Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
W
wendelin.core
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Labels
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Commits
Open sidebar
Kirill Smelkov
wendelin.core
Commits
44a2e6db
Commit
44a2e6db
authored
Sep 23, 2021
by
Kirill Smelkov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
.
parent
2f2ffdd5
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
192 additions
and
161 deletions
+192
-161
wcfs/internal/xbtree/treediff.go
wcfs/internal/xbtree/treediff.go
+189
-158
wcfs/internal/xbtree/δbtail.go
wcfs/internal/xbtree/δbtail.go
+3
-3
No files found.
wcfs/internal/xbtree/treediff.go
View file @
44a2e6db
...
@@ -18,9 +18,25 @@
...
@@ -18,9 +18,25 @@
// See https://www.nexedi.com/licensing for rationale and options.
// See https://www.nexedi.com/licensing for rationale and options.
package
xbtree
package
xbtree
// diff for BTrees
// XXX doc
// treediff provides diff for BTrees
//
// Use δZConnectTracked + treediff to compute BTree-diff caused by δZ:
//
// δZConnectTracked(δZ, trackSet) -> δZTC, δtopsByRoot
// treediff(root, δtops, δZTC, trackSet, zconn{Old,New}) -> δT, δtrack, δtkeycov
//
// δZConnectTracked computes BTree-connected closure of δZ modulo tracked set
// and also returns δtopsByRoot to indicate which tree objects were changed and
// in which subtree parts. With that information one can call treediff for each
// changed root to compute BTree-diff and δ for trackSet itself.
//
//
// BTree diff algorithm
//
// The central part of BTree-diff algorithm is in diffT and diffB.
//
//
// FIXME the algorithm is different: recursion is implemented by expanding rangeSplit step by step.
// FIXME the algorithm is different: recursion is implemented by expanding rangeSplit step by step.
//
//
// δ(BTree) notes
// δ(BTree) notes
...
@@ -168,164 +184,8 @@ func δZConnectTracked(δZv []zodb.Oid, T blib.PPTreeSubSet) (δZTC setOid, δto
...
@@ -168,164 +184,8 @@ func δZConnectTracked(δZv []zodb.Oid, T blib.PPTreeSubSet) (δZTC setOid, δto
}
}
// XXX place
// nodeInRange represents a Node coming under [lo, hi_] key range in its tree.
type
nodeInRange
struct
{
prefix
[]
zodb
.
Oid
// path to this node goes via this objects
keycov
blib
.
KeyRange
// key coverage
node
Node
done
bool
// whether this node was already taken into account while computing diff
}
// XXX place, doc
func
(
n
*
nodeInRange
)
Path
()
[]
zodb
.
Oid
{
// return full copy - else .prefix can become aliased in between children of a node
return
append
([]
zodb
.
Oid
{},
append
(
n
.
prefix
,
n
.
node
.
POid
())
...
)
}
// rangeSplit represents set of nodes covering a range.
// nodes come with key↑ and no intersection in between their [lo,hi)
type
rangeSplit
[]
*
nodeInRange
// key↑
// Get returns node covering key k.
// Get panics if k is not covered.
func
(
rs
rangeSplit
)
Get
(
k
Key
)
*
nodeInRange
{
rnode
,
ok
:=
rs
.
Get_
(
k
)
if
!
ok
{
panicf
(
"key %v not covered; coverage: %s"
,
k
,
rs
)
}
return
rnode
}
// Get_ returns node covering key k.
func
(
rs
rangeSplit
)
Get_
(
k
Key
)
(
rnode
*
nodeInRange
,
ok
bool
)
{
i
:=
sort
.
Search
(
len
(
rs
),
func
(
i
int
)
bool
{
return
k
<=
rs
[
i
]
.
keycov
.
Hi_
})
if
i
==
len
(
rs
)
{
return
nil
,
false
// key not covered
}
rn
:=
rs
[
i
]
if
!
rn
.
keycov
.
Has
(
k
)
{
panicf
(
"BUG: get(%v) -> %s; coverage: %s"
,
k
,
rn
,
rs
)
}
return
rn
,
true
}
// Expand replaces rnode with its children.
//
// rnode must be initially in *prs.
// rnode.node must be tree.
// rnode.node must be already activated.
//
// inserted children are returned for convenience.
func
(
prs
*
rangeSplit
)
Expand
(
rnode
*
nodeInRange
)
(
children
rangeSplit
)
{
rs
:=
*
prs
i
:=
sort
.
Search
(
len
(
rs
),
func
(
i
int
)
bool
{
return
rnode
.
keycov
.
Hi_
<=
rs
[
i
]
.
keycov
.
Hi_
})
if
i
==
len
(
rs
)
||
rs
[
i
]
!=
rnode
{
panicf
(
"%s not in rangeSplit; coverage: %s"
,
rnode
,
rs
)
}
// [i].Key ≤ [i].Child.*.Key < [i+1].Key i ∈ [0, len([]))
//
// [0].Key = -∞ ; always returned so
// [len(ev)].Key = +∞ ; should be assumed so
tree
:=
rnode
.
node
.
(
*
Tree
)
treev
:=
tree
.
Entryv
()
children
=
make
(
rangeSplit
,
0
,
len
(
treev
)
+
1
)
for
i
:=
range
treev
{
lo
:=
rnode
.
keycov
.
Lo
if
i
>
0
{
lo
=
treev
[
i
]
.
Key
()
}
hi_
:=
rnode
.
keycov
.
Hi_
if
i
<
len
(
treev
)
-
1
{
hi_
=
treev
[
i
+
1
]
.
Key
()
-
1
// NOTE -1 because it is hi_] not hi)
}
children
=
append
(
children
,
&
nodeInRange
{
prefix
:
rnode
.
Path
(),
keycov
:
blib
.
KeyRange
{
lo
,
hi_
},
node
:
treev
[
i
]
.
Child
(),
})
}
// del[i]; insert(@i, children)
*
prs
=
append
(
rs
[
:
i
],
append
(
children
,
rs
[
i
+
1
:
]
...
)
...
)
return
children
}
// GetToLeaf returns leaf node corresponding to key k.
//
// Leaf is usually bucket node, but, in the sole single case of empty tree, can be that root tree node.
// GetToLeaf expands step-by-step every tree through which it has to traverse to next depth level.
//
// GetToLeaf panics if k is not covered.
func
(
prs
*
rangeSplit
)
GetToLeaf
(
ctx
context
.
Context
,
k
Key
)
(
*
nodeInRange
,
error
)
{
rnode
,
ok
,
err
:=
prs
.
GetToLeaf_
(
ctx
,
k
)
if
err
==
nil
&&
!
ok
{
panicf
(
"key %v not covered; coverage: %s"
,
k
,
*
prs
)
}
return
rnode
,
err
}
// GetToLeaf_ is comma-ok version of GetToLeaf.
func
(
prs
*
rangeSplit
)
GetToLeaf_
(
ctx
context
.
Context
,
k
Key
)
(
rnode
*
nodeInRange
,
ok
bool
,
err
error
)
{
rnode
,
ok
=
prs
.
Get_
(
k
)
if
!
ok
{
return
nil
,
false
,
nil
// key not covered
}
for
{
switch
rnode
.
node
.
(
type
)
{
// bucket = leaf
case
*
Bucket
:
return
rnode
,
true
,
nil
}
// its tree -> activate to expand; check for ø case
tree
:=
rnode
.
node
.
(
*
Tree
)
err
=
tree
.
PActivate
(
ctx
)
if
err
!=
nil
{
return
nil
,
false
,
err
}
defer
tree
.
PDeactivate
()
// empty tree -> don't expand - it is already leaf
if
len
(
tree
.
Entryv
())
==
0
{
return
rnode
,
true
,
nil
}
// expand tree children
children
:=
prs
.
Expand
(
rnode
)
rnode
=
children
.
Get
(
k
)
// k must be there
}
}
func
(
rs
rangeSplit
)
String
()
string
{
if
len
(
rs
)
==
0
{
return
"ø"
}
s
:=
""
for
_
,
rn
:=
range
rs
{
if
s
!=
""
{
s
+=
" "
}
s
+=
fmt
.
Sprintf
(
"%s"
,
rn
)
}
return
s
}
// treediff computes δT/δtrack/δtkeycov for tree/trackSet specified by root in between old..new.
// treediff computes δT/δtrack/δtkeycov for tree/trackSet specified by root in between old..new.
//
//
// It is the main entry-point for BTree-diff algorithm. XXX -> overview
//
// δtops is set of top nodes for changed subtrees.
// δtops is set of top nodes for changed subtrees.
// δZTC is connected(δZ/T) - connected closure for subset of δZ(old..new) that
// δZTC is connected(δZ/T) - connected closure for subset of δZ(old..new) that
// touches tracked nodes of T.
// touches tracked nodes of T.
...
@@ -443,6 +303,31 @@ func diffX(ctx context.Context, a, b Node, δZTC setOid, trackSet blib.PPTreeSub
...
@@ -443,6 +303,31 @@ func diffX(ctx context.Context, a, b Node, δZTC setOid, trackSet blib.PPTreeSub
}
}
}
}
// ---- diff algorithm ----
// nodeInRange represents a Node coming under [lo, hi_] key range in its tree.
//
// The following operations are provided:
//
// Path() -> []oid - get full path to this node.
type
nodeInRange
struct
{
prefix
[]
zodb
.
Oid
// path to this node goes via this objects
keycov
blib
.
KeyRange
// key coverage
node
Node
done
bool
// whether this node was already taken into account while computing diff
}
// rangeSplit represents set of nodes covering a range.
// nodes come with key↑ and no intersection in between their [lo,hi)
//
// The following operations are provided:
//
// Get(key) -> node - get node covering key
// Expand(node) -> children - replace node with its children
// GetToLeaf(key) -> leaf - get/expand to leaf node covering key
type
rangeSplit
[]
*
nodeInRange
// key↑
// diffT computes difference in between two subtrees.
// diffT computes difference in between two subtrees.
//
//
// a, b point to top of subtrees @old and @new revisions.
// a, b point to top of subtrees @old and @new revisions.
...
@@ -943,11 +828,157 @@ func diffB(ctx context.Context, a, b *Bucket) (δ map[Key]ΔValue, err error) {
...
@@ -943,11 +828,157 @@ func diffB(ctx context.Context, a, b *Bucket) (δ map[Key]ΔValue, err error) {
return
δ
,
nil
return
δ
,
nil
}
}
// ---- nodeInRange + rangeSplit ----
func
(
rn
*
nodeInRange
)
String
()
string
{
func
(
rn
*
nodeInRange
)
String
()
string
{
done
:=
" "
;
if
rn
.
done
{
done
=
"*"
}
done
:=
" "
;
if
rn
.
done
{
done
=
"*"
}
return
fmt
.
Sprintf
(
"%s%s%s"
,
done
,
rn
.
keycov
,
vnode
(
rn
.
node
))
return
fmt
.
Sprintf
(
"%s%s%s"
,
done
,
rn
.
keycov
,
vnode
(
rn
.
node
))
}
}
// Path returns full path to this node.
func
(
n
*
nodeInRange
)
Path
()
[]
zodb
.
Oid
{
// return full copy - else .prefix can become aliased in between children of a node
return
append
([]
zodb
.
Oid
{},
append
(
n
.
prefix
,
n
.
node
.
POid
())
...
)
}
func
(
rs
rangeSplit
)
String
()
string
{
if
len
(
rs
)
==
0
{
return
"ø"
}
s
:=
""
for
_
,
rn
:=
range
rs
{
if
s
!=
""
{
s
+=
" "
}
s
+=
fmt
.
Sprintf
(
"%s"
,
rn
)
}
return
s
}
// Get returns node covering key k.
// Get panics if k is not covered.
func
(
rs
rangeSplit
)
Get
(
k
Key
)
*
nodeInRange
{
rnode
,
ok
:=
rs
.
Get_
(
k
)
if
!
ok
{
panicf
(
"key %v not covered; coverage: %s"
,
k
,
rs
)
}
return
rnode
}
// Get_ returns node covering key k.
func
(
rs
rangeSplit
)
Get_
(
k
Key
)
(
rnode
*
nodeInRange
,
ok
bool
)
{
i
:=
sort
.
Search
(
len
(
rs
),
func
(
i
int
)
bool
{
return
k
<=
rs
[
i
]
.
keycov
.
Hi_
})
if
i
==
len
(
rs
)
{
return
nil
,
false
// key not covered
}
rn
:=
rs
[
i
]
if
!
rn
.
keycov
.
Has
(
k
)
{
panicf
(
"BUG: get(%v) -> %s; coverage: %s"
,
k
,
rn
,
rs
)
}
return
rn
,
true
}
// Expand replaces rnode with its children.
//
// rnode must be initially in *prs.
// rnode.node must be tree.
// rnode.node must be already activated.
//
// inserted children are returned for convenience.
func
(
prs
*
rangeSplit
)
Expand
(
rnode
*
nodeInRange
)
(
children
rangeSplit
)
{
rs
:=
*
prs
i
:=
sort
.
Search
(
len
(
rs
),
func
(
i
int
)
bool
{
return
rnode
.
keycov
.
Hi_
<=
rs
[
i
]
.
keycov
.
Hi_
})
if
i
==
len
(
rs
)
||
rs
[
i
]
!=
rnode
{
panicf
(
"%s not in rangeSplit; coverage: %s"
,
rnode
,
rs
)
}
// [i].Key ≤ [i].Child.*.Key < [i+1].Key i ∈ [0, len([]))
//
// [0].Key = -∞ ; always returned so
// [len(ev)].Key = +∞ ; should be assumed so
tree
:=
rnode
.
node
.
(
*
Tree
)
treev
:=
tree
.
Entryv
()
children
=
make
(
rangeSplit
,
0
,
len
(
treev
)
+
1
)
for
i
:=
range
treev
{
lo
:=
rnode
.
keycov
.
Lo
if
i
>
0
{
lo
=
treev
[
i
]
.
Key
()
}
hi_
:=
rnode
.
keycov
.
Hi_
if
i
<
len
(
treev
)
-
1
{
hi_
=
treev
[
i
+
1
]
.
Key
()
-
1
// NOTE -1 because it is hi_] not hi)
}
children
=
append
(
children
,
&
nodeInRange
{
prefix
:
rnode
.
Path
(),
keycov
:
blib
.
KeyRange
{
lo
,
hi_
},
node
:
treev
[
i
]
.
Child
(),
})
}
// del[i]; insert(@i, children)
*
prs
=
append
(
rs
[
:
i
],
append
(
children
,
rs
[
i
+
1
:
]
...
)
...
)
return
children
}
// GetToLeaf returns leaf node corresponding to key k.
//
// Leaf is usually bucket node, but, in the sole single case of empty tree, can be that root tree node.
// GetToLeaf expands step-by-step every tree through which it has to traverse to next depth level.
//
// GetToLeaf panics if k is not covered.
func
(
prs
*
rangeSplit
)
GetToLeaf
(
ctx
context
.
Context
,
k
Key
)
(
*
nodeInRange
,
error
)
{
rnode
,
ok
,
err
:=
prs
.
GetToLeaf_
(
ctx
,
k
)
if
err
==
nil
&&
!
ok
{
panicf
(
"key %v not covered; coverage: %s"
,
k
,
*
prs
)
}
return
rnode
,
err
}
// GetToLeaf_ is comma-ok version of GetToLeaf.
func
(
prs
*
rangeSplit
)
GetToLeaf_
(
ctx
context
.
Context
,
k
Key
)
(
rnode
*
nodeInRange
,
ok
bool
,
err
error
)
{
rnode
,
ok
=
prs
.
Get_
(
k
)
if
!
ok
{
return
nil
,
false
,
nil
// key not covered
}
for
{
switch
rnode
.
node
.
(
type
)
{
// bucket = leaf
case
*
Bucket
:
return
rnode
,
true
,
nil
}
// its tree -> activate to expand; check for ø case
tree
:=
rnode
.
node
.
(
*
Tree
)
err
=
tree
.
PActivate
(
ctx
)
if
err
!=
nil
{
return
nil
,
false
,
err
}
defer
tree
.
PDeactivate
()
// empty tree -> don't expand - it is already leaf
if
len
(
tree
.
Entryv
())
==
0
{
return
rnode
,
true
,
nil
}
// expand tree children
children
:=
prs
.
Expand
(
rnode
)
rnode
=
children
.
Get
(
k
)
// k must be there
}
}
// ---- stack of nodeInRange ----
// push pushes element to node stack.
// push pushes element to node stack.
func
push
(
nodeStk
*
[]
*
nodeInRange
,
top
*
nodeInRange
)
{
func
push
(
nodeStk
*
[]
*
nodeInRange
,
top
*
nodeInRange
)
{
...
...
wcfs/internal/xbtree/δbtail.go
View file @
44a2e6db
...
@@ -38,7 +38,7 @@ package xbtree
...
@@ -38,7 +38,7 @@ package xbtree
// users, which are expected to call ΔBtail.Track(treepath) to let ΔBtail know
// users, which are expected to call ΔBtail.Track(treepath) to let ΔBtail know
// that such and such ZODB objects constitute a path from root of a tree to some
// that such and such ZODB objects constitute a path from root of a tree to some
// of its leaf. After Track call the objects from the path and tree keys, that
// of its leaf. After Track call the objects from the path and tree keys, that
//
we
re covered by leaf node, become tracked: from now-on ΔBtail will detect
//
a
re covered by leaf node, become tracked: from now-on ΔBtail will detect
// and provide BTree-level changes caused by any change of tracked tree objects
// and provide BTree-level changes caused by any change of tracked tree objects
// or tracked keys. This guarantee can be provided because ΔBtail now knows
// or tracked keys. This guarantee can be provided because ΔBtail now knows
// that such and such objects belong to a particular tree.
// that such and such objects belong to a particular tree.
...
@@ -54,8 +54,8 @@ package xbtree
...
@@ -54,8 +54,8 @@ package xbtree
//
//
// A new Track request potentially grows tracked keys coverage. Due to this,
// A new Track request potentially grows tracked keys coverage. Due to this,
// ΔBtail needs to recompute potentially whole vδT of the affected tree. This
// ΔBtail needs to recompute potentially whole vδT of the affected tree. This
// recomputation is managed by
rebuild* family of functions and uses the sam
e
// recomputation is managed by
"rebuild..." family of functions and uses th
e
// treediff algorithm, that Update is using, but modulo PPTreeSubSet
//
same
treediff algorithm, that Update is using, but modulo PPTreeSubSet
// corresponding to δ key coverage. Update also potentially needs to rebuild
// corresponding to δ key coverage. Update also potentially needs to rebuild
// whole vδT history, not only append new δT, because a change to tracked tree
// whole vδT history, not only append new δT, because a change to tracked tree
// nodes can result in growth of tracked key coverage.
// nodes can result in growth of tracked key coverage.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment