Commit e8635b48 authored by David Daney's avatar David Daney Committed by Ralf Baechle

MIPS: Add Cavium OCTEON PCI support.

This patch adds support for PCI and PCIe to the base Cavium OCTEON
processor support.
Signed-off-by: default avatarDavid Daney <ddaney@caviumnetworks.com>
Signed-off-by: default avatarRalf Baechle <ralf@linux-mips.org>
parent 8860fb82
......@@ -618,6 +618,8 @@ config CAVIUM_OCTEON_REFERENCE_BOARD
select SYS_HAS_EARLY_PRINTK
select SYS_HAS_CPU_CAVIUM_OCTEON
select SWAP_IO_SPACE
select HW_HAS_PCI
select ARCH_SUPPORTS_MSI
help
This option supports all of the Octeon reference boards from Cavium
Networks. It builds a kernel that dynamically determines the Octeon
......
......@@ -14,5 +14,9 @@ obj-y += dma-octeon.o flash_setup.o
obj-y += octeon-memcpy.o
obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_PCI) += pci-common.o
obj-$(CONFIG_PCI) += pci.o
obj-$(CONFIG_PCI) += pcie.o
obj-$(CONFIG_PCI_MSI) += msi.o
EXTRA_CFLAGS += -Werror
......@@ -13,20 +13,327 @@
*/
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/cache.h>
#include <linux/io.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
#include <dma-coherence.h>
#ifdef CONFIG_PCI
#include "pci-common.h"
#endif
#define BAR2_PCI_ADDRESS 0x8000000000ul
struct bar1_index_state {
int16_t ref_count; /* Number of PCI mappings using this index */
uint16_t address_bits; /* Upper bits of physical address. This is
shifted 22 bits */
};
#ifdef CONFIG_PCI
static DEFINE_SPINLOCK(bar1_lock);
static struct bar1_index_state bar1_state[32];
#endif
dma_addr_t octeon_map_dma_mem(struct device *dev, void *ptr, size_t size)
{
#ifndef CONFIG_PCI
/* Without PCI/PCIe this function can be called for Octeon internal
devices such as USB. These devices all support 64bit addressing */
mb();
return virt_to_phys(ptr);
#else
unsigned long flags;
uint64_t dma_mask;
int64_t start_index;
dma_addr_t result = -1;
uint64_t physical = virt_to_phys(ptr);
int64_t index;
mb();
/*
* Use the DMA masks to determine the allowed memory
* region. For us it doesn't limit the actual memory, just the
* address visible over PCI. Devices with limits need to use
* lower indexed Bar1 entries.
*/
if (dev) {
dma_mask = dev->coherent_dma_mask;
if (dev->dma_mask)
dma_mask = *dev->dma_mask;
} else {
dma_mask = 0xfffffffful;
}
/*
* Platform devices, such as the internal USB, skip all
* translation and use Octeon physical addresses directly.
*/
if (!dev || dev->bus == &platform_bus_type)
return physical;
switch (octeon_dma_bar_type) {
case OCTEON_DMA_BAR_TYPE_PCIE:
if (unlikely(physical < (16ul << 10)))
panic("dma_map_single: Not allowed to map first 16KB."
" It interferes with BAR0 special area\n");
else if ((physical + size >= (256ul << 20)) &&
(physical < (512ul << 20)))
panic("dma_map_single: Not allowed to map bootbus\n");
else if ((physical + size >= 0x400000000ull) &&
physical < 0x410000000ull)
panic("dma_map_single: "
"Attempt to map illegal memory address 0x%llx\n",
physical);
else if (physical >= 0x420000000ull)
panic("dma_map_single: "
"Attempt to map illegal memory address 0x%llx\n",
physical);
else if ((physical + size >=
(4ull<<30) - (OCTEON_PCI_BAR1_HOLE_SIZE<<20))
&& physical < (4ull<<30))
pr_warning("dma_map_single: Warning: "
"Mapping memory address that might "
"conflict with devices 0x%llx-0x%llx\n",
physical, physical+size-1);
/* The 2nd 256MB is mapped at 256<<20 instead of 0x410000000 */
if ((physical >= 0x410000000ull) && physical < 0x420000000ull)
result = physical - 0x400000000ull;
else
result = physical;
if (((result+size-1) & dma_mask) != result+size-1)
panic("dma_map_single: Attempt to map address "
"0x%llx-0x%llx, which can't be accessed "
"according to the dma mask 0x%llx\n",
physical, physical+size-1, dma_mask);
goto done;
case OCTEON_DMA_BAR_TYPE_BIG:
#ifdef CONFIG_64BIT
/* If the device supports 64bit addressing, then use BAR2 */
if (dma_mask > BAR2_PCI_ADDRESS) {
result = physical + BAR2_PCI_ADDRESS;
goto done;
}
#endif
if (unlikely(physical < (4ul << 10))) {
panic("dma_map_single: Not allowed to map first 4KB. "
"It interferes with BAR0 special area\n");
} else if (physical < (256ul << 20)) {
if (unlikely(physical + size > (256ul << 20)))
panic("dma_map_single: Requested memory spans "
"Bar0 0:256MB and bootbus\n");
result = physical;
goto done;
} else if (unlikely(physical < (512ul << 20))) {
panic("dma_map_single: Not allowed to map bootbus\n");
} else if (physical < (2ul << 30)) {
if (unlikely(physical + size > (2ul << 30)))
panic("dma_map_single: Requested memory spans "
"Bar0 512MB:2GB and BAR1\n");
result = physical;
goto done;
} else if (physical < (2ul << 30) + (128 << 20)) {
/* Fall through */
} else if (physical <
(4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20)) {
if (unlikely
(physical + size >
(4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20)))
panic("dma_map_single: Requested memory "
"extends past Bar1 (4GB-%luMB)\n",
OCTEON_PCI_BAR1_HOLE_SIZE);
result = physical;
goto done;
} else if ((physical >= 0x410000000ull) &&
(physical < 0x420000000ull)) {
if (unlikely(physical + size > 0x420000000ull))
panic("dma_map_single: Requested memory spans "
"non existant memory\n");
/* BAR0 fixed mapping 256MB:512MB ->
* 16GB+256MB:16GB+512MB */
result = physical - 0x400000000ull;
goto done;
} else {
/* Continued below switch statement */
}
break;
case OCTEON_DMA_BAR_TYPE_SMALL:
#ifdef CONFIG_64BIT
/* If the device supports 64bit addressing, then use BAR2 */
if (dma_mask > BAR2_PCI_ADDRESS) {
result = physical + BAR2_PCI_ADDRESS;
goto done;
}
#endif
/* Continued below switch statement */
break;
default:
panic("dma_map_single: Invalid octeon_dma_bar_type\n");
}
/* Don't allow mapping to span multiple Bar entries. The hardware guys
won't guarantee that DMA across boards work */
if (unlikely((physical >> 22) != ((physical + size - 1) >> 22)))
panic("dma_map_single: "
"Requested memory spans more than one Bar1 entry\n");
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG)
start_index = 31;
else if (unlikely(dma_mask < (1ul << 27)))
start_index = (dma_mask >> 22);
else
start_index = 31;
/* Only one processor can access the Bar register at once */
spin_lock_irqsave(&bar1_lock, flags);
/* Look through Bar1 for existing mapping that will work */
for (index = start_index; index >= 0; index--) {
if ((bar1_state[index].address_bits == physical >> 22) &&
(bar1_state[index].ref_count)) {
/* An existing mapping will work, use it */
bar1_state[index].ref_count++;
if (unlikely(bar1_state[index].ref_count < 0))
panic("dma_map_single: "
"Bar1[%d] reference count overflowed\n",
(int) index);
result = (index << 22) | (physical & ((1 << 22) - 1));
/* Large BAR1 is offset at 2GB */
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG)
result += 2ul << 30;
goto done_unlock;
}
}
/* No existing mappings, look for a free entry */
for (index = start_index; index >= 0; index--) {
if (unlikely(bar1_state[index].ref_count == 0)) {
union cvmx_pci_bar1_indexx bar1_index;
/* We have a free entry, use it */
bar1_state[index].ref_count = 1;
bar1_state[index].address_bits = physical >> 22;
bar1_index.u32 = 0;
/* Address bits[35:22] sent to L2C */
bar1_index.s.addr_idx = physical >> 22;
/* Don't put PCI accesses in L2. */
bar1_index.s.ca = 1;
/* Endian Swap Mode */
bar1_index.s.end_swp = 1;
/* Set '1' when the selected address range is valid. */
bar1_index.s.addr_v = 1;
octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
bar1_index.u32);
/* An existing mapping will work, use it */
result = (index << 22) | (physical & ((1 << 22) - 1));
/* Large BAR1 is offset at 2GB */
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG)
result += 2ul << 30;
goto done_unlock;
}
}
pr_err("dma_map_single: "
"Can't find empty BAR1 index for physical mapping 0x%llx\n",
(unsigned long long) physical);
done_unlock:
spin_unlock_irqrestore(&bar1_lock, flags);
done:
pr_debug("dma_map_single 0x%llx->0x%llx\n", physical, result);
return result;
#endif
}
void octeon_unmap_dma_mem(struct device *dev, dma_addr_t dma_addr)
{
/* Without PCI/PCIe this function can be called for Octeon internal
* devices such as USB. These devices all support 64bit addressing */
#ifndef CONFIG_PCI
/*
* Without PCI/PCIe this function can be called for Octeon internal
* devices such as USB. These devices all support 64bit addressing.
*/
return;
#else
unsigned long flags;
uint64_t index;
/*
* Platform devices, such as the internal USB, skip all
* translation and use Octeon physical addresses directly.
*/
if (dev->bus == &platform_bus_type)
return;
switch (octeon_dma_bar_type) {
case OCTEON_DMA_BAR_TYPE_PCIE:
/* Nothing to do, all mappings are static */
goto done;
case OCTEON_DMA_BAR_TYPE_BIG:
#ifdef CONFIG_64BIT
/* Nothing to do for addresses using BAR2 */
if (dma_addr >= BAR2_PCI_ADDRESS)
goto done;
#endif
if (unlikely(dma_addr < (4ul << 10)))
panic("dma_unmap_single: Unexpect DMA address 0x%llx\n",
dma_addr);
else if (dma_addr < (2ul << 30))
/* Nothing to do for addresses using BAR0 */
goto done;
else if (dma_addr < (2ul << 30) + (128ul << 20))
/* Need to unmap, fall through */
index = (dma_addr - (2ul << 30)) >> 22;
else if (dma_addr <
(4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20))
goto done; /* Nothing to do for the rest of BAR1 */
else
panic("dma_unmap_single: Unexpect DMA address 0x%llx\n",
dma_addr);
/* Continued below switch statement */
break;
case OCTEON_DMA_BAR_TYPE_SMALL:
#ifdef CONFIG_64BIT
/* Nothing to do for addresses using BAR2 */
if (dma_addr >= BAR2_PCI_ADDRESS)
goto done;
#endif
index = dma_addr >> 22;
/* Continued below switch statement */
break;
default:
panic("dma_unmap_single: Invalid octeon_dma_bar_type\n");
}
if (unlikely(index > 31))
panic("dma_unmap_single: "
"Attempt to unmap an invalid address (0x%llx)\n",
dma_addr);
spin_lock_irqsave(&bar1_lock, flags);
bar1_state[index].ref_count--;
if (bar1_state[index].ref_count == 0)
octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 0);
else if (unlikely(bar1_state[index].ref_count < 0))
panic("dma_unmap_single: Bar1[%u] reference count < 0\n",
(int) index);
spin_unlock_irqrestore(&bar1_lock, flags);
done:
pr_debug("dma_unmap_single 0x%llx\n", dma_addr);
return;
#endif
}
......@@ -11,3 +11,4 @@
obj-y += cvmx-bootmem.o cvmx-l2c.o cvmx-sysinfo.o octeon-model.o
obj-$(CONFIG_PCI) += cvmx-helper-errata.o cvmx-helper-jtag.o
/***********************license start***************
* Author: Cavium Networks
*
* Contact: support@caviumnetworks.com
* This file is part of the OCTEON SDK
*
* Copyright (c) 2003-2008 Cavium Networks
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
* or visit http://www.gnu.org/licenses/.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium Networks for more information
***********************license end**************************************/
/**
*
* Fixes and workaround for Octeon chip errata. This file
* contains functions called by cvmx-helper to workaround known
* chip errata. For the most part, code doesn't need to call
* these functions directly.
*
*/
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-helper-jtag.h>
/**
* Due to errata G-720, the 2nd order CDR circuit on CN52XX pass
* 1 doesn't work properly. The following code disables 2nd order
* CDR for the specified QLM.
*
* @qlm: QLM to disable 2nd order CDR for.
*/
void __cvmx_helper_errata_qlm_disable_2nd_order_cdr(int qlm)
{
int lane;
cvmx_helper_qlm_jtag_init();
/* We need to load all four lanes of the QLM, a total of 1072 bits */
for (lane = 0; lane < 4; lane++) {
/*
* Each lane has 268 bits. We need to set
* cfg_cdr_incx<67:64> = 3 and cfg_cdr_secord<77> =
* 1. All other bits are zero. Bits go in LSB first,
* so start off with the zeros for bits <63:0>.
*/
cvmx_helper_qlm_jtag_shift_zeros(qlm, 63 - 0 + 1);
/* cfg_cdr_incx<67:64>=3 */
cvmx_helper_qlm_jtag_shift(qlm, 67 - 64 + 1, 3);
/* Zeros for bits <76:68> */
cvmx_helper_qlm_jtag_shift_zeros(qlm, 76 - 68 + 1);
/* cfg_cdr_secord<77>=1 */
cvmx_helper_qlm_jtag_shift(qlm, 77 - 77 + 1, 1);
/* Zeros for bits <267:78> */
cvmx_helper_qlm_jtag_shift_zeros(qlm, 267 - 78 + 1);
}
cvmx_helper_qlm_jtag_update(qlm);
}
/***********************license start***************
* Author: Cavium Networks
*
* Contact: support@caviumnetworks.com
* This file is part of the OCTEON SDK
*
* Copyright (c) 2003-2008 Cavium Networks
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
* or visit http://www.gnu.org/licenses/.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium Networks for more information
***********************license end**************************************/
/**
*
* Helper utilities for qlm_jtag.
*
*/
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-helper-jtag.h>
/**
* Initialize the internal QLM JTAG logic to allow programming
* of the JTAG chain by the cvmx_helper_qlm_jtag_*() functions.
* These functions should only be used at the direction of Cavium
* Networks. Programming incorrect values into the JTAG chain
* can cause chip damage.
*/
void cvmx_helper_qlm_jtag_init(void)
{
union cvmx_ciu_qlm_jtgc jtgc;
uint32_t clock_div = 0;
uint32_t divisor = cvmx_sysinfo_get()->cpu_clock_hz / (25 * 1000000);
divisor = (divisor - 1) >> 2;
/* Convert the divisor into a power of 2 shift */
while (divisor) {
clock_div++;
divisor = divisor >> 1;
}
/*
* Clock divider for QLM JTAG operations. eclk is divided by
* 2^(CLK_DIV + 2)
*/
jtgc.u64 = 0;
jtgc.s.clk_div = clock_div;
jtgc.s.mux_sel = 0;
if (OCTEON_IS_MODEL(OCTEON_CN52XX))
jtgc.s.bypass = 0x3;
else
jtgc.s.bypass = 0xf;
cvmx_write_csr(CVMX_CIU_QLM_JTGC, jtgc.u64);
cvmx_read_csr(CVMX_CIU_QLM_JTGC);
}
/**
* Write up to 32bits into the QLM jtag chain. Bits are shifted
* into the MSB and out the LSB, so you should shift in the low
* order bits followed by the high order bits. The JTAG chain is
* 4 * 268 bits long, or 1072.
*
* @qlm: QLM to shift value into
* @bits: Number of bits to shift in (1-32).
* @data: Data to shift in. Bit 0 enters the chain first, followed by
* bit 1, etc.
*
* Returns The low order bits of the JTAG chain that shifted out of the
* circle.
*/
uint32_t cvmx_helper_qlm_jtag_shift(int qlm, int bits, uint32_t data)
{
union cvmx_ciu_qlm_jtgd jtgd;
jtgd.u64 = 0;
jtgd.s.shift = 1;
jtgd.s.shft_cnt = bits - 1;
jtgd.s.shft_reg = data;
if (!OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X))
jtgd.s.select = 1 << qlm;
cvmx_write_csr(CVMX_CIU_QLM_JTGD, jtgd.u64);
do {
jtgd.u64 = cvmx_read_csr(CVMX_CIU_QLM_JTGD);
} while (jtgd.s.shift);
return jtgd.s.shft_reg >> (32 - bits);
}
/**
* Shift long sequences of zeros into the QLM JTAG chain. It is
* common to need to shift more than 32 bits of zeros into the
* chain. This function is a convience wrapper around
* cvmx_helper_qlm_jtag_shift() to shift more than 32 bits of
* zeros at a time.
*
* @qlm: QLM to shift zeros into
* @bits:
*/
void cvmx_helper_qlm_jtag_shift_zeros(int qlm, int bits)
{
while (bits > 0) {
int n = bits;
if (n > 32)
n = 32;
cvmx_helper_qlm_jtag_shift(qlm, n, 0);
bits -= n;
}
}
/**
* Program the QLM JTAG chain into all lanes of the QLM. You must
* have already shifted in 268*4, or 1072 bits into the JTAG
* chain. Updating invalid values can possibly cause chip damage.
*
* @qlm: QLM to program
*/
void cvmx_helper_qlm_jtag_update(int qlm)
{
union cvmx_ciu_qlm_jtgd jtgd;
/* Update the new data */
jtgd.u64 = 0;
jtgd.s.update = 1;
if (!OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X))
jtgd.s.select = 1 << qlm;
cvmx_write_csr(CVMX_CIU_QLM_JTGD, jtgd.u64);
do {
jtgd.u64 = cvmx_read_csr(CVMX_CIU_QLM_JTGD);
} while (jtgd.s.update);
}
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005-2007 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/msi.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
#include <asm/octeon/cvmx-npei-defs.h>
#include <asm/octeon/cvmx-pexp-defs.h>
#include "pci-common.h"
/*
* Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
* in use.
*/
static uint64_t msi_free_irq_bitmask;
/*
* Each bit in msi_multiple_irq_bitmask tells that the device using
* this bit in msi_free_irq_bitmask is also using the next bit. This
* is used so we can disable all of the MSI interrupts when a device
* uses multiple.
*/
static uint64_t msi_multiple_irq_bitmask;
/*
* This lock controls updates to msi_free_irq_bitmask and
* msi_multiple_irq_bitmask.
*/
static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
/**
* Called when a driver request MSI interrupts instead of the
* legacy INT A-D. This routine will allocate multiple interrupts
* for MSI devices that support them. A device can override this by
* programming the MSI control bits [6:4] before calling
* pci_enable_msi().
*
* @param dev Device requesting MSI interrupts
* @param desc MSI descriptor
*
* Returns 0 on success.
*/
int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
{
struct msi_msg msg;
uint16_t control;
int configured_private_bits;
int request_private_bits;
int irq;
int irq_step;
uint64_t search_mask;
/*
* Read the MSI config to figure out how many IRQs this device
* wants. Most devices only want 1, which will give
* configured_private_bits and request_private_bits equal 0.
*/
pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
&control);
/*
* If the number of private bits has been configured then use
* that value instead of the requested number. This gives the
* driver the chance to override the number of interrupts
* before calling pci_enable_msi().
*/
configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
if (configured_private_bits == 0) {
/* Nothing is configured, so use the hardware requested size */
request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
} else {
/*
* Use the number of configured bits, assuming the
* driver wanted to override the hardware request
* value.
*/
request_private_bits = configured_private_bits;
}
/*
* The PCI 2.3 spec mandates that there are at most 32
* interrupts. If this device asks for more, only give it one.
*/
if (request_private_bits > 5)
request_private_bits = 0;
try_only_one:
/*
* The IRQs have to be aligned on a power of two based on the
* number being requested.
*/
irq_step = 1 << request_private_bits;
/* Mask with one bit for each IRQ */
search_mask = (1 << irq_step) - 1;
/*
* We're going to search msi_free_irq_bitmask_lock for zero
* bits. This represents an MSI interrupt number that isn't in
* use.
*/
spin_lock(&msi_free_irq_bitmask_lock);
for (irq = 0; irq < 64; irq += irq_step) {
if ((msi_free_irq_bitmask & (search_mask << irq)) == 0) {
msi_free_irq_bitmask |= search_mask << irq;
msi_multiple_irq_bitmask |= (search_mask >> 1) << irq;
break;
}
}
spin_unlock(&msi_free_irq_bitmask_lock);
/* Make sure the search for available interrupts didn't fail */
if (irq >= 64) {
if (request_private_bits) {
pr_err("arch_setup_msi_irq: Unable to find %d free "
"interrupts, trying just one",
1 << request_private_bits);
request_private_bits = 0;
goto try_only_one;
} else
panic("arch_setup_msi_irq: Unable to find a free MSI "
"interrupt");
}
/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
irq += OCTEON_IRQ_MSI_BIT0;
switch (octeon_dma_bar_type) {
case OCTEON_DMA_BAR_TYPE_SMALL:
/* When not using big bar, Bar 0 is based at 128MB */
msg.address_lo =
((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
case OCTEON_DMA_BAR_TYPE_BIG:
/* When using big bar, Bar 0 is based at 0 */
msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
break;
case OCTEON_DMA_BAR_TYPE_PCIE:
/* When using PCIe, Bar 0 is based at 0 */
/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
break;
default:
panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type\n");
}
msg.data = irq - OCTEON_IRQ_MSI_BIT0;
/* Update the number of IRQs the device has available to it */
control &= ~PCI_MSI_FLAGS_QSIZE;
control |= request_private_bits << 4;
pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
control);
set_irq_msi(irq, desc);
write_msi_msg(irq, &msg);
return 0;
}
/**
* Called when a device no longer needs its MSI interrupts. All
* MSI interrupts for the device are freed.
*
* @irq: The devices first irq number. There may be multple in sequence.
*/
void arch_teardown_msi_irq(unsigned int irq)
{
int number_irqs;
uint64_t bitmask;
if ((irq < OCTEON_IRQ_MSI_BIT0) || (irq > OCTEON_IRQ_MSI_BIT63))
panic("arch_teardown_msi_irq: Attempted to teardown illegal "
"MSI interrupt (%d)", irq);
irq -= OCTEON_IRQ_MSI_BIT0;
/*
* Count the number of IRQs we need to free by looking at the
* msi_multiple_irq_bitmask. Each bit set means that the next
* IRQ is also owned by this device.
*/
number_irqs = 0;
while ((irq+number_irqs < 64) &&
(msi_multiple_irq_bitmask & (1ull << (irq + number_irqs))))
number_irqs++;
number_irqs++;
/* Mask with one bit for each IRQ */
bitmask = (1 << number_irqs) - 1;
/* Shift the mask to the correct bit location */
bitmask <<= irq;
if ((msi_free_irq_bitmask & bitmask) != bitmask)
panic("arch_teardown_msi_irq: Attempted to teardown MSI "
"interrupt (%d) not in use", irq);
/* Checks are done, update the in use bitmask */
spin_lock(&msi_free_irq_bitmask_lock);
msi_free_irq_bitmask &= ~bitmask;
msi_multiple_irq_bitmask &= ~bitmask;
spin_unlock(&msi_free_irq_bitmask_lock);
}
/**
* Called by the interrupt handling code when an MSI interrupt
* occurs.
*
* @param cpl
* @param dev_id
*
* @return
*/
static irqreturn_t octeon_msi_interrupt(int cpl, void *dev_id)
{
uint64_t msi_bits;
int irq;
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE)
msi_bits = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_RCV0);
else
msi_bits = cvmx_read_csr(CVMX_NPI_NPI_MSI_RCV);
irq = fls64(msi_bits);
if (irq) {
irq += OCTEON_IRQ_MSI_BIT0 - 1;
if (irq_desc[irq].action) {
do_IRQ(irq);
return IRQ_HANDLED;
} else {
pr_err("Spurious MSI interrupt %d\n", irq);
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
/* These chips have PCIe */
cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0,
1ull << (irq -
OCTEON_IRQ_MSI_BIT0));
} else {
/* These chips have PCI */
cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV,
1ull << (irq -
OCTEON_IRQ_MSI_BIT0));
}
}
}
return IRQ_NONE;
}
/**
* Initializes the MSI interrupt handling code
*
* @return
*/
int octeon_msi_initialize(void)
{
int r;
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
r = request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[0:63]", octeon_msi_interrupt);
} else if (octeon_is_pci_host()) {
r = request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[0:15]", octeon_msi_interrupt);
r += request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[16:31]", octeon_msi_interrupt);
r += request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[32:47]", octeon_msi_interrupt);
r += request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[48:63]", octeon_msi_interrupt);
}
return 0;
}
subsys_initcall(octeon_msi_initialize);
......@@ -10,6 +10,8 @@
#include <linux/hardirq.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-pexp-defs.h>
#include <asm/octeon/cvmx-npi-defs.h>
DEFINE_RWLOCK(octeon_irq_ciu0_rwlock);
DEFINE_RWLOCK(octeon_irq_ciu1_rwlock);
......
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005-2007 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/delay.h>
#include "pci-common.h"
typeof(pcibios_map_irq) *octeon_pcibios_map_irq;
enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
/**
* Map a PCI device to the appropriate interrupt line
*
* @param dev The Linux PCI device structure for the device to map
* @param slot The slot number for this device on __BUS 0__. Linux
* enumerates through all the bridges and figures out the
* slot on Bus 0 where this device eventually hooks to.
* @param pin The PCI interrupt pin read from the device, then swizzled
* as it goes through each bridge.
* @return Interrupt number for the device
*/
int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
if (octeon_pcibios_map_irq)
return octeon_pcibios_map_irq(dev, slot, pin);
else
panic("octeon_pcibios_map_irq doesn't point to a "
"pcibios_map_irq() function");
}
/**
* Called to perform platform specific PCI setup
*
* @param dev
* @return
*/
int pcibios_plat_dev_init(struct pci_dev *dev)
{
uint16_t config;
uint32_t dconfig;
int pos;
/*
* Force the Cache line setting to 64 bytes. The standard
* Linux bus scan doesn't seem to set it. Octeon really has
* 128 byte lines, but Intel bridges get really upset if you
* try and set values above 64 bytes. Value is specified in
* 32bit words.
*/
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
/* Set latency timers for all devices */
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 48);
/* Enable reporting System errors and parity errors on all devices */
/* Enable parity checking and error reporting */
pci_read_config_word(dev, PCI_COMMAND, &config);
config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
pci_write_config_word(dev, PCI_COMMAND, config);
if (dev->subordinate) {
/* Set latency timers on sub bridges */
pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 48);
/* More bridge error detection */
pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
}
/* Enable the PCIe normal error reporting */
pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
if (pos) {
/* Update Device Control */
pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
/* Correctable Error Reporting */
config |= PCI_EXP_DEVCTL_CERE;
/* Non-Fatal Error Reporting */
config |= PCI_EXP_DEVCTL_NFERE;
/* Fatal Error Reporting */
config |= PCI_EXP_DEVCTL_FERE;
/* Unsupported Request */
config |= PCI_EXP_DEVCTL_URRE;
pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
}
/* Find the Advanced Error Reporting capability */
pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
if (pos) {
/* Clear Uncorrectable Error Status */
pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
&dconfig);
pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
dconfig);
/* Enable reporting of all uncorrectable errors */
/* Uncorrectable Error Mask - turned on bits disable errors */
pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
/*
* Leave severity at HW default. This only controls if
* errors are reported as uncorrectable or
* correctable, not if the error is reported.
*/
/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
/* Clear Correctable Error Status */
pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
/* Enable reporting of all correctable errors */
/* Correctable Error Mask - turned on bits disable errors */
pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
/* Advanced Error Capabilities */
pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
/* ECRC Generation Enable */
if (config & PCI_ERR_CAP_ECRC_GENC)
config |= PCI_ERR_CAP_ECRC_GENE;
/* ECRC Check Enable */
if (config & PCI_ERR_CAP_ECRC_CHKC)
config |= PCI_ERR_CAP_ECRC_CHKE;
pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
/* Report all errors to the root complex */
pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
PCI_ERR_ROOT_CMD_COR_EN |
PCI_ERR_ROOT_CMD_NONFATAL_EN |
PCI_ERR_ROOT_CMD_FATAL_EN);
/* Clear the Root status register */
pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
}
return 0;
}
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005-2007 Cavium Networks
*/
#ifndef __OCTEON_PCI_COMMON_H__
#define __OCTEON_PCI_COMMON_H__
#include <linux/pci.h>
/* Some PCI cards require delays when accessing config space. */
#define PCI_CONFIG_SPACE_DELAY 10000
/* pcibios_map_irq() is defined inside pci-common.c. All it does is call the
Octeon specific version pointed to by this variable. This function needs to
change for PCI or PCIe based hosts */
extern typeof(pcibios_map_irq) *octeon_pcibios_map_irq;
/* The following defines are only used when octeon_dma_bar_type =
OCTEON_DMA_BAR_TYPE_BIG */
#define OCTEON_PCI_BAR1_HOLE_BITS 5
#define OCTEON_PCI_BAR1_HOLE_SIZE (1ul<<(OCTEON_PCI_BAR1_HOLE_BITS+3))
enum octeon_dma_bar_type {
OCTEON_DMA_BAR_TYPE_INVALID,
OCTEON_DMA_BAR_TYPE_SMALL,
OCTEON_DMA_BAR_TYPE_BIG,
OCTEON_DMA_BAR_TYPE_PCIE
};
/**
* This is a variable to tell the DMA mapping system in dma-octeon.c
* how to map PCI DMA addresses.
*/
extern enum octeon_dma_bar_type octeon_dma_bar_type;
#endif
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005-2007 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <asm/time.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
#include "pci-common.h"
#define USE_OCTEON_INTERNAL_ARBITER
/*
* Octeon's PCI controller uses did=3, subdid=2 for PCI IO
* addresses. Use PCI endian swapping 1 so no address swapping is
* necessary. The Linux io routines will endian swap the data.
*/
#define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
#define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
/* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
#define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
/**
* This is the bit decoding used for the Octeon PCI controller addresses
*/
union octeon_pci_address {
uint64_t u64;
struct {
uint64_t upper:2;
uint64_t reserved:13;
uint64_t io:1;
uint64_t did:5;
uint64_t subdid:3;
uint64_t reserved2:4;
uint64_t endian_swap:2;
uint64_t reserved3:10;
uint64_t bus:8;
uint64_t dev:5;
uint64_t func:3;
uint64_t reg:8;
} s;
};
/**
* Return the mapping of PCI device number to IRQ line. Each
* character in the return string represents the interrupt
* line for the device at that position. Device 1 maps to the
* first character, etc. The characters A-D are used for PCI
* interrupts.
*
* Returns PCI interrupt mapping
*/
const char *octeon_get_pci_interrupts(void)
{
/*
* Returning an empty string causes the interrupts to be
* routed based on the PCI specification. From the PCI spec:
*
* INTA# of Device Number 0 is connected to IRQW on the system
* board. (Device Number has no significance regarding being
* located on the system board or in a connector.) INTA# of
* Device Number 1 is connected to IRQX on the system
* board. INTA# of Device Number 2 is connected to IRQY on the
* system board. INTA# of Device Number 3 is connected to IRQZ
* on the system board. The table below describes how each
* agent's INTx# lines are connected to the system board
* interrupt lines. The following equation can be used to
* determine to which INTx# signal on the system board a given
* device's INTx# line(s) is connected.
*
* MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
* IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
* Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
* INTD# = 3)
*/
switch (octeon_bootinfo->board_type) {
case CVMX_BOARD_TYPE_NAO38:
/* This is really the NAC38 */
return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
case CVMX_BOARD_TYPE_THUNDER:
return "";
case CVMX_BOARD_TYPE_EBH3000:
return "";
case CVMX_BOARD_TYPE_EBH3100:
case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
case CVMX_BOARD_TYPE_BBGW_REF:
return "AABCD";
default:
return "";
}
}
/**
* Map a PCI device to the appropriate interrupt line
*
* @dev: The Linux PCI device structure for the device to map
* @slot: The slot number for this device on __BUS 0__. Linux
* enumerates through all the bridges and figures out the
* slot on Bus 0 where this device eventually hooks to.
* @pin: The PCI interrupt pin read from the device, then swizzled
* as it goes through each bridge.
* Returns Interrupt number for the device
*/
int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
u8 slot, u8 pin)
{
int irq_num;
const char *interrupts;
int dev_num;
/* Get the board specific interrupt mapping */
interrupts = octeon_get_pci_interrupts();
dev_num = dev->devfn >> 3;
if (dev_num < strlen(interrupts))
irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
OCTEON_IRQ_PCI_INT0;
else
irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
return irq_num;
}
/**
* Read a value from configuration space
*
*/
static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 *val)
{
union octeon_pci_address pci_addr;
pci_addr.u64 = 0;
pci_addr.s.upper = 2;
pci_addr.s.io = 1;
pci_addr.s.did = 3;
pci_addr.s.subdid = 1;
pci_addr.s.endian_swap = 1;
pci_addr.s.bus = bus->number;
pci_addr.s.dev = devfn >> 3;
pci_addr.s.func = devfn & 0x7;
pci_addr.s.reg = reg;
#if PCI_CONFIG_SPACE_DELAY
udelay(PCI_CONFIG_SPACE_DELAY);
#endif
switch (size) {
case 4:
*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
return PCIBIOS_SUCCESSFUL;
case 2:
*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
return PCIBIOS_SUCCESSFUL;
case 1:
*val = cvmx_read64_uint8(pci_addr.u64);
return PCIBIOS_SUCCESSFUL;
}
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
/**
* Write a value to PCI configuration space
*
* @bus:
* @devfn:
* @reg:
* @size:
* @val:
* Returns
*/
static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 val)
{
union octeon_pci_address pci_addr;
pci_addr.u64 = 0;
pci_addr.s.upper = 2;
pci_addr.s.io = 1;
pci_addr.s.did = 3;
pci_addr.s.subdid = 1;
pci_addr.s.endian_swap = 1;
pci_addr.s.bus = bus->number;
pci_addr.s.dev = devfn >> 3;
pci_addr.s.func = devfn & 0x7;
pci_addr.s.reg = reg;
#if PCI_CONFIG_SPACE_DELAY
udelay(PCI_CONFIG_SPACE_DELAY);
#endif
switch (size) {
case 4:
cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
return PCIBIOS_SUCCESSFUL;
case 2:
cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
return PCIBIOS_SUCCESSFUL;
case 1:
cvmx_write64_uint8(pci_addr.u64, val);
return PCIBIOS_SUCCESSFUL;
}
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
static struct pci_ops octeon_pci_ops = {
octeon_read_config,
octeon_write_config,
};
static struct resource octeon_pci_mem_resource = {
.start = 0,
.end = 0,
.name = "Octeon PCI MEM",
.flags = IORESOURCE_MEM,
};
/*
* PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
* bridge
*/
static struct resource octeon_pci_io_resource = {
.start = 0x4000,
.end = OCTEON_PCI_IOSPACE_SIZE - 1,
.name = "Octeon PCI IO",
.flags = IORESOURCE_IO,
};
static struct pci_controller octeon_pci_controller = {
.pci_ops = &octeon_pci_ops,
.mem_resource = &octeon_pci_mem_resource,
.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
.io_resource = &octeon_pci_io_resource,
.io_offset = 0,
.io_map_base = OCTEON_PCI_IOSPACE_BASE,
};
/**
* Low level initialize the Octeon PCI controller
*
* Returns
*/
static void octeon_pci_initialize(void)
{
union cvmx_pci_cfg01 cfg01;
union cvmx_npi_ctl_status ctl_status;
union cvmx_pci_ctl_status_2 ctl_status_2;
union cvmx_pci_cfg19 cfg19;
union cvmx_pci_cfg16 cfg16;
union cvmx_pci_cfg22 cfg22;
union cvmx_pci_cfg56 cfg56;
/* Reset the PCI Bus */
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
cvmx_read_csr(CVMX_CIU_SOFT_PRST);
udelay(2000); /* Hold PCI reset for 2 ms */
ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
ctl_status.s.max_word = 1;
ctl_status.s.timer = 1;
cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
/* Deassert PCI reset and advertize PCX Host Mode Device Capability
(64b) */
cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
cvmx_read_csr(CVMX_CIU_SOFT_PRST);
udelay(2000); /* Wait 2 ms after deasserting PCI reset */
ctl_status_2.u32 = 0;
ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
before any PCI reads. */
ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
ctl_status_2.s.bar2_enb = 1;
ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
ctl_status_2.s.bar2_esx = 1;
ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
/* BAR1 hole */
ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
ctl_status_2.s.bb1 = 1; /* BAR1 is big */
ctl_status_2.s.bb0 = 1; /* BAR0 is big */
}
octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
udelay(2000); /* Wait 2 ms before doing PCI reads */
ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
pr_notice("PCI Status: %s %s-bit\n",
ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
ctl_status_2.s.ap_64ad ? "64" : "32");
if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
union cvmx_pci_cnt_reg cnt_reg_start;
union cvmx_pci_cnt_reg cnt_reg_end;
unsigned long cycles, pci_clock;
cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
cycles = read_c0_cvmcount();
udelay(1000);
cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
cycles = read_c0_cvmcount() - cycles;
pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
(cycles / (mips_hpt_frequency / 1000000));
pr_notice("PCI Clock: %lu MHz\n", pci_clock);
}
/*
* TDOMC must be set to one in PCI mode. TDOMC should be set to 4
* in PCI-X mode to allow four oustanding splits. Otherwise,
* should not change from its reset value. Don't write PCI_CFG19
* in PCI mode (0x82000001 reset value), write it to 0x82000004
* after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
* MRBCM -> must be one.
*/
if (ctl_status_2.s.ap_pcix) {
cfg19.u32 = 0;
/*
* Target Delayed/Split request outstanding maximum
* count. [1..31] and 0=32. NOTE: If the user
* programs these bits beyond the Designed Maximum
* outstanding count, then the designed maximum table
* depth will be used instead. No additional
* Deferred/Split transactions will be accepted if
* this outstanding maximum count is
* reached. Furthermore, no additional deferred/split
* transactions will be accepted if the I/O delay/ I/O
* Split Request outstanding maximum is reached.
*/
cfg19.s.tdomc = 4;
/*
* Master Deferred Read Request Outstanding Max Count
* (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
* cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
* 5 2 110 6 3 111 7 3 For example, if these bits are
* programmed to 100, the core can support 2 DAC
* cycles, 4 SAC cycles or a combination of 1 DAC and
* 2 SAC cycles. NOTE: For the PCI-X maximum
* outstanding split transactions, refer to
* CRE0[22:20].
*/
cfg19.s.mdrrmc = 2;
/*
* Master Request (Memory Read) Byte Count/Byte Enable
* select. 0 = Byte Enables valid. In PCI mode, a
* burst transaction cannot be performed using Memory
* Read command=4?h6. 1 = DWORD Byte Count valid
* (default). In PCI Mode, the memory read byte
* enables are automatically generated by the
* core. Note: N3 Master Request transaction sizes are
* always determined through the
* am_attr[<35:32>|<7:0>] field.
*/
cfg19.s.mrbcm = 1;
octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
}
cfg01.u32 = 0;
cfg01.s.msae = 1; /* Memory Space Access Enable */
cfg01.s.me = 1; /* Master Enable */
cfg01.s.pee = 1; /* PERR# Enable */
cfg01.s.see = 1; /* System Error Enable */
cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
#ifdef USE_OCTEON_INTERNAL_ARBITER
/*
* When OCTEON is a PCI host, most systems will use OCTEON's
* internal arbiter, so must enable it before any PCI/PCI-X
* traffic can occur.
*/
{
union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
pci_int_arb_cfg.u64 = 0;
pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
}
#endif /* USE_OCTEON_INTERNAL_ARBITER */
/*
* Preferrably written to 1 to set MLTD. [RDSATI,TRTAE,
* TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
* 1..7.
*/
cfg16.u32 = 0;
cfg16.s.mltd = 1; /* Master Latency Timer Disable */
octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
/*
* Should be written to 0x4ff00. MTTV -> must be zero.
* FLUSH -> must be 1. MRV -> should be 0xFF.
*/
cfg22.u32 = 0;
/* Master Retry Value [1..255] and 0=infinite */
cfg22.s.mrv = 0xff;
/*
* AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
* N3K operation.
*/
cfg22.s.flush = 1;
octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
/*
* MOST Indicates the maximum number of outstanding splits (in -1
* notation) when OCTEON is in PCI-X mode. PCI-X performance is
* affected by the MOST selection. Should generally be written
* with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
* depending on the desired MOST of 3, 2, 1, or 0, respectively.
*/
cfg56.u32 = 0;
cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
cfg56.s.roe = 1; /* Relaxed Ordering Enable */
cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
[0=512B,1=1024B,2=2048B,3=4096B] */
cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
.. 7=32] */
octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
/*
* Affects PCI performance when OCTEON services reads to its
* BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
* 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
* PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
* these values need to be changed so they won't possibly prefetch off
* of the end of memory if PCI is DMAing a buffer at the end of
* memory. Note that these values differ from their reset values.
*/
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
}
/**
* Initialize the Octeon PCI controller
*
* Returns
*/
static int __init octeon_pci_setup(void)
{
union cvmx_npi_mem_access_subidx mem_access;
int index;
/* Only these chips have PCI */
if (octeon_has_feature(OCTEON_FEATURE_PCIE))
return 0;
/* Point pcibios_map_irq() to the PCI version of it */
octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
/* Only use the big bars on chips that support it */
if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
else
octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
/* PCI I/O and PCI MEM values */
set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
ioport_resource.start = 0;
ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
if (!octeon_is_pci_host()) {
pr_notice("Not in host mode, PCI Controller not initialized\n");
return 0;
}
pr_notice("%s Octeon big bar support\n",
(octeon_dma_bar_type ==
OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
octeon_pci_initialize();
mem_access.u64 = 0;
mem_access.s.esr = 1; /* Endian-Swap on read. */
mem_access.s.esw = 1; /* Endian-Swap on write. */
mem_access.s.nsr = 0; /* No-Snoop on read. */
mem_access.s.nsw = 0; /* No-Snoop on write. */
mem_access.s.ror = 0; /* Relax Read on read. */
mem_access.s.row = 0; /* Relax Order on write. */
mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
/*
* Remap the Octeon BAR 2 above all 32 bit devices
* (0x8000000000ul). This is done here so it is remapped
* before the readl()'s below. We don't want BAR2 overlapping
* with BAR0/BAR1 during these reads.
*/
octeon_npi_write32(CVMX_NPI_PCI_CFG08, 0);
octeon_npi_write32(CVMX_NPI_PCI_CFG09, 0x80);
/* Disable the BAR1 movable mappings */
for (index = 0; index < 32; index++)
octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 0);
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
/* Remap the Octeon BAR 0 to 0-2GB */
octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
/*
* Remap the Octeon BAR 1 to map 2GB-4GB (minus the
* BAR 1 hole).
*/
octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
/* Devices go after BAR1 */
octeon_pci_mem_resource.start =
OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
octeon_pci_mem_resource.end =
octeon_pci_mem_resource.start + (1ul << 30);
} else {
/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
/* Remap the Octeon BAR 1 to map 0-128MB */
octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
/* Devices go after BAR0 */
octeon_pci_mem_resource.start =
OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
(4ul << 10);
octeon_pci_mem_resource.end =
octeon_pci_mem_resource.start + (1ul << 30);
}
register_pci_controller(&octeon_pci_controller);
/*
* Clear any errors that might be pending from before the bus
* was setup properly.
*/
cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
return 0;
}
arch_initcall(octeon_pci_setup);
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2007, 2008 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npei-defs.h>
#include <asm/octeon/cvmx-pciercx-defs.h>
#include <asm/octeon/cvmx-pescx-defs.h>
#include <asm/octeon/cvmx-pexp-defs.h>
#include <asm/octeon/cvmx-helper-errata.h>
#include "pci-common.h"
union cvmx_pcie_address {
uint64_t u64;
struct {
uint64_t upper:2; /* Normally 2 for XKPHYS */
uint64_t reserved_49_61:13; /* Must be zero */
uint64_t io:1; /* 1 for IO space access */
uint64_t did:5; /* PCIe DID = 3 */
uint64_t subdid:3; /* PCIe SubDID = 1 */
uint64_t reserved_36_39:4; /* Must be zero */
uint64_t es:2; /* Endian swap = 1 */
uint64_t port:2; /* PCIe port 0,1 */
uint64_t reserved_29_31:3; /* Must be zero */
/*
* Selects the type of the configuration request (0 = type 0,
* 1 = type 1).
*/
uint64_t ty:1;
/* Target bus number sent in the ID in the request. */
uint64_t bus:8;
/*
* Target device number sent in the ID in the
* request. Note that Dev must be zero for type 0
* configuration requests.
*/
uint64_t dev:5;
/* Target function number sent in the ID in the request. */
uint64_t func:3;
/*
* Selects a register in the configuration space of
* the target.
*/
uint64_t reg:12;
} config;
struct {
uint64_t upper:2; /* Normally 2 for XKPHYS */
uint64_t reserved_49_61:13; /* Must be zero */
uint64_t io:1; /* 1 for IO space access */
uint64_t did:5; /* PCIe DID = 3 */
uint64_t subdid:3; /* PCIe SubDID = 2 */
uint64_t reserved_36_39:4; /* Must be zero */
uint64_t es:2; /* Endian swap = 1 */
uint64_t port:2; /* PCIe port 0,1 */
uint64_t address:32; /* PCIe IO address */
} io;
struct {
uint64_t upper:2; /* Normally 2 for XKPHYS */
uint64_t reserved_49_61:13; /* Must be zero */
uint64_t io:1; /* 1 for IO space access */
uint64_t did:5; /* PCIe DID = 3 */
uint64_t subdid:3; /* PCIe SubDID = 3-6 */
uint64_t reserved_36_39:4; /* Must be zero */
uint64_t address:36; /* PCIe Mem address */
} mem;
};
/**
* Return the Core virtual base address for PCIe IO access. IOs are
* read/written as an offset from this address.
*
* @pcie_port: PCIe port the IO is for
*
* Returns 64bit Octeon IO base address for read/write
*/
static inline uint64_t cvmx_pcie_get_io_base_address(int pcie_port)
{
union cvmx_pcie_address pcie_addr;
pcie_addr.u64 = 0;
pcie_addr.io.upper = 0;
pcie_addr.io.io = 1;
pcie_addr.io.did = 3;
pcie_addr.io.subdid = 2;
pcie_addr.io.es = 1;
pcie_addr.io.port = pcie_port;
return pcie_addr.u64;
}
/**
* Size of the IO address region returned at address
* cvmx_pcie_get_io_base_address()
*
* @pcie_port: PCIe port the IO is for
*
* Returns Size of the IO window
*/
static inline uint64_t cvmx_pcie_get_io_size(int pcie_port)
{
return 1ull << 32;
}
/**
* Return the Core virtual base address for PCIe MEM access. Memory is
* read/written as an offset from this address.
*
* @pcie_port: PCIe port the IO is for
*
* Returns 64bit Octeon IO base address for read/write
*/
static inline uint64_t cvmx_pcie_get_mem_base_address(int pcie_port)
{
union cvmx_pcie_address pcie_addr;
pcie_addr.u64 = 0;
pcie_addr.mem.upper = 0;
pcie_addr.mem.io = 1;
pcie_addr.mem.did = 3;
pcie_addr.mem.subdid = 3 + pcie_port;
return pcie_addr.u64;
}
/**
* Size of the Mem address region returned at address
* cvmx_pcie_get_mem_base_address()
*
* @pcie_port: PCIe port the IO is for
*
* Returns Size of the Mem window
*/
static inline uint64_t cvmx_pcie_get_mem_size(int pcie_port)
{
return 1ull << 36;
}
/**
* Read a PCIe config space register indirectly. This is used for
* registers of the form PCIEEP_CFG??? and PCIERC?_CFG???.
*
* @pcie_port: PCIe port to read from
* @cfg_offset: Address to read
*
* Returns Value read
*/
static uint32_t cvmx_pcie_cfgx_read(int pcie_port, uint32_t cfg_offset)
{
union cvmx_pescx_cfg_rd pescx_cfg_rd;
pescx_cfg_rd.u64 = 0;
pescx_cfg_rd.s.addr = cfg_offset;
cvmx_write_csr(CVMX_PESCX_CFG_RD(pcie_port), pescx_cfg_rd.u64);
pescx_cfg_rd.u64 = cvmx_read_csr(CVMX_PESCX_CFG_RD(pcie_port));
return pescx_cfg_rd.s.data;
}
/**
* Write a PCIe config space register indirectly. This is used for
* registers of the form PCIEEP_CFG??? and PCIERC?_CFG???.
*
* @pcie_port: PCIe port to write to
* @cfg_offset: Address to write
* @val: Value to write
*/
static void cvmx_pcie_cfgx_write(int pcie_port, uint32_t cfg_offset,
uint32_t val)
{
union cvmx_pescx_cfg_wr pescx_cfg_wr;
pescx_cfg_wr.u64 = 0;
pescx_cfg_wr.s.addr = cfg_offset;
pescx_cfg_wr.s.data = val;
cvmx_write_csr(CVMX_PESCX_CFG_WR(pcie_port), pescx_cfg_wr.u64);
}
/**
* Build a PCIe config space request address for a device
*
* @pcie_port: PCIe port to access
* @bus: Sub bus
* @dev: Device ID
* @fn: Device sub function
* @reg: Register to access
*
* Returns 64bit Octeon IO address
*/
static inline uint64_t __cvmx_pcie_build_config_addr(int pcie_port, int bus,
int dev, int fn, int reg)
{
union cvmx_pcie_address pcie_addr;
union cvmx_pciercx_cfg006 pciercx_cfg006;
pciercx_cfg006.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG006(pcie_port));
if ((bus <= pciercx_cfg006.s.pbnum) && (dev != 0))
return 0;
pcie_addr.u64 = 0;
pcie_addr.config.upper = 2;
pcie_addr.config.io = 1;
pcie_addr.config.did = 3;
pcie_addr.config.subdid = 1;
pcie_addr.config.es = 1;
pcie_addr.config.port = pcie_port;
pcie_addr.config.ty = (bus > pciercx_cfg006.s.pbnum);
pcie_addr.config.bus = bus;
pcie_addr.config.dev = dev;
pcie_addr.config.func = fn;
pcie_addr.config.reg = reg;
return pcie_addr.u64;
}
/**
* Read 8bits from a Device's config space
*
* @pcie_port: PCIe port the device is on
* @bus: Sub bus
* @dev: Device ID
* @fn: Device sub function
* @reg: Register to access
*
* Returns Result of the read
*/
static uint8_t cvmx_pcie_config_read8(int pcie_port, int bus, int dev,
int fn, int reg)
{
uint64_t address =
__cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
if (address)
return cvmx_read64_uint8(address);
else
return 0xff;
}
/**
* Read 16bits from a Device's config space
*
* @pcie_port: PCIe port the device is on
* @bus: Sub bus
* @dev: Device ID
* @fn: Device sub function
* @reg: Register to access
*
* Returns Result of the read
*/
static uint16_t cvmx_pcie_config_read16(int pcie_port, int bus, int dev,
int fn, int reg)
{
uint64_t address =
__cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
if (address)
return le16_to_cpu(cvmx_read64_uint16(address));
else
return 0xffff;
}
/**
* Read 32bits from a Device's config space
*
* @pcie_port: PCIe port the device is on
* @bus: Sub bus
* @dev: Device ID
* @fn: Device sub function
* @reg: Register to access
*
* Returns Result of the read
*/
static uint32_t cvmx_pcie_config_read32(int pcie_port, int bus, int dev,
int fn, int reg)
{
uint64_t address =
__cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
if (address)
return le32_to_cpu(cvmx_read64_uint32(address));
else
return 0xffffffff;
}
/**
* Write 8bits to a Device's config space
*
* @pcie_port: PCIe port the device is on
* @bus: Sub bus
* @dev: Device ID
* @fn: Device sub function
* @reg: Register to access
* @val: Value to write
*/
static void cvmx_pcie_config_write8(int pcie_port, int bus, int dev, int fn,
int reg, uint8_t val)
{
uint64_t address =
__cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
if (address)
cvmx_write64_uint8(address, val);
}
/**
* Write 16bits to a Device's config space
*
* @pcie_port: PCIe port the device is on
* @bus: Sub bus
* @dev: Device ID
* @fn: Device sub function
* @reg: Register to access
* @val: Value to write
*/
static void cvmx_pcie_config_write16(int pcie_port, int bus, int dev, int fn,
int reg, uint16_t val)
{
uint64_t address =
__cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
if (address)
cvmx_write64_uint16(address, cpu_to_le16(val));
}
/**
* Write 32bits to a Device's config space
*
* @pcie_port: PCIe port the device is on
* @bus: Sub bus
* @dev: Device ID
* @fn: Device sub function
* @reg: Register to access
* @val: Value to write
*/
static void cvmx_pcie_config_write32(int pcie_port, int bus, int dev, int fn,
int reg, uint32_t val)
{
uint64_t address =
__cvmx_pcie_build_config_addr(pcie_port, bus, dev, fn, reg);
if (address)
cvmx_write64_uint32(address, cpu_to_le32(val));
}
/**
* Initialize the RC config space CSRs
*
* @pcie_port: PCIe port to initialize
*/
static void __cvmx_pcie_rc_initialize_config_space(int pcie_port)
{
union cvmx_pciercx_cfg030 pciercx_cfg030;
union cvmx_npei_ctl_status2 npei_ctl_status2;
union cvmx_pciercx_cfg070 pciercx_cfg070;
union cvmx_pciercx_cfg001 pciercx_cfg001;
union cvmx_pciercx_cfg032 pciercx_cfg032;
union cvmx_pciercx_cfg006 pciercx_cfg006;
union cvmx_pciercx_cfg008 pciercx_cfg008;
union cvmx_pciercx_cfg009 pciercx_cfg009;
union cvmx_pciercx_cfg010 pciercx_cfg010;
union cvmx_pciercx_cfg011 pciercx_cfg011;
union cvmx_pciercx_cfg035 pciercx_cfg035;
union cvmx_pciercx_cfg075 pciercx_cfg075;
union cvmx_pciercx_cfg034 pciercx_cfg034;
/* Max Payload Size (PCIE*_CFG030[MPS]) */
/* Max Read Request Size (PCIE*_CFG030[MRRS]) */
/* Relaxed-order, no-snoop enables (PCIE*_CFG030[RO_EN,NS_EN] */
/* Error Message Enables (PCIE*_CFG030[CE_EN,NFE_EN,FE_EN,UR_EN]) */
pciercx_cfg030.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG030(pcie_port));
/*
* Max payload size = 128 bytes for best Octeon DMA
* performance.
*/
pciercx_cfg030.s.mps = 0;
/*
* Max read request size = 128 bytes for best Octeon DMA
* performance.
*/
pciercx_cfg030.s.mrrs = 0;
/* Enable relaxed ordering. */
pciercx_cfg030.s.ro_en = 1;
/* Enable no snoop. */
pciercx_cfg030.s.ns_en = 1;
/* Correctable error reporting enable. */
pciercx_cfg030.s.ce_en = 1;
/* Non-fatal error reporting enable. */
pciercx_cfg030.s.nfe_en = 1;
/* Fatal error reporting enable. */
pciercx_cfg030.s.fe_en = 1;
/* Unsupported request reporting enable. */
pciercx_cfg030.s.ur_en = 1;
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG030(pcie_port),
pciercx_cfg030.u32);
/*
* Max Payload Size (NPEI_CTL_STATUS2[MPS]) must match
* PCIE*_CFG030[MPS]
*
* Max Read Request Size (NPEI_CTL_STATUS2[MRRS]) must not
* exceed PCIE*_CFG030[MRRS].
*/
npei_ctl_status2.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS2);
/* Max payload size = 128 bytes for best Octeon DMA performance */
npei_ctl_status2.s.mps = 0;
/* Max read request size = 128 bytes for best Octeon DMA performance */
npei_ctl_status2.s.mrrs = 0;
cvmx_write_csr(CVMX_PEXP_NPEI_CTL_STATUS2, npei_ctl_status2.u64);
/* ECRC Generation (PCIE*_CFG070[GE,CE]) */
pciercx_cfg070.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG070(pcie_port));
pciercx_cfg070.s.ge = 1; /* ECRC generation enable. */
pciercx_cfg070.s.ce = 1; /* ECRC check enable. */
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG070(pcie_port),
pciercx_cfg070.u32);
/*
* Access Enables (PCIE*_CFG001[MSAE,ME]) ME and MSAE should
* always be set.
*
* Interrupt Disable (PCIE*_CFG001[I_DIS]) System Error
* Message Enable (PCIE*_CFG001[SEE])
*/
pciercx_cfg001.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG001(pcie_port));
pciercx_cfg001.s.msae = 1; /* Memory space enable. */
pciercx_cfg001.s.me = 1; /* Bus master enable. */
pciercx_cfg001.s.i_dis = 1; /* INTx assertion disable. */
pciercx_cfg001.s.see = 1; /* SERR# enable */
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG001(pcie_port),
pciercx_cfg001.u32);
/* Advanced Error Recovery Message Enables */
/* (PCIE*_CFG066,PCIE*_CFG067,PCIE*_CFG069) */
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG066(pcie_port), 0);
/* Use CVMX_PCIERCX_CFG067 hardware default */
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG069(pcie_port), 0);
/* Active State Power Management (PCIE*_CFG032[ASLPC]) */
pciercx_cfg032.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG032(pcie_port));
pciercx_cfg032.s.aslpc = 0; /* Active state Link PM control. */
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG032(pcie_port),
pciercx_cfg032.u32);
/* Entrance Latencies (PCIE*_CFG451[L0EL,L1EL]) */
/*
* Link Width Mode (PCIERCn_CFG452[LME]) - Set during
* cvmx_pcie_rc_initialize_link()
*
* Primary Bus Number (PCIERCn_CFG006[PBNUM])
*
* We set the primary bus number to 1 so IDT bridges are
* happy. They don't like zero.
*/
pciercx_cfg006.u32 = 0;
pciercx_cfg006.s.pbnum = 1;
pciercx_cfg006.s.sbnum = 1;
pciercx_cfg006.s.subbnum = 1;
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG006(pcie_port),
pciercx_cfg006.u32);
/*
* Memory-mapped I/O BAR (PCIERCn_CFG008)
* Most applications should disable the memory-mapped I/O BAR by
* setting PCIERCn_CFG008[ML_ADDR] < PCIERCn_CFG008[MB_ADDR]
*/
pciercx_cfg008.u32 = 0;
pciercx_cfg008.s.mb_addr = 0x100;
pciercx_cfg008.s.ml_addr = 0;
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG008(pcie_port),
pciercx_cfg008.u32);
/*
* Prefetchable BAR (PCIERCn_CFG009,PCIERCn_CFG010,PCIERCn_CFG011)
* Most applications should disable the prefetchable BAR by setting
* PCIERCn_CFG011[UMEM_LIMIT],PCIERCn_CFG009[LMEM_LIMIT] <
* PCIERCn_CFG010[UMEM_BASE],PCIERCn_CFG009[LMEM_BASE]
*/
pciercx_cfg009.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG009(pcie_port));
pciercx_cfg010.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG010(pcie_port));
pciercx_cfg011.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG011(pcie_port));
pciercx_cfg009.s.lmem_base = 0x100;
pciercx_cfg009.s.lmem_limit = 0;
pciercx_cfg010.s.umem_base = 0x100;
pciercx_cfg011.s.umem_limit = 0;
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG009(pcie_port),
pciercx_cfg009.u32);
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG010(pcie_port),
pciercx_cfg010.u32);
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG011(pcie_port),
pciercx_cfg011.u32);
/*
* System Error Interrupt Enables (PCIERCn_CFG035[SECEE,SEFEE,SENFEE])
* PME Interrupt Enables (PCIERCn_CFG035[PMEIE])
*/
pciercx_cfg035.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG035(pcie_port));
/* System error on correctable error enable. */
pciercx_cfg035.s.secee = 1;
/* System error on fatal error enable. */
pciercx_cfg035.s.sefee = 1;
/* System error on non-fatal error enable. */
pciercx_cfg035.s.senfee = 1;
/* PME interrupt enable. */
pciercx_cfg035.s.pmeie = 1;
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG035(pcie_port),
pciercx_cfg035.u32);
/*
* Advanced Error Recovery Interrupt Enables
* (PCIERCn_CFG075[CERE,NFERE,FERE])
*/
pciercx_cfg075.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG075(pcie_port));
/* Correctable error reporting enable. */
pciercx_cfg075.s.cere = 1;
/* Non-fatal error reporting enable. */
pciercx_cfg075.s.nfere = 1;
/* Fatal error reporting enable. */
pciercx_cfg075.s.fere = 1;
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG075(pcie_port),
pciercx_cfg075.u32);
/* HP Interrupt Enables (PCIERCn_CFG034[HPINT_EN],
* PCIERCn_CFG034[DLLS_EN,CCINT_EN])
*/
pciercx_cfg034.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG034(pcie_port));
/* Hot-plug interrupt enable. */
pciercx_cfg034.s.hpint_en = 1;
/* Data Link Layer state changed enable */
pciercx_cfg034.s.dlls_en = 1;
/* Command completed interrupt enable. */
pciercx_cfg034.s.ccint_en = 1;
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG034(pcie_port),
pciercx_cfg034.u32);
}
/**
* Initialize a host mode PCIe link. This function takes a PCIe
* port from reset to a link up state. Software can then begin
* configuring the rest of the link.
*
* @pcie_port: PCIe port to initialize
*
* Returns Zero on success
*/
static int __cvmx_pcie_rc_initialize_link(int pcie_port)
{
uint64_t start_cycle;
union cvmx_pescx_ctl_status pescx_ctl_status;
union cvmx_pciercx_cfg452 pciercx_cfg452;
union cvmx_pciercx_cfg032 pciercx_cfg032;
union cvmx_pciercx_cfg448 pciercx_cfg448;
/* Set the lane width */
pciercx_cfg452.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG452(pcie_port));
pescx_ctl_status.u64 = cvmx_read_csr(CVMX_PESCX_CTL_STATUS(pcie_port));
if (pescx_ctl_status.s.qlm_cfg == 0) {
/* We're in 8 lane (56XX) or 4 lane (54XX) mode */
pciercx_cfg452.s.lme = 0xf;
} else {
/* We're in 4 lane (56XX) or 2 lane (52XX) mode */
pciercx_cfg452.s.lme = 0x7;
}
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG452(pcie_port),
pciercx_cfg452.u32);
/*
* CN52XX pass 1.x has an errata where length mismatches on UR
* responses can cause bus errors on 64bit memory
* reads. Turning off length error checking fixes this.
*/
if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
union cvmx_pciercx_cfg455 pciercx_cfg455;
pciercx_cfg455.u32 =
cvmx_pcie_cfgx_read(pcie_port,
CVMX_PCIERCX_CFG455(pcie_port));
pciercx_cfg455.s.m_cpl_len_err = 1;
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG455(pcie_port),
pciercx_cfg455.u32);
}
/* Lane swap needs to be manually enabled for CN52XX */
if (OCTEON_IS_MODEL(OCTEON_CN52XX) && (pcie_port == 1)) {
pescx_ctl_status.s.lane_swp = 1;
cvmx_write_csr(CVMX_PESCX_CTL_STATUS(pcie_port),
pescx_ctl_status.u64);
}
/* Bring up the link */
pescx_ctl_status.u64 = cvmx_read_csr(CVMX_PESCX_CTL_STATUS(pcie_port));
pescx_ctl_status.s.lnk_enb = 1;
cvmx_write_csr(CVMX_PESCX_CTL_STATUS(pcie_port), pescx_ctl_status.u64);
/*
* CN52XX pass 1.0: Due to a bug in 2nd order CDR, it needs to
* be disabled.
*/
if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_0))
__cvmx_helper_errata_qlm_disable_2nd_order_cdr(0);
/* Wait for the link to come up */
cvmx_dprintf("PCIe: Waiting for port %d link\n", pcie_port);
start_cycle = cvmx_get_cycle();
do {
if (cvmx_get_cycle() - start_cycle >
2 * cvmx_sysinfo_get()->cpu_clock_hz) {
cvmx_dprintf("PCIe: Port %d link timeout\n",
pcie_port);
return -1;
}
cvmx_wait(10000);
pciercx_cfg032.u32 =
cvmx_pcie_cfgx_read(pcie_port,
CVMX_PCIERCX_CFG032(pcie_port));
} while (pciercx_cfg032.s.dlla == 0);
/* Display the link status */
cvmx_dprintf("PCIe: Port %d link active, %d lanes\n", pcie_port,
pciercx_cfg032.s.nlw);
/*
* Update the Replay Time Limit. Empirically, some PCIe
* devices take a little longer to respond than expected under
* load. As a workaround for this we configure the Replay Time
* Limit to the value expected for a 512 byte MPS instead of
* our actual 256 byte MPS. The numbers below are directly
* from the PCIe spec table 3-4.
*/
pciercx_cfg448.u32 =
cvmx_pcie_cfgx_read(pcie_port, CVMX_PCIERCX_CFG448(pcie_port));
switch (pciercx_cfg032.s.nlw) {
case 1: /* 1 lane */
pciercx_cfg448.s.rtl = 1677;
break;
case 2: /* 2 lanes */
pciercx_cfg448.s.rtl = 867;
break;
case 4: /* 4 lanes */
pciercx_cfg448.s.rtl = 462;
break;
case 8: /* 8 lanes */
pciercx_cfg448.s.rtl = 258;
break;
}
cvmx_pcie_cfgx_write(pcie_port, CVMX_PCIERCX_CFG448(pcie_port),
pciercx_cfg448.u32);
return 0;
}
/**
* Initialize a PCIe port for use in host(RC) mode. It doesn't
* enumerate the bus.
*
* @pcie_port: PCIe port to initialize
*
* Returns Zero on success
*/
static int cvmx_pcie_rc_initialize(int pcie_port)
{
int i;
union cvmx_ciu_soft_prst ciu_soft_prst;
union cvmx_pescx_bist_status pescx_bist_status;
union cvmx_pescx_bist_status2 pescx_bist_status2;
union cvmx_npei_ctl_status npei_ctl_status;
union cvmx_npei_mem_access_ctl npei_mem_access_ctl;
union cvmx_npei_mem_access_subidx mem_access_subid;
union cvmx_npei_dbg_data npei_dbg_data;
union cvmx_pescx_ctl_status2 pescx_ctl_status2;
/*
* Make sure we aren't trying to setup a target mode interface
* in host mode.
*/
npei_ctl_status.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS);
if ((pcie_port == 0) && !npei_ctl_status.s.host_mode) {
cvmx_dprintf("PCIe: ERROR: cvmx_pcie_rc_initialize() called "
"on port0, but port0 is not in host mode\n");
return -1;
}
/*
* Make sure a CN52XX isn't trying to bring up port 1 when it
* is disabled.
*/
if (OCTEON_IS_MODEL(OCTEON_CN52XX)) {
npei_dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA);
if ((pcie_port == 1) && npei_dbg_data.cn52xx.qlm0_link_width) {
cvmx_dprintf("PCIe: ERROR: cvmx_pcie_rc_initialize() "
"called on port1, but port1 is "
"disabled\n");
return -1;
}
}
/*
* PCIe switch arbitration mode. '0' == fixed priority NPEI,
* PCIe0, then PCIe1. '1' == round robin.
*/
npei_ctl_status.s.arb = 1;
/* Allow up to 0x20 config retries */
npei_ctl_status.s.cfg_rtry = 0x20;
/*
* CN52XX pass1.x has an errata where P0_NTAGS and P1_NTAGS
* don't reset.
*/
if (OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
npei_ctl_status.s.p0_ntags = 0x20;
npei_ctl_status.s.p1_ntags = 0x20;
}
cvmx_write_csr(CVMX_PEXP_NPEI_CTL_STATUS, npei_ctl_status.u64);
/* Bring the PCIe out of reset */
if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_EBH5200) {
/*
* The EBH5200 board swapped the PCIe reset lines on
* the board. As a workaround for this bug, we bring
* both PCIe ports out of reset at the same time
* instead of on separate calls. So for port 0, we
* bring both out of reset and do nothing on port 1.
*/
if (pcie_port == 0) {
ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST);
/*
* After a chip reset the PCIe will also be in
* reset. If it isn't, most likely someone is
* trying to init it again without a proper
* PCIe reset.
*/
if (ciu_soft_prst.s.soft_prst == 0) {
/* Reset the ports */
ciu_soft_prst.s.soft_prst = 1;
cvmx_write_csr(CVMX_CIU_SOFT_PRST,
ciu_soft_prst.u64);
ciu_soft_prst.u64 =
cvmx_read_csr(CVMX_CIU_SOFT_PRST1);
ciu_soft_prst.s.soft_prst = 1;
cvmx_write_csr(CVMX_CIU_SOFT_PRST1,
ciu_soft_prst.u64);
/* Wait until pcie resets the ports. */
udelay(2000);
}
ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1);
ciu_soft_prst.s.soft_prst = 0;
cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64);
ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST);
ciu_soft_prst.s.soft_prst = 0;
cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64);
}
} else {
/*
* The normal case: The PCIe ports are completely
* separate and can be brought out of reset
* independently.
*/
if (pcie_port)
ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1);
else
ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST);
/*
* After a chip reset the PCIe will also be in
* reset. If it isn't, most likely someone is trying
* to init it again without a proper PCIe reset.
*/
if (ciu_soft_prst.s.soft_prst == 0) {
/* Reset the port */
ciu_soft_prst.s.soft_prst = 1;
if (pcie_port)
cvmx_write_csr(CVMX_CIU_SOFT_PRST1,
ciu_soft_prst.u64);
else
cvmx_write_csr(CVMX_CIU_SOFT_PRST,
ciu_soft_prst.u64);
/* Wait until pcie resets the ports. */
udelay(2000);
}
if (pcie_port) {
ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST1);
ciu_soft_prst.s.soft_prst = 0;
cvmx_write_csr(CVMX_CIU_SOFT_PRST1, ciu_soft_prst.u64);
} else {
ciu_soft_prst.u64 = cvmx_read_csr(CVMX_CIU_SOFT_PRST);
ciu_soft_prst.s.soft_prst = 0;
cvmx_write_csr(CVMX_CIU_SOFT_PRST, ciu_soft_prst.u64);
}
}
/*
* Wait for PCIe reset to complete. Due to errata PCIE-700, we
* don't poll PESCX_CTL_STATUS2[PCIERST], but simply wait a
* fixed number of cycles.
*/
cvmx_wait(400000);
/* PESCX_BIST_STATUS2[PCLK_RUN] was missing on pass 1 of CN56XX and
CN52XX, so we only probe it on newer chips */
if (!OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X)
&& !OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
/* Clear PCLK_RUN so we can check if the clock is running */
pescx_ctl_status2.u64 =
cvmx_read_csr(CVMX_PESCX_CTL_STATUS2(pcie_port));
pescx_ctl_status2.s.pclk_run = 1;
cvmx_write_csr(CVMX_PESCX_CTL_STATUS2(pcie_port),
pescx_ctl_status2.u64);
/*
* Now that we cleared PCLK_RUN, wait for it to be set
* again telling us the clock is running.
*/
if (CVMX_WAIT_FOR_FIELD64(CVMX_PESCX_CTL_STATUS2(pcie_port),
union cvmx_pescx_ctl_status2,
pclk_run, ==, 1, 10000)) {
cvmx_dprintf("PCIe: Port %d isn't clocked, skipping.\n",
pcie_port);
return -1;
}
}
/*
* Check and make sure PCIe came out of reset. If it doesn't
* the board probably hasn't wired the clocks up and the
* interface should be skipped.
*/
pescx_ctl_status2.u64 =
cvmx_read_csr(CVMX_PESCX_CTL_STATUS2(pcie_port));
if (pescx_ctl_status2.s.pcierst) {
cvmx_dprintf("PCIe: Port %d stuck in reset, skipping.\n",
pcie_port);
return -1;
}
/*
* Check BIST2 status. If any bits are set skip this interface. This
* is an attempt to catch PCIE-813 on pass 1 parts.
*/
pescx_bist_status2.u64 =
cvmx_read_csr(CVMX_PESCX_BIST_STATUS2(pcie_port));
if (pescx_bist_status2.u64) {
cvmx_dprintf("PCIe: Port %d BIST2 failed. Most likely this "
"port isn't hooked up, skipping.\n",
pcie_port);
return -1;
}
/* Check BIST status */
pescx_bist_status.u64 =
cvmx_read_csr(CVMX_PESCX_BIST_STATUS(pcie_port));
if (pescx_bist_status.u64)
cvmx_dprintf("PCIe: BIST FAILED for port %d (0x%016llx)\n",
pcie_port, CAST64(pescx_bist_status.u64));
/* Initialize the config space CSRs */
__cvmx_pcie_rc_initialize_config_space(pcie_port);
/* Bring the link up */
if (__cvmx_pcie_rc_initialize_link(pcie_port)) {
cvmx_dprintf
("PCIe: ERROR: cvmx_pcie_rc_initialize_link() failed\n");
return -1;
}
/* Store merge control (NPEI_MEM_ACCESS_CTL[TIMER,MAX_WORD]) */
npei_mem_access_ctl.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_MEM_ACCESS_CTL);
/* Allow 16 words to combine */
npei_mem_access_ctl.s.max_word = 0;
/* Wait up to 127 cycles for more data */
npei_mem_access_ctl.s.timer = 127;
cvmx_write_csr(CVMX_PEXP_NPEI_MEM_ACCESS_CTL, npei_mem_access_ctl.u64);
/* Setup Mem access SubDIDs */
mem_access_subid.u64 = 0;
/* Port the request is sent to. */
mem_access_subid.s.port = pcie_port;
/* Due to an errata on pass 1 chips, no merging is allowed. */
mem_access_subid.s.nmerge = 1;
/* Endian-swap for Reads. */
mem_access_subid.s.esr = 1;
/* Endian-swap for Writes. */
mem_access_subid.s.esw = 1;
/* No Snoop for Reads. */
mem_access_subid.s.nsr = 1;
/* No Snoop for Writes. */
mem_access_subid.s.nsw = 1;
/* Disable Relaxed Ordering for Reads. */
mem_access_subid.s.ror = 0;
/* Disable Relaxed Ordering for Writes. */
mem_access_subid.s.row = 0;
/* PCIe Adddress Bits <63:34>. */
mem_access_subid.s.ba = 0;
/*
* Setup mem access 12-15 for port 0, 16-19 for port 1,
* supplying 36 bits of address space.
*/
for (i = 12 + pcie_port * 4; i < 16 + pcie_port * 4; i++) {
cvmx_write_csr(CVMX_PEXP_NPEI_MEM_ACCESS_SUBIDX(i),
mem_access_subid.u64);
/* Set each SUBID to extend the addressable range */
mem_access_subid.s.ba += 1;
}
/*
* Disable the peer to peer forwarding register. This must be
* setup by the OS after it enumerates the bus and assigns
* addresses to the PCIe busses.
*/
for (i = 0; i < 4; i++) {
cvmx_write_csr(CVMX_PESCX_P2P_BARX_START(i, pcie_port), -1);
cvmx_write_csr(CVMX_PESCX_P2P_BARX_END(i, pcie_port), -1);
}
/* Set Octeon's BAR0 to decode 0-16KB. It overlaps with Bar2 */
cvmx_write_csr(CVMX_PESCX_P2N_BAR0_START(pcie_port), 0);
/*
* Disable Octeon's BAR1. It isn't needed in RC mode since
* BAR2 maps all of memory. BAR2 also maps 256MB-512MB into
* the 2nd 256MB of memory.
*/
cvmx_write_csr(CVMX_PESCX_P2N_BAR1_START(pcie_port), -1);
/*
* Set Octeon's BAR2 to decode 0-2^39. Bar0 and Bar1 take
* precedence where they overlap. It also overlaps with the
* device addresses, so make sure the peer to peer forwarding
* is set right.
*/
cvmx_write_csr(CVMX_PESCX_P2N_BAR2_START(pcie_port), 0);
/*
* Setup BAR2 attributes
*
* Relaxed Ordering (NPEI_CTL_PORTn[PTLP_RO,CTLP_RO, WAIT_COM])
* - PTLP_RO,CTLP_RO should normally be set (except for debug).
* - WAIT_COM=0 will likely work for all applications.
*
* Load completion relaxed ordering (NPEI_CTL_PORTn[WAITL_COM]).
*/
if (pcie_port) {
union cvmx_npei_ctl_port1 npei_ctl_port;
npei_ctl_port.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_PORT1);
npei_ctl_port.s.bar2_enb = 1;
npei_ctl_port.s.bar2_esx = 1;
npei_ctl_port.s.bar2_cax = 0;
npei_ctl_port.s.ptlp_ro = 1;
npei_ctl_port.s.ctlp_ro = 1;
npei_ctl_port.s.wait_com = 0;
npei_ctl_port.s.waitl_com = 0;
cvmx_write_csr(CVMX_PEXP_NPEI_CTL_PORT1, npei_ctl_port.u64);
} else {
union cvmx_npei_ctl_port0 npei_ctl_port;
npei_ctl_port.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_PORT0);
npei_ctl_port.s.bar2_enb = 1;
npei_ctl_port.s.bar2_esx = 1;
npei_ctl_port.s.bar2_cax = 0;
npei_ctl_port.s.ptlp_ro = 1;
npei_ctl_port.s.ctlp_ro = 1;
npei_ctl_port.s.wait_com = 0;
npei_ctl_port.s.waitl_com = 0;
cvmx_write_csr(CVMX_PEXP_NPEI_CTL_PORT0, npei_ctl_port.u64);
}
return 0;
}
/* Above was cvmx-pcie.c, below original pcie.c */
/**
* Map a PCI device to the appropriate interrupt line
*
* @param dev The Linux PCI device structure for the device to map
* @param slot The slot number for this device on __BUS 0__. Linux
* enumerates through all the bridges and figures out the
* slot on Bus 0 where this device eventually hooks to.
* @param pin The PCI interrupt pin read from the device, then swizzled
* as it goes through each bridge.
* @return Interrupt number for the device
*/
int __init octeon_pcie_pcibios_map_irq(const struct pci_dev *dev,
u8 slot, u8 pin)
{
/*
* The EBH5600 board with the PCI to PCIe bridge mistakenly
* wires the first slot for both device id 2 and interrupt
* A. According to the PCI spec, device id 2 should be C. The
* following kludge attempts to fix this.
*/
if (strstr(octeon_board_type_string(), "EBH5600") &&
dev->bus && dev->bus->parent) {
/*
* Iterate all the way up the device chain and find
* the root bus.
*/
while (dev->bus && dev->bus->parent)
dev = to_pci_dev(dev->bus->bridge);
/* If the root bus is number 0 and the PEX 8114 is the
* root, assume we are behind the miswired bus. We
* need to correct the swizzle level by two. Yuck.
*/
if ((dev->bus->number == 0) &&
(dev->vendor == 0x10b5) && (dev->device == 0x8114)) {
/*
* The pin field is one based, not zero. We
* need to swizzle it by minus two.
*/
pin = ((pin - 3) & 3) + 1;
}
}
/*
* The -1 is because pin starts with one, not zero. It might
* be that this equation needs to include the slot number, but
* I don't have hardware to check that against.
*/
return pin - 1 + OCTEON_IRQ_PCI_INT0;
}
/**
* Read a value from configuration space
*
* @param bus
* @param devfn
* @param reg
* @param size
* @param val
* @return
*/
static inline int octeon_pcie_read_config(int pcie_port, struct pci_bus *bus,
unsigned int devfn, int reg, int size,
u32 *val)
{
union octeon_cvmemctl cvmmemctl;
union octeon_cvmemctl cvmmemctl_save;
int bus_number = bus->number;
/*
* We need to force the bus number to be zero on the root
* bus. Linux numbers the 2nd root bus to start after all
* buses on root 0.
*/
if (bus->parent == NULL)
bus_number = 0;
/*
* PCIe only has a single device connected to Octeon. It is
* always device ID 0. Don't bother doing reads for other
* device IDs on the first segment.
*/
if ((bus_number == 0) && (devfn >> 3 != 0))
return PCIBIOS_FUNC_NOT_SUPPORTED;
/*
* The following is a workaround for the CN57XX, CN56XX,
* CN55XX, and CN54XX errata with PCIe config reads from non
* existent devices. These chips will hang the PCIe link if a
* config read is performed that causes a UR response.
*/
if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1) ||
OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_1)) {
/*
* For our EBH5600 board, port 0 has a bridge with two
* PCI-X slots. We need a new special checks to make
* sure we only probe valid stuff. The PCIe->PCI-X
* bridge only respondes to device ID 0, function
* 0-1
*/
if ((bus_number == 0) && (devfn >= 2))
return PCIBIOS_FUNC_NOT_SUPPORTED;
/*
* The PCI-X slots are device ID 2,3. Choose one of
* the below "if" blocks based on what is plugged into
* the board.
*/
#if 1
/* Use this option if you aren't using either slot */
if (bus_number == 1)
return PCIBIOS_FUNC_NOT_SUPPORTED;
#elif 0
/*
* Use this option if you are using the first slot but
* not the second.
*/
if ((bus_number == 1) && (devfn >> 3 != 2))
return PCIBIOS_FUNC_NOT_SUPPORTED;
#elif 0
/*
* Use this option if you are using the second slot
* but not the first.
*/
if ((bus_number == 1) && (devfn >> 3 != 3))
return PCIBIOS_FUNC_NOT_SUPPORTED;
#elif 0
/* Use this opion if you are using both slots */
if ((bus_number == 1) &&
!((devfn == (2 << 3)) || (devfn == (3 << 3))))
return PCIBIOS_FUNC_NOT_SUPPORTED;
#endif
/*
* Shorten the DID timeout so bus errors for PCIe
* config reads from non existent devices happen
* faster. This allows us to continue booting even if
* the above "if" checks are wrong. Once one of these
* errors happens, the PCIe port is dead.
*/
cvmmemctl_save.u64 = __read_64bit_c0_register($11, 7);
cvmmemctl.u64 = cvmmemctl_save.u64;
cvmmemctl.s.didtto = 2;
__write_64bit_c0_register($11, 7, cvmmemctl.u64);
}
switch (size) {
case 4:
*val = cvmx_pcie_config_read32(pcie_port, bus_number,
devfn >> 3, devfn & 0x7, reg);
break;
case 2:
*val = cvmx_pcie_config_read16(pcie_port, bus_number,
devfn >> 3, devfn & 0x7, reg);
break;
case 1:
*val = cvmx_pcie_config_read8(pcie_port, bus_number, devfn >> 3,
devfn & 0x7, reg);
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1) ||
OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_1))
__write_64bit_c0_register($11, 7, cvmmemctl_save.u64);
return PCIBIOS_SUCCESSFUL;
}
static int octeon_pcie0_read_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 *val)
{
return octeon_pcie_read_config(0, bus, devfn, reg, size, val);
}
static int octeon_pcie1_read_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 *val)
{
return octeon_pcie_read_config(1, bus, devfn, reg, size, val);
}
/**
* Write a value to PCI configuration space
*
* @param bus
* @param devfn
* @param reg
* @param size
* @param val
* @return
*/
static inline int octeon_pcie_write_config(int pcie_port, struct pci_bus *bus,
unsigned int devfn, int reg,
int size, u32 val)
{
int bus_number = bus->number;
/*
* We need to force the bus number to be zero on the root
* bus. Linux numbers the 2nd root bus to start after all
* busses on root 0.
*/
if (bus->parent == NULL)
bus_number = 0;
switch (size) {
case 4:
cvmx_pcie_config_write32(pcie_port, bus_number, devfn >> 3,
devfn & 0x7, reg, val);
return PCIBIOS_SUCCESSFUL;
case 2:
cvmx_pcie_config_write16(pcie_port, bus_number, devfn >> 3,
devfn & 0x7, reg, val);
return PCIBIOS_SUCCESSFUL;
case 1:
cvmx_pcie_config_write8(pcie_port, bus_number, devfn >> 3,
devfn & 0x7, reg, val);
return PCIBIOS_SUCCESSFUL;
}
#if PCI_CONFIG_SPACE_DELAY
udelay(PCI_CONFIG_SPACE_DELAY);
#endif
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
static int octeon_pcie0_write_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 val)
{
return octeon_pcie_write_config(0, bus, devfn, reg, size, val);
}
static int octeon_pcie1_write_config(struct pci_bus *bus, unsigned int devfn,
int reg, int size, u32 val)
{
return octeon_pcie_write_config(1, bus, devfn, reg, size, val);
}
static struct pci_ops octeon_pcie0_ops = {
octeon_pcie0_read_config,
octeon_pcie0_write_config,
};
static struct resource octeon_pcie0_mem_resource = {
.name = "Octeon PCIe0 MEM",
.flags = IORESOURCE_MEM,
};
static struct resource octeon_pcie0_io_resource = {
.name = "Octeon PCIe0 IO",
.flags = IORESOURCE_IO,
};
static struct pci_controller octeon_pcie0_controller = {
.pci_ops = &octeon_pcie0_ops,
.mem_resource = &octeon_pcie0_mem_resource,
.io_resource = &octeon_pcie0_io_resource,
};
static struct pci_ops octeon_pcie1_ops = {
octeon_pcie1_read_config,
octeon_pcie1_write_config,
};
static struct resource octeon_pcie1_mem_resource = {
.name = "Octeon PCIe1 MEM",
.flags = IORESOURCE_MEM,
};
static struct resource octeon_pcie1_io_resource = {
.name = "Octeon PCIe1 IO",
.flags = IORESOURCE_IO,
};
static struct pci_controller octeon_pcie1_controller = {
.pci_ops = &octeon_pcie1_ops,
.mem_resource = &octeon_pcie1_mem_resource,
.io_resource = &octeon_pcie1_io_resource,
};
/**
* Initialize the Octeon PCIe controllers
*
* @return
*/
static int __init octeon_pcie_setup(void)
{
union cvmx_npei_ctl_status npei_ctl_status;
int result;
/* These chips don't have PCIe */
if (!octeon_has_feature(OCTEON_FEATURE_PCIE))
return 0;
/* Point pcibios_map_irq() to the PCIe version of it */
octeon_pcibios_map_irq = octeon_pcie_pcibios_map_irq;
/* Use the PCIe based DMA mappings */
octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_PCIE;
/*
* PCIe I/O range. It is based on port 0 but includes up until
* port 1's end.
*/
set_io_port_base(CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address(0)));
ioport_resource.start = 0;
ioport_resource.end =
cvmx_pcie_get_io_base_address(1) -
cvmx_pcie_get_io_base_address(0) + cvmx_pcie_get_io_size(1) - 1;
npei_ctl_status.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_CTL_STATUS);
if (npei_ctl_status.s.host_mode) {
pr_notice("PCIe: Initializing port 0\n");
result = cvmx_pcie_rc_initialize(0);
if (result == 0) {
/* Memory offsets are physical addresses */
octeon_pcie0_controller.mem_offset =
cvmx_pcie_get_mem_base_address(0);
/* IO offsets are Mips virtual addresses */
octeon_pcie0_controller.io_map_base =
CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address
(0));
octeon_pcie0_controller.io_offset = 0;
/*
* To keep things similar to PCI, we start
* device addresses at the same place as PCI
* uisng big bar support. This normally
* translates to 4GB-256MB, which is the same
* as most x86 PCs.
*/
octeon_pcie0_controller.mem_resource->start =
cvmx_pcie_get_mem_base_address(0) +
(4ul << 30) - (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
octeon_pcie0_controller.mem_resource->end =
cvmx_pcie_get_mem_base_address(0) +
cvmx_pcie_get_mem_size(0) - 1;
/*
* Ports must be above 16KB for the ISA bus
* filtering in the PCI-X to PCI bridge.
*/
octeon_pcie0_controller.io_resource->start = 4 << 10;
octeon_pcie0_controller.io_resource->end =
cvmx_pcie_get_io_size(0) - 1;
register_pci_controller(&octeon_pcie0_controller);
}
} else {
pr_notice("PCIe: Port 0 in endpoint mode, skipping.\n");
}
/* Skip the 2nd port on CN52XX if port 0 is in 4 lane mode */
if (OCTEON_IS_MODEL(OCTEON_CN52XX)) {
union cvmx_npei_dbg_data npei_dbg_data;
npei_dbg_data.u64 = cvmx_read_csr(CVMX_PEXP_NPEI_DBG_DATA);
if (npei_dbg_data.cn52xx.qlm0_link_width)
return 0;
}
pr_notice("PCIe: Initializing port 1\n");
result = cvmx_pcie_rc_initialize(1);
if (result == 0) {
/* Memory offsets are physical addresses */
octeon_pcie1_controller.mem_offset =
cvmx_pcie_get_mem_base_address(1);
/* IO offsets are Mips virtual addresses */
octeon_pcie1_controller.io_map_base =
CVMX_ADD_IO_SEG(cvmx_pcie_get_io_base_address(1));
octeon_pcie1_controller.io_offset =
cvmx_pcie_get_io_base_address(1) -
cvmx_pcie_get_io_base_address(0);
/*
* To keep things similar to PCI, we start device
* addresses at the same place as PCI uisng big bar
* support. This normally translates to 4GB-256MB,
* which is the same as most x86 PCs.
*/
octeon_pcie1_controller.mem_resource->start =
cvmx_pcie_get_mem_base_address(1) + (4ul << 30) -
(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
octeon_pcie1_controller.mem_resource->end =
cvmx_pcie_get_mem_base_address(1) +
cvmx_pcie_get_mem_size(1) - 1;
/*
* Ports must be above 16KB for the ISA bus filtering
* in the PCI-X to PCI bridge.
*/
octeon_pcie1_controller.io_resource->start =
cvmx_pcie_get_io_base_address(1) -
cvmx_pcie_get_io_base_address(0);
octeon_pcie1_controller.io_resource->end =
octeon_pcie1_controller.io_resource->start +
cvmx_pcie_get_io_size(1) - 1;
register_pci_controller(&octeon_pcie1_controller);
}
return 0;
}
arch_initcall(octeon_pcie_setup);
/***********************license start***************
* Author: Cavium Networks
*
* Contact: support@caviumnetworks.com
* This file is part of the OCTEON SDK
*
* Copyright (c) 2003-2008 Cavium Networks
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
* or visit http://www.gnu.org/licenses/.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium Networks for more information
***********************license end**************************************/
#ifndef __CVMX_HELPER_ERRATA_H__
#define __CVMX_HELPER_ERRATA_H__
extern void __cvmx_helper_errata_qlm_disable_2nd_order_cdr(int qlm);
#endif
/***********************license start***************
* Author: Cavium Networks
*
* Contact: support@caviumnetworks.com
* This file is part of the OCTEON SDK
*
* Copyright (c) 2003-2008 Cavium Networks
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
* or visit http://www.gnu.org/licenses/.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium Networks for more information
***********************license end**************************************/
/**
* @file
*
* Helper utilities for qlm_jtag.
*
*/
#ifndef __CVMX_HELPER_JTAG_H__
#define __CVMX_HELPER_JTAG_H__
extern void cvmx_helper_qlm_jtag_init(void);
extern uint32_t cvmx_helper_qlm_jtag_shift(int qlm, int bits, uint32_t data);
extern void cvmx_helper_qlm_jtag_shift_zeros(int qlm, int bits);
extern void cvmx_helper_qlm_jtag_update(int qlm);
#endif /* __CVMX_HELPER_JTAG_H__ */
......@@ -375,6 +375,18 @@ static inline uint64_t cvmx_get_cycle(void)
return cycle;
}
/**
* Wait for the specified number of cycle
*
*/
static inline void cvmx_wait(uint64_t cycles)
{
uint64_t done = cvmx_get_cycle() + cycles;
while (cvmx_get_cycle() < done)
; /* Spin */
}
/**
* Reads a chip global cycle counter. This counts CPU cycles since
* chip reset. The counter is 64 bit.
......
......@@ -245,4 +245,6 @@ static inline uint32_t octeon_npi_read32(uint64_t address)
return cvmx_read64_uint32(address ^ 4);
}
extern struct cvmx_bootinfo *octeon_bootinfo;
#endif /* __ASM_OCTEON_OCTEON_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment