Commit eef3c3d3 authored by Alexei Starovoitov's avatar Alexei Starovoitov

Merge branch 'bpf: rstat: cgroup hierarchical'

Hao Luo says:

====================

This patch series allows for using bpf to collect hierarchical cgroup
stats efficiently by integrating with the rstat framework. The rstat
framework provides an efficient way to collect cgroup stats percpu and
propagate them through the cgroup hierarchy.

The stats are exposed to userspace in textual form by reading files in
bpffs, similar to cgroupfs stats by using a cgroup_iter program.
cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes:
- walking a cgroup's descendants in pre-order.
- walking a cgroup's descendants in post-order.
- walking a cgroup's ancestors.
- process only a single object.

When attaching cgroup_iter, one needs to set a cgroup to the iter_link
created from attaching. This cgroup can be passed either as a file
descriptor or a cgroup id. That cgroup serves as the starting point of
the walk.

One can also terminate the walk early by returning 1 from the iter
program.

Note that because walking cgroup hierarchy holds cgroup_mutex, the iter
program is called with cgroup_mutex held.

** Background on rstat for stats collection **
(I am using a subscriber analogy that is not commonly used)

The rstat framework maintains a tree of cgroups that have updates and
which cpus have updates. A subscriber to the rstat framework maintains
their own stats. The framework is used to tell the subscriber when
and what to flush, for the most efficient stats propagation. The
workflow is as follows:

- When a subscriber updates a cgroup on a cpu, it informs the rstat
  framework by calling cgroup_rstat_updated(cgrp, cpu).

- When a subscriber wants to read some stats for a cgroup, it asks
  the rstat framework to initiate a stats flush (propagation) by calling
  cgroup_rstat_flush(cgrp).

- When the rstat framework initiates a flush, it makes callbacks to
  subscribers to aggregate stats on cpus that have updates, and
  propagate updates to their parent.

Currently, the main subscribers to the rstat framework are cgroup
subsystems (e.g. memory, block). This patch series allow bpf programs to
become subscribers as well.

Patches in this series are organized as follows:
* Patches 1-2 introduce cgroup_iter prog, and a selftest.
* Patches 3-5 allow bpf programs to integrate with rstat by adding the
  necessary hook points and kfunc. A comprehensive selftest that
  demonstrates the entire workflow for using bpf and rstat to
  efficiently collect and output cgroup stats is added.
---
Changelog:
v8 -> v9:
- Make UNSPEC (an invalid option) as the default order for cgroup_iter.
- Use enum for specifying cgroup_iter order, instead of u32.
- Add BPF_ITER_RESHCED to cgroup_iter.
- Add cgroup_hierarchical_stats to s390x denylist.

v7 -> v8:
- Removed the confusing BPF_ITER_DEFAULT (Andrii)
- s/SELF/SELF_ONLY/g
- Fixed typo (e.g. outputing) (Andrii)
- Use "descendants_pre", "descendants_post" etc. instead of "pre",
  "post" (Andrii)

v6 -> v7:
- Updated commit/comments in cgroup_iter for read() behavior (Yonghong)
- Extracted BPF_ITER_SELF and other options out of cgroup_iter, so
  that they can be used in other iters. Also renamed them. (Andrii)
- Supports both cgroup_fd and cgroup_id when specifying target cgroup.
  (Andrii)
- Avoided using macro for formatting expected output in cgroup_iter
  selftest. (Andrii)
- Applied 'static' on all vars and functions in cgroup_iter selftest.
  (Andrii)
- Fixed broken buf reading in cgroup_iter selftest. (Andrii)
- Switched to use bpf_link__destroy() unconditionally. (Andrii)
- Removed 'volatile' for non-const global vars in selftests. (Andrii)
- Started using bpf_core_enum_value() to get memory_cgrp_id. (Andrii)

v5 -> v6:
- Rebased on bpf-next
- Tidy up cgroup_hierarchical_stats test (Andrii)
  * 'static' and 'inline'
  * avoid using libbpf_get_error()
  * string literals of cgroup paths.
- Rename patch 8/8 to 'selftests/bpf' (Yonghong)
- Fix cgroup_iter comments (e.g. PAGE_SIZE and uapi) (Yonghong)
- Make sure further read() returns OK after previous read() finished
  properly (Yonghong)
- Release cgroup_mutex before the last call of show() (Kumar)

v4 -> v5:
- Rebased on top of new kfunc flags infrastructure, updated patch 1 and
  patch 6 accordingly.
- Added docs for sleepable kfuncs.

v3 -> v4:
- cgroup_iter:
  * reorder fields in bpf_link_info to avoid break uapi (Yonghong)
  * comment the behavior when cgroup_fd=0 (Yonghong)
  * comment on the limit of number of cgroups supported by cgroup_iter.
    (Yonghong)
- cgroup_hierarchical_stats selftest:
  * Do not return -1 if stats are not found (causes overflow in userspace).
  * Check if child process failed to join cgroup.
  * Make buf and path arrays in get_cgroup_vmscan_delay() static.
  * Increase the test map sizes to accomodate cgroups that are not
    created by the test.

v2 -> v3:
- cgroup_iter:
  * Added conditional compilation of cgroup_iter.c in kernel/bpf/Makefile
    (kernel test) and dropped the !CONFIG_CGROUP patch.
  * Added validation of traversal_order when attaching (Yonghong).
  * Fixed previous wording "two modes" to "three modes" (Yonghong).
  * Fixed the btf_dump selftest broken by this patch (Yonghong).
  * Fixed ctx_arg_info[0] to use "PTR_TO_BTF_ID_OR_NULL" instead of
    "PTR_TO_BTF_ID", because the "cgroup" pointer passed to iter prog can
     be null.
- Use __diag_push to eliminate __weak noinline warning in
  bpf_rstat_flush().
- cgroup_hierarchical_stats selftest:
  * Added write_cgroup_file_parent() helper.
  * Added error handling for failed map updates.
  * Added null check for cgroup in vmscan_flush.
  * Fixed the signature of vmscan_[start/end].
  * Correctly return error code when attaching trace programs fail.
  * Make sure all links are destroyed correctly and not leaking in
    cgroup_hierarchical_stats selftest.
  * Use memory.reclaim instead of memory.high as a more reliable way to
    invoke reclaim.
  * Eliminated sleeps, the test now runs faster.

v1 -> v2:
- Redesign of cgroup_iter from v1, based on Alexei's idea [1]:
  * supports walking cgroup subtree.
  * supports walking ancestors of a cgroup. (Andrii)
  * supports terminating the walk early.
  * uses fd instead of cgroup_id as parameter for iter_link. Using fd is
    a convention in bpf.
  * gets cgroup's ref at attach time and deref at detach.
  * brought back cgroup1 support for cgroup_iter.
- Squashed the patches adding the rstat flush hook points and kfuncs
  (Tejun).
- Added a comment explaining why bpf_rstat_flush() needs to be weak
  (Tejun).
- Updated the final selftest with the new cgroup_iter design.
- Changed CHECKs in the selftest with ASSERTs (Yonghong, Andrii).
- Removed empty line at the end of the selftest (Yonghong).
- Renamed test files to cgroup_hierarchical_stats.c.
- Reordered CGROUP_PATH params order to match struct declaration
  in the selftest (Michal).
- Removed memory_subsys_enabled() and made sure memcg controller
  enablement checks make sense and are documented (Michal).

RFC v2 -> v1:
- Instead of introducing a new program type for rstat flushing, add an
  empty hook point, bpf_rstat_flush(), and use fentry bpf programs to
  attach to it and flush bpf stats.
- Instead of using helpers, use kfuncs for rstat functions.
- These changes simplify the patchset greatly, with minimal changes to
  uapi.

RFC v1 -> RFC v2:
- Instead of rstat flush programs attach to subsystems, they now attach
  to rstat (global flushers, not per-subsystem), based on discussions
  with Tejun. The first patch is entirely rewritten.
- Pass cgroup pointers to rstat flushers instead of cgroup ids. This is
  much more flexibility and less likely to need a uapi update later.
- rstat helpers are now only defined if CGROUP_CONFIG.
- Most of the code is now only defined if CGROUP_CONFIG and
  CONFIG_BPF_SYSCALL.
- Move rstat helper protos from bpf_base_func_proto() to
  tracing_prog_func_proto().
- rstat helpers argument (cgroup pointer) is now ARG_PTR_TO_BTF_ID, not
  ARG_ANYTHING.
- Rewrote the selftest to use the cgroup helpers.
- Dropped bpf_map_lookup_percpu_elem (already added by Feng).
- Dropped patch to support cgroup v1 for cgroup_iter.
- Dropped patch to define some cgroup_put() when !CONFIG_CGROUP. The
  code that calls it is no longer compiled when !CONFIG_CGROUP.

cgroup_iter was originally introduced in a different patch series[2].
Hao and I agreed that it fits better as part of this series.
RFC v1 of this patch series had the following changes from [2]:
- Getting the cgroup's reference at the time at attaching, instead of
  at the time when iterating. (Yonghong)
- Remove .init_seq_private and .fini_seq_private callbacks for
  cgroup_iter. They are not needed now. (Yonghong)

[1] https://lore.kernel.org/bpf/20220520221919.jnqgv52k4ajlgzcl@MBP-98dd607d3435.dhcp.thefacebook.com/
[2] https://lore.kernel.org/lkml/20220225234339.2386398-9-haoluo@google.com/

Hao Luo (2):
  bpf: Introduce cgroup iter
  selftests/bpf: Test cgroup_iter.
====================
Signed-off-by: default avatarAlexei Starovoitov <ast@kernel.org>
parents 7e165d19 88886309
......@@ -48,6 +48,7 @@ struct mem_cgroup;
struct module;
struct bpf_func_state;
struct ftrace_ops;
struct cgroup;
extern struct idr btf_idr;
extern spinlock_t btf_idr_lock;
......@@ -1730,7 +1731,14 @@ int bpf_obj_get_user(const char __user *pathname, int flags);
int __init bpf_iter_ ## target(args) { return 0; }
struct bpf_iter_aux_info {
/* for map_elem iter */
struct bpf_map *map;
/* for cgroup iter */
struct {
struct cgroup *start; /* starting cgroup */
enum bpf_cgroup_iter_order order;
} cgroup;
};
typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
......
......@@ -87,10 +87,29 @@ struct bpf_cgroup_storage_key {
__u32 attach_type; /* program attach type (enum bpf_attach_type) */
};
enum bpf_cgroup_iter_order {
BPF_ITER_ORDER_UNSPEC = 0,
BPF_ITER_SELF_ONLY, /* process only a single object. */
BPF_ITER_DESCENDANTS_PRE, /* walk descendants in pre-order. */
BPF_ITER_DESCENDANTS_POST, /* walk descendants in post-order. */
BPF_ITER_ANCESTORS_UP, /* walk ancestors upward. */
};
union bpf_iter_link_info {
struct {
__u32 map_fd;
} map;
struct {
enum bpf_cgroup_iter_order order;
/* At most one of cgroup_fd and cgroup_id can be non-zero. If
* both are zero, the walk starts from the default cgroup v2
* root. For walking v1 hierarchy, one should always explicitly
* specify cgroup_fd.
*/
__u32 cgroup_fd;
__u64 cgroup_id;
} cgroup;
};
/* BPF syscall commands, see bpf(2) man-page for more details. */
......@@ -6176,11 +6195,22 @@ struct bpf_link_info {
struct {
__aligned_u64 target_name; /* in/out: target_name buffer ptr */
__u32 target_name_len; /* in/out: target_name buffer len */
/* If the iter specific field is 32 bits, it can be put
* in the first or second union. Otherwise it should be
* put in the second union.
*/
union {
struct {
__u32 map_id;
} map;
};
union {
struct {
__u64 cgroup_id;
__u32 order;
} cgroup;
};
} iter;
struct {
__u32 netns_ino;
......
......@@ -24,6 +24,9 @@ endif
ifeq ($(CONFIG_PERF_EVENTS),y)
obj-$(CONFIG_BPF_SYSCALL) += stackmap.o
endif
ifeq ($(CONFIG_CGROUPS),y)
obj-$(CONFIG_BPF_SYSCALL) += cgroup_iter.o
endif
obj-$(CONFIG_CGROUP_BPF) += cgroup.o
ifeq ($(CONFIG_INET),y)
obj-$(CONFIG_BPF_SYSCALL) += reuseport_array.o
......
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2022 Google */
#include <linux/bpf.h>
#include <linux/btf_ids.h>
#include <linux/cgroup.h>
#include <linux/kernel.h>
#include <linux/seq_file.h>
#include "../cgroup/cgroup-internal.h" /* cgroup_mutex and cgroup_is_dead */
/* cgroup_iter provides four modes of traversal to the cgroup hierarchy.
*
* 1. Walk the descendants of a cgroup in pre-order.
* 2. Walk the descendants of a cgroup in post-order.
* 3. Walk the ancestors of a cgroup.
* 4. Show the given cgroup only.
*
* For walking descendants, cgroup_iter can walk in either pre-order or
* post-order. For walking ancestors, the iter walks up from a cgroup to
* the root.
*
* The iter program can terminate the walk early by returning 1. Walk
* continues if prog returns 0.
*
* The prog can check (seq->num == 0) to determine whether this is
* the first element. The prog may also be passed a NULL cgroup,
* which means the walk has completed and the prog has a chance to
* do post-processing, such as outputting an epilogue.
*
* Note: the iter_prog is called with cgroup_mutex held.
*
* Currently only one session is supported, which means, depending on the
* volume of data bpf program intends to send to user space, the number
* of cgroups that can be walked is limited. For example, given the current
* buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each
* cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can
* be walked is 512. This is a limitation of cgroup_iter. If the output data
* is larger than the kernel buffer size, after all data in the kernel buffer
* is consumed by user space, the subsequent read() syscall will signal
* EOPNOTSUPP. In order to work around, the user may have to update their
* program to reduce the volume of data sent to output. For example, skip
* some uninteresting cgroups.
*/
struct bpf_iter__cgroup {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct cgroup *, cgroup);
};
struct cgroup_iter_priv {
struct cgroup_subsys_state *start_css;
bool visited_all;
bool terminate;
int order;
};
static void *cgroup_iter_seq_start(struct seq_file *seq, loff_t *pos)
{
struct cgroup_iter_priv *p = seq->private;
mutex_lock(&cgroup_mutex);
/* cgroup_iter doesn't support read across multiple sessions. */
if (*pos > 0) {
if (p->visited_all)
return NULL;
/* Haven't visited all, but because cgroup_mutex has dropped,
* return -EOPNOTSUPP to indicate incomplete iteration.
*/
return ERR_PTR(-EOPNOTSUPP);
}
++*pos;
p->terminate = false;
p->visited_all = false;
if (p->order == BPF_ITER_DESCENDANTS_PRE)
return css_next_descendant_pre(NULL, p->start_css);
else if (p->order == BPF_ITER_DESCENDANTS_POST)
return css_next_descendant_post(NULL, p->start_css);
else if (p->order == BPF_ITER_ANCESTORS_UP)
return p->start_css;
else /* BPF_ITER_SELF_ONLY */
return p->start_css;
}
static int __cgroup_iter_seq_show(struct seq_file *seq,
struct cgroup_subsys_state *css, int in_stop);
static void cgroup_iter_seq_stop(struct seq_file *seq, void *v)
{
struct cgroup_iter_priv *p = seq->private;
mutex_unlock(&cgroup_mutex);
/* pass NULL to the prog for post-processing */
if (!v) {
__cgroup_iter_seq_show(seq, NULL, true);
p->visited_all = true;
}
}
static void *cgroup_iter_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct cgroup_subsys_state *curr = (struct cgroup_subsys_state *)v;
struct cgroup_iter_priv *p = seq->private;
++*pos;
if (p->terminate)
return NULL;
if (p->order == BPF_ITER_DESCENDANTS_PRE)
return css_next_descendant_pre(curr, p->start_css);
else if (p->order == BPF_ITER_DESCENDANTS_POST)
return css_next_descendant_post(curr, p->start_css);
else if (p->order == BPF_ITER_ANCESTORS_UP)
return curr->parent;
else /* BPF_ITER_SELF_ONLY */
return NULL;
}
static int __cgroup_iter_seq_show(struct seq_file *seq,
struct cgroup_subsys_state *css, int in_stop)
{
struct cgroup_iter_priv *p = seq->private;
struct bpf_iter__cgroup ctx;
struct bpf_iter_meta meta;
struct bpf_prog *prog;
int ret = 0;
/* cgroup is dead, skip this element */
if (css && cgroup_is_dead(css->cgroup))
return 0;
ctx.meta = &meta;
ctx.cgroup = css ? css->cgroup : NULL;
meta.seq = seq;
prog = bpf_iter_get_info(&meta, in_stop);
if (prog)
ret = bpf_iter_run_prog(prog, &ctx);
/* if prog returns > 0, terminate after this element. */
if (ret != 0)
p->terminate = true;
return 0;
}
static int cgroup_iter_seq_show(struct seq_file *seq, void *v)
{
return __cgroup_iter_seq_show(seq, (struct cgroup_subsys_state *)v,
false);
}
static const struct seq_operations cgroup_iter_seq_ops = {
.start = cgroup_iter_seq_start,
.next = cgroup_iter_seq_next,
.stop = cgroup_iter_seq_stop,
.show = cgroup_iter_seq_show,
};
BTF_ID_LIST_SINGLE(bpf_cgroup_btf_id, struct, cgroup)
static int cgroup_iter_seq_init(void *priv, struct bpf_iter_aux_info *aux)
{
struct cgroup_iter_priv *p = (struct cgroup_iter_priv *)priv;
struct cgroup *cgrp = aux->cgroup.start;
p->start_css = &cgrp->self;
p->terminate = false;
p->visited_all = false;
p->order = aux->cgroup.order;
return 0;
}
static const struct bpf_iter_seq_info cgroup_iter_seq_info = {
.seq_ops = &cgroup_iter_seq_ops,
.init_seq_private = cgroup_iter_seq_init,
.seq_priv_size = sizeof(struct cgroup_iter_priv),
};
static int bpf_iter_attach_cgroup(struct bpf_prog *prog,
union bpf_iter_link_info *linfo,
struct bpf_iter_aux_info *aux)
{
int fd = linfo->cgroup.cgroup_fd;
u64 id = linfo->cgroup.cgroup_id;
int order = linfo->cgroup.order;
struct cgroup *cgrp;
if (order != BPF_ITER_DESCENDANTS_PRE &&
order != BPF_ITER_DESCENDANTS_POST &&
order != BPF_ITER_ANCESTORS_UP &&
order != BPF_ITER_SELF_ONLY)
return -EINVAL;
if (fd && id)
return -EINVAL;
if (fd)
cgrp = cgroup_get_from_fd(fd);
else if (id)
cgrp = cgroup_get_from_id(id);
else /* walk the entire hierarchy by default. */
cgrp = cgroup_get_from_path("/");
if (IS_ERR(cgrp))
return PTR_ERR(cgrp);
aux->cgroup.start = cgrp;
aux->cgroup.order = order;
return 0;
}
static void bpf_iter_detach_cgroup(struct bpf_iter_aux_info *aux)
{
cgroup_put(aux->cgroup.start);
}
static void bpf_iter_cgroup_show_fdinfo(const struct bpf_iter_aux_info *aux,
struct seq_file *seq)
{
char *buf;
buf = kzalloc(PATH_MAX, GFP_KERNEL);
if (!buf) {
seq_puts(seq, "cgroup_path:\t<unknown>\n");
goto show_order;
}
/* If cgroup_path_ns() fails, buf will be an empty string, cgroup_path
* will print nothing.
*
* Path is in the calling process's cgroup namespace.
*/
cgroup_path_ns(aux->cgroup.start, buf, PATH_MAX,
current->nsproxy->cgroup_ns);
seq_printf(seq, "cgroup_path:\t%s\n", buf);
kfree(buf);
show_order:
if (aux->cgroup.order == BPF_ITER_DESCENDANTS_PRE)
seq_puts(seq, "order: descendants_pre\n");
else if (aux->cgroup.order == BPF_ITER_DESCENDANTS_POST)
seq_puts(seq, "order: descendants_post\n");
else if (aux->cgroup.order == BPF_ITER_ANCESTORS_UP)
seq_puts(seq, "order: ancestors_up\n");
else /* BPF_ITER_SELF_ONLY */
seq_puts(seq, "order: self_only\n");
}
static int bpf_iter_cgroup_fill_link_info(const struct bpf_iter_aux_info *aux,
struct bpf_link_info *info)
{
info->iter.cgroup.order = aux->cgroup.order;
info->iter.cgroup.cgroup_id = cgroup_id(aux->cgroup.start);
return 0;
}
DEFINE_BPF_ITER_FUNC(cgroup, struct bpf_iter_meta *meta,
struct cgroup *cgroup)
static struct bpf_iter_reg bpf_cgroup_reg_info = {
.target = "cgroup",
.feature = BPF_ITER_RESCHED,
.attach_target = bpf_iter_attach_cgroup,
.detach_target = bpf_iter_detach_cgroup,
.show_fdinfo = bpf_iter_cgroup_show_fdinfo,
.fill_link_info = bpf_iter_cgroup_fill_link_info,
.ctx_arg_info_size = 1,
.ctx_arg_info = {
{ offsetof(struct bpf_iter__cgroup, cgroup),
PTR_TO_BTF_ID_OR_NULL },
},
.seq_info = &cgroup_iter_seq_info,
};
static int __init bpf_cgroup_iter_init(void)
{
bpf_cgroup_reg_info.ctx_arg_info[0].btf_id = bpf_cgroup_btf_id[0];
return bpf_iter_reg_target(&bpf_cgroup_reg_info);
}
late_initcall(bpf_cgroup_iter_init);
......@@ -3,6 +3,10 @@
#include <linux/sched/cputime.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/btf_ids.h>
static DEFINE_SPINLOCK(cgroup_rstat_lock);
static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock);
......@@ -141,6 +145,31 @@ static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos,
return pos;
}
/*
* A hook for bpf stat collectors to attach to and flush their stats.
* Together with providing bpf kfuncs for cgroup_rstat_updated() and
* cgroup_rstat_flush(), this enables a complete workflow where bpf progs that
* collect cgroup stats can integrate with rstat for efficient flushing.
*
* A static noinline declaration here could cause the compiler to optimize away
* the function. A global noinline declaration will keep the definition, but may
* optimize away the callsite. Therefore, __weak is needed to ensure that the
* call is still emitted, by telling the compiler that we don't know what the
* function might eventually be.
*
* __diag_* below are needed to dismiss the missing prototype warning.
*/
__diag_push();
__diag_ignore_all("-Wmissing-prototypes",
"kfuncs which will be used in BPF programs");
__weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
struct cgroup *parent, int cpu)
{
}
__diag_pop();
/* see cgroup_rstat_flush() */
static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep)
__releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock)
......@@ -168,6 +197,7 @@ static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep)
struct cgroup_subsys_state *css;
cgroup_base_stat_flush(pos, cpu);
bpf_rstat_flush(pos, cgroup_parent(pos), cpu);
rcu_read_lock();
list_for_each_entry_rcu(css, &pos->rstat_css_list,
......@@ -501,3 +531,21 @@ void cgroup_base_stat_cputime_show(struct seq_file *seq)
seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
#endif
}
/* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */
BTF_SET8_START(bpf_rstat_kfunc_ids)
BTF_ID_FLAGS(func, cgroup_rstat_updated)
BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE)
BTF_SET8_END(bpf_rstat_kfunc_ids)
static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
.owner = THIS_MODULE,
.set = &bpf_rstat_kfunc_ids,
};
static int __init bpf_rstat_kfunc_init(void)
{
return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
&bpf_rstat_kfunc_set);
}
late_initcall(bpf_rstat_kfunc_init);
......@@ -87,10 +87,29 @@ struct bpf_cgroup_storage_key {
__u32 attach_type; /* program attach type (enum bpf_attach_type) */
};
enum bpf_cgroup_iter_order {
BPF_ITER_ORDER_UNSPEC = 0,
BPF_ITER_SELF_ONLY, /* process only a single object. */
BPF_ITER_DESCENDANTS_PRE, /* walk descendants in pre-order. */
BPF_ITER_DESCENDANTS_POST, /* walk descendants in post-order. */
BPF_ITER_ANCESTORS_UP, /* walk ancestors upward. */
};
union bpf_iter_link_info {
struct {
__u32 map_fd;
} map;
struct {
enum bpf_cgroup_iter_order order;
/* At most one of cgroup_fd and cgroup_id can be non-zero. If
* both are zero, the walk starts from the default cgroup v2
* root. For walking v1 hierarchy, one should always explicitly
* specify cgroup_fd.
*/
__u32 cgroup_fd;
__u64 cgroup_id;
} cgroup;
};
/* BPF syscall commands, see bpf(2) man-page for more details. */
......@@ -6176,11 +6195,22 @@ struct bpf_link_info {
struct {
__aligned_u64 target_name; /* in/out: target_name buffer ptr */
__u32 target_name_len; /* in/out: target_name buffer len */
/* If the iter specific field is 32 bits, it can be put
* in the first or second union. Otherwise it should be
* put in the second union.
*/
union {
struct {
__u32 map_id;
} map;
};
union {
struct {
__u64 cgroup_id;
__u32 order;
} cgroup;
};
} iter;
struct {
__u32 netns_ino;
......
......@@ -67,3 +67,4 @@ xdp_synproxy # JIT does not support calling kernel f
unpriv_bpf_disabled # fentry
setget_sockopt # attach unexpected error: -524 (trampoline)
cb_refs # expected error message unexpected error: -524 (trampoline)
cgroup_hierarchical_stats # JIT does not support calling kernel function (kfunc)
......@@ -33,49 +33,52 @@
#define CGROUP_MOUNT_DFLT "/sys/fs/cgroup"
#define NETCLS_MOUNT_PATH CGROUP_MOUNT_DFLT "/net_cls"
#define CGROUP_WORK_DIR "/cgroup-test-work-dir"
#define format_cgroup_path(buf, path) \
#define format_cgroup_path_pid(buf, path, pid) \
snprintf(buf, sizeof(buf), "%s%s%d%s", CGROUP_MOUNT_PATH, \
CGROUP_WORK_DIR, getpid(), path)
CGROUP_WORK_DIR, pid, path)
#define format_cgroup_path(buf, path) \
format_cgroup_path_pid(buf, path, getpid())
#define format_parent_cgroup_path(buf, path) \
format_cgroup_path_pid(buf, path, getppid())
#define format_classid_path(buf) \
snprintf(buf, sizeof(buf), "%s%s", NETCLS_MOUNT_PATH, \
CGROUP_WORK_DIR)
/**
* enable_all_controllers() - Enable all available cgroup v2 controllers
*
* Enable all available cgroup v2 controllers in order to increase
* the code coverage.
*
* If successful, 0 is returned.
*/
static int enable_all_controllers(char *cgroup_path)
static int __enable_controllers(const char *cgroup_path, const char *controllers)
{
char path[PATH_MAX + 1];
char buf[PATH_MAX];
char enable[PATH_MAX + 1];
char *c, *c2;
int fd, cfd;
ssize_t len;
snprintf(path, sizeof(path), "%s/cgroup.controllers", cgroup_path);
/* If not controllers are passed, enable all available controllers */
if (!controllers) {
snprintf(path, sizeof(path), "%s/cgroup.controllers",
cgroup_path);
fd = open(path, O_RDONLY);
if (fd < 0) {
log_err("Opening cgroup.controllers: %s", path);
return 1;
}
len = read(fd, buf, sizeof(buf) - 1);
len = read(fd, enable, sizeof(enable) - 1);
if (len < 0) {
close(fd);
log_err("Reading cgroup.controllers: %s", path);
return 1;
}
buf[len] = 0;
} else if (len == 0) { /* No controllers to enable */
close(fd);
/* No controllers available? We're probably on cgroup v1. */
if (len == 0)
return 0;
}
enable[len] = 0;
close(fd);
} else {
strncpy(enable, controllers, sizeof(enable));
}
snprintf(path, sizeof(path), "%s/cgroup.subtree_control", cgroup_path);
cfd = open(path, O_RDWR);
......@@ -84,7 +87,7 @@ static int enable_all_controllers(char *cgroup_path)
return 1;
}
for (c = strtok_r(buf, " ", &c2); c; c = strtok_r(NULL, " ", &c2)) {
for (c = strtok_r(enable, " ", &c2); c; c = strtok_r(NULL, " ", &c2)) {
if (dprintf(cfd, "+%s\n", c) <= 0) {
log_err("Enabling controller %s: %s", c, path);
close(cfd);
......@@ -95,6 +98,87 @@ static int enable_all_controllers(char *cgroup_path)
return 0;
}
/**
* enable_controllers() - Enable cgroup v2 controllers
* @relative_path: The cgroup path, relative to the workdir
* @controllers: List of controllers to enable in cgroup.controllers format
*
*
* Enable given cgroup v2 controllers, if @controllers is NULL, enable all
* available controllers.
*
* If successful, 0 is returned.
*/
int enable_controllers(const char *relative_path, const char *controllers)
{
char cgroup_path[PATH_MAX + 1];
format_cgroup_path(cgroup_path, relative_path);
return __enable_controllers(cgroup_path, controllers);
}
static int __write_cgroup_file(const char *cgroup_path, const char *file,
const char *buf)
{
char file_path[PATH_MAX + 1];
int fd;
snprintf(file_path, sizeof(file_path), "%s/%s", cgroup_path, file);
fd = open(file_path, O_RDWR);
if (fd < 0) {
log_err("Opening %s", file_path);
return 1;
}
if (dprintf(fd, "%s", buf) <= 0) {
log_err("Writing to %s", file_path);
close(fd);
return 1;
}
close(fd);
return 0;
}
/**
* write_cgroup_file() - Write to a cgroup file
* @relative_path: The cgroup path, relative to the workdir
* @file: The name of the file in cgroupfs to write to
* @buf: Buffer to write to the file
*
* Write to a file in the given cgroup's directory.
*
* If successful, 0 is returned.
*/
int write_cgroup_file(const char *relative_path, const char *file,
const char *buf)
{
char cgroup_path[PATH_MAX - 24];
format_cgroup_path(cgroup_path, relative_path);
return __write_cgroup_file(cgroup_path, file, buf);
}
/**
* write_cgroup_file_parent() - Write to a cgroup file in the parent process
* workdir
* @relative_path: The cgroup path, relative to the parent process workdir
* @file: The name of the file in cgroupfs to write to
* @buf: Buffer to write to the file
*
* Write to a file in the given cgroup's directory under the parent process
* workdir.
*
* If successful, 0 is returned.
*/
int write_cgroup_file_parent(const char *relative_path, const char *file,
const char *buf)
{
char cgroup_path[PATH_MAX - 24];
format_parent_cgroup_path(cgroup_path, relative_path);
return __write_cgroup_file(cgroup_path, file, buf);
}
/**
* setup_cgroup_environment() - Setup the cgroup environment
*
......@@ -133,7 +217,9 @@ int setup_cgroup_environment(void)
return 1;
}
if (enable_all_controllers(cgroup_workdir))
/* Enable all available controllers to increase test coverage */
if (__enable_controllers(CGROUP_MOUNT_PATH, NULL) ||
__enable_controllers(cgroup_workdir, NULL))
return 1;
return 0;
......@@ -173,7 +259,7 @@ static int join_cgroup_from_top(const char *cgroup_path)
/**
* join_cgroup() - Join a cgroup
* @path: The cgroup path, relative to the workdir, to join
* @relative_path: The cgroup path, relative to the workdir, to join
*
* This function expects a cgroup to already be created, relative to the cgroup
* work dir, and it joins it. For example, passing "/my-cgroup" as the path
......@@ -182,11 +268,27 @@ static int join_cgroup_from_top(const char *cgroup_path)
*
* On success, it returns 0, otherwise on failure it returns 1.
*/
int join_cgroup(const char *path)
int join_cgroup(const char *relative_path)
{
char cgroup_path[PATH_MAX + 1];
format_cgroup_path(cgroup_path, path);
format_cgroup_path(cgroup_path, relative_path);
return join_cgroup_from_top(cgroup_path);
}
/**
* join_parent_cgroup() - Join a cgroup in the parent process workdir
* @relative_path: The cgroup path, relative to parent process workdir, to join
*
* See join_cgroup().
*
* On success, it returns 0, otherwise on failure it returns 1.
*/
int join_parent_cgroup(const char *relative_path)
{
char cgroup_path[PATH_MAX + 1];
format_parent_cgroup_path(cgroup_path, relative_path);
return join_cgroup_from_top(cgroup_path);
}
......@@ -212,9 +314,27 @@ void cleanup_cgroup_environment(void)
nftw(cgroup_workdir, nftwfunc, WALK_FD_LIMIT, FTW_DEPTH | FTW_MOUNT);
}
/**
* get_root_cgroup() - Get the FD of the root cgroup
*
* On success, it returns the file descriptor. On failure, it returns -1.
* If there is a failure, it prints the error to stderr.
*/
int get_root_cgroup(void)
{
int fd;
fd = open(CGROUP_MOUNT_PATH, O_RDONLY);
if (fd < 0) {
log_err("Opening root cgroup");
return -1;
}
return fd;
}
/**
* create_and_get_cgroup() - Create a cgroup, relative to workdir, and get the FD
* @path: The cgroup path, relative to the workdir, to join
* @relative_path: The cgroup path, relative to the workdir, to join
*
* This function creates a cgroup under the top level workdir and returns the
* file descriptor. It is idempotent.
......@@ -222,14 +342,14 @@ void cleanup_cgroup_environment(void)
* On success, it returns the file descriptor. On failure it returns -1.
* If there is a failure, it prints the error to stderr.
*/
int create_and_get_cgroup(const char *path)
int create_and_get_cgroup(const char *relative_path)
{
char cgroup_path[PATH_MAX + 1];
int fd;
format_cgroup_path(cgroup_path, path);
format_cgroup_path(cgroup_path, relative_path);
if (mkdir(cgroup_path, 0777) && errno != EEXIST) {
log_err("mkdiring cgroup %s .. %s", path, cgroup_path);
log_err("mkdiring cgroup %s .. %s", relative_path, cgroup_path);
return -1;
}
......@@ -244,13 +364,13 @@ int create_and_get_cgroup(const char *path)
/**
* get_cgroup_id() - Get cgroup id for a particular cgroup path
* @path: The cgroup path, relative to the workdir, to join
* @relative_path: The cgroup path, relative to the workdir, to join
*
* On success, it returns the cgroup id. On failure it returns 0,
* which is an invalid cgroup id.
* If there is a failure, it prints the error to stderr.
*/
unsigned long long get_cgroup_id(const char *path)
unsigned long long get_cgroup_id(const char *relative_path)
{
int dirfd, err, flags, mount_id, fhsize;
union {
......@@ -261,7 +381,7 @@ unsigned long long get_cgroup_id(const char *path)
struct file_handle *fhp, *fhp2;
unsigned long long ret = 0;
format_cgroup_path(cgroup_workdir, path);
format_cgroup_path(cgroup_workdir, relative_path);
dirfd = AT_FDCWD;
flags = 0;
......
......@@ -10,11 +10,18 @@
__FILE__, __LINE__, clean_errno(), ##__VA_ARGS__)
/* cgroupv2 related */
int cgroup_setup_and_join(const char *path);
int create_and_get_cgroup(const char *path);
unsigned long long get_cgroup_id(const char *path);
int join_cgroup(const char *path);
int enable_controllers(const char *relative_path, const char *controllers);
int write_cgroup_file(const char *relative_path, const char *file,
const char *buf);
int write_cgroup_file_parent(const char *relative_path, const char *file,
const char *buf);
int cgroup_setup_and_join(const char *relative_path);
int get_root_cgroup(void);
int create_and_get_cgroup(const char *relative_path);
unsigned long long get_cgroup_id(const char *relative_path);
int join_cgroup(const char *relative_path);
int join_parent_cgroup(const char *relative_path);
int setup_cgroup_environment(void);
void cleanup_cgroup_environment(void);
......
......@@ -764,8 +764,8 @@ static void test_btf_dump_struct_data(struct btf *btf, struct btf_dump *d,
/* union with nested struct */
TEST_BTF_DUMP_DATA(btf, d, "union", str, union bpf_iter_link_info, BTF_F_COMPACT,
"(union bpf_iter_link_info){.map = (struct){.map_fd = (__u32)1,},}",
{ .map = { .map_fd = 1 }});
"(union bpf_iter_link_info){.map = (struct){.map_fd = (__u32)1,},.cgroup = (struct){.order = (enum bpf_cgroup_iter_order)BPF_ITER_SELF_ONLY,.cgroup_fd = (__u32)1,},}",
{ .cgroup = { .order = 1, .cgroup_fd = 1, }});
/* struct skb with nested structs/unions; because type output is so
* complex, we don't do a string comparison, just verify we return
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* Functions to manage eBPF programs attached to cgroup subsystems
*
* Copyright 2022 Google LLC.
*/
#include <asm-generic/errno.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <unistd.h>
#include <test_progs.h>
#include <bpf/libbpf.h>
#include <bpf/bpf.h>
#include "cgroup_helpers.h"
#include "cgroup_hierarchical_stats.skel.h"
#define PAGE_SIZE 4096
#define MB(x) (x << 20)
#define BPFFS_ROOT "/sys/fs/bpf/"
#define BPFFS_VMSCAN BPFFS_ROOT"vmscan/"
#define CG_ROOT_NAME "root"
#define CG_ROOT_ID 1
#define CGROUP_PATH(p, n) {.path = p"/"n, .name = n}
static struct {
const char *path, *name;
unsigned long long id;
int fd;
} cgroups[] = {
CGROUP_PATH("/", "test"),
CGROUP_PATH("/test", "child1"),
CGROUP_PATH("/test", "child2"),
CGROUP_PATH("/test/child1", "child1_1"),
CGROUP_PATH("/test/child1", "child1_2"),
CGROUP_PATH("/test/child2", "child2_1"),
CGROUP_PATH("/test/child2", "child2_2"),
};
#define N_CGROUPS ARRAY_SIZE(cgroups)
#define N_NON_LEAF_CGROUPS 3
static int root_cgroup_fd;
static bool mounted_bpffs;
/* reads file at 'path' to 'buf', returns 0 on success. */
static int read_from_file(const char *path, char *buf, size_t size)
{
int fd, len;
fd = open(path, O_RDONLY);
if (fd < 0)
return fd;
len = read(fd, buf, size);
close(fd);
if (len < 0)
return len;
buf[len] = 0;
return 0;
}
/* mounts bpffs and mkdir for reading stats, returns 0 on success. */
static int setup_bpffs(void)
{
int err;
/* Mount bpffs */
err = mount("bpf", BPFFS_ROOT, "bpf", 0, NULL);
mounted_bpffs = !err;
if (ASSERT_FALSE(err && errno != EBUSY, "mount"))
return err;
/* Create a directory to contain stat files in bpffs */
err = mkdir(BPFFS_VMSCAN, 0755);
if (!ASSERT_OK(err, "mkdir"))
return err;
return 0;
}
static void cleanup_bpffs(void)
{
/* Remove created directory in bpffs */
ASSERT_OK(rmdir(BPFFS_VMSCAN), "rmdir "BPFFS_VMSCAN);
/* Unmount bpffs, if it wasn't already mounted when we started */
if (mounted_bpffs)
return;
ASSERT_OK(umount(BPFFS_ROOT), "unmount bpffs");
}
/* sets up cgroups, returns 0 on success. */
static int setup_cgroups(void)
{
int i, fd, err;
err = setup_cgroup_environment();
if (!ASSERT_OK(err, "setup_cgroup_environment"))
return err;
root_cgroup_fd = get_root_cgroup();
if (!ASSERT_GE(root_cgroup_fd, 0, "get_root_cgroup"))
return root_cgroup_fd;
for (i = 0; i < N_CGROUPS; i++) {
fd = create_and_get_cgroup(cgroups[i].path);
if (!ASSERT_GE(fd, 0, "create_and_get_cgroup"))
return fd;
cgroups[i].fd = fd;
cgroups[i].id = get_cgroup_id(cgroups[i].path);
/*
* Enable memcg controller for the entire hierarchy.
* Note that stats are collected for all cgroups in a hierarchy
* with memcg enabled anyway, but are only exposed for cgroups
* that have memcg enabled.
*/
if (i < N_NON_LEAF_CGROUPS) {
err = enable_controllers(cgroups[i].path, "memory");
if (!ASSERT_OK(err, "enable_controllers"))
return err;
}
}
return 0;
}
static void cleanup_cgroups(void)
{
close(root_cgroup_fd);
for (int i = 0; i < N_CGROUPS; i++)
close(cgroups[i].fd);
cleanup_cgroup_environment();
}
/* Sets up cgroup hiearchary, returns 0 on success. */
static int setup_hierarchy(void)
{
return setup_bpffs() || setup_cgroups();
}
static void destroy_hierarchy(void)
{
cleanup_cgroups();
cleanup_bpffs();
}
static int reclaimer(const char *cgroup_path, size_t size)
{
static char size_buf[128];
char *buf, *ptr;
int err;
/* Join cgroup in the parent process workdir */
if (join_parent_cgroup(cgroup_path))
return EACCES;
/* Allocate memory */
buf = malloc(size);
if (!buf)
return ENOMEM;
/* Write to memory to make sure it's actually allocated */
for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
*ptr = 1;
/* Try to reclaim memory */
snprintf(size_buf, 128, "%lu", size);
err = write_cgroup_file_parent(cgroup_path, "memory.reclaim", size_buf);
free(buf);
/* memory.reclaim returns EAGAIN if the amount is not fully reclaimed */
if (err && errno != EAGAIN)
return errno;
return 0;
}
static int induce_vmscan(void)
{
int i, status;
/*
* In every leaf cgroup, run a child process that allocates some memory
* and attempts to reclaim some of it.
*/
for (i = N_NON_LEAF_CGROUPS; i < N_CGROUPS; i++) {
pid_t pid;
/* Create reclaimer child */
pid = fork();
if (pid == 0) {
status = reclaimer(cgroups[i].path, MB(5));
exit(status);
}
/* Cleanup reclaimer child */
waitpid(pid, &status, 0);
ASSERT_TRUE(WIFEXITED(status), "reclaimer exited");
ASSERT_EQ(WEXITSTATUS(status), 0, "reclaim exit code");
}
return 0;
}
static unsigned long long
get_cgroup_vmscan_delay(unsigned long long cgroup_id, const char *file_name)
{
unsigned long long vmscan = 0, id = 0;
static char buf[128], path[128];
/* For every cgroup, read the file generated by cgroup_iter */
snprintf(path, 128, "%s%s", BPFFS_VMSCAN, file_name);
if (!ASSERT_OK(read_from_file(path, buf, 128), "read cgroup_iter"))
return 0;
/* Check the output file formatting */
ASSERT_EQ(sscanf(buf, "cg_id: %llu, total_vmscan_delay: %llu\n",
&id, &vmscan), 2, "output format");
/* Check that the cgroup_id is displayed correctly */
ASSERT_EQ(id, cgroup_id, "cgroup_id");
/* Check that the vmscan reading is non-zero */
ASSERT_GT(vmscan, 0, "vmscan_reading");
return vmscan;
}
static void check_vmscan_stats(void)
{
unsigned long long vmscan_readings[N_CGROUPS], vmscan_root;
int i;
for (i = 0; i < N_CGROUPS; i++) {
vmscan_readings[i] = get_cgroup_vmscan_delay(cgroups[i].id,
cgroups[i].name);
}
/* Read stats for root too */
vmscan_root = get_cgroup_vmscan_delay(CG_ROOT_ID, CG_ROOT_NAME);
/* Check that child1 == child1_1 + child1_2 */
ASSERT_EQ(vmscan_readings[1], vmscan_readings[3] + vmscan_readings[4],
"child1_vmscan");
/* Check that child2 == child2_1 + child2_2 */
ASSERT_EQ(vmscan_readings[2], vmscan_readings[5] + vmscan_readings[6],
"child2_vmscan");
/* Check that test == child1 + child2 */
ASSERT_EQ(vmscan_readings[0], vmscan_readings[1] + vmscan_readings[2],
"test_vmscan");
/* Check that root >= test */
ASSERT_GE(vmscan_root, vmscan_readings[1], "root_vmscan");
}
/* Creates iter link and pins in bpffs, returns 0 on success, -errno on failure.
*/
static int setup_cgroup_iter(struct cgroup_hierarchical_stats *obj,
int cgroup_fd, const char *file_name)
{
DECLARE_LIBBPF_OPTS(bpf_iter_attach_opts, opts);
union bpf_iter_link_info linfo = {};
struct bpf_link *link;
static char path[128];
int err;
/*
* Create an iter link, parameterized by cgroup_fd. We only want to
* traverse one cgroup, so set the traversal order to "self".
*/
linfo.cgroup.cgroup_fd = cgroup_fd;
linfo.cgroup.order = BPF_ITER_SELF_ONLY;
opts.link_info = &linfo;
opts.link_info_len = sizeof(linfo);
link = bpf_program__attach_iter(obj->progs.dump_vmscan, &opts);
if (!ASSERT_OK_PTR(link, "attach_iter"))
return -EFAULT;
/* Pin the link to a bpffs file */
snprintf(path, 128, "%s%s", BPFFS_VMSCAN, file_name);
err = bpf_link__pin(link, path);
ASSERT_OK(err, "pin cgroup_iter");
/* Remove the link, leaving only the ref held by the pinned file */
bpf_link__destroy(link);
return err;
}
/* Sets up programs for collecting stats, returns 0 on success. */
static int setup_progs(struct cgroup_hierarchical_stats **skel)
{
int i, err;
*skel = cgroup_hierarchical_stats__open_and_load();
if (!ASSERT_OK_PTR(*skel, "open_and_load"))
return 1;
/* Attach cgroup_iter program that will dump the stats to cgroups */
for (i = 0; i < N_CGROUPS; i++) {
err = setup_cgroup_iter(*skel, cgroups[i].fd, cgroups[i].name);
if (!ASSERT_OK(err, "setup_cgroup_iter"))
return err;
}
/* Also dump stats for root */
err = setup_cgroup_iter(*skel, root_cgroup_fd, CG_ROOT_NAME);
if (!ASSERT_OK(err, "setup_cgroup_iter"))
return err;
bpf_program__set_autoattach((*skel)->progs.dump_vmscan, false);
err = cgroup_hierarchical_stats__attach(*skel);
if (!ASSERT_OK(err, "attach"))
return err;
return 0;
}
static void destroy_progs(struct cgroup_hierarchical_stats *skel)
{
static char path[128];
int i;
for (i = 0; i < N_CGROUPS; i++) {
/* Delete files in bpffs that cgroup_iters are pinned in */
snprintf(path, 128, "%s%s", BPFFS_VMSCAN,
cgroups[i].name);
ASSERT_OK(remove(path), "remove cgroup_iter pin");
}
/* Delete root file in bpffs */
snprintf(path, 128, "%s%s", BPFFS_VMSCAN, CG_ROOT_NAME);
ASSERT_OK(remove(path), "remove cgroup_iter root pin");
cgroup_hierarchical_stats__destroy(skel);
}
void test_cgroup_hierarchical_stats(void)
{
struct cgroup_hierarchical_stats *skel = NULL;
if (setup_hierarchy())
goto hierarchy_cleanup;
if (setup_progs(&skel))
goto cleanup;
if (induce_vmscan())
goto cleanup;
check_vmscan_stats();
cleanup:
destroy_progs(skel);
hierarchy_cleanup:
destroy_hierarchy();
}
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2022 Google */
#include <test_progs.h>
#include <bpf/libbpf.h>
#include <bpf/btf.h>
#include "cgroup_iter.skel.h"
#include "cgroup_helpers.h"
#define ROOT 0
#define PARENT 1
#define CHILD1 2
#define CHILD2 3
#define NUM_CGROUPS 4
#define PROLOGUE "prologue\n"
#define EPILOGUE "epilogue\n"
static const char *cg_path[] = {
"/", "/parent", "/parent/child1", "/parent/child2"
};
static int cg_fd[] = {-1, -1, -1, -1};
static unsigned long long cg_id[] = {0, 0, 0, 0};
static char expected_output[64];
static int setup_cgroups(void)
{
int fd, i = 0;
for (i = 0; i < NUM_CGROUPS; i++) {
fd = create_and_get_cgroup(cg_path[i]);
if (fd < 0)
return fd;
cg_fd[i] = fd;
cg_id[i] = get_cgroup_id(cg_path[i]);
}
return 0;
}
static void cleanup_cgroups(void)
{
int i;
for (i = 0; i < NUM_CGROUPS; i++)
close(cg_fd[i]);
}
static void read_from_cgroup_iter(struct bpf_program *prog, int cgroup_fd,
int order, const char *testname)
{
DECLARE_LIBBPF_OPTS(bpf_iter_attach_opts, opts);
union bpf_iter_link_info linfo;
struct bpf_link *link;
int len, iter_fd;
static char buf[128];
size_t left;
char *p;
memset(&linfo, 0, sizeof(linfo));
linfo.cgroup.cgroup_fd = cgroup_fd;
linfo.cgroup.order = order;
opts.link_info = &linfo;
opts.link_info_len = sizeof(linfo);
link = bpf_program__attach_iter(prog, &opts);
if (!ASSERT_OK_PTR(link, "attach_iter"))
return;
iter_fd = bpf_iter_create(bpf_link__fd(link));
if (iter_fd < 0)
goto free_link;
memset(buf, 0, sizeof(buf));
left = ARRAY_SIZE(buf);
p = buf;
while ((len = read(iter_fd, p, left)) > 0) {
p += len;
left -= len;
}
ASSERT_STREQ(buf, expected_output, testname);
/* read() after iter finishes should be ok. */
if (len == 0)
ASSERT_OK(read(iter_fd, buf, sizeof(buf)), "second_read");
close(iter_fd);
free_link:
bpf_link__destroy(link);
}
/* Invalid cgroup. */
static void test_invalid_cgroup(struct cgroup_iter *skel)
{
DECLARE_LIBBPF_OPTS(bpf_iter_attach_opts, opts);
union bpf_iter_link_info linfo;
struct bpf_link *link;
memset(&linfo, 0, sizeof(linfo));
linfo.cgroup.cgroup_fd = (__u32)-1;
opts.link_info = &linfo;
opts.link_info_len = sizeof(linfo);
link = bpf_program__attach_iter(skel->progs.cgroup_id_printer, &opts);
ASSERT_ERR_PTR(link, "attach_iter");
bpf_link__destroy(link);
}
/* Specifying both cgroup_fd and cgroup_id is invalid. */
static void test_invalid_cgroup_spec(struct cgroup_iter *skel)
{
DECLARE_LIBBPF_OPTS(bpf_iter_attach_opts, opts);
union bpf_iter_link_info linfo;
struct bpf_link *link;
memset(&linfo, 0, sizeof(linfo));
linfo.cgroup.cgroup_fd = (__u32)cg_fd[PARENT];
linfo.cgroup.cgroup_id = (__u64)cg_id[PARENT];
opts.link_info = &linfo;
opts.link_info_len = sizeof(linfo);
link = bpf_program__attach_iter(skel->progs.cgroup_id_printer, &opts);
ASSERT_ERR_PTR(link, "attach_iter");
bpf_link__destroy(link);
}
/* Preorder walk prints parent and child in order. */
static void test_walk_preorder(struct cgroup_iter *skel)
{
snprintf(expected_output, sizeof(expected_output),
PROLOGUE "%8llu\n%8llu\n%8llu\n" EPILOGUE,
cg_id[PARENT], cg_id[CHILD1], cg_id[CHILD2]);
read_from_cgroup_iter(skel->progs.cgroup_id_printer, cg_fd[PARENT],
BPF_ITER_DESCENDANTS_PRE, "preorder");
}
/* Postorder walk prints child and parent in order. */
static void test_walk_postorder(struct cgroup_iter *skel)
{
snprintf(expected_output, sizeof(expected_output),
PROLOGUE "%8llu\n%8llu\n%8llu\n" EPILOGUE,
cg_id[CHILD1], cg_id[CHILD2], cg_id[PARENT]);
read_from_cgroup_iter(skel->progs.cgroup_id_printer, cg_fd[PARENT],
BPF_ITER_DESCENDANTS_POST, "postorder");
}
/* Walking parents prints parent and then root. */
static void test_walk_ancestors_up(struct cgroup_iter *skel)
{
/* terminate the walk when ROOT is met. */
skel->bss->terminal_cgroup = cg_id[ROOT];
snprintf(expected_output, sizeof(expected_output),
PROLOGUE "%8llu\n%8llu\n" EPILOGUE,
cg_id[PARENT], cg_id[ROOT]);
read_from_cgroup_iter(skel->progs.cgroup_id_printer, cg_fd[PARENT],
BPF_ITER_ANCESTORS_UP, "ancestors_up");
skel->bss->terminal_cgroup = 0;
}
/* Early termination prints parent only. */
static void test_early_termination(struct cgroup_iter *skel)
{
/* terminate the walk after the first element is processed. */
skel->bss->terminate_early = 1;
snprintf(expected_output, sizeof(expected_output),
PROLOGUE "%8llu\n" EPILOGUE, cg_id[PARENT]);
read_from_cgroup_iter(skel->progs.cgroup_id_printer, cg_fd[PARENT],
BPF_ITER_DESCENDANTS_PRE, "early_termination");
skel->bss->terminate_early = 0;
}
/* Waling self prints self only. */
static void test_walk_self_only(struct cgroup_iter *skel)
{
snprintf(expected_output, sizeof(expected_output),
PROLOGUE "%8llu\n" EPILOGUE, cg_id[PARENT]);
read_from_cgroup_iter(skel->progs.cgroup_id_printer, cg_fd[PARENT],
BPF_ITER_SELF_ONLY, "self_only");
}
void test_cgroup_iter(void)
{
struct cgroup_iter *skel = NULL;
if (setup_cgroup_environment())
return;
if (setup_cgroups())
goto out;
skel = cgroup_iter__open_and_load();
if (!ASSERT_OK_PTR(skel, "cgroup_iter__open_and_load"))
goto out;
if (test__start_subtest("cgroup_iter__invalid_cgroup"))
test_invalid_cgroup(skel);
if (test__start_subtest("cgroup_iter__invalid_cgroup_spec"))
test_invalid_cgroup_spec(skel);
if (test__start_subtest("cgroup_iter__preorder"))
test_walk_preorder(skel);
if (test__start_subtest("cgroup_iter__postorder"))
test_walk_postorder(skel);
if (test__start_subtest("cgroup_iter__ancestors_up_walk"))
test_walk_ancestors_up(skel);
if (test__start_subtest("cgroup_iter__early_termination"))
test_early_termination(skel);
if (test__start_subtest("cgroup_iter__self_only"))
test_walk_self_only(skel);
out:
cgroup_iter__destroy(skel);
cleanup_cgroups();
cleanup_cgroup_environment();
}
......@@ -17,6 +17,7 @@
#define bpf_iter__bpf_sk_storage_map bpf_iter__bpf_sk_storage_map___not_used
#define bpf_iter__sockmap bpf_iter__sockmap___not_used
#define bpf_iter__bpf_link bpf_iter__bpf_link___not_used
#define bpf_iter__cgroup bpf_iter__cgroup___not_used
#define btf_ptr btf_ptr___not_used
#define BTF_F_COMPACT BTF_F_COMPACT___not_used
#define BTF_F_NONAME BTF_F_NONAME___not_used
......@@ -40,6 +41,7 @@
#undef bpf_iter__bpf_sk_storage_map
#undef bpf_iter__sockmap
#undef bpf_iter__bpf_link
#undef bpf_iter__cgroup
#undef btf_ptr
#undef BTF_F_COMPACT
#undef BTF_F_NONAME
......@@ -141,6 +143,11 @@ struct bpf_iter__bpf_link {
struct bpf_link *link;
};
struct bpf_iter__cgroup {
struct bpf_iter_meta *meta;
struct cgroup *cgroup;
} __attribute__((preserve_access_index));
struct btf_ptr {
void *ptr;
__u32 type_id;
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* Functions to manage eBPF programs attached to cgroup subsystems
*
* Copyright 2022 Google LLC.
*/
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <bpf/bpf_core_read.h>
char _license[] SEC("license") = "GPL";
/*
* Start times are stored per-task, not per-cgroup, as multiple tasks in one
* cgroup can perform reclaim concurrently.
*/
struct {
__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
__uint(map_flags, BPF_F_NO_PREALLOC);
__type(key, int);
__type(value, __u64);
} vmscan_start_time SEC(".maps");
struct vmscan_percpu {
/* Previous percpu state, to figure out if we have new updates */
__u64 prev;
/* Current percpu state */
__u64 state;
};
struct vmscan {
/* State propagated through children, pending aggregation */
__u64 pending;
/* Total state, including all cpus and all children */
__u64 state;
};
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_HASH);
__uint(max_entries, 100);
__type(key, __u64);
__type(value, struct vmscan_percpu);
} pcpu_cgroup_vmscan_elapsed SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 100);
__type(key, __u64);
__type(value, struct vmscan);
} cgroup_vmscan_elapsed SEC(".maps");
extern void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) __ksym;
extern void cgroup_rstat_flush(struct cgroup *cgrp) __ksym;
static struct cgroup *task_memcg(struct task_struct *task)
{
int cgrp_id;
#if __has_builtin(__builtin_preserve_enum_value)
cgrp_id = bpf_core_enum_value(enum cgroup_subsys_id, memory_cgrp_id);
#else
cgrp_id = memory_cgrp_id;
#endif
return task->cgroups->subsys[cgrp_id]->cgroup;
}
static uint64_t cgroup_id(struct cgroup *cgrp)
{
return cgrp->kn->id;
}
static int create_vmscan_percpu_elem(__u64 cg_id, __u64 state)
{
struct vmscan_percpu pcpu_init = {.state = state, .prev = 0};
return bpf_map_update_elem(&pcpu_cgroup_vmscan_elapsed, &cg_id,
&pcpu_init, BPF_NOEXIST);
}
static int create_vmscan_elem(__u64 cg_id, __u64 state, __u64 pending)
{
struct vmscan init = {.state = state, .pending = pending};
return bpf_map_update_elem(&cgroup_vmscan_elapsed, &cg_id,
&init, BPF_NOEXIST);
}
SEC("tp_btf/mm_vmscan_memcg_reclaim_begin")
int BPF_PROG(vmscan_start, int order, gfp_t gfp_flags)
{
struct task_struct *task = bpf_get_current_task_btf();
__u64 *start_time_ptr;
start_time_ptr = bpf_task_storage_get(&vmscan_start_time, task, 0,
BPF_LOCAL_STORAGE_GET_F_CREATE);
if (start_time_ptr)
*start_time_ptr = bpf_ktime_get_ns();
return 0;
}
SEC("tp_btf/mm_vmscan_memcg_reclaim_end")
int BPF_PROG(vmscan_end, unsigned long nr_reclaimed)
{
struct vmscan_percpu *pcpu_stat;
struct task_struct *current = bpf_get_current_task_btf();
struct cgroup *cgrp;
__u64 *start_time_ptr;
__u64 current_elapsed, cg_id;
__u64 end_time = bpf_ktime_get_ns();
/*
* cgrp is the first parent cgroup of current that has memcg enabled in
* its subtree_control, or NULL if memcg is disabled in the entire tree.
* In a cgroup hierarchy like this:
* a
* / \
* b c
* If "a" has memcg enabled, while "b" doesn't, then processes in "b"
* will accumulate their stats directly to "a". This makes sure that no
* stats are lost from processes in leaf cgroups that don't have memcg
* enabled, but only exposes stats for cgroups that have memcg enabled.
*/
cgrp = task_memcg(current);
if (!cgrp)
return 0;
cg_id = cgroup_id(cgrp);
start_time_ptr = bpf_task_storage_get(&vmscan_start_time, current, 0,
BPF_LOCAL_STORAGE_GET_F_CREATE);
if (!start_time_ptr)
return 0;
current_elapsed = end_time - *start_time_ptr;
pcpu_stat = bpf_map_lookup_elem(&pcpu_cgroup_vmscan_elapsed,
&cg_id);
if (pcpu_stat)
pcpu_stat->state += current_elapsed;
else if (create_vmscan_percpu_elem(cg_id, current_elapsed))
return 0;
cgroup_rstat_updated(cgrp, bpf_get_smp_processor_id());
return 0;
}
SEC("fentry/bpf_rstat_flush")
int BPF_PROG(vmscan_flush, struct cgroup *cgrp, struct cgroup *parent, int cpu)
{
struct vmscan_percpu *pcpu_stat;
struct vmscan *total_stat, *parent_stat;
__u64 cg_id = cgroup_id(cgrp);
__u64 parent_cg_id = parent ? cgroup_id(parent) : 0;
__u64 *pcpu_vmscan;
__u64 state;
__u64 delta = 0;
/* Add CPU changes on this level since the last flush */
pcpu_stat = bpf_map_lookup_percpu_elem(&pcpu_cgroup_vmscan_elapsed,
&cg_id, cpu);
if (pcpu_stat) {
state = pcpu_stat->state;
delta += state - pcpu_stat->prev;
pcpu_stat->prev = state;
}
total_stat = bpf_map_lookup_elem(&cgroup_vmscan_elapsed, &cg_id);
if (!total_stat) {
if (create_vmscan_elem(cg_id, delta, 0))
return 0;
goto update_parent;
}
/* Collect pending stats from subtree */
if (total_stat->pending) {
delta += total_stat->pending;
total_stat->pending = 0;
}
/* Propagate changes to this cgroup's total */
total_stat->state += delta;
update_parent:
/* Skip if there are no changes to propagate, or no parent */
if (!delta || !parent_cg_id)
return 0;
/* Propagate changes to cgroup's parent */
parent_stat = bpf_map_lookup_elem(&cgroup_vmscan_elapsed,
&parent_cg_id);
if (parent_stat)
parent_stat->pending += delta;
else
create_vmscan_elem(parent_cg_id, 0, delta);
return 0;
}
SEC("iter.s/cgroup")
int BPF_PROG(dump_vmscan, struct bpf_iter_meta *meta, struct cgroup *cgrp)
{
struct seq_file *seq = meta->seq;
struct vmscan *total_stat;
__u64 cg_id = cgrp ? cgroup_id(cgrp) : 0;
/* Do nothing for the terminal call */
if (!cg_id)
return 1;
/* Flush the stats to make sure we get the most updated numbers */
cgroup_rstat_flush(cgrp);
total_stat = bpf_map_lookup_elem(&cgroup_vmscan_elapsed, &cg_id);
if (!total_stat) {
BPF_SEQ_PRINTF(seq, "cg_id: %llu, total_vmscan_delay: 0\n",
cg_id);
} else {
BPF_SEQ_PRINTF(seq, "cg_id: %llu, total_vmscan_delay: %llu\n",
cg_id, total_stat->state);
}
/*
* We only dump stats for one cgroup here, so return 1 to stop
* iteration after the first cgroup.
*/
return 1;
}
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2022 Google */
#include "bpf_iter.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
char _license[] SEC("license") = "GPL";
int terminate_early = 0;
u64 terminal_cgroup = 0;
static inline u64 cgroup_id(struct cgroup *cgrp)
{
return cgrp->kn->id;
}
SEC("iter/cgroup")
int cgroup_id_printer(struct bpf_iter__cgroup *ctx)
{
struct seq_file *seq = ctx->meta->seq;
struct cgroup *cgrp = ctx->cgroup;
/* epilogue */
if (cgrp == NULL) {
BPF_SEQ_PRINTF(seq, "epilogue\n");
return 0;
}
/* prologue */
if (ctx->meta->seq_num == 0)
BPF_SEQ_PRINTF(seq, "prologue\n");
BPF_SEQ_PRINTF(seq, "%8llu\n", cgroup_id(cgrp));
if (terminal_cgroup == cgroup_id(cgrp))
return 1;
return terminate_early ? 1 : 0;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment