Commit 53341de0 authored by Klaus Wölfel's avatar Klaus Wölfel

erp5_wendelin: Data Array View Line implementation using unstructured_to_structured method

parent 07dbbed6
...@@ -4,26 +4,21 @@ ...@@ -4,26 +4,21 @@
# Copyright (c) 2018 Nexedi SA and Contributors. All Rights Reserved. # Copyright (c) 2018 Nexedi SA and Contributors. All Rights Reserved.
# Klaus Wölfel <klaus@nexedi.com> # Klaus Wölfel <klaus@nexedi.com>
# #
# WARNING: This program as such is intended to be used by professional # This program is free software: you can Use, Study, Modify and Redistribute
# programmers who take the whole responsability of assessing all potential # it under the terms of the GNU General Public License version 3, or (at your
# consequences resulting from its eventual inadequacies and bugs # option) any later version, as published by the Free Software Foundation.
# End users who are looking for a ready-to-use solution with commercial
# garantees and support are strongly adviced to contract a Free Software
# Service Company
# #
# This program is Free Software; you can redistribute it and/or # You can also Link and Combine this program with other software covered by
# modify it under the terms of the GNU General Public License # the terms of any of the Free Software licenses or any of the Open Source
# as published by the Free Software Foundation; either version 2 # Initiative approved licenses and Convey the resulting work. Corresponding
# of the License, or (at your option) any later version. # source of such a combination shall include the source code for all other
# software used.
# #
# This program is distributed in the hope that it will be useful, # This program is distributed WITHOUT ANY WARRANTY; without even the implied
# but WITHOUT ANY WARRANTY; without even the implied warranty of # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# #
# You should have received a copy of the GNU General Public License # See COPYING file for full licensing terms.
# along with this program; if not, write to the Free Software # See https://www.nexedi.com/licensing for rationale and options.
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
# #
############################################################################## ##############################################################################
import numpy as np import numpy as np
...@@ -32,6 +27,142 @@ from Products.ERP5Type.Base import TempBase ...@@ -32,6 +27,142 @@ from Products.ERP5Type.Base import TempBase
from Products.ERP5Type.Utils import createExpressionContext, \ from Products.ERP5Type.Utils import createExpressionContext, \
evaluateExpressionFromString evaluateExpressionFromString
def _get_fields_and_offsets(dt, offset=0):
"""
Returns a flat list of (dtype, count, offset) tuples of all the
scalar fields in the dtype "dt", including nested fields, in left
to right order.
"""
# counts up elements in subarrays, including nested subarrays, and returns
# base dtype and count
def count_elem(dt):
count = 1
while dt.shape != ():
for size in dt.shape:
count *= size
dt = dt.base
return dt, count
fields = []
for name in dt.names:
field = dt.fields[name]
f_dt, f_offset = field[0], field[1]
f_dt, n = count_elem(f_dt)
if f_dt.names is None:
fields.append((np.dtype((f_dt, (n,))), n, f_offset + offset))
else:
subfields = _get_fields_and_offsets(f_dt, f_offset + offset)
size = f_dt.itemsize
for i in range(n):
if i == 0:
# optimization: avoid list comprehension if no subarray
fields.extend(subfields)
else:
fields.extend([(d, c, o + i*size) for d, c, o in subfields])
return fields
def unstructured_to_structured(arr, dtype=None, names=None, align=False,
copy=False, casting='unsafe'):
"""
Converts an n-D unstructured array into an (n-1)-D structured array.
The last dimension of the input array is converted into a structure, with
number of field-elements equal to the size of the last dimension of the
input array. By default all output fields have the input array's dtype, but
an output structured dtype with an equal number of fields-elements can be
supplied instead.
Nested fields, as well as each element of any subarray fields, all count
towards the number of field-elements.
Parameters
----------
arr : ndarray
Unstructured array or dtype to convert.
dtype : dtype, optional
The structured dtype of the output array
names : list of strings, optional
If dtype is not supplied, this specifies the field names for the output
dtype, in order. The field dtypes will be the same as the input array.
align : boolean, optional
Whether to create an aligned memory layout.
copy : bool, optional
See copy argument to `numpy.ndarray.astype`. If true, always return a
copy. If false, and `dtype` requirements are satisfied, a view is
returned.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
See casting argument of `numpy.ndarray.astype`. Controls what kind of
data casting may occur.
Returns
-------
structured : ndarray
Structured array with fewer dimensions.
Examples
--------
>>> from numpy.lib import recfunctions as rfn
>>> dt = np.dtype([('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
>>> a = np.arange(20).reshape((4,5))
>>> a
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])
>>> rfn.unstructured_to_structured(a, dt)
array([( 0, ( 1., 2), [ 3., 4.]), ( 5, ( 6., 7), [ 8., 9.]),
(10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])],
dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])
"""
if arr.shape == ():
raise ValueError('arr must have at least one dimension')
n_elem = arr.shape[-1]
if n_elem == 0:
# too many bugs elsewhere for this to work now
raise NotImplementedError("last axis with size 0 is not supported")
if dtype is None:
if names is None:
names = ['f{}'.format(n) for n in range(n_elem)]
out_dtype = np.dtype([(n, arr.dtype) for n in names], align=align)
fields = _get_fields_and_offsets(out_dtype)
dts, counts, offsets = zip(*fields)
else:
if names is not None:
raise ValueError("don't supply both dtype and names")
# if dtype is the args of np.dtype, construct it
dtype = np.dtype(dtype)
# sanity check of the input dtype
fields = _get_fields_and_offsets(dtype)
if len(fields) == 0:
dts, counts, offsets = [], [], []
else:
dts, counts, offsets = zip(*fields)
if n_elem != sum(counts):
raise ValueError('The length of the last dimension of arr must '
'be equal to the number of fields in dtype')
out_dtype = dtype
if align and not out_dtype.isalignedstruct:
raise ValueError("align was True but dtype is not aligned")
names = ['f{}'.format(n) for n in range(len(fields))]
# Use a series of views and casts to convert to a structured array:
# first view as a packed structured array of one dtype
packed_fields = np.dtype({'names': names,
'formats': [(arr.dtype, dt.shape) for dt in dts]})
arr = np.ascontiguousarray(arr).view(packed_fields)
# next cast to an unpacked but flattened format with varied dtypes
flattened_fields = np.dtype({'names': names,
'formats': dts,
'offsets': offsets,
'itemsize': out_dtype.itemsize})
arr = arr.astype(flattened_fields, copy=copy, casting=casting)
# finally view as the final nested dtype and remove the last axis
return arr.view(out_dtype)[..., 0]
class GetIndex(TempBase): class GetIndex(TempBase):
def __getitem__(self, idx): def __getitem__(self, idx):
return idx return idx
...@@ -51,27 +182,33 @@ class DataArrayViewLine(DataArray): ...@@ -51,27 +182,33 @@ class DataArrayViewLine(DataArray):
""" """
Get numpy view of Parent Data Array according to index. Get numpy view of Parent Data Array according to index.
""" """
zbigarray = self.getPredecessorValue().getArray()
getindex = GetIndex("getindex") getindex = GetIndex("getindex")
index_expression = self.getIndexExpression() zbigarray = self.getPredecessorValue().getArray()
dtype_expression = self.getDtypeExpression() array_view =zbigarray[:]
name_list = self.getNameList() name_list = self.getNameList()
dtype_expression = self.getDtypeExpression()
if dtype_expression is not None or name_list:
if dtype_expression is None:
dtype = zbigarray.dtype
else:
dtype = evaluateExpressionFromString(
createExpressionContext(None, portal=getindex),
dtype_expression)
dtype = np.dtype(dtype).newbyteorder('|') # copy=True did not return a copy
if name_list:
dtype.names = name_list
if zbigarray.dtype.names is None and dtype.names is not None:
array_view = unstructured_to_structured(array_view, dtype)
else:
array_view = array_view.view(dtype)
index = evaluateExpressionFromString( index = evaluateExpressionFromString(
createExpressionContext(None, portal=getindex), createExpressionContext(None, portal=getindex),
"python: portal[%s]" %index_expression "python: portal[%s]" %self.getIndexExpression()
) )
try: if isinstance(index, list) and array_view.dtype.names:
array_view = zbigarray[index] array = array_view
except TypeError:
array = zbigarray[:]
new_dtype = np.dtype({name:array.dtype.fields[name] for name in index}) new_dtype = np.dtype({name:array.dtype.fields[name] for name in index})
array_view = np.ndarray(array.shape, new_dtype, array, 0, array.strides) array_view = np.ndarray(array.shape, new_dtype, array, 0, array.strides)
if dtype_expression is not None:
dtype = np.dtype(evaluateExpressionFromString(
createExpressionContext(None, portal=getindex), dtype_expression))
if name_list:
dtype.names = name_list
return np.ndarray((array_view.shape[0],), dtype, zbigarray[:], 0, array_view.strides[0])
else: else:
array_view = array_view[index]
return array_view return array_view
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment