Commit f1470fd7 authored by Alex Elder's avatar Alex Elder Committed by David S. Miller

net: ipa: generalize register field functions

Rename functions related to register fields so they don't appear to
be IPA-specific, and move their definitions into "reg.h":
    ipa_reg_fmask()	-> reg_fmask()
    ipa_reg_bit()	-> reg_bit()
    ipa_reg_field_max()	-> reg_field_max()
    ipa_reg_encode()	-> reg_encode()
    ipa_reg_decode()	-> reg_decode()
Signed-off-by: default avatarAlex Elder <elder@linaro.org>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent fc4cecf7
......@@ -304,7 +304,7 @@ static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
rx_config->aggr_hard_limit);
reg = ipa_reg(ipa, ENDP_INIT_AGGR);
limit = ipa_reg_field_max(reg, BYTE_LIMIT);
limit = reg_field_max(reg, BYTE_LIMIT);
if (aggr_size > limit) {
dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
data->endpoint_id, aggr_size, limit);
......@@ -464,7 +464,7 @@ ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
val = ioread32(ipa->reg_virt + offset);
field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
mask = ipa_reg_bit(reg, field_id);
mask = reg_bit(reg, field_id);
state = !!(val & mask);
......@@ -658,7 +658,7 @@ static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
/* Checksum header offset is in 4-byte units */
off = sizeof(struct rmnet_map_header) / sizeof(u32);
val |= ipa_reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
enabled = version < IPA_VERSION_4_5
? IPA_CS_OFFLOAD_UL
......@@ -671,7 +671,7 @@ static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
} else {
enabled = IPA_CS_OFFLOAD_NONE;
}
val |= ipa_reg_encode(reg, CS_OFFLOAD_EN, enabled);
val |= reg_encode(reg, CS_OFFLOAD_EN, enabled);
/* CS_GEN_QMB_MASTER_SEL is 0 */
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
......@@ -688,7 +688,7 @@ static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
return;
reg = ipa_reg(ipa, ENDP_INIT_NAT);
val = ipa_reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS);
val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS);
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
......@@ -718,11 +718,11 @@ ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
static u32 ipa_header_size_encode(enum ipa_version version,
const struct reg *reg, u32 header_size)
{
u32 field_max = ipa_reg_field_max(reg, HDR_LEN);
u32 field_max = reg_field_max(reg, HDR_LEN);
u32 val;
/* We know field_max can be used as a mask (2^n - 1) */
val = ipa_reg_encode(reg, HDR_LEN, header_size & field_max);
val = reg_encode(reg, HDR_LEN, header_size & field_max);
if (version < IPA_VERSION_4_5) {
WARN_ON(header_size > field_max);
return val;
......@@ -730,8 +730,8 @@ static u32 ipa_header_size_encode(enum ipa_version version,
/* IPA v4.5 adds a few more most-significant bits */
header_size >>= hweight32(field_max);
WARN_ON(header_size > ipa_reg_field_max(reg, HDR_LEN_MSB));
val |= ipa_reg_encode(reg, HDR_LEN_MSB, header_size);
WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB));
val |= reg_encode(reg, HDR_LEN_MSB, header_size);
return val;
}
......@@ -740,11 +740,11 @@ static u32 ipa_header_size_encode(enum ipa_version version,
static u32 ipa_metadata_offset_encode(enum ipa_version version,
const struct reg *reg, u32 offset)
{
u32 field_max = ipa_reg_field_max(reg, HDR_OFST_METADATA);
u32 field_max = reg_field_max(reg, HDR_OFST_METADATA);
u32 val;
/* We know field_max can be used as a mask (2^n - 1) */
val = ipa_reg_encode(reg, HDR_OFST_METADATA, offset);
val = reg_encode(reg, HDR_OFST_METADATA, offset);
if (version < IPA_VERSION_4_5) {
WARN_ON(offset > field_max);
return val;
......@@ -752,8 +752,8 @@ static u32 ipa_metadata_offset_encode(enum ipa_version version,
/* IPA v4.5 adds a few more most-significant bits */
offset >>= hweight32(field_max);
WARN_ON(offset > ipa_reg_field_max(reg, HDR_OFST_METADATA_MSB));
val |= ipa_reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB));
val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
return val;
}
......@@ -806,13 +806,13 @@ static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
off = offsetof(struct rmnet_map_header, pkt_len);
/* Upper bits are stored in HDR_EXT with IPA v4.5 */
if (version >= IPA_VERSION_4_5)
off &= ipa_reg_field_max(reg, HDR_OFST_PKT_SIZE);
off &= reg_field_max(reg, HDR_OFST_PKT_SIZE);
val |= ipa_reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
val |= ipa_reg_encode(reg, HDR_OFST_PKT_SIZE, off);
val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off);
}
/* For QMAP TX, metadata offset is 0 (modem assumes this) */
val |= ipa_reg_bit(reg, HDR_OFST_METADATA_VALID);
val |= reg_bit(reg, HDR_OFST_METADATA_VALID);
/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
/* HDR_A5_MUX is 0 */
......@@ -834,7 +834,7 @@ static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
if (endpoint->config.qmap) {
/* We have a header, so we must specify its endianness */
val |= ipa_reg_bit(reg, HDR_ENDIANNESS); /* big endian */
val |= reg_bit(reg, HDR_ENDIANNESS); /* big endian */
/* A QMAP header contains a 6 bit pad field at offset 0.
* The RMNet driver assumes this field is meaningful in
......@@ -844,16 +844,16 @@ static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
* (although 0) should be ignored.
*/
if (!endpoint->toward_ipa) {
val |= ipa_reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
val |= ipa_reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
}
}
/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
if (!endpoint->toward_ipa)
val |= ipa_reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
/* IPA v4.5 adds some most-significant bits to a few fields,
* two of which are defined in the HDR (not HDR_EXT) register.
......@@ -861,13 +861,13 @@ static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
if (ipa->version >= IPA_VERSION_4_5) {
/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
if (endpoint->config.qmap && !endpoint->toward_ipa) {
u32 mask = ipa_reg_field_max(reg, HDR_OFST_PKT_SIZE);
u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE);
u32 off; /* Field offset within header */
off = offsetof(struct rmnet_map_header, pkt_len);
/* Low bits are in the ENDP_INIT_HDR register */
off >>= hweight32(mask);
val |= ipa_reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
}
}
......@@ -911,10 +911,10 @@ static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
val = ipa_reg_encode(reg, ENDP_MODE, IPA_DMA);
val |= ipa_reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
val = reg_encode(reg, ENDP_MODE, IPA_DMA);
val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
} else {
val = ipa_reg_encode(reg, ENDP_MODE, IPA_BASIC);
val = reg_encode(reg, ENDP_MODE, IPA_BASIC);
}
/* All other bits unspecified (and 0) */
......@@ -972,14 +972,14 @@ static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg,
if (!microseconds)
return 0; /* Nothing to compute if time limit is 0 */
max = ipa_reg_field_max(reg, TIME_LIMIT);
max = reg_field_max(reg, TIME_LIMIT);
if (ipa->version >= IPA_VERSION_4_5) {
u32 select;
ticks = ipa_qtime_val(ipa, microseconds, max, &select);
return ipa_reg_encode(reg, AGGR_GRAN_SEL, select) |
ipa_reg_encode(reg, TIME_LIMIT, ticks);
return reg_encode(reg, AGGR_GRAN_SEL, select) |
reg_encode(reg, TIME_LIMIT, ticks);
}
/* We program aggregation granularity in ipa_hardware_config() */
......@@ -987,7 +987,7 @@ static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg,
WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n",
microseconds, max * IPA_AGGR_GRANULARITY);
return ipa_reg_encode(reg, TIME_LIMIT, ticks);
return reg_encode(reg, TIME_LIMIT, ticks);
}
static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
......@@ -1005,13 +1005,13 @@ static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
u32 limit;
rx_config = &endpoint->config.rx;
val |= ipa_reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
val |= ipa_reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
buffer_size = rx_config->buffer_size;
limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
rx_config->aggr_hard_limit);
val |= ipa_reg_encode(reg, BYTE_LIMIT, limit);
val |= reg_encode(reg, BYTE_LIMIT, limit);
limit = rx_config->aggr_time_limit;
val |= aggr_time_limit_encode(ipa, reg, limit);
......@@ -1019,16 +1019,16 @@ static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
/* AGGR_PKT_LIMIT is 0 (unlimited) */
if (rx_config->aggr_close_eof)
val |= ipa_reg_bit(reg, SW_EOF_ACTIVE);
val |= reg_bit(reg, SW_EOF_ACTIVE);
} else {
val |= ipa_reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
val |= ipa_reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
/* other fields ignored */
}
/* AGGR_FORCE_CLOSE is 0 */
/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
} else {
val |= ipa_reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
/* other fields ignored */
}
......@@ -1057,14 +1057,14 @@ static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
return 0; /* Nothing to compute if timer period is 0 */
if (ipa->version >= IPA_VERSION_4_5) {
u32 max = ipa_reg_field_max(reg, TIMER_LIMIT);
u32 max = reg_field_max(reg, TIMER_LIMIT);
u32 select;
u32 ticks;
ticks = ipa_qtime_val(ipa, microseconds, max, &select);
return ipa_reg_encode(reg, TIMER_GRAN_SEL, 1) |
ipa_reg_encode(reg, TIMER_LIMIT, ticks);
return reg_encode(reg, TIMER_GRAN_SEL, 1) |
reg_encode(reg, TIMER_LIMIT, ticks);
}
/* Use 64 bit arithmetic to avoid overflow */
......@@ -1072,11 +1072,11 @@ static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
/* We still need the result to fit into the field */
WARN_ON(ticks > ipa_reg_field_max(reg, TIMER_BASE_VALUE));
WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE));
/* IPA v3.5.1 through v4.1 just record the tick count */
if (ipa->version < IPA_VERSION_4_2)
return ipa_reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
/* For IPA v4.2, the tick count is represented by base and
* scale fields within the 32-bit timer register, where:
......@@ -1087,7 +1087,7 @@ static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
* such that high bit is included.
*/
high = fls(ticks); /* 1..32 (or warning above) */
width = hweight32(ipa_reg_fmask(reg, TIMER_BASE_VALUE));
width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE));
scale = high > width ? high - width : 0;
if (scale) {
/* If we're scaling, round up to get a closer result */
......@@ -1097,8 +1097,8 @@ static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
scale++;
}
val = ipa_reg_encode(reg, TIMER_SCALE, scale);
val |= ipa_reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
val = reg_encode(reg, TIMER_SCALE, scale);
val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
return val;
}
......@@ -1130,7 +1130,7 @@ ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
offset = reg_n_offset(reg, endpoint_id);
val = enable ? ipa_reg_bit(reg, HOL_BLOCK_EN) : 0;
val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0;
iowrite32(val, ipa->reg_virt + offset);
......@@ -1195,7 +1195,7 @@ static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
u32 val;
reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
val = ipa_reg_encode(reg, ENDP_RSRC_GRP, resource_group);
val = reg_encode(reg, ENDP_RSRC_GRP, resource_group);
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
......@@ -1213,12 +1213,12 @@ static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
reg = ipa_reg(ipa, ENDP_INIT_SEQ);
/* Low-order byte configures primary packet processing */
val = ipa_reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
/* Second byte (if supported) configures replicated packet processing */
if (ipa->version < IPA_VERSION_4_5)
val |= ipa_reg_encode(reg, SEQ_REP_TYPE,
endpoint->config.tx.seq_rep_type);
val |= reg_encode(reg, SEQ_REP_TYPE,
endpoint->config.tx.seq_rep_type);
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
......@@ -1275,7 +1275,7 @@ static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
reg = ipa_reg(ipa, ENDP_STATUS);
if (endpoint->config.status_enable) {
val |= ipa_reg_bit(reg, STATUS_EN);
val |= reg_bit(reg, STATUS_EN);
if (endpoint->toward_ipa) {
enum ipa_endpoint_name name;
u32 status_endpoint_id;
......@@ -1283,8 +1283,7 @@ static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
name = endpoint->config.tx.status_endpoint;
status_endpoint_id = ipa->name_map[name]->endpoint_id;
val |= ipa_reg_encode(reg, STATUS_ENDP,
status_endpoint_id);
val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id);
}
/* STATUS_LOCATION is 0, meaning IPA packet status
* precedes the packet (not present for IPA v4.5+)
......@@ -1641,11 +1640,11 @@ void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
reg = ipa_reg(ipa, ROUTE);
/* ROUTE_DIS is 0 */
val = ipa_reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
val |= ipa_reg_bit(reg, ROUTE_DEF_HDR_TABLE);
val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE);
/* ROUTE_DEF_HDR_OFST is 0 */
val |= ipa_reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
val |= ipa_reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
iowrite32(val, ipa->reg_virt + reg_offset(reg));
}
......@@ -2022,9 +2021,9 @@ int ipa_endpoint_config(struct ipa *ipa)
val = ioread32(ipa->reg_virt + reg_offset(reg));
/* Our RX is an IPA producer; our TX is an IPA consumer. */
tx_count = ipa_reg_decode(reg, MAX_CONS_PIPES, val);
rx_count = ipa_reg_decode(reg, MAX_PROD_PIPES, val);
rx_base = ipa_reg_decode(reg, PROD_LOWEST, val);
tx_count = reg_decode(reg, MAX_CONS_PIPES, val);
rx_count = reg_decode(reg, MAX_PROD_PIPES, val);
rx_base = reg_decode(reg, PROD_LOWEST, val);
limit = rx_base + rx_count;
if (limit > IPA_ENDPOINT_MAX) {
......
......@@ -231,7 +231,7 @@ static void ipa_hardware_config_tx(struct ipa *ipa)
val = ioread32(ipa->reg_virt + offset);
val &= ~ipa_reg_bit(reg, PA_MASK_EN);
val &= ~reg_bit(reg, PA_MASK_EN);
iowrite32(val, ipa->reg_virt + offset);
}
......@@ -252,11 +252,11 @@ static void ipa_hardware_config_clkon(struct ipa *ipa)
reg = ipa_reg(ipa, CLKON_CFG);
if (version == IPA_VERSION_3_1) {
/* Disable MISC clock gating */
val = ipa_reg_bit(reg, CLKON_MISC);
val = reg_bit(reg, CLKON_MISC);
} else { /* IPA v4.0+ */
/* Enable open global clocks in the CLKON configuration */
val = ipa_reg_bit(reg, CLKON_GLOBAL);
val |= ipa_reg_bit(reg, GLOBAL_2X_CLK);
val = reg_bit(reg, CLKON_GLOBAL);
val |= reg_bit(reg, GLOBAL_2X_CLK);
}
iowrite32(val, ipa->reg_virt + reg_offset(reg));
......@@ -279,17 +279,17 @@ static void ipa_hardware_config_comp(struct ipa *ipa)
val = ioread32(ipa->reg_virt + offset);
if (ipa->version == IPA_VERSION_4_0) {
val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
val &= ~ipa_reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
val &= ~reg_bit(reg, IPA_QMB_SELECT_CONS_EN);
val &= ~reg_bit(reg, IPA_QMB_SELECT_PROD_EN);
val &= ~reg_bit(reg, IPA_QMB_SELECT_GLOBAL_EN);
} else if (ipa->version < IPA_VERSION_4_5) {
val |= ipa_reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
val |= reg_bit(reg, GSI_MULTI_AXI_MASTERS_DIS);
} else {
/* For IPA v4.5 FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
}
val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
val |= ipa_reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
val |= reg_bit(reg, GSI_MULTI_INORDER_RD_DIS);
val |= reg_bit(reg, GSI_MULTI_INORDER_WR_DIS);
iowrite32(val, ipa->reg_virt + offset);
}
......@@ -311,26 +311,24 @@ ipa_hardware_config_qsb(struct ipa *ipa, const struct ipa_data *data)
/* Max outstanding write accesses for QSB masters */
reg = ipa_reg(ipa, QSB_MAX_WRITES);
val = ipa_reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
val = reg_encode(reg, GEN_QMB_0_MAX_WRITES, data0->max_writes);
if (data->qsb_count > 1)
val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_WRITES,
data1->max_writes);
val |= reg_encode(reg, GEN_QMB_1_MAX_WRITES, data1->max_writes);
iowrite32(val, ipa->reg_virt + reg_offset(reg));
/* Max outstanding read accesses for QSB masters */
reg = ipa_reg(ipa, QSB_MAX_READS);
val = ipa_reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
val = reg_encode(reg, GEN_QMB_0_MAX_READS, data0->max_reads);
if (ipa->version >= IPA_VERSION_4_0)
val |= ipa_reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
data0->max_reads_beats);
val |= reg_encode(reg, GEN_QMB_0_MAX_READS_BEATS,
data0->max_reads_beats);
if (data->qsb_count > 1) {
val = ipa_reg_encode(reg, GEN_QMB_1_MAX_READS,
data1->max_reads);
val = reg_encode(reg, GEN_QMB_1_MAX_READS, data1->max_reads);
if (ipa->version >= IPA_VERSION_4_0)
val |= ipa_reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
data1->max_reads_beats);
val |= reg_encode(reg, GEN_QMB_1_MAX_READS_BEATS,
data1->max_reads_beats);
}
iowrite32(val, ipa->reg_virt + reg_offset(reg));
......@@ -379,23 +377,23 @@ static void ipa_qtime_config(struct ipa *ipa)
reg = ipa_reg(ipa, QTIME_TIMESTAMP_CFG);
/* Set DPL time stamp resolution to use Qtime (instead of 1 msec) */
val = ipa_reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
val |= ipa_reg_bit(reg, DPL_TIMESTAMP_SEL);
val = reg_encode(reg, DPL_TIMESTAMP_LSB, DPL_TIMESTAMP_SHIFT);
val |= reg_bit(reg, DPL_TIMESTAMP_SEL);
/* Configure tag and NAT Qtime timestamp resolution as well */
val = ipa_reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
val = ipa_reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
val = reg_encode(reg, TAG_TIMESTAMP_LSB, TAG_TIMESTAMP_SHIFT);
val = reg_encode(reg, NAT_TIMESTAMP_LSB, NAT_TIMESTAMP_SHIFT);
iowrite32(val, ipa->reg_virt + reg_offset(reg));
/* Set granularity of pulse generators used for other timers */
reg = ipa_reg(ipa, TIMERS_PULSE_GRAN_CFG);
val = ipa_reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
val |= ipa_reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
val = reg_encode(reg, PULSE_GRAN_0, IPA_GRAN_100_US);
val |= reg_encode(reg, PULSE_GRAN_1, IPA_GRAN_1_MS);
if (ipa->version >= IPA_VERSION_5_0) {
val |= ipa_reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
val |= ipa_reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_10_MS);
val |= reg_encode(reg, PULSE_GRAN_3, IPA_GRAN_10_MS);
} else {
val |= ipa_reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
val |= reg_encode(reg, PULSE_GRAN_2, IPA_GRAN_1_MS);
}
iowrite32(val, ipa->reg_virt + reg_offset(reg));
......@@ -404,12 +402,12 @@ static void ipa_qtime_config(struct ipa *ipa)
reg = ipa_reg(ipa, TIMERS_XO_CLK_DIV_CFG);
offset = reg_offset(reg);
val = ipa_reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
val = reg_encode(reg, DIV_VALUE, IPA_XO_CLOCK_DIVIDER - 1);
iowrite32(val, ipa->reg_virt + offset);
/* Divider value is set; re-enable the common timer clock divider */
val |= ipa_reg_bit(reg, DIV_ENABLE);
val |= reg_bit(reg, DIV_ENABLE);
iowrite32(val, ipa->reg_virt + offset);
}
......@@ -423,7 +421,7 @@ static void ipa_hardware_config_counter(struct ipa *ipa)
reg = ipa_reg(ipa, COUNTER_CFG);
/* If defined, EOT_COAL_GRANULARITY is 0 */
val = ipa_reg_encode(reg, AGGR_GRANULARITY, granularity);
val = reg_encode(reg, AGGR_GRANULARITY, granularity);
iowrite32(val, ipa->reg_virt + reg_offset(reg));
}
......@@ -467,10 +465,10 @@ static void ipa_idle_indication_cfg(struct ipa *ipa,
return;
reg = ipa_reg(ipa, IDLE_INDICATION_CFG);
val = ipa_reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
enter_idle_debounce_thresh);
val = reg_encode(reg, ENTER_IDLE_DEBOUNCE_THRESH,
enter_idle_debounce_thresh);
if (const_non_idle_enable)
val |= ipa_reg_bit(reg, CONST_NON_IDLE_ENABLE);
val |= reg_bit(reg, CONST_NON_IDLE_ENABLE);
iowrite32(val, ipa->reg_virt + reg_offset(reg));
}
......
......@@ -115,7 +115,7 @@ int ipa_mem_setup(struct ipa *ipa)
offset = ipa->mem_offset + mem->offset;
reg = ipa_reg(ipa, LOCAL_PKT_PROC_CNTXT);
val = ipa_reg_encode(reg, IPA_BASE_ADDR, offset);
val = reg_encode(reg, IPA_BASE_ADDR, offset);
iowrite32(val, ipa->reg_virt + reg_offset(reg));
return 0;
......@@ -331,10 +331,10 @@ int ipa_mem_config(struct ipa *ipa)
val = ioread32(ipa->reg_virt + reg_offset(reg));
/* The fields in the register are in 8 byte units */
ipa->mem_offset = 8 * ipa_reg_decode(reg, MEM_BADDR, val);
ipa->mem_offset = 8 * reg_decode(reg, MEM_BADDR, val);
/* Make sure the end is within the region's mapped space */
mem_size = 8 * ipa_reg_decode(reg, MEM_SIZE, val);
mem_size = 8 * reg_decode(reg, MEM_SIZE, val);
/* If the sizes don't match, issue a warning */
if (ipa->mem_offset + mem_size < ipa->mem_size) {
......
......@@ -45,9 +45,9 @@ struct ipa;
* an array of field masks, indexed by field ID. Two functions are
* used to access register fields; both take an ipa_reg structure as
* argument. To encode a value to be represented in a register field,
* the value and field ID are passed to ipa_reg_encode(). To extract
* the value and field ID are passed to reg_encode(). To extract
* a value encoded in a register field, the field ID is passed to
* ipa_reg_decode(). In addition, for single-bit fields, ipa_reg_bit()
* reg_decode(). In addition, for single-bit fields, reg_bit()
* can be used to either encode the bit value, or to generate a mask
* used to extract the bit value.
*/
......@@ -646,58 +646,6 @@ extern const struct regs ipa_regs_v4_7;
extern const struct regs ipa_regs_v4_9;
extern const struct regs ipa_regs_v4_11;
/* Return the field mask for a field in a register */
static inline u32 ipa_reg_fmask(const struct reg *reg, u32 field_id)
{
if (!reg || WARN_ON(field_id >= reg->fcount))
return 0;
return reg->fmask[field_id];
}
/* Return the mask for a single-bit field in a register */
static inline u32 ipa_reg_bit(const struct reg *reg, u32 field_id)
{
u32 fmask = ipa_reg_fmask(reg, field_id);
WARN_ON(!is_power_of_2(fmask));
return fmask;
}
/* Encode a value into the given field of a register */
static inline u32
ipa_reg_encode(const struct reg *reg, u32 field_id, u32 val)
{
u32 fmask = ipa_reg_fmask(reg, field_id);
if (!fmask)
return 0;
val <<= __ffs(fmask);
if (WARN_ON(val & ~fmask))
return 0;
return val;
}
/* Given a register value, decode (extract) the value in the given field */
static inline u32
ipa_reg_decode(const struct reg *reg, u32 field_id, u32 val)
{
u32 fmask = ipa_reg_fmask(reg, field_id);
return fmask ? (val & fmask) >> __ffs(fmask) : 0;
}
/* Return the maximum value representable by the given field; always 2^n - 1 */
static inline u32 ipa_reg_field_max(const struct reg *reg, u32 field_id)
{
u32 fmask = ipa_reg_fmask(reg, field_id);
return fmask ? fmask >> __ffs(fmask) : 0;
}
const struct reg *ipa_reg(struct ipa *ipa, enum ipa_reg_id reg_id);
int ipa_reg_init(struct ipa *ipa);
......
......@@ -76,11 +76,11 @@ ipa_resource_config_common(struct ipa *ipa, u32 resource_type,
{
u32 val;
val = ipa_reg_encode(reg, X_MIN_LIM, xlimits->min);
val |= ipa_reg_encode(reg, X_MAX_LIM, xlimits->max);
val = reg_encode(reg, X_MIN_LIM, xlimits->min);
val |= reg_encode(reg, X_MAX_LIM, xlimits->max);
if (ylimits) {
val |= ipa_reg_encode(reg, Y_MIN_LIM, ylimits->min);
val |= ipa_reg_encode(reg, Y_MAX_LIM, ylimits->max);
val |= reg_encode(reg, Y_MIN_LIM, ylimits->min);
val |= reg_encode(reg, Y_MAX_LIM, ylimits->max);
}
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, resource_type));
......
......@@ -361,16 +361,16 @@ int ipa_table_hash_flush(struct ipa *ipa)
if (ipa->version < IPA_VERSION_5_0) {
reg = ipa_reg(ipa, FILT_ROUT_HASH_FLUSH);
val = ipa_reg_bit(reg, IPV6_ROUTER_HASH);
val |= ipa_reg_bit(reg, IPV6_FILTER_HASH);
val |= ipa_reg_bit(reg, IPV4_ROUTER_HASH);
val |= ipa_reg_bit(reg, IPV4_FILTER_HASH);
val = reg_bit(reg, IPV6_ROUTER_HASH);
val |= reg_bit(reg, IPV6_FILTER_HASH);
val |= reg_bit(reg, IPV4_ROUTER_HASH);
val |= reg_bit(reg, IPV4_FILTER_HASH);
} else {
reg = ipa_reg(ipa, FILT_ROUT_CACHE_FLUSH);
/* IPA v5.0+ uses a unified cache (both IPv4 and IPv6) */
val = ipa_reg_bit(reg, ROUTER_CACHE);
val |= ipa_reg_bit(reg, FILTER_CACHE);
val = reg_bit(reg, ROUTER_CACHE);
val |= reg_bit(reg, FILTER_CACHE);
}
ipa_cmd_register_write_add(trans, reg_offset(reg), val, val, false);
......@@ -503,7 +503,7 @@ static void ipa_filter_tuple_zero(struct ipa_endpoint *endpoint)
val = ioread32(endpoint->ipa->reg_virt + offset);
/* Zero all filter-related fields, preserving the rest */
val &= ~ipa_reg_fmask(reg, FILTER_HASH_MSK_ALL);
val &= ~reg_fmask(reg, FILTER_HASH_MSK_ALL);
} else {
/* IPA v5.0 separates filter and router cache configuration */
reg = ipa_reg(ipa, ENDP_FILTER_CACHE_CFG);
......@@ -562,7 +562,7 @@ static void ipa_route_tuple_zero(struct ipa *ipa, u32 route_id)
val = ioread32(ipa->reg_virt + offset);
/* Zero all route-related fields, preserving the rest */
val &= ~ipa_reg_fmask(reg, ROUTER_HASH_MSK_ALL);
val &= ~reg_fmask(reg, ROUTER_HASH_MSK_ALL);
} else {
/* IPA v5.0 separates filter and router cache configuration */
reg = ipa_reg(ipa, ENDP_ROUTER_CACHE_CFG);
......
......@@ -243,7 +243,7 @@ static void send_uc_command(struct ipa *ipa, u32 command, u32 command_param)
/* Use an interrupt to tell the microcontroller the command is ready */
reg = ipa_reg(ipa, IPA_IRQ_UC);
val = ipa_reg_bit(reg, UC_INTR);
val = reg_bit(reg, UC_INTR);
iowrite32(val, ipa->reg_virt + reg_offset(reg));
}
......
......@@ -67,6 +67,57 @@ static inline const struct reg *reg(const struct regs *regs, u32 reg_id)
return regs->reg[reg_id];
}
/* Return the field mask for a field in a register, or 0 on error */
static inline u32 reg_fmask(const struct reg *reg, u32 field_id)
{
if (!reg || WARN_ON(field_id >= reg->fcount))
return 0;
return reg->fmask[field_id];
}
/* Return the mask for a single-bit field in a register, or 0 on error */
static inline u32 reg_bit(const struct reg *reg, u32 field_id)
{
u32 fmask = reg_fmask(reg, field_id);
if (WARN_ON(!is_power_of_2(fmask)))
return 0;
return fmask;
}
/* Return the maximum value representable by the given field; always 2^n - 1 */
static inline u32 reg_field_max(const struct reg *reg, u32 field_id)
{
u32 fmask = reg_fmask(reg, field_id);
return fmask ? fmask >> __ffs(fmask) : 0;
}
/* Encode a value into the given field of a register */
static inline u32 reg_encode(const struct reg *reg, u32 field_id, u32 val)
{
u32 fmask = reg_fmask(reg, field_id);
if (!fmask)
return 0;
val <<= __ffs(fmask);
if (WARN_ON(val & ~fmask))
return 0;
return val;
}
/* Given a register value, decode (extract) the value in the given field */
static inline u32 reg_decode(const struct reg *reg, u32 field_id, u32 val)
{
u32 fmask = reg_fmask(reg, field_id);
return fmask ? (val & fmask) >> __ffs(fmask) : 0;
}
/* Returns 0 for NULL reg; warning should have already been issued */
static inline u32 reg_offset(const struct reg *reg)
{
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment