Commit f026399f authored by Marcelo Tosatti's avatar Marcelo Tosatti

Merge branch 'for-queue' of https://github.com/agraf/linux-2.6 into queue

* 'for-queue' of https://github.com/agraf/linux-2.6:
  PPC: ePAPR: Convert hcall header to uapi (round 2)
  KVM: PPC: Book3S HV: Fix thinko in try_lock_hpte()
  KVM: PPC: Book3S HV: Allow DTL to be set to address 0, length 0
  KVM: PPC: Book3S HV: Fix accounting of stolen time
  KVM: PPC: Book3S HV: Run virtual core whenever any vcpus in it can run
  KVM: PPC: Book3S HV: Fixes for late-joining threads
  KVM: PPC: Book3s HV: Don't access runnable threads list without vcore lock
  KVM: PPC: Book3S HV: Fix some races in starting secondary threads
  KVM: PPC: Book3S HV: Allow KVM guests to stop secondary threads coming online
  PPC: ePAPR: Convert header to uapi
  KVM: PPC: Move mtspr/mfspr emulation into own functions
  KVM: Documentation: Fix reentry-to-be-consistent paragraph
  KVM: PPC: 44x: fix DCR read/write
parents 7de609c8 63a19091
...@@ -2183,7 +2183,8 @@ executed a memory-mapped I/O instruction which could not be satisfied ...@@ -2183,7 +2183,8 @@ executed a memory-mapped I/O instruction which could not be satisfied
by kvm. The 'data' member contains the written data if 'is_write' is by kvm. The 'data' member contains the written data if 'is_write' is
true, and should be filled by application code otherwise. true, and should be filled by application code otherwise.
NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO and KVM_EXIT_OSI, the corresponding NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR
and KVM_EXIT_PAPR the corresponding
operations are complete (and guest state is consistent) only after userspace operations are complete (and guest state is consistent) only after userspace
has re-entered the kernel with KVM_RUN. The kernel side will first finish has re-entered the kernel with KVM_RUN. The kernel side will first finish
incomplete operations and then check for pending signals. Userspace incomplete operations and then check for pending signals. Userspace
......
/*
* ePAPR hcall interface
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* Author: Timur Tabi <timur@freescale.com>
*
* This file is provided under a dual BSD/GPL license. When using or
* redistributing this file, you may do so under either license.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* A "hypercall" is an "sc 1" instruction. This header file file provides C
* wrapper functions for the ePAPR hypervisor interface. It is inteded
* for use by Linux device drivers and other operating systems.
*
* The hypercalls are implemented as inline assembly, rather than assembly
* language functions in a .S file, for optimization. It allows
* the caller to issue the hypercall instruction directly, improving both
* performance and memory footprint.
*/
#ifndef _EPAPR_HCALLS_H
#define _EPAPR_HCALLS_H
#include <uapi/asm/epapr_hcalls.h>
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
/*
* Hypercall register clobber list
*
* These macros are used to define the list of clobbered registers during a
* hypercall. Technically, registers r0 and r3-r12 are always clobbered,
* but the gcc inline assembly syntax does not allow us to specify registers
* on the clobber list that are also on the input/output list. Therefore,
* the lists of clobbered registers depends on the number of register
* parmeters ("+r" and "=r") passed to the hypercall.
*
* Each assembly block should use one of the HCALL_CLOBBERSx macros. As a
* general rule, 'x' is the number of parameters passed to the assembly
* block *except* for r11.
*
* If you're not sure, just use the smallest value of 'x' that does not
* generate a compilation error. Because these are static inline functions,
* the compiler will only check the clobber list for a function if you
* compile code that calls that function.
*
* r3 and r11 are not included in any clobbers list because they are always
* listed as output registers.
*
* XER, CTR, and LR are currently listed as clobbers because it's uncertain
* whether they will be clobbered.
*
* Note that r11 can be used as an output parameter.
*
* The "memory" clobber is only necessary for hcalls where the Hypervisor
* will read or write guest memory. However, we add it to all hcalls because
* the impact is minimal, and we want to ensure that it's present for the
* hcalls that need it.
*/
/* List of common clobbered registers. Do not use this macro. */
#define EV_HCALL_CLOBBERS "r0", "r12", "xer", "ctr", "lr", "cc", "memory"
#define EV_HCALL_CLOBBERS8 EV_HCALL_CLOBBERS
#define EV_HCALL_CLOBBERS7 EV_HCALL_CLOBBERS8, "r10"
#define EV_HCALL_CLOBBERS6 EV_HCALL_CLOBBERS7, "r9"
#define EV_HCALL_CLOBBERS5 EV_HCALL_CLOBBERS6, "r8"
#define EV_HCALL_CLOBBERS4 EV_HCALL_CLOBBERS5, "r7"
#define EV_HCALL_CLOBBERS3 EV_HCALL_CLOBBERS4, "r6"
#define EV_HCALL_CLOBBERS2 EV_HCALL_CLOBBERS3, "r5"
#define EV_HCALL_CLOBBERS1 EV_HCALL_CLOBBERS2, "r4"
extern bool epapr_paravirt_enabled;
extern u32 epapr_hypercall_start[];
/*
* We use "uintptr_t" to define a register because it's guaranteed to be a
* 32-bit integer on a 32-bit platform, and a 64-bit integer on a 64-bit
* platform.
*
* All registers are either input/output or output only. Registers that are
* initialized before making the hypercall are input/output. All
* input/output registers are represented with "+r". Output-only registers
* are represented with "=r". Do not specify any unused registers. The
* clobber list will tell the compiler that the hypercall modifies those
* registers, which is good enough.
*/
/**
* ev_int_set_config - configure the specified interrupt
* @interrupt: the interrupt number
* @config: configuration for this interrupt
* @priority: interrupt priority
* @destination: destination CPU number
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_set_config(unsigned int interrupt,
uint32_t config, unsigned int priority, uint32_t destination)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
r11 = EV_HCALL_TOKEN(EV_INT_SET_CONFIG);
r3 = interrupt;
r4 = config;
r5 = priority;
r6 = destination;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6)
: : EV_HCALL_CLOBBERS4
);
return r3;
}
/**
* ev_int_get_config - return the config of the specified interrupt
* @interrupt: the interrupt number
* @config: returned configuration for this interrupt
* @priority: returned interrupt priority
* @destination: returned destination CPU number
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_get_config(unsigned int interrupt,
uint32_t *config, unsigned int *priority, uint32_t *destination)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
r11 = EV_HCALL_TOKEN(EV_INT_GET_CONFIG);
r3 = interrupt;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "=r" (r4), "=r" (r5), "=r" (r6)
: : EV_HCALL_CLOBBERS4
);
*config = r4;
*priority = r5;
*destination = r6;
return r3;
}
/**
* ev_int_set_mask - sets the mask for the specified interrupt source
* @interrupt: the interrupt number
* @mask: 0=enable interrupts, 1=disable interrupts
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_set_mask(unsigned int interrupt,
unsigned int mask)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = EV_HCALL_TOKEN(EV_INT_SET_MASK);
r3 = interrupt;
r4 = mask;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "+r" (r4)
: : EV_HCALL_CLOBBERS2
);
return r3;
}
/**
* ev_int_get_mask - returns the mask for the specified interrupt source
* @interrupt: the interrupt number
* @mask: returned mask for this interrupt (0=enabled, 1=disabled)
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_get_mask(unsigned int interrupt,
unsigned int *mask)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = EV_HCALL_TOKEN(EV_INT_GET_MASK);
r3 = interrupt;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "=r" (r4)
: : EV_HCALL_CLOBBERS2
);
*mask = r4;
return r3;
}
/**
* ev_int_eoi - signal the end of interrupt processing
* @interrupt: the interrupt number
*
* This function signals the end of processing for the the specified
* interrupt, which must be the interrupt currently in service. By
* definition, this is also the highest-priority interrupt.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_eoi(unsigned int interrupt)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = EV_HCALL_TOKEN(EV_INT_EOI);
r3 = interrupt;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* ev_byte_channel_send - send characters to a byte stream
* @handle: byte stream handle
* @count: (input) num of chars to send, (output) num chars sent
* @buffer: pointer to a 16-byte buffer
*
* @buffer must be at least 16 bytes long, because all 16 bytes will be
* read from memory into registers, even if count < 16.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_byte_channel_send(unsigned int handle,
unsigned int *count, const char buffer[EV_BYTE_CHANNEL_MAX_BYTES])
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
register uintptr_t r7 __asm__("r7");
register uintptr_t r8 __asm__("r8");
const uint32_t *p = (const uint32_t *) buffer;
r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_SEND);
r3 = handle;
r4 = *count;
r5 = be32_to_cpu(p[0]);
r6 = be32_to_cpu(p[1]);
r7 = be32_to_cpu(p[2]);
r8 = be32_to_cpu(p[3]);
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3),
"+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7), "+r" (r8)
: : EV_HCALL_CLOBBERS6
);
*count = r4;
return r3;
}
/**
* ev_byte_channel_receive - fetch characters from a byte channel
* @handle: byte channel handle
* @count: (input) max num of chars to receive, (output) num chars received
* @buffer: pointer to a 16-byte buffer
*
* The size of @buffer must be at least 16 bytes, even if you request fewer
* than 16 characters, because we always write 16 bytes to @buffer. This is
* for performance reasons.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_byte_channel_receive(unsigned int handle,
unsigned int *count, char buffer[EV_BYTE_CHANNEL_MAX_BYTES])
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
register uintptr_t r7 __asm__("r7");
register uintptr_t r8 __asm__("r8");
uint32_t *p = (uint32_t *) buffer;
r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_RECEIVE);
r3 = handle;
r4 = *count;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "+r" (r4),
"=r" (r5), "=r" (r6), "=r" (r7), "=r" (r8)
: : EV_HCALL_CLOBBERS6
);
*count = r4;
p[0] = cpu_to_be32(r5);
p[1] = cpu_to_be32(r6);
p[2] = cpu_to_be32(r7);
p[3] = cpu_to_be32(r8);
return r3;
}
/**
* ev_byte_channel_poll - returns the status of the byte channel buffers
* @handle: byte channel handle
* @rx_count: returned count of bytes in receive queue
* @tx_count: returned count of free space in transmit queue
*
* This function reports the amount of data in the receive queue (i.e. the
* number of bytes you can read), and the amount of free space in the transmit
* queue (i.e. the number of bytes you can write).
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_byte_channel_poll(unsigned int handle,
unsigned int *rx_count, unsigned int *tx_count)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_POLL);
r3 = handle;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "=r" (r4), "=r" (r5)
: : EV_HCALL_CLOBBERS3
);
*rx_count = r4;
*tx_count = r5;
return r3;
}
/**
* ev_int_iack - acknowledge an interrupt
* @handle: handle to the target interrupt controller
* @vector: returned interrupt vector
*
* If handle is zero, the function returns the next interrupt source
* number to be handled irrespective of the hierarchy or cascading
* of interrupt controllers. If non-zero, specifies a handle to the
* interrupt controller that is the target of the acknowledge.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_iack(unsigned int handle,
unsigned int *vector)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = EV_HCALL_TOKEN(EV_INT_IACK);
r3 = handle;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "=r" (r4)
: : EV_HCALL_CLOBBERS2
);
*vector = r4;
return r3;
}
/**
* ev_doorbell_send - send a doorbell to another partition
* @handle: doorbell send handle
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_doorbell_send(unsigned int handle)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = EV_HCALL_TOKEN(EV_DOORBELL_SEND);
r3 = handle;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* ev_idle -- wait for next interrupt on this core
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_idle(void)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = EV_HCALL_TOKEN(EV_IDLE);
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "=r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
#endif /* !__ASSEMBLY__ */
#endif /* _EPAPR_HCALLS_H */
...@@ -118,6 +118,7 @@ ...@@ -118,6 +118,7 @@
#define RESUME_FLAG_NV (1<<0) /* Reload guest nonvolatile state? */ #define RESUME_FLAG_NV (1<<0) /* Reload guest nonvolatile state? */
#define RESUME_FLAG_HOST (1<<1) /* Resume host? */ #define RESUME_FLAG_HOST (1<<1) /* Resume host? */
#define RESUME_FLAG_ARCH1 (1<<2)
#define RESUME_GUEST 0 #define RESUME_GUEST 0
#define RESUME_GUEST_NV RESUME_FLAG_NV #define RESUME_GUEST_NV RESUME_FLAG_NV
......
...@@ -60,7 +60,7 @@ static inline long try_lock_hpte(unsigned long *hpte, unsigned long bits) ...@@ -60,7 +60,7 @@ static inline long try_lock_hpte(unsigned long *hpte, unsigned long bits)
" ori %0,%0,%4\n" " ori %0,%0,%4\n"
" stdcx. %0,0,%2\n" " stdcx. %0,0,%2\n"
" beq+ 2f\n" " beq+ 2f\n"
" li %1,%3\n" " mr %1,%3\n"
"2: isync" "2: isync"
: "=&r" (tmp), "=&r" (old) : "=&r" (tmp), "=&r" (old)
: "r" (hpte), "r" (bits), "i" (HPTE_V_HVLOCK) : "r" (hpte), "r" (bits), "i" (HPTE_V_HVLOCK)
......
...@@ -289,9 +289,10 @@ struct kvmppc_vcore { ...@@ -289,9 +289,10 @@ struct kvmppc_vcore {
/* Values for vcore_state */ /* Values for vcore_state */
#define VCORE_INACTIVE 0 #define VCORE_INACTIVE 0
#define VCORE_RUNNING 1 #define VCORE_SLEEPING 1
#define VCORE_EXITING 2 #define VCORE_STARTING 2
#define VCORE_SLEEPING 3 #define VCORE_RUNNING 3
#define VCORE_EXITING 4
/* /*
* Struct used to manage memory for a virtual processor area * Struct used to manage memory for a virtual processor area
...@@ -558,13 +559,17 @@ struct kvm_vcpu_arch { ...@@ -558,13 +559,17 @@ struct kvm_vcpu_arch {
unsigned long dtl_index; unsigned long dtl_index;
u64 stolen_logged; u64 stolen_logged;
struct kvmppc_vpa slb_shadow; struct kvmppc_vpa slb_shadow;
spinlock_t tbacct_lock;
u64 busy_stolen;
u64 busy_preempt;
#endif #endif
}; };
/* Values for vcpu->arch.state */ /* Values for vcpu->arch.state */
#define KVMPPC_VCPU_STOPPED 0 #define KVMPPC_VCPU_NOTREADY 0
#define KVMPPC_VCPU_BUSY_IN_HOST 1 #define KVMPPC_VCPU_RUNNABLE 1
#define KVMPPC_VCPU_RUNNABLE 2 #define KVMPPC_VCPU_BUSY_IN_HOST 2
/* Values for vcpu->arch.io_gpr */ /* Values for vcpu->arch.io_gpr */
#define KVM_MMIO_REG_MASK 0x001f #define KVM_MMIO_REG_MASK 0x001f
......
...@@ -67,6 +67,14 @@ void generic_mach_cpu_die(void); ...@@ -67,6 +67,14 @@ void generic_mach_cpu_die(void);
void generic_set_cpu_dead(unsigned int cpu); void generic_set_cpu_dead(unsigned int cpu);
void generic_set_cpu_up(unsigned int cpu); void generic_set_cpu_up(unsigned int cpu);
int generic_check_cpu_restart(unsigned int cpu); int generic_check_cpu_restart(unsigned int cpu);
extern void inhibit_secondary_onlining(void);
extern void uninhibit_secondary_onlining(void);
#else /* HOTPLUG_CPU */
static inline void inhibit_secondary_onlining(void) {}
static inline void uninhibit_secondary_onlining(void) {}
#endif #endif
#ifdef CONFIG_PPC64 #ifdef CONFIG_PPC64
......
...@@ -7,6 +7,7 @@ header-y += bootx.h ...@@ -7,6 +7,7 @@ header-y += bootx.h
header-y += byteorder.h header-y += byteorder.h
header-y += cputable.h header-y += cputable.h
header-y += elf.h header-y += elf.h
header-y += epapr_hcalls.h
header-y += errno.h header-y += errno.h
header-y += fcntl.h header-y += fcntl.h
header-y += ioctl.h header-y += ioctl.h
...@@ -42,4 +43,3 @@ header-y += termios.h ...@@ -42,4 +43,3 @@ header-y += termios.h
header-y += types.h header-y += types.h
header-y += ucontext.h header-y += ucontext.h
header-y += unistd.h header-y += unistd.h
header-y += epapr_hcalls.h
...@@ -37,18 +37,8 @@ ...@@ -37,18 +37,8 @@
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
/* A "hypercall" is an "sc 1" instruction. This header file file provides C #ifndef _UAPI_ASM_POWERPC_EPAPR_HCALLS_H
* wrapper functions for the ePAPR hypervisor interface. It is inteded #define _UAPI_ASM_POWERPC_EPAPR_HCALLS_H
* for use by Linux device drivers and other operating systems.
*
* The hypercalls are implemented as inline assembly, rather than assembly
* language functions in a .S file, for optimization. It allows
* the caller to issue the hypercall instruction directly, improving both
* performance and memory footprint.
*/
#ifndef _EPAPR_HCALLS_H
#define _EPAPR_HCALLS_H
#define EV_BYTE_CHANNEL_SEND 1 #define EV_BYTE_CHANNEL_SEND 1
#define EV_BYTE_CHANNEL_RECEIVE 2 #define EV_BYTE_CHANNEL_RECEIVE 2
...@@ -105,407 +95,4 @@ ...@@ -105,407 +95,4 @@
#define EV_UNIMPLEMENTED 12 /* Unimplemented hypercall */ #define EV_UNIMPLEMENTED 12 /* Unimplemented hypercall */
#define EV_BUFFER_OVERFLOW 13 /* Caller-supplied buffer too small */ #define EV_BUFFER_OVERFLOW 13 /* Caller-supplied buffer too small */
#ifndef __ASSEMBLY__ #endif /* _UAPI_ASM_POWERPC_EPAPR_HCALLS_H */
#include <linux/types.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
/*
* Hypercall register clobber list
*
* These macros are used to define the list of clobbered registers during a
* hypercall. Technically, registers r0 and r3-r12 are always clobbered,
* but the gcc inline assembly syntax does not allow us to specify registers
* on the clobber list that are also on the input/output list. Therefore,
* the lists of clobbered registers depends on the number of register
* parmeters ("+r" and "=r") passed to the hypercall.
*
* Each assembly block should use one of the HCALL_CLOBBERSx macros. As a
* general rule, 'x' is the number of parameters passed to the assembly
* block *except* for r11.
*
* If you're not sure, just use the smallest value of 'x' that does not
* generate a compilation error. Because these are static inline functions,
* the compiler will only check the clobber list for a function if you
* compile code that calls that function.
*
* r3 and r11 are not included in any clobbers list because they are always
* listed as output registers.
*
* XER, CTR, and LR are currently listed as clobbers because it's uncertain
* whether they will be clobbered.
*
* Note that r11 can be used as an output parameter.
*
* The "memory" clobber is only necessary for hcalls where the Hypervisor
* will read or write guest memory. However, we add it to all hcalls because
* the impact is minimal, and we want to ensure that it's present for the
* hcalls that need it.
*/
/* List of common clobbered registers. Do not use this macro. */
#define EV_HCALL_CLOBBERS "r0", "r12", "xer", "ctr", "lr", "cc", "memory"
#define EV_HCALL_CLOBBERS8 EV_HCALL_CLOBBERS
#define EV_HCALL_CLOBBERS7 EV_HCALL_CLOBBERS8, "r10"
#define EV_HCALL_CLOBBERS6 EV_HCALL_CLOBBERS7, "r9"
#define EV_HCALL_CLOBBERS5 EV_HCALL_CLOBBERS6, "r8"
#define EV_HCALL_CLOBBERS4 EV_HCALL_CLOBBERS5, "r7"
#define EV_HCALL_CLOBBERS3 EV_HCALL_CLOBBERS4, "r6"
#define EV_HCALL_CLOBBERS2 EV_HCALL_CLOBBERS3, "r5"
#define EV_HCALL_CLOBBERS1 EV_HCALL_CLOBBERS2, "r4"
extern bool epapr_paravirt_enabled;
extern u32 epapr_hypercall_start[];
/*
* We use "uintptr_t" to define a register because it's guaranteed to be a
* 32-bit integer on a 32-bit platform, and a 64-bit integer on a 64-bit
* platform.
*
* All registers are either input/output or output only. Registers that are
* initialized before making the hypercall are input/output. All
* input/output registers are represented with "+r". Output-only registers
* are represented with "=r". Do not specify any unused registers. The
* clobber list will tell the compiler that the hypercall modifies those
* registers, which is good enough.
*/
/**
* ev_int_set_config - configure the specified interrupt
* @interrupt: the interrupt number
* @config: configuration for this interrupt
* @priority: interrupt priority
* @destination: destination CPU number
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_set_config(unsigned int interrupt,
uint32_t config, unsigned int priority, uint32_t destination)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
r11 = EV_HCALL_TOKEN(EV_INT_SET_CONFIG);
r3 = interrupt;
r4 = config;
r5 = priority;
r6 = destination;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6)
: : EV_HCALL_CLOBBERS4
);
return r3;
}
/**
* ev_int_get_config - return the config of the specified interrupt
* @interrupt: the interrupt number
* @config: returned configuration for this interrupt
* @priority: returned interrupt priority
* @destination: returned destination CPU number
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_get_config(unsigned int interrupt,
uint32_t *config, unsigned int *priority, uint32_t *destination)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
r11 = EV_HCALL_TOKEN(EV_INT_GET_CONFIG);
r3 = interrupt;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "=r" (r4), "=r" (r5), "=r" (r6)
: : EV_HCALL_CLOBBERS4
);
*config = r4;
*priority = r5;
*destination = r6;
return r3;
}
/**
* ev_int_set_mask - sets the mask for the specified interrupt source
* @interrupt: the interrupt number
* @mask: 0=enable interrupts, 1=disable interrupts
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_set_mask(unsigned int interrupt,
unsigned int mask)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = EV_HCALL_TOKEN(EV_INT_SET_MASK);
r3 = interrupt;
r4 = mask;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "+r" (r4)
: : EV_HCALL_CLOBBERS2
);
return r3;
}
/**
* ev_int_get_mask - returns the mask for the specified interrupt source
* @interrupt: the interrupt number
* @mask: returned mask for this interrupt (0=enabled, 1=disabled)
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_get_mask(unsigned int interrupt,
unsigned int *mask)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = EV_HCALL_TOKEN(EV_INT_GET_MASK);
r3 = interrupt;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "=r" (r4)
: : EV_HCALL_CLOBBERS2
);
*mask = r4;
return r3;
}
/**
* ev_int_eoi - signal the end of interrupt processing
* @interrupt: the interrupt number
*
* This function signals the end of processing for the the specified
* interrupt, which must be the interrupt currently in service. By
* definition, this is also the highest-priority interrupt.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_eoi(unsigned int interrupt)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = EV_HCALL_TOKEN(EV_INT_EOI);
r3 = interrupt;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* ev_byte_channel_send - send characters to a byte stream
* @handle: byte stream handle
* @count: (input) num of chars to send, (output) num chars sent
* @buffer: pointer to a 16-byte buffer
*
* @buffer must be at least 16 bytes long, because all 16 bytes will be
* read from memory into registers, even if count < 16.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_byte_channel_send(unsigned int handle,
unsigned int *count, const char buffer[EV_BYTE_CHANNEL_MAX_BYTES])
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
register uintptr_t r7 __asm__("r7");
register uintptr_t r8 __asm__("r8");
const uint32_t *p = (const uint32_t *) buffer;
r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_SEND);
r3 = handle;
r4 = *count;
r5 = be32_to_cpu(p[0]);
r6 = be32_to_cpu(p[1]);
r7 = be32_to_cpu(p[2]);
r8 = be32_to_cpu(p[3]);
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3),
"+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7), "+r" (r8)
: : EV_HCALL_CLOBBERS6
);
*count = r4;
return r3;
}
/**
* ev_byte_channel_receive - fetch characters from a byte channel
* @handle: byte channel handle
* @count: (input) max num of chars to receive, (output) num chars received
* @buffer: pointer to a 16-byte buffer
*
* The size of @buffer must be at least 16 bytes, even if you request fewer
* than 16 characters, because we always write 16 bytes to @buffer. This is
* for performance reasons.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_byte_channel_receive(unsigned int handle,
unsigned int *count, char buffer[EV_BYTE_CHANNEL_MAX_BYTES])
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
register uintptr_t r6 __asm__("r6");
register uintptr_t r7 __asm__("r7");
register uintptr_t r8 __asm__("r8");
uint32_t *p = (uint32_t *) buffer;
r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_RECEIVE);
r3 = handle;
r4 = *count;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "+r" (r4),
"=r" (r5), "=r" (r6), "=r" (r7), "=r" (r8)
: : EV_HCALL_CLOBBERS6
);
*count = r4;
p[0] = cpu_to_be32(r5);
p[1] = cpu_to_be32(r6);
p[2] = cpu_to_be32(r7);
p[3] = cpu_to_be32(r8);
return r3;
}
/**
* ev_byte_channel_poll - returns the status of the byte channel buffers
* @handle: byte channel handle
* @rx_count: returned count of bytes in receive queue
* @tx_count: returned count of free space in transmit queue
*
* This function reports the amount of data in the receive queue (i.e. the
* number of bytes you can read), and the amount of free space in the transmit
* queue (i.e. the number of bytes you can write).
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_byte_channel_poll(unsigned int handle,
unsigned int *rx_count, unsigned int *tx_count)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
register uintptr_t r5 __asm__("r5");
r11 = EV_HCALL_TOKEN(EV_BYTE_CHANNEL_POLL);
r3 = handle;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "=r" (r4), "=r" (r5)
: : EV_HCALL_CLOBBERS3
);
*rx_count = r4;
*tx_count = r5;
return r3;
}
/**
* ev_int_iack - acknowledge an interrupt
* @handle: handle to the target interrupt controller
* @vector: returned interrupt vector
*
* If handle is zero, the function returns the next interrupt source
* number to be handled irrespective of the hierarchy or cascading
* of interrupt controllers. If non-zero, specifies a handle to the
* interrupt controller that is the target of the acknowledge.
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_int_iack(unsigned int handle,
unsigned int *vector)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
register uintptr_t r4 __asm__("r4");
r11 = EV_HCALL_TOKEN(EV_INT_IACK);
r3 = handle;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3), "=r" (r4)
: : EV_HCALL_CLOBBERS2
);
*vector = r4;
return r3;
}
/**
* ev_doorbell_send - send a doorbell to another partition
* @handle: doorbell send handle
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_doorbell_send(unsigned int handle)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = EV_HCALL_TOKEN(EV_DOORBELL_SEND);
r3 = handle;
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "+r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
/**
* ev_idle -- wait for next interrupt on this core
*
* Returns 0 for success, or an error code.
*/
static inline unsigned int ev_idle(void)
{
register uintptr_t r11 __asm__("r11");
register uintptr_t r3 __asm__("r3");
r11 = EV_HCALL_TOKEN(EV_IDLE);
asm volatile("bl epapr_hypercall_start"
: "+r" (r11), "=r" (r3)
: : EV_HCALL_CLOBBERS1
);
return r3;
}
#endif /* !__ASSEMBLY__ */
#endif
...@@ -427,6 +427,45 @@ int generic_check_cpu_restart(unsigned int cpu) ...@@ -427,6 +427,45 @@ int generic_check_cpu_restart(unsigned int cpu)
{ {
return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE; return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
} }
static atomic_t secondary_inhibit_count;
/*
* Don't allow secondary CPU threads to come online
*/
void inhibit_secondary_onlining(void)
{
/*
* This makes secondary_inhibit_count stable during cpu
* online/offline operations.
*/
get_online_cpus();
atomic_inc(&secondary_inhibit_count);
put_online_cpus();
}
EXPORT_SYMBOL_GPL(inhibit_secondary_onlining);
/*
* Allow secondary CPU threads to come online again
*/
void uninhibit_secondary_onlining(void)
{
get_online_cpus();
atomic_dec(&secondary_inhibit_count);
put_online_cpus();
}
EXPORT_SYMBOL_GPL(uninhibit_secondary_onlining);
static int secondaries_inhibited(void)
{
return atomic_read(&secondary_inhibit_count);
}
#else /* HOTPLUG_CPU */
#define secondaries_inhibited() 0
#endif #endif
static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle) static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
...@@ -445,6 +484,13 @@ int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle) ...@@ -445,6 +484,13 @@ int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
{ {
int rc, c; int rc, c;
/*
* Don't allow secondary threads to come online if inhibited
*/
if (threads_per_core > 1 && secondaries_inhibited() &&
cpu % threads_per_core != 0)
return -EBUSY;
if (smp_ops == NULL || if (smp_ops == NULL ||
(smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu))) (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
return -EINVAL; return -EINVAL;
......
...@@ -46,6 +46,7 @@ static int emulate_mtdcr(struct kvm_vcpu *vcpu, int rs, int dcrn) ...@@ -46,6 +46,7 @@ static int emulate_mtdcr(struct kvm_vcpu *vcpu, int rs, int dcrn)
vcpu->run->dcr.dcrn = dcrn; vcpu->run->dcr.dcrn = dcrn;
vcpu->run->dcr.data = kvmppc_get_gpr(vcpu, rs); vcpu->run->dcr.data = kvmppc_get_gpr(vcpu, rs);
vcpu->run->dcr.is_write = 1; vcpu->run->dcr.is_write = 1;
vcpu->arch.dcr_is_write = 1;
vcpu->arch.dcr_needed = 1; vcpu->arch.dcr_needed = 1;
kvmppc_account_exit(vcpu, DCR_EXITS); kvmppc_account_exit(vcpu, DCR_EXITS);
return EMULATE_DO_DCR; return EMULATE_DO_DCR;
...@@ -80,6 +81,7 @@ static int emulate_mfdcr(struct kvm_vcpu *vcpu, int rt, int dcrn) ...@@ -80,6 +81,7 @@ static int emulate_mfdcr(struct kvm_vcpu *vcpu, int rt, int dcrn)
vcpu->run->dcr.dcrn = dcrn; vcpu->run->dcr.dcrn = dcrn;
vcpu->run->dcr.data = 0; vcpu->run->dcr.data = 0;
vcpu->run->dcr.is_write = 0; vcpu->run->dcr.is_write = 0;
vcpu->arch.dcr_is_write = 0;
vcpu->arch.io_gpr = rt; vcpu->arch.io_gpr = rt;
vcpu->arch.dcr_needed = 1; vcpu->arch.dcr_needed = 1;
kvmppc_account_exit(vcpu, DCR_EXITS); kvmppc_account_exit(vcpu, DCR_EXITS);
......
...@@ -47,6 +47,7 @@ ...@@ -47,6 +47,7 @@
#include <asm/page.h> #include <asm/page.h>
#include <asm/hvcall.h> #include <asm/hvcall.h>
#include <asm/switch_to.h> #include <asm/switch_to.h>
#include <asm/smp.h>
#include <linux/gfp.h> #include <linux/gfp.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/highmem.h> #include <linux/highmem.h>
...@@ -56,25 +57,77 @@ ...@@ -56,25 +57,77 @@
/* #define EXIT_DEBUG_SIMPLE */ /* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */ /* #define EXIT_DEBUG_INT */
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
/* Used as a "null" value for timebase values */
#define TB_NIL (~(u64)0)
static void kvmppc_end_cede(struct kvm_vcpu *vcpu); static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
/*
* We use the vcpu_load/put functions to measure stolen time.
* Stolen time is counted as time when either the vcpu is able to
* run as part of a virtual core, but the task running the vcore
* is preempted or sleeping, or when the vcpu needs something done
* in the kernel by the task running the vcpu, but that task is
* preempted or sleeping. Those two things have to be counted
* separately, since one of the vcpu tasks will take on the job
* of running the core, and the other vcpu tasks in the vcore will
* sleep waiting for it to do that, but that sleep shouldn't count
* as stolen time.
*
* Hence we accumulate stolen time when the vcpu can run as part of
* a vcore using vc->stolen_tb, and the stolen time when the vcpu
* needs its task to do other things in the kernel (for example,
* service a page fault) in busy_stolen. We don't accumulate
* stolen time for a vcore when it is inactive, or for a vcpu
* when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
* a misnomer; it means that the vcpu task is not executing in
* the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
* the kernel. We don't have any way of dividing up that time
* between time that the vcpu is genuinely stopped, time that
* the task is actively working on behalf of the vcpu, and time
* that the task is preempted, so we don't count any of it as
* stolen.
*
* Updates to busy_stolen are protected by arch.tbacct_lock;
* updates to vc->stolen_tb are protected by the arch.tbacct_lock
* of the vcpu that has taken responsibility for running the vcore
* (i.e. vc->runner). The stolen times are measured in units of
* timebase ticks. (Note that the != TB_NIL checks below are
* purely defensive; they should never fail.)
*/
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{ {
struct kvmppc_vcore *vc = vcpu->arch.vcore; struct kvmppc_vcore *vc = vcpu->arch.vcore;
local_paca->kvm_hstate.kvm_vcpu = vcpu; spin_lock(&vcpu->arch.tbacct_lock);
local_paca->kvm_hstate.kvm_vcore = vc; if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) vc->preempt_tb != TB_NIL) {
vc->stolen_tb += mftb() - vc->preempt_tb; vc->stolen_tb += mftb() - vc->preempt_tb;
vc->preempt_tb = TB_NIL;
}
if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
vcpu->arch.busy_preempt != TB_NIL) {
vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
vcpu->arch.busy_preempt = TB_NIL;
}
spin_unlock(&vcpu->arch.tbacct_lock);
} }
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{ {
struct kvmppc_vcore *vc = vcpu->arch.vcore; struct kvmppc_vcore *vc = vcpu->arch.vcore;
spin_lock(&vcpu->arch.tbacct_lock);
if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
vc->preempt_tb = mftb(); vc->preempt_tb = mftb();
if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
vcpu->arch.busy_preempt = mftb();
spin_unlock(&vcpu->arch.tbacct_lock);
} }
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
...@@ -334,6 +387,11 @@ static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) ...@@ -334,6 +387,11 @@ static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{ {
if (!(vcpu->arch.vpa.update_pending ||
vcpu->arch.slb_shadow.update_pending ||
vcpu->arch.dtl.update_pending))
return;
spin_lock(&vcpu->arch.vpa_update_lock); spin_lock(&vcpu->arch.vpa_update_lock);
if (vcpu->arch.vpa.update_pending) { if (vcpu->arch.vpa.update_pending) {
kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
...@@ -350,24 +408,61 @@ static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) ...@@ -350,24 +408,61 @@ static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
spin_unlock(&vcpu->arch.vpa_update_lock); spin_unlock(&vcpu->arch.vpa_update_lock);
} }
/*
* Return the accumulated stolen time for the vcore up until `now'.
* The caller should hold the vcore lock.
*/
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
u64 p;
/*
* If we are the task running the vcore, then since we hold
* the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
* can't be updated, so we don't need the tbacct_lock.
* If the vcore is inactive, it can't become active (since we
* hold the vcore lock), so the vcpu load/put functions won't
* update stolen_tb/preempt_tb, and we don't need tbacct_lock.
*/
if (vc->vcore_state != VCORE_INACTIVE &&
vc->runner->arch.run_task != current) {
spin_lock(&vc->runner->arch.tbacct_lock);
p = vc->stolen_tb;
if (vc->preempt_tb != TB_NIL)
p += now - vc->preempt_tb;
spin_unlock(&vc->runner->arch.tbacct_lock);
} else {
p = vc->stolen_tb;
}
return p;
}
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
struct kvmppc_vcore *vc) struct kvmppc_vcore *vc)
{ {
struct dtl_entry *dt; struct dtl_entry *dt;
struct lppaca *vpa; struct lppaca *vpa;
unsigned long old_stolen; unsigned long stolen;
unsigned long core_stolen;
u64 now;
dt = vcpu->arch.dtl_ptr; dt = vcpu->arch.dtl_ptr;
vpa = vcpu->arch.vpa.pinned_addr; vpa = vcpu->arch.vpa.pinned_addr;
old_stolen = vcpu->arch.stolen_logged; now = mftb();
vcpu->arch.stolen_logged = vc->stolen_tb; core_stolen = vcore_stolen_time(vc, now);
stolen = core_stolen - vcpu->arch.stolen_logged;
vcpu->arch.stolen_logged = core_stolen;
spin_lock(&vcpu->arch.tbacct_lock);
stolen += vcpu->arch.busy_stolen;
vcpu->arch.busy_stolen = 0;
spin_unlock(&vcpu->arch.tbacct_lock);
if (!dt || !vpa) if (!dt || !vpa)
return; return;
memset(dt, 0, sizeof(struct dtl_entry)); memset(dt, 0, sizeof(struct dtl_entry));
dt->dispatch_reason = 7; dt->dispatch_reason = 7;
dt->processor_id = vc->pcpu + vcpu->arch.ptid; dt->processor_id = vc->pcpu + vcpu->arch.ptid;
dt->timebase = mftb(); dt->timebase = now;
dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen; dt->enqueue_to_dispatch_time = stolen;
dt->srr0 = kvmppc_get_pc(vcpu); dt->srr0 = kvmppc_get_pc(vcpu);
dt->srr1 = vcpu->arch.shregs.msr; dt->srr1 = vcpu->arch.shregs.msr;
++dt; ++dt;
...@@ -432,7 +527,6 @@ static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, ...@@ -432,7 +527,6 @@ static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
struct task_struct *tsk) struct task_struct *tsk)
{ {
int r = RESUME_HOST; int r = RESUME_HOST;
int srcu_idx;
vcpu->stat.sum_exits++; vcpu->stat.sum_exits++;
...@@ -492,16 +586,12 @@ static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, ...@@ -492,16 +586,12 @@ static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
* have been handled already. * have been handled already.
*/ */
case BOOK3S_INTERRUPT_H_DATA_STORAGE: case BOOK3S_INTERRUPT_H_DATA_STORAGE:
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); r = RESUME_PAGE_FAULT;
r = kvmppc_book3s_hv_page_fault(run, vcpu,
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
break; break;
case BOOK3S_INTERRUPT_H_INST_STORAGE: case BOOK3S_INTERRUPT_H_INST_STORAGE:
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
r = kvmppc_book3s_hv_page_fault(run, vcpu, vcpu->arch.fault_dsisr = 0;
kvmppc_get_pc(vcpu), 0); r = RESUME_PAGE_FAULT;
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
break; break;
/* /*
* This occurs if the guest executes an illegal instruction. * This occurs if the guest executes an illegal instruction.
...@@ -721,9 +811,8 @@ int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) ...@@ -721,9 +811,8 @@ int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
addr = val->vpaval.addr; addr = val->vpaval.addr;
len = val->vpaval.length; len = val->vpaval.length;
r = -EINVAL; r = -EINVAL;
if (len < sizeof(struct dtl_entry)) if (addr && (len < sizeof(struct dtl_entry) ||
break; !vcpu->arch.vpa.next_gpa))
if (addr && !vcpu->arch.vpa.next_gpa)
break; break;
len -= len % sizeof(struct dtl_entry); len -= len % sizeof(struct dtl_entry);
r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
...@@ -771,13 +860,12 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) ...@@ -771,13 +860,12 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
vcpu->arch.pvr = mfspr(SPRN_PVR); vcpu->arch.pvr = mfspr(SPRN_PVR);
kvmppc_set_pvr(vcpu, vcpu->arch.pvr); kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
spin_lock_init(&vcpu->arch.vpa_update_lock); spin_lock_init(&vcpu->arch.vpa_update_lock);
spin_lock_init(&vcpu->arch.tbacct_lock);
vcpu->arch.busy_preempt = TB_NIL;
kvmppc_mmu_book3s_hv_init(vcpu); kvmppc_mmu_book3s_hv_init(vcpu);
/* vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
* We consider the vcpu stopped until we see the first run ioctl for it.
*/
vcpu->arch.state = KVMPPC_VCPU_STOPPED;
init_waitqueue_head(&vcpu->arch.cpu_run); init_waitqueue_head(&vcpu->arch.cpu_run);
...@@ -789,7 +877,7 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) ...@@ -789,7 +877,7 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
INIT_LIST_HEAD(&vcore->runnable_threads); INIT_LIST_HEAD(&vcore->runnable_threads);
spin_lock_init(&vcore->lock); spin_lock_init(&vcore->lock);
init_waitqueue_head(&vcore->wq); init_waitqueue_head(&vcore->wq);
vcore->preempt_tb = mftb(); vcore->preempt_tb = TB_NIL;
} }
kvm->arch.vcores[core] = vcore; kvm->arch.vcores[core] = vcore;
} }
...@@ -802,7 +890,6 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) ...@@ -802,7 +890,6 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
++vcore->num_threads; ++vcore->num_threads;
spin_unlock(&vcore->lock); spin_unlock(&vcore->lock);
vcpu->arch.vcore = vcore; vcpu->arch.vcore = vcore;
vcpu->arch.stolen_logged = vcore->stolen_tb;
vcpu->arch.cpu_type = KVM_CPU_3S_64; vcpu->arch.cpu_type = KVM_CPU_3S_64;
kvmppc_sanity_check(vcpu); kvmppc_sanity_check(vcpu);
...@@ -862,11 +949,18 @@ extern void xics_wake_cpu(int cpu); ...@@ -862,11 +949,18 @@ extern void xics_wake_cpu(int cpu);
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
struct kvm_vcpu *vcpu) struct kvm_vcpu *vcpu)
{ {
u64 now;
if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
return; return;
spin_lock(&vcpu->arch.tbacct_lock);
now = mftb();
vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
vcpu->arch.stolen_logged;
vcpu->arch.busy_preempt = now;
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
spin_unlock(&vcpu->arch.tbacct_lock);
--vc->n_runnable; --vc->n_runnable;
++vc->n_busy;
list_del(&vcpu->arch.run_list); list_del(&vcpu->arch.run_list);
} }
...@@ -879,6 +973,7 @@ static int kvmppc_grab_hwthread(int cpu) ...@@ -879,6 +973,7 @@ static int kvmppc_grab_hwthread(int cpu)
/* Ensure the thread won't go into the kernel if it wakes */ /* Ensure the thread won't go into the kernel if it wakes */
tpaca->kvm_hstate.hwthread_req = 1; tpaca->kvm_hstate.hwthread_req = 1;
tpaca->kvm_hstate.kvm_vcpu = NULL;
/* /*
* If the thread is already executing in the kernel (e.g. handling * If the thread is already executing in the kernel (e.g. handling
...@@ -928,7 +1023,6 @@ static void kvmppc_start_thread(struct kvm_vcpu *vcpu) ...@@ -928,7 +1023,6 @@ static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
smp_wmb(); smp_wmb();
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
if (vcpu->arch.ptid) { if (vcpu->arch.ptid) {
kvmppc_grab_hwthread(cpu);
xics_wake_cpu(cpu); xics_wake_cpu(cpu);
++vc->n_woken; ++vc->n_woken;
} }
...@@ -954,7 +1048,8 @@ static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) ...@@ -954,7 +1048,8 @@ static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
/* /*
* Check that we are on thread 0 and that any other threads in * Check that we are on thread 0 and that any other threads in
* this core are off-line. * this core are off-line. Then grab the threads so they can't
* enter the kernel.
*/ */
static int on_primary_thread(void) static int on_primary_thread(void)
{ {
...@@ -966,6 +1061,17 @@ static int on_primary_thread(void) ...@@ -966,6 +1061,17 @@ static int on_primary_thread(void)
while (++thr < threads_per_core) while (++thr < threads_per_core)
if (cpu_online(cpu + thr)) if (cpu_online(cpu + thr))
return 0; return 0;
/* Grab all hw threads so they can't go into the kernel */
for (thr = 1; thr < threads_per_core; ++thr) {
if (kvmppc_grab_hwthread(cpu + thr)) {
/* Couldn't grab one; let the others go */
do {
kvmppc_release_hwthread(cpu + thr);
} while (--thr > 0);
return 0;
}
}
return 1; return 1;
} }
...@@ -973,22 +1079,24 @@ static int on_primary_thread(void) ...@@ -973,22 +1079,24 @@ static int on_primary_thread(void)
* Run a set of guest threads on a physical core. * Run a set of guest threads on a physical core.
* Called with vc->lock held. * Called with vc->lock held.
*/ */
static int kvmppc_run_core(struct kvmppc_vcore *vc) static void kvmppc_run_core(struct kvmppc_vcore *vc)
{ {
struct kvm_vcpu *vcpu, *vcpu0, *vnext; struct kvm_vcpu *vcpu, *vcpu0, *vnext;
long ret; long ret;
u64 now; u64 now;
int ptid, i, need_vpa_update; int ptid, i, need_vpa_update;
int srcu_idx; int srcu_idx;
struct kvm_vcpu *vcpus_to_update[threads_per_core];
/* don't start if any threads have a signal pending */ /* don't start if any threads have a signal pending */
need_vpa_update = 0; need_vpa_update = 0;
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
if (signal_pending(vcpu->arch.run_task)) if (signal_pending(vcpu->arch.run_task))
return 0; return;
need_vpa_update |= vcpu->arch.vpa.update_pending | if (vcpu->arch.vpa.update_pending ||
vcpu->arch.slb_shadow.update_pending | vcpu->arch.slb_shadow.update_pending ||
vcpu->arch.dtl.update_pending; vcpu->arch.dtl.update_pending)
vcpus_to_update[need_vpa_update++] = vcpu;
} }
/* /*
...@@ -998,7 +1106,7 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc) ...@@ -998,7 +1106,7 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc)
vc->n_woken = 0; vc->n_woken = 0;
vc->nap_count = 0; vc->nap_count = 0;
vc->entry_exit_count = 0; vc->entry_exit_count = 0;
vc->vcore_state = VCORE_RUNNING; vc->vcore_state = VCORE_STARTING;
vc->in_guest = 0; vc->in_guest = 0;
vc->napping_threads = 0; vc->napping_threads = 0;
...@@ -1008,23 +1116,11 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc) ...@@ -1008,23 +1116,11 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc)
*/ */
if (need_vpa_update) { if (need_vpa_update) {
spin_unlock(&vc->lock); spin_unlock(&vc->lock);
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) for (i = 0; i < need_vpa_update; ++i)
kvmppc_update_vpas(vcpu); kvmppc_update_vpas(vcpus_to_update[i]);
spin_lock(&vc->lock); spin_lock(&vc->lock);
} }
/*
* Make sure we are running on thread 0, and that
* secondary threads are offline.
* XXX we should also block attempts to bring any
* secondary threads online.
*/
if (threads_per_core > 1 && !on_primary_thread()) {
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
vcpu->arch.ret = -EBUSY;
goto out;
}
/* /*
* Assign physical thread IDs, first to non-ceded vcpus * Assign physical thread IDs, first to non-ceded vcpus
* and then to ceded ones. * and then to ceded ones.
...@@ -1039,21 +1135,28 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc) ...@@ -1039,21 +1135,28 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc)
} }
} }
if (!vcpu0) if (!vcpu0)
return 0; /* nothing to run */ goto out; /* nothing to run; should never happen */
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
if (vcpu->arch.ceded) if (vcpu->arch.ceded)
vcpu->arch.ptid = ptid++; vcpu->arch.ptid = ptid++;
vc->stolen_tb += mftb() - vc->preempt_tb; /*
* Make sure we are running on thread 0, and that
* secondary threads are offline.
*/
if (threads_per_core > 1 && !on_primary_thread()) {
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
vcpu->arch.ret = -EBUSY;
goto out;
}
vc->pcpu = smp_processor_id(); vc->pcpu = smp_processor_id();
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
kvmppc_start_thread(vcpu); kvmppc_start_thread(vcpu);
kvmppc_create_dtl_entry(vcpu, vc); kvmppc_create_dtl_entry(vcpu, vc);
} }
/* Grab any remaining hw threads so they can't go into the kernel */
for (i = ptid; i < threads_per_core; ++i)
kvmppc_grab_hwthread(vc->pcpu + i);
vc->vcore_state = VCORE_RUNNING;
preempt_disable(); preempt_disable();
spin_unlock(&vc->lock); spin_unlock(&vc->lock);
...@@ -1062,8 +1165,6 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc) ...@@ -1062,8 +1165,6 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc)
srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu); srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
__kvmppc_vcore_entry(NULL, vcpu0); __kvmppc_vcore_entry(NULL, vcpu0);
for (i = 0; i < threads_per_core; ++i)
kvmppc_release_hwthread(vc->pcpu + i);
spin_lock(&vc->lock); spin_lock(&vc->lock);
/* disable sending of IPIs on virtual external irqs */ /* disable sending of IPIs on virtual external irqs */
...@@ -1072,6 +1173,8 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc) ...@@ -1072,6 +1173,8 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc)
/* wait for secondary threads to finish writing their state to memory */ /* wait for secondary threads to finish writing their state to memory */
if (vc->nap_count < vc->n_woken) if (vc->nap_count < vc->n_woken)
kvmppc_wait_for_nap(vc); kvmppc_wait_for_nap(vc);
for (i = 0; i < threads_per_core; ++i)
kvmppc_release_hwthread(vc->pcpu + i);
/* prevent other vcpu threads from doing kvmppc_start_thread() now */ /* prevent other vcpu threads from doing kvmppc_start_thread() now */
vc->vcore_state = VCORE_EXITING; vc->vcore_state = VCORE_EXITING;
spin_unlock(&vc->lock); spin_unlock(&vc->lock);
...@@ -1085,6 +1188,7 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc) ...@@ -1085,6 +1188,7 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc)
preempt_enable(); preempt_enable();
kvm_resched(vcpu); kvm_resched(vcpu);
spin_lock(&vc->lock);
now = get_tb(); now = get_tb();
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
/* cancel pending dec exception if dec is positive */ /* cancel pending dec exception if dec is positive */
...@@ -1108,10 +1212,8 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc) ...@@ -1108,10 +1212,8 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc)
} }
} }
spin_lock(&vc->lock);
out: out:
vc->vcore_state = VCORE_INACTIVE; vc->vcore_state = VCORE_INACTIVE;
vc->preempt_tb = mftb();
list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
arch.run_list) { arch.run_list) {
if (vcpu->arch.ret != RESUME_GUEST) { if (vcpu->arch.ret != RESUME_GUEST) {
...@@ -1119,8 +1221,6 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc) ...@@ -1119,8 +1221,6 @@ static int kvmppc_run_core(struct kvmppc_vcore *vc)
wake_up(&vcpu->arch.cpu_run); wake_up(&vcpu->arch.cpu_run);
} }
} }
return 1;
} }
/* /*
...@@ -1144,19 +1244,10 @@ static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) ...@@ -1144,19 +1244,10 @@ static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{ {
DEFINE_WAIT(wait); DEFINE_WAIT(wait);
struct kvm_vcpu *v;
int all_idle = 1;
prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
vc->vcore_state = VCORE_SLEEPING; vc->vcore_state = VCORE_SLEEPING;
spin_unlock(&vc->lock); spin_unlock(&vc->lock);
list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
if (!v->arch.ceded || v->arch.pending_exceptions) {
all_idle = 0;
break;
}
}
if (all_idle)
schedule(); schedule();
finish_wait(&vc->wq, &wait); finish_wait(&vc->wq, &wait);
spin_lock(&vc->lock); spin_lock(&vc->lock);
...@@ -1166,13 +1257,13 @@ static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) ...@@ -1166,13 +1257,13 @@ static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{ {
int n_ceded; int n_ceded;
int prev_state;
struct kvmppc_vcore *vc; struct kvmppc_vcore *vc;
struct kvm_vcpu *v, *vn; struct kvm_vcpu *v, *vn;
kvm_run->exit_reason = 0; kvm_run->exit_reason = 0;
vcpu->arch.ret = RESUME_GUEST; vcpu->arch.ret = RESUME_GUEST;
vcpu->arch.trap = 0; vcpu->arch.trap = 0;
kvmppc_update_vpas(vcpu);
/* /*
* Synchronize with other threads in this virtual core * Synchronize with other threads in this virtual core
...@@ -1182,8 +1273,9 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) ...@@ -1182,8 +1273,9 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
vcpu->arch.ceded = 0; vcpu->arch.ceded = 0;
vcpu->arch.run_task = current; vcpu->arch.run_task = current;
vcpu->arch.kvm_run = kvm_run; vcpu->arch.kvm_run = kvm_run;
prev_state = vcpu->arch.state; vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
vcpu->arch.busy_preempt = TB_NIL;
list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
++vc->n_runnable; ++vc->n_runnable;
...@@ -1192,33 +1284,26 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) ...@@ -1192,33 +1284,26 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
* If the vcore is already running, we may be able to start * If the vcore is already running, we may be able to start
* this thread straight away and have it join in. * this thread straight away and have it join in.
*/ */
if (prev_state == KVMPPC_VCPU_STOPPED) { if (!signal_pending(current)) {
if (vc->vcore_state == VCORE_RUNNING && if (vc->vcore_state == VCORE_RUNNING &&
VCORE_EXIT_COUNT(vc) == 0) { VCORE_EXIT_COUNT(vc) == 0) {
vcpu->arch.ptid = vc->n_runnable - 1; vcpu->arch.ptid = vc->n_runnable - 1;
kvmppc_create_dtl_entry(vcpu, vc);
kvmppc_start_thread(vcpu); kvmppc_start_thread(vcpu);
} else if (vc->vcore_state == VCORE_SLEEPING) {
wake_up(&vc->wq);
} }
} else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST) }
--vc->n_busy;
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
!signal_pending(current)) { !signal_pending(current)) {
if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) { if (vc->vcore_state != VCORE_INACTIVE) {
spin_unlock(&vc->lock); spin_unlock(&vc->lock);
kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
spin_lock(&vc->lock); spin_lock(&vc->lock);
continue; continue;
} }
vc->runner = vcpu;
n_ceded = 0;
list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
n_ceded += v->arch.ceded;
if (n_ceded == vc->n_runnable)
kvmppc_vcore_blocked(vc);
else
kvmppc_run_core(vc);
list_for_each_entry_safe(v, vn, &vc->runnable_threads, list_for_each_entry_safe(v, vn, &vc->runnable_threads,
arch.run_list) { arch.run_list) {
kvmppc_core_prepare_to_enter(v); kvmppc_core_prepare_to_enter(v);
...@@ -1230,22 +1315,40 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) ...@@ -1230,22 +1315,40 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
wake_up(&v->arch.cpu_run); wake_up(&v->arch.cpu_run);
} }
} }
if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
break;
vc->runner = vcpu;
n_ceded = 0;
list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
if (!v->arch.pending_exceptions)
n_ceded += v->arch.ceded;
if (n_ceded == vc->n_runnable)
kvmppc_vcore_blocked(vc);
else
kvmppc_run_core(vc);
vc->runner = NULL; vc->runner = NULL;
} }
if (signal_pending(current)) { while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
if (vc->vcore_state == VCORE_RUNNING || (vc->vcore_state == VCORE_RUNNING ||
vc->vcore_state == VCORE_EXITING) { vc->vcore_state == VCORE_EXITING)) {
spin_unlock(&vc->lock); spin_unlock(&vc->lock);
kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
spin_lock(&vc->lock); spin_lock(&vc->lock);
} }
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
kvmppc_remove_runnable(vc, vcpu); kvmppc_remove_runnable(vc, vcpu);
vcpu->stat.signal_exits++; vcpu->stat.signal_exits++;
kvm_run->exit_reason = KVM_EXIT_INTR; kvm_run->exit_reason = KVM_EXIT_INTR;
vcpu->arch.ret = -EINTR; vcpu->arch.ret = -EINTR;
} }
if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
/* Wake up some vcpu to run the core */
v = list_first_entry(&vc->runnable_threads,
struct kvm_vcpu, arch.run_list);
wake_up(&v->arch.cpu_run);
} }
spin_unlock(&vc->lock); spin_unlock(&vc->lock);
...@@ -1255,6 +1358,7 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) ...@@ -1255,6 +1358,7 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
{ {
int r; int r;
int srcu_idx;
if (!vcpu->arch.sane) { if (!vcpu->arch.sane) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR; run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
...@@ -1285,6 +1389,7 @@ int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) ...@@ -1285,6 +1389,7 @@ int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
flush_vsx_to_thread(current); flush_vsx_to_thread(current);
vcpu->arch.wqp = &vcpu->arch.vcore->wq; vcpu->arch.wqp = &vcpu->arch.vcore->wq;
vcpu->arch.pgdir = current->mm->pgd; vcpu->arch.pgdir = current->mm->pgd;
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
do { do {
r = kvmppc_run_vcpu(run, vcpu); r = kvmppc_run_vcpu(run, vcpu);
...@@ -1293,10 +1398,16 @@ int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) ...@@ -1293,10 +1398,16 @@ int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
!(vcpu->arch.shregs.msr & MSR_PR)) { !(vcpu->arch.shregs.msr & MSR_PR)) {
r = kvmppc_pseries_do_hcall(vcpu); r = kvmppc_pseries_do_hcall(vcpu);
kvmppc_core_prepare_to_enter(vcpu); kvmppc_core_prepare_to_enter(vcpu);
} else if (r == RESUME_PAGE_FAULT) {
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvmppc_book3s_hv_page_fault(run, vcpu,
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
} }
} while (r == RESUME_GUEST); } while (r == RESUME_GUEST);
out: out:
vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
atomic_dec(&vcpu->kvm->arch.vcpus_running); atomic_dec(&vcpu->kvm->arch.vcpus_running);
return r; return r;
} }
...@@ -1730,11 +1841,20 @@ int kvmppc_core_init_vm(struct kvm *kvm) ...@@ -1730,11 +1841,20 @@ int kvmppc_core_init_vm(struct kvm *kvm)
kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
spin_lock_init(&kvm->arch.slot_phys_lock); spin_lock_init(&kvm->arch.slot_phys_lock);
/*
* Don't allow secondary CPU threads to come online
* while any KVM VMs exist.
*/
inhibit_secondary_onlining();
return 0; return 0;
} }
void kvmppc_core_destroy_vm(struct kvm *kvm) void kvmppc_core_destroy_vm(struct kvm *kvm)
{ {
uninhibit_secondary_onlining();
if (kvm->arch.rma) { if (kvm->arch.rma) {
kvm_release_rma(kvm->arch.rma); kvm_release_rma(kvm->arch.rma);
kvm->arch.rma = NULL; kvm->arch.rma = NULL;
......
...@@ -134,8 +134,11 @@ kvm_start_guest: ...@@ -134,8 +134,11 @@ kvm_start_guest:
27: /* XXX should handle hypervisor maintenance interrupts etc. here */ 27: /* XXX should handle hypervisor maintenance interrupts etc. here */
/* reload vcpu pointer after clearing the IPI */
ld r4,HSTATE_KVM_VCPU(r13)
cmpdi r4,0
/* if we have no vcpu to run, go back to sleep */ /* if we have no vcpu to run, go back to sleep */
beq cr1,kvm_no_guest beq kvm_no_guest
/* were we napping due to cede? */ /* were we napping due to cede? */
lbz r0,HSTATE_NAPPING(r13) lbz r0,HSTATE_NAPPING(r13)
...@@ -1587,6 +1590,10 @@ secondary_too_late: ...@@ -1587,6 +1590,10 @@ secondary_too_late:
.endr .endr
secondary_nap: secondary_nap:
/* Clear our vcpu pointer so we don't come back in early */
li r0, 0
std r0, HSTATE_KVM_VCPU(r13)
lwsync
/* Clear any pending IPI - assume we're a secondary thread */ /* Clear any pending IPI - assume we're a secondary thread */
ld r5, HSTATE_XICS_PHYS(r13) ld r5, HSTATE_XICS_PHYS(r13)
li r7, XICS_XIRR li r7, XICS_XIRR
...@@ -1612,8 +1619,6 @@ secondary_nap: ...@@ -1612,8 +1619,6 @@ secondary_nap:
kvm_no_guest: kvm_no_guest:
li r0, KVM_HWTHREAD_IN_NAP li r0, KVM_HWTHREAD_IN_NAP
stb r0, HSTATE_HWTHREAD_STATE(r13) stb r0, HSTATE_HWTHREAD_STATE(r13)
li r0, 0
std r0, HSTATE_KVM_VCPU(r13)
li r3, LPCR_PECE0 li r3, LPCR_PECE0
mfspr r4, SPRN_LPCR mfspr r4, SPRN_LPCR
......
...@@ -131,6 +131,125 @@ u32 kvmppc_get_dec(struct kvm_vcpu *vcpu, u64 tb) ...@@ -131,6 +131,125 @@ u32 kvmppc_get_dec(struct kvm_vcpu *vcpu, u64 tb)
return vcpu->arch.dec - jd; return vcpu->arch.dec - jd;
} }
static int kvmppc_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
{
enum emulation_result emulated = EMULATE_DONE;
ulong spr_val = kvmppc_get_gpr(vcpu, rs);
switch (sprn) {
case SPRN_SRR0:
vcpu->arch.shared->srr0 = spr_val;
break;
case SPRN_SRR1:
vcpu->arch.shared->srr1 = spr_val;
break;
/* XXX We need to context-switch the timebase for
* watchdog and FIT. */
case SPRN_TBWL: break;
case SPRN_TBWU: break;
case SPRN_MSSSR0: break;
case SPRN_DEC:
vcpu->arch.dec = spr_val;
kvmppc_emulate_dec(vcpu);
break;
case SPRN_SPRG0:
vcpu->arch.shared->sprg0 = spr_val;
break;
case SPRN_SPRG1:
vcpu->arch.shared->sprg1 = spr_val;
break;
case SPRN_SPRG2:
vcpu->arch.shared->sprg2 = spr_val;
break;
case SPRN_SPRG3:
vcpu->arch.shared->sprg3 = spr_val;
break;
default:
emulated = kvmppc_core_emulate_mtspr(vcpu, sprn,
spr_val);
if (emulated == EMULATE_FAIL)
printk(KERN_INFO "mtspr: unknown spr "
"0x%x\n", sprn);
break;
}
kvmppc_set_exit_type(vcpu, EMULATED_MTSPR_EXITS);
return emulated;
}
static int kvmppc_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
{
enum emulation_result emulated = EMULATE_DONE;
ulong spr_val = 0;
switch (sprn) {
case SPRN_SRR0:
spr_val = vcpu->arch.shared->srr0;
break;
case SPRN_SRR1:
spr_val = vcpu->arch.shared->srr1;
break;
case SPRN_PVR:
spr_val = vcpu->arch.pvr;
break;
case SPRN_PIR:
spr_val = vcpu->vcpu_id;
break;
case SPRN_MSSSR0:
spr_val = 0;
break;
/* Note: mftb and TBRL/TBWL are user-accessible, so
* the guest can always access the real TB anyways.
* In fact, we probably will never see these traps. */
case SPRN_TBWL:
spr_val = get_tb() >> 32;
break;
case SPRN_TBWU:
spr_val = get_tb();
break;
case SPRN_SPRG0:
spr_val = vcpu->arch.shared->sprg0;
break;
case SPRN_SPRG1:
spr_val = vcpu->arch.shared->sprg1;
break;
case SPRN_SPRG2:
spr_val = vcpu->arch.shared->sprg2;
break;
case SPRN_SPRG3:
spr_val = vcpu->arch.shared->sprg3;
break;
/* Note: SPRG4-7 are user-readable, so we don't get
* a trap. */
case SPRN_DEC:
spr_val = kvmppc_get_dec(vcpu, get_tb());
break;
default:
emulated = kvmppc_core_emulate_mfspr(vcpu, sprn,
&spr_val);
if (unlikely(emulated == EMULATE_FAIL)) {
printk(KERN_INFO "mfspr: unknown spr "
"0x%x\n", sprn);
}
break;
}
if (emulated == EMULATE_DONE)
kvmppc_set_gpr(vcpu, rt, spr_val);
kvmppc_set_exit_type(vcpu, EMULATED_MFSPR_EXITS);
return emulated;
}
/* XXX to do: /* XXX to do:
* lhax * lhax
* lhaux * lhaux
...@@ -156,7 +275,6 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu) ...@@ -156,7 +275,6 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu)
int sprn = get_sprn(inst); int sprn = get_sprn(inst);
enum emulation_result emulated = EMULATE_DONE; enum emulation_result emulated = EMULATE_DONE;
int advance = 1; int advance = 1;
ulong spr_val = 0;
/* this default type might be overwritten by subcategories */ /* this default type might be overwritten by subcategories */
kvmppc_set_exit_type(vcpu, EMULATED_INST_EXITS); kvmppc_set_exit_type(vcpu, EMULATED_INST_EXITS);
...@@ -236,62 +354,7 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu) ...@@ -236,62 +354,7 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu)
break; break;
case OP_31_XOP_MFSPR: case OP_31_XOP_MFSPR:
switch (sprn) { emulated = kvmppc_emulate_mfspr(vcpu, sprn, rt);
case SPRN_SRR0:
spr_val = vcpu->arch.shared->srr0;
break;
case SPRN_SRR1:
spr_val = vcpu->arch.shared->srr1;
break;
case SPRN_PVR:
spr_val = vcpu->arch.pvr;
break;
case SPRN_PIR:
spr_val = vcpu->vcpu_id;
break;
case SPRN_MSSSR0:
spr_val = 0;
break;
/* Note: mftb and TBRL/TBWL are user-accessible, so
* the guest can always access the real TB anyways.
* In fact, we probably will never see these traps. */
case SPRN_TBWL:
spr_val = get_tb() >> 32;
break;
case SPRN_TBWU:
spr_val = get_tb();
break;
case SPRN_SPRG0:
spr_val = vcpu->arch.shared->sprg0;
break;
case SPRN_SPRG1:
spr_val = vcpu->arch.shared->sprg1;
break;
case SPRN_SPRG2:
spr_val = vcpu->arch.shared->sprg2;
break;
case SPRN_SPRG3:
spr_val = vcpu->arch.shared->sprg3;
break;
/* Note: SPRG4-7 are user-readable, so we don't get
* a trap. */
case SPRN_DEC:
spr_val = kvmppc_get_dec(vcpu, get_tb());
break;
default:
emulated = kvmppc_core_emulate_mfspr(vcpu, sprn,
&spr_val);
if (unlikely(emulated == EMULATE_FAIL)) {
printk(KERN_INFO "mfspr: unknown spr "
"0x%x\n", sprn);
}
break;
}
kvmppc_set_gpr(vcpu, rt, spr_val);
kvmppc_set_exit_type(vcpu, EMULATED_MFSPR_EXITS);
break; break;
case OP_31_XOP_STHX: case OP_31_XOP_STHX:
...@@ -308,49 +371,7 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu) ...@@ -308,49 +371,7 @@ int kvmppc_emulate_instruction(struct kvm_run *run, struct kvm_vcpu *vcpu)
break; break;
case OP_31_XOP_MTSPR: case OP_31_XOP_MTSPR:
spr_val = kvmppc_get_gpr(vcpu, rs); emulated = kvmppc_emulate_mtspr(vcpu, sprn, rs);
switch (sprn) {
case SPRN_SRR0:
vcpu->arch.shared->srr0 = spr_val;
break;
case SPRN_SRR1:
vcpu->arch.shared->srr1 = spr_val;
break;
/* XXX We need to context-switch the timebase for
* watchdog and FIT. */
case SPRN_TBWL: break;
case SPRN_TBWU: break;
case SPRN_MSSSR0: break;
case SPRN_DEC:
vcpu->arch.dec = spr_val;
kvmppc_emulate_dec(vcpu);
break;
case SPRN_SPRG0:
vcpu->arch.shared->sprg0 = spr_val;
break;
case SPRN_SPRG1:
vcpu->arch.shared->sprg1 = spr_val;
break;
case SPRN_SPRG2:
vcpu->arch.shared->sprg2 = spr_val;
break;
case SPRN_SPRG3:
vcpu->arch.shared->sprg3 = spr_val;
break;
default:
emulated = kvmppc_core_emulate_mtspr(vcpu, sprn,
spr_val);
if (emulated == EMULATE_FAIL)
printk(KERN_INFO "mtspr: unknown spr "
"0x%x\n", sprn);
break;
}
kvmppc_set_exit_type(vcpu, EMULATED_MTSPR_EXITS);
break; break;
case OP_31_XOP_DCBI: case OP_31_XOP_DCBI:
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment