Commit f95367a7 authored by Sean Young's avatar Sean Young Committed by Mauro Carvalho Chehab

media: staging: remove lirc_zilog driver

The ir-kbd-i2c driver behaves like the lirc_zilog driver, except it can
send raw IR and receives scancodes rather than lirccodes.

The lirc_zilog driver only polls if the lirc chardev is opened;
similarly the ir-kbd-i2c driver only polls if the corresponding input
device is opened, or the lirc device.

Polling is disabled during IR transmission through the mutex.

The polling period is 402ms in the ir-kdb-i2c driver, and 260ms in the
lirc_zilog driver.
Signed-off-by: default avatarSean Young <sean@mess.org>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@s-opensource.com>
parent 1cb26030
...@@ -31,9 +31,6 @@ source "drivers/staging/media/imx/Kconfig" ...@@ -31,9 +31,6 @@ source "drivers/staging/media/imx/Kconfig"
source "drivers/staging/media/omap4iss/Kconfig" source "drivers/staging/media/omap4iss/Kconfig"
# Keep LIRC at the end, as it has sub-menus
source "drivers/staging/media/lirc/Kconfig"
source "drivers/staging/media/tegra-vde/Kconfig" source "drivers/staging/media/tegra-vde/Kconfig"
endif endif
...@@ -2,7 +2,6 @@ ...@@ -2,7 +2,6 @@
obj-$(CONFIG_I2C_BCM2048) += bcm2048/ obj-$(CONFIG_I2C_BCM2048) += bcm2048/
obj-$(CONFIG_DVB_CXD2099) += cxd2099/ obj-$(CONFIG_DVB_CXD2099) += cxd2099/
obj-$(CONFIG_VIDEO_IMX_MEDIA) += imx/ obj-$(CONFIG_VIDEO_IMX_MEDIA) += imx/
obj-$(CONFIG_LIRC_STAGING) += lirc/
obj-$(CONFIG_VIDEO_DM365_VPFE) += davinci_vpfe/ obj-$(CONFIG_VIDEO_DM365_VPFE) += davinci_vpfe/
obj-$(CONFIG_VIDEO_OMAP4) += omap4iss/ obj-$(CONFIG_VIDEO_OMAP4) += omap4iss/
obj-$(CONFIG_INTEL_ATOMISP) += atomisp/ obj-$(CONFIG_INTEL_ATOMISP) += atomisp/
......
#
# LIRC driver(s) configuration
#
menuconfig LIRC_STAGING
bool "Linux Infrared Remote Control IR receiver/transmitter drivers"
depends on LIRC
help
Say Y here, and all supported Linux Infrared Remote Control IR and
RF receiver and transmitter drivers will be displayed. When paired
with a remote control and the lirc daemon, the receiver drivers
allow control of your Linux system via remote control.
if LIRC_STAGING
config LIRC_ZILOG
tristate "Zilog/Hauppauge IR Transmitter"
depends on LIRC && I2C
help
Driver for the Zilog/Hauppauge IR Transmitter, found on
PVR-150/500, HVR-1200/1250/1700/1800, HD-PVR and other cards
endif
# Makefile for the lirc drivers.
#
# Each configuration option enables a list of files.
obj-$(CONFIG_LIRC_ZILOG) += lirc_zilog.o
1. Both ir-kbd-i2c and lirc_zilog provide support for RX events for
the chips supported by lirc_zilog. Before moving lirc_zilog out of staging:
a. ir-kbd-i2c needs a module parameter added to allow the user to tell
ir-kbd-i2c to ignore Z8 IR units.
b. lirc_zilog should provide Rx key presses to the rc core like ir-kbd-i2c
does.
2. lirc_zilog module ref-counting need examination. It has not been
verified that cdev and lirc_dev will take the proper module references on
lirc_zilog to prevent removal of lirc_zilog when the /dev/lircN device node
is open.
(The good news is ref-counting of lirc_zilog internal structures appears to be
complete. Testing has shown the cx18 module can be unloaded out from under
irw + lircd + lirc_dev, with the /dev/lirc0 device node open, with no adverse
effects. The cx18 module could then be reloaded and irw properly began
receiving button presses again and ir_send worked without error.)
3. Bridge drivers, if able, should provide a chip reset() callback
to lirc_zilog via struct IR_i2c_init_data. cx18 and ivtv already have routines
to perform Z8 chip resets via GPIO manipulations. This would allow lirc_zilog
to bring the chip back to normal when it hangs, in the same places the
original lirc_pvr150 driver code does. This is not strictly needed, so it
is not required to move lirc_zilog out of staging.
Note: Both lirc_zilog and ir-kbd-i2c support the Zilog Z8 for IR, as programmed
and installed on Hauppauge products. When working on either module, developers
must consider at least the following bridge drivers which mention an IR Rx unit
at address 0x71 (indicative of a Z8):
ivtv cx18 hdpvr pvrusb2 bt8xx cx88 saa7134
/*
* i2c IR lirc driver for devices with zilog IR processors
*
* Copyright (c) 2000 Gerd Knorr <kraxel@goldbach.in-berlin.de>
* modified for PixelView (BT878P+W/FM) by
* Michal Kochanowicz <mkochano@pld.org.pl>
* Christoph Bartelmus <lirc@bartelmus.de>
* modified for KNC ONE TV Station/Anubis Typhoon TView Tuner by
* Ulrich Mueller <ulrich.mueller42@web.de>
* modified for Asus TV-Box and Creative/VisionTek BreakOut-Box by
* Stefan Jahn <stefan@lkcc.org>
* modified for inclusion into kernel sources by
* Jerome Brock <jbrock@users.sourceforge.net>
* modified for Leadtek Winfast PVR2000 by
* Thomas Reitmayr (treitmayr@yahoo.com)
* modified for Hauppauge PVR-150 IR TX device by
* Mark Weaver <mark@npsl.co.uk>
* changed name from lirc_pvr150 to lirc_zilog, works on more than pvr-150
* Jarod Wilson <jarod@redhat.com>
*
* parts are cut&pasted from the lirc_i2c.c driver
*
* Numerous changes updating lirc_zilog.c in kernel 2.6.38 and later are
* Copyright (C) 2011 Andy Walls <awalls@md.metrocast.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/firmware.h>
#include <linux/vmalloc.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <media/lirc_dev.h>
#include <media/lirc.h>
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
struct IR;
struct IR_rx {
struct kref ref;
struct IR *ir;
/* RX device */
struct mutex client_lock;
struct i2c_client *c;
/* RX polling thread data */
struct task_struct *task;
/* RX read data */
unsigned char b[3];
bool hdpvr_data_fmt;
};
struct IR_tx {
struct kref ref;
struct IR *ir;
/* TX device */
struct mutex client_lock;
struct i2c_client *c;
/* TX additional actions needed */
int need_boot;
bool post_tx_ready_poll;
};
struct IR {
struct kref ref;
struct list_head list;
/* FIXME spinlock access to l->features */
struct lirc_dev *l;
struct lirc_buffer rbuf;
struct mutex ir_lock;
atomic_t open_count;
struct device *dev;
struct i2c_adapter *adapter;
spinlock_t rx_ref_lock; /* struct IR_rx kref get()/put() */
struct IR_rx *rx;
spinlock_t tx_ref_lock; /* struct IR_tx kref get()/put() */
struct IR_tx *tx;
};
/* IR transceiver instance object list */
/*
* This lock is used for the following:
* a. ir_devices_list access, insertions, deletions
* b. struct IR kref get()s and put()s
* c. serialization of ir_probe() for the two i2c_clients for a Z8
*/
static DEFINE_MUTEX(ir_devices_lock);
static LIST_HEAD(ir_devices_list);
/* Block size for IR transmitter */
#define TX_BLOCK_SIZE 99
/* Hauppauge IR transmitter data */
struct tx_data_struct {
/* Boot block */
unsigned char *boot_data;
/* Start of binary data block */
unsigned char *datap;
/* End of binary data block */
unsigned char *endp;
/* Number of installed codesets */
unsigned int num_code_sets;
/* Pointers to codesets */
unsigned char **code_sets;
/* Global fixed data template */
int fixed[TX_BLOCK_SIZE];
};
static struct tx_data_struct *tx_data;
static struct mutex tx_data_lock;
/* module parameters */
static bool debug; /* debug output */
static bool tx_only; /* only handle the IR Tx function */
/* struct IR reference counting */
static struct IR *get_ir_device(struct IR *ir, bool ir_devices_lock_held)
{
if (ir_devices_lock_held) {
kref_get(&ir->ref);
} else {
mutex_lock(&ir_devices_lock);
kref_get(&ir->ref);
mutex_unlock(&ir_devices_lock);
}
return ir;
}
static void release_ir_device(struct kref *ref)
{
struct IR *ir = container_of(ref, struct IR, ref);
/*
* Things should be in this state by now:
* ir->rx set to NULL and deallocated - happens before ir->rx->ir put()
* ir->rx->task kthread stopped - happens before ir->rx->ir put()
* ir->tx set to NULL and deallocated - happens before ir->tx->ir put()
* ir->open_count == 0 - happens on final close()
* ir_lock, tx_ref_lock, rx_ref_lock, all released
*/
if (ir->l)
lirc_unregister_device(ir->l);
if (kfifo_initialized(&ir->rbuf.fifo))
lirc_buffer_free(&ir->rbuf);
list_del(&ir->list);
kfree(ir);
}
static int put_ir_device(struct IR *ir, bool ir_devices_lock_held)
{
int released;
if (ir_devices_lock_held)
return kref_put(&ir->ref, release_ir_device);
mutex_lock(&ir_devices_lock);
released = kref_put(&ir->ref, release_ir_device);
mutex_unlock(&ir_devices_lock);
return released;
}
/* struct IR_rx reference counting */
static struct IR_rx *get_ir_rx(struct IR *ir)
{
struct IR_rx *rx;
spin_lock(&ir->rx_ref_lock);
rx = ir->rx;
if (rx)
kref_get(&rx->ref);
spin_unlock(&ir->rx_ref_lock);
return rx;
}
static void destroy_rx_kthread(struct IR_rx *rx, bool ir_devices_lock_held)
{
/* end up polling thread */
if (!IS_ERR_OR_NULL(rx->task)) {
kthread_stop(rx->task);
rx->task = NULL;
/* Put the ir ptr that ir_probe() gave to the rx poll thread */
put_ir_device(rx->ir, ir_devices_lock_held);
}
}
static void release_ir_rx(struct kref *ref)
{
struct IR_rx *rx = container_of(ref, struct IR_rx, ref);
struct IR *ir = rx->ir;
/*
* This release function can't do all the work, as we want
* to keep the rx_ref_lock a spinlock, and killing the poll thread
* and releasing the ir reference can cause a sleep. That work is
* performed by put_ir_rx()
*/
ir->l->features &= ~LIRC_CAN_REC_LIRCCODE;
/* Don't put_ir_device(rx->ir) here; lock can't be freed yet */
ir->rx = NULL;
/* Don't do the kfree(rx) here; we still need to kill the poll thread */
}
static int put_ir_rx(struct IR_rx *rx, bool ir_devices_lock_held)
{
int released;
struct IR *ir = rx->ir;
spin_lock(&ir->rx_ref_lock);
released = kref_put(&rx->ref, release_ir_rx);
spin_unlock(&ir->rx_ref_lock);
/* Destroy the rx kthread while not holding the spinlock */
if (released) {
destroy_rx_kthread(rx, ir_devices_lock_held);
kfree(rx);
/* Make sure we're not still in a poll_table somewhere */
wake_up_interruptible(&ir->rbuf.wait_poll);
}
/* Do a reference put() for the rx->ir reference, if we released rx */
if (released)
put_ir_device(ir, ir_devices_lock_held);
return released;
}
/* struct IR_tx reference counting */
static struct IR_tx *get_ir_tx(struct IR *ir)
{
struct IR_tx *tx;
spin_lock(&ir->tx_ref_lock);
tx = ir->tx;
if (tx)
kref_get(&tx->ref);
spin_unlock(&ir->tx_ref_lock);
return tx;
}
static void release_ir_tx(struct kref *ref)
{
struct IR_tx *tx = container_of(ref, struct IR_tx, ref);
struct IR *ir = tx->ir;
ir->l->features &= ~LIRC_CAN_SEND_LIRCCODE;
/* Don't put_ir_device(tx->ir) here, so our lock doesn't get freed */
ir->tx = NULL;
kfree(tx);
}
static int put_ir_tx(struct IR_tx *tx, bool ir_devices_lock_held)
{
int released;
struct IR *ir = tx->ir;
spin_lock(&ir->tx_ref_lock);
released = kref_put(&tx->ref, release_ir_tx);
spin_unlock(&ir->tx_ref_lock);
/* Do a reference put() for the tx->ir reference, if we released tx */
if (released)
put_ir_device(ir, ir_devices_lock_held);
return released;
}
static int add_to_buf(struct IR *ir)
{
__u16 code;
unsigned char codes[2];
unsigned char keybuf[6];
int got_data = 0;
int ret;
int failures = 0;
unsigned char sendbuf[1] = { 0 };
struct lirc_buffer *rbuf = ir->l->buf;
struct IR_rx *rx;
struct IR_tx *tx;
if (lirc_buffer_full(rbuf)) {
dev_dbg(ir->dev, "buffer overflow\n");
return -EOVERFLOW;
}
rx = get_ir_rx(ir);
if (!rx)
return -ENXIO;
/* Ensure our rx->c i2c_client remains valid for the duration */
mutex_lock(&rx->client_lock);
if (!rx->c) {
mutex_unlock(&rx->client_lock);
put_ir_rx(rx, false);
return -ENXIO;
}
tx = get_ir_tx(ir);
/*
* service the device as long as it is returning
* data and we have space
*/
do {
if (kthread_should_stop()) {
ret = -ENODATA;
break;
}
/*
* Lock i2c bus for the duration. RX/TX chips interfere so
* this is worth it
*/
mutex_lock(&ir->ir_lock);
if (kthread_should_stop()) {
mutex_unlock(&ir->ir_lock);
ret = -ENODATA;
break;
}
/*
* Send random "poll command" (?) Windows driver does this
* and it is a good point to detect chip failure.
*/
ret = i2c_master_send(rx->c, sendbuf, 1);
if (ret != 1) {
dev_err(ir->dev, "i2c_master_send failed with %d\n",
ret);
if (failures >= 3) {
mutex_unlock(&ir->ir_lock);
dev_err(ir->dev,
"unable to read from the IR chip after 3 resets, giving up\n");
break;
}
/* Looks like the chip crashed, reset it */
dev_err(ir->dev,
"polling the IR receiver chip failed, trying reset\n");
set_current_state(TASK_UNINTERRUPTIBLE);
if (kthread_should_stop()) {
mutex_unlock(&ir->ir_lock);
ret = -ENODATA;
break;
}
schedule_timeout((100 * HZ + 999) / 1000);
if (tx)
tx->need_boot = 1;
++failures;
mutex_unlock(&ir->ir_lock);
ret = 0;
continue;
}
if (kthread_should_stop()) {
mutex_unlock(&ir->ir_lock);
ret = -ENODATA;
break;
}
ret = i2c_master_recv(rx->c, keybuf, sizeof(keybuf));
mutex_unlock(&ir->ir_lock);
if (ret != sizeof(keybuf)) {
dev_err(ir->dev,
"i2c_master_recv failed with %d -- keeping last read buffer\n",
ret);
} else {
rx->b[0] = keybuf[3];
rx->b[1] = keybuf[4];
rx->b[2] = keybuf[5];
dev_dbg(ir->dev,
"key (0x%02x/0x%02x)\n",
rx->b[0], rx->b[1]);
}
/* key pressed ? */
if (rx->hdpvr_data_fmt) {
if (got_data && (keybuf[0] == 0x80)) {
ret = 0;
break;
} else if (got_data && (keybuf[0] == 0x00)) {
ret = -ENODATA;
break;
}
} else if ((rx->b[0] & 0x80) == 0) {
ret = got_data ? 0 : -ENODATA;
break;
}
/* look what we have */
code = (((__u16)rx->b[0] & 0x7f) << 6) | (rx->b[1] >> 2);
codes[0] = (code >> 8) & 0xff;
codes[1] = code & 0xff;
/* return it */
lirc_buffer_write(rbuf, codes);
++got_data;
ret = 0;
} while (!lirc_buffer_full(rbuf));
mutex_unlock(&rx->client_lock);
if (tx)
put_ir_tx(tx, false);
put_ir_rx(rx, false);
return ret;
}
/*
* Main function of the polling thread -- from lirc_dev.
* We don't fit the LIRC model at all anymore. This is horrible, but
* basically we have a single RX/TX device with a nasty failure mode
* that needs to be accounted for across the pair. lirc lets us provide
* fops, but prevents us from using the internal polling, etc. if we do
* so. Hence the replication. Might be neater to extend the LIRC model
* to account for this but I'd think it's a very special case of seriously
* messed up hardware.
*/
static int lirc_thread(void *arg)
{
struct IR *ir = arg;
struct lirc_buffer *rbuf = ir->l->buf;
dev_dbg(ir->dev, "poll thread started\n");
while (!kthread_should_stop()) {
set_current_state(TASK_INTERRUPTIBLE);
/* if device not opened, we can sleep half a second */
if (atomic_read(&ir->open_count) == 0) {
schedule_timeout(HZ / 2);
continue;
}
/*
* This is ~113*2 + 24 + jitter (2*repeat gap + code length).
* We use this interval as the chip resets every time you poll
* it (bad!). This is therefore just sufficient to catch all
* of the button presses. It makes the remote much more
* responsive. You can see the difference by running irw and
* holding down a button. With 100ms, the old polling
* interval, you'll notice breaks in the repeat sequence
* corresponding to lost keypresses.
*/
schedule_timeout((260 * HZ) / 1000);
if (kthread_should_stop())
break;
if (!add_to_buf(ir))
wake_up_interruptible(&rbuf->wait_poll);
}
dev_dbg(ir->dev, "poll thread ended\n");
return 0;
}
/* safe read of a uint32 (always network byte order) */
static int read_uint32(unsigned char **data,
unsigned char *endp, unsigned int *val)
{
if (*data + 4 > endp)
return 0;
*val = ((*data)[0] << 24) | ((*data)[1] << 16) |
((*data)[2] << 8) | (*data)[3];
*data += 4;
return 1;
}
/* safe read of a uint8 */
static int read_uint8(unsigned char **data,
unsigned char *endp, unsigned char *val)
{
if (*data + 1 > endp)
return 0;
*val = *((*data)++);
return 1;
}
/* safe skipping of N bytes */
static int skip(unsigned char **data,
unsigned char *endp, unsigned int distance)
{
if (*data + distance > endp)
return 0;
*data += distance;
return 1;
}
/* decompress key data into the given buffer */
static int get_key_data(unsigned char *buf,
unsigned int codeset, unsigned int key)
{
unsigned char *data, *endp, *diffs, *key_block;
unsigned char keys, ndiffs, id;
unsigned int base, lim, pos, i;
/* Binary search for the codeset */
for (base = 0, lim = tx_data->num_code_sets; lim; lim >>= 1) {
pos = base + (lim >> 1);
data = tx_data->code_sets[pos];
if (!read_uint32(&data, tx_data->endp, &i))
goto corrupt;
if (i == codeset) {
break;
} else if (codeset > i) {
base = pos + 1;
--lim;
}
}
/* Not found? */
if (!lim)
return -EPROTO;
/* Set end of data block */
endp = pos < tx_data->num_code_sets - 1 ?
tx_data->code_sets[pos + 1] : tx_data->endp;
/* Read the block header */
if (!read_uint8(&data, endp, &keys) ||
!read_uint8(&data, endp, &ndiffs) ||
ndiffs > TX_BLOCK_SIZE || keys == 0)
goto corrupt;
/* Save diffs & skip */
diffs = data;
if (!skip(&data, endp, ndiffs))
goto corrupt;
/* Read the id of the first key */
if (!read_uint8(&data, endp, &id))
goto corrupt;
/* Unpack the first key's data */
for (i = 0; i < TX_BLOCK_SIZE; ++i) {
if (tx_data->fixed[i] == -1) {
if (!read_uint8(&data, endp, &buf[i]))
goto corrupt;
} else {
buf[i] = (unsigned char)tx_data->fixed[i];
}
}
/* Early out key found/not found */
if (key == id)
return 0;
if (keys == 1)
return -EPROTO;
/* Sanity check */
key_block = data;
if (!skip(&data, endp, (keys - 1) * (ndiffs + 1)))
goto corrupt;
/* Binary search for the key */
for (base = 0, lim = keys - 1; lim; lim >>= 1) {
/* Seek to block */
unsigned char *key_data;
pos = base + (lim >> 1);
key_data = key_block + (ndiffs + 1) * pos;
if (*key_data == key) {
/* skip key id */
++key_data;
/* found, so unpack the diffs */
for (i = 0; i < ndiffs; ++i) {
unsigned char val;
if (!read_uint8(&key_data, endp, &val) ||
diffs[i] >= TX_BLOCK_SIZE)
goto corrupt;
buf[diffs[i]] = val;
}
return 0;
} else if (key > *key_data) {
base = pos + 1;
--lim;
}
}
/* Key not found */
return -EPROTO;
corrupt:
pr_err("firmware is corrupt\n");
return -EFAULT;
}
/* send a block of data to the IR TX device */
static int send_data_block(struct IR_tx *tx, unsigned char *data_block)
{
int i, j, ret;
unsigned char buf[5];
for (i = 0; i < TX_BLOCK_SIZE;) {
int tosend = TX_BLOCK_SIZE - i;
if (tosend > 4)
tosend = 4;
buf[0] = (unsigned char)(i + 1);
for (j = 0; j < tosend; ++j)
buf[1 + j] = data_block[i + j];
dev_dbg(tx->ir->dev, "%*ph", 5, buf);
ret = i2c_master_send(tx->c, buf, tosend + 1);
if (ret != tosend + 1) {
dev_err(tx->ir->dev,
"i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EFAULT;
}
i += tosend;
}
return 0;
}
/* send boot data to the IR TX device */
static int send_boot_data(struct IR_tx *tx)
{
int ret, i;
unsigned char buf[4];
/* send the boot block */
ret = send_data_block(tx, tx_data->boot_data);
if (ret != 0)
return ret;
/* Hit the go button to activate the new boot data */
buf[0] = 0x00;
buf[1] = 0x20;
ret = i2c_master_send(tx->c, buf, 2);
if (ret != 2) {
dev_err(tx->ir->dev, "i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EFAULT;
}
/*
* Wait for zilog to settle after hitting go post boot block upload.
* Without this delay, the HD-PVR and HVR-1950 both return an -EIO
* upon attempting to get firmware revision, and tx probe thus fails.
*/
for (i = 0; i < 10; i++) {
ret = i2c_master_send(tx->c, buf, 1);
if (ret == 1)
break;
udelay(100);
}
if (ret != 1) {
dev_err(tx->ir->dev, "i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EFAULT;
}
/* Here comes the firmware version... (hopefully) */
ret = i2c_master_recv(tx->c, buf, 4);
if (ret != 4) {
dev_err(tx->ir->dev, "i2c_master_recv failed with %d\n", ret);
return 0;
}
if ((buf[0] != 0x80) && (buf[0] != 0xa0)) {
dev_err(tx->ir->dev, "unexpected IR TX init response: %02x\n",
buf[0]);
return 0;
}
dev_notice(tx->ir->dev,
"Zilog/Hauppauge IR blaster firmware version %d.%d.%d loaded\n",
buf[1], buf[2], buf[3]);
return 0;
}
/* unload "firmware", lock held */
static void fw_unload_locked(void)
{
if (tx_data) {
vfree(tx_data->code_sets);
vfree(tx_data->datap);
vfree(tx_data);
tx_data = NULL;
pr_debug("successfully unloaded IR blaster firmware\n");
}
}
/* unload "firmware" for the IR TX device */
static void fw_unload(void)
{
mutex_lock(&tx_data_lock);
fw_unload_locked();
mutex_unlock(&tx_data_lock);
}
/* load "firmware" for the IR TX device */
static int fw_load(struct IR_tx *tx)
{
int ret;
unsigned int i;
unsigned char *data, version, num_global_fixed;
const struct firmware *fw_entry;
/* Already loaded? */
mutex_lock(&tx_data_lock);
if (tx_data) {
ret = 0;
goto out;
}
/* Request codeset data file */
ret = request_firmware(&fw_entry, "haup-ir-blaster.bin", tx->ir->dev);
if (ret != 0) {
dev_err(tx->ir->dev,
"firmware haup-ir-blaster.bin not available (%d)\n",
ret);
ret = ret < 0 ? ret : -EFAULT;
goto out;
}
dev_dbg(tx->ir->dev, "firmware of size %zu loaded\n", fw_entry->size);
/* Parse the file */
tx_data = vmalloc(sizeof(*tx_data));
if (!tx_data) {
release_firmware(fw_entry);
ret = -ENOMEM;
goto out;
}
tx_data->code_sets = NULL;
/* Copy the data so hotplug doesn't get confused and timeout */
tx_data->datap = vmalloc(fw_entry->size);
if (!tx_data->datap) {
release_firmware(fw_entry);
vfree(tx_data);
ret = -ENOMEM;
goto out;
}
memcpy(tx_data->datap, fw_entry->data, fw_entry->size);
tx_data->endp = tx_data->datap + fw_entry->size;
release_firmware(fw_entry); fw_entry = NULL;
/* Check version */
data = tx_data->datap;
if (!read_uint8(&data, tx_data->endp, &version))
goto corrupt;
if (version != 1) {
dev_err(tx->ir->dev,
"unsupported code set file version (%u, expected 1) -- please upgrade to a newer driver\n",
version);
fw_unload_locked();
ret = -EFAULT;
goto out;
}
/* Save boot block for later */
tx_data->boot_data = data;
if (!skip(&data, tx_data->endp, TX_BLOCK_SIZE))
goto corrupt;
if (!read_uint32(&data, tx_data->endp,
&tx_data->num_code_sets))
goto corrupt;
dev_dbg(tx->ir->dev, "%u IR blaster codesets loaded\n",
tx_data->num_code_sets);
tx_data->code_sets = vmalloc(
tx_data->num_code_sets * sizeof(char *));
if (!tx_data->code_sets) {
fw_unload_locked();
ret = -ENOMEM;
goto out;
}
for (i = 0; i < TX_BLOCK_SIZE; ++i)
tx_data->fixed[i] = -1;
/* Read global fixed data template */
if (!read_uint8(&data, tx_data->endp, &num_global_fixed) ||
num_global_fixed > TX_BLOCK_SIZE)
goto corrupt;
for (i = 0; i < num_global_fixed; ++i) {
unsigned char pos, val;
if (!read_uint8(&data, tx_data->endp, &pos) ||
!read_uint8(&data, tx_data->endp, &val) ||
pos >= TX_BLOCK_SIZE)
goto corrupt;
tx_data->fixed[pos] = (int)val;
}
/* Filch out the position of each code set */
for (i = 0; i < tx_data->num_code_sets; ++i) {
unsigned int id;
unsigned char keys;
unsigned char ndiffs;
/* Save the codeset position */
tx_data->code_sets[i] = data;
/* Read header */
if (!read_uint32(&data, tx_data->endp, &id) ||
!read_uint8(&data, tx_data->endp, &keys) ||
!read_uint8(&data, tx_data->endp, &ndiffs) ||
ndiffs > TX_BLOCK_SIZE || keys == 0)
goto corrupt;
/* skip diff positions */
if (!skip(&data, tx_data->endp, ndiffs))
goto corrupt;
/*
* After the diffs we have the first key id + data -
* global fixed
*/
if (!skip(&data, tx_data->endp,
1 + TX_BLOCK_SIZE - num_global_fixed))
goto corrupt;
/* Then we have keys-1 blocks of key id+diffs */
if (!skip(&data, tx_data->endp,
(ndiffs + 1) * (keys - 1)))
goto corrupt;
}
ret = 0;
goto out;
corrupt:
dev_err(tx->ir->dev, "firmware is corrupt\n");
fw_unload_locked();
ret = -EFAULT;
out:
mutex_unlock(&tx_data_lock);
return ret;
}
/* copied from lirc_dev */
static ssize_t read(struct file *filep, char __user *outbuf, size_t n,
loff_t *ppos)
{
struct IR *ir = lirc_get_pdata(filep);
struct IR_rx *rx;
struct lirc_buffer *rbuf = ir->l->buf;
int ret = 0, written = 0, retries = 0;
unsigned int m;
DECLARE_WAITQUEUE(wait, current);
dev_dbg(ir->dev, "read called\n");
if (n % rbuf->chunk_size) {
dev_dbg(ir->dev, "read result = -EINVAL\n");
return -EINVAL;
}
rx = get_ir_rx(ir);
if (!rx)
return -ENXIO;
/*
* we add ourselves to the task queue before buffer check
* to avoid losing scan code (in case when queue is awaken somewhere
* between while condition checking and scheduling)
*/
add_wait_queue(&rbuf->wait_poll, &wait);
set_current_state(TASK_INTERRUPTIBLE);
/*
* while we didn't provide 'length' bytes, device is opened in blocking
* mode and 'copy_to_user' is happy, wait for data.
*/
while (written < n && ret == 0) {
if (lirc_buffer_empty(rbuf)) {
/*
* According to the read(2) man page, 'written' can be
* returned as less than 'n', instead of blocking
* again, returning -EWOULDBLOCK, or returning
* -ERESTARTSYS
*/
if (written)
break;
if (filep->f_flags & O_NONBLOCK) {
ret = -EWOULDBLOCK;
break;
}
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
schedule();
set_current_state(TASK_INTERRUPTIBLE);
} else {
unsigned char buf[MAX_XFER_SIZE];
if (rbuf->chunk_size > sizeof(buf)) {
dev_err(ir->dev,
"chunk_size is too big (%d)!\n",
rbuf->chunk_size);
ret = -EINVAL;
break;
}
m = lirc_buffer_read(rbuf, buf);
if (m == rbuf->chunk_size) {
ret = copy_to_user(outbuf + written, buf,
rbuf->chunk_size);
written += rbuf->chunk_size;
} else {
retries++;
}
if (retries >= 5) {
dev_err(ir->dev, "Buffer read failed!\n");
ret = -EIO;
}
}
}
remove_wait_queue(&rbuf->wait_poll, &wait);
put_ir_rx(rx, false);
set_current_state(TASK_RUNNING);
dev_dbg(ir->dev, "read result = %d (%s)\n", ret,
ret ? "Error" : "OK");
return ret ? ret : written;
}
/* send a keypress to the IR TX device */
static int send_code(struct IR_tx *tx, unsigned int code, unsigned int key)
{
unsigned char data_block[TX_BLOCK_SIZE];
unsigned char buf[2];
int i, ret;
/* Get data for the codeset/key */
ret = get_key_data(data_block, code, key);
if (ret == -EPROTO) {
dev_err(tx->ir->dev,
"failed to get data for code %u, key %u -- check lircd.conf entries\n",
code, key);
return ret;
} else if (ret != 0) {
return ret;
}
/* Send the data block */
ret = send_data_block(tx, data_block);
if (ret != 0)
return ret;
/* Send data block length? */
buf[0] = 0x00;
buf[1] = 0x40;
ret = i2c_master_send(tx->c, buf, 2);
if (ret != 2) {
dev_err(tx->ir->dev, "i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EFAULT;
}
/* Give the z8 a moment to process data block */
for (i = 0; i < 10; i++) {
ret = i2c_master_send(tx->c, buf, 1);
if (ret == 1)
break;
udelay(100);
}
if (ret != 1) {
dev_err(tx->ir->dev, "i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EFAULT;
}
/* Send finished download? */
ret = i2c_master_recv(tx->c, buf, 1);
if (ret != 1) {
dev_err(tx->ir->dev, "i2c_master_recv failed with %d\n", ret);
return ret < 0 ? ret : -EFAULT;
}
if (buf[0] != 0xA0) {
dev_err(tx->ir->dev, "unexpected IR TX response #1: %02x\n",
buf[0]);
return -EFAULT;
}
/* Send prepare command? */
buf[0] = 0x00;
buf[1] = 0x80;
ret = i2c_master_send(tx->c, buf, 2);
if (ret != 2) {
dev_err(tx->ir->dev, "i2c_master_send failed with %d\n", ret);
return ret < 0 ? ret : -EFAULT;
}
/*
* The sleep bits aren't necessary on the HD PVR, and in fact, the
* last i2c_master_recv always fails with a -5, so for now, we're
* going to skip this whole mess and say we're done on the HD PVR
*/
if (!tx->post_tx_ready_poll) {
dev_dbg(tx->ir->dev, "sent code %u, key %u\n", code, key);
return 0;
}
/*
* This bit NAKs until the device is ready, so we retry it
* sleeping a bit each time. This seems to be what the windows
* driver does, approximately.
* Try for up to 1s.
*/
for (i = 0; i < 20; ++i) {
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((50 * HZ + 999) / 1000);
ret = i2c_master_send(tx->c, buf, 1);
if (ret == 1)
break;
dev_dbg(tx->ir->dev,
"NAK expected: i2c_master_send failed with %d (try %d)\n",
ret, i + 1);
}
if (ret != 1) {
dev_err(tx->ir->dev,
"IR TX chip never got ready: last i2c_master_send failed with %d\n",
ret);
return ret < 0 ? ret : -EFAULT;
}
/* Seems to be an 'ok' response */
i = i2c_master_recv(tx->c, buf, 1);
if (i != 1) {
dev_err(tx->ir->dev, "i2c_master_recv failed with %d\n", ret);
return -EFAULT;
}
if (buf[0] != 0x80) {
dev_err(tx->ir->dev, "unexpected IR TX response #2: %02x\n",
buf[0]);
return -EFAULT;
}
/* Oh good, it worked */
dev_dbg(tx->ir->dev, "sent code %u, key %u\n", code, key);
return 0;
}
/*
* Write a code to the device. We take in a 32-bit number (an int) and then
* decode this to a codeset/key index. The key data is then decompressed and
* sent to the device. We have a spin lock as per i2c documentation to prevent
* multiple concurrent sends which would probably cause the device to explode.
*/
static ssize_t write(struct file *filep, const char __user *buf, size_t n,
loff_t *ppos)
{
struct IR *ir = lirc_get_pdata(filep);
struct IR_tx *tx;
size_t i;
int failures = 0;
/* Validate user parameters */
if (n % sizeof(int))
return -EINVAL;
/* Get a struct IR_tx reference */
tx = get_ir_tx(ir);
if (!tx)
return -ENXIO;
/* Ensure our tx->c i2c_client remains valid for the duration */
mutex_lock(&tx->client_lock);
if (!tx->c) {
mutex_unlock(&tx->client_lock);
put_ir_tx(tx, false);
return -ENXIO;
}
/* Lock i2c bus for the duration */
mutex_lock(&ir->ir_lock);
/* Send each keypress */
for (i = 0; i < n;) {
int ret = 0;
int command;
if (copy_from_user(&command, buf + i, sizeof(command))) {
mutex_unlock(&ir->ir_lock);
mutex_unlock(&tx->client_lock);
put_ir_tx(tx, false);
return -EFAULT;
}
/* Send boot data first if required */
if (tx->need_boot == 1) {
/* Make sure we have the 'firmware' loaded, first */
ret = fw_load(tx);
if (ret != 0) {
mutex_unlock(&ir->ir_lock);
mutex_unlock(&tx->client_lock);
put_ir_tx(tx, false);
if (ret != -ENOMEM)
ret = -EIO;
return ret;
}
/* Prep the chip for transmitting codes */
ret = send_boot_data(tx);
if (ret == 0)
tx->need_boot = 0;
}
/* Send the code */
if (ret == 0) {
ret = send_code(tx, (unsigned int)command >> 16,
(unsigned int)command & 0xFFFF);
if (ret == -EPROTO) {
mutex_unlock(&ir->ir_lock);
mutex_unlock(&tx->client_lock);
put_ir_tx(tx, false);
return ret;
}
}
/*
* Hmm, a failure. If we've had a few then give up, otherwise
* try a reset
*/
if (ret != 0) {
/* Looks like the chip crashed, reset it */
dev_err(tx->ir->dev,
"sending to the IR transmitter chip failed, trying reset\n");
if (failures >= 3) {
dev_err(tx->ir->dev,
"unable to send to the IR chip after 3 resets, giving up\n");
mutex_unlock(&ir->ir_lock);
mutex_unlock(&tx->client_lock);
put_ir_tx(tx, false);
return ret;
}
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout((100 * HZ + 999) / 1000);
tx->need_boot = 1;
++failures;
} else {
i += sizeof(int);
}
}
/* Release i2c bus */
mutex_unlock(&ir->ir_lock);
mutex_unlock(&tx->client_lock);
/* Give back our struct IR_tx reference */
put_ir_tx(tx, false);
/* All looks good */
return n;
}
/* copied from lirc_dev */
static unsigned int poll(struct file *filep, poll_table *wait)
{
struct IR *ir = lirc_get_pdata(filep);
struct IR_rx *rx;
struct lirc_buffer *rbuf = ir->l->buf;
unsigned int ret;
dev_dbg(ir->dev, "%s called\n", __func__);
rx = get_ir_rx(ir);
if (!rx) {
/*
* Revisit this, if our poll function ever reports writeable
* status for Tx
*/
dev_dbg(ir->dev, "%s result = POLLERR\n", __func__);
return POLLERR;
}
/*
* Add our lirc_buffer's wait_queue to the poll_table. A wake up on
* that buffer's wait queue indicates we may have a new poll status.
*/
poll_wait(filep, &rbuf->wait_poll, wait);
/* Indicate what ops could happen immediately without blocking */
ret = lirc_buffer_empty(rbuf) ? 0 : (POLLIN | POLLRDNORM);
dev_dbg(ir->dev, "%s result = %s\n", __func__,
ret ? "POLLIN|POLLRDNORM" : "none");
return ret;
}
static long ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
struct IR *ir = lirc_get_pdata(filep);
unsigned long __user *uptr = (unsigned long __user *)arg;
int result;
unsigned long mode, features;
features = ir->l->features;
switch (cmd) {
case LIRC_GET_LENGTH:
result = put_user(13UL, uptr);
break;
case LIRC_GET_FEATURES:
result = put_user(features, uptr);
break;
case LIRC_GET_REC_MODE:
if (!(features & LIRC_CAN_REC_MASK))
return -ENOTTY;
result = put_user(LIRC_REC2MODE
(features & LIRC_CAN_REC_MASK),
uptr);
break;
case LIRC_SET_REC_MODE:
if (!(features & LIRC_CAN_REC_MASK))
return -ENOTTY;
result = get_user(mode, uptr);
if (!result && !(LIRC_MODE2REC(mode) & features))
result = -ENOTTY;
break;
case LIRC_GET_SEND_MODE:
if (!(features & LIRC_CAN_SEND_MASK))
return -ENOTTY;
result = put_user(LIRC_MODE_LIRCCODE, uptr);
break;
case LIRC_SET_SEND_MODE:
if (!(features & LIRC_CAN_SEND_MASK))
return -ENOTTY;
result = get_user(mode, uptr);
if (!result && mode != LIRC_MODE_LIRCCODE)
return -EINVAL;
break;
default:
return -EINVAL;
}
return result;
}
/*
* Open the IR device.
*/
static int open(struct inode *node, struct file *filep)
{
struct IR *ir;
lirc_init_pdata(node, filep);
ir = lirc_get_pdata(filep);
atomic_inc(&ir->open_count);
nonseekable_open(node, filep);
return 0;
}
/* Close the IR device */
static int close(struct inode *node, struct file *filep)
{
struct IR *ir = lirc_get_pdata(filep);
atomic_dec(&ir->open_count);
put_ir_device(ir, false);
return 0;
}
static int ir_remove(struct i2c_client *client);
static int ir_probe(struct i2c_client *client, const struct i2c_device_id *id);
#define ID_FLAG_TX 0x01
#define ID_FLAG_HDPVR 0x02
static const struct i2c_device_id ir_transceiver_id[] = {
{ "ir_tx_z8f0811_haup", ID_FLAG_TX },
{ "ir_rx_z8f0811_haup", 0 },
{ "ir_tx_z8f0811_hdpvr", ID_FLAG_HDPVR | ID_FLAG_TX },
{ "ir_rx_z8f0811_hdpvr", ID_FLAG_HDPVR },
{ }
};
MODULE_DEVICE_TABLE(i2c, ir_transceiver_id);
static struct i2c_driver driver = {
.driver = {
.name = "Zilog/Hauppauge i2c IR",
},
.probe = ir_probe,
.remove = ir_remove,
.id_table = ir_transceiver_id,
};
static const struct file_operations lirc_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = read,
.write = write,
.poll = poll,
.unlocked_ioctl = ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ioctl,
#endif
.open = open,
.release = close
};
static int ir_remove(struct i2c_client *client)
{
if (strncmp("ir_tx_z8", client->name, 8) == 0) {
struct IR_tx *tx = i2c_get_clientdata(client);
if (tx) {
mutex_lock(&tx->client_lock);
tx->c = NULL;
mutex_unlock(&tx->client_lock);
put_ir_tx(tx, false);
}
} else if (strncmp("ir_rx_z8", client->name, 8) == 0) {
struct IR_rx *rx = i2c_get_clientdata(client);
if (rx) {
mutex_lock(&rx->client_lock);
rx->c = NULL;
mutex_unlock(&rx->client_lock);
put_ir_rx(rx, false);
}
}
return 0;
}
/* ir_devices_lock must be held */
static struct IR *get_ir_device_by_adapter(struct i2c_adapter *adapter)
{
struct IR *ir;
if (list_empty(&ir_devices_list))
return NULL;
list_for_each_entry(ir, &ir_devices_list, list)
if (ir->adapter == adapter) {
get_ir_device(ir, true);
return ir;
}
return NULL;
}
static int ir_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct IR *ir;
struct IR_tx *tx;
struct IR_rx *rx;
struct i2c_adapter *adap = client->adapter;
int ret;
bool tx_probe = false;
dev_dbg(&client->dev, "%s: %s on i2c-%d (%s), client addr=0x%02x\n",
__func__, id->name, adap->nr, adap->name, client->addr);
/*
* The IR receiver is at i2c address 0x71.
* The IR transmitter is at i2c address 0x70.
*/
if (id->driver_data & ID_FLAG_TX)
tx_probe = true;
else if (tx_only) /* module option */
return -ENXIO;
pr_info("probing IR %s on %s (i2c-%d)\n",
tx_probe ? "Tx" : "Rx", adap->name, adap->nr);
mutex_lock(&ir_devices_lock);
/* Use a single struct IR instance for both the Rx and Tx functions */
ir = get_ir_device_by_adapter(adap);
if (!ir) {
ir = kzalloc(sizeof(*ir), GFP_KERNEL);
if (!ir) {
ret = -ENOMEM;
goto out_no_ir;
}
kref_init(&ir->ref);
/* store for use in ir_probe() again, and open() later on */
INIT_LIST_HEAD(&ir->list);
list_add_tail(&ir->list, &ir_devices_list);
ir->adapter = adap;
ir->dev = &adap->dev;
mutex_init(&ir->ir_lock);
atomic_set(&ir->open_count, 0);
spin_lock_init(&ir->tx_ref_lock);
spin_lock_init(&ir->rx_ref_lock);
/* set lirc_dev stuff */
ir->l = lirc_allocate_device();
if (!ir->l) {
ret = -ENOMEM;
goto out_put_ir;
}
snprintf(ir->l->name, sizeof(ir->l->name), "lirc_zilog");
ir->l->code_length = 13;
ir->l->fops = &lirc_fops;
ir->l->owner = THIS_MODULE;
ir->l->dev.parent = &adap->dev;
/*
* FIXME this is a pointer reference to us, but no refcount.
*
* This OK for now, since lirc_dev currently won't touch this
* buffer as we provide our own lirc_fops.
*
* Currently our own lirc_fops rely on this ir->l->buf pointer
*/
ir->l->buf = &ir->rbuf;
/* This will be returned by lirc_get_pdata() */
ir->l->data = ir;
ret = lirc_buffer_init(ir->l->buf, 2, BUFLEN / 2);
if (ret) {
lirc_free_device(ir->l);
ir->l = NULL;
goto out_put_ir;
}
}
if (tx_probe) {
/* Get the IR_rx instance for later, if already allocated */
rx = get_ir_rx(ir);
/* Set up a struct IR_tx instance */
tx = kzalloc(sizeof(*tx), GFP_KERNEL);
if (!tx) {
ret = -ENOMEM;
goto out_put_xx;
}
kref_init(&tx->ref);
ir->tx = tx;
ir->l->features |= LIRC_CAN_SEND_LIRCCODE;
mutex_init(&tx->client_lock);
tx->c = client;
tx->need_boot = 1;
tx->post_tx_ready_poll =
(id->driver_data & ID_FLAG_HDPVR) ? false : true;
/* An ir ref goes to the struct IR_tx instance */
tx->ir = get_ir_device(ir, true);
/* A tx ref goes to the i2c_client */
i2c_set_clientdata(client, get_ir_tx(ir));
/*
* Load the 'firmware'. We do this before registering with
* lirc_dev, so the first firmware load attempt does not happen
* after a open() or write() call on the device.
*
* Failure here is not deemed catastrophic, so the receiver will
* still be usable. Firmware load will be retried in write(),
* if it is needed.
*/
fw_load(tx);
/* Proceed only if the Rx client is also ready or not needed */
if (!rx && !tx_only) {
dev_info(tx->ir->dev,
"probe of IR Tx on %s (i2c-%d) done. Waiting on IR Rx.\n",
adap->name, adap->nr);
goto out_ok;
}
} else {
/* Get the IR_tx instance for later, if already allocated */
tx = get_ir_tx(ir);
/* Set up a struct IR_rx instance */
rx = kzalloc(sizeof(*rx), GFP_KERNEL);
if (!rx) {
ret = -ENOMEM;
goto out_put_xx;
}
kref_init(&rx->ref);
ir->rx = rx;
ir->l->features |= LIRC_CAN_REC_LIRCCODE;
mutex_init(&rx->client_lock);
rx->c = client;
rx->hdpvr_data_fmt =
(id->driver_data & ID_FLAG_HDPVR) ? true : false;
/* An ir ref goes to the struct IR_rx instance */
rx->ir = get_ir_device(ir, true);
/* An rx ref goes to the i2c_client */
i2c_set_clientdata(client, get_ir_rx(ir));
/*
* Start the polling thread.
* It will only perform an empty loop around schedule_timeout()
* until we register with lirc_dev and the first user open()
*/
/* An ir ref goes to the new rx polling kthread */
rx->task = kthread_run(lirc_thread, get_ir_device(ir, true),
"zilog-rx-i2c-%d", adap->nr);
if (IS_ERR(rx->task)) {
ret = PTR_ERR(rx->task);
dev_err(tx->ir->dev,
"%s: could not start IR Rx polling thread\n",
__func__);
/* Failed kthread, so put back the ir ref */
put_ir_device(ir, true);
/* Failure exit, so put back rx ref from i2c_client */
i2c_set_clientdata(client, NULL);
put_ir_rx(rx, true);
ir->l->features &= ~LIRC_CAN_REC_LIRCCODE;
goto out_put_tx;
}
/* Proceed only if the Tx client is also ready */
if (!tx) {
pr_info("probe of IR Rx on %s (i2c-%d) done. Waiting on IR Tx.\n",
adap->name, adap->nr);
goto out_ok;
}
}
/* register with lirc */
ret = lirc_register_device(ir->l);
if (ret < 0) {
dev_err(tx->ir->dev,
"%s: lirc_register_device() failed: %i\n",
__func__, ret);
lirc_free_device(ir->l);
ir->l = NULL;
goto out_put_xx;
}
dev_info(ir->dev,
"IR unit on %s (i2c-%d) registered as lirc%d and ready\n",
adap->name, adap->nr, ir->l->minor);
out_ok:
if (rx)
put_ir_rx(rx, true);
if (tx)
put_ir_tx(tx, true);
put_ir_device(ir, true);
dev_info(ir->dev,
"probe of IR %s on %s (i2c-%d) done\n",
tx_probe ? "Tx" : "Rx", adap->name, adap->nr);
mutex_unlock(&ir_devices_lock);
return 0;
out_put_xx:
if (rx)
put_ir_rx(rx, true);
out_put_tx:
if (tx)
put_ir_tx(tx, true);
out_put_ir:
put_ir_device(ir, true);
out_no_ir:
dev_err(&client->dev,
"%s: probing IR %s on %s (i2c-%d) failed with %d\n",
__func__, tx_probe ? "Tx" : "Rx", adap->name, adap->nr, ret);
mutex_unlock(&ir_devices_lock);
return ret;
}
static int __init zilog_init(void)
{
int ret;
pr_notice("Zilog/Hauppauge IR driver initializing\n");
mutex_init(&tx_data_lock);
request_module("firmware_class");
ret = i2c_add_driver(&driver);
if (ret)
pr_err("initialization failed\n");
else
pr_notice("initialization complete\n");
return ret;
}
static void __exit zilog_exit(void)
{
i2c_del_driver(&driver);
/* if loaded */
fw_unload();
pr_notice("Zilog/Hauppauge IR driver unloaded\n");
}
module_init(zilog_init);
module_exit(zilog_exit);
MODULE_DESCRIPTION("Zilog/Hauppauge infrared transmitter driver (i2c stack)");
MODULE_AUTHOR("Gerd Knorr, Michal Kochanowicz, Christoph Bartelmus, Ulrich Mueller, Stefan Jahn, Jerome Brock, Mark Weaver, Andy Walls");
MODULE_LICENSE("GPL");
/* for compat with old name, which isn't all that accurate anymore */
MODULE_ALIAS("lirc_pvr150");
module_param(debug, bool, 0644);
MODULE_PARM_DESC(debug, "Enable debugging messages");
module_param(tx_only, bool, 0644);
MODULE_PARM_DESC(tx_only, "Only handle the IR transmit function");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment