Commit f9efefdb authored by Stephen Boyd's avatar Stephen Boyd

Merge branches 'clk-baikal', 'clk-broadcom', 'clk-vc5' and 'clk-versaclock' into clk-next

 - Convert Baikal-T1 CCU driver to platform driver
 - Split reset support out of primary Baikal-T1 CCU driver
 - Add some missing clks required for RPiVid Video Decoder on RaspberryPi
 - Mark PLLC critical on bcm2835
 - Support for Renesas VersaClock7 clock generator family

* clk-baikal:
  clk: baikal-t1: Convert to platform device driver
  clk: baikal-t1: Add DDR/PCIe directly controlled resets support
  dt-bindings: clk: baikal-t1: Add DDR/PCIe reset IDs
  clk: baikal-t1: Move reset-controls code into a dedicated module
  clk: baikal-t1: Add SATA internal ref clock buffer
  clk: baikal-t1: Add shared xGMAC ref/ptp clocks internal parent
  clk: baikal-t1: Fix invalid xGMAC PTP clock divider
  clk: vc5: Fix 5P49V6901 outputs disabling when enabling FOD

* clk-broadcom:
  clk: bcm: rpi: Add support for VEC clock
  clk: bcm: rpi: Handle pixel clock in firmware
  clk: bcm: rpi: Add support HEVC clock
  clk: bcm2835: fix bcm2835_clock_rate_from_divisor declaration
  clk: bcm2835: Round UART input clock up
  clk: bcm2835: Make peripheral PLLC critical

* clk-vc5:
  clk: vc5: Add support for IDT/Renesas VersaClock 5P49V6975
  dt-bindings: clock: vc5: Add 5P49V6975
  clk: vc5: Use regmap_{set,clear}_bits() where appropriate
  clk: vc5: Check IO access results

* clk-versaclock:
  clk: Renesas versaclock7 ccf device driver
  dt-bindings: Renesas versaclock7 device tree bindings
...@@ -56,6 +56,7 @@ properties: ...@@ -56,6 +56,7 @@ properties:
- idt,5p49v5935 - idt,5p49v5935
- idt,5p49v6901 - idt,5p49v6901
- idt,5p49v6965 - idt,5p49v6965
- idt,5p49v6975
reg: reg:
description: I2C device address description: I2C device address
...@@ -134,6 +135,7 @@ allOf: ...@@ -134,6 +135,7 @@ allOf:
enum: enum:
- idt,5p49v5933 - idt,5p49v5933
- idt,5p49v5935 - idt,5p49v5935
- idt,5p49v6975
then: then:
# Devices with builtin crystal + optional external input # Devices with builtin crystal + optional external input
properties: properties:
......
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/clock/renesas,versaclock7.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Renesas Versaclock7 Programmable Clock Device Tree Bindings
maintainers:
- Alex Helms <alexander.helms.jy@renesas.com>
description: |
Renesas Versaclock7 is a family of configurable clock generator and
jitter attenuator ICs with fractional and integer dividers.
properties:
'#clock-cells':
const: 1
compatible:
enum:
- renesas,rc21008a
reg:
maxItems: 1
clocks:
items:
- description: External crystal or oscillator
clock-names:
items:
- const: xin
required:
- '#clock-cells'
- compatible
- reg
- clocks
- clock-names
additionalProperties: false
examples:
- |
vc7_xin: clock {
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <49152000>;
};
i2c@0 {
reg = <0x0 0x100>;
#address-cells = <1>;
#size-cells = <0>;
vc7: clock-controller@9 {
compatible = "renesas,rc21008a";
reg = <0x9>;
#clock-cells = <1>;
clocks = <&vc7_xin>;
clock-names = "xin";
};
};
...@@ -17442,6 +17442,12 @@ S: Maintained ...@@ -17442,6 +17442,12 @@ S: Maintained
F: Documentation/devicetree/bindings/mtd/renesas-nandc.yaml F: Documentation/devicetree/bindings/mtd/renesas-nandc.yaml
F: drivers/mtd/nand/raw/renesas-nand-controller.c F: drivers/mtd/nand/raw/renesas-nand-controller.c
RENESAS VERSACLOCK 7 CLOCK DRIVER
M: Alex Helms <alexander.helms.jy@renesas.com>
S: Maintained
F: Documentation/devicetree/bindings/clock/renesas,versaclock7.yaml
F: drivers/clk/clk-versaclock7.c
RESET CONTROLLER FRAMEWORK RESET CONTROLLER FRAMEWORK
M: Philipp Zabel <p.zabel@pengutronix.de> M: Philipp Zabel <p.zabel@pengutronix.de>
S: Maintained S: Maintained
......
...@@ -377,6 +377,15 @@ config COMMON_CLK_VC5 ...@@ -377,6 +377,15 @@ config COMMON_CLK_VC5
This driver supports the IDT VersaClock 5 and VersaClock 6 This driver supports the IDT VersaClock 5 and VersaClock 6
programmable clock generators. programmable clock generators.
config COMMON_CLK_VC7
tristate "Clock driver for Renesas Versaclock 7 devices"
depends on I2C
depends on OF
select REGMAP_I2C
help
Renesas Versaclock7 is a family of configurable clock generator
and jitter attenuator ICs with fractional and integer dividers.
config COMMON_CLK_STM32MP135 config COMMON_CLK_STM32MP135
def_bool COMMON_CLK && MACH_STM32MP13 def_bool COMMON_CLK && MACH_STM32MP13
help help
......
...@@ -73,6 +73,7 @@ obj-$(CONFIG_CLK_TWL6040) += clk-twl6040.o ...@@ -73,6 +73,7 @@ obj-$(CONFIG_CLK_TWL6040) += clk-twl6040.o
obj-$(CONFIG_ARCH_VT8500) += clk-vt8500.o obj-$(CONFIG_ARCH_VT8500) += clk-vt8500.o
obj-$(CONFIG_COMMON_CLK_RS9_PCIE) += clk-renesas-pcie.o obj-$(CONFIG_COMMON_CLK_RS9_PCIE) += clk-renesas-pcie.o
obj-$(CONFIG_COMMON_CLK_VC5) += clk-versaclock5.o obj-$(CONFIG_COMMON_CLK_VC5) += clk-versaclock5.o
obj-$(CONFIG_COMMON_CLK_VC7) += clk-versaclock7.o
obj-$(CONFIG_COMMON_CLK_WM831X) += clk-wm831x.o obj-$(CONFIG_COMMON_CLK_WM831X) += clk-wm831x.o
obj-$(CONFIG_COMMON_CLK_XGENE) += clk-xgene.o obj-$(CONFIG_COMMON_CLK_XGENE) += clk-xgene.o
......
...@@ -29,7 +29,6 @@ config CLK_BT1_CCU_PLL ...@@ -29,7 +29,6 @@ config CLK_BT1_CCU_PLL
config CLK_BT1_CCU_DIV config CLK_BT1_CCU_DIV
bool "Baikal-T1 CCU Dividers support" bool "Baikal-T1 CCU Dividers support"
select RESET_CONTROLLER
select MFD_SYSCON select MFD_SYSCON
default MIPS_BAIKAL_T1 default MIPS_BAIKAL_T1
help help
...@@ -39,4 +38,15 @@ config CLK_BT1_CCU_DIV ...@@ -39,4 +38,15 @@ config CLK_BT1_CCU_DIV
either gateable or ungateable. Some of the CCU dividers can be as well either gateable or ungateable. Some of the CCU dividers can be as well
used to reset the domains they're supplying clock to. used to reset the domains they're supplying clock to.
config CLK_BT1_CCU_RST
bool "Baikal-T1 CCU Resets support"
select RESET_CONTROLLER
select MFD_SYSCON
default MIPS_BAIKAL_T1
help
Enable this to support the CCU reset blocks responsible for the
AXI-bus and some subsystems reset. These are mainly the
self-deasserted reset controls but there are several lines which
can be directly asserted/de-asserted (PCIe and DDR sub-domains).
endif endif
# SPDX-License-Identifier: GPL-2.0-only # SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_CLK_BT1_CCU_PLL) += ccu-pll.o clk-ccu-pll.o obj-$(CONFIG_CLK_BT1_CCU_PLL) += ccu-pll.o clk-ccu-pll.o
obj-$(CONFIG_CLK_BT1_CCU_DIV) += ccu-div.o clk-ccu-div.o obj-$(CONFIG_CLK_BT1_CCU_DIV) += ccu-div.o clk-ccu-div.o
obj-$(CONFIG_CLK_BT1_CCU_RST) += ccu-rst.o
...@@ -34,9 +34,9 @@ ...@@ -34,9 +34,9 @@
#define CCU_DIV_CTL_CLKDIV_MASK(_width) \ #define CCU_DIV_CTL_CLKDIV_MASK(_width) \
GENMASK((_width) + CCU_DIV_CTL_CLKDIV_FLD - 1, CCU_DIV_CTL_CLKDIV_FLD) GENMASK((_width) + CCU_DIV_CTL_CLKDIV_FLD - 1, CCU_DIV_CTL_CLKDIV_FLD)
#define CCU_DIV_CTL_LOCK_SHIFTED BIT(27) #define CCU_DIV_CTL_LOCK_SHIFTED BIT(27)
#define CCU_DIV_CTL_GATE_REF_BUF BIT(28)
#define CCU_DIV_CTL_LOCK_NORMAL BIT(31) #define CCU_DIV_CTL_LOCK_NORMAL BIT(31)
#define CCU_DIV_RST_DELAY_US 1
#define CCU_DIV_LOCK_CHECK_RETRIES 50 #define CCU_DIV_LOCK_CHECK_RETRIES 50
#define CCU_DIV_CLKDIV_MIN 0 #define CCU_DIV_CLKDIV_MIN 0
...@@ -170,6 +170,40 @@ static int ccu_div_gate_is_enabled(struct clk_hw *hw) ...@@ -170,6 +170,40 @@ static int ccu_div_gate_is_enabled(struct clk_hw *hw)
return !!(val & CCU_DIV_CTL_EN); return !!(val & CCU_DIV_CTL_EN);
} }
static int ccu_div_buf_enable(struct clk_hw *hw)
{
struct ccu_div *div = to_ccu_div(hw);
unsigned long flags;
spin_lock_irqsave(&div->lock, flags);
regmap_update_bits(div->sys_regs, div->reg_ctl,
CCU_DIV_CTL_GATE_REF_BUF, 0);
spin_unlock_irqrestore(&div->lock, flags);
return 0;
}
static void ccu_div_buf_disable(struct clk_hw *hw)
{
struct ccu_div *div = to_ccu_div(hw);
unsigned long flags;
spin_lock_irqsave(&div->lock, flags);
regmap_update_bits(div->sys_regs, div->reg_ctl,
CCU_DIV_CTL_GATE_REF_BUF, CCU_DIV_CTL_GATE_REF_BUF);
spin_unlock_irqrestore(&div->lock, flags);
}
static int ccu_div_buf_is_enabled(struct clk_hw *hw)
{
struct ccu_div *div = to_ccu_div(hw);
u32 val = 0;
regmap_read(div->sys_regs, div->reg_ctl, &val);
return !(val & CCU_DIV_CTL_GATE_REF_BUF);
}
static unsigned long ccu_div_var_recalc_rate(struct clk_hw *hw, static unsigned long ccu_div_var_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate) unsigned long parent_rate)
{ {
...@@ -288,24 +322,6 @@ static int ccu_div_fixed_set_rate(struct clk_hw *hw, unsigned long rate, ...@@ -288,24 +322,6 @@ static int ccu_div_fixed_set_rate(struct clk_hw *hw, unsigned long rate,
return 0; return 0;
} }
int ccu_div_reset_domain(struct ccu_div *div)
{
unsigned long flags;
if (!div || !(div->features & CCU_DIV_RESET_DOMAIN))
return -EINVAL;
spin_lock_irqsave(&div->lock, flags);
regmap_update_bits(div->sys_regs, div->reg_ctl,
CCU_DIV_CTL_RST, CCU_DIV_CTL_RST);
spin_unlock_irqrestore(&div->lock, flags);
/* The next delay must be enough to cover all the resets. */
udelay(CCU_DIV_RST_DELAY_US);
return 0;
}
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
struct ccu_div_dbgfs_bit { struct ccu_div_dbgfs_bit {
...@@ -323,6 +339,7 @@ static const struct ccu_div_dbgfs_bit ccu_div_bits[] = { ...@@ -323,6 +339,7 @@ static const struct ccu_div_dbgfs_bit ccu_div_bits[] = {
CCU_DIV_DBGFS_BIT_ATTR("div_en", CCU_DIV_CTL_EN), CCU_DIV_DBGFS_BIT_ATTR("div_en", CCU_DIV_CTL_EN),
CCU_DIV_DBGFS_BIT_ATTR("div_rst", CCU_DIV_CTL_RST), CCU_DIV_DBGFS_BIT_ATTR("div_rst", CCU_DIV_CTL_RST),
CCU_DIV_DBGFS_BIT_ATTR("div_bypass", CCU_DIV_CTL_SET_CLKDIV), CCU_DIV_DBGFS_BIT_ATTR("div_bypass", CCU_DIV_CTL_SET_CLKDIV),
CCU_DIV_DBGFS_BIT_ATTR("div_buf", CCU_DIV_CTL_GATE_REF_BUF),
CCU_DIV_DBGFS_BIT_ATTR("div_lock", CCU_DIV_CTL_LOCK_NORMAL) CCU_DIV_DBGFS_BIT_ATTR("div_lock", CCU_DIV_CTL_LOCK_NORMAL)
}; };
...@@ -441,6 +458,9 @@ static void ccu_div_var_debug_init(struct clk_hw *hw, struct dentry *dentry) ...@@ -441,6 +458,9 @@ static void ccu_div_var_debug_init(struct clk_hw *hw, struct dentry *dentry)
continue; continue;
} }
if (!strcmp("div_buf", name))
continue;
bits[didx] = ccu_div_bits[bidx]; bits[didx] = ccu_div_bits[bidx];
bits[didx].div = div; bits[didx].div = div;
...@@ -477,6 +497,21 @@ static void ccu_div_gate_debug_init(struct clk_hw *hw, struct dentry *dentry) ...@@ -477,6 +497,21 @@ static void ccu_div_gate_debug_init(struct clk_hw *hw, struct dentry *dentry)
&ccu_div_dbgfs_fixed_clkdiv_fops); &ccu_div_dbgfs_fixed_clkdiv_fops);
} }
static void ccu_div_buf_debug_init(struct clk_hw *hw, struct dentry *dentry)
{
struct ccu_div *div = to_ccu_div(hw);
struct ccu_div_dbgfs_bit *bit;
bit = kmalloc(sizeof(*bit), GFP_KERNEL);
if (!bit)
return;
*bit = ccu_div_bits[3];
bit->div = div;
debugfs_create_file_unsafe(bit->name, ccu_div_dbgfs_mode, dentry, bit,
&ccu_div_dbgfs_bit_fops);
}
static void ccu_div_fixed_debug_init(struct clk_hw *hw, struct dentry *dentry) static void ccu_div_fixed_debug_init(struct clk_hw *hw, struct dentry *dentry)
{ {
struct ccu_div *div = to_ccu_div(hw); struct ccu_div *div = to_ccu_div(hw);
...@@ -489,6 +524,7 @@ static void ccu_div_fixed_debug_init(struct clk_hw *hw, struct dentry *dentry) ...@@ -489,6 +524,7 @@ static void ccu_div_fixed_debug_init(struct clk_hw *hw, struct dentry *dentry)
#define ccu_div_var_debug_init NULL #define ccu_div_var_debug_init NULL
#define ccu_div_gate_debug_init NULL #define ccu_div_gate_debug_init NULL
#define ccu_div_buf_debug_init NULL
#define ccu_div_fixed_debug_init NULL #define ccu_div_fixed_debug_init NULL
#endif /* !CONFIG_DEBUG_FS */ #endif /* !CONFIG_DEBUG_FS */
...@@ -520,6 +556,13 @@ static const struct clk_ops ccu_div_gate_ops = { ...@@ -520,6 +556,13 @@ static const struct clk_ops ccu_div_gate_ops = {
.debug_init = ccu_div_gate_debug_init .debug_init = ccu_div_gate_debug_init
}; };
static const struct clk_ops ccu_div_buf_ops = {
.enable = ccu_div_buf_enable,
.disable = ccu_div_buf_disable,
.is_enabled = ccu_div_buf_is_enabled,
.debug_init = ccu_div_buf_debug_init
};
static const struct clk_ops ccu_div_fixed_ops = { static const struct clk_ops ccu_div_fixed_ops = {
.recalc_rate = ccu_div_fixed_recalc_rate, .recalc_rate = ccu_div_fixed_recalc_rate,
.round_rate = ccu_div_fixed_round_rate, .round_rate = ccu_div_fixed_round_rate,
...@@ -566,6 +609,8 @@ struct ccu_div *ccu_div_hw_register(const struct ccu_div_init_data *div_init) ...@@ -566,6 +609,8 @@ struct ccu_div *ccu_div_hw_register(const struct ccu_div_init_data *div_init)
} else if (div_init->type == CCU_DIV_GATE) { } else if (div_init->type == CCU_DIV_GATE) {
hw_init.ops = &ccu_div_gate_ops; hw_init.ops = &ccu_div_gate_ops;
div->divider = div_init->divider; div->divider = div_init->divider;
} else if (div_init->type == CCU_DIV_BUF) {
hw_init.ops = &ccu_div_buf_ops;
} else if (div_init->type == CCU_DIV_FIXED) { } else if (div_init->type == CCU_DIV_FIXED) {
hw_init.ops = &ccu_div_fixed_ops; hw_init.ops = &ccu_div_fixed_ops;
div->divider = div_init->divider; div->divider = div_init->divider;
...@@ -579,6 +624,7 @@ struct ccu_div *ccu_div_hw_register(const struct ccu_div_init_data *div_init) ...@@ -579,6 +624,7 @@ struct ccu_div *ccu_div_hw_register(const struct ccu_div_init_data *div_init)
goto err_free_div; goto err_free_div;
} }
parent_data.fw_name = div_init->parent_name; parent_data.fw_name = div_init->parent_name;
parent_data.name = div_init->parent_name;
hw_init.parent_data = &parent_data; hw_init.parent_data = &parent_data;
hw_init.num_parents = 1; hw_init.num_parents = 1;
......
...@@ -13,15 +13,26 @@ ...@@ -13,15 +13,26 @@
#include <linux/bits.h> #include <linux/bits.h>
#include <linux/of.h> #include <linux/of.h>
/*
* CCU Divider private clock IDs
* @CCU_SYS_SATA_CLK: CCU SATA internal clock
* @CCU_SYS_XGMAC_CLK: CCU XGMAC internal clock
*/
#define CCU_SYS_SATA_CLK -1
#define CCU_SYS_XGMAC_CLK -2
/* /*
* CCU Divider private flags * CCU Divider private flags
* @CCU_DIV_BASIC: Basic divider clock required by the kernel as early as
* possible.
* @CCU_DIV_SKIP_ONE: Due to some reason divider can't be set to 1. * @CCU_DIV_SKIP_ONE: Due to some reason divider can't be set to 1.
* It can be 0 though, which is functionally the same. * It can be 0 though, which is functionally the same.
* @CCU_DIV_SKIP_ONE_TO_THREE: For some reason divider can't be within [1,3]. * @CCU_DIV_SKIP_ONE_TO_THREE: For some reason divider can't be within [1,3].
* It can be either 0 or greater than 3. * It can be either 0 or greater than 3.
* @CCU_DIV_LOCK_SHIFTED: Find lock-bit at non-standard position. * @CCU_DIV_LOCK_SHIFTED: Find lock-bit at non-standard position.
* @CCU_DIV_RESET_DOMAIN: Provide reset clock domain method. * @CCU_DIV_RESET_DOMAIN: There is a clock domain reset handle.
*/ */
#define CCU_DIV_BASIC BIT(0)
#define CCU_DIV_SKIP_ONE BIT(1) #define CCU_DIV_SKIP_ONE BIT(1)
#define CCU_DIV_SKIP_ONE_TO_THREE BIT(2) #define CCU_DIV_SKIP_ONE_TO_THREE BIT(2)
#define CCU_DIV_LOCK_SHIFTED BIT(3) #define CCU_DIV_LOCK_SHIFTED BIT(3)
...@@ -31,11 +42,13 @@ ...@@ -31,11 +42,13 @@
* enum ccu_div_type - CCU Divider types * enum ccu_div_type - CCU Divider types
* @CCU_DIV_VAR: Clocks gate with variable divider. * @CCU_DIV_VAR: Clocks gate with variable divider.
* @CCU_DIV_GATE: Clocks gate with fixed divider. * @CCU_DIV_GATE: Clocks gate with fixed divider.
* @CCU_DIV_BUF: Clock gate with no divider.
* @CCU_DIV_FIXED: Ungateable clock with fixed divider. * @CCU_DIV_FIXED: Ungateable clock with fixed divider.
*/ */
enum ccu_div_type { enum ccu_div_type {
CCU_DIV_VAR, CCU_DIV_VAR,
CCU_DIV_GATE, CCU_DIV_GATE,
CCU_DIV_BUF,
CCU_DIV_FIXED CCU_DIV_FIXED
}; };
...@@ -105,6 +118,4 @@ struct ccu_div *ccu_div_hw_register(const struct ccu_div_init_data *init); ...@@ -105,6 +118,4 @@ struct ccu_div *ccu_div_hw_register(const struct ccu_div_init_data *init);
void ccu_div_hw_unregister(struct ccu_div *div); void ccu_div_hw_unregister(struct ccu_div *div);
int ccu_div_reset_domain(struct ccu_div *div);
#endif /* __CLK_BT1_CCU_DIV_H__ */ #endif /* __CLK_BT1_CCU_DIV_H__ */
...@@ -13,6 +13,12 @@ ...@@ -13,6 +13,12 @@
#include <linux/bits.h> #include <linux/bits.h>
#include <linux/of.h> #include <linux/of.h>
/*
* CCU PLL private flags
* @CCU_PLL_BASIC: Basic PLL required by the kernel as early as possible.
*/
#define CCU_PLL_BASIC BIT(0)
/* /*
* struct ccu_pll_init_data - CCU PLL initialization data * struct ccu_pll_init_data - CCU PLL initialization data
* @id: Clock private identifier. * @id: Clock private identifier.
...@@ -22,6 +28,7 @@ ...@@ -22,6 +28,7 @@
* @sys_regs: Baikal-T1 System Controller registers map. * @sys_regs: Baikal-T1 System Controller registers map.
* @np: Pointer to the node describing the CCU PLLs. * @np: Pointer to the node describing the CCU PLLs.
* @flags: PLL clock flags. * @flags: PLL clock flags.
* @features: PLL private features.
*/ */
struct ccu_pll_init_data { struct ccu_pll_init_data {
unsigned int id; unsigned int id;
...@@ -31,6 +38,7 @@ struct ccu_pll_init_data { ...@@ -31,6 +38,7 @@ struct ccu_pll_init_data {
struct regmap *sys_regs; struct regmap *sys_regs;
struct device_node *np; struct device_node *np;
unsigned long flags; unsigned long flags;
unsigned long features;
}; };
/* /*
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2021 BAIKAL ELECTRONICS, JSC
*
* Authors:
* Serge Semin <Sergey.Semin@baikalelectronics.ru>
*
* Baikal-T1 CCU Resets interface driver
*/
#define pr_fmt(fmt) "bt1-ccu-rst: " fmt
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/printk.h>
#include <linux/regmap.h>
#include <linux/reset-controller.h>
#include <linux/slab.h>
#include <dt-bindings/reset/bt1-ccu.h>
#include "ccu-rst.h"
#define CCU_AXI_MAIN_BASE 0x030
#define CCU_AXI_DDR_BASE 0x034
#define CCU_AXI_SATA_BASE 0x038
#define CCU_AXI_GMAC0_BASE 0x03C
#define CCU_AXI_GMAC1_BASE 0x040
#define CCU_AXI_XGMAC_BASE 0x044
#define CCU_AXI_PCIE_M_BASE 0x048
#define CCU_AXI_PCIE_S_BASE 0x04C
#define CCU_AXI_USB_BASE 0x050
#define CCU_AXI_HWA_BASE 0x054
#define CCU_AXI_SRAM_BASE 0x058
#define CCU_SYS_DDR_BASE 0x02c
#define CCU_SYS_SATA_REF_BASE 0x060
#define CCU_SYS_APB_BASE 0x064
#define CCU_SYS_PCIE_BASE 0x144
#define CCU_RST_DELAY_US 1
#define CCU_RST_TRIG(_base, _ofs) \
{ \
.type = CCU_RST_TRIG, \
.base = _base, \
.mask = BIT(_ofs), \
}
#define CCU_RST_DIR(_base, _ofs) \
{ \
.type = CCU_RST_DIR, \
.base = _base, \
.mask = BIT(_ofs), \
}
struct ccu_rst_info {
enum ccu_rst_type type;
unsigned int base;
unsigned int mask;
};
/*
* Each AXI-bus clock divider is equipped with the corresponding clock-consumer
* domain reset (it's self-deasserted reset control).
*/
static const struct ccu_rst_info axi_rst_info[] = {
[CCU_AXI_MAIN_RST] = CCU_RST_TRIG(CCU_AXI_MAIN_BASE, 1),
[CCU_AXI_DDR_RST] = CCU_RST_TRIG(CCU_AXI_DDR_BASE, 1),
[CCU_AXI_SATA_RST] = CCU_RST_TRIG(CCU_AXI_SATA_BASE, 1),
[CCU_AXI_GMAC0_RST] = CCU_RST_TRIG(CCU_AXI_GMAC0_BASE, 1),
[CCU_AXI_GMAC1_RST] = CCU_RST_TRIG(CCU_AXI_GMAC1_BASE, 1),
[CCU_AXI_XGMAC_RST] = CCU_RST_TRIG(CCU_AXI_XGMAC_BASE, 1),
[CCU_AXI_PCIE_M_RST] = CCU_RST_TRIG(CCU_AXI_PCIE_M_BASE, 1),
[CCU_AXI_PCIE_S_RST] = CCU_RST_TRIG(CCU_AXI_PCIE_S_BASE, 1),
[CCU_AXI_USB_RST] = CCU_RST_TRIG(CCU_AXI_USB_BASE, 1),
[CCU_AXI_HWA_RST] = CCU_RST_TRIG(CCU_AXI_HWA_BASE, 1),
[CCU_AXI_SRAM_RST] = CCU_RST_TRIG(CCU_AXI_SRAM_BASE, 1),
};
/*
* SATA reference clock domain and APB-bus domain are connected with the
* sefl-deasserted reset control, which can be activated via the corresponding
* clock divider register. DDR and PCIe sub-domains can be reset with directly
* controlled reset signals. Resetting the DDR controller though won't end up
* well while the Linux kernel is working.
*/
static const struct ccu_rst_info sys_rst_info[] = {
[CCU_SYS_SATA_REF_RST] = CCU_RST_TRIG(CCU_SYS_SATA_REF_BASE, 1),
[CCU_SYS_APB_RST] = CCU_RST_TRIG(CCU_SYS_APB_BASE, 1),
[CCU_SYS_DDR_FULL_RST] = CCU_RST_DIR(CCU_SYS_DDR_BASE, 1),
[CCU_SYS_DDR_INIT_RST] = CCU_RST_DIR(CCU_SYS_DDR_BASE, 2),
[CCU_SYS_PCIE_PCS_PHY_RST] = CCU_RST_DIR(CCU_SYS_PCIE_BASE, 0),
[CCU_SYS_PCIE_PIPE0_RST] = CCU_RST_DIR(CCU_SYS_PCIE_BASE, 4),
[CCU_SYS_PCIE_CORE_RST] = CCU_RST_DIR(CCU_SYS_PCIE_BASE, 8),
[CCU_SYS_PCIE_PWR_RST] = CCU_RST_DIR(CCU_SYS_PCIE_BASE, 9),
[CCU_SYS_PCIE_STICKY_RST] = CCU_RST_DIR(CCU_SYS_PCIE_BASE, 10),
[CCU_SYS_PCIE_NSTICKY_RST] = CCU_RST_DIR(CCU_SYS_PCIE_BASE, 11),
[CCU_SYS_PCIE_HOT_RST] = CCU_RST_DIR(CCU_SYS_PCIE_BASE, 12),
};
static int ccu_rst_reset(struct reset_controller_dev *rcdev, unsigned long idx)
{
struct ccu_rst *rst = to_ccu_rst(rcdev);
const struct ccu_rst_info *info = &rst->rsts_info[idx];
if (info->type != CCU_RST_TRIG)
return -EOPNOTSUPP;
regmap_update_bits(rst->sys_regs, info->base, info->mask, info->mask);
/* The next delay must be enough to cover all the resets. */
udelay(CCU_RST_DELAY_US);
return 0;
}
static int ccu_rst_set(struct reset_controller_dev *rcdev,
unsigned long idx, bool high)
{
struct ccu_rst *rst = to_ccu_rst(rcdev);
const struct ccu_rst_info *info = &rst->rsts_info[idx];
if (info->type != CCU_RST_DIR)
return high ? -EOPNOTSUPP : 0;
return regmap_update_bits(rst->sys_regs, info->base,
info->mask, high ? info->mask : 0);
}
static int ccu_rst_assert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
return ccu_rst_set(rcdev, idx, true);
}
static int ccu_rst_deassert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
return ccu_rst_set(rcdev, idx, false);
}
static int ccu_rst_status(struct reset_controller_dev *rcdev,
unsigned long idx)
{
struct ccu_rst *rst = to_ccu_rst(rcdev);
const struct ccu_rst_info *info = &rst->rsts_info[idx];
u32 val;
if (info->type != CCU_RST_DIR)
return -EOPNOTSUPP;
regmap_read(rst->sys_regs, info->base, &val);
return !!(val & info->mask);
}
static const struct reset_control_ops ccu_rst_ops = {
.reset = ccu_rst_reset,
.assert = ccu_rst_assert,
.deassert = ccu_rst_deassert,
.status = ccu_rst_status,
};
struct ccu_rst *ccu_rst_hw_register(const struct ccu_rst_init_data *rst_init)
{
struct ccu_rst *rst;
int ret;
if (!rst_init)
return ERR_PTR(-EINVAL);
rst = kzalloc(sizeof(*rst), GFP_KERNEL);
if (!rst)
return ERR_PTR(-ENOMEM);
rst->sys_regs = rst_init->sys_regs;
if (of_device_is_compatible(rst_init->np, "baikal,bt1-ccu-axi")) {
rst->rcdev.nr_resets = ARRAY_SIZE(axi_rst_info);
rst->rsts_info = axi_rst_info;
} else if (of_device_is_compatible(rst_init->np, "baikal,bt1-ccu-sys")) {
rst->rcdev.nr_resets = ARRAY_SIZE(sys_rst_info);
rst->rsts_info = sys_rst_info;
} else {
pr_err("Incompatible DT node '%s' specified\n",
of_node_full_name(rst_init->np));
ret = -EINVAL;
goto err_kfree_rst;
}
rst->rcdev.owner = THIS_MODULE;
rst->rcdev.ops = &ccu_rst_ops;
rst->rcdev.of_node = rst_init->np;
ret = reset_controller_register(&rst->rcdev);
if (ret) {
pr_err("Couldn't register '%s' reset controller\n",
of_node_full_name(rst_init->np));
goto err_kfree_rst;
}
return rst;
err_kfree_rst:
kfree(rst);
return ERR_PTR(ret);
}
void ccu_rst_hw_unregister(struct ccu_rst *rst)
{
reset_controller_unregister(&rst->rcdev);
kfree(rst);
}
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2021 BAIKAL ELECTRONICS, JSC
*
* Baikal-T1 CCU Resets interface driver
*/
#ifndef __CLK_BT1_CCU_RST_H__
#define __CLK_BT1_CCU_RST_H__
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/reset-controller.h>
struct ccu_rst_info;
/*
* enum ccu_rst_type - CCU Reset types
* @CCU_RST_TRIG: Self-deasserted reset signal.
* @CCU_RST_DIR: Directly controlled reset signal.
*/
enum ccu_rst_type {
CCU_RST_TRIG,
CCU_RST_DIR,
};
/*
* struct ccu_rst_init_data - CCU Resets initialization data
* @sys_regs: Baikal-T1 System Controller registers map.
* @np: Pointer to the node with the System CCU block.
*/
struct ccu_rst_init_data {
struct regmap *sys_regs;
struct device_node *np;
};
/*
* struct ccu_rst - CCU Reset descriptor
* @rcdev: Reset controller descriptor.
* @sys_regs: Baikal-T1 System Controller registers map.
* @rsts_info: Reset flag info (base address and mask).
*/
struct ccu_rst {
struct reset_controller_dev rcdev;
struct regmap *sys_regs;
const struct ccu_rst_info *rsts_info;
};
#define to_ccu_rst(_rcdev) container_of(_rcdev, struct ccu_rst, rcdev)
#ifdef CONFIG_CLK_BT1_CCU_RST
struct ccu_rst *ccu_rst_hw_register(const struct ccu_rst_init_data *init);
void ccu_rst_hw_unregister(struct ccu_rst *rst);
#else
static inline
struct ccu_rst *ccu_rst_hw_register(const struct ccu_rst_init_data *init)
{
return NULL;
}
static inline void ccu_rst_hw_unregister(struct ccu_rst *rst) {}
#endif
#endif /* __CLK_BT1_CCU_RST_H__ */
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#define pr_fmt(fmt) "bt1-ccu-div: " fmt #define pr_fmt(fmt) "bt1-ccu-div: " fmt
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/printk.h> #include <linux/printk.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/clk-provider.h> #include <linux/clk-provider.h>
...@@ -24,9 +25,9 @@ ...@@ -24,9 +25,9 @@
#include <linux/regmap.h> #include <linux/regmap.h>
#include <dt-bindings/clock/bt1-ccu.h> #include <dt-bindings/clock/bt1-ccu.h>
#include <dt-bindings/reset/bt1-ccu.h>
#include "ccu-div.h" #include "ccu-div.h"
#include "ccu-rst.h"
#define CCU_AXI_MAIN_BASE 0x030 #define CCU_AXI_MAIN_BASE 0x030
#define CCU_AXI_DDR_BASE 0x034 #define CCU_AXI_DDR_BASE 0x034
...@@ -76,19 +77,23 @@ ...@@ -76,19 +77,23 @@
.divider = _divider \ .divider = _divider \
} }
#define CCU_DIV_FIXED_INFO(_id, _name, _pname, _divider) \ #define CCU_DIV_BUF_INFO(_id, _name, _pname, _base, _flags) \
{ \ { \
.id = _id, \ .id = _id, \
.name = _name, \ .name = _name, \
.parent_name = _pname, \ .parent_name = _pname, \
.type = CCU_DIV_FIXED, \ .base = _base, \
.divider = _divider \ .type = CCU_DIV_BUF, \
.flags = _flags \
} }
#define CCU_DIV_RST_MAP(_rst_id, _clk_id) \ #define CCU_DIV_FIXED_INFO(_id, _name, _pname, _divider) \
{ \ { \
.rst_id = _rst_id, \ .id = _id, \
.clk_id = _clk_id \ .name = _name, \
.parent_name = _pname, \
.type = CCU_DIV_FIXED, \
.divider = _divider \
} }
struct ccu_div_info { struct ccu_div_info {
...@@ -105,11 +110,6 @@ struct ccu_div_info { ...@@ -105,11 +110,6 @@ struct ccu_div_info {
unsigned long features; unsigned long features;
}; };
struct ccu_div_rst_map {
unsigned int rst_id;
unsigned int clk_id;
};
struct ccu_div_data { struct ccu_div_data {
struct device_node *np; struct device_node *np;
struct regmap *sys_regs; struct regmap *sys_regs;
...@@ -118,11 +118,8 @@ struct ccu_div_data { ...@@ -118,11 +118,8 @@ struct ccu_div_data {
const struct ccu_div_info *divs_info; const struct ccu_div_info *divs_info;
struct ccu_div **divs; struct ccu_div **divs;
unsigned int rst_num; struct ccu_rst *rsts;
const struct ccu_div_rst_map *rst_map;
struct reset_controller_dev rcdev;
}; };
#define to_ccu_div_data(_rcdev) container_of(_rcdev, struct ccu_div_data, rcdev)
/* /*
* AXI Main Interconnect (axi_main_clk) and DDR AXI-bus (axi_ddr_clk) clocks * AXI Main Interconnect (axi_main_clk) and DDR AXI-bus (axi_ddr_clk) clocks
...@@ -169,33 +166,22 @@ static const struct ccu_div_info axi_info[] = { ...@@ -169,33 +166,22 @@ static const struct ccu_div_info axi_info[] = {
CLK_SET_RATE_GATE, CCU_DIV_RESET_DOMAIN) CLK_SET_RATE_GATE, CCU_DIV_RESET_DOMAIN)
}; };
static const struct ccu_div_rst_map axi_rst_map[] = {
CCU_DIV_RST_MAP(CCU_AXI_MAIN_RST, CCU_AXI_MAIN_CLK),
CCU_DIV_RST_MAP(CCU_AXI_DDR_RST, CCU_AXI_DDR_CLK),
CCU_DIV_RST_MAP(CCU_AXI_SATA_RST, CCU_AXI_SATA_CLK),
CCU_DIV_RST_MAP(CCU_AXI_GMAC0_RST, CCU_AXI_GMAC0_CLK),
CCU_DIV_RST_MAP(CCU_AXI_GMAC1_RST, CCU_AXI_GMAC1_CLK),
CCU_DIV_RST_MAP(CCU_AXI_XGMAC_RST, CCU_AXI_XGMAC_CLK),
CCU_DIV_RST_MAP(CCU_AXI_PCIE_M_RST, CCU_AXI_PCIE_M_CLK),
CCU_DIV_RST_MAP(CCU_AXI_PCIE_S_RST, CCU_AXI_PCIE_S_CLK),
CCU_DIV_RST_MAP(CCU_AXI_USB_RST, CCU_AXI_USB_CLK),
CCU_DIV_RST_MAP(CCU_AXI_HWA_RST, CCU_AXI_HWA_CLK),
CCU_DIV_RST_MAP(CCU_AXI_SRAM_RST, CCU_AXI_SRAM_CLK)
};
/* /*
* APB-bus clock is marked as critical since it's a main communication bus * APB-bus clock is marked as critical since it's a main communication bus
* for the SoC devices registers IO-operations. * for the SoC devices registers IO-operations.
*/ */
static const struct ccu_div_info sys_info[] = { static const struct ccu_div_info sys_info[] = {
CCU_DIV_VAR_INFO(CCU_SYS_SATA_REF_CLK, "sys_sata_ref_clk", CCU_DIV_VAR_INFO(CCU_SYS_SATA_CLK, "sys_sata_clk",
"sata_clk", CCU_SYS_SATA_REF_BASE, 4, "sata_clk", CCU_SYS_SATA_REF_BASE, 4,
CLK_SET_RATE_GATE, CLK_SET_RATE_GATE,
CCU_DIV_SKIP_ONE | CCU_DIV_LOCK_SHIFTED | CCU_DIV_SKIP_ONE | CCU_DIV_LOCK_SHIFTED |
CCU_DIV_RESET_DOMAIN), CCU_DIV_RESET_DOMAIN),
CCU_DIV_BUF_INFO(CCU_SYS_SATA_REF_CLK, "sys_sata_ref_clk",
"sys_sata_clk", CCU_SYS_SATA_REF_BASE,
CLK_SET_RATE_PARENT),
CCU_DIV_VAR_INFO(CCU_SYS_APB_CLK, "sys_apb_clk", CCU_DIV_VAR_INFO(CCU_SYS_APB_CLK, "sys_apb_clk",
"pcie_clk", CCU_SYS_APB_BASE, 5, "pcie_clk", CCU_SYS_APB_BASE, 5,
CLK_IS_CRITICAL, CCU_DIV_RESET_DOMAIN), CLK_IS_CRITICAL, CCU_DIV_BASIC | CCU_DIV_RESET_DOMAIN),
CCU_DIV_GATE_INFO(CCU_SYS_GMAC0_TX_CLK, "sys_gmac0_tx_clk", CCU_DIV_GATE_INFO(CCU_SYS_GMAC0_TX_CLK, "sys_gmac0_tx_clk",
"eth_clk", CCU_SYS_GMAC0_BASE, 5), "eth_clk", CCU_SYS_GMAC0_BASE, 5),
CCU_DIV_FIXED_INFO(CCU_SYS_GMAC0_PTP_CLK, "sys_gmac0_ptp_clk", CCU_DIV_FIXED_INFO(CCU_SYS_GMAC0_PTP_CLK, "sys_gmac0_ptp_clk",
...@@ -204,10 +190,12 @@ static const struct ccu_div_info sys_info[] = { ...@@ -204,10 +190,12 @@ static const struct ccu_div_info sys_info[] = {
"eth_clk", CCU_SYS_GMAC1_BASE, 5), "eth_clk", CCU_SYS_GMAC1_BASE, 5),
CCU_DIV_FIXED_INFO(CCU_SYS_GMAC1_PTP_CLK, "sys_gmac1_ptp_clk", CCU_DIV_FIXED_INFO(CCU_SYS_GMAC1_PTP_CLK, "sys_gmac1_ptp_clk",
"eth_clk", 10), "eth_clk", 10),
CCU_DIV_GATE_INFO(CCU_SYS_XGMAC_REF_CLK, "sys_xgmac_ref_clk", CCU_DIV_GATE_INFO(CCU_SYS_XGMAC_CLK, "sys_xgmac_clk",
"eth_clk", CCU_SYS_XGMAC_BASE, 8), "eth_clk", CCU_SYS_XGMAC_BASE, 1),
CCU_DIV_FIXED_INFO(CCU_SYS_XGMAC_REF_CLK, "sys_xgmac_ref_clk",
"sys_xgmac_clk", 8),
CCU_DIV_FIXED_INFO(CCU_SYS_XGMAC_PTP_CLK, "sys_xgmac_ptp_clk", CCU_DIV_FIXED_INFO(CCU_SYS_XGMAC_PTP_CLK, "sys_xgmac_ptp_clk",
"eth_clk", 10), "sys_xgmac_clk", 8),
CCU_DIV_GATE_INFO(CCU_SYS_USB_CLK, "sys_usb_clk", CCU_DIV_GATE_INFO(CCU_SYS_USB_CLK, "sys_usb_clk",
"eth_clk", CCU_SYS_USB_BASE, 10), "eth_clk", CCU_SYS_USB_BASE, 10),
CCU_DIV_VAR_INFO(CCU_SYS_PVT_CLK, "sys_pvt_clk", CCU_DIV_VAR_INFO(CCU_SYS_PVT_CLK, "sys_pvt_clk",
...@@ -227,74 +215,58 @@ static const struct ccu_div_info sys_info[] = { ...@@ -227,74 +215,58 @@ static const struct ccu_div_info sys_info[] = {
"ref_clk", 25), "ref_clk", 25),
CCU_DIV_VAR_INFO(CCU_SYS_TIMER0_CLK, "sys_timer0_clk", CCU_DIV_VAR_INFO(CCU_SYS_TIMER0_CLK, "sys_timer0_clk",
"ref_clk", CCU_SYS_TIMER0_BASE, 17, "ref_clk", CCU_SYS_TIMER0_BASE, 17,
CLK_SET_RATE_GATE, 0), CLK_SET_RATE_GATE, CCU_DIV_BASIC),
CCU_DIV_VAR_INFO(CCU_SYS_TIMER1_CLK, "sys_timer1_clk", CCU_DIV_VAR_INFO(CCU_SYS_TIMER1_CLK, "sys_timer1_clk",
"ref_clk", CCU_SYS_TIMER1_BASE, 17, "ref_clk", CCU_SYS_TIMER1_BASE, 17,
CLK_SET_RATE_GATE, 0), CLK_SET_RATE_GATE, CCU_DIV_BASIC),
CCU_DIV_VAR_INFO(CCU_SYS_TIMER2_CLK, "sys_timer2_clk", CCU_DIV_VAR_INFO(CCU_SYS_TIMER2_CLK, "sys_timer2_clk",
"ref_clk", CCU_SYS_TIMER2_BASE, 17, "ref_clk", CCU_SYS_TIMER2_BASE, 17,
CLK_SET_RATE_GATE, 0), CLK_SET_RATE_GATE, CCU_DIV_BASIC),
CCU_DIV_VAR_INFO(CCU_SYS_WDT_CLK, "sys_wdt_clk", CCU_DIV_VAR_INFO(CCU_SYS_WDT_CLK, "sys_wdt_clk",
"eth_clk", CCU_SYS_WDT_BASE, 17, "eth_clk", CCU_SYS_WDT_BASE, 17,
CLK_SET_RATE_GATE, CCU_DIV_SKIP_ONE_TO_THREE) CLK_SET_RATE_GATE, CCU_DIV_SKIP_ONE_TO_THREE)
}; };
static const struct ccu_div_rst_map sys_rst_map[] = { static struct ccu_div_data *axi_data;
CCU_DIV_RST_MAP(CCU_SYS_SATA_REF_RST, CCU_SYS_SATA_REF_CLK), static struct ccu_div_data *sys_data;
CCU_DIV_RST_MAP(CCU_SYS_APB_RST, CCU_SYS_APB_CLK),
};
static struct ccu_div *ccu_div_find_desc(struct ccu_div_data *data, static void ccu_div_set_data(struct ccu_div_data *data)
unsigned int clk_id)
{ {
struct ccu_div *div; struct device_node *np = data->np;
int idx;
if (of_device_is_compatible(np, "baikal,bt1-ccu-axi"))
for (idx = 0; idx < data->divs_num; ++idx) { axi_data = data;
div = data->divs[idx]; else if (of_device_is_compatible(np, "baikal,bt1-ccu-sys"))
if (div && div->id == clk_id) sys_data = data;
return div; else
} pr_err("Invalid DT node '%s' specified\n", of_node_full_name(np));
return ERR_PTR(-EINVAL);
} }
static int ccu_div_reset(struct reset_controller_dev *rcdev, static struct ccu_div_data *ccu_div_get_data(struct device_node *np)
unsigned long rst_id)
{ {
struct ccu_div_data *data = to_ccu_div_data(rcdev); if (of_device_is_compatible(np, "baikal,bt1-ccu-axi"))
const struct ccu_div_rst_map *map; return axi_data;
struct ccu_div *div; else if (of_device_is_compatible(np, "baikal,bt1-ccu-sys"))
int idx, ret; return sys_data;
for (idx = 0, map = data->rst_map; idx < data->rst_num; ++idx, ++map) { pr_err("Invalid DT node '%s' specified\n", of_node_full_name(np));
if (map->rst_id == rst_id)
break;
}
if (idx == data->rst_num) {
pr_err("Invalid reset ID %lu specified\n", rst_id);
return -EINVAL;
}
div = ccu_div_find_desc(data, map->clk_id); return NULL;
if (IS_ERR(div)) { }
pr_err("Invalid clock ID %d in mapping\n", map->clk_id);
return PTR_ERR(div);
}
ret = ccu_div_reset_domain(div); static struct ccu_div *ccu_div_find_desc(struct ccu_div_data *data,
if (ret) { unsigned int clk_id)
pr_err("Reset isn't supported by divider %s\n", {
clk_hw_get_name(ccu_div_get_clk_hw(div))); int idx;
for (idx = 0; idx < data->divs_num; ++idx) {
if (data->divs_info[idx].id == clk_id)
return data->divs[idx];
} }
return ret; return ERR_PTR(-EINVAL);
} }
static const struct reset_control_ops ccu_div_rst_ops = {
.reset = ccu_div_reset,
};
static struct ccu_div_data *ccu_div_create_data(struct device_node *np) static struct ccu_div_data *ccu_div_create_data(struct device_node *np)
{ {
struct ccu_div_data *data; struct ccu_div_data *data;
...@@ -308,13 +280,9 @@ static struct ccu_div_data *ccu_div_create_data(struct device_node *np) ...@@ -308,13 +280,9 @@ static struct ccu_div_data *ccu_div_create_data(struct device_node *np)
if (of_device_is_compatible(np, "baikal,bt1-ccu-axi")) { if (of_device_is_compatible(np, "baikal,bt1-ccu-axi")) {
data->divs_num = ARRAY_SIZE(axi_info); data->divs_num = ARRAY_SIZE(axi_info);
data->divs_info = axi_info; data->divs_info = axi_info;
data->rst_num = ARRAY_SIZE(axi_rst_map);
data->rst_map = axi_rst_map;
} else if (of_device_is_compatible(np, "baikal,bt1-ccu-sys")) { } else if (of_device_is_compatible(np, "baikal,bt1-ccu-sys")) {
data->divs_num = ARRAY_SIZE(sys_info); data->divs_num = ARRAY_SIZE(sys_info);
data->divs_info = sys_info; data->divs_info = sys_info;
data->rst_num = ARRAY_SIZE(sys_rst_map);
data->rst_map = sys_rst_map;
} else { } else {
pr_err("Incompatible DT node '%s' specified\n", pr_err("Incompatible DT node '%s' specified\n",
of_node_full_name(np)); of_node_full_name(np));
...@@ -365,14 +333,16 @@ static struct clk_hw *ccu_div_of_clk_hw_get(struct of_phandle_args *clkspec, ...@@ -365,14 +333,16 @@ static struct clk_hw *ccu_div_of_clk_hw_get(struct of_phandle_args *clkspec,
clk_id = clkspec->args[0]; clk_id = clkspec->args[0];
div = ccu_div_find_desc(data, clk_id); div = ccu_div_find_desc(data, clk_id);
if (IS_ERR(div)) { if (IS_ERR(div)) {
if (div != ERR_PTR(-EPROBE_DEFER))
pr_info("Invalid clock ID %d specified\n", clk_id); pr_info("Invalid clock ID %d specified\n", clk_id);
return ERR_CAST(div); return ERR_CAST(div);
} }
return ccu_div_get_clk_hw(div); return ccu_div_get_clk_hw(div);
} }
static int ccu_div_clk_register(struct ccu_div_data *data) static int ccu_div_clk_register(struct ccu_div_data *data, bool defer)
{ {
int idx, ret; int idx, ret;
...@@ -380,6 +350,13 @@ static int ccu_div_clk_register(struct ccu_div_data *data) ...@@ -380,6 +350,13 @@ static int ccu_div_clk_register(struct ccu_div_data *data)
const struct ccu_div_info *info = &data->divs_info[idx]; const struct ccu_div_info *info = &data->divs_info[idx];
struct ccu_div_init_data init = {0}; struct ccu_div_init_data init = {0};
if (!!(info->features & CCU_DIV_BASIC) ^ defer) {
if (!data->divs[idx])
data->divs[idx] = ERR_PTR(-EPROBE_DEFER);
continue;
}
init.id = info->id; init.id = info->id;
init.name = info->name; init.name = info->name;
init.parent_name = info->parent_name; init.parent_name = info->parent_name;
...@@ -396,6 +373,9 @@ static int ccu_div_clk_register(struct ccu_div_data *data) ...@@ -396,6 +373,9 @@ static int ccu_div_clk_register(struct ccu_div_data *data)
init.base = info->base; init.base = info->base;
init.sys_regs = data->sys_regs; init.sys_regs = data->sys_regs;
init.divider = info->divider; init.divider = info->divider;
} else if (init.type == CCU_DIV_BUF) {
init.base = info->base;
init.sys_regs = data->sys_regs;
} else { } else {
init.divider = info->divider; init.divider = info->divider;
} }
...@@ -409,49 +389,104 @@ static int ccu_div_clk_register(struct ccu_div_data *data) ...@@ -409,49 +389,104 @@ static int ccu_div_clk_register(struct ccu_div_data *data)
} }
} }
ret = of_clk_add_hw_provider(data->np, ccu_div_of_clk_hw_get, data);
if (ret) {
pr_err("Couldn't register dividers '%s' clock provider\n",
of_node_full_name(data->np));
goto err_hw_unregister;
}
return 0; return 0;
err_hw_unregister: err_hw_unregister:
for (--idx; idx >= 0; --idx) for (--idx; idx >= 0; --idx) {
if (!!(data->divs_info[idx].features & CCU_DIV_BASIC) ^ defer)
continue;
ccu_div_hw_unregister(data->divs[idx]); ccu_div_hw_unregister(data->divs[idx]);
}
return ret; return ret;
} }
static void ccu_div_clk_unregister(struct ccu_div_data *data) static void ccu_div_clk_unregister(struct ccu_div_data *data, bool defer)
{ {
int idx; int idx;
of_clk_del_provider(data->np); /* Uninstall only the clocks registered on the specfied stage */
for (idx = 0; idx < data->divs_num; ++idx) {
if (!!(data->divs_info[idx].features & CCU_DIV_BASIC) ^ defer)
continue;
for (idx = 0; idx < data->divs_num; ++idx)
ccu_div_hw_unregister(data->divs[idx]); ccu_div_hw_unregister(data->divs[idx]);
}
} }
static int ccu_div_rst_register(struct ccu_div_data *data) static int ccu_div_of_register(struct ccu_div_data *data)
{ {
int ret; int ret;
data->rcdev.ops = &ccu_div_rst_ops; ret = of_clk_add_hw_provider(data->np, ccu_div_of_clk_hw_get, data);
data->rcdev.of_node = data->np; if (ret) {
data->rcdev.nr_resets = data->rst_num; pr_err("Couldn't register dividers '%s' clock provider\n",
of_node_full_name(data->np));
}
return ret;
}
ret = reset_controller_register(&data->rcdev); static int ccu_div_rst_register(struct ccu_div_data *data)
if (ret) {
struct ccu_rst_init_data init = {0};
init.sys_regs = data->sys_regs;
init.np = data->np;
data->rsts = ccu_rst_hw_register(&init);
if (IS_ERR(data->rsts)) {
pr_err("Couldn't register divider '%s' reset controller\n", pr_err("Couldn't register divider '%s' reset controller\n",
of_node_full_name(data->np)); of_node_full_name(data->np));
return PTR_ERR(data->rsts);
}
return 0;
}
static int ccu_div_probe(struct platform_device *pdev)
{
struct ccu_div_data *data;
int ret;
data = ccu_div_get_data(dev_of_node(&pdev->dev));
if (!data)
return -EINVAL;
ret = ccu_div_clk_register(data, false);
if (ret)
return ret;
ret = ccu_div_rst_register(data);
if (ret)
goto err_clk_unregister;
return 0;
err_clk_unregister:
ccu_div_clk_unregister(data, false);
return ret; return ret;
} }
static void ccu_div_init(struct device_node *np) static const struct of_device_id ccu_div_of_match[] = {
{ .compatible = "baikal,bt1-ccu-axi" },
{ .compatible = "baikal,bt1-ccu-sys" },
{ }
};
static struct platform_driver ccu_div_driver = {
.probe = ccu_div_probe,
.driver = {
.name = "clk-ccu-div",
.of_match_table = ccu_div_of_match,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(ccu_div_driver);
static __init void ccu_div_init(struct device_node *np)
{ {
struct ccu_div_data *data; struct ccu_div_data *data;
int ret; int ret;
...@@ -464,22 +499,23 @@ static void ccu_div_init(struct device_node *np) ...@@ -464,22 +499,23 @@ static void ccu_div_init(struct device_node *np)
if (ret) if (ret)
goto err_free_data; goto err_free_data;
ret = ccu_div_clk_register(data); ret = ccu_div_clk_register(data, true);
if (ret) if (ret)
goto err_free_data; goto err_free_data;
ret = ccu_div_rst_register(data); ret = ccu_div_of_register(data);
if (ret) if (ret)
goto err_clk_unregister; goto err_clk_unregister;
ccu_div_set_data(data);
return; return;
err_clk_unregister: err_clk_unregister:
ccu_div_clk_unregister(data); ccu_div_clk_unregister(data, true);
err_free_data: err_free_data:
ccu_div_free_data(data); ccu_div_free_data(data);
} }
CLK_OF_DECLARE_DRIVER(ccu_axi, "baikal,bt1-ccu-axi", ccu_div_init);
CLK_OF_DECLARE(ccu_axi, "baikal,bt1-ccu-axi", ccu_div_init); CLK_OF_DECLARE_DRIVER(ccu_sys, "baikal,bt1-ccu-sys", ccu_div_init);
CLK_OF_DECLARE(ccu_sys, "baikal,bt1-ccu-sys", ccu_div_init);
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
#define pr_fmt(fmt) "bt1-ccu-pll: " fmt #define pr_fmt(fmt) "bt1-ccu-pll: " fmt
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/printk.h> #include <linux/printk.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/clk-provider.h> #include <linux/clk-provider.h>
...@@ -31,13 +32,14 @@ ...@@ -31,13 +32,14 @@
#define CCU_PCIE_PLL_BASE 0x018 #define CCU_PCIE_PLL_BASE 0x018
#define CCU_ETH_PLL_BASE 0x020 #define CCU_ETH_PLL_BASE 0x020
#define CCU_PLL_INFO(_id, _name, _pname, _base, _flags) \ #define CCU_PLL_INFO(_id, _name, _pname, _base, _flags, _features) \
{ \ { \
.id = _id, \ .id = _id, \
.name = _name, \ .name = _name, \
.parent_name = _pname, \ .parent_name = _pname, \
.base = _base, \ .base = _base, \
.flags = _flags \ .flags = _flags, \
.features = _features, \
} }
#define CCU_PLL_NUM ARRAY_SIZE(pll_info) #define CCU_PLL_NUM ARRAY_SIZE(pll_info)
...@@ -48,6 +50,7 @@ struct ccu_pll_info { ...@@ -48,6 +50,7 @@ struct ccu_pll_info {
const char *parent_name; const char *parent_name;
unsigned int base; unsigned int base;
unsigned long flags; unsigned long flags;
unsigned long features;
}; };
/* /*
...@@ -61,15 +64,15 @@ struct ccu_pll_info { ...@@ -61,15 +64,15 @@ struct ccu_pll_info {
*/ */
static const struct ccu_pll_info pll_info[] = { static const struct ccu_pll_info pll_info[] = {
CCU_PLL_INFO(CCU_CPU_PLL, "cpu_pll", "ref_clk", CCU_CPU_PLL_BASE, CCU_PLL_INFO(CCU_CPU_PLL, "cpu_pll", "ref_clk", CCU_CPU_PLL_BASE,
CLK_IS_CRITICAL), CLK_IS_CRITICAL, CCU_PLL_BASIC),
CCU_PLL_INFO(CCU_SATA_PLL, "sata_pll", "ref_clk", CCU_SATA_PLL_BASE, CCU_PLL_INFO(CCU_SATA_PLL, "sata_pll", "ref_clk", CCU_SATA_PLL_BASE,
CLK_IS_CRITICAL | CLK_SET_RATE_GATE), CLK_IS_CRITICAL | CLK_SET_RATE_GATE, 0),
CCU_PLL_INFO(CCU_DDR_PLL, "ddr_pll", "ref_clk", CCU_DDR_PLL_BASE, CCU_PLL_INFO(CCU_DDR_PLL, "ddr_pll", "ref_clk", CCU_DDR_PLL_BASE,
CLK_IS_CRITICAL | CLK_SET_RATE_GATE), CLK_IS_CRITICAL | CLK_SET_RATE_GATE, 0),
CCU_PLL_INFO(CCU_PCIE_PLL, "pcie_pll", "ref_clk", CCU_PCIE_PLL_BASE, CCU_PLL_INFO(CCU_PCIE_PLL, "pcie_pll", "ref_clk", CCU_PCIE_PLL_BASE,
CLK_IS_CRITICAL), CLK_IS_CRITICAL, CCU_PLL_BASIC),
CCU_PLL_INFO(CCU_ETH_PLL, "eth_pll", "ref_clk", CCU_ETH_PLL_BASE, CCU_PLL_INFO(CCU_ETH_PLL, "eth_pll", "ref_clk", CCU_ETH_PLL_BASE,
CLK_IS_CRITICAL | CLK_SET_RATE_GATE) CLK_IS_CRITICAL | CLK_SET_RATE_GATE, 0)
}; };
struct ccu_pll_data { struct ccu_pll_data {
...@@ -78,16 +81,16 @@ struct ccu_pll_data { ...@@ -78,16 +81,16 @@ struct ccu_pll_data {
struct ccu_pll *plls[CCU_PLL_NUM]; struct ccu_pll *plls[CCU_PLL_NUM];
}; };
static struct ccu_pll_data *pll_data;
static struct ccu_pll *ccu_pll_find_desc(struct ccu_pll_data *data, static struct ccu_pll *ccu_pll_find_desc(struct ccu_pll_data *data,
unsigned int clk_id) unsigned int clk_id)
{ {
struct ccu_pll *pll;
int idx; int idx;
for (idx = 0; idx < CCU_PLL_NUM; ++idx) { for (idx = 0; idx < CCU_PLL_NUM; ++idx) {
pll = data->plls[idx]; if (pll_info[idx].id == clk_id)
if (pll && pll->id == clk_id) return data->plls[idx];
return pll;
} }
return ERR_PTR(-EINVAL); return ERR_PTR(-EINVAL);
...@@ -133,14 +136,16 @@ static struct clk_hw *ccu_pll_of_clk_hw_get(struct of_phandle_args *clkspec, ...@@ -133,14 +136,16 @@ static struct clk_hw *ccu_pll_of_clk_hw_get(struct of_phandle_args *clkspec,
clk_id = clkspec->args[0]; clk_id = clkspec->args[0];
pll = ccu_pll_find_desc(data, clk_id); pll = ccu_pll_find_desc(data, clk_id);
if (IS_ERR(pll)) { if (IS_ERR(pll)) {
if (pll != ERR_PTR(-EPROBE_DEFER))
pr_info("Invalid PLL clock ID %d specified\n", clk_id); pr_info("Invalid PLL clock ID %d specified\n", clk_id);
return ERR_CAST(pll); return ERR_CAST(pll);
} }
return ccu_pll_get_clk_hw(pll); return ccu_pll_get_clk_hw(pll);
} }
static int ccu_pll_clk_register(struct ccu_pll_data *data) static int ccu_pll_clk_register(struct ccu_pll_data *data, bool defer)
{ {
int idx, ret; int idx, ret;
...@@ -148,6 +153,14 @@ static int ccu_pll_clk_register(struct ccu_pll_data *data) ...@@ -148,6 +153,14 @@ static int ccu_pll_clk_register(struct ccu_pll_data *data)
const struct ccu_pll_info *info = &pll_info[idx]; const struct ccu_pll_info *info = &pll_info[idx];
struct ccu_pll_init_data init = {0}; struct ccu_pll_init_data init = {0};
/* Defer non-basic PLLs allocation for the probe stage */
if (!!(info->features & CCU_PLL_BASIC) ^ defer) {
if (!data->plls[idx])
data->plls[idx] = ERR_PTR(-EPROBE_DEFER);
continue;
}
init.id = info->id; init.id = info->id;
init.name = info->name; init.name = info->name;
init.parent_name = info->parent_name; init.parent_name = info->parent_name;
...@@ -155,6 +168,7 @@ static int ccu_pll_clk_register(struct ccu_pll_data *data) ...@@ -155,6 +168,7 @@ static int ccu_pll_clk_register(struct ccu_pll_data *data)
init.sys_regs = data->sys_regs; init.sys_regs = data->sys_regs;
init.np = data->np; init.np = data->np;
init.flags = info->flags; init.flags = info->flags;
init.features = info->features;
data->plls[idx] = ccu_pll_hw_register(&init); data->plls[idx] = ccu_pll_hw_register(&init);
if (IS_ERR(data->plls[idx])) { if (IS_ERR(data->plls[idx])) {
...@@ -165,22 +179,70 @@ static int ccu_pll_clk_register(struct ccu_pll_data *data) ...@@ -165,22 +179,70 @@ static int ccu_pll_clk_register(struct ccu_pll_data *data)
} }
} }
return 0;
err_hw_unregister:
for (--idx; idx >= 0; --idx) {
if (!!(pll_info[idx].features & CCU_PLL_BASIC) ^ defer)
continue;
ccu_pll_hw_unregister(data->plls[idx]);
}
return ret;
}
static void ccu_pll_clk_unregister(struct ccu_pll_data *data, bool defer)
{
int idx;
/* Uninstall only the clocks registered on the specfied stage */
for (idx = 0; idx < CCU_PLL_NUM; ++idx) {
if (!!(pll_info[idx].features & CCU_PLL_BASIC) ^ defer)
continue;
ccu_pll_hw_unregister(data->plls[idx]);
}
}
static int ccu_pll_of_register(struct ccu_pll_data *data)
{
int ret;
ret = of_clk_add_hw_provider(data->np, ccu_pll_of_clk_hw_get, data); ret = of_clk_add_hw_provider(data->np, ccu_pll_of_clk_hw_get, data);
if (ret) { if (ret) {
pr_err("Couldn't register PLL provider of '%s'\n", pr_err("Couldn't register PLL provider of '%s'\n",
of_node_full_name(data->np)); of_node_full_name(data->np));
goto err_hw_unregister;
} }
return 0; return ret;
}
err_hw_unregister: static int ccu_pll_probe(struct platform_device *pdev)
for (--idx; idx >= 0; --idx) {
ccu_pll_hw_unregister(data->plls[idx]); struct ccu_pll_data *data = pll_data;
return ret; if (!data)
return -EINVAL;
return ccu_pll_clk_register(data, false);
} }
static const struct of_device_id ccu_pll_of_match[] = {
{ .compatible = "baikal,bt1-ccu-pll" },
{ }
};
static struct platform_driver ccu_pll_driver = {
.probe = ccu_pll_probe,
.driver = {
.name = "clk-ccu-pll",
.of_match_table = ccu_pll_of_match,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(ccu_pll_driver);
static __init void ccu_pll_init(struct device_node *np) static __init void ccu_pll_init(struct device_node *np)
{ {
struct ccu_pll_data *data; struct ccu_pll_data *data;
...@@ -194,13 +256,22 @@ static __init void ccu_pll_init(struct device_node *np) ...@@ -194,13 +256,22 @@ static __init void ccu_pll_init(struct device_node *np)
if (ret) if (ret)
goto err_free_data; goto err_free_data;
ret = ccu_pll_clk_register(data); ret = ccu_pll_clk_register(data, true);
if (ret) if (ret)
goto err_free_data; goto err_free_data;
ret = ccu_pll_of_register(data);
if (ret)
goto err_clk_unregister;
pll_data = data;
return; return;
err_clk_unregister:
ccu_pll_clk_unregister(data, true);
err_free_data: err_free_data:
ccu_pll_free_data(data); ccu_pll_free_data(data);
} }
CLK_OF_DECLARE(ccu_pll, "baikal,bt1-ccu-pll", ccu_pll_init); CLK_OF_DECLARE_DRIVER(ccu_pll, "baikal,bt1-ccu-pll", ccu_pll_init);
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
#include <linux/debugfs.h> #include <linux/debugfs.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/math.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
...@@ -502,6 +503,8 @@ struct bcm2835_clock_data { ...@@ -502,6 +503,8 @@ struct bcm2835_clock_data {
bool low_jitter; bool low_jitter;
u32 tcnt_mux; u32 tcnt_mux;
bool round_up;
}; };
struct bcm2835_gate_data { struct bcm2835_gate_data {
...@@ -966,7 +969,7 @@ static u32 bcm2835_clock_choose_div(struct clk_hw *hw, ...@@ -966,7 +969,7 @@ static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
return div; return div;
} }
static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
unsigned long parent_rate, unsigned long parent_rate,
u32 div) u32 div)
{ {
...@@ -993,12 +996,34 @@ static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, ...@@ -993,12 +996,34 @@ static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
return temp; return temp;
} }
static unsigned long bcm2835_round_rate(unsigned long rate)
{
unsigned long scaler;
unsigned long limit;
limit = rate / 100000;
scaler = 1;
while (scaler < limit)
scaler *= 10;
/*
* If increasing a clock by less than 0.1% changes it
* from ..999.. to ..000.., round up.
*/
if ((rate + scaler - 1) / scaler % 1000 == 0)
rate = roundup(rate, scaler);
return rate;
}
static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
unsigned long parent_rate) unsigned long parent_rate)
{ {
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
struct bcm2835_cprman *cprman = clock->cprman; struct bcm2835_cprman *cprman = clock->cprman;
const struct bcm2835_clock_data *data = clock->data; const struct bcm2835_clock_data *data = clock->data;
unsigned long rate;
u32 div; u32 div;
if (data->int_bits == 0 && data->frac_bits == 0) if (data->int_bits == 0 && data->frac_bits == 0)
...@@ -1006,7 +1031,12 @@ static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, ...@@ -1006,7 +1031,12 @@ static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
div = cprman_read(cprman, data->div_reg); div = cprman_read(cprman, data->div_reg);
return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
if (data->round_up)
rate = bcm2835_round_rate(rate);
return rate;
} }
static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
...@@ -1784,7 +1814,7 @@ static const struct bcm2835_clk_desc clk_desc_array[] = { ...@@ -1784,7 +1814,7 @@ static const struct bcm2835_clk_desc clk_desc_array[] = {
.load_mask = CM_PLLC_LOADPER, .load_mask = CM_PLLC_LOADPER,
.hold_mask = CM_PLLC_HOLDPER, .hold_mask = CM_PLLC_HOLDPER,
.fixed_divider = 1, .fixed_divider = 1,
.flags = CLK_SET_RATE_PARENT), .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
/* /*
* PLLD is the display PLL, used to drive DSI display panels. * PLLD is the display PLL, used to drive DSI display panels.
...@@ -2143,7 +2173,8 @@ static const struct bcm2835_clk_desc clk_desc_array[] = { ...@@ -2143,7 +2173,8 @@ static const struct bcm2835_clk_desc clk_desc_array[] = {
.div_reg = CM_UARTDIV, .div_reg = CM_UARTDIV,
.int_bits = 10, .int_bits = 10,
.frac_bits = 12, .frac_bits = 12,
.tcnt_mux = 28), .tcnt_mux = 28,
.round_up = true),
/* TV encoder clock. Only operating frequency is 108Mhz. */ /* TV encoder clock. Only operating frequency is 108Mhz. */
[BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
......
...@@ -33,6 +33,7 @@ enum rpi_firmware_clk_id { ...@@ -33,6 +33,7 @@ enum rpi_firmware_clk_id {
RPI_FIRMWARE_EMMC2_CLK_ID, RPI_FIRMWARE_EMMC2_CLK_ID,
RPI_FIRMWARE_M2MC_CLK_ID, RPI_FIRMWARE_M2MC_CLK_ID,
RPI_FIRMWARE_PIXEL_BVB_CLK_ID, RPI_FIRMWARE_PIXEL_BVB_CLK_ID,
RPI_FIRMWARE_VEC_CLK_ID,
RPI_FIRMWARE_NUM_CLK_ID, RPI_FIRMWARE_NUM_CLK_ID,
}; };
...@@ -51,6 +52,7 @@ static char *rpi_firmware_clk_names[] = { ...@@ -51,6 +52,7 @@ static char *rpi_firmware_clk_names[] = {
[RPI_FIRMWARE_EMMC2_CLK_ID] = "emmc2", [RPI_FIRMWARE_EMMC2_CLK_ID] = "emmc2",
[RPI_FIRMWARE_M2MC_CLK_ID] = "m2mc", [RPI_FIRMWARE_M2MC_CLK_ID] = "m2mc",
[RPI_FIRMWARE_PIXEL_BVB_CLK_ID] = "pixel-bvb", [RPI_FIRMWARE_PIXEL_BVB_CLK_ID] = "pixel-bvb",
[RPI_FIRMWARE_VEC_CLK_ID] = "vec",
}; };
#define RPI_FIRMWARE_STATE_ENABLE_BIT BIT(0) #define RPI_FIRMWARE_STATE_ENABLE_BIT BIT(0)
...@@ -129,9 +131,18 @@ raspberrypi_clk_variants[RPI_FIRMWARE_NUM_CLK_ID] = { ...@@ -129,9 +131,18 @@ raspberrypi_clk_variants[RPI_FIRMWARE_NUM_CLK_ID] = {
[RPI_FIRMWARE_V3D_CLK_ID] = { [RPI_FIRMWARE_V3D_CLK_ID] = {
.export = true, .export = true,
}, },
[RPI_FIRMWARE_PIXEL_CLK_ID] = {
.export = true,
},
[RPI_FIRMWARE_HEVC_CLK_ID] = {
.export = true,
},
[RPI_FIRMWARE_PIXEL_BVB_CLK_ID] = { [RPI_FIRMWARE_PIXEL_BVB_CLK_ID] = {
.export = true, .export = true,
}, },
[RPI_FIRMWARE_VEC_CLK_ID] = {
.export = true,
},
}; };
/* /*
......
...@@ -153,6 +153,7 @@ enum vc5_model { ...@@ -153,6 +153,7 @@ enum vc5_model {
IDT_VC5_5P49V5935, IDT_VC5_5P49V5935,
IDT_VC6_5P49V6901, IDT_VC6_5P49V6901,
IDT_VC6_5P49V6965, IDT_VC6_5P49V6965,
IDT_VC6_5P49V6975,
}; };
/* Structure to describe features of a particular VC5 model */ /* Structure to describe features of a particular VC5 model */
...@@ -230,8 +231,12 @@ static unsigned char vc5_mux_get_parent(struct clk_hw *hw) ...@@ -230,8 +231,12 @@ static unsigned char vc5_mux_get_parent(struct clk_hw *hw)
container_of(hw, struct vc5_driver_data, clk_mux); container_of(hw, struct vc5_driver_data, clk_mux);
const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN; const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
unsigned int src; unsigned int src;
int ret;
ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
if (ret)
return 0;
regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
src &= mask; src &= mask;
if (src == VC5_PRIM_SRC_SHDN_EN_XTAL) if (src == VC5_PRIM_SRC_SHDN_EN_XTAL)
...@@ -286,8 +291,12 @@ static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw, ...@@ -286,8 +291,12 @@ static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw,
struct vc5_driver_data *vc5 = struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_mul); container_of(hw, struct vc5_driver_data, clk_mul);
unsigned int premul; unsigned int premul;
int ret;
ret = regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
if (ret)
return 0;
regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ) if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ)
parent_rate *= 2; parent_rate *= 2;
...@@ -315,11 +324,9 @@ static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate, ...@@ -315,11 +324,9 @@ static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate,
else else
mask = 0; mask = 0;
regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN,
VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ, VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ,
mask); mask);
return 0;
} }
static const struct clk_ops vc5_dbl_ops = { static const struct clk_ops vc5_dbl_ops = {
...@@ -334,14 +341,19 @@ static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw, ...@@ -334,14 +341,19 @@ static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw,
struct vc5_driver_data *vc5 = struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_pfd); container_of(hw, struct vc5_driver_data, clk_pfd);
unsigned int prediv, div; unsigned int prediv, div;
int ret;
regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv); ret = regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv);
if (ret)
return 0;
/* The bypass_prediv is set, PLL fed from Ref_in directly. */ /* The bypass_prediv is set, PLL fed from Ref_in directly. */
if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV) if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV)
return parent_rate; return parent_rate;
regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div); ret = regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div);
if (ret)
return 0;
/* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */ /* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */
if (div & VC5_REF_DIVIDER_SEL_PREDIV2) if (div & VC5_REF_DIVIDER_SEL_PREDIV2)
...@@ -376,15 +388,17 @@ static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate, ...@@ -376,15 +388,17 @@ static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
struct vc5_driver_data *vc5 = struct vc5_driver_data *vc5 =
container_of(hw, struct vc5_driver_data, clk_pfd); container_of(hw, struct vc5_driver_data, clk_pfd);
unsigned long idiv; unsigned long idiv;
int ret;
u8 div; u8 div;
/* CLKIN within range of PLL input, feed directly to PLL. */ /* CLKIN within range of PLL input, feed directly to PLL. */
if (parent_rate <= 50000000) { if (parent_rate <= 50000000) {
regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, ret = regmap_set_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV,
VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV); VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00); if (ret)
return 0; return ret;
return regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00);
} }
idiv = DIV_ROUND_UP(parent_rate, rate); idiv = DIV_ROUND_UP(parent_rate, rate);
...@@ -395,11 +409,12 @@ static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate, ...@@ -395,11 +409,12 @@ static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
else else
div = VC5_REF_DIVIDER_REF_DIV(idiv); div = VC5_REF_DIVIDER_REF_DIV(idiv);
regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div); ret = regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div);
regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, if (ret)
VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV, 0); return ret;
return 0; return regmap_clear_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
} }
static const struct clk_ops vc5_pfd_ops = { static const struct clk_ops vc5_pfd_ops = {
...@@ -551,9 +566,12 @@ static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate, ...@@ -551,9 +566,12 @@ static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
hwdata->div_int >> 4, hwdata->div_int << 4, hwdata->div_int >> 4, hwdata->div_int << 4,
0 0
}; };
int ret;
regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0), ret = regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
data, 14); data, 14);
if (ret)
return ret;
/* /*
* Toggle magic bit in undocumented register for unknown reason. * Toggle magic bit in undocumented register for unknown reason.
...@@ -561,12 +579,13 @@ static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate, ...@@ -561,12 +579,13 @@ static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
* datasheet somewhat implies this is needed, but the register * datasheet somewhat implies this is needed, but the register
* and the bit is not documented. * and the bit is not documented.
*/ */
regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER, ret = regmap_clear_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
VC5_GLOBAL_REGISTER_GLOBAL_RESET, 0); VC5_GLOBAL_REGISTER_GLOBAL_RESET);
regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER, if (ret)
VC5_GLOBAL_REGISTER_GLOBAL_RESET, return ret;
return regmap_set_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
VC5_GLOBAL_REGISTER_GLOBAL_RESET); VC5_GLOBAL_REGISTER_GLOBAL_RESET);
return 0;
} }
static const struct clk_ops vc5_fod_ops = { static const struct clk_ops vc5_fod_ops = {
...@@ -594,9 +613,8 @@ static int vc5_clk_out_prepare(struct clk_hw *hw) ...@@ -594,9 +613,8 @@ static int vc5_clk_out_prepare(struct clk_hw *hw)
* registers. * registers.
*/ */
if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) { if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) {
ret = regmap_update_bits(vc5->regmap, ret = regmap_set_bits(vc5->regmap,
VC5_RESERVED_X0(hwdata->num), VC5_RESERVED_X0(hwdata->num),
VC5_RESERVED_X0_BYPASS_SYNC,
VC5_RESERVED_X0_BYPASS_SYNC); VC5_RESERVED_X0_BYPASS_SYNC);
if (ret) if (ret)
return ret; return ret;
...@@ -606,7 +624,10 @@ static int vc5_clk_out_prepare(struct clk_hw *hw) ...@@ -606,7 +624,10 @@ static int vc5_clk_out_prepare(struct clk_hw *hw)
* If the input mux is disabled, enable it first and * If the input mux is disabled, enable it first and
* select source from matching FOD. * select source from matching FOD.
*/ */
regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src); ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
if (ret)
return ret;
if ((src & mask) == 0) { if ((src & mask) == 0) {
src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD; src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD;
ret = regmap_update_bits(vc5->regmap, ret = regmap_update_bits(vc5->regmap,
...@@ -617,18 +638,22 @@ static int vc5_clk_out_prepare(struct clk_hw *hw) ...@@ -617,18 +638,22 @@ static int vc5_clk_out_prepare(struct clk_hw *hw)
} }
/* Enable the clock buffer */ /* Enable the clock buffer */
regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1), ret = regmap_set_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
VC5_CLK_OUTPUT_CFG1_EN_CLKBUF,
VC5_CLK_OUTPUT_CFG1_EN_CLKBUF); VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
if (ret)
return ret;
if (hwdata->clk_output_cfg0_mask) { if (hwdata->clk_output_cfg0_mask) {
dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n", dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n",
hwdata->num, hwdata->clk_output_cfg0_mask, hwdata->num, hwdata->clk_output_cfg0_mask,
hwdata->clk_output_cfg0); hwdata->clk_output_cfg0);
regmap_update_bits(vc5->regmap, ret = regmap_update_bits(vc5->regmap,
VC5_CLK_OUTPUT_CFG(hwdata->num, 0), VC5_CLK_OUTPUT_CFG(hwdata->num, 0),
hwdata->clk_output_cfg0_mask, hwdata->clk_output_cfg0_mask,
hwdata->clk_output_cfg0); hwdata->clk_output_cfg0);
if (ret)
return ret;
} }
return 0; return 0;
...@@ -640,8 +665,8 @@ static void vc5_clk_out_unprepare(struct clk_hw *hw) ...@@ -640,8 +665,8 @@ static void vc5_clk_out_unprepare(struct clk_hw *hw)
struct vc5_driver_data *vc5 = hwdata->vc5; struct vc5_driver_data *vc5 = hwdata->vc5;
/* Disable the clock buffer */ /* Disable the clock buffer */
regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1), regmap_clear_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
VC5_CLK_OUTPUT_CFG1_EN_CLKBUF, 0); VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
} }
static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw) static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
...@@ -656,8 +681,12 @@ static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw) ...@@ -656,8 +681,12 @@ static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM | const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
VC5_OUT_DIV_CONTROL_SEL_EXT; VC5_OUT_DIV_CONTROL_SEL_EXT;
unsigned int src; unsigned int src;
int ret;
ret = regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
if (ret)
return 0;
regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
src &= mask; src &= mask;
if (src == 0) /* Input mux set to DISABLED */ if (src == 0) /* Input mux set to DISABLED */
...@@ -725,6 +754,7 @@ static int vc5_map_index_to_output(const enum vc5_model model, ...@@ -725,6 +754,7 @@ static int vc5_map_index_to_output(const enum vc5_model model,
case IDT_VC5_5P49V5935: case IDT_VC5_5P49V5935:
case IDT_VC6_5P49V6901: case IDT_VC6_5P49V6901:
case IDT_VC6_5P49V6965: case IDT_VC6_5P49V6965:
case IDT_VC6_5P49V6975:
default: default:
return n; return n;
} }
...@@ -819,8 +849,11 @@ static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data ...@@ -819,8 +849,11 @@ static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data
{ {
u32 value; u32 value;
int mapped_value; int mapped_value;
int ret;
if (of_property_read_u32(node, "idt,xtal-load-femtofarads", &value))
return 0;
if (!of_property_read_u32(node, "idt,xtal-load-femtofarads", &value)) {
mapped_value = vc5_map_cap_value(value); mapped_value = vc5_map_cap_value(value);
if (mapped_value < 0) if (mapped_value < 0)
return mapped_value; return mapped_value;
...@@ -830,11 +863,13 @@ static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data ...@@ -830,11 +863,13 @@ static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data
* VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so * VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so
* shift the value 2 places. * shift the value 2 places.
*/ */
regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03, mapped_value << 2); ret = regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03,
regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03, mapped_value << 2); mapped_value << 2);
} if (ret)
return ret;
return 0; return regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03,
mapped_value << 2);
} }
static int vc5_update_slew(struct device_node *np_output, static int vc5_update_slew(struct device_node *np_output,
...@@ -956,7 +991,10 @@ static int vc5_probe(struct i2c_client *client) ...@@ -956,7 +991,10 @@ static int vc5_probe(struct i2c_client *client)
"could not read idt,output-enable-active\n"); "could not read idt,output-enable-active\n");
} }
regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask, src_val); ret = regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask,
src_val);
if (ret)
return ret;
/* Register clock input mux */ /* Register clock input mux */
memset(&init, 0, sizeof(init)); memset(&init, 0, sizeof(init));
...@@ -1204,7 +1242,7 @@ static const struct vc5_chip_info idt_5p49v6901_info = { ...@@ -1204,7 +1242,7 @@ static const struct vc5_chip_info idt_5p49v6901_info = {
.model = IDT_VC6_5P49V6901, .model = IDT_VC6_5P49V6901,
.clk_fod_cnt = 4, .clk_fod_cnt = 4,
.clk_out_cnt = 5, .clk_out_cnt = 5,
.flags = VC5_HAS_PFD_FREQ_DBL, .flags = VC5_HAS_PFD_FREQ_DBL | VC5_HAS_BYPASS_SYNC_BIT,
}; };
static const struct vc5_chip_info idt_5p49v6965_info = { static const struct vc5_chip_info idt_5p49v6965_info = {
...@@ -1214,6 +1252,13 @@ static const struct vc5_chip_info idt_5p49v6965_info = { ...@@ -1214,6 +1252,13 @@ static const struct vc5_chip_info idt_5p49v6965_info = {
.flags = VC5_HAS_BYPASS_SYNC_BIT, .flags = VC5_HAS_BYPASS_SYNC_BIT,
}; };
static const struct vc5_chip_info idt_5p49v6975_info = {
.model = IDT_VC6_5P49V6975,
.clk_fod_cnt = 4,
.clk_out_cnt = 5,
.flags = VC5_HAS_BYPASS_SYNC_BIT | VC5_HAS_INTERNAL_XTAL,
};
static const struct i2c_device_id vc5_id[] = { static const struct i2c_device_id vc5_id[] = {
{ "5p49v5923", .driver_data = IDT_VC5_5P49V5923 }, { "5p49v5923", .driver_data = IDT_VC5_5P49V5923 },
{ "5p49v5925", .driver_data = IDT_VC5_5P49V5925 }, { "5p49v5925", .driver_data = IDT_VC5_5P49V5925 },
...@@ -1221,6 +1266,7 @@ static const struct i2c_device_id vc5_id[] = { ...@@ -1221,6 +1266,7 @@ static const struct i2c_device_id vc5_id[] = {
{ "5p49v5935", .driver_data = IDT_VC5_5P49V5935 }, { "5p49v5935", .driver_data = IDT_VC5_5P49V5935 },
{ "5p49v6901", .driver_data = IDT_VC6_5P49V6901 }, { "5p49v6901", .driver_data = IDT_VC6_5P49V6901 },
{ "5p49v6965", .driver_data = IDT_VC6_5P49V6965 }, { "5p49v6965", .driver_data = IDT_VC6_5P49V6965 },
{ "5p49v6975", .driver_data = IDT_VC6_5P49V6975 },
{ } { }
}; };
MODULE_DEVICE_TABLE(i2c, vc5_id); MODULE_DEVICE_TABLE(i2c, vc5_id);
...@@ -1232,6 +1278,7 @@ static const struct of_device_id clk_vc5_of_match[] = { ...@@ -1232,6 +1278,7 @@ static const struct of_device_id clk_vc5_of_match[] = {
{ .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info }, { .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info },
{ .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info }, { .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info },
{ .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info }, { .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info },
{ .compatible = "idt,5p49v6975", .data = &idt_5p49v6975_info },
{ }, { },
}; };
MODULE_DEVICE_TABLE(of, clk_vc5_of_match); MODULE_DEVICE_TABLE(of, clk_vc5_of_match);
......
// SPDX-License-Identifier: GPL-2.0
/*
* Common clock framework driver for the Versaclock7 family of timing devices.
*
* Copyright (c) 2022 Renesas Electronics Corporation
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/i2c.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/regmap.h>
#include <linux/swab.h>
/*
* 16-bit register address: the lower 8 bits of the register address come
* from the offset addr byte and the upper 8 bits come from the page register.
*/
#define VC7_PAGE_ADDR 0xFD
#define VC7_PAGE_WINDOW 256
#define VC7_MAX_REG 0x364
/* Maximum number of banks supported by VC7 */
#define VC7_NUM_BANKS 7
/* Maximum number of FODs supported by VC7 */
#define VC7_NUM_FOD 3
/* Maximum number of IODs supported by VC7 */
#define VC7_NUM_IOD 4
/* Maximum number of outputs supported by VC7 */
#define VC7_NUM_OUT 12
/* VCO valid range is 9.5 GHz to 10.7 GHz */
#define VC7_APLL_VCO_MIN 9500000000UL
#define VC7_APLL_VCO_MAX 10700000000UL
/* APLL denominator is fixed at 2^27 */
#define VC7_APLL_DENOMINATOR_BITS 27
/* FOD 1st stage denominator is fixed 2^34 */
#define VC7_FOD_DENOMINATOR_BITS 34
/* IOD can operate between 1kHz and 650MHz */
#define VC7_IOD_RATE_MIN 1000UL
#define VC7_IOD_RATE_MAX 650000000UL
#define VC7_IOD_MIN_DIVISOR 14
#define VC7_IOD_MAX_DIVISOR 0x1ffffff /* 25-bit */
#define VC7_FOD_RATE_MIN 1000UL
#define VC7_FOD_RATE_MAX 650000000UL
#define VC7_FOD_1ST_STAGE_RATE_MIN 33000000UL /* 33 MHz */
#define VC7_FOD_1ST_STAGE_RATE_MAX 650000000UL /* 650 MHz */
#define VC7_FOD_1ST_INT_MAX 324
#define VC7_FOD_2ND_INT_MIN 2
#define VC7_FOD_2ND_INT_MAX 0x1ffff /* 17-bit */
/* VC7 Registers */
#define VC7_REG_XO_CNFG 0x2C
#define VC7_REG_XO_CNFG_COUNT 4
#define VC7_REG_XO_IB_H_DIV_SHIFT 24
#define VC7_REG_XO_IB_H_DIV_MASK GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT)
#define VC7_REG_APLL_FB_DIV_FRAC 0x120
#define VC7_REG_APLL_FB_DIV_FRAC_COUNT 4
#define VC7_REG_APLL_FB_DIV_FRAC_MASK GENMASK(26, 0)
#define VC7_REG_APLL_FB_DIV_INT 0x124
#define VC7_REG_APLL_FB_DIV_INT_COUNT 2
#define VC7_REG_APLL_FB_DIV_INT_MASK GENMASK(9, 0)
#define VC7_REG_APLL_CNFG 0x127
#define VC7_REG_APLL_EN_DOUBLER BIT(0)
#define VC7_REG_OUT_BANK_CNFG(idx) (0x280 + (0x4 * (idx)))
#define VC7_REG_OUTPUT_BANK_SRC_MASK GENMASK(2, 0)
#define VC7_REG_FOD_INT_CNFG(idx) (0x1E0 + (0x10 * (idx)))
#define VC7_REG_FOD_INT_CNFG_COUNT 8
#define VC7_REG_FOD_1ST_INT_MASK GENMASK(8, 0)
#define VC7_REG_FOD_2ND_INT_SHIFT 9
#define VC7_REG_FOD_2ND_INT_MASK GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT)
#define VC7_REG_FOD_FRAC_SHIFT 26
#define VC7_REG_FOD_FRAC_MASK GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT)
#define VC7_REG_IOD_INT_CNFG(idx) (0x1C0 + (0x8 * (idx)))
#define VC7_REG_IOD_INT_CNFG_COUNT 4
#define VC7_REG_IOD_INT_MASK GENMASK(24, 0)
#define VC7_REG_ODRV_EN(idx) (0x240 + (0x4 * (idx)))
#define VC7_REG_OUT_DIS BIT(0)
struct vc7_driver_data;
static const struct regmap_config vc7_regmap_config;
/* Supported Renesas VC7 models */
enum vc7_model {
VC7_RC21008A,
};
struct vc7_chip_info {
const enum vc7_model model;
const unsigned int banks[VC7_NUM_BANKS];
const unsigned int num_banks;
const unsigned int outputs[VC7_NUM_OUT];
const unsigned int num_outputs;
};
/*
* Changing the APLL frequency is currently not supported.
* The APLL will consist of an opaque block between the XO and FOD/IODs and
* its frequency will be computed based on the current state of the device.
*/
struct vc7_apll_data {
struct clk *clk;
struct vc7_driver_data *vc7;
u8 xo_ib_h_div;
u8 en_doubler;
u16 apll_fb_div_int;
u32 apll_fb_div_frac;
};
struct vc7_fod_data {
struct clk_hw hw;
struct vc7_driver_data *vc7;
unsigned int num;
u32 fod_1st_int;
u32 fod_2nd_int;
u64 fod_frac;
};
struct vc7_iod_data {
struct clk_hw hw;
struct vc7_driver_data *vc7;
unsigned int num;
u32 iod_int;
};
struct vc7_out_data {
struct clk_hw hw;
struct vc7_driver_data *vc7;
unsigned int num;
unsigned int out_dis;
};
struct vc7_driver_data {
struct i2c_client *client;
struct regmap *regmap;
const struct vc7_chip_info *chip_info;
struct clk *pin_xin;
struct vc7_apll_data clk_apll;
struct vc7_fod_data clk_fod[VC7_NUM_FOD];
struct vc7_iod_data clk_iod[VC7_NUM_IOD];
struct vc7_out_data clk_out[VC7_NUM_OUT];
};
struct vc7_bank_src_map {
enum vc7_bank_src_type {
VC7_FOD,
VC7_IOD,
} type;
union _divider {
struct vc7_iod_data *iod;
struct vc7_fod_data *fod;
} src;
};
static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec,
void *data)
{
struct vc7_driver_data *vc7 = data;
unsigned int idx = clkspec->args[0];
if (idx >= vc7->chip_info->num_outputs)
return ERR_PTR(-EINVAL);
return &vc7->clk_out[idx].hw;
}
static const unsigned int RC21008A_index_to_output_mapping[] = {
1, 2, 3, 6, 7, 8, 10, 11
};
static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i)
{
switch (model) {
case VC7_RC21008A:
return RC21008A_index_to_output_mapping[i];
default:
return i;
}
}
/* bank to output mapping, same across all variants */
static const unsigned int output_bank_mapping[] = {
0, /* Output 0 */
1, /* Output 1 */
2, /* Output 2 */
2, /* Output 3 */
3, /* Output 4 */
3, /* Output 5 */
3, /* Output 6 */
3, /* Output 7 */
4, /* Output 8 */
4, /* Output 9 */
5, /* Output 10 */
6 /* Output 11 */
};
/**
* vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer
* as an upper and lower part.
*
* @left: The left argument.
* @right: The right argument.
* @hi: The upper 64-bits of the 128-bit product.
* @lo: The lower 64-bits of the 128-bit product.
*
* From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2.
*/
static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo)
{
u64 a0 = left & 0xffffffffull;
u64 a1 = left >> 32;
u64 b0 = right & 0xffffffffull;
u64 b1 = right >> 32;
u64 m0 = a0 * b0;
u64 m1 = a0 * b1;
u64 m2 = a1 * b0;
u64 m3 = a1 * b1;
m2 += (m0 >> 32);
m2 += m1;
/* Overflow */
if (m2 < m1)
m3 += 0x100000000ull;
*lo = (m0 & 0xffffffffull) | (m2 << 32);
*hi = m3 + (m2 >> 32);
}
/**
* vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient.
*
* @numhi: The uppper 64-bits of the dividend.
* @numlo: The lower 64-bits of the dividend.
* @den: The denominator (divisor).
* @r: The remainder, pass NULL if the remainder is not needed.
*
* Originally from libdivide, modified to use kernel u64/u32 types.
*
* See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471.
*
* Return: The 64-bit quotient of the division.
*
* In case of overflow of division by zero, max(u64) is returned.
*/
static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r)
{
/*
* We work in base 2**32.
* A uint32 holds a single digit. A uint64 holds two digits.
* Our numerator is conceptually [num3, num2, num1, num0].
* Our denominator is [den1, den0].
*/
const u64 b = ((u64)1 << 32);
/* The high and low digits of our computed quotient. */
u32 q1, q0;
/* The normalization shift factor */
int shift;
/*
* The high and low digits of our denominator (after normalizing).
* Also the low 2 digits of our numerator (after normalizing).
*/
u32 den1, den0, num1, num0;
/* A partial remainder; */
u64 rem;
/*
* The estimated quotient, and its corresponding remainder (unrelated
* to true remainder).
*/
u64 qhat, rhat;
/* Variables used to correct the estimated quotient. */
u64 c1, c2;
/* Check for overflow and divide by 0. */
if (numhi >= den) {
if (r)
*r = ~0ull;
return ~0ull;
}
/*
* Determine the normalization factor. We multiply den by this, so that
* its leading digit is at least half b. In binary this means just
* shifting left by the number of leading zeros, so that there's a 1 in
* the MSB.
*
* We also shift numer by the same amount. This cannot overflow because
* numhi < den. The expression (-shift & 63) is the same as (64 -
* shift), except it avoids the UB of shifting by 64. The funny bitwise
* 'and' ensures that numlo does not get shifted into numhi if shift is
* 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The
* sequence below avoids it.
*/
shift = __builtin_clzll(den);
den <<= shift;
numhi <<= shift;
numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63);
numlo <<= shift;
/*
* Extract the low digits of the numerator and both digits of the
* denominator.
*/
num1 = (u32)(numlo >> 32);
num0 = (u32)(numlo & 0xFFFFFFFFu);
den1 = (u32)(den >> 32);
den0 = (u32)(den & 0xFFFFFFFFu);
/*
* We wish to compute q1 = [n3 n2 n1] / [d1 d0].
* Estimate q1 as [n3 n2] / [d1], and then correct it.
* Note while qhat may be 2 digits, q1 is always 1 digit.
*/
qhat = div64_u64_rem(numhi, den1, &rhat);
c1 = qhat * den0;
c2 = rhat * b + num1;
if (c1 > c2)
qhat -= (c1 - c2 > den) ? 2 : 1;
q1 = (u32)qhat;
/* Compute the true (partial) remainder. */
rem = numhi * b + num1 - q1 * den;
/*
* We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
* Estimate q0 as [rem1 rem0] / [d1] and correct it.
*/
qhat = div64_u64_rem(rem, den1, &rhat);
c1 = qhat * den0;
c2 = rhat * b + num0;
if (c1 > c2)
qhat -= (c1 - c2 > den) ? 2 : 1;
q0 = (u32)qhat;
/* Return remainder if requested. */
if (r)
*r = (rem * b + num0 - q0 * den) >> shift;
return ((u64)q1 << 32) | q0;
}
static int vc7_get_bank_clk(struct vc7_driver_data *vc7,
unsigned int bank_idx,
unsigned int output_bank_src,
struct vc7_bank_src_map *map)
{
/* Mapping from Table 38 in datasheet */
if (bank_idx == 0 || bank_idx == 1) {
switch (output_bank_src) {
case 0:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[0];
return 0;
case 1:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[1];
return 0;
case 4:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[0];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
default:
break;
}
} else if (bank_idx == 2) {
switch (output_bank_src) {
case 1:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[1];
return 0;
case 4:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[0];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
default:
break;
}
} else if (bank_idx == 3) {
switch (output_bank_src) {
case 4:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[0];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
case 6:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[2];
return 0;
default:
break;
}
} else if (bank_idx == 4) {
switch (output_bank_src) {
case 0:
/* CLKIN1 not supported in this driver */
break;
case 2:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[2];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
case 6:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[2];
return 0;
case 7:
/* CLKIN0 not supported in this driver */
break;
default:
break;
}
} else if (bank_idx == 5) {
switch (output_bank_src) {
case 0:
/* CLKIN1 not supported in this driver */
break;
case 1:
/* XIN_REFIN not supported in this driver */
break;
case 2:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[2];
return 0;
case 3:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[3];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
case 6:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[2];
return 0;
case 7:
/* CLKIN0 not supported in this driver */
break;
default:
break;
}
} else if (bank_idx == 6) {
switch (output_bank_src) {
case 0:
/* CLKIN1 not supported in this driver */
break;
case 2:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[2];
return 0;
case 3:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[3];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
case 6:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[2];
return 0;
case 7:
/* CLKIN0 not supported in this driver */
break;
default:
break;
}
}
pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src);
return -1;
}
static int vc7_read_apll(struct vc7_driver_data *vc7)
{
int err;
u32 val32;
u16 val16;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_XO_CNFG,
(u32 *)&val32,
VC7_REG_XO_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read XO_CNFG\n");
return err;
}
vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK)
>> VC7_REG_XO_IB_H_DIV_SHIFT;
err = regmap_read(vc7->regmap,
VC7_REG_APLL_CNFG,
&val32);
if (err) {
dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n");
return err;
}
vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_APLL_FB_DIV_FRAC,
(u32 *)&val32,
VC7_REG_APLL_FB_DIV_FRAC_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n");
return err;
}
vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_APLL_FB_DIV_INT,
(u16 *)&val16,
VC7_REG_APLL_FB_DIV_INT_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n");
return err;
}
vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK;
return 0;
}
static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
u64 val;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_FOD_INT_CNFG(idx),
(u64 *)&val,
VC7_REG_FOD_INT_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
return err;
}
vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK);
vc7->clk_fod[idx].fod_2nd_int =
(val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT;
vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK)
>> VC7_REG_FOD_FRAC_SHIFT;
return 0;
}
static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
u64 val;
/*
* FOD dividers are part of an atomic group where fod_1st_int,
* fod_2nd_int, and fod_frac must be written together. The new divider
* is applied when the MSB of fod_frac is written.
*/
err = regmap_bulk_read(vc7->regmap,
VC7_REG_FOD_INT_CNFG(idx),
(u64 *)&val,
VC7_REG_FOD_INT_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
return err;
}
val = u64_replace_bits(val,
vc7->clk_fod[idx].fod_1st_int,
VC7_REG_FOD_1ST_INT_MASK);
val = u64_replace_bits(val,
vc7->clk_fod[idx].fod_2nd_int,
VC7_REG_FOD_2ND_INT_MASK);
val = u64_replace_bits(val,
vc7->clk_fod[idx].fod_frac,
VC7_REG_FOD_FRAC_MASK);
err = regmap_bulk_write(vc7->regmap,
VC7_REG_FOD_INT_CNFG(idx),
(u64 *)&val,
sizeof(u64));
if (err) {
dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx);
return err;
}
return 0;
}
static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
u32 val;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_IOD_INT_CNFG(idx),
(u32 *)&val,
VC7_REG_IOD_INT_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
return err;
}
vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK);
return 0;
}
static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
u32 val;
/*
* IOD divider field is atomic and all bits must be written.
* The new divider is applied when the MSB of iod_int is written.
*/
err = regmap_bulk_read(vc7->regmap,
VC7_REG_IOD_INT_CNFG(idx),
(u32 *)&val,
VC7_REG_IOD_INT_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
return err;
}
val = u32_replace_bits(val,
vc7->clk_iod[idx].iod_int,
VC7_REG_IOD_INT_MASK);
err = regmap_bulk_write(vc7->regmap,
VC7_REG_IOD_INT_CNFG(idx),
(u32 *)&val,
sizeof(u32));
if (err) {
dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx);
return err;
}
return 0;
}
static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
unsigned int val, out_num;
out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
err = regmap_read(vc7->regmap,
VC7_REG_ODRV_EN(out_num),
&val);
if (err) {
dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx);
return err;
}
vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS;
return 0;
}
static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
unsigned int out_num;
out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
err = regmap_write_bits(vc7->regmap,
VC7_REG_ODRV_EN(out_num),
VC7_REG_OUT_DIS,
vc7->clk_out[idx].out_dis);
if (err) {
dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx);
return err;
}
return 0;
}
static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7)
{
int err;
unsigned long xtal_rate;
u64 refin_div, apll_rate;
xtal_rate = clk_get_rate(vc7->pin_xin);
err = vc7_read_apll(vc7);
if (err) {
dev_err(&vc7->client->dev, "unable to read apll\n");
return err;
}
/* 0 is bypassed, 1 is reserved */
if (vc7->clk_apll.xo_ib_h_div < 2)
refin_div = xtal_rate;
else
refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div);
if (vc7->clk_apll.en_doubler)
refin_div *= 2;
/* divider = int + (frac / 2^27) */
apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) +
((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS);
pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n",
__func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int,
vc7->clk_apll.apll_fb_div_frac);
pr_debug("%s - refin_div: %llu, apll rate: %llu\n",
__func__, refin_div, apll_rate);
return apll_rate;
}
static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate,
u32 *divider)
{
*divider = DIV_ROUND_UP(parent_rate, rate);
if (*divider < VC7_IOD_MIN_DIVISOR)
*divider = VC7_IOD_MIN_DIVISOR;
if (*divider > VC7_IOD_MAX_DIVISOR)
*divider = VC7_IOD_MAX_DIVISOR;
}
static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate,
u32 *div_int, u64 *div_frac)
{
u64 rem;
*div_int = (u32)div64_u64_rem(parent_rate, rate, &rem);
*div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate);
}
static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,
u32 fod_1st_int, u64 fod_frac)
{
u64 numer, denom, hi, lo, divisor;
numer = fod_frac;
denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS);
if (fod_frac) {
vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo);
divisor = ((u64)fod_1st_int * denom) + numer;
return vc7_128_div_64_to_64(hi, lo, divisor, NULL);
}
return div64_u64(parent_rate, fod_1st_int);
}
static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,
u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac)
{
unsigned long fod_1st_stage_rate;
fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac);
if (fod_2nd_int < 2)
return fod_1st_stage_rate;
/*
* There is a div-by-2 preceding the 2nd stage integer divider
* (not shown on block diagram) so the actual 2nd stage integer
* divisor is 2 * N.
*/
return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int);
}
static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate,
u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac)
{
unsigned int allow_frac, i, best_frac_i;
unsigned long first_stage_rate;
vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac);
first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac);
*fod_2nd_int = 0;
/* Do we need the second stage integer divider? */
if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) {
allow_frac = 0;
best_frac_i = VC7_FOD_2ND_INT_MIN;
for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) {
/*
* 1) There is a div-by-2 preceding the 2nd stage integer divider
* (not shown on block diagram) so the actual 2nd stage integer
* divisor is 2 * N.
* 2) Attempt to find an integer solution first. This means stepping
* through each 2nd stage integer and recalculating the 1st stage
* until the 1st stage frequency is out of bounds. If no integer
* solution is found, use the best fractional solution.
*/
vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac);
first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate,
*fod_1st_int,
*fod_frac);
/* Remember the first viable fractional solution */
if (best_frac_i == VC7_FOD_2ND_INT_MIN &&
first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) {
best_frac_i = i;
}
/* Is the divider viable? Prefer integer solutions over fractional. */
if (*fod_1st_int < VC7_FOD_1ST_INT_MAX &&
first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN &&
(allow_frac || *fod_frac == 0)) {
*fod_2nd_int = i;
break;
}
/* Ran out of divisors or the 1st stage frequency is out of range */
if (i >= VC7_FOD_2ND_INT_MAX ||
first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) {
allow_frac = 1;
i = best_frac_i;
/* Restore the best frac and rerun the loop for the last time */
if (best_frac_i != VC7_FOD_2ND_INT_MIN)
i--;
continue;
}
}
}
}
static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
struct vc7_driver_data *vc7 = fod->vc7;
int err;
unsigned long fod_rate;
err = vc7_read_fod(vc7, fod->num);
if (err) {
dev_err(&vc7->client->dev, "error reading registers for %s\n",
clk_hw_get_name(hw));
return err;
}
pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate);
fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
__func__, clk_hw_get_name(hw),
fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
return fod_rate;
}
static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
{
struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
unsigned long fod_rate;
pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
__func__, clk_hw_get_name(hw), rate, *parent_rate);
vc7_calc_fod_divider(rate, *parent_rate,
&fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac);
fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int,
fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
__func__, clk_hw_get_name(hw),
fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
return fod_rate;
}
static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
{
struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
struct vc7_driver_data *vc7 = fod->vc7;
unsigned long fod_rate;
pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
__func__, clk_hw_get_name(hw), rate, parent_rate);
if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) {
dev_err(&vc7->client->dev,
"requested frequency %lu Hz for %s is out of range\n",
rate, clk_hw_get_name(hw));
return -EINVAL;
}
vc7_write_fod(vc7, fod->num);
fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
__func__, clk_hw_get_name(hw),
fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
return 0;
}
static const struct clk_ops vc7_fod_ops = {
.recalc_rate = vc7_fod_recalc_rate,
.round_rate = vc7_fod_round_rate,
.set_rate = vc7_fod_set_rate,
};
static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
struct vc7_driver_data *vc7 = iod->vc7;
int err;
unsigned long iod_rate;
err = vc7_read_iod(vc7, iod->num);
if (err) {
dev_err(&vc7->client->dev, "error reading registers for %s\n",
clk_hw_get_name(hw));
return err;
}
iod_rate = div64_u64(parent_rate, iod->iod_int);
pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate);
return iod_rate;
}
static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
{
struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
unsigned long iod_rate;
pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
__func__, clk_hw_get_name(hw), rate, *parent_rate);
vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int);
iod_rate = div64_u64(*parent_rate, iod->iod_int);
pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
return iod_rate;
}
static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
{
struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
struct vc7_driver_data *vc7 = iod->vc7;
unsigned long iod_rate;
pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
__func__, clk_hw_get_name(hw), rate, parent_rate);
if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) {
dev_err(&vc7->client->dev,
"requested frequency %lu Hz for %s is out of range\n",
rate, clk_hw_get_name(hw));
return -EINVAL;
}
vc7_write_iod(vc7, iod->num);
iod_rate = div64_u64(parent_rate, iod->iod_int);
pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
return 0;
}
static const struct clk_ops vc7_iod_ops = {
.recalc_rate = vc7_iod_recalc_rate,
.round_rate = vc7_iod_round_rate,
.set_rate = vc7_iod_set_rate,
};
static int vc7_clk_out_prepare(struct clk_hw *hw)
{
struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
struct vc7_driver_data *vc7 = out->vc7;
int err;
out->out_dis = 0;
err = vc7_write_output(vc7, out->num);
if (err) {
dev_err(&vc7->client->dev, "error writing registers for %s\n",
clk_hw_get_name(hw));
return err;
}
pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw));
return 0;
}
static void vc7_clk_out_unprepare(struct clk_hw *hw)
{
struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
struct vc7_driver_data *vc7 = out->vc7;
int err;
out->out_dis = 1;
err = vc7_write_output(vc7, out->num);
if (err) {
dev_err(&vc7->client->dev, "error writing registers for %s\n",
clk_hw_get_name(hw));
return;
}
pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw));
}
static int vc7_clk_out_is_enabled(struct clk_hw *hw)
{
struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
struct vc7_driver_data *vc7 = out->vc7;
int err, is_enabled;
err = vc7_read_output(vc7, out->num);
if (err) {
dev_err(&vc7->client->dev, "error reading registers for %s\n",
clk_hw_get_name(hw));
return err;
}
is_enabled = !out->out_dis;
pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled);
return is_enabled;
}
static const struct clk_ops vc7_clk_out_ops = {
.prepare = vc7_clk_out_prepare,
.unprepare = vc7_clk_out_unprepare,
.is_enabled = vc7_clk_out_is_enabled,
};
static int vc7_probe(struct i2c_client *client)
{
struct vc7_driver_data *vc7;
struct clk_init_data clk_init;
struct vc7_bank_src_map bank_src_map;
const char *node_name, *apll_name;
const char *parent_names[1];
unsigned int i, val, bank_idx, out_num;
unsigned long apll_rate;
int ret;
vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL);
if (!vc7)
return -ENOMEM;
i2c_set_clientdata(client, vc7);
vc7->client = client;
vc7->chip_info = of_device_get_match_data(&client->dev);
vc7->pin_xin = devm_clk_get(&client->dev, "xin");
if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) {
return dev_err_probe(&client->dev, -EPROBE_DEFER,
"xin not specified\n");
}
vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config);
if (IS_ERR(vc7->regmap)) {
return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap),
"failed to allocate register map\n");
}
if (of_property_read_string(client->dev.of_node, "clock-output-names",
&node_name))
node_name = client->dev.of_node->name;
/* Register APLL */
apll_rate = vc7_get_apll_rate(vc7);
apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name);
vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name,
__clk_get_name(vc7->pin_xin),
0, apll_rate);
kfree(apll_name); /* ccf made a copy of the name */
if (IS_ERR(vc7->clk_apll.clk)) {
return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk),
"failed to register apll\n");
}
/* Register FODs */
for (i = 0; i < VC7_NUM_FOD; i++) {
memset(&clk_init, 0, sizeof(clk_init));
clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i);
clk_init.ops = &vc7_fod_ops;
clk_init.parent_names = parent_names;
parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
clk_init.num_parents = 1;
vc7->clk_fod[i].num = i;
vc7->clk_fod[i].vc7 = vc7;
vc7->clk_fod[i].hw.init = &clk_init;
ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw);
if (ret)
goto err_clk_register;
kfree(clk_init.name); /* ccf made a copy of the name */
}
/* Register IODs */
for (i = 0; i < VC7_NUM_IOD; i++) {
memset(&clk_init, 0, sizeof(clk_init));
clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i);
clk_init.ops = &vc7_iod_ops;
clk_init.parent_names = parent_names;
parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
clk_init.num_parents = 1;
vc7->clk_iod[i].num = i;
vc7->clk_iod[i].vc7 = vc7;
vc7->clk_iod[i].hw.init = &clk_init;
ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw);
if (ret)
goto err_clk_register;
kfree(clk_init.name); /* ccf made a copy of the name */
}
/* Register outputs */
for (i = 0; i < vc7->chip_info->num_outputs; i++) {
out_num = vc7_map_index_to_output(vc7->chip_info->model, i);
/*
* This driver does not support remapping FOD/IOD to banks.
* The device state is read and the driver is setup to match
* the device's existing mapping.
*/
bank_idx = output_bank_mapping[out_num];
regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val);
val &= VC7_REG_OUTPUT_BANK_SRC_MASK;
memset(&bank_src_map, 0, sizeof(bank_src_map));
ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map);
if (ret) {
dev_err_probe(&client->dev, ret,
"unable to register output %d\n", i);
return ret;
}
switch (bank_src_map.type) {
case VC7_FOD:
parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw);
break;
case VC7_IOD:
parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw);
break;
}
memset(&clk_init, 0, sizeof(clk_init));
clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i);
clk_init.ops = &vc7_clk_out_ops;
clk_init.flags = CLK_SET_RATE_PARENT;
clk_init.parent_names = parent_names;
clk_init.num_parents = 1;
vc7->clk_out[i].num = i;
vc7->clk_out[i].vc7 = vc7;
vc7->clk_out[i].hw.init = &clk_init;
ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw);
if (ret)
goto err_clk_register;
kfree(clk_init.name); /* ccf made a copy of the name */
}
ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7);
if (ret) {
dev_err_probe(&client->dev, ret, "unable to add clk provider\n");
goto err_clk;
}
return ret;
err_clk_register:
dev_err_probe(&client->dev, ret,
"unable to register %s\n", clk_init.name);
kfree(clk_init.name); /* ccf made a copy of the name */
err_clk:
clk_unregister_fixed_rate(vc7->clk_apll.clk);
return ret;
}
static int vc7_remove(struct i2c_client *client)
{
struct vc7_driver_data *vc7 = i2c_get_clientdata(client);
of_clk_del_provider(client->dev.of_node);
clk_unregister_fixed_rate(vc7->clk_apll.clk);
return 0;
}
static bool vc7_volatile_reg(struct device *dev, unsigned int reg)
{
if (reg == VC7_PAGE_ADDR)
return false;
return true;
}
static const struct vc7_chip_info vc7_rc21008a_info = {
.model = VC7_RC21008A,
.num_banks = 6,
.num_outputs = 8,
};
static struct regmap_range_cfg vc7_range_cfg[] = {
{
.range_min = 0,
.range_max = VC7_MAX_REG,
.selector_reg = VC7_PAGE_ADDR,
.selector_mask = 0xFF,
.selector_shift = 0,
.window_start = 0,
.window_len = VC7_PAGE_WINDOW,
}};
static const struct regmap_config vc7_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = VC7_MAX_REG,
.ranges = vc7_range_cfg,
.num_ranges = ARRAY_SIZE(vc7_range_cfg),
.volatile_reg = vc7_volatile_reg,
.cache_type = REGCACHE_RBTREE,
.can_multi_write = true,
.reg_format_endian = REGMAP_ENDIAN_LITTLE,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static const struct i2c_device_id vc7_i2c_id[] = {
{ "rc21008a", VC7_RC21008A },
{}
};
MODULE_DEVICE_TABLE(i2c, vc7_i2c_id);
static const struct of_device_id vc7_of_match[] = {
{ .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info },
{}
};
MODULE_DEVICE_TABLE(of, vc7_of_match);
static struct i2c_driver vc7_i2c_driver = {
.driver = {
.name = "vc7",
.of_match_table = vc7_of_match,
},
.probe_new = vc7_probe,
.remove = vc7_remove,
.id_table = vc7_i2c_id,
};
module_i2c_driver(vc7_i2c_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alex Helms <alexander.helms.jy@renesas.com");
MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver");
...@@ -21,5 +21,14 @@ ...@@ -21,5 +21,14 @@
#define CCU_SYS_SATA_REF_RST 0 #define CCU_SYS_SATA_REF_RST 0
#define CCU_SYS_APB_RST 1 #define CCU_SYS_APB_RST 1
#define CCU_SYS_DDR_FULL_RST 2
#define CCU_SYS_DDR_INIT_RST 3
#define CCU_SYS_PCIE_PCS_PHY_RST 4
#define CCU_SYS_PCIE_PIPE0_RST 5
#define CCU_SYS_PCIE_CORE_RST 6
#define CCU_SYS_PCIE_PWR_RST 7
#define CCU_SYS_PCIE_STICKY_RST 8
#define CCU_SYS_PCIE_NSTICKY_RST 9
#define CCU_SYS_PCIE_HOT_RST 10
#endif /* __DT_BINDINGS_RESET_BT1_CCU_H */ #endif /* __DT_BINDINGS_RESET_BT1_CCU_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment