Commit fd8aab1a authored by H Hartley Sweeten's avatar H Hartley Sweeten Committed by Greg Kroah-Hartman

staging: comedi: das1800: introduce struct das1800_dma_desc

For aesthetics, introduce a struct to hold the DMA descriptor data.
Signed-off-by: default avatarH Hartley Sweeten <hsweeten@visionengravers.com>
Reviewed-by: default avatarIan Abbott <abbotti@mev.co.uk>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 1f190a73
...@@ -420,6 +420,11 @@ static const struct das1800_board das1800_boards[] = { ...@@ -420,6 +420,11 @@ static const struct das1800_board das1800_boards[] = {
}, },
}; };
struct das1800_dma_desc {
unsigned int chan; /* DMA channel */
uint16_t *virt_addr; /* virtual address of DMA buffer */
};
struct das1800_private { struct das1800_private {
unsigned int divisor1; /* value to load into board's counter 1 for timed conversions */ unsigned int divisor1; /* value to load into board's counter 1 for timed conversions */
unsigned int divisor2; /* value to load into board's counter 2 for timed conversions */ unsigned int divisor2; /* value to load into board's counter 2 for timed conversions */
...@@ -427,12 +432,8 @@ struct das1800_private { ...@@ -427,12 +432,8 @@ struct das1800_private {
/* dma bits for control register b, stored so that dma can be /* dma bits for control register b, stored so that dma can be
* turned on and off */ * turned on and off */
int dma_bits; int dma_bits;
unsigned int dma0; /* dma channels used */ struct das1800_dma_desc dma_desc[2];
unsigned int dma1; int cur_dma;
unsigned int dma_current; /* dma channel currently in use */
uint16_t *ai_buf0; /* pointers to dma buffers */
uint16_t *ai_buf1;
uint16_t *dma_current_buf; /* pointer to dma buffer currently being used */
uint16_t *fifo_buf; /* bounce buffer for analog input FIFO */ uint16_t *fifo_buf; /* bounce buffer for analog input FIFO */
unsigned int dma_transfer_size; /* size of transfer currently used, in bytes */ unsigned int dma_transfer_size; /* size of transfer currently used, in bytes */
unsigned long iobase2; /* secondary io address used for analog out on 'ao' boards */ unsigned long iobase2; /* secondary io address used for analog out on 'ao' boards */
...@@ -540,24 +541,18 @@ static void das1800_flush_dma(struct comedi_device *dev, ...@@ -540,24 +541,18 @@ static void das1800_flush_dma(struct comedi_device *dev,
struct comedi_subdevice *s) struct comedi_subdevice *s)
{ {
struct das1800_private *devpriv = dev->private; struct das1800_private *devpriv = dev->private;
struct das1800_dma_desc *dma = &devpriv->dma_desc[devpriv->cur_dma];
unsigned long flags; unsigned long flags;
const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL; const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL;
flags = claim_dma_lock(); flags = claim_dma_lock();
das1800_flush_dma_channel(dev, s, devpriv->dma_current, das1800_flush_dma_channel(dev, s, dma->chan, dma->virt_addr);
devpriv->dma_current_buf);
if (dual_dma) { if (dual_dma) {
/* switch to other channel and flush it */ /* switch to other channel and flush it */
if (devpriv->dma_current == devpriv->dma0) { devpriv->cur_dma = 1 - devpriv->cur_dma;
devpriv->dma_current = devpriv->dma1; dma = &devpriv->dma_desc[devpriv->cur_dma];
devpriv->dma_current_buf = devpriv->ai_buf1; das1800_flush_dma_channel(dev, s, dma->chan, dma->virt_addr);
} else {
devpriv->dma_current = devpriv->dma0;
devpriv->dma_current_buf = devpriv->ai_buf0;
}
das1800_flush_dma_channel(dev, s, devpriv->dma_current,
devpriv->dma_current_buf);
} }
release_dma_lock(flags); release_dma_lock(flags);
...@@ -570,47 +565,43 @@ static void das1800_handle_dma(struct comedi_device *dev, ...@@ -570,47 +565,43 @@ static void das1800_handle_dma(struct comedi_device *dev,
struct comedi_subdevice *s, unsigned int status) struct comedi_subdevice *s, unsigned int status)
{ {
struct das1800_private *devpriv = dev->private; struct das1800_private *devpriv = dev->private;
struct das1800_dma_desc *dma = &devpriv->dma_desc[devpriv->cur_dma];
unsigned long flags; unsigned long flags;
const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL; const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL;
flags = claim_dma_lock(); flags = claim_dma_lock();
das1800_flush_dma_channel(dev, s, devpriv->dma_current, das1800_flush_dma_channel(dev, s, dma->chan, dma->virt_addr);
devpriv->dma_current_buf);
/* re-enable dma channel */ /* re-enable dma channel */
set_dma_addr(devpriv->dma_current, set_dma_addr(dma->chan, virt_to_bus(dma->virt_addr));
virt_to_bus(devpriv->dma_current_buf)); set_dma_count(dma->chan, devpriv->dma_transfer_size);
set_dma_count(devpriv->dma_current, devpriv->dma_transfer_size); enable_dma(dma->chan);
enable_dma(devpriv->dma_current);
release_dma_lock(flags); release_dma_lock(flags);
if (status & DMATC) { if (status & DMATC) {
/* clear DMATC interrupt bit */ /* clear DMATC interrupt bit */
outb(CLEAR_INTR_MASK & ~DMATC, dev->iobase + DAS1800_STATUS); outb(CLEAR_INTR_MASK & ~DMATC, dev->iobase + DAS1800_STATUS);
/* switch dma channels for next time, if appropriate */ /* switch dma channels for next time, if appropriate */
if (dual_dma) { if (dual_dma)
/* read data from the other channel next time */ devpriv->cur_dma = 1 - devpriv->cur_dma;
if (devpriv->dma_current == devpriv->dma0) {
devpriv->dma_current = devpriv->dma1;
devpriv->dma_current_buf = devpriv->ai_buf1;
} else {
devpriv->dma_current = devpriv->dma0;
devpriv->dma_current_buf = devpriv->ai_buf0;
}
}
} }
} }
static int das1800_cancel(struct comedi_device *dev, struct comedi_subdevice *s) static int das1800_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
{ {
struct das1800_private *devpriv = dev->private; struct das1800_private *devpriv = dev->private;
struct das1800_dma_desc *dma;
int i;
outb(0x0, dev->iobase + DAS1800_STATUS); /* disable conversions */ outb(0x0, dev->iobase + DAS1800_STATUS); /* disable conversions */
outb(0x0, dev->iobase + DAS1800_CONTROL_B); /* disable interrupts and dma */ outb(0x0, dev->iobase + DAS1800_CONTROL_B); /* disable interrupts and dma */
outb(0x0, dev->iobase + DAS1800_CONTROL_A); /* disable and clear fifo and stop triggering */ outb(0x0, dev->iobase + DAS1800_CONTROL_A); /* disable and clear fifo and stop triggering */
if (devpriv->dma0)
disable_dma(devpriv->dma0); for (i = 0; i < 2; i++) {
if (devpriv->dma1) dma = &devpriv->dma_desc[i];
disable_dma(devpriv->dma1); if (dma->chan)
disable_dma(dma->chan);
}
return 0; return 0;
} }
...@@ -1006,35 +997,37 @@ static unsigned int suggest_transfer_size(const struct comedi_cmd *cmd) ...@@ -1006,35 +997,37 @@ static unsigned int suggest_transfer_size(const struct comedi_cmd *cmd)
static void setup_dma(struct comedi_device *dev, const struct comedi_cmd *cmd) static void setup_dma(struct comedi_device *dev, const struct comedi_cmd *cmd)
{ {
struct das1800_private *devpriv = dev->private; struct das1800_private *devpriv = dev->private;
struct das1800_dma_desc *dma = &devpriv->dma_desc[0];
unsigned long lock_flags; unsigned long lock_flags;
const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL; const int dual_dma = devpriv->irq_dma_bits & DMA_DUAL;
if ((devpriv->irq_dma_bits & DMA_ENABLED) == 0) if ((devpriv->irq_dma_bits & DMA_ENABLED) == 0)
return; return;
devpriv->cur_dma = 0;
/* determine a reasonable dma transfer size */ /* determine a reasonable dma transfer size */
devpriv->dma_transfer_size = suggest_transfer_size(cmd); devpriv->dma_transfer_size = suggest_transfer_size(cmd);
lock_flags = claim_dma_lock(); lock_flags = claim_dma_lock();
disable_dma(devpriv->dma0); disable_dma(dma->chan);
/* clear flip-flop to make sure 2-byte registers for /* clear flip-flop to make sure 2-byte registers for
* count and address get set correctly */ * count and address get set correctly */
clear_dma_ff(devpriv->dma0); clear_dma_ff(dma->chan);
set_dma_addr(devpriv->dma0, virt_to_bus(devpriv->ai_buf0)); set_dma_addr(dma->chan, virt_to_bus(dma->virt_addr));
/* set appropriate size of transfer */ /* set appropriate size of transfer */
set_dma_count(devpriv->dma0, devpriv->dma_transfer_size); set_dma_count(dma->chan, devpriv->dma_transfer_size);
devpriv->dma_current = devpriv->dma0; enable_dma(dma->chan);
devpriv->dma_current_buf = devpriv->ai_buf0;
enable_dma(devpriv->dma0);
/* set up dual dma if appropriate */ /* set up dual dma if appropriate */
if (dual_dma) { if (dual_dma) {
disable_dma(devpriv->dma1); dma = &devpriv->dma_desc[1];
disable_dma(dma->chan);
/* clear flip-flop to make sure 2-byte registers for /* clear flip-flop to make sure 2-byte registers for
* count and address get set correctly */ * count and address get set correctly */
clear_dma_ff(devpriv->dma1); clear_dma_ff(dma->chan);
set_dma_addr(devpriv->dma1, virt_to_bus(devpriv->ai_buf1)); set_dma_addr(dma->chan, virt_to_bus(dma->virt_addr));
/* set appropriate size of transfer */ /* set appropriate size of transfer */
set_dma_count(devpriv->dma1, devpriv->dma_transfer_size); set_dma_count(dma->chan, devpriv->dma_transfer_size);
enable_dma(devpriv->dma1); enable_dma(dma->chan);
} }
release_dma_lock(lock_flags); release_dma_lock(lock_flags);
} }
...@@ -1239,6 +1232,7 @@ static int das1800_init_dma(struct comedi_device *dev, unsigned int dma0, ...@@ -1239,6 +1232,7 @@ static int das1800_init_dma(struct comedi_device *dev, unsigned int dma0,
unsigned int dma1) unsigned int dma1)
{ {
struct das1800_private *devpriv = dev->private; struct das1800_private *devpriv = dev->private;
struct das1800_dma_desc *dma;
unsigned long flags; unsigned long flags;
/* encode dma0 and dma1 into 2 digit hexadecimal for switch */ /* encode dma0 and dma1 into 2 digit hexadecimal for switch */
...@@ -1270,40 +1264,39 @@ static int das1800_init_dma(struct comedi_device *dev, unsigned int dma0, ...@@ -1270,40 +1264,39 @@ static int das1800_init_dma(struct comedi_device *dev, unsigned int dma0,
"dma 5,6 / 6,7 / or 7,5\n"); "dma 5,6 / 6,7 / or 7,5\n");
return -EINVAL; return -EINVAL;
} }
dma = &devpriv->dma_desc[0];
if (request_dma(dma0, dev->driver->driver_name)) { if (request_dma(dma0, dev->driver->driver_name)) {
dev_err(dev->class_dev, dev_err(dev->class_dev,
"failed to allocate dma channel %i\n", dma0); "failed to allocate dma channel %i\n", dma0);
return -EINVAL; return -EINVAL;
} }
devpriv->dma0 = dma0; dma->chan = dma0;
devpriv->dma_current = dma0; dma->virt_addr = kmalloc(DMA_BUF_SIZE, GFP_KERNEL | GFP_DMA);
if (!dma->virt_addr)
return -ENOMEM;
flags = claim_dma_lock();
disable_dma(dma->chan);
set_dma_mode(dma->chan, DMA_MODE_READ);
release_dma_lock(flags);
if (dma1) { if (dma1) {
dma = &devpriv->dma_desc[1];
if (request_dma(dma1, dev->driver->driver_name)) { if (request_dma(dma1, dev->driver->driver_name)) {
dev_err(dev->class_dev, dev_err(dev->class_dev,
"failed to allocate dma channel %i\n", "failed to allocate dma channel %i\n",
dma1); dma1);
return -EINVAL; return -EINVAL;
} }
devpriv->dma1 = dma1; dma->chan = dma1;
} dma->virt_addr = kmalloc(DMA_BUF_SIZE, GFP_KERNEL | GFP_DMA);
devpriv->ai_buf0 = kmalloc(DMA_BUF_SIZE, GFP_KERNEL | GFP_DMA); if (!dma->virt_addr)
if (devpriv->ai_buf0 == NULL)
return -ENOMEM;
devpriv->dma_current_buf = devpriv->ai_buf0;
if (dma1) {
devpriv->ai_buf1 =
kmalloc(DMA_BUF_SIZE, GFP_KERNEL | GFP_DMA);
if (devpriv->ai_buf1 == NULL)
return -ENOMEM; return -ENOMEM;
}
flags = claim_dma_lock(); flags = claim_dma_lock();
disable_dma(devpriv->dma0); disable_dma(dma->chan);
set_dma_mode(devpriv->dma0, DMA_MODE_READ); set_dma_mode(dma->chan, DMA_MODE_READ);
if (dma1) {
disable_dma(devpriv->dma1);
set_dma_mode(devpriv->dma1, DMA_MODE_READ);
}
release_dma_lock(flags); release_dma_lock(flags);
}
return 0; return 0;
} }
...@@ -1521,14 +1514,16 @@ static int das1800_attach(struct comedi_device *dev, ...@@ -1521,14 +1514,16 @@ static int das1800_attach(struct comedi_device *dev,
static void das1800_detach(struct comedi_device *dev) static void das1800_detach(struct comedi_device *dev)
{ {
struct das1800_private *devpriv = dev->private; struct das1800_private *devpriv = dev->private;
struct das1800_dma_desc *dma;
int i;
if (devpriv) { if (devpriv) {
if (devpriv->dma0) for (i = 0; i < 2; i++) {
free_dma(devpriv->dma0); dma = &devpriv->dma_desc[i];
if (devpriv->dma1) if (dma->chan)
free_dma(devpriv->dma1); free_dma(dma->chan);
kfree(devpriv->ai_buf0); kfree(dma->virt_addr);
kfree(devpriv->ai_buf1); }
kfree(devpriv->fifo_buf); kfree(devpriv->fifo_buf);
if (devpriv->iobase2) if (devpriv->iobase2)
release_region(devpriv->iobase2, DAS1800_SIZE); release_region(devpriv->iobase2, DAS1800_SIZE);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment