Format
*/
err = pci_read_config_word(pdev, PCI402_PCICFG_MSICAP + PCI_MSI_FLAGS, &csr);
if (err)
goto failed;
err = pci_read_config_dword(pdev, PCI402_PCICFG_MSICAP + PCI_MSI_ADDRESS_LO,
&addr_lo);
if (err)
goto failed;
err = pci_read_config_dword(pdev, PCI402_PCICFG_MSICAP + PCI_MSI_ADDRESS_HI,
&addr_hi);
if (err)
goto failed;
err = pci_read_config_dword(pdev, PCI402_PCICFG_MSICAP + PCI_MSI_DATA_64,
&data);
if (err)
goto failed;
addr_lo_offs = addr_lo & 0x0000ffff;
addr_lo &= 0xffff0000;
if (addr_hi)
addr_lo |= 1; /* To enable 64-Bit addressing in PCIe endpoint */
if (!(csr & PCI_MSI_FLAGS_ENABLE)) {
err = -EINVAL;
goto failed;
}
iowrite32(addr_lo, card->addr_pciep + PCI402_PCIEP_OF_MSI_ADDR_LO);
iowrite32(addr_hi, card->addr_pciep + PCI402_PCIEP_OF_MSI_ADDR_HI);
acc_ov_write32(&card->ov, ACC_OV_OF_MSI_ADDRESSOFFSET, addr_lo_offs);
acc_ov_write32(&card->ov, ACC_OV_OF_MSI_DATA, data);
return 0;
failed:
pci_warn(pdev, "Error while setting MSI configuration:\n"
"CSR: 0x%.4x, addr: 0x%.8x%.8x, offs: 0x%.4x, data: 0x%.8x\n",
csr, addr_hi, addr_lo, addr_lo_offs, data);
return err;
}
static int pci402_init_card(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
card->ov.addr = card->addr + PCI402_IO_OV_OFFS;
card->addr_pciep = card->addr + PCI402_IO_PCIEP_OFFS;
acc_reset_fpga(&card->ov);
acc_init_ov(&card->ov, &pdev->dev);
if (card->ov.version < PCI402_FPGA_VER_MIN) {
pci_err(pdev,
"esdACC version (0x%.4x) outdated, please update\n",
card->ov.version);
return -EINVAL;
}
if (card->ov.timestamp_frequency != ACC_TS_FREQ_80MHZ) {
pci_err(pdev,
"esdACC timestamp frequency of %uHz not supported by driver. Aborted.\n",
card->ov.timestamp_frequency);
return -EINVAL;
}
if (card->ov.active_cores > PCI402_MAX_CORES) {
pci_err(pdev,
"Card with %u active cores not supported by driver. Aborted.\n",
card->ov.active_cores);
return -EINVAL;
}
card->cores = devm_kcalloc(&pdev->dev, card->ov.active_cores,
sizeof(struct acc_core), GFP_KERNEL);
if (!card->cores)
return -ENOMEM;
if (card->ov.features & ACC_OV_REG_FEAT_MASK_CANFD) {
pci_warn(pdev,
"esdACC with CAN-FD feature detected. This driver doesn't support CAN-FD yet.\n");
}
#ifdef __LITTLE_ENDIAN
/* So card converts all busmastered data to LE for us: */
acc_ov_set_bits(&card->ov, ACC_OV_OF_MODE,
ACC_OV_REG_MODE_MASK_ENDIAN_LITTLE);
#endif
return 0;
}
static int pci402_init_interrupt(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
int err;
err = pci_enable_msi(pdev);
if (!err) {
err = pci402_set_msiconfig(pdev);
if (!err) {
card->msi_enabled = true;
acc_ov_set_bits(&card->ov, ACC_OV_OF_MODE,
ACC_OV_REG_MODE_MASK_MSI_ENABLE);
pci_dbg(pdev, "MSI preparation done\n");
}
}
err = devm_request_irq(&pdev->dev, pdev->irq, pci402_interrupt,
IRQF_SHARED, dev_name(&pdev->dev), pdev);
if (err)
goto failure_msidis;
iowrite32(1, card->addr_pciep + PCI402_PCIEP_OF_INT_ENABLE);
return 0;
failure_msidis:
if (card->msi_enabled) {
acc_ov_clear_bits(&card->ov, ACC_OV_OF_MODE,
ACC_OV_REG_MODE_MASK_MSI_ENABLE);
pci_disable_msi(pdev);
card->msi_enabled = false;
}
return err;
}
static void pci402_finish_interrupt(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
iowrite32(0, card->addr_pciep + PCI402_PCIEP_OF_INT_ENABLE);
devm_free_irq(&pdev->dev, pdev->irq, pdev);
if (card->msi_enabled) {
acc_ov_clear_bits(&card->ov, ACC_OV_OF_MODE,
ACC_OV_REG_MODE_MASK_MSI_ENABLE);
pci_disable_msi(pdev);
card->msi_enabled = false;
}
}
static int pci402_init_dma(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
int err;
err = dma_set_coherent_mask(&pdev->dev, PCI402_DMA_MASK);
if (err) {
pci_err(pdev, "DMA set mask failed!\n");
return err;
}
/* The esdACC DMA engine needs the DMA buffer aligned to a 64k
* boundary. The DMA API guarantees to align the returned buffer to the
* smallest PAGE_SIZE order which is greater than or equal to the
* requested size. With PCI402_DMA_SIZE == 64kB this suffices here.
*/
card->dma_buf = dma_alloc_coherent(&pdev->dev, PCI402_DMA_SIZE,
&card->dma_hnd, GFP_KERNEL);
if (!card->dma_buf)
return -ENOMEM;
acc_init_bm_ptr(&card->ov, card->cores, card->dma_buf);
iowrite32(card->dma_hnd,
card->addr_pciep + PCI402_PCIEP_OF_BM_ADDR_LO);
iowrite32(0, card->addr_pciep + PCI402_PCIEP_OF_BM_ADDR_HI);
pci_set_master(pdev);
acc_ov_set_bits(&card->ov, ACC_OV_OF_MODE,
ACC_OV_REG_MODE_MASK_BM_ENABLE);
return 0;
}
static void pci402_finish_dma(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
int i;
acc_ov_clear_bits(&card->ov, ACC_OV_OF_MODE,
ACC_OV_REG_MODE_MASK_BM_ENABLE);
pci_clear_master(pdev);
iowrite32(0, card->addr_pciep + PCI402_PCIEP_OF_BM_ADDR_LO);
iowrite32(0, card->addr_pciep + PCI402_PCIEP_OF_BM_ADDR_HI);
card->ov.bmfifo.messages = NULL;
card->ov.bmfifo.irq_cnt = NULL;
for (i = 0; i < card->ov.active_cores; i++) {
struct acc_core *core = &card->cores[i];
core->bmfifo.messages = NULL;
core->bmfifo.irq_cnt = NULL;
}
dma_free_coherent(&pdev->dev, PCI402_DMA_SIZE, card->dma_buf,
card->dma_hnd);
card->dma_buf = NULL;
}
static void pci402_unregister_core(struct acc_core *core)
{
netdev_info(core->netdev, "unregister\n");
unregister_candev(core->netdev);
free_candev(core->netdev);
core->netdev = NULL;
}
static int pci402_init_cores(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
int err;
int i;
for (i = 0; i < card->ov.active_cores; i++) {
struct acc_core *core = &card->cores[i];
struct acc_net_priv *priv;
struct net_device *netdev;
u32 fifo_config;
core->addr = card->ov.addr + (i + 1) * PCI402_IO_LEN_CORE;
fifo_config = acc_read32(core, ACC_CORE_OF_TXFIFO_CONFIG);
core->tx_fifo_size = (fifo_config >> 24);
if (core->tx_fifo_size <= 1) {
pci_err(pdev, "Invalid tx_fifo_size!\n");
err = -EINVAL;
goto failure;
}
netdev = alloc_candev(sizeof(*priv), core->tx_fifo_size);
if (!netdev) {
err = -ENOMEM;
goto failure;
}
core->netdev = netdev;
netdev->flags |= IFF_ECHO;
netdev->dev_port = i;
netdev->netdev_ops = &pci402_acc_netdev_ops;
netdev->ethtool_ops = &pci402_acc_ethtool_ops;
SET_NETDEV_DEV(netdev, &pdev->dev);
priv = netdev_priv(netdev);
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_BERR_REPORTING |
CAN_CTRLMODE_CC_LEN8_DLC;
priv->can.clock.freq = card->ov.core_frequency;
if (card->ov.features & ACC_OV_REG_FEAT_MASK_CANFD)
priv->can.bittiming_const = &pci402_bittiming_const_canfd;
else
priv->can.bittiming_const = &pci402_bittiming_const;
priv->can.do_set_bittiming = acc_set_bittiming;
priv->can.do_set_mode = acc_set_mode;
priv->can.do_get_berr_counter = acc_get_berr_counter;
priv->core = core;
priv->ov = &card->ov;
err = register_candev(netdev);
if (err) {
free_candev(core->netdev);
core->netdev = NULL;
goto failure;
}
netdev_info(netdev, "registered\n");
}
return 0;
failure:
for (i--; i >= 0; i--)
pci402_unregister_core(&card->cores[i]);
return err;
}
static void pci402_finish_cores(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
int i;
for (i = 0; i < card->ov.active_cores; i++)
pci402_unregister_core(&card->cores[i]);
}
static int pci402_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct pci402_card *card = NULL;
int err;
err = pci_enable_device(pdev);
if (err)
return err;
card = devm_kzalloc(&pdev->dev, sizeof(*card), GFP_KERNEL);
if (!card) {
err = -ENOMEM;
goto failure_disable_pci;
}
pci_set_drvdata(pdev, card);
err = pci_request_regions(pdev, pci_name(pdev));
if (err)
goto failure_disable_pci;
card->addr = pci_iomap(pdev, PCI402_BAR, PCI402_IO_LEN_TOTAL);
if (!card->addr) {
err = -ENOMEM;
goto failure_release_regions;
}
err = pci402_init_card(pdev);
if (err)
goto failure_unmap;
err = pci402_init_dma(pdev);
if (err)
goto failure_unmap;
err = pci402_init_interrupt(pdev);
if (err)
goto failure_finish_dma;
err = pci402_init_cores(pdev);
if (err)
goto failure_finish_interrupt;
return 0;
failure_finish_interrupt:
pci402_finish_interrupt(pdev);
failure_finish_dma:
pci402_finish_dma(pdev);
failure_unmap:
pci_iounmap(pdev, card->addr);
failure_release_regions:
pci_release_regions(pdev);
failure_disable_pci:
pci_disable_device(pdev);
return err;
}
static void pci402_remove(struct pci_dev *pdev)
{
struct pci402_card *card = pci_get_drvdata(pdev);
pci402_finish_interrupt(pdev);
pci402_finish_cores(pdev);
pci402_finish_dma(pdev);
pci_iounmap(pdev, card->addr);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static const struct pci_device_id pci402_tbl[] = {
{
.vendor = PCI_VENDOR_ID_ESDGMBH,
.device = ESD_PCI_DEVICE_ID_PCIE402,
.subvendor = PCI_VENDOR_ID_ESDGMBH,
.subdevice = PCI_ANY_ID,
},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, pci402_tbl);
static struct pci_driver pci402_driver = {
.name = KBUILD_MODNAME,
.id_table = pci402_tbl,
.probe = pci402_probe,
.remove = pci402_remove,
};
module_pci_driver(pci402_driver);
MODULE_DESCRIPTION("Socket-CAN driver for esd CAN 402 card family with esdACC core on PCIe");
MODULE_AUTHOR("Thomas Körper <socketcan@esd.eu>");
MODULE_AUTHOR("Stefan Mätje <stefan.maetje@esd.eu>");
MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2015 - 2016 Thomas Körper, esd electronic system design gmbh
* Copyright (C) 2017 - 2023 Stefan Mätje, esd electronics gmbh
*/
#include "esdacc.h"
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ktime.h>
/* esdACC ID register layout */
#define ACC_ID_ID_MASK GENMASK(28, 0)
#define ACC_ID_EFF_FLAG BIT(29)
/* esdACC DLC register layout */
#define ACC_DLC_DLC_MASK GENMASK(3, 0)
#define ACC_DLC_RTR_FLAG BIT(4)
#define ACC_DLC_TXD_FLAG BIT(5)
/* ecc value of esdACC equals SJA1000's ECC register */
#define ACC_ECC_SEG 0x1f
#define ACC_ECC_DIR 0x20
#define ACC_ECC_BIT 0x00
#define ACC_ECC_FORM 0x40
#define ACC_ECC_STUFF 0x80
#define ACC_ECC_MASK 0xc0
/* esdACC Status Register bits. Unused bits not documented. */
#define ACC_REG_STATUS_MASK_STATUS_ES BIT(17)
#define ACC_REG_STATUS_MASK_STATUS_EP BIT(18)
#define ACC_REG_STATUS_MASK_STATUS_BS BIT(19)
/* esdACC Overview Module BM_IRQ_Mask register related defines */
/* Two bit wide command masks to mask or unmask a single core IRQ */
#define ACC_BM_IRQ_UNMASK BIT(0)
#define ACC_BM_IRQ_MASK (ACC_BM_IRQ_UNMASK << 1)
/* Command to unmask all IRQ sources. Created by shifting
* and oring the two bit wide ACC_BM_IRQ_UNMASK 16 times.
*/
#define ACC_BM_IRQ_UNMASK_ALL 0x55555555U
static void acc_resetmode_enter(struct acc_core *core)
{
acc_set_bits(core, ACC_CORE_OF_CTRL_MODE,
ACC_REG_CONTROL_MASK_MODE_RESETMODE);
/* Read back reset mode bit to flush PCI write posting */
acc_resetmode_entered(core);
}
static void acc_resetmode_leave(struct acc_core *core)
{
acc_clear_bits(core, ACC_CORE_OF_CTRL_MODE,
ACC_REG_CONTROL_MASK_MODE_RESETMODE);
/* Read back reset mode bit to flush PCI write posting */
acc_resetmode_entered(core);
}
static void acc_txq_put(struct acc_core *core, u32 acc_id, u8 acc_dlc,
const void *data)
{
acc_write32_noswap(core, ACC_CORE_OF_TXFIFO_DATA_1,
*((const u32 *)(data + 4)));
acc_write32_noswap(core, ACC_CORE_OF_TXFIFO_DATA_0,
*((const u32 *)data));
acc_write32(core, ACC_CORE_OF_TXFIFO_DLC, acc_dlc);
/* CAN id must be written at last. This write starts TX. */
acc_write32(core, ACC_CORE_OF_TXFIFO_ID, acc_id);
}
static u8 acc_tx_fifo_next(struct acc_core *core, u8 tx_fifo_idx)
{
++tx_fifo_idx;
if (tx_fifo_idx >= core->tx_fifo_size)
tx_fifo_idx = 0U;
return tx_fifo_idx;
}
/* Convert timestamp from esdACC time stamp ticks to ns
*
* The conversion factor ts2ns from time stamp counts to ns is basically
* ts2ns = NSEC_PER_SEC / timestamp_frequency
*
* We handle here only a fixed timestamp frequency of 80MHz. The
* resulting ts2ns factor would be 12.5.
*
* At the end we multiply by 12 and add the half of the HW timestamp
* to get a multiplication by 12.5. This way any overflow is
* avoided until ktime_t itself overflows.
*/
#define ACC_TS_FACTOR (NSEC_PER_SEC / ACC_TS_FREQ_80MHZ)
#define ACC_TS_80MHZ_SHIFT 1
static ktime_t acc_ts2ktime(struct acc_ov *ov, u64 ts)
{
u64 ns;
ns = (ts * ACC_TS_FACTOR) + (ts >> ACC_TS_80MHZ_SHIFT);
return ns_to_ktime(ns);
}
#undef ACC_TS_FACTOR
#undef ACC_TS_80MHZ_SHIFT
void acc_init_ov(struct acc_ov *ov, struct device *dev)
{
u32 temp;
temp = acc_ov_read32(ov, ACC_OV_OF_VERSION);
ov->version = temp;
ov->features = (temp >> 16);
temp = acc_ov_read32(ov, ACC_OV_OF_INFO);
ov->total_cores = temp;
ov->active_cores = (temp >> 8);
ov->core_frequency = acc_ov_read32(ov, ACC_OV_OF_CANCORE_FREQ);
ov->timestamp_frequency = acc_ov_read32(ov, ACC_OV_OF_TS_FREQ_LO);
/* Depending on esdACC feature NEW_PSC enable the new prescaler
* or adjust core_frequency according to the implicit division by 2.
*/
if (ov->features & ACC_OV_REG_FEAT_MASK_NEW_PSC) {
acc_ov_set_bits(ov, ACC_OV_OF_MODE,
ACC_OV_REG_MODE_MASK_NEW_PSC_ENABLE);
} else {
ov->core_frequency /= 2;
}
dev_dbg(dev,
"esdACC v%u, freq: %u/%u, feat/strap: 0x%x/0x%x, cores: %u/%u\n",
ov->version, ov->core_frequency, ov->timestamp_frequency,
ov->features, acc_ov_read32(ov, ACC_OV_OF_INFO) >> 16,
ov->active_cores, ov->total_cores);
}
void acc_init_bm_ptr(struct acc_ov *ov, struct acc_core *cores, const void *mem)
{
unsigned int u;
/* DMA buffer layout as follows where N is the number of CAN cores
* implemented in the FPGA, i.e. N = ov->total_cores
*
* Section Layout Section size
* ----------------------------------------------
* FIFO Card/Overview ACC_CORE_DMABUF_SIZE
* FIFO Core0 ACC_CORE_DMABUF_SIZE
* ... ...
* FIFO CoreN ACC_CORE_DMABUF_SIZE
* irq_cnt Card/Overview sizeof(u32)
* irq_cnt Core0 sizeof(u32)
* ... ...
* irq_cnt CoreN sizeof(u32)
*/
ov->bmfifo.messages = mem;
ov->bmfifo.irq_cnt = mem + (ov->total_cores + 1U) * ACC_CORE_DMABUF_SIZE;
for (u = 0U; u < ov->active_cores; u++) {
struct acc_core *core = &cores[u];
core->bmfifo.messages = mem + (u + 1U) * ACC_CORE_DMABUF_SIZE;
core->bmfifo.irq_cnt = ov->bmfifo.irq_cnt + (u + 1U);
}
}
int acc_open(struct net_device *netdev)
{
struct acc_net_priv *priv = netdev_priv(netdev);
struct acc_core *core = priv->core;
u32 tx_fifo_status;
u32 ctrl_mode;
int err;
/* Retry to enter RESET mode if out of sync. */
if (priv->can.state != CAN_STATE_STOPPED) {
netdev_warn(netdev, "Entered %s() with bad can.state: %s\n",
__func__, can_get_state_str(priv->can.state));
acc_resetmode_enter(core);
priv->can.state = CAN_STATE_STOPPED;
}
err = open_candev(netdev);
if (err)
return err;
ctrl_mode = ACC_REG_CONTROL_MASK_IE_RXTX |
ACC_REG_CONTROL_MASK_IE_TXERROR |
ACC_REG_CONTROL_MASK_IE_ERRWARN |
ACC_REG_CONTROL_MASK_IE_OVERRUN |
ACC_REG_CONTROL_MASK_IE_ERRPASS;
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
ctrl_mode |= ACC_REG_CONTROL_MASK_IE_BUSERR;
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
ctrl_mode |= ACC_REG_CONTROL_MASK_MODE_LOM;
acc_set_bits(core, ACC_CORE_OF_CTRL_MODE, ctrl_mode);
acc_resetmode_leave(core);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
/* Resync TX FIFO indices to HW state after (re-)start. */
tx_fifo_status = acc_read32(core, ACC_CORE_OF_TXFIFO_STATUS);
core->tx_fifo_head = tx_fifo_status & 0xff;
core->tx_fifo_tail = (tx_fifo_status >> 8) & 0xff;
netif_start_queue(netdev);
return 0;
}
int acc_close(struct net_device *netdev)
{
struct acc_net_priv *priv = netdev_priv(netdev);
struct acc_core *core = priv->core;
acc_clear_bits(core, ACC_CORE_OF_CTRL_MODE,
ACC_REG_CONTROL_MASK_IE_RXTX |
ACC_REG_CONTROL_MASK_IE_TXERROR |
ACC_REG_CONTROL_MASK_IE_ERRWARN |
ACC_REG_CONTROL_MASK_IE_OVERRUN |
ACC_REG_CONTROL_MASK_IE_ERRPASS |
ACC_REG_CONTROL_MASK_IE_BUSERR);
netif_stop_queue(netdev);
acc_resetmode_enter(core);
priv->can.state = CAN_STATE_STOPPED;
/* Mark pending TX requests to be aborted after controller restart. */
acc_write32(core, ACC_CORE_OF_TX_ABORT_MASK, 0xffff);
/* ACC_REG_CONTROL_MASK_MODE_LOM is only accessible in RESET mode */
acc_clear_bits(core, ACC_CORE_OF_CTRL_MODE,
ACC_REG_CONTROL_MASK_MODE_LOM);
close_candev(netdev);
return 0;
}
netdev_tx_t acc_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct acc_net_priv *priv = netdev_priv(netdev);
struct acc_core *core = priv->core;
struct can_frame *cf = (struct can_frame *)skb->data;
u8 tx_fifo_head = core->tx_fifo_head;
int fifo_usage;
u32 acc_id;
u8 acc_dlc;
if (can_dropped_invalid_skb(netdev, skb))
return NETDEV_TX_OK;
/* Access core->tx_fifo_tail only once because it may be changed
* from the interrupt level.
*/
fifo_usage = tx_fifo_head - core->tx_fifo_tail;
if (fifo_usage < 0)
fifo_usage += core->tx_fifo_size;
if (fifo_usage >= core->tx_fifo_size - 1) {
netdev_err(core->netdev,
"BUG: TX ring full when queue awake!\n");
netif_stop_queue(netdev);
return NETDEV_TX_BUSY;
}
if (fifo_usage == core->tx_fifo_size - 2)
netif_stop_queue(netdev);
acc_dlc = can_get_cc_dlc(cf, priv->can.ctrlmode);
if (cf->can_id & CAN_RTR_FLAG)
acc_dlc |= ACC_DLC_RTR_FLAG;
if (cf->can_id & CAN_EFF_FLAG) {
acc_id = cf->can_id & CAN_EFF_MASK;
acc_id |= ACC_ID_EFF_FLAG;
} else {
acc_id = cf->can_id & CAN_SFF_MASK;
}
can_put_echo_skb(skb, netdev, core->tx_fifo_head, 0);
core->tx_fifo_head = acc_tx_fifo_next(core, tx_fifo_head);
acc_txq_put(core, acc_id, acc_dlc, cf->data);
return NETDEV_TX_OK;
}
int acc_get_berr_counter(const struct net_device *netdev,
struct can_berr_counter *bec)
{
struct acc_net_priv *priv = netdev_priv(netdev);
u32 core_status = acc_read32(priv->core, ACC_CORE_OF_STATUS);
bec->txerr = (core_status >> 8) & 0xff;
bec->rxerr = core_status & 0xff;
return 0;
}
int acc_set_mode(struct net_device *netdev, enum can_mode mode)
{
struct acc_net_priv *priv = netdev_priv(netdev);
switch (mode) {
case CAN_MODE_START:
/* Paranoid FIFO index check. */
{
const u32 tx_fifo_status =
acc_read32(priv->core, ACC_CORE_OF_TXFIFO_STATUS);
const u8 hw_fifo_head = tx_fifo_status;
if (hw_fifo_head != priv->core->tx_fifo_head ||
hw_fifo_head != priv->core->tx_fifo_tail) {
netdev_warn(netdev,
"TX FIFO mismatch: T %2u H %2u; TFHW %#08x\n",
priv->core->tx_fifo_tail,
priv->core->tx_fifo_head,
tx_fifo_status);
}
}
acc_resetmode_leave(priv->core);
/* To leave the bus-off state the esdACC controller begins
* here a grace period where it counts 128 "idle conditions" (each
* of 11 consecutive recessive bits) on the bus as required
* by the CAN spec.
*
* During this time the TX FIFO may still contain already
* aborted "zombie" frames that are only drained from the FIFO
* at the end of the grace period.
*
* To not to interfere with this drain process we don't
* call netif_wake_queue() here. When the controller reaches
* the error-active state again, it informs us about that
* with an acc_bmmsg_errstatechange message. Then
* netif_wake_queue() is called from
* handle_core_msg_errstatechange() instead.
*/
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
int acc_set_bittiming(struct net_device *netdev)
{
struct acc_net_priv *priv = netdev_priv(netdev);
const struct can_bittiming *bt = &priv->can.bittiming;
u32 brp;
u32 btr;
if (priv->ov->features & ACC_OV_REG_FEAT_MASK_CANFD) {
u32 fbtr = 0;
netdev_dbg(netdev, "bit timing: brp %u, prop %u, ph1 %u ph2 %u, sjw %u\n",
bt->brp, bt->prop_seg,
bt->phase_seg1, bt->phase_seg2, bt->sjw);
brp = FIELD_PREP(ACC_REG_BRP_FD_MASK_BRP, bt->brp - 1);
btr = FIELD_PREP(ACC_REG_BTR_FD_MASK_TSEG1, bt->phase_seg1 + bt->prop_seg - 1);
btr |= FIELD_PREP(ACC_REG_BTR_FD_MASK_TSEG2, bt->phase_seg2 - 1);
btr |= FIELD_PREP(ACC_REG_BTR_FD_MASK_SJW, bt->sjw - 1);
/* Keep order of accesses to ACC_CORE_OF_BRP and ACC_CORE_OF_BTR. */
acc_write32(priv->core, ACC_CORE_OF_BRP, brp);
acc_write32(priv->core, ACC_CORE_OF_BTR, btr);
netdev_dbg(netdev, "esdACC: BRP %u, NBTR 0x%08x, DBTR 0x%08x",
brp, btr, fbtr);
} else {
netdev_dbg(netdev, "bit timing: brp %u, prop %u, ph1 %u ph2 %u, sjw %u\n",
bt->brp, bt->prop_seg,
bt->phase_seg1, bt->phase_seg2, bt->sjw);
brp = FIELD_PREP(ACC_REG_BRP_CL_MASK_BRP, bt->brp - 1);
btr = FIELD_PREP(ACC_REG_BTR_CL_MASK_TSEG1, bt->phase_seg1 + bt->prop_seg - 1);
btr |= FIELD_PREP(ACC_REG_BTR_CL_MASK_TSEG2, bt->phase_seg2 - 1);
btr |= FIELD_PREP(ACC_REG_BTR_CL_MASK_SJW, bt->sjw - 1);
/* Keep order of accesses to ACC_CORE_OF_BRP and ACC_CORE_OF_BTR. */
acc_write32(priv->core, ACC_CORE_OF_BRP, brp);
acc_write32(priv->core, ACC_CORE_OF_BTR, btr);
netdev_dbg(netdev, "esdACC: BRP %u, BTR 0x%08x", brp, btr);
}
return 0;
}
static void handle_core_msg_rxtxdone(struct acc_core *core,
const struct acc_bmmsg_rxtxdone *msg)
{
struct acc_net_priv *priv = netdev_priv(core->netdev);
struct net_device_stats *stats = &core->netdev->stats;
struct sk_buff *skb;
if (msg->acc_dlc.len & ACC_DLC_TXD_FLAG) {
u8 tx_fifo_tail = core->tx_fifo_tail;
if (core->tx_fifo_head == tx_fifo_tail) {
netdev_warn(core->netdev,
"TX interrupt, but queue is empty!?\n");
return;
}
/* Direct access echo skb to attach HW time stamp. */
skb = priv->can.echo_skb[tx_fifo_tail];
if (skb) {
skb_hwtstamps(skb)->hwtstamp =
acc_ts2ktime(priv->ov, msg->ts);
}
stats->tx_packets++;
stats->tx_bytes += can_get_echo_skb(core->netdev, tx_fifo_tail,
NULL);
core->tx_fifo_tail = acc_tx_fifo_next(core, tx_fifo_tail);
netif_wake_queue(core->netdev);
} else {
struct can_frame *cf;
skb = alloc_can_skb(core->netdev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
cf->can_id = msg->id & ACC_ID_ID_MASK;
if (msg->id & ACC_ID_EFF_FLAG)
cf->can_id |= CAN_EFF_FLAG;
can_frame_set_cc_len(cf, msg->acc_dlc.len & ACC_DLC_DLC_MASK,
priv->can.ctrlmode);
if (msg->acc_dlc.len & ACC_DLC_RTR_FLAG) {
cf->can_id |= CAN_RTR_FLAG;
} else {
memcpy(cf->data, msg->data, cf->len);
stats->rx_bytes += cf->len;
}
stats->rx_packets++;
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
netif_rx(skb);
}
}
static void handle_core_msg_txabort(struct acc_core *core,
const struct acc_bmmsg_txabort *msg)
{
struct net_device_stats *stats = &core->netdev->stats;
u8 tx_fifo_tail = core->tx_fifo_tail;
u32 abort_mask = msg->abort_mask; /* u32 extend to avoid warnings later */
/* The abort_mask shows which frames were aborted in esdACC's FIFO. */
while (tx_fifo_tail != core->tx_fifo_head && (abort_mask)) {
const u32 tail_mask = (1U << tx_fifo_tail);
if (!(abort_mask & tail_mask))
break;
abort_mask &= ~tail_mask;
can_free_echo_skb(core->netdev, tx_fifo_tail, NULL);
stats->tx_dropped++;
stats->tx_aborted_errors++;
tx_fifo_tail = acc_tx_fifo_next(core, tx_fifo_tail);
}
core->tx_fifo_tail = tx_fifo_tail;
if (abort_mask)
netdev_warn(core->netdev, "Unhandled aborted messages\n");
if (!acc_resetmode_entered(core))
netif_wake_queue(core->netdev);
}
static void handle_core_msg_overrun(struct acc_core *core,
const struct acc_bmmsg_overrun *msg)
{
struct acc_net_priv *priv = netdev_priv(core->netdev);
struct net_device_stats *stats = &core->netdev->stats;
struct can_frame *cf;
struct sk_buff *skb;
/* lost_cnt may be 0 if not supported by esdACC version */
if (msg->lost_cnt) {
stats->rx_errors += msg->lost_cnt;
stats->rx_over_errors += msg->lost_cnt;
} else {
stats->rx_errors++;
stats->rx_over_errors++;
}
skb = alloc_can_err_skb(core->netdev, &cf);
if (!skb)
return;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
netif_rx(skb);
}
static void handle_core_msg_buserr(struct acc_core *core,
const struct acc_bmmsg_buserr *msg)
{
struct acc_net_priv *priv = netdev_priv(core->netdev);
struct net_device_stats *stats = &core->netdev->stats;
struct can_frame *cf;
struct sk_buff *skb;
const u32 reg_status = msg->reg_status;
const u8 rxerr = reg_status;
const u8 txerr = (reg_status >> 8);
u8 can_err_prot_type = 0U;
priv->can.can_stats.bus_error++;
/* Error occurred during transmission? */
if (msg->ecc & ACC_ECC_DIR) {
stats->rx_errors++;
} else {
can_err_prot_type |= CAN_ERR_PROT_TX;
stats->tx_errors++;
}
/* Determine error type */
switch (msg->ecc & ACC_ECC_MASK) {
case ACC_ECC_BIT:
can_err_prot_type |= CAN_ERR_PROT_BIT;
break;
case ACC_ECC_FORM:
can_err_prot_type |= CAN_ERR_PROT_FORM;
break;
case ACC_ECC_STUFF:
can_err_prot_type |= CAN_ERR_PROT_STUFF;
break;
default:
can_err_prot_type |= CAN_ERR_PROT_UNSPEC;
break;
}
skb = alloc_can_err_skb(core->netdev, &cf);
if (!skb)
return;
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR | CAN_ERR_CNT;
/* Set protocol error type */
cf->data[2] = can_err_prot_type;
/* Set error location */
cf->data[3] = msg->ecc & ACC_ECC_SEG;
/* Insert CAN TX and RX error counters. */
cf->data[6] = txerr;
cf->data[7] = rxerr;
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
netif_rx(skb);
}
static void
handle_core_msg_errstatechange(struct acc_core *core,
const struct acc_bmmsg_errstatechange *msg)
{
struct acc_net_priv *priv = netdev_priv(core->netdev);
struct can_frame *cf = NULL;
struct sk_buff *skb;
const u32 reg_status = msg->reg_status;
const u8 rxerr = reg_status;
const u8 txerr = (reg_status >> 8);
enum can_state new_state;
if (reg_status & ACC_REG_STATUS_MASK_STATUS_BS) {
new_state = CAN_STATE_BUS_OFF;
} else if (reg_status & ACC_REG_STATUS_MASK_STATUS_EP) {
new_state = CAN_STATE_ERROR_PASSIVE;
} else if (reg_status & ACC_REG_STATUS_MASK_STATUS_ES) {
new_state = CAN_STATE_ERROR_WARNING;
} else {
new_state = CAN_STATE_ERROR_ACTIVE;
if (priv->can.state == CAN_STATE_BUS_OFF) {
/* See comment in acc_set_mode() for CAN_MODE_START */
netif_wake_queue(core->netdev);
}
}
skb = alloc_can_err_skb(core->netdev, &cf);
if (new_state != priv->can.state) {
enum can_state tx_state, rx_state;
tx_state = (txerr >= rxerr) ?
new_state : CAN_STATE_ERROR_ACTIVE;
rx_state = (rxerr >= txerr) ?
new_state : CAN_STATE_ERROR_ACTIVE;
/* Always call can_change_state() to update the state
* even if alloc_can_err_skb() may have failed.
* can_change_state() can cope with a NULL cf pointer.
*/
can_change_state(core->netdev, cf, tx_state, rx_state);
}
if (skb) {
cf->can_id |= CAN_ERR_CNT;
cf->data[6] = txerr;
cf->data[7] = rxerr;
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
netif_rx(skb);
}
if (new_state == CAN_STATE_BUS_OFF) {
acc_write32(core, ACC_CORE_OF_TX_ABORT_MASK, 0xffff);
can_bus_off(core->netdev);
}
}
static void handle_core_interrupt(struct acc_core *core)
{
u32 msg_fifo_head = core->bmfifo.local_irq_cnt & 0xff;
while (core->bmfifo.msg_fifo_tail != msg_fifo_head) {
const union acc_bmmsg *msg =
&core->bmfifo.messages[core->bmfifo.msg_fifo_tail];
switch (msg->msg_id) {
case BM_MSG_ID_RXTXDONE:
handle_core_msg_rxtxdone(core, &msg->rxtxdone);
break;
case BM_MSG_ID_TXABORT:
handle_core_msg_txabort(core, &msg->txabort);
break;
case BM_MSG_ID_OVERRUN:
handle_core_msg_overrun(core, &msg->overrun);
break;
case BM_MSG_ID_BUSERR:
handle_core_msg_buserr(core, &msg->buserr);
break;
case BM_MSG_ID_ERRPASSIVE:
case BM_MSG_ID_ERRWARN:
handle_core_msg_errstatechange(core,
&msg->errstatechange);
break;
default:
/* Ignore all other BM messages (like the CAN-FD messages) */
break;
}
core->bmfifo.msg_fifo_tail =
(core->bmfifo.msg_fifo_tail + 1) & 0xff;
}
}
/**
* acc_card_interrupt() - handle the interrupts of an esdACC FPGA
*
* @ov: overview module structure
* @cores: array of core structures
*
* This function handles all interrupts pending for the overview module and the
* CAN cores of the esdACC FPGA.
*
* It examines for all cores (the overview module core and the CAN cores)
* the bmfifo.irq_cnt and compares it with the previously saved
* bmfifo.local_irq_cnt. An IRQ is pending if they differ. The esdACC FPGA
* updates the bmfifo.irq_cnt values by DMA.
*
* The pending interrupts are masked by writing to the IRQ mask register at
* ACC_OV_OF_BM_IRQ_MASK. This register has for each core a two bit command
* field evaluated as follows:
*
* Define, bit pattern: meaning
* 00: no action
* ACC_BM_IRQ_UNMASK, 01: unmask interrupt
* ACC_BM_IRQ_MASK, 10: mask interrupt
* 11: no action
*
* For each CAN core with a pending IRQ handle_core_interrupt() handles all
* busmaster messages from the message FIFO. The last handled message (FIFO
* index) is written to the CAN core to acknowledge its handling.
*
* Last step is to unmask all interrupts in the FPGA using
* ACC_BM_IRQ_UNMASK_ALL.
*
* Return:
* IRQ_HANDLED, if card generated an interrupt that was handled
* IRQ_NONE, if the interrupt is not ours
*/
irqreturn_t acc_card_interrupt(struct acc_ov *ov, struct acc_core *cores)
{
u32 irqmask;
int i;
/* First we look for whom interrupts are pending, card/overview
* or any of the cores. Two bits in irqmask are used for each;
* Each two bit field is set to ACC_BM_IRQ_MASK if an IRQ is
* pending.
*/
irqmask = 0U;
if (READ_ONCE(*ov->bmfifo.irq_cnt) != ov->bmfifo.local_irq_cnt) {
irqmask |= ACC_BM_IRQ_MASK;
ov->bmfifo.local_irq_cnt = READ_ONCE(*ov->bmfifo.irq_cnt);
}
for (i = 0; i < ov->active_cores; i++) {
struct acc_core *core = &cores[i];
if (READ_ONCE(*core->bmfifo.irq_cnt) != core->bmfifo.local_irq_cnt) {
irqmask |= (ACC_BM_IRQ_MASK << (2 * (i + 1)));
core->bmfifo.local_irq_cnt = READ_ONCE(*core->bmfifo.irq_cnt);
}
}
if (!irqmask)
return IRQ_NONE;
/* At second we tell the card we're working on them by writing irqmask,
* call handle_{ov|core}_interrupt and then acknowledge the
* interrupts by writing irq_cnt:
*/
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_MASK, irqmask);
if (irqmask & ACC_BM_IRQ_MASK) {
/* handle_ov_interrupt(); - no use yet. */
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_COUNTER,
ov->bmfifo.local_irq_cnt);
}
for (i = 0; i < ov->active_cores; i++) {
struct acc_core *core = &cores[i];
if (irqmask & (ACC_BM_IRQ_MASK << (2 * (i + 1)))) {
handle_core_interrupt(core);
acc_write32(core, ACC_OV_OF_BM_IRQ_COUNTER,
core->bmfifo.local_irq_cnt);
}
}
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_MASK, ACC_BM_IRQ_UNMASK_ALL);
return IRQ_HANDLED;
}
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright (C) 2015 - 2016 Thomas Körper, esd electronic system design gmbh
* Copyright (C) 2017 - 2023 Stefan Mätje, esd electronics gmbh
*/
#include <linux/bits.h>
#include <linux/can/dev.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/units.h>
#define ACC_TS_FREQ_80MHZ (80 * HZ_PER_MHZ)
#define ACC_I2C_ADDON_DETECT_DELAY_MS 10
/* esdACC Overview Module */
#define ACC_OV_OF_PROBE 0x0000
#define ACC_OV_OF_VERSION 0x0004
#define ACC_OV_OF_INFO 0x0008
#define ACC_OV_OF_CANCORE_FREQ 0x000c
#define ACC_OV_OF_TS_FREQ_LO 0x0010
#define ACC_OV_OF_TS_FREQ_HI 0x0014
#define ACC_OV_OF_IRQ_STATUS_CORES 0x0018
#define ACC_OV_OF_TS_CURR_LO 0x001c
#define ACC_OV_OF_TS_CURR_HI 0x0020
#define ACC_OV_OF_IRQ_STATUS 0x0028
#define ACC_OV_OF_MODE 0x002c
#define ACC_OV_OF_BM_IRQ_COUNTER 0x0070
#define ACC_OV_OF_BM_IRQ_MASK 0x0074
#define ACC_OV_OF_MSI_DATA 0x0080
#define ACC_OV_OF_MSI_ADDRESSOFFSET 0x0084
/* Feature flags are contained in the upper 16 bit of the version
* register at ACC_OV_OF_VERSION but only used with these masks after
* extraction into an extra variable => (xx - 16).
*/
#define ACC_OV_REG_FEAT_MASK_CANFD BIT(27 - 16)
#define ACC_OV_REG_FEAT_MASK_NEW_PSC BIT(28 - 16)
#define ACC_OV_REG_MODE_MASK_ENDIAN_LITTLE BIT(0)
#define ACC_OV_REG_MODE_MASK_BM_ENABLE BIT(1)
#define ACC_OV_REG_MODE_MASK_MODE_LED BIT(2)
#define ACC_OV_REG_MODE_MASK_TIMER_ENABLE BIT(4)
#define ACC_OV_REG_MODE_MASK_TIMER_ONE_SHOT BIT(5)
#define ACC_OV_REG_MODE_MASK_TIMER_ABSOLUTE BIT(6)
#define ACC_OV_REG_MODE_MASK_TIMER GENMASK(6, 4)
#define ACC_OV_REG_MODE_MASK_TS_SRC GENMASK(8, 7)
#define ACC_OV_REG_MODE_MASK_I2C_ENABLE BIT(11)
#define ACC_OV_REG_MODE_MASK_MSI_ENABLE BIT(14)
#define ACC_OV_REG_MODE_MASK_NEW_PSC_ENABLE BIT(15)
#define ACC_OV_REG_MODE_MASK_FPGA_RESET BIT(31)
/* esdACC CAN Core Module */
#define ACC_CORE_OF_CTRL_MODE 0x0000
#define ACC_CORE_OF_STATUS_IRQ 0x0008
#define ACC_CORE_OF_BRP 0x000c
#define ACC_CORE_OF_BTR 0x0010
#define ACC_CORE_OF_FBTR 0x0014
#define ACC_CORE_OF_STATUS 0x0030
#define ACC_CORE_OF_TXFIFO_CONFIG 0x0048
#define ACC_CORE_OF_TXFIFO_STATUS 0x004c
#define ACC_CORE_OF_TX_STATUS_IRQ 0x0050
#define ACC_CORE_OF_TX_ABORT_MASK 0x0054
#define ACC_CORE_OF_BM_IRQ_COUNTER 0x0070
#define ACC_CORE_OF_TXFIFO_ID 0x00c0
#define ACC_CORE_OF_TXFIFO_DLC 0x00c4
#define ACC_CORE_OF_TXFIFO_DATA_0 0x00c8
#define ACC_CORE_OF_TXFIFO_DATA_1 0x00cc
#define ACC_REG_CONTROL_MASK_MODE_RESETMODE BIT(0)
#define ACC_REG_CONTROL_MASK_MODE_LOM BIT(1)
#define ACC_REG_CONTROL_MASK_MODE_STM BIT(2)
#define ACC_REG_CONTROL_MASK_MODE_TRANSEN BIT(5)
#define ACC_REG_CONTROL_MASK_MODE_TS BIT(6)
#define ACC_REG_CONTROL_MASK_MODE_SCHEDULE BIT(7)
#define ACC_REG_CONTROL_MASK_IE_RXTX BIT(8)
#define ACC_REG_CONTROL_MASK_IE_TXERROR BIT(9)
#define ACC_REG_CONTROL_MASK_IE_ERRWARN BIT(10)
#define ACC_REG_CONTROL_MASK_IE_OVERRUN BIT(11)
#define ACC_REG_CONTROL_MASK_IE_TSI BIT(12)
#define ACC_REG_CONTROL_MASK_IE_ERRPASS BIT(13)
#define ACC_REG_CONTROL_MASK_IE_ALI BIT(14)
#define ACC_REG_CONTROL_MASK_IE_BUSERR BIT(15)
/* BRP and BTR register layout for CAN-Classic version */
#define ACC_REG_BRP_CL_MASK_BRP GENMASK(8, 0)
#define ACC_REG_BTR_CL_MASK_TSEG1 GENMASK(3, 0)
#define ACC_REG_BTR_CL_MASK_TSEG2 GENMASK(18, 16)
#define ACC_REG_BTR_CL_MASK_SJW GENMASK(25, 24)
/* BRP and BTR register layout for CAN-FD version */
#define ACC_REG_BRP_FD_MASK_BRP GENMASK(7, 0)
#define ACC_REG_BTR_FD_MASK_TSEG1 GENMASK(7, 0)
#define ACC_REG_BTR_FD_MASK_TSEG2 GENMASK(22, 16)
#define ACC_REG_BTR_FD_MASK_SJW GENMASK(30, 24)
/* 256 BM_MSGs of 32 byte size */
#define ACC_CORE_DMAMSG_SIZE 32U
#define ACC_CORE_DMABUF_SIZE (256U * ACC_CORE_DMAMSG_SIZE)
enum acc_bmmsg_id {
BM_MSG_ID_RXTXDONE = 0x01,
BM_MSG_ID_TXABORT = 0x02,
BM_MSG_ID_OVERRUN = 0x03,
BM_MSG_ID_BUSERR = 0x04,
BM_MSG_ID_ERRPASSIVE = 0x05,
BM_MSG_ID_ERRWARN = 0x06,
BM_MSG_ID_TIMESLICE = 0x07,
BM_MSG_ID_HWTIMER = 0x08,
BM_MSG_ID_HOTPLUG = 0x09,
};
/* The struct acc_bmmsg_* structure declarations that follow here provide
* access to the ring buffer of bus master messages maintained by the FPGA
* bus master engine. All bus master messages have the same size of
* ACC_CORE_DMAMSG_SIZE and a minimum alignment of ACC_CORE_DMAMSG_SIZE in
* memory.
*
* All structure members are natural aligned. Therefore we should not need
* a __packed attribute. All struct acc_bmmsg_* declarations have at least
* reserved* members to fill the structure to the full ACC_CORE_DMAMSG_SIZE.
*
* A failure of this property due padding will be detected at compile time
* by static_assert(sizeof(union acc_bmmsg) == ACC_CORE_DMAMSG_SIZE).
*/
struct acc_bmmsg_rxtxdone {
u8 msg_id;
u8 txfifo_level;
u8 reserved1[2];
u8 txtsfifo_level;
u8 reserved2[3];
u32 id;
struct {
u8 len;
u8 txdfifo_idx;
u8 zeroes8;
u8 reserved;
} acc_dlc;
u8 data[CAN_MAX_DLEN];
/* Time stamps in struct acc_ov::timestamp_frequency ticks. */
u64 ts;
};
struct acc_bmmsg_txabort {
u8 msg_id;
u8 txfifo_level;
u16 abort_mask;
u8 txtsfifo_level;
u8 reserved2[1];
u16 abort_mask_txts;
u64 ts;
u32 reserved3[4];
};
struct acc_bmmsg_overrun {
u8 msg_id;
u8 txfifo_level;
u8 lost_cnt;
u8 reserved1;
u8 txtsfifo_level;
u8 reserved2[3];
u64 ts;
u32 reserved3[4];
};
struct acc_bmmsg_buserr {
u8 msg_id;
u8 txfifo_level;
u8 ecc;
u8 reserved1;
u8 txtsfifo_level;
u8 reserved2[3];
u64 ts;
u32 reg_status;
u32 reg_btr;
u32 reserved3[2];
};
struct acc_bmmsg_errstatechange {
u8 msg_id;
u8 txfifo_level;
u8 reserved1[2];
u8 txtsfifo_level;
u8 reserved2[3];
u64 ts;
u32 reg_status;
u32 reserved3[3];
};
struct acc_bmmsg_timeslice {
u8 msg_id;
u8 txfifo_level;
u8 reserved1[2];
u8 txtsfifo_level;
u8 reserved2[3];
u64 ts;
u32 reserved3[4];
};
struct acc_bmmsg_hwtimer {
u8 msg_id;
u8 reserved1[3];
u32 reserved2[1];
u64 timer;
u32 reserved3[4];
};
struct acc_bmmsg_hotplug {
u8 msg_id;
u8 reserved1[3];
u32 reserved2[7];
};
union acc_bmmsg {
u8 msg_id;
struct acc_bmmsg_rxtxdone rxtxdone;
struct acc_bmmsg_txabort txabort;
struct acc_bmmsg_overrun overrun;
struct acc_bmmsg_buserr buserr;
struct acc_bmmsg_errstatechange errstatechange;
struct acc_bmmsg_timeslice timeslice;
struct acc_bmmsg_hwtimer hwtimer;
};
/* Check size of union acc_bmmsg to be of expected size. */
static_assert(sizeof(union acc_bmmsg) == ACC_CORE_DMAMSG_SIZE);
struct acc_bmfifo {
const union acc_bmmsg *messages;
/* irq_cnt points to an u32 value where the esdACC FPGA deposits
* the bm_fifo head index in coherent DMA memory. Only bits 7..0
* are valid. Use READ_ONCE() to access this memory location.
*/
const u32 *irq_cnt;
u32 local_irq_cnt;
u32 msg_fifo_tail;
};
struct acc_core {
void __iomem *addr;
struct net_device *netdev;
struct acc_bmfifo bmfifo;
u8 tx_fifo_size;
u8 tx_fifo_head;
u8 tx_fifo_tail;
};
struct acc_ov {
void __iomem *addr;
struct acc_bmfifo bmfifo;
u32 timestamp_frequency;
u32 core_frequency;
u16 version;
u16 features;
u8 total_cores;
u8 active_cores;
};
struct acc_net_priv {
struct can_priv can; /* must be the first member! */
struct acc_core *core;
struct acc_ov *ov;
};
static inline u32 acc_read32(struct acc_core *core, unsigned short offs)
{
return ioread32be(core->addr + offs);
}
static inline void acc_write32(struct acc_core *core,
unsigned short offs, u32 v)
{
iowrite32be(v, core->addr + offs);
}
static inline void acc_write32_noswap(struct acc_core *core,
unsigned short offs, u32 v)
{
iowrite32(v, core->addr + offs);
}
static inline void acc_set_bits(struct acc_core *core,
unsigned short offs, u32 mask)
{
u32 v = acc_read32(core, offs);
v |= mask;
acc_write32(core, offs, v);
}
static inline void acc_clear_bits(struct acc_core *core,
unsigned short offs, u32 mask)
{
u32 v = acc_read32(core, offs);
v &= ~mask;
acc_write32(core, offs, v);
}
static inline int acc_resetmode_entered(struct acc_core *core)
{
u32 ctrl = acc_read32(core, ACC_CORE_OF_CTRL_MODE);
return (ctrl & ACC_REG_CONTROL_MASK_MODE_RESETMODE) != 0;
}
static inline u32 acc_ov_read32(struct acc_ov *ov, unsigned short offs)
{
return ioread32be(ov->addr + offs);
}
static inline void acc_ov_write32(struct acc_ov *ov,
unsigned short offs, u32 v)
{
iowrite32be(v, ov->addr + offs);
}
static inline void acc_ov_set_bits(struct acc_ov *ov,
unsigned short offs, u32 b)
{
u32 v = acc_ov_read32(ov, offs);
v |= b;
acc_ov_write32(ov, offs, v);
}
static inline void acc_ov_clear_bits(struct acc_ov *ov,
unsigned short offs, u32 b)
{
u32 v = acc_ov_read32(ov, offs);
v &= ~b;
acc_ov_write32(ov, offs, v);
}
static inline void acc_reset_fpga(struct acc_ov *ov)
{
acc_ov_write32(ov, ACC_OV_OF_MODE, ACC_OV_REG_MODE_MASK_FPGA_RESET);
/* (Re-)start and wait for completion of addon detection on the I^2C bus */
acc_ov_set_bits(ov, ACC_OV_OF_MODE, ACC_OV_REG_MODE_MASK_I2C_ENABLE);
mdelay(ACC_I2C_ADDON_DETECT_DELAY_MS);
}
void acc_init_ov(struct acc_ov *ov, struct device *dev);
void acc_init_bm_ptr(struct acc_ov *ov, struct acc_core *cores,
const void *mem);
int acc_open(struct net_device *netdev);
int acc_close(struct net_device *netdev);
netdev_tx_t acc_start_xmit(struct sk_buff *skb, struct net_device *netdev);
int acc_get_berr_counter(const struct net_device *netdev,
struct can_berr_counter *bec);
int acc_set_mode(struct net_device *netdev, enum can_mode mode);
int acc_set_bittiming(struct net_device *netdev);
irqreturn_t acc_card_interrupt(struct acc_ov *ov, struct acc_core *cores);
......@@ -47,12 +47,18 @@ MODULE_DESCRIPTION("CAN driver for Kvaser CAN/PCIe devices");
#define KVASER_PCIEFD_MINIPCIE_2CAN_V3_DEVICE_ID 0x0015
#define KVASER_PCIEFD_MINIPCIE_1CAN_V3_DEVICE_ID 0x0016
/* Xilinx based devices */
#define KVASER_PCIEFD_M2_4CAN_DEVICE_ID 0x0017
/* Altera SerDes Enable 64-bit DMA address translation */
#define KVASER_PCIEFD_ALTERA_DMA_64BIT BIT(0)
/* SmartFusion2 SerDes LSB address translation mask */
#define KVASER_PCIEFD_SF2_DMA_LSB_MASK GENMASK(31, 12)
/* Xilinx SerDes LSB address translation mask */
#define KVASER_PCIEFD_XILINX_DMA_LSB_MASK GENMASK(31, 12)
/* Kvaser KCAN CAN controller registers */
#define KVASER_PCIEFD_KCAN_FIFO_REG 0x100
#define KVASER_PCIEFD_KCAN_FIFO_LAST_REG 0x180
......@@ -281,6 +287,8 @@ static void kvaser_pciefd_write_dma_map_altera(struct kvaser_pciefd *pcie,
dma_addr_t addr, int index);
static void kvaser_pciefd_write_dma_map_sf2(struct kvaser_pciefd *pcie,
dma_addr_t addr, int index);
static void kvaser_pciefd_write_dma_map_xilinx(struct kvaser_pciefd *pcie,
dma_addr_t addr, int index);
struct kvaser_pciefd_address_offset {
u32 serdes;
......@@ -335,6 +343,18 @@ static const struct kvaser_pciefd_address_offset kvaser_pciefd_sf2_address_offse
.kcan_ch1 = 0x142000,
};
static const struct kvaser_pciefd_address_offset kvaser_pciefd_xilinx_address_offset = {
.serdes = 0x00208,
.pci_ien = 0x102004,
.pci_irq = 0x102008,
.sysid = 0x100000,
.loopback = 0x103000,
.kcan_srb_fifo = 0x120000,
.kcan_srb = 0x121000,
.kcan_ch0 = 0x140000,
.kcan_ch1 = 0x142000,
};
static const struct kvaser_pciefd_irq_mask kvaser_pciefd_altera_irq_mask = {
.kcan_rx0 = BIT(4),
.kcan_tx = { BIT(0), BIT(1), BIT(2), BIT(3) },
......@@ -347,6 +367,12 @@ static const struct kvaser_pciefd_irq_mask kvaser_pciefd_sf2_irq_mask = {
.all = GENMASK(19, 16) | BIT(4),
};
static const struct kvaser_pciefd_irq_mask kvaser_pciefd_xilinx_irq_mask = {
.kcan_rx0 = BIT(4),
.kcan_tx = { BIT(16), BIT(17), BIT(18), BIT(19) },
.all = GENMASK(19, 16) | BIT(4),
};
static const struct kvaser_pciefd_dev_ops kvaser_pciefd_altera_dev_ops = {
.kvaser_pciefd_write_dma_map = kvaser_pciefd_write_dma_map_altera,
};
......@@ -355,6 +381,10 @@ static const struct kvaser_pciefd_dev_ops kvaser_pciefd_sf2_dev_ops = {
.kvaser_pciefd_write_dma_map = kvaser_pciefd_write_dma_map_sf2,
};
static const struct kvaser_pciefd_dev_ops kvaser_pciefd_xilinx_dev_ops = {
.kvaser_pciefd_write_dma_map = kvaser_pciefd_write_dma_map_xilinx,
};
static const struct kvaser_pciefd_driver_data kvaser_pciefd_altera_driver_data = {
.address_offset = &kvaser_pciefd_altera_address_offset,
.irq_mask = &kvaser_pciefd_altera_irq_mask,
......@@ -367,6 +397,12 @@ static const struct kvaser_pciefd_driver_data kvaser_pciefd_sf2_driver_data = {
.ops = &kvaser_pciefd_sf2_dev_ops,
};
static const struct kvaser_pciefd_driver_data kvaser_pciefd_xilinx_driver_data = {
.address_offset = &kvaser_pciefd_xilinx_address_offset,
.irq_mask = &kvaser_pciefd_xilinx_irq_mask,
.ops = &kvaser_pciefd_xilinx_dev_ops,
};
struct kvaser_pciefd_can {
struct can_priv can;
struct kvaser_pciefd *kv_pcie;
......@@ -456,6 +492,10 @@ static struct pci_device_id kvaser_pciefd_id_table[] = {
PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_MINIPCIE_1CAN_V3_DEVICE_ID),
.driver_data = (kernel_ulong_t)&kvaser_pciefd_sf2_driver_data,
},
{
PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_M2_4CAN_DEVICE_ID),
.driver_data = (kernel_ulong_t)&kvaser_pciefd_xilinx_driver_data,
},
{
0,
},
......@@ -1035,6 +1075,21 @@ static void kvaser_pciefd_write_dma_map_sf2(struct kvaser_pciefd *pcie,
iowrite32(msb, serdes_base + 0x4);
}
static void kvaser_pciefd_write_dma_map_xilinx(struct kvaser_pciefd *pcie,
dma_addr_t addr, int index)
{
void __iomem *serdes_base;
u32 lsb = addr & KVASER_PCIEFD_XILINX_DMA_LSB_MASK;
u32 msb = 0x0;
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
msb = addr >> 32;
#endif
serdes_base = KVASER_PCIEFD_SERDES_ADDR(pcie) + 0x8 * index;
iowrite32(msb, serdes_base);
iowrite32(lsb, serdes_base + 0x4);
}
static int kvaser_pciefd_setup_dma(struct kvaser_pciefd *pcie)
{
int i;
......
......@@ -255,6 +255,7 @@ enum m_can_reg {
#define TXESC_TBDS_64B 0x7
/* Tx Event FIFO Configuration (TXEFC) */
#define TXEFC_EFWM_MASK GENMASK(29, 24)
#define TXEFC_EFS_MASK GENMASK(21, 16)
/* Tx Event FIFO Status (TXEFS) */
......@@ -320,6 +321,12 @@ struct id_and_dlc {
u32 dlc;
};
struct m_can_fifo_element {
u32 id;
u32 dlc;
u8 data[CANFD_MAX_DLEN];
};
static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
{
return cdev->ops->read_reg(cdev, reg);
......@@ -372,16 +379,6 @@ m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
}
static inline bool _m_can_tx_fifo_full(u32 txfqs)
{
return !!(txfqs & TXFQS_TFQF);
}
static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
{
return _m_can_tx_fifo_full(m_can_read(cdev, M_CAN_TXFQS));
}
static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
{
u32 cccr = m_can_read(cdev, M_CAN_CCCR);
......@@ -416,15 +413,48 @@ static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
}
}
static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
{
if (cdev->active_interrupts == interrupts)
return;
cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
cdev->active_interrupts = interrupts;
}
static void m_can_coalescing_disable(struct m_can_classdev *cdev)
{
u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
if (!cdev->net->irq)
return;
hrtimer_cancel(&cdev->hrtimer);
m_can_interrupt_enable(cdev, new_interrupts);
}
static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
{
if (!cdev->net->irq) {
dev_dbg(cdev->dev, "Start hrtimer\n");
hrtimer_start(&cdev->hrtimer,
ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
HRTIMER_MODE_REL_PINNED);
}
/* Only interrupt line 0 is used in this driver */
m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
}
static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
{
m_can_coalescing_disable(cdev);
m_can_write(cdev, M_CAN_ILE, 0x0);
cdev->active_interrupts = 0x0;
if (!cdev->net->irq) {
dev_dbg(cdev->dev, "Stop hrtimer\n");
hrtimer_cancel(&cdev->hrtimer);
}
}
/* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
......@@ -444,18 +474,26 @@ static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
static void m_can_clean(struct net_device *net)
{
struct m_can_classdev *cdev = netdev_priv(net);
unsigned long irqflags;
if (cdev->tx_skb) {
int putidx = 0;
net->stats.tx_errors++;
if (cdev->version > 30)
putidx = FIELD_GET(TXFQS_TFQPI_MASK,
m_can_read(cdev, M_CAN_TXFQS));
if (cdev->tx_ops) {
for (int i = 0; i != cdev->tx_fifo_size; ++i) {
if (!cdev->tx_ops[i].skb)
continue;
can_free_echo_skb(cdev->net, putidx, NULL);
cdev->tx_skb = NULL;
net->stats.tx_errors++;
cdev->tx_ops[i].skb = NULL;
}
}
for (int i = 0; i != cdev->can.echo_skb_max; ++i)
can_free_echo_skb(cdev->net, i, NULL);
netdev_reset_queue(cdev->net);
spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
cdev->tx_fifo_in_flight = 0;
spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
}
/* For peripherals, pass skb to rx-offload, which will push skb from
......@@ -1007,23 +1045,60 @@ static int m_can_poll(struct napi_struct *napi, int quota)
* echo. timestamp is used for peripherals to ensure correct ordering
* by rx-offload, and is ignored for non-peripherals.
*/
static void m_can_tx_update_stats(struct m_can_classdev *cdev,
unsigned int msg_mark,
u32 timestamp)
static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
unsigned int msg_mark, u32 timestamp)
{
struct net_device *dev = cdev->net;
struct net_device_stats *stats = &dev->stats;
unsigned int frame_len;
if (cdev->is_peripheral)
stats->tx_bytes +=
can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
msg_mark,
timestamp,
NULL);
&frame_len);
else
stats->tx_bytes += can_get_echo_skb(dev, msg_mark, NULL);
stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len);
stats->tx_packets++;
return frame_len;
}
static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
unsigned int transmitted_frame_len)
{
unsigned long irqflags;
netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len);
spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
netif_wake_queue(cdev->net);
cdev->tx_fifo_in_flight -= transmitted;
spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
}
static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
{
unsigned long irqflags;
int tx_fifo_in_flight;
spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
netif_stop_queue(cdev->net);
if (tx_fifo_in_flight > cdev->tx_fifo_size) {
netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
return NETDEV_TX_BUSY;
}
}
cdev->tx_fifo_in_flight = tx_fifo_in_flight;
spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
return NETDEV_TX_OK;
}
static int m_can_echo_tx_event(struct net_device *dev)
......@@ -1035,6 +1110,8 @@ static int m_can_echo_tx_event(struct net_device *dev)
int i = 0;
int err = 0;
unsigned int msg_mark;
int processed = 0;
unsigned int processed_frame_len = 0;
struct m_can_classdev *cdev = netdev_priv(dev);
......@@ -1063,25 +1140,62 @@ static int m_can_echo_tx_event(struct net_device *dev)
fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
/* update stats */
m_can_tx_update_stats(cdev, msg_mark, timestamp);
processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
timestamp);
++processed;
}
if (ack_fgi != -1)
m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
ack_fgi));
m_can_finish_tx(cdev, processed, processed_frame_len);
return err;
}
static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
{
u32 new_interrupts = cdev->active_interrupts;
bool enable_rx_timer = false;
bool enable_tx_timer = false;
if (!cdev->net->irq)
return;
if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
enable_rx_timer = true;
new_interrupts &= ~IR_RF0N;
}
if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
enable_tx_timer = true;
new_interrupts &= ~IR_TEFN;
}
if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer))
new_interrupts |= IR_RF0N;
if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer))
new_interrupts |= IR_TEFN;
m_can_interrupt_enable(cdev, new_interrupts);
if (enable_rx_timer | enable_tx_timer)
hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait,
HRTIMER_MODE_REL);
}
static irqreturn_t m_can_isr(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct m_can_classdev *cdev = netdev_priv(dev);
u32 ir;
if (pm_runtime_suspended(cdev->dev))
if (pm_runtime_suspended(cdev->dev)) {
m_can_coalescing_disable(cdev);
return IRQ_NONE;
}
ir = m_can_read(cdev, M_CAN_IR);
m_can_coalescing_update(cdev, ir);
if (!ir)
return IRQ_NONE;
......@@ -1096,13 +1210,17 @@ static irqreturn_t m_can_isr(int irq, void *dev_id)
* - state change IRQ
* - bus error IRQ and bus error reporting
*/
if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
cdev->irqstatus = ir;
if (!cdev->is_peripheral) {
m_can_disable_all_interrupts(cdev);
napi_schedule(&cdev->napi);
} else if (m_can_rx_peripheral(dev, ir) < 0) {
goto out_fail;
} else {
int pkts;
pkts = m_can_rx_peripheral(dev, ir);
if (pkts < 0)
goto out_fail;
}
}
......@@ -1110,21 +1228,18 @@ static irqreturn_t m_can_isr(int irq, void *dev_id)
if (ir & IR_TC) {
/* Transmission Complete Interrupt*/
u32 timestamp = 0;
unsigned int frame_len;
if (cdev->is_peripheral)
timestamp = m_can_get_timestamp(cdev);
m_can_tx_update_stats(cdev, 0, timestamp);
netif_wake_queue(dev);
frame_len = m_can_tx_update_stats(cdev, 0, timestamp);
m_can_finish_tx(cdev, 1, frame_len);
}
} else {
if (ir & IR_TEFN) {
if (ir & (IR_TEFN | IR_TEFW)) {
/* New TX FIFO Element arrived */
if (m_can_echo_tx_event(dev) != 0)
goto out_fail;
if (netif_queue_stopped(dev) &&
!m_can_tx_fifo_full(cdev))
netif_wake_queue(dev);
}
}
......@@ -1138,6 +1253,15 @@ static irqreturn_t m_can_isr(int irq, void *dev_id)
return IRQ_HANDLED;
}
static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
{
struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
irq_wake_thread(cdev->net->irq, cdev->net);
return HRTIMER_NORESTART;
}
static const struct can_bittiming_const m_can_bittiming_const_30X = {
.name = KBUILD_MODNAME,
.tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
......@@ -1276,9 +1400,8 @@ static int m_can_chip_config(struct net_device *dev)
}
/* Disable unused interrupts */
interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TEFW | IR_TFE |
IR_TCF | IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N |
IR_RF0F | IR_RF0W);
interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F);
m_can_config_endisable(cdev, true);
......@@ -1315,6 +1438,8 @@ static int m_can_chip_config(struct net_device *dev)
} else {
/* Full TX Event FIFO is used */
m_can_write(cdev, M_CAN_TXEFC,
FIELD_PREP(TXEFC_EFWM_MASK,
cdev->tx_max_coalesced_frames_irq) |
FIELD_PREP(TXEFC_EFS_MASK,
cdev->mcfg[MRAM_TXE].num) |
cdev->mcfg[MRAM_TXE].off);
......@@ -1322,6 +1447,7 @@ static int m_can_chip_config(struct net_device *dev)
/* rx fifo configuration, blocking mode, fifo size 1 */
m_can_write(cdev, M_CAN_RXF0C,
FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
cdev->mcfg[MRAM_RXF0].off);
......@@ -1380,7 +1506,7 @@ static int m_can_chip_config(struct net_device *dev)
else
interrupts &= ~(IR_ERR_LEC_31X);
}
m_can_write(cdev, M_CAN_IE, interrupts);
m_can_interrupt_enable(cdev, interrupts);
/* route all interrupts to INT0 */
m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
......@@ -1413,15 +1539,16 @@ static int m_can_start(struct net_device *dev)
if (ret)
return ret;
netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0),
cdev->tx_max_coalesced_frames);
cdev->can.state = CAN_STATE_ERROR_ACTIVE;
m_can_enable_all_interrupts(cdev);
if (!dev->irq) {
dev_dbg(cdev->dev, "Start hrtimer\n");
hrtimer_start(&cdev->hrtimer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
HRTIMER_MODE_REL_PINNED);
}
if (cdev->version > 30)
cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
m_can_read(cdev, M_CAN_TXFQS));
return 0;
}
......@@ -1577,11 +1704,6 @@ static void m_can_stop(struct net_device *dev)
{
struct m_can_classdev *cdev = netdev_priv(dev);
if (!dev->irq) {
dev_dbg(cdev->dev, "Stop hrtimer\n");
hrtimer_cancel(&cdev->hrtimer);
}
/* disable all interrupts */
m_can_disable_all_interrupts(cdev);
......@@ -1605,8 +1727,9 @@ static int m_can_close(struct net_device *dev)
m_can_clk_stop(cdev);
free_irq(dev->irq, dev);
m_can_clean(dev);
if (cdev->is_peripheral) {
cdev->tx_skb = NULL;
destroy_workqueue(cdev->tx_wq);
cdev->tx_wq = NULL;
can_rx_offload_disable(&cdev->offload);
......@@ -1619,57 +1742,42 @@ static int m_can_close(struct net_device *dev)
return 0;
}
static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
{
struct m_can_classdev *cdev = netdev_priv(dev);
/*get wrap around for loopback skb index */
unsigned int wrap = cdev->can.echo_skb_max;
int next_idx;
/* calculate next index */
next_idx = (++putidx >= wrap ? 0 : putidx);
/* check if occupied */
return !!cdev->can.echo_skb[next_idx];
}
static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
struct sk_buff *skb)
{
struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
u8 len_padded = DIV_ROUND_UP(cf->len, 4);
struct m_can_fifo_element fifo_element;
struct net_device *dev = cdev->net;
struct sk_buff *skb = cdev->tx_skb;
struct id_and_dlc fifo_header;
u32 cccr, fdflags;
u32 txfqs;
int err;
int putidx;
cdev->tx_skb = NULL;
u32 putidx;
unsigned int frame_len = can_skb_get_frame_len(skb);
/* Generate ID field for TX buffer Element */
/* Common to all supported M_CAN versions */
if (cf->can_id & CAN_EFF_FLAG) {
fifo_header.id = cf->can_id & CAN_EFF_MASK;
fifo_header.id |= TX_BUF_XTD;
fifo_element.id = cf->can_id & CAN_EFF_MASK;
fifo_element.id |= TX_BUF_XTD;
} else {
fifo_header.id = ((cf->can_id & CAN_SFF_MASK) << 18);
fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
}
if (cf->can_id & CAN_RTR_FLAG)
fifo_header.id |= TX_BUF_RTR;
fifo_element.id |= TX_BUF_RTR;
if (cdev->version == 30) {
netif_stop_queue(dev);
fifo_header.dlc = can_fd_len2dlc(cf->len) << 16;
fifo_element.dlc = can_fd_len2dlc(cf->len) << 16;
/* Write the frame ID, DLC, and payload to the FIFO element. */
err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_header, 2);
err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2);
if (err)
goto out_fail;
err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
cf->data, DIV_ROUND_UP(cf->len, 4));
cf->data, len_padded);
if (err)
goto out_fail;
......@@ -1690,33 +1798,15 @@ static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
}
m_can_write(cdev, M_CAN_TXBTIE, 0x1);
can_put_echo_skb(skb, dev, 0, 0);
can_put_echo_skb(skb, dev, 0, frame_len);
m_can_write(cdev, M_CAN_TXBAR, 0x1);
/* End of xmit function for version 3.0.x */
} else {
/* Transmit routine for version >= v3.1.x */
txfqs = m_can_read(cdev, M_CAN_TXFQS);
/* Check if FIFO full */
if (_m_can_tx_fifo_full(txfqs)) {
/* This shouldn't happen */
netif_stop_queue(dev);
netdev_warn(dev,
"TX queue active although FIFO is full.");
if (cdev->is_peripheral) {
kfree_skb(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
} else {
return NETDEV_TX_BUSY;
}
}
/* get put index for frame */
putidx = FIELD_GET(TXFQS_TFQPI_MASK, txfqs);
putidx = cdev->tx_fifo_putidx;
/* Construct DLC Field, with CAN-FD configuration.
* Use the put index of the fifo as the message marker,
......@@ -1731,30 +1821,32 @@ static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
fdflags |= TX_BUF_BRS;
}
fifo_header.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
fdflags | TX_BUF_EFC;
err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, &fifo_header, 2);
if (err)
goto out_fail;
err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA,
cf->data, DIV_ROUND_UP(cf->len, 4));
memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data,
cf->len, 0);
err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID,
&fifo_element, 2 + len_padded);
if (err)
goto out_fail;
/* Push loopback echo.
* Will be looped back on TX interrupt based on message marker
*/
can_put_echo_skb(skb, dev, putidx, 0);
/* Enable TX FIFO element to start transfer */
m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
can_put_echo_skb(skb, dev, putidx, frame_len);
/* stop network queue if fifo full */
if (m_can_tx_fifo_full(cdev) ||
m_can_next_echo_skb_occupied(dev, putidx))
netif_stop_queue(dev);
if (cdev->is_peripheral) {
/* Delay enabling TX FIFO element */
cdev->tx_peripheral_submit |= BIT(putidx);
} else {
/* Enable TX FIFO element to start transfer */
m_can_write(cdev, M_CAN_TXBAR, BIT(putidx));
}
cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
0 : cdev->tx_fifo_putidx);
}
return NETDEV_TX_OK;
......@@ -1765,46 +1857,91 @@ static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
return NETDEV_TX_BUSY;
}
static void m_can_tx_submit(struct m_can_classdev *cdev)
{
if (cdev->version == 30)
return;
if (!cdev->is_peripheral)
return;
m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit);
cdev->tx_peripheral_submit = 0;
}
static void m_can_tx_work_queue(struct work_struct *ws)
{
struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
tx_work);
struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
struct m_can_classdev *cdev = op->cdev;
struct sk_buff *skb = op->skb;
op->skb = NULL;
m_can_tx_handler(cdev, skb);
if (op->submit)
m_can_tx_submit(cdev);
}
static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
bool submit)
{
cdev->tx_ops[cdev->next_tx_op].skb = skb;
cdev->tx_ops[cdev->next_tx_op].submit = submit;
queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work);
++cdev->next_tx_op;
if (cdev->next_tx_op >= cdev->tx_fifo_size)
cdev->next_tx_op = 0;
}
static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
struct sk_buff *skb)
{
bool submit;
++cdev->nr_txs_without_submit;
if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
!netdev_xmit_more()) {
cdev->nr_txs_without_submit = 0;
submit = true;
} else {
submit = false;
}
m_can_tx_queue_skb(cdev, skb, submit);
m_can_tx_handler(cdev);
return NETDEV_TX_OK;
}
static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct m_can_classdev *cdev = netdev_priv(dev);
unsigned int frame_len;
netdev_tx_t ret;
if (can_dev_dropped_skb(dev, skb))
return NETDEV_TX_OK;
if (cdev->is_peripheral) {
if (cdev->tx_skb) {
netdev_err(dev, "hard_xmit called while tx busy\n");
return NETDEV_TX_BUSY;
}
frame_len = can_skb_get_frame_len(skb);
if (cdev->can.state == CAN_STATE_BUS_OFF) {
m_can_clean(dev);
} else {
/* Need to stop the queue to avoid numerous requests
* from being sent. Suggested improvement is to create
* a queueing mechanism that will queue the skbs and
* process them in order.
*/
cdev->tx_skb = skb;
netif_stop_queue(cdev->net);
queue_work(cdev->tx_wq, &cdev->tx_work);
}
} else {
cdev->tx_skb = skb;
return m_can_tx_handler(cdev);
if (cdev->can.state == CAN_STATE_BUS_OFF) {
m_can_clean(cdev->net);
return NETDEV_TX_OK;
}
return NETDEV_TX_OK;
ret = m_can_start_tx(cdev);
if (ret != NETDEV_TX_OK)
return ret;
netdev_sent_queue(dev, frame_len);
if (cdev->is_peripheral)
ret = m_can_start_peripheral_xmit(cdev, skb);
else
ret = m_can_tx_handler(cdev, skb);
if (ret != NETDEV_TX_OK)
netdev_completed_queue(dev, 1, frame_len);
return ret;
}
static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
......@@ -1844,15 +1981,17 @@ static int m_can_open(struct net_device *dev)
/* register interrupt handler */
if (cdev->is_peripheral) {
cdev->tx_skb = NULL;
cdev->tx_wq = alloc_workqueue("mcan_wq",
WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
WQ_FREEZABLE | WQ_MEM_RECLAIM);
if (!cdev->tx_wq) {
err = -ENOMEM;
goto out_wq_fail;
}
INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
for (int i = 0; i != cdev->tx_fifo_size; ++i) {
cdev->tx_ops[i].cdev = cdev;
INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
}
err = request_threaded_irq(dev->irq, NULL, m_can_isr,
IRQF_ONESHOT,
......@@ -1900,7 +2039,108 @@ static const struct net_device_ops m_can_netdev_ops = {
.ndo_change_mtu = can_change_mtu,
};
static int m_can_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ec,
struct kernel_ethtool_coalesce *kec,
struct netlink_ext_ack *ext_ack)
{
struct m_can_classdev *cdev = netdev_priv(dev);
ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
return 0;
}
static int m_can_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ec,
struct kernel_ethtool_coalesce *kec,
struct netlink_ext_ack *ext_ack)
{
struct m_can_classdev *cdev = netdev_priv(dev);
if (cdev->can.state != CAN_STATE_STOPPED) {
netdev_err(dev, "Device is in use, please shut it down first\n");
return -EBUSY;
}
if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n",
ec->rx_max_coalesced_frames_irq,
cdev->mcfg[MRAM_RXF0].num);
return -EINVAL;
}
if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n");
return -EINVAL;
}
if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n",
ec->tx_max_coalesced_frames_irq,
cdev->mcfg[MRAM_TXE].num);
return -EINVAL;
}
if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n",
ec->tx_max_coalesced_frames_irq,
cdev->mcfg[MRAM_TXB].num);
return -EINVAL;
}
if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n");
return -EINVAL;
}
if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n",
ec->tx_max_coalesced_frames,
cdev->mcfg[MRAM_TXE].num);
return -EINVAL;
}
if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n",
ec->tx_max_coalesced_frames,
cdev->mcfg[MRAM_TXB].num);
return -EINVAL;
}
if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
ec->rx_coalesce_usecs_irq,
ec->tx_coalesce_usecs_irq);
return -EINVAL;
}
cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
if (cdev->rx_coalesce_usecs_irq)
cdev->irq_timer_wait =
ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC);
else
cdev->irq_timer_wait =
ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC);
return 0;
}
static const struct ethtool_ops m_can_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
ETHTOOL_COALESCE_TX_USECS_IRQ |
ETHTOOL_COALESCE_TX_MAX_FRAMES |
ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
.get_ts_info = ethtool_op_get_ts_info,
.get_coalesce = m_can_get_coalesce,
.set_coalesce = m_can_set_coalesce,
};
static const struct ethtool_ops m_can_ethtool_ops_polling = {
.get_ts_info = ethtool_op_get_ts_info,
};
......@@ -1908,7 +2148,10 @@ static int register_m_can_dev(struct net_device *dev)
{
dev->flags |= IFF_ECHO; /* we support local echo */
dev->netdev_ops = &m_can_netdev_ops;
dev->ethtool_ops = &m_can_ethtool_ops;
if (dev->irq)
dev->ethtool_ops = &m_can_ethtool_ops;
else
dev->ethtool_ops = &m_can_ethtool_ops_polling;
return register_candev(dev);
}
......@@ -2056,6 +2299,19 @@ int m_can_class_register(struct m_can_classdev *cdev)
{
int ret;
cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
cdev->mcfg[MRAM_TXE].num));
if (cdev->is_peripheral) {
cdev->tx_ops =
devm_kzalloc(cdev->dev,
cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
GFP_KERNEL);
if (!cdev->tx_ops) {
dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
return -ENOMEM;
}
}
if (cdev->pm_clock_support) {
ret = m_can_clk_start(cdev);
if (ret)
......@@ -2069,8 +2325,15 @@ int m_can_class_register(struct m_can_classdev *cdev)
goto clk_disable;
}
if (!cdev->net->irq)
if (!cdev->net->irq) {
dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
cdev->hrtimer.function = &hrtimer_callback;
} else {
hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cdev->hrtimer.function = m_can_coalescing_timer;
}
ret = m_can_dev_setup(cdev);
if (ret)
......
......@@ -70,6 +70,13 @@ struct m_can_ops {
int (*init)(struct m_can_classdev *cdev);
};
struct m_can_tx_op {
struct m_can_classdev *cdev;
struct work_struct work;
struct sk_buff *skb;
bool submit;
};
struct m_can_classdev {
struct can_priv can;
struct can_rx_offload offload;
......@@ -80,10 +87,10 @@ struct m_can_classdev {
struct clk *cclk;
struct workqueue_struct *tx_wq;
struct work_struct tx_work;
struct sk_buff *tx_skb;
struct phy *transceiver;
ktime_t irq_timer_wait;
struct m_can_ops *ops;
int version;
......@@ -92,6 +99,29 @@ struct m_can_classdev {
int pm_clock_support;
int is_peripheral;
// Cached M_CAN_IE register content
u32 active_interrupts;
u32 rx_max_coalesced_frames_irq;
u32 rx_coalesce_usecs_irq;
u32 tx_max_coalesced_frames;
u32 tx_max_coalesced_frames_irq;
u32 tx_coalesce_usecs_irq;
// Store this internally to avoid fetch delays on peripheral chips
u32 tx_fifo_putidx;
/* Protects shared state between start_xmit and m_can_isr */
spinlock_t tx_handling_spinlock;
int tx_fifo_in_flight;
struct m_can_tx_op *tx_ops;
int tx_fifo_size;
int next_tx_op;
int nr_txs_without_submit;
/* bitfield of fifo elements that will be submitted together */
u32 tx_peripheral_submit;
struct mram_cfg mcfg[MRAM_CFG_NUM];
struct hrtimer hrtimer;
......
......@@ -109,10 +109,6 @@ static int m_can_plat_probe(struct platform_device *pdev)
ret = irq;
goto probe_fail;
}
} else {
dev_dbg(mcan_class->dev, "Polling enabled, initialize hrtimer");
hrtimer_init(&mcan_class->hrtimer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
}
/* message ram could be shared */
......
......@@ -436,7 +436,7 @@ int softing_startstop(struct net_device *dev, int up)
return ret;
bus_bitmask_start = 0;
if (dev && up)
if (up)
/* prepare to start this bus as well */
bus_bitmask_start |= (1 << priv->index);
/* bring netdevs down */
......
......@@ -193,9 +193,14 @@ struct canfd_frame {
#define CANXL_XLF 0x80 /* mandatory CAN XL frame flag (must always be set!) */
#define CANXL_SEC 0x01 /* Simple Extended Content (security/segmentation) */
/* the 8-bit VCID is optionally placed in the canxl_frame.prio element */
#define CANXL_VCID_OFFSET 16 /* bit offset of VCID in prio element */
#define CANXL_VCID_VAL_MASK 0xFFUL /* VCID is an 8-bit value */
#define CANXL_VCID_MASK (CANXL_VCID_VAL_MASK << CANXL_VCID_OFFSET)
/**
* struct canxl_frame - CAN with e'X'tended frame 'L'ength frame structure
* @prio: 11 bit arbitration priority with zero'ed CAN_*_FLAG flags
* @prio: 11 bit arbitration priority with zero'ed CAN_*_FLAG flags / VCID
* @flags: additional flags for CAN XL
* @sdt: SDU (service data unit) type
* @len: frame payload length in byte (CANXL_MIN_DLEN .. CANXL_MAX_DLEN)
......@@ -205,7 +210,7 @@ struct canfd_frame {
* @prio shares the same position as @can_id from struct can[fd]_frame.
*/
struct canxl_frame {
canid_t prio; /* 11 bit priority for arbitration (canid_t) */
canid_t prio; /* 11 bit priority for arbitration / 8 bit VCID */
__u8 flags; /* additional flags for CAN XL */
__u8 sdt; /* SDU (service data unit) type */
__u16 len; /* frame payload length in byte */
......
......@@ -137,6 +137,7 @@ struct can_isotp_ll_options {
#define CAN_ISOTP_WAIT_TX_DONE 0x0400 /* wait for tx completion */
#define CAN_ISOTP_SF_BROADCAST 0x0800 /* 1-to-N functional addressing */
#define CAN_ISOTP_CF_BROADCAST 0x1000 /* 1-to-N transmission w/o FC */
#define CAN_ISOTP_DYN_FC_PARMS 0x2000 /* dynamic FC parameters BS/STmin */
/* protocol machine default values */
......
......@@ -65,6 +65,22 @@ enum {
CAN_RAW_FD_FRAMES, /* allow CAN FD frames (default:off) */
CAN_RAW_JOIN_FILTERS, /* all filters must match to trigger */
CAN_RAW_XL_FRAMES, /* allow CAN XL frames (default:off) */
CAN_RAW_XL_VCID_OPTS, /* CAN XL VCID configuration options */
};
/* configuration for CAN XL virtual CAN identifier (VCID) handling */
struct can_raw_vcid_options {
__u8 flags; /* flags for vcid (filter) behaviour */
__u8 tx_vcid; /* VCID value set into canxl_frame.prio */
__u8 rx_vcid; /* VCID value for VCID filter */
__u8 rx_vcid_mask; /* VCID mask for VCID filter */
};
/* can_raw_vcid_options.flags for CAN XL virtual CAN identifier handling */
#define CAN_RAW_XL_VCID_TX_SET 0x01
#define CAN_RAW_XL_VCID_TX_PASS 0x02
#define CAN_RAW_XL_VCID_RX_FILTER 0x04
#endif /* !_UAPI_CAN_RAW_H */
......@@ -865,6 +865,8 @@ static __init int can_init(void)
/* check for correct padding to be able to use the structs similarly */
BUILD_BUG_ON(offsetof(struct can_frame, len) !=
offsetof(struct canfd_frame, len) ||
offsetof(struct can_frame, len) !=
offsetof(struct canxl_frame, flags) ||
offsetof(struct can_frame, data) !=
offsetof(struct canfd_frame, data));
......
......@@ -72,9 +72,11 @@
#define BCM_TIMER_SEC_MAX (400 * 24 * 60 * 60)
/* use of last_frames[index].flags */
#define RX_LOCAL 0x10 /* frame was created on the local host */
#define RX_OWN 0x20 /* frame was sent via the socket it was received on */
#define RX_RECV 0x40 /* received data for this element */
#define RX_THR 0x80 /* element not been sent due to throttle feature */
#define BCM_CAN_FLAGS_MASK 0x3F /* to clean private flags after usage */
#define BCM_CAN_FLAGS_MASK 0x0F /* to clean private flags after usage */
/* get best masking value for can_rx_register() for a given single can_id */
#define REGMASK(id) ((id & CAN_EFF_FLAG) ? \
......@@ -138,6 +140,16 @@ static LIST_HEAD(bcm_notifier_list);
static DEFINE_SPINLOCK(bcm_notifier_lock);
static struct bcm_sock *bcm_busy_notifier;
/* Return pointer to store the extra msg flags for bcm_recvmsg().
* We use the space of one unsigned int beyond the 'struct sockaddr_can'
* in skb->cb.
*/
static inline unsigned int *bcm_flags(struct sk_buff *skb)
{
/* return pointer after struct sockaddr_can */
return (unsigned int *)(&((struct sockaddr_can *)skb->cb)[1]);
}
static inline struct bcm_sock *bcm_sk(const struct sock *sk)
{
return (struct bcm_sock *)sk;
......@@ -325,6 +337,7 @@ static void bcm_send_to_user(struct bcm_op *op, struct bcm_msg_head *head,
struct sock *sk = op->sk;
unsigned int datalen = head->nframes * op->cfsiz;
int err;
unsigned int *pflags;
skb = alloc_skb(sizeof(*head) + datalen, gfp_any());
if (!skb)
......@@ -332,6 +345,14 @@ static void bcm_send_to_user(struct bcm_op *op, struct bcm_msg_head *head,
skb_put_data(skb, head, sizeof(*head));
/* ensure space for sockaddr_can and msg flags */
sock_skb_cb_check_size(sizeof(struct sockaddr_can) +
sizeof(unsigned int));
/* initialize msg flags */
pflags = bcm_flags(skb);
*pflags = 0;
if (head->nframes) {
/* CAN frames starting here */
firstframe = (struct canfd_frame *)skb_tail_pointer(skb);
......@@ -344,8 +365,14 @@ static void bcm_send_to_user(struct bcm_op *op, struct bcm_msg_head *head,
* relevant for updates that are generated by the
* BCM, where nframes is 1
*/
if (head->nframes == 1)
if (head->nframes == 1) {
if (firstframe->flags & RX_LOCAL)
*pflags |= MSG_DONTROUTE;
if (firstframe->flags & RX_OWN)
*pflags |= MSG_CONFIRM;
firstframe->flags &= BCM_CAN_FLAGS_MASK;
}
}
if (has_timestamp) {
......@@ -360,7 +387,6 @@ static void bcm_send_to_user(struct bcm_op *op, struct bcm_msg_head *head,
* containing the interface index.
*/
sock_skb_cb_check_size(sizeof(struct sockaddr_can));
addr = (struct sockaddr_can *)skb->cb;
memset(addr, 0, sizeof(*addr));
addr->can_family = AF_CAN;
......@@ -444,7 +470,7 @@ static void bcm_rx_changed(struct bcm_op *op, struct canfd_frame *data)
op->frames_filtered = op->frames_abs = 0;
/* this element is not throttled anymore */
data->flags &= (BCM_CAN_FLAGS_MASK|RX_RECV);
data->flags &= ~RX_THR;
memset(&head, 0, sizeof(head));
head.opcode = RX_CHANGED;
......@@ -465,13 +491,17 @@ static void bcm_rx_changed(struct bcm_op *op, struct canfd_frame *data)
*/
static void bcm_rx_update_and_send(struct bcm_op *op,
struct canfd_frame *lastdata,
const struct canfd_frame *rxdata)
const struct canfd_frame *rxdata,
unsigned char traffic_flags)
{
memcpy(lastdata, rxdata, op->cfsiz);
/* mark as used and throttled by default */
lastdata->flags |= (RX_RECV|RX_THR);
/* add own/local/remote traffic flags */
lastdata->flags |= traffic_flags;
/* throttling mode inactive ? */
if (!op->kt_ival2) {
/* send RX_CHANGED to the user immediately */
......@@ -508,7 +538,8 @@ static void bcm_rx_update_and_send(struct bcm_op *op,
* received data stored in op->last_frames[]
*/
static void bcm_rx_cmp_to_index(struct bcm_op *op, unsigned int index,
const struct canfd_frame *rxdata)
const struct canfd_frame *rxdata,
unsigned char traffic_flags)
{
struct canfd_frame *cf = op->frames + op->cfsiz * index;
struct canfd_frame *lcf = op->last_frames + op->cfsiz * index;
......@@ -521,7 +552,7 @@ static void bcm_rx_cmp_to_index(struct bcm_op *op, unsigned int index,
if (!(lcf->flags & RX_RECV)) {
/* received data for the first time => send update to user */
bcm_rx_update_and_send(op, lcf, rxdata);
bcm_rx_update_and_send(op, lcf, rxdata, traffic_flags);
return;
}
......@@ -529,7 +560,7 @@ static void bcm_rx_cmp_to_index(struct bcm_op *op, unsigned int index,
for (i = 0; i < rxdata->len; i += 8) {
if ((get_u64(cf, i) & get_u64(rxdata, i)) !=
(get_u64(cf, i) & get_u64(lcf, i))) {
bcm_rx_update_and_send(op, lcf, rxdata);
bcm_rx_update_and_send(op, lcf, rxdata, traffic_flags);
return;
}
}
......@@ -537,7 +568,7 @@ static void bcm_rx_cmp_to_index(struct bcm_op *op, unsigned int index,
if (op->flags & RX_CHECK_DLC) {
/* do a real check in CAN frame length */
if (rxdata->len != lcf->len) {
bcm_rx_update_and_send(op, lcf, rxdata);
bcm_rx_update_and_send(op, lcf, rxdata, traffic_flags);
return;
}
}
......@@ -644,6 +675,7 @@ static void bcm_rx_handler(struct sk_buff *skb, void *data)
struct bcm_op *op = (struct bcm_op *)data;
const struct canfd_frame *rxframe = (struct canfd_frame *)skb->data;
unsigned int i;
unsigned char traffic_flags;
if (op->can_id != rxframe->can_id)
return;
......@@ -673,15 +705,24 @@ static void bcm_rx_handler(struct sk_buff *skb, void *data)
return;
}
/* compute flags to distinguish between own/local/remote CAN traffic */
traffic_flags = 0;
if (skb->sk) {
traffic_flags |= RX_LOCAL;
if (skb->sk == op->sk)
traffic_flags |= RX_OWN;
}
if (op->flags & RX_FILTER_ID) {
/* the easiest case */
bcm_rx_update_and_send(op, op->last_frames, rxframe);
bcm_rx_update_and_send(op, op->last_frames, rxframe,
traffic_flags);
goto rx_starttimer;
}
if (op->nframes == 1) {
/* simple compare with index 0 */
bcm_rx_cmp_to_index(op, 0, rxframe);
bcm_rx_cmp_to_index(op, 0, rxframe, traffic_flags);
goto rx_starttimer;
}
......@@ -698,7 +739,8 @@ static void bcm_rx_handler(struct sk_buff *skb, void *data)
if ((get_u64(op->frames, 0) & get_u64(rxframe, 0)) ==
(get_u64(op->frames, 0) &
get_u64(op->frames + op->cfsiz * i, 0))) {
bcm_rx_cmp_to_index(op, i, rxframe);
bcm_rx_cmp_to_index(op, i, rxframe,
traffic_flags);
break;
}
}
......@@ -1675,6 +1717,9 @@ static int bcm_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
}
/* assign the flags that have been recorded in bcm_send_to_user() */
msg->msg_flags |= *(bcm_flags(skb));
skb_free_datagram(sk, skb);
return size;
......
......@@ -381,8 +381,9 @@ static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
return 1;
}
/* get communication parameters only from the first FC frame */
if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
/* get static/dynamic communication params from first/every FC frame */
if (so->tx.state == ISOTP_WAIT_FIRST_FC ||
so->opt.flags & CAN_ISOTP_DYN_FC_PARMS) {
so->txfc.bs = cf->data[ae + 1];
so->txfc.stmin = cf->data[ae + 2];
......
......@@ -91,6 +91,10 @@ struct raw_sock {
int recv_own_msgs;
int fd_frames;
int xl_frames;
struct can_raw_vcid_options raw_vcid_opts;
canid_t tx_vcid_shifted;
canid_t rx_vcid_shifted;
canid_t rx_vcid_mask_shifted;
int join_filters;
int count; /* number of active filters */
struct can_filter dfilter; /* default/single filter */
......@@ -134,10 +138,29 @@ static void raw_rcv(struct sk_buff *oskb, void *data)
return;
/* make sure to not pass oversized frames to the socket */
if ((!ro->fd_frames && can_is_canfd_skb(oskb)) ||
(!ro->xl_frames && can_is_canxl_skb(oskb)))
if (!ro->fd_frames && can_is_canfd_skb(oskb))
return;
if (can_is_canxl_skb(oskb)) {
struct canxl_frame *cxl = (struct canxl_frame *)oskb->data;
/* make sure to not pass oversized frames to the socket */
if (!ro->xl_frames)
return;
/* filter CAN XL VCID content */
if (ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_RX_FILTER) {
/* apply VCID filter if user enabled the filter */
if ((cxl->prio & ro->rx_vcid_mask_shifted) !=
(ro->rx_vcid_shifted & ro->rx_vcid_mask_shifted))
return;
} else {
/* no filter => do not forward VCID tagged frames */
if (cxl->prio & CANXL_VCID_MASK)
return;
}
}
/* eliminate multiple filter matches for the same skb */
if (this_cpu_ptr(ro->uniq)->skb == oskb &&
this_cpu_ptr(ro->uniq)->skbcnt == can_skb_prv(oskb)->skbcnt) {
......@@ -698,6 +721,19 @@ static int raw_setsockopt(struct socket *sock, int level, int optname,
ro->fd_frames = ro->xl_frames;
break;
case CAN_RAW_XL_VCID_OPTS:
if (optlen != sizeof(ro->raw_vcid_opts))
return -EINVAL;
if (copy_from_sockptr(&ro->raw_vcid_opts, optval, optlen))
return -EFAULT;
/* prepare 32 bit values for handling in hot path */
ro->tx_vcid_shifted = ro->raw_vcid_opts.tx_vcid << CANXL_VCID_OFFSET;
ro->rx_vcid_shifted = ro->raw_vcid_opts.rx_vcid << CANXL_VCID_OFFSET;
ro->rx_vcid_mask_shifted = ro->raw_vcid_opts.rx_vcid_mask << CANXL_VCID_OFFSET;
break;
case CAN_RAW_JOIN_FILTERS:
if (optlen != sizeof(ro->join_filters))
return -EINVAL;
......@@ -786,6 +822,21 @@ static int raw_getsockopt(struct socket *sock, int level, int optname,
val = &ro->xl_frames;
break;
case CAN_RAW_XL_VCID_OPTS:
/* user space buffer to small for VCID opts? */
if (len < sizeof(ro->raw_vcid_opts)) {
/* return -ERANGE and needed space in optlen */
err = -ERANGE;
if (put_user(sizeof(ro->raw_vcid_opts), optlen))
err = -EFAULT;
} else {
if (len > sizeof(ro->raw_vcid_opts))
len = sizeof(ro->raw_vcid_opts);
if (copy_to_user(optval, &ro->raw_vcid_opts, len))
err = -EFAULT;
}
break;
case CAN_RAW_JOIN_FILTERS:
if (len > sizeof(int))
len = sizeof(int);
......@@ -803,23 +854,41 @@ static int raw_getsockopt(struct socket *sock, int level, int optname,
return 0;
}
static bool raw_bad_txframe(struct raw_sock *ro, struct sk_buff *skb, int mtu)
static void raw_put_canxl_vcid(struct raw_sock *ro, struct sk_buff *skb)
{
struct canxl_frame *cxl = (struct canxl_frame *)skb->data;
/* sanitize non CAN XL bits */
cxl->prio &= (CANXL_PRIO_MASK | CANXL_VCID_MASK);
/* clear VCID in CAN XL frame if pass through is disabled */
if (!(ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_TX_PASS))
cxl->prio &= CANXL_PRIO_MASK;
/* set VCID in CAN XL frame if enabled */
if (ro->raw_vcid_opts.flags & CAN_RAW_XL_VCID_TX_SET) {
cxl->prio &= CANXL_PRIO_MASK;
cxl->prio |= ro->tx_vcid_shifted;
}
}
static unsigned int raw_check_txframe(struct raw_sock *ro, struct sk_buff *skb, int mtu)
{
/* Classical CAN -> no checks for flags and device capabilities */
if (can_is_can_skb(skb))
return false;
return CAN_MTU;
/* CAN FD -> needs to be enabled and a CAN FD or CAN XL device */
if (ro->fd_frames && can_is_canfd_skb(skb) &&
(mtu == CANFD_MTU || can_is_canxl_dev_mtu(mtu)))
return false;
return CANFD_MTU;
/* CAN XL -> needs to be enabled and a CAN XL device */
if (ro->xl_frames && can_is_canxl_skb(skb) &&
can_is_canxl_dev_mtu(mtu))
return false;
return CANXL_MTU;
return true;
return 0;
}
static int raw_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
......@@ -829,6 +898,7 @@ static int raw_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
struct sockcm_cookie sockc;
struct sk_buff *skb;
struct net_device *dev;
unsigned int txmtu;
int ifindex;
int err = -EINVAL;
......@@ -869,9 +939,16 @@ static int raw_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
goto free_skb;
err = -EINVAL;
if (raw_bad_txframe(ro, skb, dev->mtu))
/* check for valid CAN (CC/FD/XL) frame content */
txmtu = raw_check_txframe(ro, skb, dev->mtu);
if (!txmtu)
goto free_skb;
/* only CANXL: clear/forward/set VCID value */
if (txmtu == CANXL_MTU)
raw_put_canxl_vcid(ro, skb);
sockcm_init(&sockc, sk);
if (msg->msg_controllen) {
err = sock_cmsg_send(sk, msg, &sockc);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment