Commit cabb55a6 authored by igor@rurik.mysql.com's avatar igor@rurik.mysql.com

Merge ibabaev@bk-internal.mysql.com:/home/bk/mysql-5.0-opt

into  rurik.mysql.com:/home/igor/mysql-5.0-opt
parents db17048c 067d6fdf
......@@ -860,3 +860,39 @@ a
13
15
drop table t1, t2;
CREATE TABLE t1 (
id int NOT NULL DEFAULT '0',
b int NOT NULL DEFAULT '0',
c int NOT NULL DEFAULT '0',
INDEX idx1(b,c), INDEX idx2(c));
INSERT INTO t1(id) VALUES (1), (2), (3), (4), (5), (6), (7), (8);
INSERT INTO t1(b,c) VALUES (3,4), (3,4);
SELECT * FROM t1 WHERE b<=3 AND 3<=c;
id b c
0 3 4
0 3 4
SELECT * FROM t1 WHERE 3 BETWEEN b AND c;
id b c
0 3 4
0 3 4
EXPLAIN SELECT * FROM t1 WHERE b<=3 AND 3<=c;
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 range idx1,idx2 idx2 4 NULL 3 Using where
EXPLAIN SELECT * FROM t1 WHERE 3 BETWEEN b AND c;
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 range idx1,idx2 idx2 4 NULL 3 Using where
SELECT * FROM t1 WHERE 0 < b OR 0 > c;
id b c
0 3 4
0 3 4
SELECT * FROM t1 WHERE 0 NOT BETWEEN b AND c;
id b c
0 3 4
0 3 4
EXPLAIN SELECT * FROM t1 WHERE 0 < b OR 0 > c;
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 index_merge idx1,idx2 idx1,idx2 4,4 NULL 4 Using sort_union(idx1,idx2); Using where
EXPLAIN SELECT * FROM t1 WHERE 0 NOT BETWEEN b AND c;
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE t1 index_merge idx1,idx2 idx1,idx2 4,4 NULL 4 Using sort_union(idx1,idx2); Using where
DROP TABLE t1;
......@@ -680,4 +680,34 @@ prepare stmt1 from @a;
execute stmt1;
drop table t1, t2;
#
# Bug #18165: range access for BETWEEN with a constant for the first argument
#
CREATE TABLE t1 (
id int NOT NULL DEFAULT '0',
b int NOT NULL DEFAULT '0',
c int NOT NULL DEFAULT '0',
INDEX idx1(b,c), INDEX idx2(c));
INSERT INTO t1(id) VALUES (1), (2), (3), (4), (5), (6), (7), (8);
INSERT INTO t1(b,c) VALUES (3,4), (3,4);
SELECT * FROM t1 WHERE b<=3 AND 3<=c;
SELECT * FROM t1 WHERE 3 BETWEEN b AND c;
EXPLAIN SELECT * FROM t1 WHERE b<=3 AND 3<=c;
EXPLAIN SELECT * FROM t1 WHERE 3 BETWEEN b AND c;
SELECT * FROM t1 WHERE 0 < b OR 0 > c;
SELECT * FROM t1 WHERE 0 NOT BETWEEN b AND c;
EXPLAIN SELECT * FROM t1 WHERE 0 < b OR 0 > c;
EXPLAIN SELECT * FROM t1 WHERE 0 NOT BETWEEN b AND c;
DROP TABLE t1;
# End of 5.0 tests
......@@ -3580,6 +3580,10 @@ static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func,
break;
case Item_func::BETWEEN:
{
int i= (int ) value;
if (! i)
{
if (inv)
{
tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1],
......@@ -3597,8 +3601,15 @@ static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func,
cmp_type));
}
}
}
else
tree= get_mm_parts(param, cond_func, field,
(inv ?
(i == 1 ? Item_func::GT_FUNC : Item_func::LT_FUNC) :
(i == 1 ? Item_func::LE_FUNC : Item_func::GE_FUNC)),
cond_func->arguments()[0], cmp_type);
break;
}
case Item_func::IN_FUNC:
{
Item_func_in *func=(Item_func_in*) cond_func;
......@@ -3768,6 +3779,118 @@ static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func,
DBUG_RETURN(tree);
}
/*
Build conjunction of all SEL_TREEs for a simple predicate applying equalities
SYNOPSIS
get_full_func_mm_tree()
param PARAM from SQL_SELECT::test_quick_select
cond_func item for the predicate
field_item field in the predicate
value constant in the predicate
(for BETWEEN it contains the number of the field argument,
for IN it's always 0)
inv TRUE <> NOT cond_func is considered
(makes sense only when cond_func is BETWEEN or IN)
DESCRIPTION
For a simple SARGable predicate of the form (f op c), where f is a field and
c is a constant, the function builds a conjunction of all SEL_TREES that can
be obtained by the substitution of f for all different fields equal to f.
NOTES
If the WHERE condition contains a predicate (fi op c),
then not only SELL_TREE for this predicate is built, but
the trees for the results of substitution of fi for
each fj belonging to the same multiple equality as fi
are built as well.
E.g. for WHERE t1.a=t2.a AND t2.a > 10
a SEL_TREE for t2.a > 10 will be built for quick select from t2
and
a SEL_TREE for t1.a > 10 will be built for quick select from t1.
A BETWEEN predicate of the form (fi [NOT] BETWEEN c1 AND c2) is treated
in a similar way: we build a conjuction of trees for the results
of all substitutions of fi for equal fj.
Yet a predicate of the form (c BETWEEN f1i AND f2i) is processed
differently. It is considered as a conjuction of two SARGable
predicates (f1i <= c) and (f2i <=c) and the function get_full_func_mm_tree
is called for each of them separately producing trees for
AND j (f1j <=c ) and AND j (f2j <= c)
After this these two trees are united in one conjunctive tree.
It's easy to see that the same tree is obtained for
AND j,k (f1j <=c AND f2k<=c)
which is equivalent to
AND j,k (c BETWEEN f1j AND f2k).
The validity of the processing of the predicate (c NOT BETWEEN f1i AND f2i)
which equivalent to (f1i > c OR f2i < c) is not so obvious. Here the
function get_full_func_mm_tree is called for (f1i > c) and (f2i < c)
producing trees for AND j (f1j > c) and AND j (f2j < c). Then this two
trees are united in one OR-tree. The expression
(AND j (f1j > c) OR AND j (f2j < c)
is equivalent to the expression
AND j,k (f1j > c OR f2k < c)
which is just a translation of
AND j,k (c NOT BETWEEN f1j AND f2k)
In the cases when one of the items f1, f2 is a constant c1 we do not create
a tree for it at all. It works for BETWEEN predicates but does not
work for NOT BETWEEN predicates as we have to evaluate the expression
with it. If it is TRUE then the other tree can be completely ignored.
We do not do it now and no trees are built in these cases for
NOT BETWEEN predicates.
As to IN predicates only ones of the form (f IN (c1,...,cn)),
where f1 is a field and c1,...,cn are constant, are considered as
SARGable. We never try to narrow the index scan using predicates of
the form (c IN (c1,...,f,...,cn)).
RETURN
Pointer to the tree representing the built conjunction of SEL_TREEs
*/
static SEL_TREE *get_full_func_mm_tree(PARAM *param, Item_func *cond_func,
Item_field *field_item, Item *value,
bool inv)
{
SEL_TREE *tree= 0;
SEL_TREE *ftree= 0;
table_map ref_tables= 0;
table_map param_comp= ~(param->prev_tables | param->read_tables |
param->current_table);
DBUG_ENTER("get_full_func_mm_tree");
for (uint i= 0; i < cond_func->arg_count; i++)
{
Item *arg= cond_func->arguments()[i]->real_item();
if (arg != field_item)
ref_tables|= arg->used_tables();
}
Field *field= field_item->field;
Item_result cmp_type= field->cmp_type();
if (!((ref_tables | field->table->map) & param_comp))
ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
Item_equal *item_equal= field_item->item_equal;
if (item_equal)
{
Item_equal_iterator it(*item_equal);
Item_field *item;
while ((item= it++))
{
Field *f= item->field;
if (field->eq(f))
continue;
if (!((ref_tables | f->table->map) & param_comp))
{
tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
ftree= !ftree ? tree : tree_and(param, ftree, tree);
}
}
}
DBUG_RETURN(ftree);
}
/* make a select tree of all keys in condition */
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
......@@ -3776,7 +3899,7 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
SEL_TREE *ftree= 0;
Item_field *field_item= 0;
bool inv= FALSE;
Item *value;
Item *value= 0;
DBUG_ENTER("get_mm_tree");
if (cond->type() == Item::COND_ITEM)
......@@ -3856,10 +3979,37 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
switch (cond_func->functype()) {
case Item_func::BETWEEN:
if (cond_func->arguments()[0]->real_item()->type() != Item::FIELD_ITEM)
DBUG_RETURN(0);
if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
{
field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
value= NULL;
ftree= get_full_func_mm_tree(param, cond_func, field_item, NULL, inv);
}
/*
Concerning the code below see the NOTES section in
the comments for the function get_full_func_mm_tree()
*/
for (uint i= 1 ; i < cond_func->arg_count ; i++)
{
if (cond_func->arguments()[i]->real_item()->type() == Item::FIELD_ITEM)
{
field_item= (Item_field*) (cond_func->arguments()[i]->real_item());
SEL_TREE *tmp= get_full_func_mm_tree(param, cond_func,
field_item, (Item*) i, inv);
if (inv)
tree= !tree ? tmp : tree_or(param, tree, tmp);
else
tree= tree_and(param, tree, tmp);
}
else if (inv)
{
tree= 0;
break;
}
}
ftree = tree_and(param, ftree, tree);
break;
case Item_func::IN_FUNC:
{
......@@ -3867,7 +4017,7 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
if (func->key_item()->real_item()->type() != Item::FIELD_ITEM)
DBUG_RETURN(0);
field_item= (Item_field*) (func->key_item()->real_item());
value= NULL;
ftree= get_full_func_mm_tree(param, cond_func, field_item, NULL, inv);
break;
}
case Item_func::MULT_EQUAL_FUNC:
......@@ -3906,47 +4056,9 @@ static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
}
else
DBUG_RETURN(0);
ftree= get_full_func_mm_tree(param, cond_func, field_item, value, inv);
}
/*
If the where condition contains a predicate (ti.field op const),
then not only SELL_TREE for this predicate is built, but
the trees for the results of substitution of ti.field for
each tj.field belonging to the same multiple equality as ti.field
are built as well.
E.g. for WHERE t1.a=t2.a AND t2.a > 10
a SEL_TREE for t2.a > 10 will be built for quick select from t2
and
a SEL_TREE for t1.a > 10 will be built for quick select from t1.
*/
for (uint i= 0; i < cond_func->arg_count; i++)
{
Item *arg= cond_func->arguments()[i]->real_item();
if (arg != field_item)
ref_tables|= arg->used_tables();
}
Field *field= field_item->field;
Item_result cmp_type= field->cmp_type();
if (!((ref_tables | field->table->map) & param_comp))
ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
Item_equal *item_equal= field_item->item_equal;
if (item_equal)
{
Item_equal_iterator it(*item_equal);
Item_field *item;
while ((item= it++))
{
Field *f= item->field;
if (field->eq(f))
continue;
if (!((ref_tables | f->table->map) & param_comp))
{
tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
ftree= !ftree ? tree : tree_and(param, ftree, tree);
}
}
}
DBUG_RETURN(ftree);
}
......
......@@ -2796,11 +2796,12 @@ add_key_fields(KEY_FIELD **key_fields,uint *and_level,
break;
case Item_func::OPTIMIZE_KEY:
{
Item **values;
// BETWEEN, IN, NE
if (cond_func->key_item()->real_item()->type() == Item::FIELD_ITEM &&
!(cond_func->used_tables() & OUTER_REF_TABLE_BIT))
{
Item **values= cond_func->arguments()+1;
values= cond_func->arguments()+1;
if (cond_func->functype() == Item_func::NE_FUNC &&
cond_func->arguments()[1]->real_item()->type() == Item::FIELD_ITEM &&
!(cond_func->arguments()[0]->used_tables() & OUTER_REF_TABLE_BIT))
......@@ -2813,6 +2814,22 @@ add_key_fields(KEY_FIELD **key_fields,uint *and_level,
cond_func->argument_count()-1,
usable_tables);
}
if (cond_func->functype() == Item_func::BETWEEN)
{
values= cond_func->arguments();
for (uint i= 1 ; i < cond_func->argument_count() ; i++)
{
Item_field *field_item;
if (cond_func->arguments()[i]->real_item()->type() == Item::FIELD_ITEM
&&
!(cond_func->arguments()[i]->used_tables() & OUTER_REF_TABLE_BIT))
{
field_item= (Item_field *) (cond_func->arguments()[i]->real_item());
add_key_equal_fields(key_fields, *and_level, cond_func,
field_item, 0, values, 1, usable_tables);
}
}
}
break;
}
case Item_func::OPTIMIZE_OP:
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment