Commit f9e67598 authored by Samson Tam's avatar Samson Tam Committed by Alex Deucher

drm/amd/display: roll back quality EASF and ISHARP and dc dependency changes

[Why]
Seeing several regressions related to quality EASF and ISHARP changes
and removing dc dependency changes.

[How]
Roll back SPL changes
Signed-off-by: default avatarSamson Tam <Samson.Tam@amd.com>
Reviewed-by: default avatarMartin Leung <martin.leung@amd.com>
Tested-by: default avatarDaniel Wheeler <daniel.wheeler@amd.com>
Signed-off-by: default avatarRodrigo Siqueira <rodrigo.siqueira@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 7c5b3445
......@@ -1511,6 +1511,8 @@ bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
spl_out->scl_data.h_active = pipe_ctx->plane_res.scl_data.h_active;
spl_out->scl_data.v_active = pipe_ctx->plane_res.scl_data.v_active;
// Convert pipe_ctx to respective input params for SPL
translate_SPL_in_params_from_pipe_ctx(pipe_ctx, spl_in);
......
......@@ -42,26 +42,26 @@ static void populate_spltaps_from_taps(struct spl_taps *spl_scaling_quality,
static void populate_taps_from_spltaps(struct scaling_taps *scaling_quality,
const struct spl_taps *spl_scaling_quality)
{
scaling_quality->h_taps_c = spl_scaling_quality->h_taps_c + 1;
scaling_quality->h_taps = spl_scaling_quality->h_taps + 1;
scaling_quality->v_taps_c = spl_scaling_quality->v_taps_c + 1;
scaling_quality->v_taps = spl_scaling_quality->v_taps + 1;
scaling_quality->h_taps_c = spl_scaling_quality->h_taps_c;
scaling_quality->h_taps = spl_scaling_quality->h_taps;
scaling_quality->v_taps_c = spl_scaling_quality->v_taps_c;
scaling_quality->v_taps = spl_scaling_quality->v_taps;
}
static void populate_ratios_from_splratios(struct scaling_ratios *ratios,
const struct ratio *spl_ratios)
const struct spl_ratios *spl_ratios)
{
ratios->horz = dc_fixpt_from_ux_dy(spl_ratios->h_scale_ratio >> 5, 3, 19);
ratios->vert = dc_fixpt_from_ux_dy(spl_ratios->v_scale_ratio >> 5, 3, 19);
ratios->horz_c = dc_fixpt_from_ux_dy(spl_ratios->h_scale_ratio_c >> 5, 3, 19);
ratios->vert_c = dc_fixpt_from_ux_dy(spl_ratios->v_scale_ratio_c >> 5, 3, 19);
ratios->horz = spl_ratios->horz;
ratios->vert = spl_ratios->vert;
ratios->horz_c = spl_ratios->horz_c;
ratios->vert_c = spl_ratios->vert_c;
}
static void populate_inits_from_splinits(struct scl_inits *inits,
const struct init *spl_inits)
const struct spl_inits *spl_inits)
{
inits->h = dc_fixpt_from_int_dy(spl_inits->h_filter_init_int, spl_inits->h_filter_init_frac >> 5, 0, 19);
inits->v = dc_fixpt_from_int_dy(spl_inits->v_filter_init_int, spl_inits->v_filter_init_frac >> 5, 0, 19);
inits->h_c = dc_fixpt_from_int_dy(spl_inits->h_filter_init_int_c, spl_inits->h_filter_init_frac_c >> 5, 0, 19);
inits->v_c = dc_fixpt_from_int_dy(spl_inits->v_filter_init_int_c, spl_inits->v_filter_init_frac_c >> 5, 0, 19);
inits->h = spl_inits->h;
inits->v = spl_inits->v;
inits->h_c = spl_inits->h_c;
inits->v_c = spl_inits->v_c;
}
/// @brief Translate SPL input parameters from pipe context
/// @param pipe_ctx
......@@ -170,15 +170,6 @@ void translate_SPL_in_params_from_pipe_ctx(struct pipe_ctx *pipe_ctx, struct spl
/* Translate transfer function */
spl_in->basic_in.tf_type = (enum spl_transfer_func_type) plane_state->in_transfer_func.type;
spl_in->basic_in.tf_predefined_type = (enum spl_transfer_func_predefined) plane_state->in_transfer_func.tf;
spl_in->h_active = pipe_ctx->plane_res.scl_data.h_active;
spl_in->v_active = pipe_ctx->plane_res.scl_data.v_active;
/* Check if it is stream is in fullscreen and if its HDR.
* Use this to determine sharpness levels
*/
spl_in->is_fullscreen = dm_helpers_is_fullscreen(pipe_ctx->stream->ctx, pipe_ctx->stream);
spl_in->is_hdr_on = dm_helpers_is_hdr_on(pipe_ctx->stream->ctx, pipe_ctx->stream);
}
/// @brief Translate SPL output parameters to pipe context
......@@ -187,15 +178,15 @@ void translate_SPL_in_params_from_pipe_ctx(struct pipe_ctx *pipe_ctx, struct spl
void translate_SPL_out_params_to_pipe_ctx(struct pipe_ctx *pipe_ctx, struct spl_out *spl_out)
{
// Make scaler data recout point to spl output field recout
populate_rect_from_splrect(&pipe_ctx->plane_res.scl_data.recout, &spl_out->dscl_prog_data->recout);
populate_rect_from_splrect(&pipe_ctx->plane_res.scl_data.recout, &spl_out->scl_data.recout);
// Make scaler data ratios point to spl output field ratios
populate_ratios_from_splratios(&pipe_ctx->plane_res.scl_data.ratios, &spl_out->dscl_prog_data->ratios);
populate_ratios_from_splratios(&pipe_ctx->plane_res.scl_data.ratios, &spl_out->scl_data.ratios);
// Make scaler data viewport point to spl output field viewport
populate_rect_from_splrect(&pipe_ctx->plane_res.scl_data.viewport, &spl_out->dscl_prog_data->viewport);
populate_rect_from_splrect(&pipe_ctx->plane_res.scl_data.viewport, &spl_out->scl_data.viewport);
// Make scaler data viewport_c point to spl output field viewport_c
populate_rect_from_splrect(&pipe_ctx->plane_res.scl_data.viewport_c, &spl_out->dscl_prog_data->viewport_c);
populate_rect_from_splrect(&pipe_ctx->plane_res.scl_data.viewport_c, &spl_out->scl_data.viewport_c);
// Make scaler data taps point to spl output field scaling taps
populate_taps_from_spltaps(&pipe_ctx->plane_res.scl_data.taps, &spl_out->dscl_prog_data->taps);
populate_taps_from_spltaps(&pipe_ctx->plane_res.scl_data.taps, &spl_out->scl_data.taps);
// Make scaler data init point to spl output field init
populate_inits_from_splinits(&pipe_ctx->plane_res.scl_data.inits, &spl_out->dscl_prog_data->init);
populate_inits_from_splinits(&pipe_ctx->plane_res.scl_data.inits, &spl_out->scl_data.inits);
}
......@@ -6,7 +6,6 @@
#define __DC_SPL_TRANSLATE_H__
#include "dc.h"
#include "resource.h"
#include "dm_helpers.h"
/* Map SPL input parameters to pipe context
* @pipe_ctx: pipe context
......
......@@ -788,14 +788,6 @@ static void populate_dml21_plane_config_from_plane_state(struct dml2_context *dm
* certain cases. Hence do corrective active and disable scaling.
*/
plane->composition.scaler_info.enabled = false;
} else if ((plane_state->ctx->dc->config.use_spl == true) &&
(plane->composition.scaler_info.enabled == false)) {
/* To enable sharpener for 1:1, scaler must be enabled. If use_spl is set, then
* allow case where ratio is 1 but taps > 1
*/
if ((scaler_data->taps.h_taps > 1) || (scaler_data->taps.v_taps > 1) ||
(scaler_data->taps.h_taps_c > 1) || (scaler_data->taps.v_taps_c > 1))
plane->composition.scaler_info.enabled = true;
}
/* always_scale is only used for debug purposes not used in production but has to be
......
......@@ -280,8 +280,7 @@ static void dpp401_dscl_set_scaler_filter(
static void dpp401_dscl_set_scl_filter(
struct dcn401_dpp *dpp,
const struct scaler_data *scl_data,
bool chroma_coef_mode,
bool force_coeffs_update)
bool chroma_coef_mode)
{
bool h_2tap_hardcode_coef_en = false;
bool v_2tap_hardcode_coef_en = false;
......@@ -344,7 +343,7 @@ static void dpp401_dscl_set_scl_filter(
|| (filter_v_c && (filter_v_c != dpp->filter_v_c));
}
if ((filter_updated) || (force_coeffs_update)) {
if (filter_updated) {
uint32_t scl_mode = REG_READ(SCL_MODE);
if (!h_2tap_hardcode_coef_en && filter_h) {
......@@ -657,252 +656,274 @@ static void dpp401_dscl_set_recout(struct dcn401_dpp *dpp,
RECOUT_HEIGHT, recout->height);
}
/**
* dpp401_dscl_program_easf_v - Program EASF_V
* dpp401_dscl_program_easf - Program EASF
*
* @dpp_base: High level DPP struct
* @scl_data: scalaer_data info
*
* This is the primary function to program vertical EASF registers
* This is the primary function to program EASF
*
*/
static void dpp401_dscl_program_easf_v(struct dpp *dpp_base, const struct scaler_data *scl_data)
static void dpp401_dscl_program_easf(struct dpp *dpp_base, const struct scaler_data *scl_data)
{
struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);
PERF_TRACE();
REG_UPDATE(DSCL_SC_MODE,
SCL_SC_MATRIX_MODE, scl_data->dscl_prog_data.easf_matrix_mode);
REG_UPDATE(DSCL_SC_MODE,
SCL_SC_LTONL_EN, scl_data->dscl_prog_data.easf_ltonl_en);
/* DSCL_EASF_V_MODE */
REG_SET_3(DSCL_EASF_V_MODE, 0,
SCL_EASF_V_EN, scl_data->dscl_prog_data.easf_v_en,
SCL_EASF_V_2TAP_SHARP_FACTOR, scl_data->dscl_prog_data.easf_v_sharp_factor,
REG_UPDATE(DSCL_EASF_V_MODE,
SCL_EASF_V_EN, scl_data->dscl_prog_data.easf_v_en);
REG_UPDATE(DSCL_EASF_V_MODE,
SCL_EASF_V_2TAP_SHARP_FACTOR, scl_data->dscl_prog_data.easf_v_sharp_factor);
REG_UPDATE(DSCL_EASF_V_MODE,
SCL_EASF_V_RINGEST_FORCE_EN, scl_data->dscl_prog_data.easf_v_ring);
if (!scl_data->dscl_prog_data.easf_v_en) {
PERF_TRACE();
return;
}
/* DSCL_EASF_V_BF_CNTL */
REG_SET_6(DSCL_EASF_V_BF_CNTL, 0,
SCL_EASF_V_BF1_EN, scl_data->dscl_prog_data.easf_v_bf1_en,
SCL_EASF_V_BF2_MODE, scl_data->dscl_prog_data.easf_v_bf2_mode,
SCL_EASF_V_BF3_MODE, scl_data->dscl_prog_data.easf_v_bf3_mode,
SCL_EASF_V_BF2_FLAT1_GAIN, scl_data->dscl_prog_data.easf_v_bf2_flat1_gain,
SCL_EASF_V_BF2_FLAT2_GAIN, scl_data->dscl_prog_data.easf_v_bf2_flat2_gain,
REG_UPDATE(DSCL_EASF_V_BF_CNTL,
SCL_EASF_V_BF1_EN, scl_data->dscl_prog_data.easf_v_bf1_en);
REG_UPDATE(DSCL_EASF_V_BF_CNTL,
SCL_EASF_V_BF2_MODE, scl_data->dscl_prog_data.easf_v_bf2_mode);
REG_UPDATE(DSCL_EASF_V_BF_CNTL,
SCL_EASF_V_BF3_MODE, scl_data->dscl_prog_data.easf_v_bf3_mode);
REG_UPDATE(DSCL_EASF_V_BF_CNTL,
SCL_EASF_V_BF2_FLAT1_GAIN, scl_data->dscl_prog_data.easf_v_bf2_flat1_gain);
REG_UPDATE(DSCL_EASF_V_BF_CNTL,
SCL_EASF_V_BF2_FLAT2_GAIN, scl_data->dscl_prog_data.easf_v_bf2_flat2_gain);
REG_UPDATE(DSCL_EASF_V_BF_CNTL,
SCL_EASF_V_BF2_ROC_GAIN, scl_data->dscl_prog_data.easf_v_bf2_roc_gain);
/* DSCL_EASF_V_RINGEST_3TAP_CNTLn */
REG_SET_2(DSCL_EASF_V_RINGEST_3TAP_CNTL1, 0,
SCL_EASF_V_RINGEST_3TAP_DNTILT_UPTILT, scl_data->dscl_prog_data.easf_v_ringest_3tap_dntilt_uptilt,
REG_UPDATE(DSCL_EASF_V_RINGEST_3TAP_CNTL1,
SCL_EASF_V_RINGEST_3TAP_DNTILT_UPTILT, scl_data->dscl_prog_data.easf_v_ringest_3tap_dntilt_uptilt);
REG_UPDATE(DSCL_EASF_V_RINGEST_3TAP_CNTL1,
SCL_EASF_V_RINGEST_3TAP_UPTILT_MAXVAL, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt_max);
REG_SET_2(DSCL_EASF_V_RINGEST_3TAP_CNTL2, 0,
SCL_EASF_V_RINGEST_3TAP_DNTILT_SLOPE, scl_data->dscl_prog_data.easf_v_ringest_3tap_dntilt_slope,
REG_UPDATE(DSCL_EASF_V_RINGEST_3TAP_CNTL2,
SCL_EASF_V_RINGEST_3TAP_DNTILT_SLOPE, scl_data->dscl_prog_data.easf_v_ringest_3tap_dntilt_slope);
REG_UPDATE(DSCL_EASF_V_RINGEST_3TAP_CNTL2,
SCL_EASF_V_RINGEST_3TAP_UPTILT1_SLOPE, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt1_slope);
REG_SET_2(DSCL_EASF_V_RINGEST_3TAP_CNTL3, 0,
SCL_EASF_V_RINGEST_3TAP_UPTILT2_SLOPE, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt2_slope,
REG_UPDATE(DSCL_EASF_V_RINGEST_3TAP_CNTL3,
SCL_EASF_V_RINGEST_3TAP_UPTILT2_SLOPE, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt2_slope);
REG_UPDATE(DSCL_EASF_V_RINGEST_3TAP_CNTL3,
SCL_EASF_V_RINGEST_3TAP_UPTILT2_OFFSET, scl_data->dscl_prog_data.easf_v_ringest_3tap_uptilt2_offset);
/* DSCL_EASF_V_RINGEST_EVENTAP_REDUCE */
REG_SET_2(DSCL_EASF_V_RINGEST_EVENTAP_REDUCE, 0,
SCL_EASF_V_RINGEST_EVENTAP_REDUCEG1, scl_data->dscl_prog_data.easf_v_ringest_eventap_reduceg1,
REG_UPDATE(DSCL_EASF_V_RINGEST_EVENTAP_REDUCE,
SCL_EASF_V_RINGEST_EVENTAP_REDUCEG1, scl_data->dscl_prog_data.easf_v_ringest_eventap_reduceg1);
REG_UPDATE(DSCL_EASF_V_RINGEST_EVENTAP_REDUCE,
SCL_EASF_V_RINGEST_EVENTAP_REDUCEG2, scl_data->dscl_prog_data.easf_v_ringest_eventap_reduceg2);
/* DSCL_EASF_V_RINGEST_EVENTAP_GAIN */
REG_SET_2(DSCL_EASF_V_RINGEST_EVENTAP_GAIN, 0,
SCL_EASF_V_RINGEST_EVENTAP_GAIN1, scl_data->dscl_prog_data.easf_v_ringest_eventap_gain1,
REG_UPDATE(DSCL_EASF_V_RINGEST_EVENTAP_GAIN,
SCL_EASF_V_RINGEST_EVENTAP_GAIN1, scl_data->dscl_prog_data.easf_v_ringest_eventap_gain1);
REG_UPDATE(DSCL_EASF_V_RINGEST_EVENTAP_GAIN,
SCL_EASF_V_RINGEST_EVENTAP_GAIN2, scl_data->dscl_prog_data.easf_v_ringest_eventap_gain2);
/* DSCL_EASF_V_BF_FINAL_MAX_MIN */
REG_SET_4(DSCL_EASF_V_BF_FINAL_MAX_MIN, 0,
SCL_EASF_V_BF_MAXA, scl_data->dscl_prog_data.easf_v_bf_maxa,
SCL_EASF_V_BF_MAXB, scl_data->dscl_prog_data.easf_v_bf_maxb,
SCL_EASF_V_BF_MINA, scl_data->dscl_prog_data.easf_v_bf_mina,
REG_UPDATE(DSCL_EASF_V_BF_FINAL_MAX_MIN,
SCL_EASF_V_BF_MAXA, scl_data->dscl_prog_data.easf_v_bf_maxa);
REG_UPDATE(DSCL_EASF_V_BF_FINAL_MAX_MIN,
SCL_EASF_V_BF_MAXB, scl_data->dscl_prog_data.easf_v_bf_maxb);
REG_UPDATE(DSCL_EASF_V_BF_FINAL_MAX_MIN,
SCL_EASF_V_BF_MINA, scl_data->dscl_prog_data.easf_v_bf_mina);
REG_UPDATE(DSCL_EASF_V_BF_FINAL_MAX_MIN,
SCL_EASF_V_BF_MINB, scl_data->dscl_prog_data.easf_v_bf_minb);
/* DSCL_EASF_V_BF1_PWL_SEGn */
REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG0, 0,
SCL_EASF_V_BF1_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg0,
SCL_EASF_V_BF1_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg0,
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG0,
SCL_EASF_V_BF1_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg0);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG0,
SCL_EASF_V_BF1_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg0);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG0,
SCL_EASF_V_BF1_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg0);
REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG1, 0,
SCL_EASF_V_BF1_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg1,
SCL_EASF_V_BF1_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg1,
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG1,
SCL_EASF_V_BF1_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg1);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG1,
SCL_EASF_V_BF1_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg1);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG1,
SCL_EASF_V_BF1_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg1);
REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG2, 0,
SCL_EASF_V_BF1_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg2,
SCL_EASF_V_BF1_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg2,
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG2,
SCL_EASF_V_BF1_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg2);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG2,
SCL_EASF_V_BF1_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg2);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG2,
SCL_EASF_V_BF1_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg2);
REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG3, 0,
SCL_EASF_V_BF1_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg3,
SCL_EASF_V_BF1_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg3,
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG3,
SCL_EASF_V_BF1_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg3);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG3,
SCL_EASF_V_BF1_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg3);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG3,
SCL_EASF_V_BF1_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg3);
REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG4, 0,
SCL_EASF_V_BF1_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg4,
SCL_EASF_V_BF1_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg4,
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG4,
SCL_EASF_V_BF1_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg4);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG4,
SCL_EASF_V_BF1_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg4);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG4,
SCL_EASF_V_BF1_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg4);
REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG5, 0,
SCL_EASF_V_BF1_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg5,
SCL_EASF_V_BF1_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg5,
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG5,
SCL_EASF_V_BF1_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg5);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG5,
SCL_EASF_V_BF1_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg5);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG5,
SCL_EASF_V_BF1_PWL_SLOPE_SEG5, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg5);
REG_SET_3(DSCL_EASF_V_BF1_PWL_SEG6, 0,
SCL_EASF_V_BF1_PWL_IN_SEG6, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg6,
SCL_EASF_V_BF1_PWL_BASE_SEG6, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg6,
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG6,
SCL_EASF_V_BF1_PWL_IN_SEG6, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg6);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG6,
SCL_EASF_V_BF1_PWL_BASE_SEG6, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg6);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG6,
SCL_EASF_V_BF1_PWL_SLOPE_SEG6, scl_data->dscl_prog_data.easf_v_bf1_pwl_slope_seg6);
REG_SET_2(DSCL_EASF_V_BF1_PWL_SEG7, 0,
SCL_EASF_V_BF1_PWL_IN_SEG7, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg7,
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG7,
SCL_EASF_V_BF1_PWL_IN_SEG7, scl_data->dscl_prog_data.easf_v_bf1_pwl_in_seg7);
REG_UPDATE(DSCL_EASF_V_BF1_PWL_SEG7,
SCL_EASF_V_BF1_PWL_BASE_SEG7, scl_data->dscl_prog_data.easf_v_bf1_pwl_base_seg7);
/* DSCL_EASF_V_BF3_PWL_SEGn */
REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG0, 0,
SCL_EASF_V_BF3_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set0,
SCL_EASF_V_BF3_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set0,
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG0,
SCL_EASF_V_BF3_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set0);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG0,
SCL_EASF_V_BF3_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set0);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG0,
SCL_EASF_V_BF3_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set0);
REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG1, 0,
SCL_EASF_V_BF3_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set1,
SCL_EASF_V_BF3_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set1,
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG1,
SCL_EASF_V_BF3_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set1);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG1,
SCL_EASF_V_BF3_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set1);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG1,
SCL_EASF_V_BF3_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set1);
REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG2, 0,
SCL_EASF_V_BF3_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set2,
SCL_EASF_V_BF3_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set2,
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG2,
SCL_EASF_V_BF3_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set2);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG2,
SCL_EASF_V_BF3_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set2);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG2,
SCL_EASF_V_BF3_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set2);
REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG3, 0,
SCL_EASF_V_BF3_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set3,
SCL_EASF_V_BF3_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set3,
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG3,
SCL_EASF_V_BF3_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set3);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG3,
SCL_EASF_V_BF3_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set3);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG3,
SCL_EASF_V_BF3_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set3);
REG_SET_3(DSCL_EASF_V_BF3_PWL_SEG4, 0,
SCL_EASF_V_BF3_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set4,
SCL_EASF_V_BF3_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set4,
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG4,
SCL_EASF_V_BF3_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set4);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG4,
SCL_EASF_V_BF3_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set4);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG4,
SCL_EASF_V_BF3_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.easf_v_bf3_pwl_slope_set4);
REG_SET_2(DSCL_EASF_V_BF3_PWL_SEG5, 0,
SCL_EASF_V_BF3_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set5,
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG5,
SCL_EASF_V_BF3_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_v_bf3_pwl_in_set5);
REG_UPDATE(DSCL_EASF_V_BF3_PWL_SEG5,
SCL_EASF_V_BF3_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_v_bf3_pwl_base_set5);
PERF_TRACE();
}
/**
* dpp401_dscl_program_easf_h - Program EASF_H
*
* @dpp_base: High level DPP struct
* @scl_data: scalaer_data info
*
* This is the primary function to program horizontal EASF registers
*
*/
static void dpp401_dscl_program_easf_h(struct dpp *dpp_base, const struct scaler_data *scl_data)
{
struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);
PERF_TRACE();
/* DSCL_EASF_H_MODE */
REG_SET_3(DSCL_EASF_H_MODE, 0,
SCL_EASF_H_EN, scl_data->dscl_prog_data.easf_h_en,
SCL_EASF_H_2TAP_SHARP_FACTOR, scl_data->dscl_prog_data.easf_h_sharp_factor,
REG_UPDATE(DSCL_EASF_H_MODE,
SCL_EASF_H_EN, scl_data->dscl_prog_data.easf_h_en);
REG_UPDATE(DSCL_EASF_H_MODE,
SCL_EASF_H_2TAP_SHARP_FACTOR, scl_data->dscl_prog_data.easf_h_sharp_factor);
REG_UPDATE(DSCL_EASF_H_MODE,
SCL_EASF_H_RINGEST_FORCE_EN, scl_data->dscl_prog_data.easf_h_ring);
if (!scl_data->dscl_prog_data.easf_h_en) {
PERF_TRACE();
return;
}
/* DSCL_EASF_H_BF_CNTL */
REG_SET_6(DSCL_EASF_H_BF_CNTL, 0,
SCL_EASF_H_BF1_EN, scl_data->dscl_prog_data.easf_h_bf1_en,
SCL_EASF_H_BF2_MODE, scl_data->dscl_prog_data.easf_h_bf2_mode,
SCL_EASF_H_BF3_MODE, scl_data->dscl_prog_data.easf_h_bf3_mode,
SCL_EASF_H_BF2_FLAT1_GAIN, scl_data->dscl_prog_data.easf_h_bf2_flat1_gain,
SCL_EASF_H_BF2_FLAT2_GAIN, scl_data->dscl_prog_data.easf_h_bf2_flat2_gain,
REG_UPDATE(DSCL_EASF_H_BF_CNTL,
SCL_EASF_H_BF1_EN, scl_data->dscl_prog_data.easf_h_bf1_en);
REG_UPDATE(DSCL_EASF_H_BF_CNTL,
SCL_EASF_H_BF2_MODE, scl_data->dscl_prog_data.easf_h_bf2_mode);
REG_UPDATE(DSCL_EASF_H_BF_CNTL,
SCL_EASF_H_BF3_MODE, scl_data->dscl_prog_data.easf_h_bf3_mode);
REG_UPDATE(DSCL_EASF_H_BF_CNTL,
SCL_EASF_H_BF2_FLAT1_GAIN, scl_data->dscl_prog_data.easf_h_bf2_flat1_gain);
REG_UPDATE(DSCL_EASF_H_BF_CNTL,
SCL_EASF_H_BF2_FLAT2_GAIN, scl_data->dscl_prog_data.easf_h_bf2_flat2_gain);
REG_UPDATE(DSCL_EASF_H_BF_CNTL,
SCL_EASF_H_BF2_ROC_GAIN, scl_data->dscl_prog_data.easf_h_bf2_roc_gain);
/* DSCL_EASF_H_RINGEST_EVENTAP_REDUCE */
REG_SET_2(DSCL_EASF_H_RINGEST_EVENTAP_REDUCE, 0,
SCL_EASF_H_RINGEST_EVENTAP_REDUCEG1, scl_data->dscl_prog_data.easf_h_ringest_eventap_reduceg1,
REG_UPDATE(DSCL_EASF_H_RINGEST_EVENTAP_REDUCE,
SCL_EASF_H_RINGEST_EVENTAP_REDUCEG1, scl_data->dscl_prog_data.easf_h_ringest_eventap_reduceg1);
REG_UPDATE(DSCL_EASF_H_RINGEST_EVENTAP_REDUCE,
SCL_EASF_H_RINGEST_EVENTAP_REDUCEG2, scl_data->dscl_prog_data.easf_h_ringest_eventap_reduceg2);
/* DSCL_EASF_H_RINGEST_EVENTAP_GAIN */
REG_SET_2(DSCL_EASF_H_RINGEST_EVENTAP_GAIN, 0,
SCL_EASF_H_RINGEST_EVENTAP_GAIN1, scl_data->dscl_prog_data.easf_h_ringest_eventap_gain1,
REG_UPDATE(DSCL_EASF_H_RINGEST_EVENTAP_GAIN,
SCL_EASF_H_RINGEST_EVENTAP_GAIN1, scl_data->dscl_prog_data.easf_h_ringest_eventap_gain1);
REG_UPDATE(DSCL_EASF_H_RINGEST_EVENTAP_GAIN,
SCL_EASF_H_RINGEST_EVENTAP_GAIN2, scl_data->dscl_prog_data.easf_h_ringest_eventap_gain2);
/* DSCL_EASF_H_BF_FINAL_MAX_MIN */
REG_SET_4(DSCL_EASF_H_BF_FINAL_MAX_MIN, 0,
SCL_EASF_H_BF_MAXA, scl_data->dscl_prog_data.easf_h_bf_maxa,
SCL_EASF_H_BF_MAXB, scl_data->dscl_prog_data.easf_h_bf_maxb,
SCL_EASF_H_BF_MINA, scl_data->dscl_prog_data.easf_h_bf_mina,
REG_UPDATE(DSCL_EASF_H_BF_FINAL_MAX_MIN,
SCL_EASF_H_BF_MAXA, scl_data->dscl_prog_data.easf_h_bf_maxa);
REG_UPDATE(DSCL_EASF_H_BF_FINAL_MAX_MIN,
SCL_EASF_H_BF_MAXB, scl_data->dscl_prog_data.easf_h_bf_maxb);
REG_UPDATE(DSCL_EASF_H_BF_FINAL_MAX_MIN,
SCL_EASF_H_BF_MINA, scl_data->dscl_prog_data.easf_h_bf_mina);
REG_UPDATE(DSCL_EASF_H_BF_FINAL_MAX_MIN,
SCL_EASF_H_BF_MINB, scl_data->dscl_prog_data.easf_h_bf_minb);
/* DSCL_EASF_H_BF1_PWL_SEGn */
REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG0, 0,
SCL_EASF_H_BF1_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg0,
SCL_EASF_H_BF1_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg0,
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG0,
SCL_EASF_H_BF1_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg0);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG0,
SCL_EASF_H_BF1_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg0);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG0,
SCL_EASF_H_BF1_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg0);
REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG1, 0,
SCL_EASF_H_BF1_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg1,
SCL_EASF_H_BF1_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg1,
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG1,
SCL_EASF_H_BF1_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg1);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG1,
SCL_EASF_H_BF1_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg1);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG1,
SCL_EASF_H_BF1_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg1);
REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG2, 0,
SCL_EASF_H_BF1_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg2,
SCL_EASF_H_BF1_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg2,
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG2,
SCL_EASF_H_BF1_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg2);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG2,
SCL_EASF_H_BF1_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg2);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG2,
SCL_EASF_H_BF1_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg2);
REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG3, 0,
SCL_EASF_H_BF1_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg3,
SCL_EASF_H_BF1_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg3,
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG3,
SCL_EASF_H_BF1_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg3);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG3,
SCL_EASF_H_BF1_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg3);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG3,
SCL_EASF_H_BF1_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg3);
REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG4, 0,
SCL_EASF_H_BF1_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg4,
SCL_EASF_H_BF1_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg4,
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG4,
SCL_EASF_H_BF1_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg4);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG4,
SCL_EASF_H_BF1_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg4);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG4,
SCL_EASF_H_BF1_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg4);
REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG5, 0,
SCL_EASF_H_BF1_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg5,
SCL_EASF_H_BF1_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg5,
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG5,
SCL_EASF_H_BF1_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg5);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG5,
SCL_EASF_H_BF1_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg5);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG5,
SCL_EASF_H_BF1_PWL_SLOPE_SEG5, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg5);
REG_SET_3(DSCL_EASF_H_BF1_PWL_SEG6, 0,
SCL_EASF_H_BF1_PWL_IN_SEG6, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg6,
SCL_EASF_H_BF1_PWL_BASE_SEG6, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg6,
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG6,
SCL_EASF_H_BF1_PWL_IN_SEG6, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg6);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG6,
SCL_EASF_H_BF1_PWL_BASE_SEG6, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg6);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG6,
SCL_EASF_H_BF1_PWL_SLOPE_SEG6, scl_data->dscl_prog_data.easf_h_bf1_pwl_slope_seg6);
REG_SET_2(DSCL_EASF_H_BF1_PWL_SEG7, 0,
SCL_EASF_H_BF1_PWL_IN_SEG7, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg7,
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG7,
SCL_EASF_H_BF1_PWL_IN_SEG7, scl_data->dscl_prog_data.easf_h_bf1_pwl_in_seg7);
REG_UPDATE(DSCL_EASF_H_BF1_PWL_SEG7,
SCL_EASF_H_BF1_PWL_BASE_SEG7, scl_data->dscl_prog_data.easf_h_bf1_pwl_base_seg7);
/* DSCL_EASF_H_BF3_PWL_SEGn */
REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG0, 0,
SCL_EASF_H_BF3_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set0,
SCL_EASF_H_BF3_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set0,
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG0,
SCL_EASF_H_BF3_PWL_IN_SEG0, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set0);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG0,
SCL_EASF_H_BF3_PWL_BASE_SEG0, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set0);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG0,
SCL_EASF_H_BF3_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set0);
REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG1, 0,
SCL_EASF_H_BF3_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set1,
SCL_EASF_H_BF3_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set1,
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG1,
SCL_EASF_H_BF3_PWL_IN_SEG1, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set1);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG1,
SCL_EASF_H_BF3_PWL_BASE_SEG1, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set1);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG1,
SCL_EASF_H_BF3_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set1);
REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG2, 0,
SCL_EASF_H_BF3_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set2,
SCL_EASF_H_BF3_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set2,
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG2,
SCL_EASF_H_BF3_PWL_IN_SEG2, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set2);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG2,
SCL_EASF_H_BF3_PWL_BASE_SEG2, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set2);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG2,
SCL_EASF_H_BF3_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set2);
REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG3, 0,
SCL_EASF_H_BF3_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set3,
SCL_EASF_H_BF3_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set3,
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG3,
SCL_EASF_H_BF3_PWL_IN_SEG3, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set3);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG3,
SCL_EASF_H_BF3_PWL_BASE_SEG3, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set3);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG3,
SCL_EASF_H_BF3_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set3);
REG_SET_3(DSCL_EASF_H_BF3_PWL_SEG4, 0,
SCL_EASF_H_BF3_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set4,
SCL_EASF_H_BF3_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set4,
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG4,
SCL_EASF_H_BF3_PWL_IN_SEG4, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set4);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG4,
SCL_EASF_H_BF3_PWL_BASE_SEG4, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set4);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG4,
SCL_EASF_H_BF3_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.easf_h_bf3_pwl_slope_set4);
REG_SET_2(DSCL_EASF_H_BF3_PWL_SEG5, 0,
SCL_EASF_H_BF3_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set5,
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG5,
SCL_EASF_H_BF3_PWL_IN_SEG5, scl_data->dscl_prog_data.easf_h_bf3_pwl_in_set5);
REG_UPDATE(DSCL_EASF_H_BF3_PWL_SEG5,
SCL_EASF_H_BF3_PWL_BASE_SEG5, scl_data->dscl_prog_data.easf_h_bf3_pwl_base_set5);
PERF_TRACE();
}
/**
* dpp401_dscl_program_easf - Program EASF
*
* @dpp_base: High level DPP struct
* @scl_data: scalaer_data info
*
* This is the primary function to program EASF
*
*/
static void dpp401_dscl_program_easf(struct dpp *dpp_base, const struct scaler_data *scl_data)
{
struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);
PERF_TRACE();
/* DSCL_SC_MODE */
REG_SET_2(DSCL_SC_MODE, 0,
SCL_SC_MATRIX_MODE, scl_data->dscl_prog_data.easf_matrix_mode,
SCL_SC_LTONL_EN, scl_data->dscl_prog_data.easf_ltonl_en);
/* DSCL_EASF_SC_MATRIX_C0C1, DSCL_EASF_SC_MATRIX_C2C3 */
REG_SET_2(DSCL_SC_MATRIX_C0C1, 0,
SCL_SC_MATRIX_C0, scl_data->dscl_prog_data.easf_matrix_c0,
REG_UPDATE(DSCL_SC_MATRIX_C0C1,
SCL_SC_MATRIX_C0, scl_data->dscl_prog_data.easf_matrix_c0);
REG_UPDATE(DSCL_SC_MATRIX_C0C1,
SCL_SC_MATRIX_C1, scl_data->dscl_prog_data.easf_matrix_c1);
REG_SET_2(DSCL_SC_MATRIX_C2C3, 0,
SCL_SC_MATRIX_C2, scl_data->dscl_prog_data.easf_matrix_c2,
REG_UPDATE(DSCL_SC_MATRIX_C2C3,
SCL_SC_MATRIX_C2, scl_data->dscl_prog_data.easf_matrix_c2);
REG_UPDATE(DSCL_SC_MATRIX_C2C3,
SCL_SC_MATRIX_C3, scl_data->dscl_prog_data.easf_matrix_c3);
dpp401_dscl_program_easf_v(dpp_base, scl_data);
dpp401_dscl_program_easf_h(dpp_base, scl_data);
PERF_TRACE();
}
/**
......@@ -937,11 +958,10 @@ static void dpp401_dscl_set_isharp_filter(
REG_UPDATE(ISHARP_DELTA_CTRL,
ISHARP_DELTA_LUT_HOST_SELECT, 0);
/* LUT data write is auto-indexed. Write index once */
REG_SET(ISHARP_DELTA_INDEX, 0,
ISHARP_DELTA_INDEX, 0);
for (level = 0; level < NUM_LEVELS; level++) {
filter_data = filter[level];
REG_SET(ISHARP_DELTA_INDEX, 0,
ISHARP_DELTA_INDEX, level);
REG_SET(ISHARP_DELTA_DATA, 0,
ISHARP_DELTA_DATA, filter_data);
}
......@@ -957,74 +977,107 @@ static void dpp401_dscl_set_isharp_filter(
*
*/
static void dpp401_dscl_program_isharp(struct dpp *dpp_base,
const struct scaler_data *scl_data,
bool *bs_coeffs_updated)
const struct scaler_data *scl_data)
{
struct dcn401_dpp *dpp = TO_DCN401_DPP(dpp_base);
*bs_coeffs_updated = false;
PERF_TRACE();
/* ISHARP_MODE */
REG_SET_6(ISHARP_MODE, 0,
ISHARP_EN, scl_data->dscl_prog_data.isharp_en,
ISHARP_NOISEDET_EN, scl_data->dscl_prog_data.isharp_noise_det.enable,
ISHARP_NOISEDET_MODE, scl_data->dscl_prog_data.isharp_noise_det.mode,
ISHARP_LBA_MODE, scl_data->dscl_prog_data.isharp_lba.mode,
ISHARP_FMT_MODE, scl_data->dscl_prog_data.isharp_fmt.mode,
ISHARP_FMT_NORM, scl_data->dscl_prog_data.isharp_fmt.norm);
/* Skip remaining register programming if ISHARP is disabled */
if (!scl_data->dscl_prog_data.isharp_en) {
PERF_TRACE();
return;
}
/* ISHARP_NOISEDET_THRESHOLD */
REG_SET_2(ISHARP_NOISEDET_THRESHOLD, 0,
ISHARP_NOISEDET_UTHRE, scl_data->dscl_prog_data.isharp_noise_det.uthreshold,
/* ISHARP_EN */
REG_UPDATE(ISHARP_MODE,
ISHARP_EN, scl_data->dscl_prog_data.isharp_en);
/* ISHARP_NOISEDET_EN */
REG_UPDATE(ISHARP_MODE,
ISHARP_NOISEDET_EN, scl_data->dscl_prog_data.isharp_noise_det.enable);
/* ISHARP_NOISEDET_MODE */
REG_UPDATE(ISHARP_MODE,
ISHARP_NOISEDET_MODE, scl_data->dscl_prog_data.isharp_noise_det.mode);
/* ISHARP_NOISEDET_UTHRE */
REG_UPDATE(ISHARP_NOISEDET_THRESHOLD,
ISHARP_NOISEDET_UTHRE, scl_data->dscl_prog_data.isharp_noise_det.uthreshold);
/* ISHARP_NOISEDET_DTHRE */
REG_UPDATE(ISHARP_NOISEDET_THRESHOLD,
ISHARP_NOISEDET_DTHRE, scl_data->dscl_prog_data.isharp_noise_det.dthreshold);
/* ISHARP_NOISE_GAIN_PWL */
REG_SET_3(ISHARP_NOISE_GAIN_PWL, 0,
ISHARP_NOISEDET_PWL_START_IN, scl_data->dscl_prog_data.isharp_noise_det.pwl_start_in,
ISHARP_NOISEDET_PWL_END_IN, scl_data->dscl_prog_data.isharp_noise_det.pwl_end_in,
REG_UPDATE(ISHARP_MODE,
ISHARP_NOISEDET_MODE, scl_data->dscl_prog_data.isharp_noise_det.mode);
/* ISHARP_NOISEDET_UTHRE */
REG_UPDATE(ISHARP_NOISEDET_THRESHOLD,
ISHARP_NOISEDET_UTHRE, scl_data->dscl_prog_data.isharp_noise_det.uthreshold);
/* ISHARP_NOISEDET_DTHRE */
REG_UPDATE(ISHARP_NOISEDET_THRESHOLD,
ISHARP_NOISEDET_DTHRE, scl_data->dscl_prog_data.isharp_noise_det.dthreshold);
/* ISHARP_NOISEDET_PWL_START_IN */
REG_UPDATE(ISHARP_NOISE_GAIN_PWL,
ISHARP_NOISEDET_PWL_START_IN, scl_data->dscl_prog_data.isharp_noise_det.pwl_start_in);
/* ISHARP_NOISEDET_PWL_END_IN */
REG_UPDATE(ISHARP_NOISE_GAIN_PWL,
ISHARP_NOISEDET_PWL_END_IN, scl_data->dscl_prog_data.isharp_noise_det.pwl_end_in);
/* ISHARP_NOISEDET_PWL_SLOPE */
REG_UPDATE(ISHARP_NOISE_GAIN_PWL,
ISHARP_NOISEDET_PWL_SLOPE, scl_data->dscl_prog_data.isharp_noise_det.pwl_slope);
/* ISHARP_LBA_MODE */
REG_UPDATE(ISHARP_MODE,
ISHARP_LBA_MODE, scl_data->dscl_prog_data.isharp_lba.mode);
/* ISHARP_LBA: IN_SEG, BASE_SEG, SLOPE_SEG */
REG_SET_3(ISHARP_LBA_PWL_SEG0, 0,
ISHARP_LBA_PWL_IN_SEG0, scl_data->dscl_prog_data.isharp_lba.in_seg[0],
ISHARP_LBA_PWL_BASE_SEG0, scl_data->dscl_prog_data.isharp_lba.base_seg[0],
REG_UPDATE(ISHARP_LBA_PWL_SEG0,
ISHARP_LBA_PWL_IN_SEG0, scl_data->dscl_prog_data.isharp_lba.in_seg[0]);
REG_UPDATE(ISHARP_LBA_PWL_SEG0,
ISHARP_LBA_PWL_BASE_SEG0, scl_data->dscl_prog_data.isharp_lba.base_seg[0]);
REG_UPDATE(ISHARP_LBA_PWL_SEG0,
ISHARP_LBA_PWL_SLOPE_SEG0, scl_data->dscl_prog_data.isharp_lba.slope_seg[0]);
REG_SET_3(ISHARP_LBA_PWL_SEG1, 0,
ISHARP_LBA_PWL_IN_SEG1, scl_data->dscl_prog_data.isharp_lba.in_seg[1],
ISHARP_LBA_PWL_BASE_SEG1, scl_data->dscl_prog_data.isharp_lba.base_seg[1],
REG_UPDATE(ISHARP_LBA_PWL_SEG1,
ISHARP_LBA_PWL_IN_SEG1, scl_data->dscl_prog_data.isharp_lba.in_seg[1]);
REG_UPDATE(ISHARP_LBA_PWL_SEG1,
ISHARP_LBA_PWL_BASE_SEG1, scl_data->dscl_prog_data.isharp_lba.base_seg[1]);
REG_UPDATE(ISHARP_LBA_PWL_SEG1,
ISHARP_LBA_PWL_SLOPE_SEG1, scl_data->dscl_prog_data.isharp_lba.slope_seg[1]);
REG_SET_3(ISHARP_LBA_PWL_SEG2, 0,
ISHARP_LBA_PWL_IN_SEG2, scl_data->dscl_prog_data.isharp_lba.in_seg[2],
ISHARP_LBA_PWL_BASE_SEG2, scl_data->dscl_prog_data.isharp_lba.base_seg[2],
REG_UPDATE(ISHARP_LBA_PWL_SEG2,
ISHARP_LBA_PWL_IN_SEG2, scl_data->dscl_prog_data.isharp_lba.in_seg[2]);
REG_UPDATE(ISHARP_LBA_PWL_SEG2,
ISHARP_LBA_PWL_BASE_SEG2, scl_data->dscl_prog_data.isharp_lba.base_seg[2]);
REG_UPDATE(ISHARP_LBA_PWL_SEG2,
ISHARP_LBA_PWL_SLOPE_SEG2, scl_data->dscl_prog_data.isharp_lba.slope_seg[2]);
REG_SET_3(ISHARP_LBA_PWL_SEG3, 0,
ISHARP_LBA_PWL_IN_SEG3, scl_data->dscl_prog_data.isharp_lba.in_seg[3],
ISHARP_LBA_PWL_BASE_SEG3, scl_data->dscl_prog_data.isharp_lba.base_seg[3],
REG_UPDATE(ISHARP_LBA_PWL_SEG3,
ISHARP_LBA_PWL_IN_SEG3, scl_data->dscl_prog_data.isharp_lba.in_seg[3]);
REG_UPDATE(ISHARP_LBA_PWL_SEG3,
ISHARP_LBA_PWL_BASE_SEG3, scl_data->dscl_prog_data.isharp_lba.base_seg[3]);
REG_UPDATE(ISHARP_LBA_PWL_SEG3,
ISHARP_LBA_PWL_SLOPE_SEG3, scl_data->dscl_prog_data.isharp_lba.slope_seg[3]);
REG_SET_3(ISHARP_LBA_PWL_SEG4, 0,
ISHARP_LBA_PWL_IN_SEG4, scl_data->dscl_prog_data.isharp_lba.in_seg[4],
ISHARP_LBA_PWL_BASE_SEG4, scl_data->dscl_prog_data.isharp_lba.base_seg[4],
REG_UPDATE(ISHARP_LBA_PWL_SEG4,
ISHARP_LBA_PWL_IN_SEG4, scl_data->dscl_prog_data.isharp_lba.in_seg[4]);
REG_UPDATE(ISHARP_LBA_PWL_SEG4,
ISHARP_LBA_PWL_BASE_SEG4, scl_data->dscl_prog_data.isharp_lba.base_seg[4]);
REG_UPDATE(ISHARP_LBA_PWL_SEG4,
ISHARP_LBA_PWL_SLOPE_SEG4, scl_data->dscl_prog_data.isharp_lba.slope_seg[4]);
REG_SET_2(ISHARP_LBA_PWL_SEG5, 0,
ISHARP_LBA_PWL_IN_SEG5, scl_data->dscl_prog_data.isharp_lba.in_seg[5],
REG_UPDATE(ISHARP_LBA_PWL_SEG5,
ISHARP_LBA_PWL_IN_SEG5, scl_data->dscl_prog_data.isharp_lba.in_seg[5]);
REG_UPDATE(ISHARP_LBA_PWL_SEG5,
ISHARP_LBA_PWL_BASE_SEG5, scl_data->dscl_prog_data.isharp_lba.base_seg[5]);
/* ISHARP_FMT_MODE */
REG_UPDATE(ISHARP_MODE,
ISHARP_FMT_MODE, scl_data->dscl_prog_data.isharp_fmt.mode);
/* ISHARP_FMT_NORM */
REG_UPDATE(ISHARP_MODE,
ISHARP_FMT_NORM, scl_data->dscl_prog_data.isharp_fmt.norm);
/* ISHARP_DELTA_LUT */
dpp401_dscl_set_isharp_filter(dpp, scl_data->dscl_prog_data.isharp_delta);
/* ISHARP_NLDELTA_SOFT_CLIP */
REG_SET_6(ISHARP_NLDELTA_SOFT_CLIP, 0,
ISHARP_NLDELTA_SCLIP_EN_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.enable_p,
ISHARP_NLDELTA_SCLIP_PIVOT_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.pivot_p,
ISHARP_NLDELTA_SCLIP_SLOPE_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.slope_p,
ISHARP_NLDELTA_SCLIP_EN_N, scl_data->dscl_prog_data.isharp_nldelta_sclip.enable_n,
ISHARP_NLDELTA_SCLIP_PIVOT_N, scl_data->dscl_prog_data.isharp_nldelta_sclip.pivot_n,
/* ISHARP_NLDELTA_SCLIP_EN_P */
REG_UPDATE(ISHARP_NLDELTA_SOFT_CLIP,
ISHARP_NLDELTA_SCLIP_EN_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.enable_p);
/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
REG_UPDATE(ISHARP_NLDELTA_SOFT_CLIP,
ISHARP_NLDELTA_SCLIP_PIVOT_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.pivot_p);
/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
REG_UPDATE(ISHARP_NLDELTA_SOFT_CLIP,
ISHARP_NLDELTA_SCLIP_SLOPE_P, scl_data->dscl_prog_data.isharp_nldelta_sclip.slope_p);
/* ISHARP_NLDELTA_SCLIP_EN_N */
REG_UPDATE(ISHARP_NLDELTA_SOFT_CLIP,
ISHARP_NLDELTA_SCLIP_EN_N, scl_data->dscl_prog_data.isharp_nldelta_sclip.enable_n);
/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
REG_UPDATE(ISHARP_NLDELTA_SOFT_CLIP,
ISHARP_NLDELTA_SCLIP_PIVOT_N, scl_data->dscl_prog_data.isharp_nldelta_sclip.pivot_n);
/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
REG_UPDATE(ISHARP_NLDELTA_SOFT_CLIP,
ISHARP_NLDELTA_SCLIP_SLOPE_N, scl_data->dscl_prog_data.isharp_nldelta_sclip.slope_n);
/* Blur and Scale Coefficients - SCL_COEF_RAM_TAP_SELECT */
......@@ -1034,14 +1087,12 @@ static void dpp401_dscl_program_isharp(struct dpp *dpp_base,
dpp, scl_data->taps.v_taps,
SCL_COEF_VERTICAL_BLUR_SCALE,
scl_data->dscl_prog_data.filter_blur_scale_v);
*bs_coeffs_updated = true;
}
if (scl_data->dscl_prog_data.filter_blur_scale_h) {
dpp401_dscl_set_scaler_filter(
dpp, scl_data->taps.h_taps,
SCL_COEF_HORIZONTAL_BLUR_SCALE,
scl_data->dscl_prog_data.filter_blur_scale_h);
*bs_coeffs_updated = true;
}
}
PERF_TRACE();
......@@ -1072,7 +1123,6 @@ void dpp401_dscl_set_scaler_manual_scale(struct dpp *dpp_base,
dpp_base, scl_data, dpp_base->ctx->dc->debug.always_scale);
bool ycbcr = scl_data->format >= PIXEL_FORMAT_VIDEO_BEGIN
&& scl_data->format <= PIXEL_FORMAT_VIDEO_END;
bool bs_coeffs_updated = false;
if (memcmp(&dpp->scl_data, scl_data, sizeof(*scl_data)) == 0)
return;
......@@ -1132,7 +1182,7 @@ void dpp401_dscl_set_scaler_manual_scale(struct dpp *dpp_base,
if (dscl_mode == DSCL_MODE_SCALING_444_BYPASS) {
if (dpp->base.ctx->dc->config.prefer_easf)
dpp401_dscl_disable_easf(dpp_base, scl_data);
dpp401_dscl_program_isharp(dpp_base, scl_data, &bs_coeffs_updated);
dpp401_dscl_program_isharp(dpp_base, scl_data);
return;
}
......@@ -1159,18 +1209,12 @@ void dpp401_dscl_set_scaler_manual_scale(struct dpp *dpp_base,
SCL_V_NUM_TAPS_C, v_num_taps_c,
SCL_H_NUM_TAPS_C, h_num_taps_c);
/* ISharp configuration
* - B&S coeffs are written to same coeff RAM as WB scaler coeffs
* - coeff RAM toggle is in EASF programming
* - if we are only programming B&S coeffs, then need to reprogram
* WB scaler coeffs and toggle coeff RAM together
*/
//if (dpp->base.ctx->dc->config.prefer_easf)
dpp401_dscl_program_isharp(dpp_base, scl_data, &bs_coeffs_updated);
dpp401_dscl_set_scl_filter(dpp, scl_data, ycbcr, bs_coeffs_updated);
dpp401_dscl_set_scl_filter(dpp, scl_data, ycbcr);
/* Edge adaptive scaler function configuration */
if (dpp->base.ctx->dc->config.prefer_easf)
dpp401_dscl_program_easf(dpp_base, scl_data);
/* isharp configuration */
//if (dpp->base.ctx->dc->config.prefer_easf)
dpp401_dscl_program_isharp(dpp_base, scl_data);
PERF_TRACE();
}
......@@ -76,9 +76,6 @@
#include "dml2/dml2_wrapper.h"
#include "spl/dc_spl_scl_easf_filters.h"
#include "spl/dc_spl_isharp_filters.h"
#define DC_LOGGER_INIT(logger)
enum dcn401_clk_src_array_id {
......@@ -2126,10 +2123,6 @@ static bool dcn401_resource_construct(
dc->dml2_options.max_segments_per_hubp = 20;
dc->dml2_options.det_segment_size = DCN4_01_CRB_SEGMENT_SIZE_KB;
/* SPL */
spl_init_easf_filter_coeffs();
spl_init_blur_scale_coeffs();
return true;
create_fail:
......
......@@ -23,7 +23,7 @@
# Makefile for the 'spl' sub-component of DAL.
# It provides the scaling library interface.
SPL = dc_spl.o dc_spl_scl_filters.o dc_spl_scl_easf_filters.o dc_spl_isharp_filters.o dc_spl_filters.o spl_fixpt31_32.o
SPL = dc_spl.o dc_spl_scl_filters.o dc_spl_scl_filters_old.o dc_spl_isharp_filters.o
AMD_DAL_SPL = $(addprefix $(AMDDALPATH)/dc/spl/,$(SPL))
......
......@@ -4,11 +4,9 @@
#include "dc_spl.h"
#include "dc_spl_scl_filters.h"
#include "dc_spl_scl_easf_filters.h"
#include "dc_spl_isharp_filters.h"
#include "spl_debug.h"
#define IDENTITY_RATIO(ratio) (spl_fixpt_u2d19(ratio) == (1 << 19))
#define IDENTITY_RATIO(ratio) (dc_fixpt_u2d19(ratio) == (1 << 19))
#define MIN_VIEWPORT_SIZE 12
static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1)
......@@ -109,26 +107,26 @@ static struct spl_rect calculate_plane_rec_in_timing_active(
const struct spl_rect *stream_src = &spl_in->basic_out.src_rect;
const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect;
struct spl_rect rec_out = {0};
struct spl_fixed31_32 temp;
struct fixed31_32 temp;
temp = spl_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width,
temp = dc_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width,
stream_src->width);
rec_out.x = stream_dst->x + spl_fixpt_round(temp);
rec_out.x = stream_dst->x + dc_fixpt_round(temp);
temp = spl_fixpt_from_fraction(
temp = dc_fixpt_from_fraction(
(rec_in->x + rec_in->width) * (long long)stream_dst->width,
stream_src->width);
rec_out.width = stream_dst->x + spl_fixpt_round(temp) - rec_out.x;
rec_out.width = stream_dst->x + dc_fixpt_round(temp) - rec_out.x;
temp = spl_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height,
temp = dc_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height,
stream_src->height);
rec_out.y = stream_dst->y + spl_fixpt_round(temp);
rec_out.y = stream_dst->y + dc_fixpt_round(temp);
temp = spl_fixpt_from_fraction(
temp = dc_fixpt_from_fraction(
(rec_in->y + rec_in->height) * (long long)stream_dst->height,
stream_src->height);
rec_out.height = stream_dst->y + spl_fixpt_round(temp) - rec_out.y;
rec_out.height = stream_dst->y + dc_fixpt_round(temp) - rec_out.y;
return rec_out;
}
......@@ -146,7 +144,7 @@ static struct spl_rect calculate_mpc_slice_in_timing_active(
mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
mpc_rec.height = plane_clip_rec->height;
mpc_rec.y = plane_clip_rec->y;
SPL_ASSERT(mpc_slice_count == 1 ||
ASSERT(mpc_slice_count == 1 ||
spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE ||
mpc_rec.width % 2 == 0);
......@@ -159,7 +157,7 @@ static struct spl_rect calculate_mpc_slice_in_timing_active(
}
if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) {
SPL_ASSERT(mpc_rec.height % 2 == 0);
ASSERT(mpc_rec.height % 2 == 0);
mpc_rec.height /= 2;
}
return mpc_rec;
......@@ -199,7 +197,7 @@ static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_i
return spl_in->basic_out.odm_slice_rect;
}
static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out)
static void spl_calculate_recout(struct spl_in *spl_in, struct spl_out *spl_out)
{
/*
* A plane clip represents the desired plane size and position in Stream
......@@ -342,23 +340,20 @@ static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_
/* shift the overlapping area so it is with respect to current
* ODM slice's position
*/
spl_scratch->scl_data.recout = shift_rec(
spl_out->scl_data.recout = shift_rec(
&overlapping_area,
-odm_slice.x, -odm_slice.y);
spl_scratch->scl_data.recout.height -=
spl_out->scl_data.recout.height -=
spl_in->debug.visual_confirm_base_offset;
spl_scratch->scl_data.recout.height -=
spl_out->scl_data.recout.height -=
spl_in->debug.visual_confirm_dpp_offset;
} else
/* if there is no overlap, zero recout */
memset(&spl_scratch->scl_data.recout, 0,
memset(&spl_out->scl_data.recout, 0,
sizeof(struct spl_rect));
}
/* Calculate scaling ratios */
static void spl_calculate_scaling_ratios(struct spl_in *spl_in,
struct spl_scratch *spl_scratch,
struct spl_out *spl_out)
static void spl_calculate_scaling_ratios(struct spl_in *spl_in, struct spl_out *spl_out)
{
const int in_w = spl_in->basic_out.src_rect.width;
const int in_h = spl_in->basic_out.src_rect.height;
......@@ -369,75 +364,59 @@ static void spl_calculate_scaling_ratios(struct spl_in *spl_in,
/*Swap surf_src height and width since scaling ratios are in recout rotation*/
if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270)
spl_swap(surf_src.height, surf_src.width);
swap(surf_src.height, surf_src.width);
spl_scratch->scl_data.ratios.horz = spl_fixpt_from_fraction(
spl_out->scl_data.ratios.horz = dc_fixpt_from_fraction(
surf_src.width,
spl_in->basic_in.dst_rect.width);
spl_scratch->scl_data.ratios.vert = spl_fixpt_from_fraction(
spl_out->scl_data.ratios.vert = dc_fixpt_from_fraction(
surf_src.height,
spl_in->basic_in.dst_rect.height);
if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
spl_scratch->scl_data.ratios.horz.value *= 2;
spl_out->scl_data.ratios.horz.value *= 2;
else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
spl_scratch->scl_data.ratios.vert.value *= 2;
spl_out->scl_data.ratios.vert.value *= 2;
spl_scratch->scl_data.ratios.vert.value = spl_div64_s64(
spl_scratch->scl_data.ratios.vert.value * in_h, out_h);
spl_scratch->scl_data.ratios.horz.value = spl_div64_s64(
spl_scratch->scl_data.ratios.horz.value * in_w, out_w);
spl_out->scl_data.ratios.vert.value = div64_s64(
spl_out->scl_data.ratios.vert.value * in_h, out_h);
spl_out->scl_data.ratios.horz.value = div64_s64(
spl_out->scl_data.ratios.horz.value * in_w, out_w);
spl_scratch->scl_data.ratios.horz_c = spl_scratch->scl_data.ratios.horz;
spl_scratch->scl_data.ratios.vert_c = spl_scratch->scl_data.ratios.vert;
spl_out->scl_data.ratios.horz_c = spl_out->scl_data.ratios.horz;
spl_out->scl_data.ratios.vert_c = spl_out->scl_data.ratios.vert;
if (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) {
spl_scratch->scl_data.ratios.horz_c.value /= 2;
spl_scratch->scl_data.ratios.vert_c.value /= 2;
spl_out->scl_data.ratios.horz_c.value /= 2;
spl_out->scl_data.ratios.vert_c.value /= 2;
}
spl_scratch->scl_data.ratios.horz = spl_fixpt_truncate(
spl_scratch->scl_data.ratios.horz, 19);
spl_scratch->scl_data.ratios.vert = spl_fixpt_truncate(
spl_scratch->scl_data.ratios.vert, 19);
spl_scratch->scl_data.ratios.horz_c = spl_fixpt_truncate(
spl_scratch->scl_data.ratios.horz_c, 19);
spl_scratch->scl_data.ratios.vert_c = spl_fixpt_truncate(
spl_scratch->scl_data.ratios.vert_c, 19);
/*
* Coefficient table and some registers are different based on ratio
* that is output/input. Currently we calculate input/output
* Store 1/ratio in recip_ratio for those lookups
*/
spl_scratch->scl_data.recip_ratios.horz = spl_fixpt_recip(
spl_scratch->scl_data.ratios.horz);
spl_scratch->scl_data.recip_ratios.vert = spl_fixpt_recip(
spl_scratch->scl_data.ratios.vert);
spl_scratch->scl_data.recip_ratios.horz_c = spl_fixpt_recip(
spl_scratch->scl_data.ratios.horz_c);
spl_scratch->scl_data.recip_ratios.vert_c = spl_fixpt_recip(
spl_scratch->scl_data.ratios.vert_c);
spl_out->scl_data.ratios.horz = dc_fixpt_truncate(
spl_out->scl_data.ratios.horz, 19);
spl_out->scl_data.ratios.vert = dc_fixpt_truncate(
spl_out->scl_data.ratios.vert, 19);
spl_out->scl_data.ratios.horz_c = dc_fixpt_truncate(
spl_out->scl_data.ratios.horz_c, 19);
spl_out->scl_data.ratios.vert_c = dc_fixpt_truncate(
spl_out->scl_data.ratios.vert_c, 19);
}
/* Calculate Viewport size */
static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_out *spl_out)
{
spl_scratch->scl_data.viewport.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz,
spl_scratch->scl_data.recout.width));
spl_scratch->scl_data.viewport.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert,
spl_scratch->scl_data.recout.height));
spl_scratch->scl_data.viewport_c.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz_c,
spl_scratch->scl_data.recout.width));
spl_scratch->scl_data.viewport_c.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert_c,
spl_scratch->scl_data.recout.height));
spl_out->scl_data.viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(spl_out->scl_data.ratios.horz,
spl_out->scl_data.recout.width));
spl_out->scl_data.viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(spl_out->scl_data.ratios.vert,
spl_out->scl_data.recout.height));
spl_out->scl_data.viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(spl_out->scl_data.ratios.horz_c,
spl_out->scl_data.recout.width));
spl_out->scl_data.viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(spl_out->scl_data.ratios.vert_c,
spl_out->scl_data.recout.height));
if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) {
spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
swap(spl_out->scl_data.viewport.width, spl_out->scl_data.viewport.height);
swap(spl_out->scl_data.viewport_c.width, spl_out->scl_data.viewport_c.height);
}
}
static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
bool horizontal_mirror,
bool *orthogonal_rotation,
......@@ -461,7 +440,6 @@ static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
if (horizontal_mirror)
*flip_horz_scan_dir = !*flip_horz_scan_dir;
}
/*
* We completely calculate vp offset, size and inits here based entirely on scaling
* ratios and recout for pixel perfect pipe combine.
......@@ -471,13 +449,13 @@ static void spl_calculate_init_and_vp(bool flip_scan_dir,
int recout_size,
int src_size,
int taps,
struct spl_fixed31_32 ratio,
struct spl_fixed31_32 init_adj,
struct spl_fixed31_32 *init,
struct fixed31_32 ratio,
struct fixed31_32 init_adj,
struct fixed31_32 *init,
int *vp_offset,
int *vp_size)
{
struct spl_fixed31_32 temp;
struct fixed31_32 temp;
int int_part;
/*
......@@ -490,33 +468,33 @@ static void spl_calculate_init_and_vp(bool flip_scan_dir,
* init_bot = init + scaling_ratio
* to get pixel perfect combine add the fraction from calculating vp offset
*/
temp = spl_fixpt_mul_int(ratio, recout_offset_within_recout_full);
*vp_offset = spl_fixpt_floor(temp);
temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
*vp_offset = dc_fixpt_floor(temp);
temp.value &= 0xffffffff;
*init = spl_fixpt_add(spl_fixpt_div_int(spl_fixpt_add_int(ratio, taps + 1), 2), temp);
*init = spl_fixpt_add(*init, init_adj);
*init = spl_fixpt_truncate(*init, 19);
*init = dc_fixpt_add(dc_fixpt_div_int(dc_fixpt_add_int(ratio, taps + 1), 2), temp);
*init = dc_fixpt_add(*init, init_adj);
*init = dc_fixpt_truncate(*init, 19);
/*
* If viewport has non 0 offset and there are more taps than covered by init then
* we should decrease the offset and increase init so we are never sampling
* outside of viewport.
*/
int_part = spl_fixpt_floor(*init);
int_part = dc_fixpt_floor(*init);
if (int_part < taps) {
int_part = taps - int_part;
if (int_part > *vp_offset)
int_part = *vp_offset;
*vp_offset -= int_part;
*init = spl_fixpt_add_int(*init, int_part);
*init = dc_fixpt_add_int(*init, int_part);
}
/*
* If taps are sampling outside of viewport at end of recout and there are more pixels
* available in the surface we should increase the viewport size, regardless set vp to
* only what is used.
*/
temp = spl_fixpt_add(*init, spl_fixpt_mul_int(ratio, recout_size - 1));
*vp_size = spl_fixpt_floor(temp);
temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
*vp_size = dc_fixpt_floor(temp);
if (*vp_size + *vp_offset > src_size)
*vp_size = src_size - *vp_offset;
......@@ -531,16 +509,15 @@ static void spl_calculate_init_and_vp(bool flip_scan_dir,
static bool spl_is_yuv420(enum spl_pixel_format format)
{
if ((format >= SPL_PIXEL_FORMAT_420BPP8) &&
(format <= SPL_PIXEL_FORMAT_420BPP10))
if ((format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN) &&
(format <= SPL_PIXEL_FORMAT_VIDEO_END))
return true;
return false;
}
/*Calculate inits and viewport */
static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
struct spl_scratch *spl_scratch)
static void spl_calculate_inits_and_viewports(struct spl_in *spl_in, struct spl_out *spl_out)
{
struct spl_rect src = spl_in->basic_in.src_rect;
struct spl_rect recout_dst_in_active_timing;
......@@ -551,11 +528,11 @@ static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
int vpc_div = (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) ? 2 : 1;
bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
struct spl_fixed31_32 init_adj_h = spl_fixpt_zero;
struct spl_fixed31_32 init_adj_v = spl_fixpt_zero;
struct fixed31_32 init_adj_h = dc_fixpt_zero;
struct fixed31_32 init_adj_v = dc_fixpt_zero;
recout_clip_in_active_timing = shift_rec(
&spl_scratch->scl_data.recout, odm_slice.x, odm_slice.y);
&spl_out->scl_data.recout, odm_slice.x, odm_slice.y);
recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
spl_in, &spl_in->basic_in.dst_rect);
overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
......@@ -578,8 +555,8 @@ static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
&flip_horz_scan_dir);
if (orthogonal_rotation) {
spl_swap(src.width, src.height);
spl_swap(flip_vert_scan_dir, flip_horz_scan_dir);
swap(src.width, src.height);
swap(flip_vert_scan_dir, flip_horz_scan_dir);
}
if (spl_is_yuv420(spl_in->basic_in.format)) {
......@@ -591,17 +568,17 @@ static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
switch (spl_in->basic_in.cositing) {
case CHROMA_COSITING_LEFT:
init_adj_h = spl_fixpt_zero;
init_adj_v = spl_fixpt_from_fraction(sign, 4);
init_adj_h = dc_fixpt_zero;
init_adj_v = dc_fixpt_from_fraction(sign, 2);
break;
case CHROMA_COSITING_NONE:
init_adj_h = spl_fixpt_from_fraction(sign, 4);
init_adj_v = spl_fixpt_from_fraction(sign, 4);
init_adj_h = dc_fixpt_from_fraction(sign, 2);
init_adj_v = dc_fixpt_from_fraction(sign, 2);
break;
case CHROMA_COSITING_TOPLEFT:
default:
init_adj_h = spl_fixpt_zero;
init_adj_v = spl_fixpt_zero;
init_adj_h = dc_fixpt_zero;
init_adj_v = dc_fixpt_zero;
break;
}
}
......@@ -609,60 +586,59 @@ static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
spl_calculate_init_and_vp(
flip_horz_scan_dir,
recout_clip_in_recout_dst.x,
spl_scratch->scl_data.recout.width,
spl_out->scl_data.recout.width,
src.width,
spl_scratch->scl_data.taps.h_taps,
spl_scratch->scl_data.ratios.horz,
spl_fixpt_zero,
&spl_scratch->scl_data.inits.h,
&spl_scratch->scl_data.viewport.x,
&spl_scratch->scl_data.viewport.width);
spl_out->scl_data.taps.h_taps,
spl_out->scl_data.ratios.horz,
dc_fixpt_zero,
&spl_out->scl_data.inits.h,
&spl_out->scl_data.viewport.x,
&spl_out->scl_data.viewport.width);
spl_calculate_init_and_vp(
flip_horz_scan_dir,
recout_clip_in_recout_dst.x,
spl_scratch->scl_data.recout.width,
spl_out->scl_data.recout.width,
src.width / vpc_div,
spl_scratch->scl_data.taps.h_taps_c,
spl_scratch->scl_data.ratios.horz_c,
spl_out->scl_data.taps.h_taps_c,
spl_out->scl_data.ratios.horz_c,
init_adj_h,
&spl_scratch->scl_data.inits.h_c,
&spl_scratch->scl_data.viewport_c.x,
&spl_scratch->scl_data.viewport_c.width);
&spl_out->scl_data.inits.h_c,
&spl_out->scl_data.viewport_c.x,
&spl_out->scl_data.viewport_c.width);
spl_calculate_init_and_vp(
flip_vert_scan_dir,
recout_clip_in_recout_dst.y,
spl_scratch->scl_data.recout.height,
spl_out->scl_data.recout.height,
src.height,
spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.ratios.vert,
spl_fixpt_zero,
&spl_scratch->scl_data.inits.v,
&spl_scratch->scl_data.viewport.y,
&spl_scratch->scl_data.viewport.height);
spl_out->scl_data.taps.v_taps,
spl_out->scl_data.ratios.vert,
dc_fixpt_zero,
&spl_out->scl_data.inits.v,
&spl_out->scl_data.viewport.y,
&spl_out->scl_data.viewport.height);
spl_calculate_init_and_vp(
flip_vert_scan_dir,
recout_clip_in_recout_dst.y,
spl_scratch->scl_data.recout.height,
spl_out->scl_data.recout.height,
src.height / vpc_div,
spl_scratch->scl_data.taps.v_taps_c,
spl_scratch->scl_data.ratios.vert_c,
spl_out->scl_data.taps.v_taps_c,
spl_out->scl_data.ratios.vert_c,
init_adj_v,
&spl_scratch->scl_data.inits.v_c,
&spl_scratch->scl_data.viewport_c.y,
&spl_scratch->scl_data.viewport_c.height);
&spl_out->scl_data.inits.v_c,
&spl_out->scl_data.viewport_c.y,
&spl_out->scl_data.viewport_c.height);
if (orthogonal_rotation) {
spl_swap(spl_scratch->scl_data.viewport.x, spl_scratch->scl_data.viewport.y);
spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
spl_swap(spl_scratch->scl_data.viewport_c.x, spl_scratch->scl_data.viewport_c.y);
spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
swap(spl_out->scl_data.viewport.x, spl_out->scl_data.viewport.y);
swap(spl_out->scl_data.viewport.width, spl_out->scl_data.viewport.height);
swap(spl_out->scl_data.viewport_c.x, spl_out->scl_data.viewport_c.y);
swap(spl_out->scl_data.viewport_c.width, spl_out->scl_data.viewport_c.height);
}
spl_scratch->scl_data.viewport.x += src.x;
spl_scratch->scl_data.viewport.y += src.y;
SPL_ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
spl_scratch->scl_data.viewport_c.x += src.x / vpc_div;
spl_scratch->scl_data.viewport_c.y += src.y / vpc_div;
spl_out->scl_data.viewport.x += src.x;
spl_out->scl_data.viewport.y += src.y;
ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
spl_out->scl_data.viewport_c.x += src.x / vpc_div;
spl_out->scl_data.viewport_c.y += src.y / vpc_div;
}
static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
{
/*
......@@ -671,7 +647,7 @@ static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
* This may break with rotation, good thing we aren't mixing hw rotation and 3d
*/
if (spl_in->basic_in.mpc_combine_v) {
SPL_ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
(spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM &&
spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE));
if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
......@@ -689,7 +665,6 @@ static void spl_clamp_viewport(struct spl_rect *viewport)
if (viewport->width < MIN_VIEWPORT_SIZE)
viewport->width = MIN_VIEWPORT_SIZE;
}
static bool spl_dscl_is_420_format(enum spl_pixel_format format)
{
if (format == SPL_PIXEL_FORMAT_420BPP8 ||
......@@ -698,7 +673,6 @@ static bool spl_dscl_is_420_format(enum spl_pixel_format format)
else
return false;
}
static bool spl_dscl_is_video_format(enum spl_pixel_format format)
{
if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
......@@ -707,21 +681,17 @@ static bool spl_dscl_is_video_format(enum spl_pixel_format format)
else
return false;
}
static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
const struct spl_scaler_data *data,
bool enable_isharp, bool enable_easf)
const struct spl_scaler_data *data)
{
const long long one = spl_fixpt_one.value;
const long long one = dc_fixpt_one.value;
enum spl_pixel_format pixel_format = spl_in->basic_in.format;
/* Bypass if ratio is 1:1 with no ISHARP or force scale on */
if (data->ratios.horz.value == one
&& data->ratios.vert.value == one
&& data->ratios.horz_c.value == one
&& data->ratios.vert_c.value == one
&& !spl_in->basic_out.always_scale
&& !enable_isharp)
&& !spl_in->basic_out.always_scale)
return SCL_MODE_SCALING_444_BYPASS;
if (!spl_dscl_is_420_format(pixel_format)) {
......@@ -730,204 +700,69 @@ static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
else
return SCL_MODE_SCALING_444_RGB_ENABLE;
}
/* Bypass YUV if at 1:1 with no ISHARP or if doing 2:1 YUV
* downscale without EASF
*/
if ((!enable_isharp) && (!enable_easf)) {
if (data->ratios.horz.value == one && data->ratios.vert.value == one)
return SCL_MODE_SCALING_420_LUMA_BYPASS;
if (data->ratios.horz_c.value == one && data->ratios.vert_c.value == one)
return SCL_MODE_SCALING_420_CHROMA_BYPASS;
}
return SCL_MODE_SCALING_420_YCBCR_ENABLE;
}
static bool spl_choose_lls_policy(enum spl_pixel_format format,
enum spl_transfer_func_type tf_type,
enum spl_transfer_func_predefined tf_predefined_type,
enum linear_light_scaling *lls_pref)
{
if (spl_is_yuv420(format)) {
*lls_pref = LLS_PREF_NO;
if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
(tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS))
return true;
} else { /* RGB or YUV444 */
if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
(tf_type == SPL_TF_TYPE_BYPASS)) {
*lls_pref = LLS_PREF_YES;
return true;
}
}
*lls_pref = LLS_PREF_NO;
return false;
}
/* Enable EASF ?*/
static bool enable_easf(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
{
int vratio = 0;
int hratio = 0;
bool skip_easf = false;
bool lls_enable_easf = true;
/*
* If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
* function to determine whether to use LINEAR or NONLINEAR scaling
*/
if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
&spl_in->lls_pref);
vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
if (!lls_enable_easf || spl_in->disable_easf)
skip_easf = true;
/*
* No EASF support for downscaling > 2:1
* EASF support for upscaling or downscaling up to 2:1
*/
if ((vratio > 2) || (hratio > 2))
skip_easf = true;
/* Check for linear scaling or EASF preferred */
if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf)
skip_easf = true;
return skip_easf;
}
/* Check if video is in fullscreen mode */
static bool spl_is_video_fullscreen(struct spl_in *spl_in)
{
if (spl_is_yuv420(spl_in->basic_in.format) && spl_in->is_fullscreen)
return true;
return false;
}
static bool spl_get_isharp_en(struct spl_in *spl_in,
struct spl_scratch *spl_scratch)
{
bool enable_isharp = false;
int vratio = 0;
int hratio = 0;
struct spl_taps taps = spl_scratch->scl_data.taps;
bool fullscreen = spl_is_video_fullscreen(spl_in);
vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
/* Return if adaptive sharpness is disabled */
if (spl_in->adaptive_sharpness.enable == false)
return enable_isharp;
/* No iSHARP support for downscaling */
if (vratio > 1 || hratio > 1)
return enable_isharp;
// Scaling is up to 1:1 (no scaling) or upscaling
/*
* Apply sharpness to all RGB surfaces and to
* NV12/P010 surfaces if in fullscreen
*/
if (spl_is_yuv420(spl_in->basic_in.format) && !fullscreen)
return enable_isharp;
/*
* Apply sharpness if supports horizontal taps 4,6 AND
* vertical taps 3, 4, 6
*/
if ((taps.h_taps == 4 || taps.h_taps == 6) &&
(taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6))
enable_isharp = true;
return enable_isharp;
}
/* Calculate optimal number of taps */
static bool spl_get_optimal_number_of_taps(
int max_downscale_src_width, struct spl_in *spl_in, struct spl_scratch *spl_scratch,
const struct spl_taps *in_taps, bool *enable_easf_v, bool *enable_easf_h,
bool *enable_isharp)
int max_downscale_src_width, struct spl_in *spl_in, struct spl_out *spl_out,
const struct spl_taps *in_taps)
{
int num_part_y, num_part_c;
int max_taps_y, max_taps_c;
int min_taps_y, min_taps_c;
enum lb_memory_config lb_config;
bool skip_easf = false;
if (spl_scratch->scl_data.viewport.width > spl_scratch->scl_data.h_active &&
if (spl_out->scl_data.viewport.width > spl_out->scl_data.h_active &&
max_downscale_src_width != 0 &&
spl_scratch->scl_data.viewport.width > max_downscale_src_width)
spl_out->scl_data.viewport.width > max_downscale_src_width)
return false;
/* Check if we are using EASF or not */
skip_easf = enable_easf(spl_in, spl_scratch);
/*
* Set default taps if none are provided
* From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling
* taps = 4 for upscaling
*/
if (skip_easf) {
if (in_taps->h_taps == 0) {
if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz) > 1)
spl_scratch->scl_data.taps.h_taps = spl_min(2 * spl_fixpt_ceil(
spl_scratch->scl_data.ratios.horz), 8);
if (dc_fixpt_ceil(spl_out->scl_data.ratios.horz) > 1)
spl_out->scl_data.taps.h_taps = min(2 * dc_fixpt_ceil(spl_out->scl_data.ratios.horz), 8);
else
spl_scratch->scl_data.taps.h_taps = 4;
spl_out->scl_data.taps.h_taps = 4;
} else
spl_scratch->scl_data.taps.h_taps = in_taps->h_taps;
spl_out->scl_data.taps.h_taps = in_taps->h_taps;
if (in_taps->v_taps == 0) {
if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 1)
spl_scratch->scl_data.taps.v_taps = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
spl_scratch->scl_data.ratios.vert, 2)), 8);
if (dc_fixpt_ceil(spl_out->scl_data.ratios.vert) > 1)
spl_out->scl_data.taps.v_taps = min(dc_fixpt_ceil(dc_fixpt_mul_int(
spl_out->scl_data.ratios.vert, 2)), 8);
else
spl_scratch->scl_data.taps.v_taps = 4;
spl_out->scl_data.taps.v_taps = 4;
} else
spl_scratch->scl_data.taps.v_taps = in_taps->v_taps;
spl_out->scl_data.taps.v_taps = in_taps->v_taps;
if (in_taps->v_taps_c == 0) {
if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 1)
spl_scratch->scl_data.taps.v_taps_c = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
spl_scratch->scl_data.ratios.vert_c, 2)), 8);
if (dc_fixpt_ceil(spl_out->scl_data.ratios.vert_c) > 1)
spl_out->scl_data.taps.v_taps_c = min(dc_fixpt_ceil(dc_fixpt_mul_int(
spl_out->scl_data.ratios.vert_c, 2)), 8);
else
spl_scratch->scl_data.taps.v_taps_c = 4;
spl_out->scl_data.taps.v_taps_c = 4;
} else
spl_scratch->scl_data.taps.v_taps_c = in_taps->v_taps_c;
spl_out->scl_data.taps.v_taps_c = in_taps->v_taps_c;
if (in_taps->h_taps_c == 0) {
if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz_c) > 1)
spl_scratch->scl_data.taps.h_taps_c = spl_min(2 * spl_fixpt_ceil(
spl_scratch->scl_data.ratios.horz_c), 8);
if (dc_fixpt_ceil(spl_out->scl_data.ratios.horz_c) > 1)
spl_out->scl_data.taps.h_taps_c = min(2 * dc_fixpt_ceil(spl_out->scl_data.ratios.horz_c), 8);
else
spl_scratch->scl_data.taps.h_taps_c = 4;
spl_out->scl_data.taps.h_taps_c = 4;
} else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
/* Only 1 and even h_taps_c are supported by hw */
spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
spl_out->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
else
spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c;
} else {
if (spl_is_yuv420(spl_in->basic_in.format)) {
spl_scratch->scl_data.taps.h_taps = 6;
spl_scratch->scl_data.taps.v_taps = 6;
spl_scratch->scl_data.taps.h_taps_c = 4;
spl_scratch->scl_data.taps.v_taps_c = 4;
} else { /* RGB */
spl_scratch->scl_data.taps.h_taps = 6;
spl_scratch->scl_data.taps.v_taps = 6;
spl_scratch->scl_data.taps.h_taps_c = 6;
spl_scratch->scl_data.taps.v_taps_c = 6;
}
}
spl_out->scl_data.taps.h_taps_c = in_taps->h_taps_c;
/*Ensure we can support the requested number of vtaps*/
min_taps_y = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
min_taps_c = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c);
min_taps_y = dc_fixpt_ceil(spl_out->scl_data.ratios.vert);
min_taps_c = dc_fixpt_ceil(spl_out->scl_data.ratios.vert_c);
/* Use LB_MEMORY_CONFIG_3 for 4:2:0 */
if ((spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8)
......@@ -936,16 +771,16 @@ static bool spl_get_optimal_number_of_taps(
else
lb_config = LB_MEMORY_CONFIG_0;
// Determine max vtap support by calculating how much line buffer can fit
spl_in->funcs->spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_scratch->scl_data,
spl_in->funcs->spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_out->scl_data,
lb_config, &num_part_y, &num_part_c);
/* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */
if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 2)
max_taps_y = num_part_y - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2);
if (dc_fixpt_ceil(spl_out->scl_data.ratios.vert) > 2)
max_taps_y = num_part_y - (dc_fixpt_ceil(spl_out->scl_data.ratios.vert) - 2);
else
max_taps_y = num_part_y;
if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 2)
max_taps_c = num_part_c - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2);
if (dc_fixpt_ceil(spl_out->scl_data.ratios.vert_c) > 2)
max_taps_c = num_part_c - (dc_fixpt_ceil(spl_out->scl_data.ratios.vert_c) - 2);
else
max_taps_c = num_part_c;
......@@ -954,108 +789,48 @@ static bool spl_get_optimal_number_of_taps(
else if (max_taps_c < min_taps_c)
return false;
if (spl_scratch->scl_data.taps.v_taps > max_taps_y)
spl_scratch->scl_data.taps.v_taps = max_taps_y;
if (spl_scratch->scl_data.taps.v_taps_c > max_taps_c)
spl_scratch->scl_data.taps.v_taps_c = max_taps_c;
if (!skip_easf) {
/*
* RGB ( L + NL ) and Linear HDR support 6x6, 6x4, 6x3, 4x4, 4x3
* NL YUV420 only supports 6x6, 6x4 for Y and 4x4 for UV
*
* If LB does not support 3, 4, or 6 taps, then disable EASF_V
* and only enable EASF_H. So for RGB, support 6x2, 4x2
* and for NL YUV420, support 6x2 for Y and 4x2 for UV
*
* All other cases, have to disable EASF_V and EASF_H
*
* If optimal no of taps is 5, then set it to 4
* If optimal no of taps is 7 or 8, then fine since max tap is 6
*
*/
if (spl_scratch->scl_data.taps.v_taps == 5)
spl_scratch->scl_data.taps.v_taps = 4;
if (spl_out->scl_data.taps.v_taps > max_taps_y)
spl_out->scl_data.taps.v_taps = max_taps_y;
if (spl_out->scl_data.taps.v_taps_c > max_taps_c)
spl_out->scl_data.taps.v_taps_c = max_taps_c;
if (spl_in->prefer_easf) {
// EASF can be enabled only for taps 3,4,6
// If optimal no of taps is 5, then set it to 4
// If optimal no of taps is 7 or 8, then set it to 6
if (spl_out->scl_data.taps.v_taps == 5)
spl_out->scl_data.taps.v_taps = 4;
if (spl_out->scl_data.taps.v_taps == 7 || spl_out->scl_data.taps.v_taps == 8)
spl_out->scl_data.taps.v_taps = 6;
if (spl_out->scl_data.taps.v_taps_c == 5)
spl_out->scl_data.taps.v_taps_c = 4;
if (spl_out->scl_data.taps.v_taps_c == 7 || spl_out->scl_data.taps.v_taps_c == 8)
spl_out->scl_data.taps.v_taps_c = 6;
if (spl_out->scl_data.taps.h_taps == 5)
spl_out->scl_data.taps.h_taps = 4;
if (spl_out->scl_data.taps.h_taps == 7 || spl_out->scl_data.taps.h_taps == 8)
spl_out->scl_data.taps.h_taps = 6;
if (spl_out->scl_data.taps.h_taps_c == 5)
spl_out->scl_data.taps.h_taps_c = 4;
if (spl_out->scl_data.taps.h_taps_c == 7 || spl_out->scl_data.taps.h_taps_c == 8)
spl_out->scl_data.taps.h_taps_c = 6;
if (spl_scratch->scl_data.taps.v_taps_c == 5)
spl_scratch->scl_data.taps.v_taps_c = 4;
if (spl_scratch->scl_data.taps.h_taps == 5)
spl_scratch->scl_data.taps.h_taps = 4;
if (spl_scratch->scl_data.taps.h_taps_c == 5)
spl_scratch->scl_data.taps.h_taps_c = 4;
if (spl_is_yuv420(spl_in->basic_in.format)) {
if ((spl_scratch->scl_data.taps.h_taps <= 4) ||
(spl_scratch->scl_data.taps.h_taps_c <= 3)) {
*enable_easf_v = false;
*enable_easf_h = false;
} else if ((spl_scratch->scl_data.taps.v_taps <= 3) ||
(spl_scratch->scl_data.taps.v_taps_c <= 3)) {
*enable_easf_v = false;
*enable_easf_h = true;
} else {
*enable_easf_v = true;
*enable_easf_h = true;
}
SPL_ASSERT((spl_scratch->scl_data.taps.v_taps > 1) &&
(spl_scratch->scl_data.taps.v_taps_c > 1));
} else { /* RGB */
if (spl_scratch->scl_data.taps.h_taps <= 3) {
*enable_easf_v = false;
*enable_easf_h = false;
} else if (spl_scratch->scl_data.taps.v_taps < 3) {
*enable_easf_v = false;
*enable_easf_h = true;
} else {
*enable_easf_v = true;
*enable_easf_h = true;
}
SPL_ASSERT(spl_scratch->scl_data.taps.v_taps > 1);
}
} else {
*enable_easf_v = false;
*enable_easf_h = false;
} // end of if prefer_easf
/* Sharpener requires scaler to be enabled, including for 1:1
* Check if ISHARP can be enabled
* If ISHARP is not enabled, for 1:1, set taps to 1 and disable
* EASF
* For case of 2:1 YUV where chroma is 1:1, set taps to 1 if
* EASF is not enabled
*/
*enable_isharp = spl_get_isharp_en(spl_in, spl_scratch);
if (!*enable_isharp && !spl_in->basic_out.always_scale) {
if ((IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) &&
(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) {
spl_scratch->scl_data.taps.h_taps = 1;
spl_scratch->scl_data.taps.v_taps = 1;
if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c))
spl_scratch->scl_data.taps.h_taps_c = 1;
if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c))
spl_scratch->scl_data.taps.v_taps_c = 1;
*enable_easf_v = false;
*enable_easf_h = false;
} else {
if ((!*enable_easf_h) &&
(IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c)))
spl_scratch->scl_data.taps.h_taps_c = 1;
if ((!*enable_easf_v) &&
(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c)))
spl_scratch->scl_data.taps.v_taps_c = 1;
}
if (!spl_in->basic_out.always_scale) {
if (IDENTITY_RATIO(spl_out->scl_data.ratios.horz))
spl_out->scl_data.taps.h_taps = 1;
if (IDENTITY_RATIO(spl_out->scl_data.ratios.vert))
spl_out->scl_data.taps.v_taps = 1;
if (IDENTITY_RATIO(spl_out->scl_data.ratios.horz_c))
spl_out->scl_data.taps.h_taps_c = 1;
if (IDENTITY_RATIO(spl_out->scl_data.ratios.vert_c))
spl_out->scl_data.taps.v_taps_c = 1;
}
return true;
}
static void spl_set_black_color_data(enum spl_pixel_format format,
struct scl_black_color *scl_black_color)
{
......@@ -1073,38 +848,38 @@ static void spl_set_black_color_data(enum spl_pixel_format format,
static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *scl_data)
{
struct spl_fixed31_32 bot;
struct fixed31_32 bot;
dscl_prog_data->ratios.h_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.horz) << 5;
dscl_prog_data->ratios.v_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.vert) << 5;
dscl_prog_data->ratios.h_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
dscl_prog_data->ratios.v_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
dscl_prog_data->ratios.h_scale_ratio = dc_fixpt_u3d19(scl_data->ratios.horz) << 5;
dscl_prog_data->ratios.v_scale_ratio = dc_fixpt_u3d19(scl_data->ratios.vert) << 5;
dscl_prog_data->ratios.h_scale_ratio_c = dc_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
dscl_prog_data->ratios.v_scale_ratio_c = dc_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
/*
* 0.24 format for fraction, first five bits zeroed
*/
dscl_prog_data->init.h_filter_init_frac =
spl_fixpt_u0d19(scl_data->inits.h) << 5;
dc_fixpt_u0d19(scl_data->inits.h) << 5;
dscl_prog_data->init.h_filter_init_int =
spl_fixpt_floor(scl_data->inits.h);
dc_fixpt_floor(scl_data->inits.h);
dscl_prog_data->init.h_filter_init_frac_c =
spl_fixpt_u0d19(scl_data->inits.h_c) << 5;
dc_fixpt_u0d19(scl_data->inits.h_c) << 5;
dscl_prog_data->init.h_filter_init_int_c =
spl_fixpt_floor(scl_data->inits.h_c);
dc_fixpt_floor(scl_data->inits.h_c);
dscl_prog_data->init.v_filter_init_frac =
spl_fixpt_u0d19(scl_data->inits.v) << 5;
dc_fixpt_u0d19(scl_data->inits.v) << 5;
dscl_prog_data->init.v_filter_init_int =
spl_fixpt_floor(scl_data->inits.v);
dc_fixpt_floor(scl_data->inits.v);
dscl_prog_data->init.v_filter_init_frac_c =
spl_fixpt_u0d19(scl_data->inits.v_c) << 5;
dc_fixpt_u0d19(scl_data->inits.v_c) << 5;
dscl_prog_data->init.v_filter_init_int_c =
spl_fixpt_floor(scl_data->inits.v_c);
bot = spl_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
dscl_prog_data->init.v_filter_init_bot_frac = spl_fixpt_u0d19(bot) << 5;
dscl_prog_data->init.v_filter_init_bot_int = spl_fixpt_floor(bot);
bot = spl_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
dscl_prog_data->init.v_filter_init_bot_frac_c = spl_fixpt_u0d19(bot) << 5;
dscl_prog_data->init.v_filter_init_bot_int_c = spl_fixpt_floor(bot);
dc_fixpt_floor(scl_data->inits.v_c);
bot = dc_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
dscl_prog_data->init.v_filter_init_bot_frac = dc_fixpt_u0d19(bot) << 5;
dscl_prog_data->init.v_filter_init_bot_int = dc_fixpt_floor(bot);
bot = dc_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
dscl_prog_data->init.v_filter_init_bot_frac_c = dc_fixpt_u0d19(bot) << 5;
dscl_prog_data->init.v_filter_init_bot_int_c = dc_fixpt_floor(bot);
}
static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
......@@ -1115,28 +890,79 @@ static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1;
dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1;
}
static const uint16_t *spl_dscl_get_filter_coeffs_64p(int taps, struct fixed31_32 ratio)
{
if (taps == 8)
return spl_get_filter_8tap_64p(ratio);
else if (taps == 7)
return spl_get_filter_7tap_64p(ratio);
else if (taps == 6)
return spl_get_filter_6tap_64p(ratio);
else if (taps == 5)
return spl_get_filter_5tap_64p(ratio);
else if (taps == 4)
return spl_get_filter_4tap_64p(ratio);
else if (taps == 3)
return spl_get_filter_3tap_64p(ratio);
else if (taps == 2)
return spl_get_filter_2tap_64p();
else if (taps == 1)
return NULL;
else {
/* should never happen, bug */
BREAK_TO_DEBUGGER();
return NULL;
}
}
static void spl_set_filters_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data)
{
dscl_prog_data->filter_h = spl_dscl_get_filter_coeffs_64p(
data->taps.h_taps, data->ratios.horz);
dscl_prog_data->filter_v = spl_dscl_get_filter_coeffs_64p(
data->taps.v_taps, data->ratios.vert);
dscl_prog_data->filter_h_c = spl_dscl_get_filter_coeffs_64p(
data->taps.h_taps_c, data->ratios.horz_c);
dscl_prog_data->filter_v_c = spl_dscl_get_filter_coeffs_64p(
data->taps.v_taps_c, data->ratios.vert_c);
}
#ifdef CONFIG_DRM_AMD_DC_FP
static const uint16_t *spl_dscl_get_blur_scale_coeffs_64p(int taps)
{
if ((taps == 3) || (taps == 4) || (taps == 6))
return spl_get_filter_isharp_bs_4tap_64p();
else {
/* should never happen, bug */
BREAK_TO_DEBUGGER();
return NULL;
}
}
static void spl_set_blur_scale_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data)
{
dscl_prog_data->filter_blur_scale_h = spl_dscl_get_blur_scale_coeffs_64p(
data->taps.h_taps);
dscl_prog_data->filter_blur_scale_v = spl_dscl_get_blur_scale_coeffs_64p(
data->taps.v_taps);
}
#endif
/* Populate dscl prog data structure from scaler data calculated by SPL */
static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *spl_scratch,
struct spl_out *spl_out, bool enable_easf_v, bool enable_easf_h, bool enable_isharp)
static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_out *spl_out)
{
struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
const struct spl_scaler_data *data = &spl_scratch->scl_data;
const struct spl_scaler_data *data = &spl_out->scl_data;
struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color;
bool enable_easf = enable_easf_v || enable_easf_h;
// Set values for recout
dscl_prog_data->recout = spl_scratch->scl_data.recout;
dscl_prog_data->recout = spl_out->scl_data.recout;
// Set values for MPC Size
dscl_prog_data->mpc_size.width = spl_scratch->scl_data.h_active;
dscl_prog_data->mpc_size.height = spl_scratch->scl_data.v_active;
dscl_prog_data->mpc_size.width = spl_out->scl_data.h_active;
dscl_prog_data->mpc_size.height = spl_out->scl_data.v_active;
// SCL_MODE - Set SCL_MODE data
dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data, enable_isharp,
enable_easf);
dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data);
// SCL_BLACK_COLOR
spl_set_black_color_data(spl_in->basic_in.format, scl_black_color);
......@@ -1147,81 +973,83 @@ static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *sp
// Set HTaps/VTaps
spl_set_taps_data(dscl_prog_data, data);
// Set viewport
dscl_prog_data->viewport = spl_scratch->scl_data.viewport;
dscl_prog_data->viewport = spl_out->scl_data.viewport;
// Set viewport_c
dscl_prog_data->viewport_c = spl_scratch->scl_data.viewport_c;
dscl_prog_data->viewport_c = spl_out->scl_data.viewport_c;
// Set filters data
spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h);
spl_set_filters_data(dscl_prog_data, data);
}
/* Enable EASF ?*/
static bool enable_easf(int scale_ratio, int taps,
enum linear_light_scaling lls_pref, bool prefer_easf)
{
// Is downscaling > 6:1 ?
if (scale_ratio > 6) {
// END - No EASF support for downscaling > 6:1
return false;
}
// Is upscaling or downscaling up to 2:1?
if (scale_ratio <= 2) {
// Is linear scaling or EASF preferred?
if (lls_pref == LLS_PREF_YES || prefer_easf) {
// LB support taps 3, 4, 6
if (taps == 3 || taps == 4 || taps == 6) {
// END - EASF supported
return true;
}
}
}
// END - EASF not supported
return false;
}
/* Set EASF data */
static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v,
bool enable_easf_h, enum linear_light_scaling lls_pref,
enum spl_pixel_format format, enum system_setup setup)
static void spl_set_easf_data(struct dscl_prog_data *dscl_prog_data,
bool enable_easf_v, bool enable_easf_h, enum linear_light_scaling lls_pref,
enum spl_pixel_format format)
{
struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
if (spl_is_yuv420(format)) /* TODO: 0 = RGB, 1 = YUV */
dscl_prog_data->easf_matrix_mode = 1;
else
dscl_prog_data->easf_matrix_mode = 0;
if (enable_easf_v) {
dscl_prog_data->easf_v_en = true;
dscl_prog_data->easf_v_ring = 0;
dscl_prog_data->easf_v_sharp_factor = 0;
dscl_prog_data->easf_v_sharp_factor = 1;
dscl_prog_data->easf_v_bf1_en = 1; // 1-bit, BF1 calculation enable, 0=disable, 1=enable
dscl_prog_data->easf_v_bf2_mode = 0xF; // 4-bit, BF2 calculation mode
/* 2-bit, BF3 chroma mode correction calculation mode */
dscl_prog_data->easf_v_bf3_mode = spl_get_v_bf3_mode(
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10 [ minCoef ]*/
dscl_prog_data->easf_v_bf3_mode = 2; // 2-bit, BF3 chroma mode correction calculation mode
dscl_prog_data->easf_v_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control
dscl_prog_data->easf_v_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control
dscl_prog_data->easf_v_bf2_roc_gain = 4; // U2.2, Rate Of Change control
dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt =
spl_get_3tap_dntilt_uptilt_offset(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10 [ upTiltMaxVal ]*/
0x9F00;// FP1.5.10 [minCoef] (-0.036109167214271)
dscl_prog_data->easf_v_ringest_3tap_uptilt_max =
spl_get_3tap_uptilt_maxval(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10 [ dnTiltSlope ]*/
0x24FE; // FP1.5.10 [upTiltMaxVal] ( 0.904556445553545)
dscl_prog_data->easf_v_ringest_3tap_dntilt_slope =
spl_get_3tap_dntilt_slope(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10 [ upTilt1Slope ]*/
0x3940; // FP1.5.10 [dnTiltSlope] ( 0.910488988173371)
dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope =
spl_get_3tap_uptilt1_slope(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10 [ upTilt2Slope ]*/
0x359C; // FP1.5.10 [upTilt1Slope] ( 0.125620179040899)
dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope =
spl_get_3tap_uptilt2_slope(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10 [ upTilt2Offset ]*/
0x359C; // FP1.5.10 [upTilt2Slope] ( 0.006786817723568)
dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset =
spl_get_3tap_uptilt2_offset(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
0x9F00; // FP1.5.10 [upTilt2Offset] (-0.006139059716651)
dscl_prog_data->easf_v_ringest_eventap_reduceg1 =
spl_get_reducer_gain4(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
0x4000; // FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4]
dscl_prog_data->easf_v_ringest_eventap_reduceg2 =
spl_get_reducer_gain6(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
0x4100; // FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6]
dscl_prog_data->easf_v_ringest_eventap_gain1 =
spl_get_gainRing4(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
0xB058; // FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024
dscl_prog_data->easf_v_ringest_eventap_gain2 =
spl_get_gainRing6(spl_scratch->scl_data.taps.v_taps,
spl_scratch->scl_data.recip_ratios.vert);
0xA640; // FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024
dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0
dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1
dscl_prog_data->easf_v_bf_mina = 0; //Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0
dscl_prog_data->easf_v_bf_minb = 0; //Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_v_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control
dscl_prog_data->easf_v_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control
dscl_prog_data->easf_v_bf2_roc_gain = 4; // U2.2, Rate Of Change control
dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x600; // S0.10, BF1 PWL Segment 0 = -512
dscl_prog_data->easf_v_bf1_pwl_in_seg0 = -512; // S0.10, BF1 PWL Segment 0
dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3; // S7.3, BF1 Slope PWL Segment 0
dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7EC; // S0.10, BF1 PWL Segment 1 = -20
dscl_prog_data->easf_v_bf1_pwl_in_seg1 = -20; // S0.10, BF1 PWL Segment 1
dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326; // S7.3, BF1 Slope PWL Segment 1
dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
......@@ -1229,19 +1057,19 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16; // S0.10, BF1 PWL Segment 3
dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7C8; // S7.3, BF1 Slope PWL Segment 3 = -56
dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = -56; // S7.3, BF1 Slope PWL Segment 3
dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32; // S0.10, BF1 PWL Segment 4
dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7D0; // S7.3, BF1 Slope PWL Segment 4 = -48
dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = -48; // S7.3, BF1 Slope PWL Segment 4
dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48; // S0.10, BF1 PWL Segment 5
dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x710; // S7.3, BF1 Slope PWL Segment 5 = -240
dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = -240; // S7.3, BF1 Slope PWL Segment 5
dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64; // S0.10, BF1 PWL Segment 6
dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x760; // S7.3, BF1 Slope PWL Segment 6 = -160
dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = -160; // S7.3, BF1 Slope PWL Segment 6
dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80; // S0.10, BF1 PWL Segment 7
dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5; // FP1.6.6, BF3 Slope PWL Segment 0
......@@ -1262,41 +1090,13 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
0x136B; // FP1.6.6, BF3 Slope PWL Segment 3
dscl_prog_data->easf_v_bf3_pwl_in_set4 =
0x0C37; // FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x4E; // S0.6, BF3 Base PWL Segment 4 = -50
dscl_prog_data->easf_v_bf3_pwl_base_set4 = -50; // S0.6, BF3 Base PWL Segment 4
dscl_prog_data->easf_v_bf3_pwl_slope_set4 =
0x1200; // FP1.6.6, BF3 Slope PWL Segment 4
dscl_prog_data->easf_v_bf3_pwl_in_set5 =
0x0CF7; // FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63
dscl_prog_data->easf_v_bf3_pwl_base_set5 = -63; // S0.6, BF3 Base PWL Segment 5
} else {
dscl_prog_data->easf_v_bf2_flat1_gain = 13; // U1.3, BF2 Flat1 Gain control
dscl_prog_data->easf_v_bf2_flat2_gain = 15; // U4.0, BF2 Flat2 Gain control
dscl_prog_data->easf_v_bf2_roc_gain = 14; // U2.2, Rate Of Change control
dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x440; // S0.10, BF1 PWL Segment 0 = -960
dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 2; // S7.3, BF1 Slope PWL Segment 0
dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7C4; // S0.10, BF1 PWL Segment 1 = -60
dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 109; // S7.3, BF1 Slope PWL Segment 1
dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2
dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 48; // S0.10, BF1 PWL Segment 3
dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7ED; // S7.3, BF1 Slope PWL Segment 3 = -19
dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 96; // S0.10, BF1 PWL Segment 4
dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7F0; // S7.3, BF1 Slope PWL Segment 4 = -16
dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 144; // S0.10, BF1 PWL Segment 5
dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x7B0; // S7.3, BF1 Slope PWL Segment 5 = -80
dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 192; // S0.10, BF1 PWL Segment 6
dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x7CB; // S7.3, BF1 Slope PWL Segment 6 = -53
dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 240; // S0.10, BF1 PWL Segment 7
dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000; // FP1.6.6, BF3 Slope PWL Segment 0
......@@ -1315,11 +1115,11 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
0x1878; // FP1.6.6, BF3 Slope PWL Segment 3
dscl_prog_data->easf_v_bf3_pwl_in_set4 =
0x0761; // FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x44; // S0.6, BF3 Base PWL Segment 4 = -60
dscl_prog_data->easf_v_bf3_pwl_base_set4 = -60; // S0.6, BF3 Base PWL Segment 4
dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760; // FP1.6.6, BF3 Slope PWL Segment 4
dscl_prog_data->easf_v_bf3_pwl_in_set5 =
0x0780; // FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63
dscl_prog_data->easf_v_bf3_pwl_base_set5 = -63; // S0.6, BF3 Base PWL Segment 5
}
} else
dscl_prog_data->easf_v_en = false;
......@@ -1327,43 +1127,32 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
if (enable_easf_h) {
dscl_prog_data->easf_h_en = true;
dscl_prog_data->easf_h_ring = 0;
dscl_prog_data->easf_h_sharp_factor = 0;
dscl_prog_data->easf_h_sharp_factor = 1;
dscl_prog_data->easf_h_bf1_en =
1; // 1-bit, BF1 calculation enable, 0=disable, 1=enable
dscl_prog_data->easf_h_bf2_mode =
0xF; // 4-bit, BF2 calculation mode
/* 2-bit, BF3 chroma mode correction calculation mode */
dscl_prog_data->easf_h_bf3_mode = spl_get_h_bf3_mode(
spl_scratch->scl_data.recip_ratios.horz);
/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
dscl_prog_data->easf_h_bf3_mode =
2; // 2-bit, BF3 chroma mode correction calculation mode
dscl_prog_data->easf_h_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control
dscl_prog_data->easf_h_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control
dscl_prog_data->easf_h_bf2_roc_gain = 4; // U2.2, Rate Of Change control
dscl_prog_data->easf_h_ringest_eventap_reduceg1 =
spl_get_reducer_gain4(spl_scratch->scl_data.taps.h_taps,
spl_scratch->scl_data.recip_ratios.horz);
/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
0x4000; // FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4]
dscl_prog_data->easf_h_ringest_eventap_reduceg2 =
spl_get_reducer_gain6(spl_scratch->scl_data.taps.h_taps,
spl_scratch->scl_data.recip_ratios.horz);
/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
0x4100; // FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6]
dscl_prog_data->easf_h_ringest_eventap_gain1 =
spl_get_gainRing4(spl_scratch->scl_data.taps.h_taps,
spl_scratch->scl_data.recip_ratios.horz);
/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
0xB058; // FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024
dscl_prog_data->easf_h_ringest_eventap_gain2 =
spl_get_gainRing6(spl_scratch->scl_data.taps.h_taps,
spl_scratch->scl_data.recip_ratios.horz);
0xA640; // FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024
dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0
dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1
dscl_prog_data->easf_h_bf_mina = 0; //Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0
dscl_prog_data->easf_h_bf_minb = 0; //Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_h_bf2_flat1_gain = 4; // U1.3, BF2 Flat1 Gain control
dscl_prog_data->easf_h_bf2_flat2_gain = 8; // U4.0, BF2 Flat2 Gain control
dscl_prog_data->easf_h_bf2_roc_gain = 4; // U2.2, Rate Of Change control
dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x600; // S0.10, BF1 PWL Segment 0 = -512
dscl_prog_data->easf_h_bf1_pwl_in_seg0 = -512; // S0.10, BF1 PWL Segment 0
dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3; // S7.3, BF1 Slope PWL Segment 0
dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7EC; // S0.10, BF1 PWL Segment 1 = -20
dscl_prog_data->easf_h_bf1_pwl_in_seg1 = -20; // S0.10, BF1 PWL Segment 1
dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326; // S7.3, BF1 Slope PWL Segment 1
dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
......@@ -1371,19 +1160,19 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16; // S0.10, BF1 PWL Segment 3
dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7C8; // S7.3, BF1 Slope PWL Segment 3 = -56
dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = -56; // S7.3, BF1 Slope PWL Segment 3
dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32; // S0.10, BF1 PWL Segment 4
dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7D0; // S7.3, BF1 Slope PWL Segment 4 = -48
dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = -48; // S7.3, BF1 Slope PWL Segment 4
dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48; // S0.10, BF1 PWL Segment 5
dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x710; // S7.3, BF1 Slope PWL Segment 5 = -240
dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = -240; // S7.3, BF1 Slope PWL Segment 5
dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64; // S0.10, BF1 PWL Segment 6
dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x760; // S7.3, BF1 Slope PWL Segment 6 = -160
dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = -160; // S7.3, BF1 Slope PWL Segment 6
dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80; // S0.10, BF1 PWL Segment 7
dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5; // FP1.6.6, BF3 Slope PWL Segment 0
......@@ -1401,40 +1190,12 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x136B; // FP1.6.6, BF3 Slope PWL Segment 3
dscl_prog_data->easf_h_bf3_pwl_in_set4 =
0x0C37; // FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x4E; // S0.6, BF3 Base PWL Segment 4 = -50
dscl_prog_data->easf_h_bf3_pwl_base_set4 = -50; // S0.6, BF3 Base PWL Segment 4
dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200; // FP1.6.6, BF3 Slope PWL Segment 4
dscl_prog_data->easf_h_bf3_pwl_in_set5 =
0x0CF7; // FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63
dscl_prog_data->easf_h_bf3_pwl_base_set5 = -63; // S0.6, BF3 Base PWL Segment 5
} else {
dscl_prog_data->easf_h_bf2_flat1_gain = 13; // U1.3, BF2 Flat1 Gain control
dscl_prog_data->easf_h_bf2_flat2_gain = 15; // U4.0, BF2 Flat2 Gain control
dscl_prog_data->easf_h_bf2_roc_gain = 14; // U2.2, Rate Of Change control
dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x440; // S0.10, BF1 PWL Segment 0 = -960
dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0; // U0.6, BF1 Base PWL Segment 0
dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 2; // S7.3, BF1 Slope PWL Segment 0
dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7C4; // S0.10, BF1 PWL Segment 1 = -60
dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12; // U0.6, BF1 Base PWL Segment 1
dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 109; // S7.3, BF1 Slope PWL Segment 1
dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0; // S0.10, BF1 PWL Segment 2
dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63; // U0.6, BF1 Base PWL Segment 2
dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0; // S7.3, BF1 Slope PWL Segment 2
dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 48; // S0.10, BF1 PWL Segment 3
dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63; // U0.6, BF1 Base PWL Segment 3
dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7ED; // S7.3, BF1 Slope PWL Segment 3 = -19
dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 96; // S0.10, BF1 PWL Segment 4
dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56; // U0.6, BF1 Base PWL Segment 4
dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7F0; // S7.3, BF1 Slope PWL Segment 4 = -16
dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 144; // S0.10, BF1 PWL Segment 5
dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50; // U0.6, BF1 Base PWL Segment 5
dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x7B0; // S7.3, BF1 Slope PWL Segment 5 = -80
dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 192; // S0.10, BF1 PWL Segment 6
dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20; // U0.6, BF1 Base PWL Segment 6
dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x7CB; // S7.3, BF1 Slope PWL Segment 6 = -53
dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 240; // S0.10, BF1 PWL Segment 7
dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0; // U0.6, BF1 Base PWL Segment 7
dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000; // FP0.6.6, BF3 Input value PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63; // S0.6, BF3 Base PWL Segment 0
dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000; // FP1.6.6, BF3 Slope PWL Segment 0
......@@ -1452,18 +1213,17 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878; // FP1.6.6, BF3 Slope PWL Segment 3
dscl_prog_data->easf_h_bf3_pwl_in_set4 =
0x0761; // FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x44; // S0.6, BF3 Base PWL Segment 4 = -60
dscl_prog_data->easf_h_bf3_pwl_base_set4 = -60; // S0.6, BF3 Base PWL Segment 4
dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760; // FP1.6.6, BF3 Slope PWL Segment 4
dscl_prog_data->easf_h_bf3_pwl_in_set5 =
0x0780; // FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41; // S0.6, BF3 Base PWL Segment 5 = -63
dscl_prog_data->easf_h_bf3_pwl_base_set5 = -63; // S0.6, BF3 Base PWL Segment 5
} // if (lls_pref == LLS_PREF_YES)
} else
dscl_prog_data->easf_h_en = false;
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->easf_ltonl_en = 1; // Linear input
if (setup == HDR_L) {
dscl_prog_data->easf_matrix_c0 =
0x504E; // fp1.5.10, C0 coefficient (LN_BT2020: 0.2627 * (2^14)/125 = 34.43750000)
dscl_prog_data->easf_matrix_c1 =
......@@ -1472,16 +1232,6 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
0x47C6; // fp1.5.10, C2 coefficient (LN_BT2020: 0.0593 * (2^14)/125 = 7.77343750)
dscl_prog_data->easf_matrix_c3 =
0x0; // fp1.5.10, C3 coefficient
} else { // SDR_L
dscl_prog_data->easf_matrix_c0 =
0x4EF7; // fp1.5.10, C0 coefficient (LN_rec709: 0.2126 * (2^14)/125 = 27.86590720)
dscl_prog_data->easf_matrix_c1 =
0x55DC; // fp1.5.10, C1 coefficient (LN_rec709: 0.7152 * (2^14)/125 = 93.74269440)
dscl_prog_data->easf_matrix_c2 =
0x48BB; // fp1.5.10, C2 coefficient (LN_rec709: 0.0722 * (2^14)/125 = 9.46339840)
dscl_prog_data->easf_matrix_c3 =
0x0; // fp1.5.10, C3 coefficient
}
} else {
dscl_prog_data->easf_ltonl_en = 0; // Non-Linear input
dscl_prog_data->easf_matrix_c0 =
......@@ -1493,43 +1243,27 @@ static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *s
dscl_prog_data->easf_matrix_c3 =
0x0; // fp1.5.10, C3 coefficient
}
if (spl_is_yuv420(format)) { /* TODO: 0 = RGB, 1 = YUV */
dscl_prog_data->easf_matrix_mode = 1;
/*
* 2-bit, BF3 chroma mode correction calculation mode
* Needs to be disabled for YUV420 mode
* Override lookup value
*/
dscl_prog_data->easf_v_bf3_mode = 0;
dscl_prog_data->easf_h_bf3_mode = 0;
} else
dscl_prog_data->easf_matrix_mode = 0;
}
/*Set isharp noise detection */
static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data)
static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data)
{
// ISHARP_NOISEDET_MODE
// 0: 3x5 as VxH
// 1: 4x5 as VxH
// 2:
// 3: 5x5 as VxH
if (data->taps.v_taps == 6)
dscl_prog_data->isharp_noise_det.mode = 3;
else if (data->taps.v_taps == 4)
dscl_prog_data->isharp_noise_det.mode = 1;
else if (data->taps.v_taps == 3)
dscl_prog_data->isharp_noise_det.mode = 0;
if (dscl_prog_data->taps.v_taps == 6)
dscl_prog_data->isharp_noise_det.mode = 3; // ISHARP_NOISEDET_MODE
else if (dscl_prog_data->taps.h_taps == 4)
dscl_prog_data->isharp_noise_det.mode = 1; // ISHARP_NOISEDET_MODE
else if (dscl_prog_data->taps.h_taps == 3)
dscl_prog_data->isharp_noise_det.mode = 0; // ISHARP_NOISEDET_MODE
};
/* Set Sharpener data */
static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
struct adaptive_sharpness adp_sharpness, bool enable_isharp,
enum linear_light_scaling lls_pref, enum spl_pixel_format format,
const struct spl_scaler_data *data, struct spl_fixed31_32 ratio,
enum system_setup setup)
const struct spl_scaler_data *data)
{
/* Turn off sharpener if not required */
if (!enable_isharp) {
......@@ -1538,12 +1272,10 @@ static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
}
dscl_prog_data->isharp_en = 1; // ISHARP_EN
dscl_prog_data->isharp_noise_det.enable = 1; // ISHARP_NOISEDET_EN
// Set ISHARP_NOISEDET_MODE if htaps = 6-tap
if (data->taps.h_taps == 6) {
dscl_prog_data->isharp_noise_det.enable = 1; /* ISHARP_NOISEDET_EN */
spl_set_isharp_noise_det_mode(dscl_prog_data, data); /* ISHARP_NOISEDET_MODE */
} else
dscl_prog_data->isharp_noise_det.enable = 0; // ISHARP_NOISEDET_EN
if (dscl_prog_data->taps.h_taps == 6)
spl_set_isharp_noise_det_mode(dscl_prog_data); // ISHARP_NOISEDET_MODE
// Program noise detection threshold
dscl_prog_data->isharp_noise_det.uthreshold = 24; // ISHARP_NOISEDET_UTHRE
dscl_prog_data->isharp_noise_det.dthreshold = 4; // ISHARP_NOISEDET_DTHRE
......@@ -1552,38 +1284,13 @@ static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
dscl_prog_data->isharp_noise_det.pwl_end_in = 13; // ISHARP_NOISEDET_PWL_END_IN
dscl_prog_data->isharp_noise_det.pwl_slope = 1623; // ISHARP_NOISEDET_PWL_SLOPE
if (lls_pref == LLS_PREF_NO) /* ISHARP_FMT_MODE */
if ((lls_pref == LLS_PREF_NO) && !spl_is_yuv420(format)) /* ISHARP_FMT_MODE */
dscl_prog_data->isharp_fmt.mode = 1;
else
dscl_prog_data->isharp_fmt.mode = 0;
dscl_prog_data->isharp_fmt.norm = 0x3C00; // ISHARP_FMT_NORM
dscl_prog_data->isharp_lba.mode = 0; // ISHARP_LBA_MODE
if (setup == SDR_L) {
// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[0] = 62; // ISHARP LBA for Seg 0. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
dscl_prog_data->isharp_lba.in_seg[1] = 130; // ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
dscl_prog_data->isharp_lba.in_seg[2] = 312; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
dscl_prog_data->isharp_lba.in_seg[4] = 520; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
} else {
// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
dscl_prog_data->isharp_lba.in_seg[0] = 0; // ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[0] = 0; // ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
......@@ -1595,7 +1302,7 @@ static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
dscl_prog_data->isharp_lba.in_seg[2] = 614; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
dscl_prog_data->isharp_lba.slope_seg[2] = 0x1EC; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -20
dscl_prog_data->isharp_lba.slope_seg[2] = -20; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format
// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
......@@ -1607,12 +1314,20 @@ static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
dscl_prog_data->isharp_lba.base_seg[5] = 0; // ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
switch (adp_sharpness.sharpness) {
case SHARPNESS_LOW:
dscl_prog_data->isharp_delta = spl_get_filter_isharp_1D_lut_0p5x();
break;
case SHARPNESS_MID:
dscl_prog_data->isharp_delta = spl_get_filter_isharp_1D_lut_1p0x();
break;
case SHARPNESS_HIGH:
dscl_prog_data->isharp_delta = spl_get_filter_isharp_1D_lut_2p0x();
break;
default:
BREAK_TO_DEBUGGER();
}
spl_build_isharp_1dlut_from_reference_curve(ratio, setup);
dscl_prog_data->isharp_delta = spl_get_pregen_filter_isharp_1D_lut(
adp_sharpness.sharpness);
// Program the nldelta soft clip values
if (lls_pref == LLS_PREF_YES) {
dscl_prog_data->isharp_nldelta_sclip.enable_p = 0; /* ISHARP_NLDELTA_SCLIP_EN_P */
......@@ -1631,7 +1346,62 @@ static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
}
// Set the values as per lookup table
#ifdef CONFIG_DRM_AMD_DC_FP
spl_set_blur_scale_data(dscl_prog_data, data);
#endif
}
static bool spl_get_isharp_en(struct adaptive_sharpness adp_sharpness,
int vscale_ratio, int hscale_ratio, struct spl_taps taps,
enum spl_pixel_format format)
{
bool enable_isharp = false;
if (adp_sharpness.enable == false)
return enable_isharp; // Return if adaptive sharpness is disabled
// Is downscaling ?
if (vscale_ratio > 1 || hscale_ratio > 1) {
// END - No iSHARP support for downscaling
return enable_isharp;
}
// Scaling is up to 1:1 (no scaling) or upscaling
/* Only apply sharpness to NV12 and not P010 */
if (format != SPL_PIXEL_FORMAT_420BPP8)
return enable_isharp;
// LB support horizontal taps 4,6 or vertical taps 3, 4, 6
if (taps.h_taps == 4 || taps.h_taps == 6 ||
taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6) {
// END - iSHARP supported
enable_isharp = true;
}
return enable_isharp;
}
static bool spl_choose_lls_policy(enum spl_pixel_format format,
enum spl_transfer_func_type tf_type,
enum spl_transfer_func_predefined tf_predefined_type,
enum linear_light_scaling *lls_pref)
{
if (spl_is_yuv420(format)) {
*lls_pref = LLS_PREF_NO;
if ((tf_type == SPL_TF_TYPE_PREDEFINED) || (tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS))
return true;
} else { /* RGB or YUV444 */
if (tf_type == SPL_TF_TYPE_PREDEFINED) {
if ((tf_predefined_type == SPL_TRANSFER_FUNCTION_HLG) ||
(tf_predefined_type == SPL_TRANSFER_FUNCTION_HLG12))
*lls_pref = LLS_PREF_NO;
else
*lls_pref = LLS_PREF_YES;
return true;
} else if (tf_type == SPL_TF_TYPE_BYPASS) {
*lls_pref = LLS_PREF_YES;
return true;
}
}
*lls_pref = LLS_PREF_NO;
return false;
}
/* Calculate scaler parameters */
......@@ -1640,71 +1410,67 @@ bool spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out)
bool res = false;
bool enable_easf_v = false;
bool enable_easf_h = false;
bool lls_enable_easf = true;
int vratio = 0;
int hratio = 0;
struct spl_scratch spl_scratch;
struct spl_fixed31_32 isharp_scale_ratio;
enum system_setup setup;
bool enable_isharp = false;
const struct spl_scaler_data *data = &spl_scratch.scl_data;
memset(&spl_scratch, 0, sizeof(struct spl_scratch));
spl_scratch.scl_data.h_active = spl_in->h_active;
spl_scratch.scl_data.v_active = spl_in->v_active;
const struct spl_scaler_data *data = &spl_out->scl_data;
// All SPL calls
/* recout calculation */
/* depends on h_active */
spl_calculate_recout(spl_in, &spl_scratch, spl_out);
spl_calculate_recout(spl_in, spl_out);
/* depends on pixel format */
spl_calculate_scaling_ratios(spl_in, &spl_scratch, spl_out);
spl_calculate_scaling_ratios(spl_in, spl_out);
/* depends on scaling ratios and recout, does not calculate offset yet */
spl_calculate_viewport_size(spl_in, &spl_scratch);
spl_calculate_viewport_size(spl_in, spl_out);
res = spl_get_optimal_number_of_taps(
spl_in->basic_out.max_downscale_src_width, spl_in,
&spl_scratch, &spl_in->scaling_quality, &enable_easf_v,
&enable_easf_h, &enable_isharp);
spl_out, &spl_in->scaling_quality);
/*
* Depends on recout, scaling ratios, h_active and taps
* May need to re-check lb size after this in some obscure scenario
*/
if (res)
spl_calculate_inits_and_viewports(spl_in, &spl_scratch);
spl_calculate_inits_and_viewports(spl_in, spl_out);
// Handle 3d recout
spl_handle_3d_recout(spl_in, &spl_scratch.scl_data.recout);
spl_handle_3d_recout(spl_in, &spl_out->scl_data.recout);
// Clamp
spl_clamp_viewport(&spl_scratch.scl_data.viewport);
spl_clamp_viewport(&spl_out->scl_data.viewport);
if (!res)
return res;
/*
* If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
* function to determine whether to use LINEAR or NONLINEAR scaling
*/
if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
&spl_in->lls_pref);
// Save all calculated parameters in dscl_prog_data structure to program hw registers
spl_set_dscl_prog_data(spl_in, &spl_scratch, spl_out, enable_easf_v, enable_easf_h, enable_isharp);
spl_set_dscl_prog_data(spl_in, spl_out);
if (spl_in->lls_pref == LLS_PREF_YES) {
if (spl_in->is_hdr_on)
setup = HDR_L;
else
setup = SDR_L;
vratio = dc_fixpt_ceil(spl_out->scl_data.ratios.vert);
hratio = dc_fixpt_ceil(spl_out->scl_data.ratios.horz);
if (!lls_enable_easf || spl_in->disable_easf) {
enable_easf_v = false;
enable_easf_h = false;
} else {
if (spl_in->is_hdr_on)
setup = HDR_NL;
else
setup = SDR_NL;
/* Enable EASF on vertical? */
enable_easf_v = enable_easf(vratio, spl_out->scl_data.taps.v_taps, spl_in->lls_pref, spl_in->prefer_easf);
/* Enable EASF on horizontal? */
enable_easf_h = enable_easf(hratio, spl_out->scl_data.taps.h_taps, spl_in->lls_pref, spl_in->prefer_easf);
}
// Set EASF
spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref,
spl_in->basic_in.format, setup);
spl_set_easf_data(spl_out->dscl_prog_data, enable_easf_v, enable_easf_h, spl_in->lls_pref,
spl_in->basic_in.format);
// Set iSHARP
vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert);
hratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.horz);
if (vratio <= hratio)
isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.vert;
else
isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.horz;
bool enable_isharp = spl_get_isharp_en(spl_in->adaptive_sharpness, vratio, hratio,
spl_out->scl_data.taps, spl_in->basic_in.format);
spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp,
spl_in->lls_pref, spl_in->basic_in.format, data, isharp_scale_ratio, setup);
spl_in->lls_pref, spl_in->basic_in.format, data);
return res;
}
// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "dc_spl_filters.h"
void convert_filter_s1_10_to_s1_12(const uint16_t *s1_10_filter,
uint16_t *s1_12_filter, int num_taps)
{
int num_entries = NUM_PHASES_COEFF * num_taps;
int i;
for (i = 0; i < num_entries; i++)
*(s1_12_filter + i) = *(s1_10_filter + i) * 4;
}
/* SPDX-License-Identifier: MIT */
/* Copyright 2024 Advanced Micro Devices, Inc. */
#ifndef __DC_SPL_FILTERS_H__
#define __DC_SPL_FILTERS_H__
#include "dc_spl_types.h"
#define NUM_PHASES_COEFF 33
void convert_filter_s1_10_to_s1_12(const uint16_t *s1_10_filter,
uint16_t *s1_12_filter, int num_taps);
#endif /* __DC_SPL_FILTERS_H__ */
......@@ -2,9 +2,6 @@
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "dc_spl_types.h"
#include "spl_debug.h"
#include "dc_spl_filters.h"
#include "dc_spl_isharp_filters.h"
//========================================
......@@ -233,53 +230,6 @@ static const uint32_t filter_isharp_1D_lut_2p0x[32] = {
0x080B0D0E,
0x00020406,
};
//========================================
// Delta Gain 1DLUT
// LUT content is packed as 4-bytes into one DWORD/entry
// A_start = 0.000000
// A_end = 10.000000
// A_gain = 3.000000
// B_start = 11.000000
// B_end = 127.000000
// C_start = 40.000000
// C_end = 127.000000
//========================================
static const uint32_t filter_isharp_1D_lut_3p0x[32] = {
0x03010000,
0x0F0B0805,
0x211E1813,
0x2B292624,
0x3533302E,
0x3E3C3A37,
0x46444240,
0x4D4B4A48,
0x5352504F,
0x59575655,
0x5D5C5B5A,
0x61605F5E,
0x64646362,
0x66666565,
0x68686767,
0x68686868,
0x68686868,
0x67676868,
0x65656666,
0x62636464,
0x5E5F6061,
0x5A5B5C5D,
0x55565759,
0x4F505253,
0x484A4B4D,
0x40424446,
0x373A3C3E,
0x2E303335,
0x2426292B,
0x191B1E21,
0x0D101316,
0x0003060A,
};
//========================================
// Wide scaler coefficients
//========================================================
// <using> gen_scaler_coeffs.m
......@@ -334,7 +284,7 @@ static const uint16_t filter_isharp_wide_6tap_64p[198] = {
// <CoefType> Blur & Scale LPF
// <CoefQuant> S1.10
//========================================================
static const uint16_t filter_isharp_bs_4tap_in_6_64p[198] = {
static const uint16_t filter_isharp_bs_4tap_64p[198] = {
0x0000, 0x00E5, 0x0237, 0x00E4, 0x0000, 0x0000,
0x0000, 0x00DE, 0x0237, 0x00EB, 0x0000, 0x0000,
0x0000, 0x00D7, 0x0236, 0x00F2, 0x0001, 0x0000,
......@@ -369,228 +319,6 @@ static const uint16_t filter_isharp_bs_4tap_in_6_64p[198] = {
0x0000, 0x003B, 0x01CF, 0x01C2, 0x0034, 0x0000,
0x0000, 0x0037, 0x01C9, 0x01C9, 0x0037, 0x0000
};
//========================================================
// <using> gen_BlurScale_coeffs.m
// <date> 25-Apr-2022
// <num_taps> 4
// <num_phases> 64
// <CoefType> Blur & Scale LPF
// <CoefQuant> S1.10
//========================================================
static const uint16_t filter_isharp_bs_4tap_64p[132] = {
0x00E5, 0x0237, 0x00E4, 0x0000,
0x00DE, 0x0237, 0x00EB, 0x0000,
0x00D7, 0x0236, 0x00F2, 0x0001,
0x00D0, 0x0235, 0x00FA, 0x0001,
0x00C9, 0x0234, 0x0101, 0x0002,
0x00C2, 0x0233, 0x0108, 0x0003,
0x00BB, 0x0232, 0x0110, 0x0003,
0x00B5, 0x0230, 0x0117, 0x0004,
0x00AE, 0x022E, 0x011F, 0x0005,
0x00A8, 0x022C, 0x0126, 0x0006,
0x00A2, 0x022A, 0x012D, 0x0007,
0x009C, 0x0228, 0x0134, 0x0008,
0x0096, 0x0225, 0x013C, 0x0009,
0x0090, 0x0222, 0x0143, 0x000B,
0x008A, 0x021F, 0x014B, 0x000C,
0x0085, 0x021C, 0x0151, 0x000E,
0x007F, 0x0218, 0x015A, 0x000F,
0x007A, 0x0215, 0x0160, 0x0011,
0x0074, 0x0211, 0x0168, 0x0013,
0x006F, 0x020D, 0x016F, 0x0015,
0x006A, 0x0209, 0x0176, 0x0017,
0x0065, 0x0204, 0x017E, 0x0019,
0x0060, 0x0200, 0x0185, 0x001B,
0x005C, 0x01FB, 0x018C, 0x001D,
0x0057, 0x01F6, 0x0193, 0x0020,
0x0053, 0x01F1, 0x019A, 0x0022,
0x004E, 0x01EC, 0x01A1, 0x0025,
0x004A, 0x01E6, 0x01A8, 0x0028,
0x0046, 0x01E1, 0x01AF, 0x002A,
0x0042, 0x01DB, 0x01B6, 0x002D,
0x003F, 0x01D5, 0x01BB, 0x0031,
0x003B, 0x01CF, 0x01C2, 0x0034,
0x0037, 0x01C9, 0x01C9, 0x0037,
};
//========================================================
// <using> gen_BlurScale_coeffs.m
// <date> 09-Jun-2022
// <num_taps> 3
// <num_phases> 64
// <CoefType> Blur & Scale LPF
// <CoefQuant> S1.10
//========================================================
static const uint16_t filter_isharp_bs_3tap_64p[99] = {
0x0200, 0x0200, 0x0000,
0x01F6, 0x0206, 0x0004,
0x01EC, 0x020B, 0x0009,
0x01E2, 0x0211, 0x000D,
0x01D8, 0x0216, 0x0012,
0x01CE, 0x021C, 0x0016,
0x01C4, 0x0221, 0x001B,
0x01BA, 0x0226, 0x0020,
0x01B0, 0x022A, 0x0026,
0x01A6, 0x022F, 0x002B,
0x019C, 0x0233, 0x0031,
0x0192, 0x0238, 0x0036,
0x0188, 0x023C, 0x003C,
0x017E, 0x0240, 0x0042,
0x0174, 0x0244, 0x0048,
0x016A, 0x0248, 0x004E,
0x0161, 0x024A, 0x0055,
0x0157, 0x024E, 0x005B,
0x014D, 0x0251, 0x0062,
0x0144, 0x0253, 0x0069,
0x013A, 0x0256, 0x0070,
0x0131, 0x0258, 0x0077,
0x0127, 0x025B, 0x007E,
0x011E, 0x025C, 0x0086,
0x0115, 0x025E, 0x008D,
0x010B, 0x0260, 0x0095,
0x0102, 0x0262, 0x009C,
0x00F9, 0x0263, 0x00A4,
0x00F0, 0x0264, 0x00AC,
0x00E7, 0x0265, 0x00B4,
0x00DF, 0x0264, 0x00BD,
0x00D6, 0x0265, 0x00C5,
0x00CD, 0x0266, 0x00CD,
};
/* Converted Blur & Scale coeff tables from S1.10 to S1.12 */
static uint16_t filter_isharp_bs_4tap_in_6_64p_s1_12[198];
static uint16_t filter_isharp_bs_4tap_64p_s1_12[132];
static uint16_t filter_isharp_bs_3tap_64p_s1_12[99];
struct scale_ratio_to_sharpness_level_lookup scale_to_sharp_sdr_nl[3][6] = {
{ /* LOW */
{1125, 1000, 75, 100},
{11, 10, 6, 10},
{1075, 1000, 45, 100},
{105, 100, 3, 10},
{1025, 1000, 15, 100},
{1, 1, 0, 1},
},
{ /* MID */
{1125, 1000, 2, 1},
{11, 10, 175, 100},
{1075, 1000, 15, 10},
{105, 100, 125, 100},
{1025, 1000, 1, 1},
{1, 1, 75, 100},
},
{ /* HIGH */
{1125, 1000, 35, 10},
{11, 10, 32, 10},
{1075, 1000, 29, 10},
{105, 100, 26, 10},
{1025, 1000, 23, 10},
{1, 1, 2, 1},
},
};
struct scale_ratio_to_sharpness_level_lookup scale_to_sharp_sdr_l[3][6] = {
{ /* LOW */
{1125, 1000, 75, 100},
{11, 10, 6, 10},
{1075, 1000, 45, 100},
{105, 100, 3, 10},
{1025, 1000, 15, 100},
{1, 1, 0, 1},
},
{ /* MID */
{1125, 1000, 15, 10},
{11, 10, 135, 100},
{1075, 1000, 12, 10},
{105, 100, 105, 100},
{1025, 1000, 9, 10},
{1, 1, 75, 100},
},
{ /* HIGH */
{1125, 1000, 25, 10},
{11, 10, 23, 10},
{1075, 1000, 21, 10},
{105, 100, 19, 10},
{1025, 1000, 17, 10},
{1, 1, 15, 10},
},
};
struct scale_ratio_to_sharpness_level_lookup scale_to_sharp_hdr_nl[3][6] = {
{ /* LOW */
{1125, 1000, 5, 10},
{11, 10, 4, 10},
{1075, 1000, 3, 10},
{105, 100, 2, 10},
{1025, 1000, 1, 10},
{1, 1, 0, 1},
},
{ /* MID */
{1125, 1000, 1, 1},
{11, 10, 9, 10},
{1075, 1000, 8, 10},
{105, 100, 7, 10},
{1025, 1000, 6, 10},
{1, 1, 5, 10},
},
{ /* HIGH */
{1125, 1000, 15, 10},
{11, 10, 14, 10},
{1075, 1000, 13, 10},
{105, 100, 12, 10},
{1025, 1000, 11, 10},
{1, 1, 1, 1},
},
};
struct scale_ratio_to_sharpness_level_lookup scale_to_sharp_hdr_l[3][6] = {
{ /* LOW */
{1125, 1000, 75, 100},
{11, 10, 6, 10},
{1075, 1000, 45, 100},
{105, 100, 3, 10},
{1025, 1000, 15, 100},
{1, 1, 0, 1},
},
{ /* MID */
{1125, 1000, 15, 10},
{11, 10, 135, 100},
{1075, 1000, 12, 10},
{105, 100, 105, 100},
{1025, 1000, 9, 10},
{1, 1, 75, 100},
},
{ /* HIGH */
{1125, 1000, 25, 10},
{11, 10, 23, 10},
{1075, 1000, 21, 10},
{105, 100, 19, 10},
{1025, 1000, 17, 10},
{1, 1, 15, 10},
},
};
/* Pre-generated 1DLUT for LOW for given setup and sharpness level */
uint32_t filter_isharp_1D_lut_pregen[3][32] = {
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
},
};
const uint32_t *spl_get_filter_isharp_1D_lut_0(void)
{
return filter_isharp_1D_lut_0;
......@@ -611,160 +339,11 @@ const uint32_t *spl_get_filter_isharp_1D_lut_2p0x(void)
{
return filter_isharp_1D_lut_2p0x;
}
const uint32_t *spl_get_filter_isharp_1D_lut_3p0x(void)
{
return filter_isharp_1D_lut_3p0x;
}
const uint16_t *spl_get_filter_isharp_wide_6tap_64p(void)
{
return filter_isharp_wide_6tap_64p;
}
uint16_t *spl_get_filter_isharp_bs_4tap_in_6_64p(void)
{
return filter_isharp_bs_4tap_in_6_64p_s1_12;
}
uint16_t *spl_get_filter_isharp_bs_4tap_64p(void)
{
return filter_isharp_bs_4tap_64p_s1_12;
}
uint16_t *spl_get_filter_isharp_bs_3tap_64p(void)
{
return filter_isharp_bs_3tap_64p_s1_12;
}
void spl_build_isharp_1dlut_from_reference_curve(struct spl_fixed31_32 ratio, enum system_setup setup)
{
uint8_t *byte_ptr_1dlut_src, *byte_ptr_1dlut_dst;
struct spl_fixed31_32 sharp_base, sharp_calc, sharp_level, ratio_level;
int i, j;
struct scale_ratio_to_sharpness_level_lookup *setup_lookup_ptr;
int num_sharp_ramp_levels;
int size_1dlut;
int sharp_calc_int;
uint32_t filter_pregen_store[32];
/*
* Given scaling ratio and current system setup, build pregenerated
* 1DLUT tables for three sharpness levels - LOW, MID, HIGH
*/
for (i = 0; i < 3; i++) {
/*
* Based on setup ( HDR/SDR, L/NL ), get base scale ratio to
* sharpness curve
*/
switch (setup) {
case HDR_L:
setup_lookup_ptr = scale_to_sharp_hdr_l[i];
num_sharp_ramp_levels = sizeof(scale_to_sharp_hdr_l[i])/
sizeof(struct scale_ratio_to_sharpness_level_lookup);
break;
case HDR_NL:
setup_lookup_ptr = scale_to_sharp_hdr_nl[i];
num_sharp_ramp_levels = sizeof(scale_to_sharp_hdr_nl[i])/
sizeof(struct scale_ratio_to_sharpness_level_lookup);
break;
case SDR_L:
setup_lookup_ptr = scale_to_sharp_sdr_l[i];
num_sharp_ramp_levels = sizeof(scale_to_sharp_sdr_l[i])/
sizeof(struct scale_ratio_to_sharpness_level_lookup);
break;
case SDR_NL:
default:
setup_lookup_ptr = scale_to_sharp_sdr_nl[i];
num_sharp_ramp_levels = sizeof(scale_to_sharp_sdr_nl[i])/
sizeof(struct scale_ratio_to_sharpness_level_lookup);
break;
}
/*
* Compare desired scaling ratio and find adjusted sharpness from
* base scale ratio to sharpness curve
*/
j = 0;
sharp_level = spl_fixpt_zero;
while (j < num_sharp_ramp_levels) {
ratio_level = spl_fixpt_from_fraction(setup_lookup_ptr->ratio_numer,
setup_lookup_ptr->ratio_denom);
if (ratio.value >= ratio_level.value) {
sharp_level = spl_fixpt_from_fraction(setup_lookup_ptr->sharpness_numer,
setup_lookup_ptr->sharpness_denom);
break;
}
setup_lookup_ptr++;
j++;
}
/*
* Calculate LUT_128_gained with this equation:
*
* LUT_128_gained[i] = (uint8)(0.5 + min(255,(double)(LUT_128[i])*sharpLevel/iGain))
* where LUT_128[i] is contents of 3p0x isharp 1dlut
* where sharpLevel is desired sharpness level
* where iGain is base sharpness level 3.0
* where LUT_128_gained[i] is adjusted 1dlut value based on desired sharpness level
*/
byte_ptr_1dlut_src = (uint8_t *)filter_isharp_1D_lut_3p0x;
byte_ptr_1dlut_dst = (uint8_t *)filter_pregen_store;
size_1dlut = sizeof(filter_isharp_1D_lut_3p0x);
memset(byte_ptr_1dlut_dst, 0, size_1dlut);
for (j = 0; j < size_1dlut; j++) {
sharp_base = spl_fixpt_from_int((int)*byte_ptr_1dlut_src);
sharp_calc = spl_fixpt_mul(sharp_base, sharp_level);
sharp_calc = spl_fixpt_div(sharp_calc, spl_fixpt_from_int(3));
sharp_calc = spl_fixpt_min(spl_fixpt_from_int(255), sharp_calc);
sharp_calc = spl_fixpt_add(sharp_calc, spl_fixpt_from_fraction(1, 2));
sharp_calc_int = spl_fixpt_floor(sharp_calc);
if (sharp_calc_int > 255)
sharp_calc_int = 255;
*byte_ptr_1dlut_dst = (uint8_t)sharp_calc_int;
byte_ptr_1dlut_src++;
byte_ptr_1dlut_dst++;
}
/* Compare if filter has change, if so update */
if (memcmp((void *)filter_isharp_1D_lut_pregen[i], (void *)filter_pregen_store, size_1dlut) != 0)
memcpy((void *)filter_isharp_1D_lut_pregen[i], (void *)filter_pregen_store, size_1dlut);
}
}
uint32_t *spl_get_pregen_filter_isharp_1D_lut(enum explicit_sharpness sharpness)
{
return filter_isharp_1D_lut_pregen[sharpness];
}
void spl_init_blur_scale_coeffs(void)
const uint16_t *spl_get_filter_isharp_bs_4tap_64p(void)
{
convert_filter_s1_10_to_s1_12(filter_isharp_bs_3tap_64p,
filter_isharp_bs_3tap_64p_s1_12, 3);
convert_filter_s1_10_to_s1_12(filter_isharp_bs_4tap_64p,
filter_isharp_bs_4tap_64p_s1_12, 4);
convert_filter_s1_10_to_s1_12(filter_isharp_bs_4tap_in_6_64p,
filter_isharp_bs_4tap_in_6_64p_s1_12, 6);
return filter_isharp_bs_4tap_64p;
}
uint16_t *spl_dscl_get_blur_scale_coeffs_64p(int taps)
{
if (taps == 3)
return spl_get_filter_isharp_bs_3tap_64p();
else if (taps == 4)
return spl_get_filter_isharp_bs_4tap_64p();
else if (taps == 6)
return spl_get_filter_isharp_bs_4tap_in_6_64p();
else {
/* should never happen, bug */
SPL_BREAK_TO_DEBUGGER();
return NULL;
}
}
void spl_set_blur_scale_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data)
{
dscl_prog_data->filter_blur_scale_h =
spl_dscl_get_blur_scale_coeffs_64p(data->taps.h_taps);
dscl_prog_data->filter_blur_scale_v =
spl_dscl_get_blur_scale_coeffs_64p(data->taps.v_taps);
}
......@@ -12,37 +12,6 @@ const uint32_t *spl_get_filter_isharp_1D_lut_0p5x(void);
const uint32_t *spl_get_filter_isharp_1D_lut_1p0x(void);
const uint32_t *spl_get_filter_isharp_1D_lut_1p5x(void);
const uint32_t *spl_get_filter_isharp_1D_lut_2p0x(void);
const uint32_t *spl_get_filter_isharp_1D_lut_3p0x(void);
uint16_t *spl_get_filter_isharp_bs_4tap_in_6_64p(void);
uint16_t *spl_get_filter_isharp_bs_4tap_64p(void);
uint16_t *spl_get_filter_isharp_bs_3tap_64p(void);
const uint16_t *spl_get_filter_isharp_bs_4tap_64p(void);
const uint16_t *spl_get_filter_isharp_wide_6tap_64p(void);
uint16_t *spl_dscl_get_blur_scale_coeffs_64p(int taps);
struct scale_ratio_to_sharpness_level_lookup {
unsigned int ratio_numer;
unsigned int ratio_denom;
unsigned int sharpness_numer;
unsigned int sharpness_denom;
};
struct sharpness_level_mapping {
unsigned int level;
unsigned int level_numer;
unsigned int level_denom;
};
enum system_setup {
SDR_NL = 0,
SDR_L,
HDR_NL,
HDR_L
};
void spl_init_blur_scale_coeffs(void);
void spl_set_blur_scale_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data);
void spl_build_isharp_1dlut_from_reference_curve(struct spl_fixed31_32 ratio, enum system_setup setup);
uint32_t *spl_get_pregen_filter_isharp_1D_lut(enum explicit_sharpness sharpness);
#endif /* __DC_SPL_ISHARP_FILTERS_H__ */
// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "spl_debug.h"
#include "dc_spl_filters.h"
#include "dc_spl_scl_filters.h"
#include "dc_spl_scl_easf_filters.h"
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 3t_64p_LanczosEd_p_0.3_p_10qb_
// <num_taps> 3
// <num_phases> 64
// <scale_ratio> input/output = 0.300000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_3tap_64p_ratio_0_30[99] = {
0x0200, 0x0200, 0x0000,
0x01F6, 0x0206, 0x0004,
0x01EC, 0x020B, 0x0009,
0x01E2, 0x0211, 0x000D,
0x01D8, 0x0216, 0x0012,
0x01CE, 0x021C, 0x0016,
0x01C4, 0x0221, 0x001B,
0x01BA, 0x0226, 0x0020,
0x01B0, 0x022A, 0x0026,
0x01A6, 0x022F, 0x002B,
0x019C, 0x0233, 0x0031,
0x0192, 0x0238, 0x0036,
0x0188, 0x023C, 0x003C,
0x017E, 0x0240, 0x0042,
0x0174, 0x0244, 0x0048,
0x016A, 0x0248, 0x004E,
0x0161, 0x024A, 0x0055,
0x0157, 0x024E, 0x005B,
0x014D, 0x0251, 0x0062,
0x0144, 0x0253, 0x0069,
0x013A, 0x0256, 0x0070,
0x0131, 0x0258, 0x0077,
0x0127, 0x025B, 0x007E,
0x011E, 0x025C, 0x0086,
0x0115, 0x025E, 0x008D,
0x010B, 0x0260, 0x0095,
0x0102, 0x0262, 0x009C,
0x00F9, 0x0263, 0x00A4,
0x00F0, 0x0264, 0x00AC,
0x00E7, 0x0265, 0x00B4,
0x00DF, 0x0264, 0x00BD,
0x00D6, 0x0265, 0x00C5,
0x00CD, 0x0266, 0x00CD,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 3t_64p_LanczosEd_p_0.4_p_10qb_
// <num_taps> 3
// <num_phases> 64
// <scale_ratio> input/output = 0.400000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_3tap_64p_ratio_0_40[99] = {
0x0200, 0x0200, 0x0000,
0x01F6, 0x0206, 0x0004,
0x01EB, 0x020E, 0x0007,
0x01E1, 0x0214, 0x000B,
0x01D7, 0x021A, 0x000F,
0x01CD, 0x0220, 0x0013,
0x01C2, 0x0226, 0x0018,
0x01B8, 0x022C, 0x001C,
0x01AE, 0x0231, 0x0021,
0x01A3, 0x0237, 0x0026,
0x0199, 0x023C, 0x002B,
0x018F, 0x0240, 0x0031,
0x0185, 0x0245, 0x0036,
0x017A, 0x024A, 0x003C,
0x0170, 0x024F, 0x0041,
0x0166, 0x0253, 0x0047,
0x015C, 0x0257, 0x004D,
0x0152, 0x025A, 0x0054,
0x0148, 0x025E, 0x005A,
0x013E, 0x0261, 0x0061,
0x0134, 0x0264, 0x0068,
0x012B, 0x0266, 0x006F,
0x0121, 0x0269, 0x0076,
0x0117, 0x026C, 0x007D,
0x010E, 0x026E, 0x0084,
0x0104, 0x0270, 0x008C,
0x00FB, 0x0271, 0x0094,
0x00F2, 0x0272, 0x009C,
0x00E9, 0x0273, 0x00A4,
0x00E0, 0x0274, 0x00AC,
0x00D7, 0x0275, 0x00B4,
0x00CE, 0x0275, 0x00BD,
0x00C5, 0x0276, 0x00C5,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 3t_64p_LanczosEd_p_0.5_p_10qb_
// <num_taps> 3
// <num_phases> 64
// <scale_ratio> input/output = 0.500000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_3tap_64p_ratio_0_50[99] = {
0x0200, 0x0200, 0x0000,
0x01F5, 0x0209, 0x0002,
0x01EA, 0x0211, 0x0005,
0x01DF, 0x021A, 0x0007,
0x01D4, 0x0222, 0x000A,
0x01C9, 0x022A, 0x000D,
0x01BE, 0x0232, 0x0010,
0x01B3, 0x0239, 0x0014,
0x01A8, 0x0241, 0x0017,
0x019D, 0x0248, 0x001B,
0x0192, 0x024F, 0x001F,
0x0187, 0x0255, 0x0024,
0x017C, 0x025C, 0x0028,
0x0171, 0x0262, 0x002D,
0x0166, 0x0268, 0x0032,
0x015B, 0x026E, 0x0037,
0x0150, 0x0273, 0x003D,
0x0146, 0x0278, 0x0042,
0x013B, 0x027D, 0x0048,
0x0130, 0x0282, 0x004E,
0x0126, 0x0286, 0x0054,
0x011B, 0x028A, 0x005B,
0x0111, 0x028D, 0x0062,
0x0107, 0x0290, 0x0069,
0x00FD, 0x0293, 0x0070,
0x00F3, 0x0296, 0x0077,
0x00E9, 0x0298, 0x007F,
0x00DF, 0x029A, 0x0087,
0x00D5, 0x029C, 0x008F,
0x00CC, 0x029D, 0x0097,
0x00C3, 0x029E, 0x009F,
0x00BA, 0x029E, 0x00A8,
0x00B1, 0x029E, 0x00B1,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 3t_64p_LanczosEd_p_0.6_p_10qb_
// <num_taps> 3
// <num_phases> 64
// <scale_ratio> input/output = 0.600000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_3tap_64p_ratio_0_60[99] = {
0x0200, 0x0200, 0x0000,
0x01F4, 0x020B, 0x0001,
0x01E8, 0x0216, 0x0002,
0x01DC, 0x0221, 0x0003,
0x01D0, 0x022B, 0x0005,
0x01C4, 0x0235, 0x0007,
0x01B8, 0x0240, 0x0008,
0x01AC, 0x0249, 0x000B,
0x01A0, 0x0253, 0x000D,
0x0194, 0x025C, 0x0010,
0x0188, 0x0265, 0x0013,
0x017C, 0x026E, 0x0016,
0x0170, 0x0277, 0x0019,
0x0164, 0x027F, 0x001D,
0x0158, 0x0287, 0x0021,
0x014C, 0x028F, 0x0025,
0x0140, 0x0297, 0x0029,
0x0135, 0x029D, 0x002E,
0x0129, 0x02A4, 0x0033,
0x011D, 0x02AB, 0x0038,
0x0112, 0x02B0, 0x003E,
0x0107, 0x02B5, 0x0044,
0x00FC, 0x02BA, 0x004A,
0x00F1, 0x02BF, 0x0050,
0x00E6, 0x02C3, 0x0057,
0x00DB, 0x02C7, 0x005E,
0x00D1, 0x02CA, 0x0065,
0x00C7, 0x02CC, 0x006D,
0x00BD, 0x02CE, 0x0075,
0x00B3, 0x02D0, 0x007D,
0x00A9, 0x02D2, 0x0085,
0x00A0, 0x02D2, 0x008E,
0x0097, 0x02D2, 0x0097,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 3t_64p_LanczosEd_p_0.7_p_10qb_
// <num_taps> 3
// <num_phases> 64
// <scale_ratio> input/output = 0.700000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_3tap_64p_ratio_0_70[99] = {
0x0200, 0x0200, 0x0000,
0x01F3, 0x020D, 0x0000,
0x01E5, 0x021B, 0x0000,
0x01D8, 0x0228, 0x0000,
0x01CB, 0x0235, 0x0000,
0x01BD, 0x0243, 0x0000,
0x01B0, 0x024F, 0x0001,
0x01A2, 0x025C, 0x0002,
0x0195, 0x0268, 0x0003,
0x0187, 0x0275, 0x0004,
0x017A, 0x0280, 0x0006,
0x016D, 0x028C, 0x0007,
0x015F, 0x0298, 0x0009,
0x0152, 0x02A2, 0x000C,
0x0145, 0x02AD, 0x000E,
0x0138, 0x02B7, 0x0011,
0x012B, 0x02C0, 0x0015,
0x011E, 0x02CA, 0x0018,
0x0111, 0x02D3, 0x001C,
0x0105, 0x02DB, 0x0020,
0x00F8, 0x02E3, 0x0025,
0x00EC, 0x02EA, 0x002A,
0x00E0, 0x02F1, 0x002F,
0x00D5, 0x02F6, 0x0035,
0x00C9, 0x02FC, 0x003B,
0x00BE, 0x0301, 0x0041,
0x00B3, 0x0305, 0x0048,
0x00A8, 0x0309, 0x004F,
0x009E, 0x030C, 0x0056,
0x0094, 0x030E, 0x005E,
0x008A, 0x0310, 0x0066,
0x0081, 0x0310, 0x006F,
0x0077, 0x0312, 0x0077,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 3t_64p_LanczosEd_p_0.8_p_10qb_
// <num_taps> 3
// <num_phases> 64
// <scale_ratio> input/output = 0.800000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_3tap_64p_ratio_0_80[99] = {
0x0200, 0x0200, 0x0000,
0x01F1, 0x0210, 0x0FFF,
0x01E2, 0x0220, 0x0FFE,
0x01D2, 0x0232, 0x0FFC,
0x01C3, 0x0241, 0x0FFC,
0x01B4, 0x0251, 0x0FFB,
0x01A4, 0x0262, 0x0FFA,
0x0195, 0x0271, 0x0FFA,
0x0186, 0x0281, 0x0FF9,
0x0176, 0x0291, 0x0FF9,
0x0167, 0x02A0, 0x0FF9,
0x0158, 0x02AE, 0x0FFA,
0x0149, 0x02BD, 0x0FFA,
0x013A, 0x02CB, 0x0FFB,
0x012C, 0x02D7, 0x0FFD,
0x011D, 0x02E5, 0x0FFE,
0x010F, 0x02F1, 0x0000,
0x0101, 0x02FD, 0x0002,
0x00F3, 0x0308, 0x0005,
0x00E5, 0x0313, 0x0008,
0x00D8, 0x031D, 0x000B,
0x00CB, 0x0326, 0x000F,
0x00BE, 0x032F, 0x0013,
0x00B2, 0x0337, 0x0017,
0x00A6, 0x033E, 0x001C,
0x009A, 0x0345, 0x0021,
0x008F, 0x034A, 0x0027,
0x0084, 0x034F, 0x002D,
0x0079, 0x0353, 0x0034,
0x006F, 0x0356, 0x003B,
0x0065, 0x0358, 0x0043,
0x005C, 0x0359, 0x004B,
0x0053, 0x035A, 0x0053,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 3t_64p_LanczosEd_p_0.9_p_10qb_
// <num_taps> 3
// <num_phases> 64
// <scale_ratio> input/output = 0.900000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_3tap_64p_ratio_0_90[99] = {
0x0200, 0x0200, 0x0000,
0x01EE, 0x0214, 0x0FFE,
0x01DC, 0x0228, 0x0FFC,
0x01CA, 0x023C, 0x0FFA,
0x01B9, 0x024F, 0x0FF8,
0x01A7, 0x0262, 0x0FF7,
0x0195, 0x0276, 0x0FF5,
0x0183, 0x028A, 0x0FF3,
0x0172, 0x029C, 0x0FF2,
0x0160, 0x02AF, 0x0FF1,
0x014F, 0x02C2, 0x0FEF,
0x013E, 0x02D4, 0x0FEE,
0x012D, 0x02E5, 0x0FEE,
0x011C, 0x02F7, 0x0FED,
0x010C, 0x0307, 0x0FED,
0x00FB, 0x0318, 0x0FED,
0x00EC, 0x0327, 0x0FED,
0x00DC, 0x0336, 0x0FEE,
0x00CD, 0x0344, 0x0FEF,
0x00BE, 0x0352, 0x0FF0,
0x00B0, 0x035E, 0x0FF2,
0x00A2, 0x036A, 0x0FF4,
0x0095, 0x0375, 0x0FF6,
0x0088, 0x037F, 0x0FF9,
0x007B, 0x0388, 0x0FFD,
0x006F, 0x0391, 0x0000,
0x0064, 0x0397, 0x0005,
0x0059, 0x039D, 0x000A,
0x004E, 0x03A3, 0x000F,
0x0045, 0x03A6, 0x0015,
0x003B, 0x03A9, 0x001C,
0x0033, 0x03AA, 0x0023,
0x002A, 0x03AC, 0x002A,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 3t_64p_LanczosEd_p_1_p_10qb_
// <num_taps> 3
// <num_phases> 64
// <scale_ratio> input/output = 1.000000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_3tap_64p_ratio_1_00[99] = {
0x0200, 0x0200, 0x0000,
0x01EB, 0x0217, 0x0FFE,
0x01D5, 0x022F, 0x0FFC,
0x01C0, 0x0247, 0x0FF9,
0x01AB, 0x025E, 0x0FF7,
0x0196, 0x0276, 0x0FF4,
0x0181, 0x028D, 0x0FF2,
0x016C, 0x02A5, 0x0FEF,
0x0158, 0x02BB, 0x0FED,
0x0144, 0x02D1, 0x0FEB,
0x0130, 0x02E8, 0x0FE8,
0x011C, 0x02FE, 0x0FE6,
0x0109, 0x0313, 0x0FE4,
0x00F6, 0x0328, 0x0FE2,
0x00E4, 0x033C, 0x0FE0,
0x00D2, 0x034F, 0x0FDF,
0x00C0, 0x0363, 0x0FDD,
0x00B0, 0x0374, 0x0FDC,
0x009F, 0x0385, 0x0FDC,
0x0090, 0x0395, 0x0FDB,
0x0081, 0x03A4, 0x0FDB,
0x0072, 0x03B3, 0x0FDB,
0x0064, 0x03C0, 0x0FDC,
0x0057, 0x03CC, 0x0FDD,
0x004B, 0x03D6, 0x0FDF,
0x003F, 0x03E0, 0x0FE1,
0x0034, 0x03E8, 0x0FE4,
0x002A, 0x03EF, 0x0FE7,
0x0020, 0x03F5, 0x0FEB,
0x0017, 0x03FA, 0x0FEF,
0x000F, 0x03FD, 0x0FF4,
0x0007, 0x03FF, 0x0FFA,
0x0000, 0x0400, 0x0000,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 4t_64p_LanczosEd_p_0.3_p_10qb_
// <num_taps> 4
// <num_phases> 64
// <scale_ratio> input/output = 0.300000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_4tap_64p_ratio_0_30[132] = {
0x0104, 0x01F8, 0x0104, 0x0000,
0x00FE, 0x01F7, 0x010A, 0x0001,
0x00F8, 0x01F6, 0x010F, 0x0003,
0x00F2, 0x01F5, 0x0114, 0x0005,
0x00EB, 0x01F4, 0x011B, 0x0006,
0x00E5, 0x01F3, 0x0120, 0x0008,
0x00DF, 0x01F2, 0x0125, 0x000A,
0x00DA, 0x01F0, 0x012A, 0x000C,
0x00D4, 0x01EE, 0x0130, 0x000E,
0x00CE, 0x01ED, 0x0135, 0x0010,
0x00C8, 0x01EB, 0x013A, 0x0013,
0x00C2, 0x01E9, 0x0140, 0x0015,
0x00BD, 0x01E7, 0x0145, 0x0017,
0x00B7, 0x01E5, 0x014A, 0x001A,
0x00B1, 0x01E2, 0x0151, 0x001C,
0x00AC, 0x01E0, 0x0155, 0x001F,
0x00A7, 0x01DD, 0x015A, 0x0022,
0x00A1, 0x01DB, 0x015F, 0x0025,
0x009C, 0x01D8, 0x0165, 0x0027,
0x0097, 0x01D5, 0x016A, 0x002A,
0x0092, 0x01D2, 0x016E, 0x002E,
0x008C, 0x01CF, 0x0174, 0x0031,
0x0087, 0x01CC, 0x0179, 0x0034,
0x0083, 0x01C9, 0x017D, 0x0037,
0x007E, 0x01C5, 0x0182, 0x003B,
0x0079, 0x01C2, 0x0187, 0x003E,
0x0074, 0x01BE, 0x018C, 0x0042,
0x0070, 0x01BA, 0x0190, 0x0046,
0x006B, 0x01B7, 0x0195, 0x0049,
0x0066, 0x01B3, 0x019A, 0x004D,
0x0062, 0x01AF, 0x019E, 0x0051,
0x005E, 0x01AB, 0x01A2, 0x0055,
0x005A, 0x01A6, 0x01A6, 0x005A,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 4t_64p_LanczosEd_p_0.4_p_10qb_
// <num_taps> 4
// <num_phases> 64
// <scale_ratio> input/output = 0.400000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_4tap_64p_ratio_0_40[132] = {
0x00FB, 0x0209, 0x00FC, 0x0000,
0x00F5, 0x0209, 0x0101, 0x0001,
0x00EE, 0x0208, 0x0108, 0x0002,
0x00E8, 0x0207, 0x010E, 0x0003,
0x00E2, 0x0206, 0x0114, 0x0004,
0x00DB, 0x0205, 0x011A, 0x0006,
0x00D5, 0x0204, 0x0120, 0x0007,
0x00CF, 0x0203, 0x0125, 0x0009,
0x00C9, 0x0201, 0x012C, 0x000A,
0x00C3, 0x01FF, 0x0132, 0x000C,
0x00BD, 0x01FD, 0x0138, 0x000E,
0x00B7, 0x01FB, 0x013E, 0x0010,
0x00B1, 0x01F9, 0x0144, 0x0012,
0x00AC, 0x01F7, 0x0149, 0x0014,
0x00A6, 0x01F4, 0x0150, 0x0016,
0x00A0, 0x01F2, 0x0156, 0x0018,
0x009B, 0x01EF, 0x015C, 0x001A,
0x0095, 0x01EC, 0x0162, 0x001D,
0x0090, 0x01E9, 0x0168, 0x001F,
0x008B, 0x01E6, 0x016D, 0x0022,
0x0085, 0x01E3, 0x0173, 0x0025,
0x0080, 0x01DF, 0x0179, 0x0028,
0x007B, 0x01DC, 0x017E, 0x002B,
0x0076, 0x01D8, 0x0184, 0x002E,
0x0071, 0x01D4, 0x018A, 0x0031,
0x006D, 0x01D1, 0x018E, 0x0034,
0x0068, 0x01CD, 0x0193, 0x0038,
0x0063, 0x01C8, 0x019A, 0x003B,
0x005F, 0x01C4, 0x019E, 0x003F,
0x005B, 0x01C0, 0x01A3, 0x0042,
0x0056, 0x01BB, 0x01A9, 0x0046,
0x0052, 0x01B7, 0x01AD, 0x004A,
0x004E, 0x01B2, 0x01B2, 0x004E,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 4t_64p_LanczosEd_p_0.5_p_10qb_
// <num_taps> 4
// <num_phases> 64
// <scale_ratio> input/output = 0.500000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_4tap_64p_ratio_0_50[132] = {
0x00E5, 0x0236, 0x00E5, 0x0000,
0x00DE, 0x0235, 0x00ED, 0x0000,
0x00D7, 0x0235, 0x00F4, 0x0000,
0x00D0, 0x0235, 0x00FB, 0x0000,
0x00C9, 0x0234, 0x0102, 0x0001,
0x00C2, 0x0233, 0x010A, 0x0001,
0x00BC, 0x0232, 0x0111, 0x0001,
0x00B5, 0x0230, 0x0119, 0x0002,
0x00AE, 0x022F, 0x0121, 0x0002,
0x00A8, 0x022D, 0x0128, 0x0003,
0x00A2, 0x022B, 0x012F, 0x0004,
0x009B, 0x0229, 0x0137, 0x0005,
0x0095, 0x0226, 0x013F, 0x0006,
0x008F, 0x0224, 0x0146, 0x0007,
0x0089, 0x0221, 0x014E, 0x0008,
0x0083, 0x021E, 0x0155, 0x000A,
0x007E, 0x021B, 0x015C, 0x000B,
0x0078, 0x0217, 0x0164, 0x000D,
0x0072, 0x0213, 0x016D, 0x000E,
0x006D, 0x0210, 0x0173, 0x0010,
0x0068, 0x020C, 0x017A, 0x0012,
0x0063, 0x0207, 0x0182, 0x0014,
0x005E, 0x0203, 0x0189, 0x0016,
0x0059, 0x01FE, 0x0191, 0x0018,
0x0054, 0x01F9, 0x0198, 0x001B,
0x0050, 0x01F4, 0x019F, 0x001D,
0x004B, 0x01EF, 0x01A6, 0x0020,
0x0047, 0x01EA, 0x01AC, 0x0023,
0x0043, 0x01E4, 0x01B3, 0x0026,
0x003F, 0x01DF, 0x01B9, 0x0029,
0x003B, 0x01D9, 0x01C0, 0x002C,
0x0037, 0x01D3, 0x01C6, 0x0030,
0x0033, 0x01CD, 0x01CD, 0x0033,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 4t_64p_LanczosEd_p_0.6_p_10qb_
// <num_taps> 4
// <num_phases> 64
// <scale_ratio> input/output = 0.600000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_4tap_64p_ratio_0_60[132] = {
0x00C8, 0x026F, 0x00C9, 0x0000,
0x00C0, 0x0270, 0x00D1, 0x0FFF,
0x00B8, 0x0270, 0x00D9, 0x0FFF,
0x00B1, 0x0270, 0x00E1, 0x0FFE,
0x00A9, 0x026F, 0x00EB, 0x0FFD,
0x00A2, 0x026E, 0x00F3, 0x0FFD,
0x009A, 0x026D, 0x00FD, 0x0FFC,
0x0093, 0x026C, 0x0105, 0x0FFC,
0x008C, 0x026A, 0x010F, 0x0FFB,
0x0085, 0x0268, 0x0118, 0x0FFB,
0x007E, 0x0265, 0x0122, 0x0FFB,
0x0078, 0x0263, 0x012A, 0x0FFB,
0x0071, 0x0260, 0x0134, 0x0FFB,
0x006B, 0x025C, 0x013E, 0x0FFB,
0x0065, 0x0259, 0x0147, 0x0FFB,
0x005F, 0x0255, 0x0151, 0x0FFB,
0x0059, 0x0251, 0x015A, 0x0FFC,
0x0054, 0x024D, 0x0163, 0x0FFC,
0x004E, 0x0248, 0x016D, 0x0FFD,
0x0049, 0x0243, 0x0176, 0x0FFE,
0x0044, 0x023E, 0x017F, 0x0FFF,
0x003F, 0x0238, 0x0189, 0x0000,
0x003A, 0x0232, 0x0193, 0x0001,
0x0036, 0x022C, 0x019C, 0x0002,
0x0031, 0x0226, 0x01A5, 0x0004,
0x002D, 0x021F, 0x01AF, 0x0005,
0x0029, 0x0218, 0x01B8, 0x0007,
0x0025, 0x0211, 0x01C1, 0x0009,
0x0022, 0x020A, 0x01C9, 0x000B,
0x001E, 0x0203, 0x01D2, 0x000D,
0x001B, 0x01FB, 0x01DA, 0x0010,
0x0018, 0x01F3, 0x01E3, 0x0012,
0x0015, 0x01EB, 0x01EB, 0x0015,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 4t_64p_LanczosEd_p_0.7_p_10qb_
// <num_taps> 4
// <num_phases> 64
// <scale_ratio> input/output = 0.700000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_4tap_64p_ratio_0_70[132] = {
0x00A3, 0x02B9, 0x00A4, 0x0000,
0x009A, 0x02BA, 0x00AD, 0x0FFF,
0x0092, 0x02BA, 0x00B6, 0x0FFE,
0x0089, 0x02BA, 0x00C1, 0x0FFC,
0x0081, 0x02B9, 0x00CB, 0x0FFB,
0x0079, 0x02B8, 0x00D5, 0x0FFA,
0x0071, 0x02B7, 0x00DF, 0x0FF9,
0x0069, 0x02B5, 0x00EA, 0x0FF8,
0x0062, 0x02B3, 0x00F4, 0x0FF7,
0x005B, 0x02B0, 0x00FF, 0x0FF6,
0x0054, 0x02AD, 0x010B, 0x0FF4,
0x004D, 0x02A9, 0x0117, 0x0FF3,
0x0046, 0x02A5, 0x0123, 0x0FF2,
0x0040, 0x02A1, 0x012D, 0x0FF2,
0x003A, 0x029C, 0x0139, 0x0FF1,
0x0034, 0x0297, 0x0145, 0x0FF0,
0x002F, 0x0292, 0x0150, 0x0FEF,
0x0029, 0x028C, 0x015C, 0x0FEF,
0x0024, 0x0285, 0x0169, 0x0FEE,
0x001F, 0x027F, 0x0174, 0x0FEE,
0x001B, 0x0278, 0x017F, 0x0FEE,
0x0016, 0x0270, 0x018D, 0x0FED,
0x0012, 0x0268, 0x0199, 0x0FED,
0x000E, 0x0260, 0x01A4, 0x0FEE,
0x000B, 0x0258, 0x01AF, 0x0FEE,
0x0007, 0x024F, 0x01BC, 0x0FEE,
0x0004, 0x0246, 0x01C7, 0x0FEF,
0x0001, 0x023D, 0x01D3, 0x0FEF,
0x0FFE, 0x0233, 0x01DF, 0x0FF0,
0x0FFC, 0x0229, 0x01EA, 0x0FF1,
0x0FFA, 0x021F, 0x01F4, 0x0FF3,
0x0FF8, 0x0215, 0x01FF, 0x0FF4,
0x0FF6, 0x020A, 0x020A, 0x0FF6,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 4t_64p_LanczosEd_p_0.8_p_10qb_
// <num_taps> 4
// <num_phases> 64
// <scale_ratio> input/output = 0.800000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_4tap_64p_ratio_0_80[132] = {
0x0075, 0x0315, 0x0076, 0x0000,
0x006C, 0x0316, 0x007F, 0x0FFF,
0x0062, 0x0316, 0x008A, 0x0FFE,
0x0059, 0x0315, 0x0096, 0x0FFC,
0x0050, 0x0314, 0x00A1, 0x0FFB,
0x0048, 0x0312, 0x00AD, 0x0FF9,
0x0040, 0x0310, 0x00B8, 0x0FF8,
0x0038, 0x030D, 0x00C5, 0x0FF6,
0x0030, 0x030A, 0x00D1, 0x0FF5,
0x0029, 0x0306, 0x00DE, 0x0FF3,
0x0022, 0x0301, 0x00EB, 0x0FF2,
0x001C, 0x02FC, 0x00F8, 0x0FF0,
0x0015, 0x02F7, 0x0106, 0x0FEE,
0x0010, 0x02F1, 0x0112, 0x0FED,
0x000A, 0x02EA, 0x0121, 0x0FEB,
0x0005, 0x02E3, 0x012F, 0x0FE9,
0x0000, 0x02DB, 0x013D, 0x0FE8,
0x0FFB, 0x02D3, 0x014C, 0x0FE6,
0x0FF7, 0x02CA, 0x015A, 0x0FE5,
0x0FF3, 0x02C1, 0x0169, 0x0FE3,
0x0FF0, 0x02B7, 0x0177, 0x0FE2,
0x0FEC, 0x02AD, 0x0186, 0x0FE1,
0x0FE9, 0x02A2, 0x0196, 0x0FDF,
0x0FE7, 0x0297, 0x01A4, 0x0FDE,
0x0FE4, 0x028C, 0x01B3, 0x0FDD,
0x0FE2, 0x0280, 0x01C2, 0x0FDC,
0x0FE0, 0x0274, 0x01D0, 0x0FDC,
0x0FDF, 0x0268, 0x01DE, 0x0FDB,
0x0FDD, 0x025B, 0x01EE, 0x0FDA,
0x0FDC, 0x024E, 0x01FC, 0x0FDA,
0x0FDB, 0x0241, 0x020A, 0x0FDA,
0x0FDB, 0x0233, 0x0218, 0x0FDA,
0x0FDA, 0x0226, 0x0226, 0x0FDA,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 4t_64p_LanczosEd_p_0.9_p_10qb_
// <num_taps> 4
// <num_phases> 64
// <scale_ratio> input/output = 0.900000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_4tap_64p_ratio_0_90[132] = {
0x003F, 0x0383, 0x003E, 0x0000,
0x0034, 0x0383, 0x004A, 0x0FFF,
0x002B, 0x0383, 0x0054, 0x0FFE,
0x0021, 0x0381, 0x0061, 0x0FFD,
0x0019, 0x037F, 0x006C, 0x0FFC,
0x0010, 0x037C, 0x0079, 0x0FFB,
0x0008, 0x0378, 0x0086, 0x0FFA,
0x0001, 0x0374, 0x0093, 0x0FF8,
0x0FFA, 0x036E, 0x00A1, 0x0FF7,
0x0FF3, 0x0368, 0x00B0, 0x0FF5,
0x0FED, 0x0361, 0x00BF, 0x0FF3,
0x0FE8, 0x035A, 0x00CD, 0x0FF1,
0x0FE2, 0x0352, 0x00DC, 0x0FF0,
0x0FDE, 0x0349, 0x00EB, 0x0FEE,
0x0FD9, 0x033F, 0x00FC, 0x0FEC,
0x0FD5, 0x0335, 0x010D, 0x0FE9,
0x0FD2, 0x032A, 0x011D, 0x0FE7,
0x0FCF, 0x031E, 0x012E, 0x0FE5,
0x0FCC, 0x0312, 0x013F, 0x0FE3,
0x0FCA, 0x0305, 0x0150, 0x0FE1,
0x0FC8, 0x02F8, 0x0162, 0x0FDE,
0x0FC6, 0x02EA, 0x0174, 0x0FDC,
0x0FC5, 0x02DC, 0x0185, 0x0FDA,
0x0FC4, 0x02CD, 0x0197, 0x0FD8,
0x0FC3, 0x02BE, 0x01AA, 0x0FD5,
0x0FC3, 0x02AF, 0x01BB, 0x0FD3,
0x0FC3, 0x029F, 0x01CD, 0x0FD1,
0x0FC3, 0x028E, 0x01E0, 0x0FCF,
0x0FC3, 0x027E, 0x01F2, 0x0FCD,
0x0FC4, 0x026D, 0x0203, 0x0FCC,
0x0FC5, 0x025C, 0x0215, 0x0FCA,
0x0FC6, 0x024B, 0x0227, 0x0FC8,
0x0FC7, 0x0239, 0x0239, 0x0FC7,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 03-Apr-2024
// <coeffDescrip> 4t_64p_LanczosEd_p_1_p_10qb_
// <num_taps> 4
// <num_phases> 64
// <scale_ratio> input/output = 1.000000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_4tap_64p_ratio_1_00[132] = {
0x0000, 0x0400, 0x0000, 0x0000,
0x0FF6, 0x03FF, 0x000B, 0x0000,
0x0FED, 0x03FE, 0x0015, 0x0000,
0x0FE4, 0x03FB, 0x0022, 0x0FFF,
0x0FDC, 0x03F7, 0x002E, 0x0FFF,
0x0FD5, 0x03F2, 0x003B, 0x0FFE,
0x0FCE, 0x03EC, 0x0048, 0x0FFE,
0x0FC8, 0x03E5, 0x0056, 0x0FFD,
0x0FC3, 0x03DC, 0x0065, 0x0FFC,
0x0FBE, 0x03D3, 0x0075, 0x0FFA,
0x0FB9, 0x03C9, 0x0085, 0x0FF9,
0x0FB6, 0x03BE, 0x0094, 0x0FF8,
0x0FB2, 0x03B2, 0x00A6, 0x0FF6,
0x0FB0, 0x03A5, 0x00B7, 0x0FF4,
0x0FAD, 0x0397, 0x00CA, 0x0FF2,
0x0FAB, 0x0389, 0x00DC, 0x0FF0,
0x0FAA, 0x0379, 0x00EF, 0x0FEE,
0x0FA9, 0x0369, 0x0102, 0x0FEC,
0x0FA9, 0x0359, 0x0115, 0x0FE9,
0x0FA9, 0x0348, 0x0129, 0x0FE6,
0x0FA9, 0x0336, 0x013D, 0x0FE4,
0x0FA9, 0x0323, 0x0153, 0x0FE1,
0x0FAA, 0x0310, 0x0168, 0x0FDE,
0x0FAC, 0x02FD, 0x017C, 0x0FDB,
0x0FAD, 0x02E9, 0x0192, 0x0FD8,
0x0FAF, 0x02D5, 0x01A7, 0x0FD5,
0x0FB1, 0x02C0, 0x01BD, 0x0FD2,
0x0FB3, 0x02AC, 0x01D2, 0x0FCF,
0x0FB5, 0x0296, 0x01E9, 0x0FCC,
0x0FB8, 0x0281, 0x01FE, 0x0FC9,
0x0FBA, 0x026C, 0x0214, 0x0FC6,
0x0FBD, 0x0256, 0x022A, 0x0FC3,
0x0FC0, 0x0240, 0x0240, 0x0FC0,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 02-Apr-2024
// <coeffDescrip> 6t_64p_LanczosEd_p_0.3_p_10qb_
// <num_taps> 6
// <num_phases> 64
// <scale_ratio> input/output = 0.300000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_6tap_64p_ratio_0_30[198] = {
0x004B, 0x0100, 0x0169, 0x0101, 0x004B, 0x0000,
0x0049, 0x00FD, 0x0169, 0x0103, 0x004E, 0x0000,
0x0047, 0x00FA, 0x0169, 0x0106, 0x0050, 0x0000,
0x0045, 0x00F7, 0x0168, 0x0109, 0x0052, 0x0001,
0x0043, 0x00F5, 0x0168, 0x010B, 0x0054, 0x0001,
0x0040, 0x00F2, 0x0168, 0x010E, 0x0057, 0x0001,
0x003E, 0x00EF, 0x0168, 0x0110, 0x0059, 0x0002,
0x003C, 0x00EC, 0x0167, 0x0113, 0x005C, 0x0002,
0x003A, 0x00E9, 0x0167, 0x0116, 0x005E, 0x0002,
0x0038, 0x00E6, 0x0166, 0x0118, 0x0061, 0x0003,
0x0036, 0x00E3, 0x0165, 0x011C, 0x0063, 0x0003,
0x0034, 0x00E0, 0x0165, 0x011D, 0x0066, 0x0004,
0x0033, 0x00DD, 0x0164, 0x0120, 0x0068, 0x0004,
0x0031, 0x00DA, 0x0163, 0x0122, 0x006B, 0x0005,
0x002F, 0x00D7, 0x0163, 0x0125, 0x006D, 0x0005,
0x002D, 0x00D3, 0x0162, 0x0128, 0x0070, 0x0006,
0x002B, 0x00D0, 0x0161, 0x012A, 0x0073, 0x0007,
0x002A, 0x00CD, 0x0160, 0x012D, 0x0075, 0x0007,
0x0028, 0x00CA, 0x015F, 0x012F, 0x0078, 0x0008,
0x0026, 0x00C7, 0x015E, 0x0131, 0x007B, 0x0009,
0x0025, 0x00C4, 0x015D, 0x0133, 0x007E, 0x0009,
0x0023, 0x00C1, 0x015C, 0x0136, 0x0080, 0x000A,
0x0022, 0x00BE, 0x015A, 0x0138, 0x0083, 0x000B,
0x0020, 0x00BB, 0x0159, 0x013A, 0x0086, 0x000C,
0x001F, 0x00B8, 0x0158, 0x013B, 0x0089, 0x000D,
0x001E, 0x00B5, 0x0156, 0x013E, 0x008C, 0x000D,
0x001C, 0x00B2, 0x0155, 0x0140, 0x008F, 0x000E,
0x001B, 0x00AF, 0x0153, 0x0143, 0x0091, 0x000F,
0x0019, 0x00AC, 0x0152, 0x0145, 0x0094, 0x0010,
0x0018, 0x00A9, 0x0150, 0x0147, 0x0097, 0x0011,
0x0017, 0x00A6, 0x014F, 0x0148, 0x009A, 0x0012,
0x0016, 0x00A3, 0x014D, 0x0149, 0x009D, 0x0014,
0x0015, 0x00A0, 0x014B, 0x014B, 0x00A0, 0x0015,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 02-Apr-2024
// <coeffDescrip> 6t_64p_LanczosEd_p_0.4_p_10qb_
// <num_taps> 6
// <num_phases> 64
// <scale_ratio> input/output = 0.400000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_6tap_64p_ratio_0_40[198] = {
0x0028, 0x0106, 0x01A3, 0x0107, 0x0028, 0x0000,
0x0026, 0x0102, 0x01A3, 0x010A, 0x002B, 0x0000,
0x0024, 0x00FE, 0x01A3, 0x010F, 0x002D, 0x0FFF,
0x0022, 0x00FA, 0x01A3, 0x0113, 0x002F, 0x0FFF,
0x0021, 0x00F6, 0x01A3, 0x0116, 0x0031, 0x0FFF,
0x001F, 0x00F2, 0x01A2, 0x011B, 0x0034, 0x0FFE,
0x001D, 0x00EE, 0x01A2, 0x011F, 0x0036, 0x0FFE,
0x001B, 0x00EA, 0x01A1, 0x0123, 0x0039, 0x0FFE,
0x0019, 0x00E6, 0x01A1, 0x0127, 0x003B, 0x0FFE,
0x0018, 0x00E2, 0x01A0, 0x012A, 0x003E, 0x0FFE,
0x0016, 0x00DE, 0x01A0, 0x012E, 0x0041, 0x0FFD,
0x0015, 0x00DA, 0x019F, 0x0132, 0x0043, 0x0FFD,
0x0013, 0x00D6, 0x019E, 0x0136, 0x0046, 0x0FFD,
0x0012, 0x00D2, 0x019D, 0x0139, 0x0049, 0x0FFD,
0x0010, 0x00CE, 0x019C, 0x013D, 0x004C, 0x0FFD,
0x000F, 0x00CA, 0x019A, 0x0141, 0x004F, 0x0FFD,
0x000E, 0x00C6, 0x0199, 0x0144, 0x0052, 0x0FFD,
0x000D, 0x00C2, 0x0197, 0x0148, 0x0055, 0x0FFD,
0x000B, 0x00BE, 0x0196, 0x014C, 0x0058, 0x0FFD,
0x000A, 0x00BA, 0x0195, 0x014F, 0x005B, 0x0FFD,
0x0009, 0x00B6, 0x0193, 0x0153, 0x005E, 0x0FFD,
0x0008, 0x00B2, 0x0191, 0x0157, 0x0061, 0x0FFD,
0x0007, 0x00AE, 0x0190, 0x015A, 0x0064, 0x0FFD,
0x0006, 0x00AA, 0x018E, 0x015D, 0x0068, 0x0FFD,
0x0005, 0x00A6, 0x018C, 0x0161, 0x006B, 0x0FFD,
0x0005, 0x00A2, 0x0189, 0x0164, 0x006F, 0x0FFD,
0x0004, 0x009E, 0x0187, 0x0167, 0x0072, 0x0FFE,
0x0003, 0x009A, 0x0185, 0x016B, 0x0075, 0x0FFE,
0x0002, 0x0096, 0x0183, 0x016E, 0x0079, 0x0FFE,
0x0002, 0x0093, 0x0180, 0x016F, 0x007D, 0x0FFF,
0x0001, 0x008F, 0x017E, 0x0173, 0x0080, 0x0FFF,
0x0001, 0x008B, 0x017B, 0x0175, 0x0084, 0x0000,
0x0000, 0x0087, 0x0179, 0x0179, 0x0087, 0x0000,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 02-Apr-2024
// <coeffDescrip> 6t_64p_LanczosEd_p_0.5_p_10qb_
// <num_taps> 6
// <num_phases> 64
// <scale_ratio> input/output = 0.500000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_6tap_64p_ratio_0_50[198] = {
0x0000, 0x0107, 0x01F3, 0x0106, 0x0000, 0x0000,
0x0FFE, 0x0101, 0x01F3, 0x010D, 0x0002, 0x0FFF,
0x0FFD, 0x00FB, 0x01F3, 0x0113, 0x0003, 0x0FFF,
0x0FFC, 0x00F6, 0x01F3, 0x0118, 0x0005, 0x0FFE,
0x0FFA, 0x00F0, 0x01F3, 0x011E, 0x0007, 0x0FFE,
0x0FF9, 0x00EB, 0x01F2, 0x0124, 0x0009, 0x0FFD,
0x0FF8, 0x00E5, 0x01F2, 0x0129, 0x000B, 0x0FFD,
0x0FF7, 0x00E0, 0x01F1, 0x012F, 0x000D, 0x0FFC,
0x0FF6, 0x00DA, 0x01F0, 0x0135, 0x0010, 0x0FFB,
0x0FF5, 0x00D4, 0x01EF, 0x013B, 0x0012, 0x0FFB,
0x0FF4, 0x00CF, 0x01EE, 0x0141, 0x0014, 0x0FFA,
0x0FF3, 0x00C9, 0x01ED, 0x0147, 0x0017, 0x0FF9,
0x0FF2, 0x00C4, 0x01EB, 0x014C, 0x001A, 0x0FF9,
0x0FF1, 0x00BF, 0x01EA, 0x0152, 0x001C, 0x0FF8,
0x0FF1, 0x00B9, 0x01E8, 0x0157, 0x001F, 0x0FF8,
0x0FF0, 0x00B4, 0x01E6, 0x015D, 0x0022, 0x0FF7,
0x0FF0, 0x00AE, 0x01E4, 0x0163, 0x0025, 0x0FF6,
0x0FEF, 0x00A9, 0x01E2, 0x0168, 0x0028, 0x0FF6,
0x0FEF, 0x00A4, 0x01DF, 0x016E, 0x002B, 0x0FF5,
0x0FEF, 0x009F, 0x01DD, 0x0172, 0x002E, 0x0FF5,
0x0FEE, 0x009A, 0x01DA, 0x0178, 0x0032, 0x0FF4,
0x0FEE, 0x0094, 0x01D8, 0x017E, 0x0035, 0x0FF3,
0x0FEE, 0x008F, 0x01D5, 0x0182, 0x0039, 0x0FF3,
0x0FEE, 0x008A, 0x01D2, 0x0188, 0x003C, 0x0FF2,
0x0FEE, 0x0085, 0x01CF, 0x018C, 0x0040, 0x0FF2,
0x0FEE, 0x0081, 0x01CB, 0x0191, 0x0044, 0x0FF1,
0x0FEE, 0x007C, 0x01C8, 0x0196, 0x0047, 0x0FF1,
0x0FEE, 0x0077, 0x01C4, 0x019C, 0x004B, 0x0FF0,
0x0FEE, 0x0072, 0x01C1, 0x01A0, 0x004F, 0x0FF0,
0x0FEE, 0x006E, 0x01BD, 0x01A4, 0x0053, 0x0FF0,
0x0FEE, 0x0069, 0x01B9, 0x01A9, 0x0058, 0x0FEF,
0x0FEE, 0x0065, 0x01B5, 0x01AD, 0x005C, 0x0FEF,
0x0FEF, 0x0060, 0x01B1, 0x01B1, 0x0060, 0x0FEF,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 02-Apr-2024
// <coeffDescrip> 6t_64p_LanczosEd_p_0.6_p_10qb_
// <num_taps> 6
// <num_phases> 64
// <scale_ratio> input/output = 0.600000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_6tap_64p_ratio_0_60[198] = {
0x0FD9, 0x00FB, 0x0258, 0x00FB, 0x0FD9, 0x0000,
0x0FD9, 0x00F3, 0x0258, 0x0102, 0x0FDA, 0x0000,
0x0FD8, 0x00EB, 0x0258, 0x010B, 0x0FDB, 0x0FFF,
0x0FD8, 0x00E3, 0x0258, 0x0112, 0x0FDC, 0x0FFF,
0x0FD8, 0x00DC, 0x0257, 0x011B, 0x0FDC, 0x0FFE,
0x0FD7, 0x00D4, 0x0256, 0x0123, 0x0FDE, 0x0FFE,
0x0FD7, 0x00CD, 0x0255, 0x012B, 0x0FDF, 0x0FFD,
0x0FD7, 0x00C5, 0x0254, 0x0133, 0x0FE0, 0x0FFD,
0x0FD7, 0x00BE, 0x0252, 0x013C, 0x0FE1, 0x0FFC,
0x0FD7, 0x00B6, 0x0251, 0x0143, 0x0FE3, 0x0FFC,
0x0FD8, 0x00AF, 0x024F, 0x014B, 0x0FE4, 0x0FFB,
0x0FD8, 0x00A8, 0x024C, 0x0154, 0x0FE6, 0x0FFA,
0x0FD8, 0x00A1, 0x024A, 0x015B, 0x0FE8, 0x0FFA,
0x0FD9, 0x009A, 0x0247, 0x0163, 0x0FEA, 0x0FF9,
0x0FD9, 0x0093, 0x0244, 0x016C, 0x0FEC, 0x0FF8,
0x0FD9, 0x008C, 0x0241, 0x0174, 0x0FEF, 0x0FF7,
0x0FDA, 0x0085, 0x023E, 0x017B, 0x0FF1, 0x0FF7,
0x0FDB, 0x007F, 0x023A, 0x0183, 0x0FF3, 0x0FF6,
0x0FDB, 0x0078, 0x0237, 0x018B, 0x0FF6, 0x0FF5,
0x0FDC, 0x0072, 0x0233, 0x0192, 0x0FF9, 0x0FF4,
0x0FDD, 0x006C, 0x022F, 0x0199, 0x0FFC, 0x0FF3,
0x0FDD, 0x0065, 0x022A, 0x01A3, 0x0FFF, 0x0FF2,
0x0FDE, 0x005F, 0x0226, 0x01AA, 0x0002, 0x0FF1,
0x0FDF, 0x005A, 0x0221, 0x01B0, 0x0006, 0x0FF0,
0x0FE0, 0x0054, 0x021C, 0x01B7, 0x0009, 0x0FF0,
0x0FE1, 0x004E, 0x0217, 0x01BE, 0x000D, 0x0FEF,
0x0FE2, 0x0048, 0x0212, 0x01C6, 0x0010, 0x0FEE,
0x0FE3, 0x0043, 0x020C, 0x01CD, 0x0014, 0x0FED,
0x0FE4, 0x003E, 0x0207, 0x01D3, 0x0018, 0x0FEC,
0x0FE5, 0x0039, 0x0200, 0x01DA, 0x001D, 0x0FEB,
0x0FE6, 0x0034, 0x01FA, 0x01E1, 0x0021, 0x0FEA,
0x0FE7, 0x002F, 0x01F5, 0x01E7, 0x0025, 0x0FE9,
0x0FE8, 0x002A, 0x01EE, 0x01EE, 0x002A, 0x0FE8,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 02-Apr-2024
// <coeffDescrip> 6t_64p_LanczosEd_p_0.7_p_10qb_
// <num_taps> 6
// <num_phases> 64
// <scale_ratio> input/output = 0.700000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_6tap_64p_ratio_0_70[198] = {
0x0FC0, 0x00DA, 0x02CC, 0x00DA, 0x0FC0, 0x0000,
0x0FC1, 0x00D0, 0x02CC, 0x00E4, 0x0FBF, 0x0000,
0x0FC2, 0x00C6, 0x02CB, 0x00EF, 0x0FBE, 0x0000,
0x0FC3, 0x00BC, 0x02CA, 0x00F9, 0x0FBE, 0x0000,
0x0FC4, 0x00B2, 0x02C9, 0x0104, 0x0FBD, 0x0000,
0x0FC5, 0x00A8, 0x02C7, 0x010F, 0x0FBD, 0x0000,
0x0FC7, 0x009F, 0x02C5, 0x0119, 0x0FBC, 0x0000,
0x0FC8, 0x0095, 0x02C3, 0x0124, 0x0FBC, 0x0000,
0x0FC9, 0x008C, 0x02C0, 0x012F, 0x0FBC, 0x0000,
0x0FCB, 0x0083, 0x02BD, 0x0139, 0x0FBC, 0x0000,
0x0FCC, 0x007A, 0x02BA, 0x0144, 0x0FBC, 0x0000,
0x0FCE, 0x0072, 0x02B6, 0x014D, 0x0FBD, 0x0000,
0x0FD0, 0x0069, 0x02B2, 0x0159, 0x0FBD, 0x0FFF,
0x0FD1, 0x0061, 0x02AD, 0x0164, 0x0FBE, 0x0FFF,
0x0FD3, 0x0059, 0x02A9, 0x016E, 0x0FBF, 0x0FFE,
0x0FD4, 0x0051, 0x02A4, 0x017A, 0x0FBF, 0x0FFE,
0x0FD6, 0x0049, 0x029E, 0x0184, 0x0FC1, 0x0FFE,
0x0FD8, 0x0042, 0x0299, 0x018E, 0x0FC2, 0x0FFD,
0x0FD9, 0x003A, 0x0293, 0x019B, 0x0FC3, 0x0FFC,
0x0FDB, 0x0033, 0x028D, 0x01A4, 0x0FC5, 0x0FFC,
0x0FDC, 0x002D, 0x0286, 0x01AF, 0x0FC7, 0x0FFB,
0x0FDE, 0x0026, 0x0280, 0x01BA, 0x0FC8, 0x0FFA,
0x0FE0, 0x001F, 0x0279, 0x01C4, 0x0FCB, 0x0FF9,
0x0FE1, 0x0019, 0x0272, 0x01CE, 0x0FCD, 0x0FF9,
0x0FE3, 0x0013, 0x026A, 0x01D9, 0x0FCF, 0x0FF8,
0x0FE4, 0x000D, 0x0263, 0x01E3, 0x0FD2, 0x0FF7,
0x0FE6, 0x0008, 0x025B, 0x01EC, 0x0FD5, 0x0FF6,
0x0FE7, 0x0002, 0x0253, 0x01F7, 0x0FD8, 0x0FF5,
0x0FE9, 0x0FFD, 0x024A, 0x0202, 0x0FDB, 0x0FF3,
0x0FEA, 0x0FF8, 0x0242, 0x020B, 0x0FDF, 0x0FF2,
0x0FEC, 0x0FF3, 0x0239, 0x0215, 0x0FE2, 0x0FF1,
0x0FED, 0x0FEF, 0x0230, 0x021E, 0x0FE6, 0x0FF0,
0x0FEF, 0x0FEB, 0x0226, 0x0226, 0x0FEB, 0x0FEF,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 02-Apr-2024
// <coeffDescrip> 6t_64p_LanczosEd_p_0.8_p_10qb_
// <num_taps> 6
// <num_phases> 64
// <scale_ratio> input/output = 0.800000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_6tap_64p_ratio_0_80[198] = {
0x0FBF, 0x00A1, 0x0340, 0x00A1, 0x0FBF, 0x0000,
0x0FC1, 0x0095, 0x0340, 0x00AD, 0x0FBC, 0x0001,
0x0FC4, 0x0089, 0x033E, 0x00BA, 0x0FBA, 0x0001,
0x0FC6, 0x007D, 0x033D, 0x00C6, 0x0FB8, 0x0002,
0x0FC9, 0x0072, 0x033A, 0x00D3, 0x0FB6, 0x0002,
0x0FCC, 0x0067, 0x0338, 0x00DF, 0x0FB3, 0x0003,
0x0FCE, 0x005C, 0x0334, 0x00EE, 0x0FB1, 0x0003,
0x0FD1, 0x0051, 0x0331, 0x00FA, 0x0FAF, 0x0004,
0x0FD3, 0x0047, 0x032D, 0x0108, 0x0FAD, 0x0004,
0x0FD6, 0x003D, 0x0328, 0x0116, 0x0FAB, 0x0004,
0x0FD8, 0x0033, 0x0323, 0x0123, 0x0FAA, 0x0005,
0x0FDB, 0x002A, 0x031D, 0x0131, 0x0FA8, 0x0005,
0x0FDD, 0x0021, 0x0317, 0x013F, 0x0FA7, 0x0005,
0x0FDF, 0x0018, 0x0311, 0x014D, 0x0FA5, 0x0006,
0x0FE2, 0x0010, 0x030A, 0x015A, 0x0FA4, 0x0006,
0x0FE4, 0x0008, 0x0302, 0x0169, 0x0FA3, 0x0006,
0x0FE6, 0x0000, 0x02FB, 0x0177, 0x0FA2, 0x0006,
0x0FE8, 0x0FF9, 0x02F3, 0x0185, 0x0FA1, 0x0006,
0x0FEB, 0x0FF1, 0x02EA, 0x0193, 0x0FA1, 0x0006,
0x0FED, 0x0FEB, 0x02E1, 0x01A1, 0x0FA0, 0x0006,
0x0FEE, 0x0FE4, 0x02D8, 0x01B0, 0x0FA0, 0x0006,
0x0FF0, 0x0FDE, 0x02CE, 0x01BE, 0x0FA0, 0x0006,
0x0FF2, 0x0FD8, 0x02C5, 0x01CB, 0x0FA0, 0x0006,
0x0FF4, 0x0FD3, 0x02BA, 0x01D8, 0x0FA1, 0x0006,
0x0FF6, 0x0FCD, 0x02B0, 0x01E7, 0x0FA1, 0x0005,
0x0FF7, 0x0FC8, 0x02A5, 0x01F5, 0x0FA2, 0x0005,
0x0FF9, 0x0FC4, 0x029A, 0x0202, 0x0FA3, 0x0004,
0x0FFA, 0x0FC0, 0x028E, 0x0210, 0x0FA4, 0x0004,
0x0FFB, 0x0FBC, 0x0283, 0x021D, 0x0FA6, 0x0003,
0x0FFD, 0x0FB8, 0x0276, 0x022A, 0x0FA8, 0x0003,
0x0FFE, 0x0FB4, 0x026B, 0x0237, 0x0FAA, 0x0002,
0x0FFF, 0x0FB1, 0x025E, 0x0245, 0x0FAC, 0x0001,
0x0000, 0x0FAE, 0x0252, 0x0252, 0x0FAE, 0x0000,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 02-Apr-2024
// <coeffDescrip> 6t_64p_LanczosEd_p_0.9_p_10qb_
// <num_taps> 6
// <num_phases> 64
// <scale_ratio> input/output = 0.900000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_6tap_64p_ratio_0_90[198] = {
0x0FD8, 0x0055, 0x03A7, 0x0054, 0x0FD8, 0x0000,
0x0FDB, 0x0047, 0x03A7, 0x0063, 0x0FD4, 0x0000,
0x0FDF, 0x003B, 0x03A5, 0x006F, 0x0FD1, 0x0001,
0x0FE2, 0x002E, 0x03A3, 0x007E, 0x0FCD, 0x0002,
0x0FE5, 0x0022, 0x03A0, 0x008D, 0x0FCA, 0x0002,
0x0FE8, 0x0017, 0x039D, 0x009B, 0x0FC6, 0x0003,
0x0FEB, 0x000C, 0x0398, 0x00AC, 0x0FC2, 0x0003,
0x0FEE, 0x0001, 0x0394, 0x00BA, 0x0FBF, 0x0004,
0x0FF1, 0x0FF7, 0x038E, 0x00CA, 0x0FBB, 0x0005,
0x0FF4, 0x0FED, 0x0388, 0x00DA, 0x0FB8, 0x0005,
0x0FF6, 0x0FE4, 0x0381, 0x00EB, 0x0FB4, 0x0006,
0x0FF9, 0x0FDB, 0x037A, 0x00FA, 0x0FB1, 0x0007,
0x0FFB, 0x0FD3, 0x0372, 0x010B, 0x0FAD, 0x0008,
0x0FFD, 0x0FCB, 0x0369, 0x011D, 0x0FAA, 0x0008,
0x0000, 0x0FC3, 0x0360, 0x012E, 0x0FA6, 0x0009,
0x0002, 0x0FBC, 0x0356, 0x013F, 0x0FA3, 0x000A,
0x0003, 0x0FB6, 0x034C, 0x0150, 0x0FA0, 0x000B,
0x0005, 0x0FB0, 0x0341, 0x0162, 0x0F9D, 0x000B,
0x0007, 0x0FAA, 0x0336, 0x0173, 0x0F9A, 0x000C,
0x0008, 0x0FA5, 0x032A, 0x0185, 0x0F97, 0x000D,
0x000A, 0x0FA0, 0x031E, 0x0197, 0x0F94, 0x000D,
0x000B, 0x0F9B, 0x0311, 0x01A9, 0x0F92, 0x000E,
0x000C, 0x0F97, 0x0303, 0x01BC, 0x0F8F, 0x000F,
0x000D, 0x0F94, 0x02F6, 0x01CD, 0x0F8D, 0x000F,
0x000E, 0x0F91, 0x02E8, 0x01DE, 0x0F8B, 0x0010,
0x000F, 0x0F8E, 0x02D9, 0x01F1, 0x0F89, 0x0010,
0x0010, 0x0F8B, 0x02CA, 0x0202, 0x0F88, 0x0011,
0x0010, 0x0F89, 0x02BB, 0x0214, 0x0F87, 0x0011,
0x0011, 0x0F87, 0x02AB, 0x0226, 0x0F86, 0x0011,
0x0011, 0x0F86, 0x029C, 0x0236, 0x0F85, 0x0012,
0x0011, 0x0F85, 0x028B, 0x0249, 0x0F84, 0x0012,
0x0012, 0x0F84, 0x027B, 0x0259, 0x0F84, 0x0012,
0x0012, 0x0F84, 0x026A, 0x026A, 0x0F84, 0x0012,
};
//========================================================
// <using> gen_scaler_coeffs_cnf_file.m
// <using> make_test_script.m
// <date> 02-Apr-2024
// <coeffDescrip> 6t_64p_LanczosEd_p_1_p_10qb_
// <num_taps> 6
// <num_phases> 64
// <scale_ratio> input/output = 1.000000000000
// <CoefType> LanczosEd
// <CoefQuant> S1.10
//========================================================
static const uint16_t easf_filter_6tap_64p_ratio_1_00[198] = {
0x0000, 0x0000, 0x0400, 0x0000, 0x0000, 0x0000,
0x0003, 0x0FF3, 0x0400, 0x000D, 0x0FFD, 0x0000,
0x0006, 0x0FE7, 0x03FE, 0x001C, 0x0FF9, 0x0000,
0x0009, 0x0FDB, 0x03FC, 0x002B, 0x0FF5, 0x0000,
0x000C, 0x0FD0, 0x03F9, 0x003A, 0x0FF1, 0x0000,
0x000E, 0x0FC5, 0x03F5, 0x004A, 0x0FED, 0x0001,
0x0011, 0x0FBB, 0x03F0, 0x005A, 0x0FE9, 0x0001,
0x0013, 0x0FB2, 0x03EB, 0x006A, 0x0FE5, 0x0001,
0x0015, 0x0FA9, 0x03E4, 0x007B, 0x0FE1, 0x0002,
0x0017, 0x0FA1, 0x03DD, 0x008D, 0x0FDC, 0x0002,
0x0018, 0x0F99, 0x03D4, 0x00A0, 0x0FD8, 0x0003,
0x001A, 0x0F92, 0x03CB, 0x00B2, 0x0FD3, 0x0004,
0x001B, 0x0F8C, 0x03C1, 0x00C6, 0x0FCE, 0x0004,
0x001C, 0x0F86, 0x03B7, 0x00D9, 0x0FC9, 0x0005,
0x001D, 0x0F80, 0x03AB, 0x00EE, 0x0FC4, 0x0006,
0x001E, 0x0F7C, 0x039F, 0x0101, 0x0FBF, 0x0007,
0x001F, 0x0F78, 0x0392, 0x0115, 0x0FBA, 0x0008,
0x001F, 0x0F74, 0x0385, 0x012B, 0x0FB5, 0x0008,
0x0020, 0x0F71, 0x0376, 0x0140, 0x0FB0, 0x0009,
0x0020, 0x0F6E, 0x0367, 0x0155, 0x0FAB, 0x000B,
0x0020, 0x0F6C, 0x0357, 0x016B, 0x0FA6, 0x000C,
0x0020, 0x0F6A, 0x0347, 0x0180, 0x0FA2, 0x000D,
0x0020, 0x0F69, 0x0336, 0x0196, 0x0F9D, 0x000E,
0x0020, 0x0F69, 0x0325, 0x01AB, 0x0F98, 0x000F,
0x001F, 0x0F68, 0x0313, 0x01C3, 0x0F93, 0x0010,
0x001F, 0x0F69, 0x0300, 0x01D8, 0x0F8F, 0x0011,
0x001E, 0x0F69, 0x02ED, 0x01EF, 0x0F8B, 0x0012,
0x001D, 0x0F6A, 0x02D9, 0x0205, 0x0F87, 0x0014,
0x001D, 0x0F6C, 0x02C5, 0x021A, 0x0F83, 0x0015,
0x001C, 0x0F6E, 0x02B1, 0x0230, 0x0F7F, 0x0016,
0x001B, 0x0F70, 0x029C, 0x0247, 0x0F7B, 0x0017,
0x001A, 0x0F72, 0x0287, 0x025D, 0x0F78, 0x0018,
0x0019, 0x0F75, 0x0272, 0x0272, 0x0F75, 0x0019,
};
/* Converted scaler coeff tables from S1.10 to S1.12 */
static uint16_t easf_filter_3tap_64p_ratio_0_30_s1_12[99];
static uint16_t easf_filter_3tap_64p_ratio_0_40_s1_12[99];
static uint16_t easf_filter_3tap_64p_ratio_0_50_s1_12[99];
static uint16_t easf_filter_3tap_64p_ratio_0_60_s1_12[99];
static uint16_t easf_filter_3tap_64p_ratio_0_70_s1_12[99];
static uint16_t easf_filter_3tap_64p_ratio_0_80_s1_12[99];
static uint16_t easf_filter_3tap_64p_ratio_0_90_s1_12[99];
static uint16_t easf_filter_3tap_64p_ratio_1_00_s1_12[99];
static uint16_t easf_filter_4tap_64p_ratio_0_30_s1_12[132];
static uint16_t easf_filter_4tap_64p_ratio_0_40_s1_12[132];
static uint16_t easf_filter_4tap_64p_ratio_0_50_s1_12[132];
static uint16_t easf_filter_4tap_64p_ratio_0_60_s1_12[132];
static uint16_t easf_filter_4tap_64p_ratio_0_70_s1_12[132];
static uint16_t easf_filter_4tap_64p_ratio_0_80_s1_12[132];
static uint16_t easf_filter_4tap_64p_ratio_0_90_s1_12[132];
static uint16_t easf_filter_4tap_64p_ratio_1_00_s1_12[132];
static uint16_t easf_filter_6tap_64p_ratio_0_30_s1_12[198];
static uint16_t easf_filter_6tap_64p_ratio_0_40_s1_12[198];
static uint16_t easf_filter_6tap_64p_ratio_0_50_s1_12[198];
static uint16_t easf_filter_6tap_64p_ratio_0_60_s1_12[198];
static uint16_t easf_filter_6tap_64p_ratio_0_70_s1_12[198];
static uint16_t easf_filter_6tap_64p_ratio_0_80_s1_12[198];
static uint16_t easf_filter_6tap_64p_ratio_0_90_s1_12[198];
static uint16_t easf_filter_6tap_64p_ratio_1_00_s1_12[198];
struct scale_ratio_to_reg_value_lookup easf_v_bf3_mode_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x0000},
{5, 10, 0x0000},
{6, 10, 0x0000},
{7, 10, 0x0000},
{8, 10, 0x0000},
{9, 10, 0x0000},
{1, 1, 0x0000},
{-1, -1, 0x0002},
};
struct scale_ratio_to_reg_value_lookup easf_h_bf3_mode_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x0000},
{5, 10, 0x0000},
{6, 10, 0x0000},
{7, 10, 0x0000},
{8, 10, 0x0000},
{9, 10, 0x0000},
{1, 1, 0x0000},
{-1, -1, 0x0002},
};
struct scale_ratio_to_reg_value_lookup easf_reducer_gain6_6tap_lookup[] = {
{3, 10, 0x4100},
{4, 10, 0x4100},
{5, 10, 0x4100},
{6, 10, 0x4100},
{7, 10, 0x4100},
{8, 10, 0x4100},
{9, 10, 0x4100},
{1, 1, 0x4100},
{-1, -1, 0x4100},
};
struct scale_ratio_to_reg_value_lookup easf_reducer_gain4_6tap_lookup[] = {
{3, 10, 0x4000},
{4, 10, 0x4000},
{5, 10, 0x4000},
{6, 10, 0x4000},
{7, 10, 0x4000},
{8, 10, 0x4000},
{9, 10, 0x4000},
{1, 1, 0x4000},
{-1, -1, 0x4000},
};
struct scale_ratio_to_reg_value_lookup easf_gain_ring6_6tap_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x251F},
{5, 10, 0x291F},
{6, 10, 0xA51F},
{7, 10, 0xA51F},
{8, 10, 0xAA66},
{9, 10, 0xA51F},
{1, 1, 0xA640},
{-1, -1, 0xA640},
};
struct scale_ratio_to_reg_value_lookup easf_gain_ring4_6tap_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x9600},
{5, 10, 0xA460},
{6, 10, 0xA8E0},
{7, 10, 0xAC00},
{8, 10, 0xAD20},
{9, 10, 0xAFC0},
{1, 1, 0xB058},
{-1, -1, 0xB058},
};
struct scale_ratio_to_reg_value_lookup easf_reducer_gain6_4tap_lookup[] = {
{3, 10, 0x4100},
{4, 10, 0x4100},
{5, 10, 0x4100},
{6, 10, 0x4100},
{7, 10, 0x4100},
{8, 10, 0x4100},
{9, 10, 0x4100},
{1, 1, 0x4100},
{-1, -1, 0x4100},
};
struct scale_ratio_to_reg_value_lookup easf_reducer_gain4_4tap_lookup[] = {
{3, 10, 0x4000},
{4, 10, 0x4000},
{5, 10, 0x4000},
{6, 10, 0x4000},
{7, 10, 0x4000},
{8, 10, 0x4000},
{9, 10, 0x4000},
{1, 1, 0x4000},
{-1, -1, 0x4000},
};
struct scale_ratio_to_reg_value_lookup easf_gain_ring6_4tap_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x0000},
{5, 10, 0x0000},
{6, 10, 0x0000},
{7, 10, 0x0000},
{8, 10, 0x0000},
{9, 10, 0x0000},
{1, 1, 0x0000},
{-1, -1, 0x0000},
};
struct scale_ratio_to_reg_value_lookup easf_gain_ring4_4tap_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x0000},
{5, 10, 0x0000},
{6, 10, 0x9900},
{7, 10, 0xA100},
{8, 10, 0xA8C0},
{9, 10, 0xAB20},
{1, 1, 0xAC00},
{-1, -1, 0xAC00},
};
struct scale_ratio_to_reg_value_lookup easf_3tap_dntilt_uptilt_offset_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x0000},
{5, 10, 0x0000},
{6, 10, 0x0000},
{7, 10, 0x0000},
{8, 10, 0x4100},
{9, 10, 0x9F00},
{1, 1, 0xA4C0},
{-1, -1, 0xA8D8},
};
struct scale_ratio_to_reg_value_lookup easf_3tap_uptilt_maxval_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x0000},
{5, 10, 0x0000},
{6, 10, 0x0000},
{7, 10, 0x0000},
{8, 10, 0x4000},
{9, 10, 0x24FE},
{1, 1, 0x2D64},
{-1, -1, 0x3ADB},
};
struct scale_ratio_to_reg_value_lookup easf_3tap_dntilt_slope_lookup[] = {
{3, 10, 0x3800},
{4, 10, 0x3800},
{5, 10, 0x3800},
{6, 10, 0x3800},
{7, 10, 0x3800},
{8, 10, 0x3886},
{9, 10, 0x3940},
{1, 1, 0x3A4E},
{-1, -1, 0x3B66},
};
struct scale_ratio_to_reg_value_lookup easf_3tap_uptilt1_slope_lookup[] = {
{3, 10, 0x3800},
{4, 10, 0x3800},
{5, 10, 0x3800},
{6, 10, 0x3800},
{7, 10, 0x3800},
{8, 10, 0x36F4},
{9, 10, 0x359C},
{1, 1, 0x3360},
{-1, -1, 0x2F20},
};
struct scale_ratio_to_reg_value_lookup easf_3tap_uptilt2_slope_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x0000},
{5, 10, 0x0000},
{6, 10, 0x0000},
{7, 10, 0x0000},
{8, 10, 0x0000},
{9, 10, 0x359C},
{1, 1, 0x31F0},
{-1, -1, 0x1F00},
};
struct scale_ratio_to_reg_value_lookup easf_3tap_uptilt2_offset_lookup[] = {
{3, 10, 0x0000},
{4, 10, 0x0000},
{5, 10, 0x0000},
{6, 10, 0x0000},
{7, 10, 0x0000},
{8, 10, 0x0000},
{9, 10, 0x9F00},
{1, 1, 0xA400},
{-1, -1, 0x9E00},
};
void spl_init_easf_filter_coeffs(void)
{
convert_filter_s1_10_to_s1_12(easf_filter_3tap_64p_ratio_0_30,
easf_filter_3tap_64p_ratio_0_30_s1_12, 3);
convert_filter_s1_10_to_s1_12(easf_filter_3tap_64p_ratio_0_40,
easf_filter_3tap_64p_ratio_0_40_s1_12, 3);
convert_filter_s1_10_to_s1_12(easf_filter_3tap_64p_ratio_0_50,
easf_filter_3tap_64p_ratio_0_50_s1_12, 3);
convert_filter_s1_10_to_s1_12(easf_filter_3tap_64p_ratio_0_60,
easf_filter_3tap_64p_ratio_0_60_s1_12, 3);
convert_filter_s1_10_to_s1_12(easf_filter_3tap_64p_ratio_0_70,
easf_filter_3tap_64p_ratio_0_70_s1_12, 3);
convert_filter_s1_10_to_s1_12(easf_filter_3tap_64p_ratio_0_80,
easf_filter_3tap_64p_ratio_0_80_s1_12, 3);
convert_filter_s1_10_to_s1_12(easf_filter_3tap_64p_ratio_0_90,
easf_filter_3tap_64p_ratio_0_90_s1_12, 3);
convert_filter_s1_10_to_s1_12(easf_filter_3tap_64p_ratio_1_00,
easf_filter_3tap_64p_ratio_1_00_s1_12, 3);
convert_filter_s1_10_to_s1_12(easf_filter_4tap_64p_ratio_0_30,
easf_filter_4tap_64p_ratio_0_30_s1_12, 4);
convert_filter_s1_10_to_s1_12(easf_filter_4tap_64p_ratio_0_40,
easf_filter_4tap_64p_ratio_0_40_s1_12, 4);
convert_filter_s1_10_to_s1_12(easf_filter_4tap_64p_ratio_0_50,
easf_filter_4tap_64p_ratio_0_50_s1_12, 4);
convert_filter_s1_10_to_s1_12(easf_filter_4tap_64p_ratio_0_60,
easf_filter_4tap_64p_ratio_0_60_s1_12, 4);
convert_filter_s1_10_to_s1_12(easf_filter_4tap_64p_ratio_0_70,
easf_filter_4tap_64p_ratio_0_70_s1_12, 4);
convert_filter_s1_10_to_s1_12(easf_filter_4tap_64p_ratio_0_80,
easf_filter_4tap_64p_ratio_0_80_s1_12, 4);
convert_filter_s1_10_to_s1_12(easf_filter_4tap_64p_ratio_0_90,
easf_filter_4tap_64p_ratio_0_90_s1_12, 4);
convert_filter_s1_10_to_s1_12(easf_filter_4tap_64p_ratio_1_00,
easf_filter_4tap_64p_ratio_1_00_s1_12, 4);
convert_filter_s1_10_to_s1_12(easf_filter_6tap_64p_ratio_0_30,
easf_filter_6tap_64p_ratio_0_30_s1_12, 6);
convert_filter_s1_10_to_s1_12(easf_filter_6tap_64p_ratio_0_40,
easf_filter_6tap_64p_ratio_0_40_s1_12, 6);
convert_filter_s1_10_to_s1_12(easf_filter_6tap_64p_ratio_0_50,
easf_filter_6tap_64p_ratio_0_50_s1_12, 6);
convert_filter_s1_10_to_s1_12(easf_filter_6tap_64p_ratio_0_60,
easf_filter_6tap_64p_ratio_0_60_s1_12, 6);
convert_filter_s1_10_to_s1_12(easf_filter_6tap_64p_ratio_0_70,
easf_filter_6tap_64p_ratio_0_70_s1_12, 6);
convert_filter_s1_10_to_s1_12(easf_filter_6tap_64p_ratio_0_80,
easf_filter_6tap_64p_ratio_0_80_s1_12, 6);
convert_filter_s1_10_to_s1_12(easf_filter_6tap_64p_ratio_0_90,
easf_filter_6tap_64p_ratio_0_90_s1_12, 6);
convert_filter_s1_10_to_s1_12(easf_filter_6tap_64p_ratio_1_00,
easf_filter_6tap_64p_ratio_1_00_s1_12, 6);
}
uint16_t *spl_get_easf_filter_3tap_64p(struct spl_fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_from_fraction(3, 10).value)
return easf_filter_3tap_64p_ratio_0_30_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(4, 10).value)
return easf_filter_3tap_64p_ratio_0_40_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(5, 10).value)
return easf_filter_3tap_64p_ratio_0_50_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(6, 10).value)
return easf_filter_3tap_64p_ratio_0_60_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(7, 10).value)
return easf_filter_3tap_64p_ratio_0_70_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(8, 10).value)
return easf_filter_3tap_64p_ratio_0_80_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(9, 10).value)
return easf_filter_3tap_64p_ratio_0_90_s1_12;
else
return easf_filter_3tap_64p_ratio_1_00_s1_12;
}
uint16_t *spl_get_easf_filter_4tap_64p(struct spl_fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_from_fraction(3, 10).value)
return easf_filter_4tap_64p_ratio_0_30_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(4, 10).value)
return easf_filter_4tap_64p_ratio_0_40_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(5, 10).value)
return easf_filter_4tap_64p_ratio_0_50_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(6, 10).value)
return easf_filter_4tap_64p_ratio_0_60_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(7, 10).value)
return easf_filter_4tap_64p_ratio_0_70_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(8, 10).value)
return easf_filter_4tap_64p_ratio_0_80_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(9, 10).value)
return easf_filter_4tap_64p_ratio_0_90_s1_12;
else
return easf_filter_4tap_64p_ratio_1_00_s1_12;
}
uint16_t *spl_get_easf_filter_6tap_64p(struct spl_fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_from_fraction(3, 10).value)
return easf_filter_6tap_64p_ratio_0_30_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(4, 10).value)
return easf_filter_6tap_64p_ratio_0_40_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(5, 10).value)
return easf_filter_6tap_64p_ratio_0_50_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(6, 10).value)
return easf_filter_6tap_64p_ratio_0_60_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(7, 10).value)
return easf_filter_6tap_64p_ratio_0_70_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(8, 10).value)
return easf_filter_6tap_64p_ratio_0_80_s1_12;
else if (ratio.value < spl_fixpt_from_fraction(9, 10).value)
return easf_filter_6tap_64p_ratio_0_90_s1_12;
else
return easf_filter_6tap_64p_ratio_1_00_s1_12;
}
uint16_t *spl_dscl_get_easf_filter_coeffs_64p(int taps, struct spl_fixed31_32 ratio)
{
if (taps == 6)
return spl_get_easf_filter_6tap_64p(ratio);
else if (taps == 4)
return spl_get_easf_filter_4tap_64p(ratio);
else if (taps == 3)
return spl_get_easf_filter_3tap_64p(ratio);
else {
/* should never happen, bug */
SPL_BREAK_TO_DEBUGGER();
return NULL;
}
}
void spl_set_filters_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data, bool enable_easf_v,
bool enable_easf_h)
{
/*
* Old coefficients calculated scaling ratio = input / output
* New coefficients are calculated based on = output / input
*/
if (enable_easf_h) {
dscl_prog_data->filter_h = spl_dscl_get_easf_filter_coeffs_64p(
data->taps.h_taps, data->recip_ratios.horz);
dscl_prog_data->filter_h_c = spl_dscl_get_easf_filter_coeffs_64p(
data->taps.h_taps_c, data->recip_ratios.horz_c);
} else {
dscl_prog_data->filter_h = spl_dscl_get_filter_coeffs_64p(
data->taps.h_taps, data->ratios.horz);
dscl_prog_data->filter_h_c = spl_dscl_get_filter_coeffs_64p(
data->taps.h_taps_c, data->ratios.horz_c);
}
if (enable_easf_v) {
dscl_prog_data->filter_v = spl_dscl_get_easf_filter_coeffs_64p(
data->taps.v_taps, data->recip_ratios.vert);
dscl_prog_data->filter_v_c = spl_dscl_get_easf_filter_coeffs_64p(
data->taps.v_taps_c, data->recip_ratios.vert_c);
} else {
dscl_prog_data->filter_v = spl_dscl_get_filter_coeffs_64p(
data->taps.v_taps, data->ratios.vert);
dscl_prog_data->filter_v_c = spl_dscl_get_filter_coeffs_64p(
data->taps.v_taps_c, data->ratios.vert_c);
}
}
static uint32_t spl_easf_get_scale_ratio_to_reg_value(struct spl_fixed31_32 ratio,
struct scale_ratio_to_reg_value_lookup *lookup_table_base_ptr,
unsigned int num_entries)
{
unsigned int count = 0;
uint32_t value = 0;
struct scale_ratio_to_reg_value_lookup *lookup_table_index_ptr;
lookup_table_index_ptr = (lookup_table_base_ptr + num_entries - 1);
value = lookup_table_index_ptr->reg_value;
while (count < num_entries) {
lookup_table_index_ptr = (lookup_table_base_ptr + count);
if (lookup_table_index_ptr->numer < 0)
break;
if (ratio.value < spl_fixpt_from_fraction(
lookup_table_index_ptr->numer,
lookup_table_index_ptr->denom).value) {
value = lookup_table_index_ptr->reg_value;
break;
}
count++;
}
return value;
}
uint32_t spl_get_v_bf3_mode(struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries = sizeof(easf_v_bf3_mode_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_v_bf3_mode_lookup, num_entries);
return value;
}
uint32_t spl_get_h_bf3_mode(struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries = sizeof(easf_h_bf3_mode_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_h_bf3_mode_lookup, num_entries);
return value;
}
uint32_t spl_get_reducer_gain6(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 4) {
num_entries = sizeof(easf_reducer_gain6_4tap_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_reducer_gain6_4tap_lookup, num_entries);
} else if (taps == 6) {
num_entries = sizeof(easf_reducer_gain6_6tap_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_reducer_gain6_6tap_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_reducer_gain4(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 4) {
num_entries = sizeof(easf_reducer_gain4_4tap_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_reducer_gain4_4tap_lookup, num_entries);
} else if (taps == 6) {
num_entries = sizeof(easf_reducer_gain4_6tap_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_reducer_gain4_6tap_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_gainRing6(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 4) {
num_entries = sizeof(easf_gain_ring6_4tap_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_gain_ring6_4tap_lookup, num_entries);
} else if (taps == 6) {
num_entries = sizeof(easf_gain_ring6_6tap_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_gain_ring6_6tap_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_gainRing4(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 4) {
num_entries = sizeof(easf_gain_ring4_4tap_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_gain_ring4_4tap_lookup, num_entries);
} else if (taps == 6) {
num_entries = sizeof(easf_gain_ring4_6tap_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_gain_ring4_6tap_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_3tap_dntilt_uptilt_offset(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 3) {
num_entries = sizeof(easf_3tap_dntilt_uptilt_offset_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_3tap_dntilt_uptilt_offset_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_3tap_uptilt_maxval(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 3) {
num_entries = sizeof(easf_3tap_uptilt_maxval_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_3tap_uptilt_maxval_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_3tap_dntilt_slope(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 3) {
num_entries = sizeof(easf_3tap_dntilt_slope_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_3tap_dntilt_slope_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_3tap_uptilt1_slope(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 3) {
num_entries = sizeof(easf_3tap_uptilt1_slope_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_3tap_uptilt1_slope_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_3tap_uptilt2_slope(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 3) {
num_entries = sizeof(easf_3tap_uptilt2_slope_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_3tap_uptilt2_slope_lookup, num_entries);
} else
value = 0;
return value;
}
uint32_t spl_get_3tap_uptilt2_offset(int taps, struct spl_fixed31_32 ratio)
{
uint32_t value;
unsigned int num_entries;
if (taps == 3) {
num_entries = sizeof(easf_3tap_uptilt2_offset_lookup) /
sizeof(struct scale_ratio_to_reg_value_lookup);
value = spl_easf_get_scale_ratio_to_reg_value(ratio,
easf_3tap_uptilt2_offset_lookup, num_entries);
} else
value = 0;
return value;
}
/* SPDX-License-Identifier: MIT */
/* Copyright 2024 Advanced Micro Devices, Inc. */
#ifndef __DC_SPL_SCL_EASF_FILTERS_H__
#define __DC_SPL_SCL_EASF_FILTERS_H__
#include "dc_spl_types.h"
struct scale_ratio_to_reg_value_lookup {
int numer;
int denom;
const uint32_t reg_value;
};
void spl_init_easf_filter_coeffs(void);
uint16_t *spl_get_easf_filter_3tap_64p(struct spl_fixed31_32 ratio);
uint16_t *spl_get_easf_filter_4tap_64p(struct spl_fixed31_32 ratio);
uint16_t *spl_get_easf_filter_6tap_64p(struct spl_fixed31_32 ratio);
uint16_t *spl_dscl_get_easf_filter_coeffs_64p(int taps, struct spl_fixed31_32 ratio);
void spl_set_filters_data(struct dscl_prog_data *dscl_prog_data,
const struct spl_scaler_data *data, bool enable_easf_v,
bool enable_easf_h);
uint32_t spl_get_v_bf3_mode(struct spl_fixed31_32 ratio);
uint32_t spl_get_h_bf3_mode(struct spl_fixed31_32 ratio);
uint32_t spl_get_reducer_gain6(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_reducer_gain4(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_gainRing6(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_gainRing4(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_3tap_dntilt_uptilt_offset(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_3tap_uptilt_maxval(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_3tap_dntilt_slope(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_3tap_uptilt1_slope(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_3tap_uptilt2_slope(int taps, struct spl_fixed31_32 ratio);
uint32_t spl_get_3tap_uptilt2_offset(int taps, struct spl_fixed31_32 ratio);
#endif /* __DC_SPL_SCL_EASF_FILTERS_H__ */
......@@ -2,8 +2,6 @@
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "dc_spl_types.h"
#include "spl_debug.h"
#include "dc_spl_scl_filters.h"
//=========================================
// <num_taps> = 2
......@@ -1319,97 +1317,97 @@ static const uint16_t filter_8tap_64p_183[264] = {
0x3FD4, 0x3F84, 0x0214, 0x0694, 0x0694, 0x0214, 0x3F84, 0x3FD4
};
const uint16_t *spl_get_filter_3tap_16p(struct spl_fixed31_32 ratio)
const uint16_t *spl_get_filter_3tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_one.value)
if (ratio.value < dc_fixpt_one.value)
return filter_3tap_16p_upscale;
else if (ratio.value < spl_fixpt_from_fraction(4, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_3tap_16p_116;
else if (ratio.value < spl_fixpt_from_fraction(5, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_3tap_16p_149;
else
return filter_3tap_16p_183;
}
const uint16_t *spl_get_filter_3tap_64p(struct spl_fixed31_32 ratio)
const uint16_t *spl_get_filter_3tap_64p(struct fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_one.value)
if (ratio.value < dc_fixpt_one.value)
return filter_3tap_64p_upscale;
else if (ratio.value < spl_fixpt_from_fraction(4, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_3tap_64p_116;
else if (ratio.value < spl_fixpt_from_fraction(5, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_3tap_64p_149;
else
return filter_3tap_64p_183;
}
const uint16_t *spl_get_filter_4tap_16p(struct spl_fixed31_32 ratio)
const uint16_t *spl_get_filter_4tap_16p(struct fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_one.value)
if (ratio.value < dc_fixpt_one.value)
return filter_4tap_16p_upscale;
else if (ratio.value < spl_fixpt_from_fraction(4, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_4tap_16p_116;
else if (ratio.value < spl_fixpt_from_fraction(5, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_4tap_16p_149;
else
return filter_4tap_16p_183;
}
const uint16_t *spl_get_filter_4tap_64p(struct spl_fixed31_32 ratio)
const uint16_t *spl_get_filter_4tap_64p(struct fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_one.value)
if (ratio.value < dc_fixpt_one.value)
return filter_4tap_64p_upscale;
else if (ratio.value < spl_fixpt_from_fraction(4, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_4tap_64p_116;
else if (ratio.value < spl_fixpt_from_fraction(5, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_4tap_64p_149;
else
return filter_4tap_64p_183;
}
const uint16_t *spl_get_filter_5tap_64p(struct spl_fixed31_32 ratio)
const uint16_t *spl_get_filter_5tap_64p(struct fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_one.value)
if (ratio.value < dc_fixpt_one.value)
return filter_5tap_64p_upscale;
else if (ratio.value < spl_fixpt_from_fraction(4, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_5tap_64p_116;
else if (ratio.value < spl_fixpt_from_fraction(5, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_5tap_64p_149;
else
return filter_5tap_64p_183;
}
const uint16_t *spl_get_filter_6tap_64p(struct spl_fixed31_32 ratio)
const uint16_t *spl_get_filter_6tap_64p(struct fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_one.value)
if (ratio.value < dc_fixpt_one.value)
return filter_6tap_64p_upscale;
else if (ratio.value < spl_fixpt_from_fraction(4, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_6tap_64p_116;
else if (ratio.value < spl_fixpt_from_fraction(5, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_6tap_64p_149;
else
return filter_6tap_64p_183;
}
const uint16_t *spl_get_filter_7tap_64p(struct spl_fixed31_32 ratio)
const uint16_t *spl_get_filter_7tap_64p(struct fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_one.value)
if (ratio.value < dc_fixpt_one.value)
return filter_7tap_64p_upscale;
else if (ratio.value < spl_fixpt_from_fraction(4, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_7tap_64p_116;
else if (ratio.value < spl_fixpt_from_fraction(5, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_7tap_64p_149;
else
return filter_7tap_64p_183;
}
const uint16_t *spl_get_filter_8tap_64p(struct spl_fixed31_32 ratio)
const uint16_t *spl_get_filter_8tap_64p(struct fixed31_32 ratio)
{
if (ratio.value < spl_fixpt_one.value)
if (ratio.value < dc_fixpt_one.value)
return filter_8tap_64p_upscale;
else if (ratio.value < spl_fixpt_from_fraction(4, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(4, 3).value)
return filter_8tap_64p_116;
else if (ratio.value < spl_fixpt_from_fraction(5, 3).value)
else if (ratio.value < dc_fixpt_from_fraction(5, 3).value)
return filter_8tap_64p_149;
else
return filter_8tap_64p_183;
......@@ -1424,29 +1422,3 @@ const uint16_t *spl_get_filter_2tap_64p(void)
{
return filter_2tap_64p;
}
const uint16_t *spl_dscl_get_filter_coeffs_64p(int taps, struct spl_fixed31_32 ratio)
{
if (taps == 8)
return spl_get_filter_8tap_64p(ratio);
else if (taps == 7)
return spl_get_filter_7tap_64p(ratio);
else if (taps == 6)
return spl_get_filter_6tap_64p(ratio);
else if (taps == 5)
return spl_get_filter_5tap_64p(ratio);
else if (taps == 4)
return spl_get_filter_4tap_64p(ratio);
else if (taps == 3)
return spl_get_filter_3tap_64p(ratio);
else if (taps == 2)
return spl_get_filter_2tap_64p();
else if (taps == 1)
return NULL;
else {
/* should never happen, bug */
SPL_BREAK_TO_DEBUGGER();
return NULL;
}
}
......@@ -7,16 +7,53 @@
#include "dc_spl_types.h"
const uint16_t *spl_get_filter_3tap_16p(struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_3tap_64p(struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_4tap_16p(struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_4tap_64p(struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_5tap_64p(struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_6tap_64p(struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_7tap_64p(struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_8tap_64p(struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_3tap_16p(struct fixed31_32 ratio);
const uint16_t *spl_get_filter_3tap_64p(struct fixed31_32 ratio);
const uint16_t *spl_get_filter_4tap_16p(struct fixed31_32 ratio);
const uint16_t *spl_get_filter_4tap_64p(struct fixed31_32 ratio);
const uint16_t *spl_get_filter_5tap_64p(struct fixed31_32 ratio);
const uint16_t *spl_get_filter_6tap_64p(struct fixed31_32 ratio);
const uint16_t *spl_get_filter_7tap_64p(struct fixed31_32 ratio);
const uint16_t *spl_get_filter_8tap_64p(struct fixed31_32 ratio);
const uint16_t *spl_get_filter_2tap_16p(void);
const uint16_t *spl_get_filter_2tap_64p(void);
const uint16_t *spl_dscl_get_filter_coeffs_64p(int taps, struct spl_fixed31_32 ratio);
const uint16_t *spl_get_filter_3tap_16p_upscale(void);
const uint16_t *spl_get_filter_3tap_16p_116(void);
const uint16_t *spl_get_filter_3tap_16p_149(void);
const uint16_t *spl_get_filter_3tap_16p_183(void);
const uint16_t *spl_get_filter_4tap_16p_upscale(void);
const uint16_t *spl_get_filter_4tap_16p_116(void);
const uint16_t *spl_get_filter_4tap_16p_149(void);
const uint16_t *spl_get_filter_4tap_16p_183(void);
const uint16_t *spl_get_filter_3tap_64p_upscale(void);
const uint16_t *spl_get_filter_3tap_64p_116(void);
const uint16_t *spl_get_filter_3tap_64p_149(void);
const uint16_t *spl_get_filter_3tap_64p_183(void);
const uint16_t *spl_get_filter_4tap_64p_upscale(void);
const uint16_t *spl_get_filter_4tap_64p_116(void);
const uint16_t *spl_get_filter_4tap_64p_149(void);
const uint16_t *spl_get_filter_4tap_64p_183(void);
const uint16_t *spl_get_filter_5tap_64p_upscale(void);
const uint16_t *spl_get_filter_5tap_64p_116(void);
const uint16_t *spl_get_filter_5tap_64p_149(void);
const uint16_t *spl_get_filter_5tap_64p_183(void);
const uint16_t *spl_get_filter_6tap_64p_upscale(void);
const uint16_t *spl_get_filter_6tap_64p_116(void);
const uint16_t *spl_get_filter_6tap_64p_149(void);
const uint16_t *spl_get_filter_6tap_64p_183(void);
const uint16_t *spl_get_filter_7tap_64p_upscale(void);
const uint16_t *spl_get_filter_7tap_64p_116(void);
const uint16_t *spl_get_filter_7tap_64p_149(void);
const uint16_t *spl_get_filter_7tap_64p_183(void);
const uint16_t *spl_get_filter_8tap_64p_upscale(void);
const uint16_t *spl_get_filter_8tap_64p_116(void);
const uint16_t *spl_get_filter_8tap_64p_149(void);
const uint16_t *spl_get_filter_8tap_64p_183(void);
#endif /* __DC_SPL_SCL_FILTERS_H__ */
/*
* Copyright 2012-16 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
......@@ -2,15 +2,14 @@
//
// Copyright 2024 Advanced Micro Devices, Inc.
#include "os_types.h" // swap
#ifndef ASSERT
#define ASSERT(_bool) ((void *)0)
#endif
#include "include/fixed31_32.h" // fixed31_32 and related functions
#ifndef __DC_SPL_TYPES_H__
#define __DC_SPL_TYPES_H__
#include "spl_os_types.h" // swap
#ifndef SPL_ASSERT
#define SPL_ASSERT(_bool) ((void *)0)
#endif
#include "spl_fixpt31_32.h" // fixed31_32 and related functions
enum lb_memory_config {
/* Enable all 3 pieces of memory */
LB_MEMORY_CONFIG_0 = 0,
......@@ -39,16 +38,16 @@ struct spl_rect {
};
struct spl_ratios {
struct spl_fixed31_32 horz;
struct spl_fixed31_32 vert;
struct spl_fixed31_32 horz_c;
struct spl_fixed31_32 vert_c;
struct fixed31_32 horz;
struct fixed31_32 vert;
struct fixed31_32 horz_c;
struct fixed31_32 vert_c;
};
struct spl_inits {
struct spl_fixed31_32 h;
struct spl_fixed31_32 h_c;
struct spl_fixed31_32 v;
struct spl_fixed31_32 v_c;
struct fixed31_32 h;
struct fixed31_32 h_c;
struct fixed31_32 v;
struct fixed31_32 v_c;
};
struct spl_taps {
......@@ -81,8 +80,6 @@ enum spl_pixel_format {
SPL_PIXEL_FORMAT_420BPP10,
/*end of pixel format definition*/
SPL_PIXEL_FORMAT_INVALID,
SPL_PIXEL_FORMAT_422BPP8,
SPL_PIXEL_FORMAT_422BPP10,
SPL_PIXEL_FORMAT_GRPH_BEGIN = SPL_PIXEL_FORMAT_INDEX8,
SPL_PIXEL_FORMAT_GRPH_END = SPL_PIXEL_FORMAT_FP16,
SPL_PIXEL_FORMAT_VIDEO_BEGIN = SPL_PIXEL_FORMAT_420BPP8,
......@@ -138,7 +135,6 @@ struct spl_scaler_data {
struct spl_rect viewport_c;
struct spl_rect recout;
struct spl_ratios ratios;
struct spl_ratios recip_ratios;
struct spl_inits inits;
};
......@@ -408,16 +404,11 @@ struct dscl_prog_data {
const uint16_t *filter_blur_scale_h;
};
/* SPL input and output definitions */
// SPL scratch struct
struct spl_scratch {
// Pack all SPL outputs in scl_data
struct spl_scaler_data scl_data;
};
/* SPL input and output definitions */
// SPL outputs struct
struct spl_out {
// Pack all SPL outputs in scl_data
struct spl_scaler_data scl_data;
// Pack all output need to program hw registers
struct dscl_prog_data *dscl_prog_data;
};
......@@ -500,10 +491,6 @@ struct spl_in {
bool prefer_easf;
bool disable_easf;
struct spl_debug debug;
bool is_fullscreen;
bool is_hdr_on;
int h_active;
int v_active;
};
// end of SPL inputs
......
/* Copyright 1997-2004 Advanced Micro Devices, Inc. All rights reserved. */
#ifndef SPL_DEBUG_H
#define SPL_DEBUG_H
#ifdef SPL_ASSERT
#undef SPL_ASSERT
#endif
#define SPL_ASSERT(b)
#define SPL_ASSERT_CRITICAL(expr) do {if (expr)/* Do nothing */; } while (0)
#ifdef SPL_DALMSG
#undef SPL_DALMSG
#endif
#define SPL_DALMSG(b)
#ifdef SPL_DAL_ASSERT_MSG
#undef SPL_DAL_ASSERT_MSG
#endif
#define SPL_DAL_ASSERT_MSG(b, m)
#endif // SPL_DEBUG_H
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "spl_fixpt31_32.h"
static const struct spl_fixed31_32 spl_fixpt_two_pi = { 26986075409LL };
static const struct spl_fixed31_32 spl_fixpt_ln2 = { 2977044471LL };
static const struct spl_fixed31_32 spl_fixpt_ln2_div_2 = { 1488522236LL };
static inline unsigned long long abs_i64(
long long arg)
{
if (arg > 0)
return (unsigned long long)arg;
else
return (unsigned long long)(-arg);
}
/*
* @brief
* result = dividend / divisor
* *remainder = dividend % divisor
*/
static inline unsigned long long complete_integer_division_u64(
unsigned long long dividend,
unsigned long long divisor,
unsigned long long *remainder)
{
unsigned long long result;
ASSERT(divisor);
result = spl_div64_u64_rem(dividend, divisor, remainder);
return result;
}
#define FRACTIONAL_PART_MASK \
((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
#define GET_INTEGER_PART(x) \
((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
#define GET_FRACTIONAL_PART(x) \
(FRACTIONAL_PART_MASK & (x))
struct spl_fixed31_32 spl_fixpt_from_fraction(long long numerator, long long denominator)
{
struct spl_fixed31_32 res;
bool arg1_negative = numerator < 0;
bool arg2_negative = denominator < 0;
unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
unsigned long long remainder;
/* determine integer part */
unsigned long long res_value = complete_integer_division_u64(
arg1_value, arg2_value, &remainder);
ASSERT(res_value <= LONG_MAX);
/* determine fractional part */
{
unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
do {
remainder <<= 1;
res_value <<= 1;
if (remainder >= arg2_value) {
res_value |= 1;
remainder -= arg2_value;
}
} while (--i != 0);
}
/* round up LSB */
{
unsigned long long summand = (remainder << 1) >= arg2_value;
ASSERT(res_value <= LLONG_MAX - summand);
res_value += summand;
}
res.value = (long long)res_value;
if (arg1_negative ^ arg2_negative)
res.value = -res.value;
return res;
}
struct spl_fixed31_32 spl_fixpt_mul(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
struct spl_fixed31_32 res;
bool arg1_negative = arg1.value < 0;
bool arg2_negative = arg2.value < 0;
unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
unsigned long long tmp;
res.value = arg1_int * arg2_int;
ASSERT(res.value <= (long long)LONG_MAX);
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
tmp = arg1_int * arg2_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg2_int * arg1_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg1_fra * arg2_fra;
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
(tmp >= (unsigned long long)spl_fixpt_half.value);
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
if (arg1_negative ^ arg2_negative)
res.value = -res.value;
return res;
}
struct spl_fixed31_32 spl_fixpt_sqr(struct spl_fixed31_32 arg)
{
struct spl_fixed31_32 res;
unsigned long long arg_value = abs_i64(arg.value);
unsigned long long arg_int = GET_INTEGER_PART(arg_value);
unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
unsigned long long tmp;
res.value = arg_int * arg_int;
ASSERT(res.value <= (long long)LONG_MAX);
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
tmp = arg_int * arg_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg_fra * arg_fra;
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
(tmp >= (unsigned long long)spl_fixpt_half.value);
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
return res;
}
struct spl_fixed31_32 spl_fixpt_recip(struct spl_fixed31_32 arg)
{
/*
* @note
* Good idea to use Newton's method
*/
ASSERT(arg.value);
return spl_fixpt_from_fraction(
spl_fixpt_one.value,
arg.value);
}
struct spl_fixed31_32 spl_fixpt_sinc(struct spl_fixed31_32 arg)
{
struct spl_fixed31_32 square;
struct spl_fixed31_32 res = spl_fixpt_one;
int n = 27;
struct spl_fixed31_32 arg_norm = arg;
if (spl_fixpt_le(
spl_fixpt_two_pi,
spl_fixpt_abs(arg))) {
arg_norm = spl_fixpt_sub(
arg_norm,
spl_fixpt_mul_int(
spl_fixpt_two_pi,
(int)spl_div64_s64(
arg_norm.value,
spl_fixpt_two_pi.value)));
}
square = spl_fixpt_sqr(arg_norm);
do {
res = spl_fixpt_sub(
spl_fixpt_one,
spl_fixpt_div_int(
spl_fixpt_mul(
square,
res),
n * (n - 1)));
n -= 2;
} while (n > 2);
if (arg.value != arg_norm.value)
res = spl_fixpt_div(
spl_fixpt_mul(res, arg_norm),
arg);
return res;
}
struct spl_fixed31_32 spl_fixpt_sin(struct spl_fixed31_32 arg)
{
return spl_fixpt_mul(
arg,
spl_fixpt_sinc(arg));
}
struct spl_fixed31_32 spl_fixpt_cos(struct spl_fixed31_32 arg)
{
/* TODO implement argument normalization */
const struct spl_fixed31_32 square = spl_fixpt_sqr(arg);
struct spl_fixed31_32 res = spl_fixpt_one;
int n = 26;
do {
res = spl_fixpt_sub(
spl_fixpt_one,
spl_fixpt_div_int(
spl_fixpt_mul(
square,
res),
n * (n - 1)));
n -= 2;
} while (n != 0);
return res;
}
/*
* @brief
* result = exp(arg),
* where abs(arg) < 1
*
* Calculated as Taylor series.
*/
static struct spl_fixed31_32 fixed31_32_exp_from_taylor_series(struct spl_fixed31_32 arg)
{
unsigned int n = 9;
struct spl_fixed31_32 res = spl_fixpt_from_fraction(
n + 2,
n + 1);
/* TODO find correct res */
ASSERT(spl_fixpt_lt(arg, spl_fixpt_one));
do
res = spl_fixpt_add(
spl_fixpt_one,
spl_fixpt_div_int(
spl_fixpt_mul(
arg,
res),
n));
while (--n != 1);
return spl_fixpt_add(
spl_fixpt_one,
spl_fixpt_mul(
arg,
res));
}
struct spl_fixed31_32 spl_fixpt_exp(struct spl_fixed31_32 arg)
{
/*
* @brief
* Main equation is:
* exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
* where m = round(x / ln(2)), r = x - m * ln(2)
*/
if (spl_fixpt_le(
spl_fixpt_ln2_div_2,
spl_fixpt_abs(arg))) {
int m = spl_fixpt_round(
spl_fixpt_div(
arg,
spl_fixpt_ln2));
struct spl_fixed31_32 r = spl_fixpt_sub(
arg,
spl_fixpt_mul_int(
spl_fixpt_ln2,
m));
ASSERT(m != 0);
ASSERT(spl_fixpt_lt(
spl_fixpt_abs(r),
spl_fixpt_one));
if (m > 0)
return spl_fixpt_shl(
fixed31_32_exp_from_taylor_series(r),
(unsigned char)m);
else
return spl_fixpt_div_int(
fixed31_32_exp_from_taylor_series(r),
1LL << -m);
} else if (arg.value != 0)
return fixed31_32_exp_from_taylor_series(arg);
else
return spl_fixpt_one;
}
struct spl_fixed31_32 spl_fixpt_log(struct spl_fixed31_32 arg)
{
struct spl_fixed31_32 res = spl_fixpt_neg(spl_fixpt_one);
/* TODO improve 1st estimation */
struct spl_fixed31_32 error;
ASSERT(arg.value > 0);
/* TODO if arg is negative, return NaN */
/* TODO if arg is zero, return -INF */
do {
struct spl_fixed31_32 res1 = spl_fixpt_add(
spl_fixpt_sub(
res,
spl_fixpt_one),
spl_fixpt_div(
arg,
spl_fixpt_exp(res)));
error = spl_fixpt_sub(
res,
res1);
res = res1;
/* TODO determine max_allowed_error based on quality of exp() */
} while (abs_i64(error.value) > 100ULL);
return res;
}
/* this function is a generic helper to translate fixed point value to
* specified integer format that will consist of integer_bits integer part and
* fractional_bits fractional part. For example it is used in
* spl_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
* part in 32 bits. It is used in hw programming (scaler)
*/
static inline unsigned int ux_dy(
long long value,
unsigned int integer_bits,
unsigned int fractional_bits)
{
/* 1. create mask of integer part */
unsigned int result = (1 << integer_bits) - 1;
/* 2. mask out fractional part */
unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
/* 3. shrink fixed point integer part to be of integer_bits width*/
result &= GET_INTEGER_PART(value);
/* 4. make space for fractional part to be filled in after integer */
result <<= fractional_bits;
/* 5. shrink fixed point fractional part to of fractional_bits width*/
fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
/* 6. merge the result */
return result | fractional_part;
}
static inline unsigned int clamp_ux_dy(
long long value,
unsigned int integer_bits,
unsigned int fractional_bits,
unsigned int min_clamp)
{
unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
return (1 << (integer_bits + fractional_bits)) - 1;
else if (truncated_val > min_clamp)
return truncated_val;
else
return min_clamp;
}
unsigned int spl_fixpt_u4d19(struct spl_fixed31_32 arg)
{
return ux_dy(arg.value, 4, 19);
}
unsigned int spl_fixpt_u3d19(struct spl_fixed31_32 arg)
{
return ux_dy(arg.value, 3, 19);
}
unsigned int spl_fixpt_u2d19(struct spl_fixed31_32 arg)
{
return ux_dy(arg.value, 2, 19);
}
unsigned int spl_fixpt_u0d19(struct spl_fixed31_32 arg)
{
return ux_dy(arg.value, 0, 19);
}
unsigned int spl_fixpt_clamp_u0d14(struct spl_fixed31_32 arg)
{
return clamp_ux_dy(arg.value, 0, 14, 1);
}
unsigned int spl_fixpt_clamp_u0d10(struct spl_fixed31_32 arg)
{
return clamp_ux_dy(arg.value, 0, 10, 1);
}
int spl_fixpt_s4d19(struct spl_fixed31_32 arg)
{
if (arg.value < 0)
return -(int)ux_dy(spl_fixpt_abs(arg).value, 4, 19);
else
return ux_dy(arg.value, 4, 19);
}
struct spl_fixed31_32 spl_fixpt_from_ux_dy(unsigned int value,
unsigned int integer_bits,
unsigned int fractional_bits)
{
struct spl_fixed31_32 fixpt_value = spl_fixpt_zero;
struct spl_fixed31_32 fixpt_int_value = spl_fixpt_zero;
long long frac_mask = ((long long)1 << (long long)integer_bits) - 1;
fixpt_value.value = (long long)value << (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
frac_mask = frac_mask << fractional_bits;
fixpt_int_value.value = value & frac_mask;
fixpt_int_value.value <<= (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
fixpt_value.value |= fixpt_int_value.value;
return fixpt_value;
}
struct spl_fixed31_32 spl_fixpt_from_int_dy(unsigned int int_value,
unsigned int frac_value,
unsigned int integer_bits,
unsigned int fractional_bits)
{
struct spl_fixed31_32 fixpt_value = spl_fixpt_from_int(int_value);
fixpt_value.value |= (long long)frac_value << (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
return fixpt_value;
}
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __SPL_FIXED31_32_H__
#define __SPL_FIXED31_32_H__
#include "os_types.h"
#include "spl_os_types.h" // swap
#ifndef ASSERT
#define ASSERT(_bool) ((void *)0)
#endif
#ifndef LLONG_MAX
#define LLONG_MAX 9223372036854775807ll
#endif
#ifndef LLONG_MIN
#define LLONG_MIN (-LLONG_MAX - 1ll)
#endif
#define FIXED31_32_BITS_PER_FRACTIONAL_PART 32
#ifndef LLONG_MIN
#define LLONG_MIN (1LL<<63)
#endif
#ifndef LLONG_MAX
#define LLONG_MAX (-1LL>>1)
#endif
/*
* @brief
* Arithmetic operations on real numbers
* represented as fixed-point numbers.
* There are: 1 bit for sign,
* 31 bit for integer part,
* 32 bits for fractional part.
*
* @note
* Currently, overflows and underflows are asserted;
* no special result returned.
*/
struct spl_fixed31_32 {
long long value;
};
/*
* @brief
* Useful constants
*/
static const struct spl_fixed31_32 spl_fixpt_zero = { 0 };
static const struct spl_fixed31_32 spl_fixpt_epsilon = { 1LL };
static const struct spl_fixed31_32 spl_fixpt_half = { 0x80000000LL };
static const struct spl_fixed31_32 spl_fixpt_one = { 0x100000000LL };
/*
* @brief
* Initialization routines
*/
/*
* @brief
* result = numerator / denominator
*/
struct spl_fixed31_32 spl_fixpt_from_fraction(long long numerator, long long denominator);
/*
* @brief
* result = arg
*/
static inline struct spl_fixed31_32 spl_fixpt_from_int(int arg)
{
struct spl_fixed31_32 res;
res.value = (long long) arg << FIXED31_32_BITS_PER_FRACTIONAL_PART;
return res;
}
/*
* @brief
* Unary operators
*/
/*
* @brief
* result = -arg
*/
static inline struct spl_fixed31_32 spl_fixpt_neg(struct spl_fixed31_32 arg)
{
struct spl_fixed31_32 res;
res.value = -arg.value;
return res;
}
/*
* @brief
* result = abs(arg) := (arg >= 0) ? arg : -arg
*/
static inline struct spl_fixed31_32 spl_fixpt_abs(struct spl_fixed31_32 arg)
{
if (arg.value < 0)
return spl_fixpt_neg(arg);
else
return arg;
}
/*
* @brief
* Binary relational operators
*/
/*
* @brief
* result = arg1 < arg2
*/
static inline bool spl_fixpt_lt(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
return arg1.value < arg2.value;
}
/*
* @brief
* result = arg1 <= arg2
*/
static inline bool spl_fixpt_le(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
return arg1.value <= arg2.value;
}
/*
* @brief
* result = arg1 == arg2
*/
static inline bool spl_fixpt_eq(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
return arg1.value == arg2.value;
}
/*
* @brief
* result = min(arg1, arg2) := (arg1 <= arg2) ? arg1 : arg2
*/
static inline struct spl_fixed31_32 spl_fixpt_min(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
if (arg1.value <= arg2.value)
return arg1;
else
return arg2;
}
/*
* @brief
* result = max(arg1, arg2) := (arg1 <= arg2) ? arg2 : arg1
*/
static inline struct spl_fixed31_32 spl_fixpt_max(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
if (arg1.value <= arg2.value)
return arg2;
else
return arg1;
}
/*
* @brief
* | min_value, when arg <= min_value
* result = | arg, when min_value < arg < max_value
* | max_value, when arg >= max_value
*/
static inline struct spl_fixed31_32 spl_fixpt_clamp(
struct spl_fixed31_32 arg,
struct spl_fixed31_32 min_value,
struct spl_fixed31_32 max_value)
{
if (spl_fixpt_le(arg, min_value))
return min_value;
else if (spl_fixpt_le(max_value, arg))
return max_value;
else
return arg;
}
/*
* @brief
* Binary shift operators
*/
/*
* @brief
* result = arg << shift
*/
static inline struct spl_fixed31_32 spl_fixpt_shl(struct spl_fixed31_32 arg, unsigned char shift)
{
ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) ||
((arg.value < 0) && (arg.value >= ~(LLONG_MAX >> shift))));
arg.value = arg.value << shift;
return arg;
}
/*
* @brief
* result = arg >> shift
*/
static inline struct spl_fixed31_32 spl_fixpt_shr(struct spl_fixed31_32 arg, unsigned char shift)
{
bool negative = arg.value < 0;
if (negative)
arg.value = -arg.value;
arg.value = arg.value >> shift;
if (negative)
arg.value = -arg.value;
return arg;
}
/*
* @brief
* Binary additive operators
*/
/*
* @brief
* result = arg1 + arg2
*/
static inline struct spl_fixed31_32 spl_fixpt_add(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
struct spl_fixed31_32 res;
ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) ||
((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value)));
res.value = arg1.value + arg2.value;
return res;
}
/*
* @brief
* result = arg1 + arg2
*/
static inline struct spl_fixed31_32 spl_fixpt_add_int(struct spl_fixed31_32 arg1, int arg2)
{
return spl_fixpt_add(arg1, spl_fixpt_from_int(arg2));
}
/*
* @brief
* result = arg1 - arg2
*/
static inline struct spl_fixed31_32 spl_fixpt_sub(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
struct spl_fixed31_32 res;
ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) ||
((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value)));
res.value = arg1.value - arg2.value;
return res;
}
/*
* @brief
* result = arg1 - arg2
*/
static inline struct spl_fixed31_32 spl_fixpt_sub_int(struct spl_fixed31_32 arg1, int arg2)
{
return spl_fixpt_sub(arg1, spl_fixpt_from_int(arg2));
}
/*
* @brief
* Binary multiplicative operators
*/
/*
* @brief
* result = arg1 * arg2
*/
struct spl_fixed31_32 spl_fixpt_mul(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2);
/*
* @brief
* result = arg1 * arg2
*/
static inline struct spl_fixed31_32 spl_fixpt_mul_int(struct spl_fixed31_32 arg1, int arg2)
{
return spl_fixpt_mul(arg1, spl_fixpt_from_int(arg2));
}
/*
* @brief
* result = square(arg) := arg * arg
*/
struct spl_fixed31_32 spl_fixpt_sqr(struct spl_fixed31_32 arg);
/*
* @brief
* result = arg1 / arg2
*/
static inline struct spl_fixed31_32 spl_fixpt_div_int(struct spl_fixed31_32 arg1, long long arg2)
{
return spl_fixpt_from_fraction(arg1.value, spl_fixpt_from_int((int)arg2).value);
}
/*
* @brief
* result = arg1 / arg2
*/
static inline struct spl_fixed31_32 spl_fixpt_div(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
return spl_fixpt_from_fraction(arg1.value, arg2.value);
}
/*
* @brief
* Reciprocal function
*/
/*
* @brief
* result = reciprocal(arg) := 1 / arg
*
* @note
* No special actions taken in case argument is zero.
*/
struct spl_fixed31_32 spl_fixpt_recip(struct spl_fixed31_32 arg);
/*
* @brief
* Trigonometric functions
*/
/*
* @brief
* result = sinc(arg) := sin(arg) / arg
*
* @note
* Argument specified in radians,
* internally it's normalized to [-2pi...2pi] range.
*/
struct spl_fixed31_32 spl_fixpt_sinc(struct spl_fixed31_32 arg);
/*
* @brief
* result = sin(arg)
*
* @note
* Argument specified in radians,
* internally it's normalized to [-2pi...2pi] range.
*/
struct spl_fixed31_32 spl_fixpt_sin(struct spl_fixed31_32 arg);
/*
* @brief
* result = cos(arg)
*
* @note
* Argument specified in radians
* and should be in [-2pi...2pi] range -
* passing arguments outside that range
* will cause incorrect result!
*/
struct spl_fixed31_32 spl_fixpt_cos(struct spl_fixed31_32 arg);
/*
* @brief
* Transcendent functions
*/
/*
* @brief
* result = exp(arg)
*
* @note
* Currently, function is verified for abs(arg) <= 1.
*/
struct spl_fixed31_32 spl_fixpt_exp(struct spl_fixed31_32 arg);
/*
* @brief
* result = log(arg)
*
* @note
* Currently, abs(arg) should be less than 1.
* No normalization is done.
* Currently, no special actions taken
* in case of invalid argument(s). Take care!
*/
struct spl_fixed31_32 spl_fixpt_log(struct spl_fixed31_32 arg);
/*
* @brief
* Power function
*/
/*
* @brief
* result = pow(arg1, arg2)
*
* @note
* Currently, abs(arg1) should be less than 1. Take care!
*/
static inline struct spl_fixed31_32 spl_fixpt_pow(struct spl_fixed31_32 arg1, struct spl_fixed31_32 arg2)
{
if (arg1.value == 0)
return arg2.value == 0 ? spl_fixpt_one : spl_fixpt_zero;
return spl_fixpt_exp(
spl_fixpt_mul(
spl_fixpt_log(arg1),
arg2));
}
/*
* @brief
* Rounding functions
*/
/*
* @brief
* result = floor(arg) := greatest integer lower than or equal to arg
*/
static inline int spl_fixpt_floor(struct spl_fixed31_32 arg)
{
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
if (arg.value >= 0)
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
else
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
}
/*
* @brief
* result = round(arg) := integer nearest to arg
*/
static inline int spl_fixpt_round(struct spl_fixed31_32 arg)
{
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
const long long summand = spl_fixpt_half.value;
ASSERT(LLONG_MAX - (long long)arg_value >= summand);
arg_value += summand;
if (arg.value >= 0)
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
else
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
}
/*
* @brief
* result = ceil(arg) := lowest integer greater than or equal to arg
*/
static inline int spl_fixpt_ceil(struct spl_fixed31_32 arg)
{
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
const long long summand = spl_fixpt_one.value -
spl_fixpt_epsilon.value;
ASSERT(LLONG_MAX - (long long)arg_value >= summand);
arg_value += summand;
if (arg.value >= 0)
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
else
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
}
/* the following two function are used in scaler hw programming to convert fixed
* point value to format 2 bits from integer part and 19 bits from fractional
* part. The same applies for u0d19, 0 bits from integer part and 19 bits from
* fractional
*/
unsigned int spl_fixpt_u4d19(struct spl_fixed31_32 arg);
unsigned int spl_fixpt_u3d19(struct spl_fixed31_32 arg);
unsigned int spl_fixpt_u2d19(struct spl_fixed31_32 arg);
unsigned int spl_fixpt_u0d19(struct spl_fixed31_32 arg);
unsigned int spl_fixpt_clamp_u0d14(struct spl_fixed31_32 arg);
unsigned int spl_fixpt_clamp_u0d10(struct spl_fixed31_32 arg);
int spl_fixpt_s4d19(struct spl_fixed31_32 arg);
static inline struct spl_fixed31_32 spl_fixpt_truncate(struct spl_fixed31_32 arg, unsigned int frac_bits)
{
bool negative = arg.value < 0;
if (frac_bits >= FIXED31_32_BITS_PER_FRACTIONAL_PART) {
ASSERT(frac_bits == FIXED31_32_BITS_PER_FRACTIONAL_PART);
return arg;
}
if (negative)
arg.value = -arg.value;
arg.value &= (~0ULL) << (FIXED31_32_BITS_PER_FRACTIONAL_PART - frac_bits);
if (negative)
arg.value = -arg.value;
return arg;
}
struct spl_fixed31_32 spl_fixpt_from_ux_dy(unsigned int value, unsigned int integer_bits, unsigned int fractional_bits);
struct spl_fixed31_32 spl_fixpt_from_int_dy(unsigned int int_value,
unsigned int frac_value,
unsigned int integer_bits,
unsigned int fractional_bits);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment