Commit 0d73f8eb authored by Rusty Russell's avatar Rusty Russell

crypto/sha256: new module.

Signed-off-by: default avatarRusty Russell <rusty@rustcorp.com.au>
parent 70115469
../../../licenses/BSD-MIT
\ No newline at end of file
#include "config.h"
#include <stdio.h>
#include <string.h>
/**
* crypto/sha256 - implementation of SHA-2 with 256 bit digest.
*
* This code is either a wrapper for openssl (if CCAN_CRYPTO_SHA256_USE_OPENSSL
* is defined) or an open-coded implementation based on Bitcoin's.
*
* License: BSD-MIT
* Maintainer: Rusty Russell <rusty@rustcorp.com.au>
*
* Example:
* #include <ccan/crypto/sha256/sha256.h>
* #include <err.h>
* #include <stdio.h>
* #include <string.h>
*
* // Simple demonstration: idential strings will have the same hash, but
* // two different strings will not.
* int main(int argc, char *argv[])
* {
* struct sha256 hash1, hash2;
*
* if (argc != 3)
* errx(1, "Usage: %s <string1> <string2>", argv[0]);
*
* sha256(&hash1, argv[1], strlen(argv[1]));
* sha256(&hash2, argv[2], strlen(argv[2]));
* printf("Hash is %s\n", memcmp(&hash1, &hash2, sizeof(hash1))
* ? "different" : "same");
* return 0;
* }
*/
int main(int argc, char *argv[])
{
/* Expect exactly one argument */
if (argc != 2)
return 1;
if (strcmp(argv[1], "depends") == 0) {
printf("ccan/endian\n");
return 0;
}
if (strcmp(argv[1], "libs") == 0) {
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
printf("crypto\n");
#endif
return 0;
}
return 1;
}
/* MIT (BSD) license - see LICENSE file for details */
/* SHA256 core code translated from the Bitcoin project's C++:
*
* src/crypto/sha256.cpp commit 417532c8acb93c36c2b6fd052b7c11b6a2906aa2
* Copyright (c) 2014 The Bitcoin Core developers
* Distributed under the MIT software license, see the accompanying
* file COPYING or http://www.opensource.org/licenses/mit-license.php.
*/
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/endian/endian.h>
#include <stdbool.h>
#include <assert.h>
#include <string.h>
static void invalidate_sha256(struct sha256_ctx *ctx)
{
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
ctx->c.md_len = 0;
#else
ctx->bytes = -1ULL;
#endif
}
static void check_sha256(struct sha256_ctx *ctx)
{
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
assert(ctx->c.md_len != 0);
#else
assert(ctx->bytes != -1ULL);
#endif
}
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
void sha256_init(struct sha256_ctx *ctx)
{
SHA256_Init(&ctx->c);
}
void sha256_update_arr(struct sha256_ctx *ctx, const void *p,
size_t num, size_t size)
{
size_t total = num * size;
/* Don't overflow. */
assert(size == 0 || total / size == num);
check_sha256(ctx);
SHA256_Update(&ctx->c, p, total);
}
void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
{
SHA256_Final(res->u.u8, &ctx->c);
invalidate_sha256(ctx);
}
#else
static uint32_t Ch(uint32_t x, uint32_t y, uint32_t z)
{
return z ^ (x & (y ^ z));
}
static uint32_t Maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | (z & (x | y));
}
static uint32_t Sigma0(uint32_t x)
{
return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10);
}
static uint32_t Sigma1(uint32_t x)
{
return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7);
}
static uint32_t sigma0(uint32_t x)
{
return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3);
}
static uint32_t sigma1(uint32_t x)
{
return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10);
}
/** One round of SHA-256. */
static void Round(uint32_t a, uint32_t b, uint32_t c, uint32_t *d, uint32_t e, uint32_t f, uint32_t g, uint32_t *h, uint32_t k, uint32_t w)
{
uint32_t t1 = *h + Sigma1(e) + Ch(e, f, g) + k + w;
uint32_t t2 = Sigma0(a) + Maj(a, b, c);
*d += t1;
*h = t1 + t2;
}
/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
static void Transform(uint32_t *s, const uint32_t *chunk)
{
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, &d, e, f, g, &h, 0x428a2f98, w0 = be32_to_cpu(chunk[0]));
Round(h, a, b, &c, d, e, f, &g, 0x71374491, w1 = be32_to_cpu(chunk[1]));
Round(g, h, a, &b, c, d, e, &f, 0xb5c0fbcf, w2 = be32_to_cpu(chunk[2]));
Round(f, g, h, &a, b, c, d, &e, 0xe9b5dba5, w3 = be32_to_cpu(chunk[3]));
Round(e, f, g, &h, a, b, c, &d, 0x3956c25b, w4 = be32_to_cpu(chunk[4]));
Round(d, e, f, &g, h, a, b, &c, 0x59f111f1, w5 = be32_to_cpu(chunk[5]));
Round(c, d, e, &f, g, h, a, &b, 0x923f82a4, w6 = be32_to_cpu(chunk[6]));
Round(b, c, d, &e, f, g, h, &a, 0xab1c5ed5, w7 = be32_to_cpu(chunk[7]));
Round(a, b, c, &d, e, f, g, &h, 0xd807aa98, w8 = be32_to_cpu(chunk[8]));
Round(h, a, b, &c, d, e, f, &g, 0x12835b01, w9 = be32_to_cpu(chunk[9]));
Round(g, h, a, &b, c, d, e, &f, 0x243185be, w10 = be32_to_cpu(chunk[10]));
Round(f, g, h, &a, b, c, d, &e, 0x550c7dc3, w11 = be32_to_cpu(chunk[11]));
Round(e, f, g, &h, a, b, c, &d, 0x72be5d74, w12 = be32_to_cpu(chunk[12]));
Round(d, e, f, &g, h, a, b, &c, 0x80deb1fe, w13 = be32_to_cpu(chunk[13]));
Round(c, d, e, &f, g, h, a, &b, 0x9bdc06a7, w14 = be32_to_cpu(chunk[14]));
Round(b, c, d, &e, f, g, h, &a, 0xc19bf174, w15 = be32_to_cpu(chunk[15]));
Round(a, b, c, &d, e, f, g, &h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, &d, e, f, g, &h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, &d, e, f, g, &h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, &c, d, e, f, &g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, &b, c, d, e, &f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, &a, b, c, d, &e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, &h, a, b, c, &d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, &g, h, a, b, &c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, &f, g, h, a, &b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, &e, f, g, h, &a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, &d, e, f, g, &h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, &c, d, e, f, &g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, &b, c, d, e, &f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, &a, b, c, d, &e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, &h, a, b, c, &d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, &g, h, a, b, &c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, &f, g, h, a, &b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, &e, f, g, h, &a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
static bool alignment_ok(const void *p, size_t n)
{
#if HAVE_UNALIGNED_ACCESS
return true;
#else
return ((size_t)p % n == 0);
#endif
}
static void add(struct sha256_ctx *ctx, const void *p, size_t len)
{
const unsigned char *data = p;
size_t bufsize = ctx->bytes % 64;
if (bufsize + len >= 64) {
// Fill the buffer, and process it.
memcpy(ctx->buf.u8 + bufsize, data, 64 - bufsize);
ctx->bytes += 64 - bufsize;
data += 64 - bufsize;
len -= 64 - bufsize;
Transform(ctx->s, ctx->buf.u32);
bufsize = 0;
}
while (len >= 64) {
// Process full chunks directly from the source.
if (alignment_ok(data, sizeof(uint32_t)))
Transform(ctx->s, (const uint32_t *)data);
else {
memcpy(ctx->buf.u8, data, sizeof(ctx->buf));
Transform(ctx->s, ctx->buf.u32);
}
ctx->bytes += 64;
data += 64;
len -= 64;
}
if (len) {
// Fill the buffer with what remains.
memcpy(ctx->buf.u8 + bufsize, data, len);
ctx->bytes += len;
}
}
void sha256_init(struct sha256_ctx *ctx)
{
struct sha256_ctx init = SHA256_INIT;
*ctx = init;
}
void sha256_update_arr(struct sha256_ctx *ctx, const void *p,
size_t num, size_t size)
{
size_t total = num * size;
/* Don't overflow. */
assert(size == 0 || total / size == num);
check_sha256(ctx);
add(ctx, p, total);
}
void sha256_done(struct sha256_ctx *ctx, struct sha256 *res)
{
static const unsigned char pad[64] = {0x80};
uint64_t sizedesc;
size_t i;
sizedesc = cpu_to_be64(ctx->bytes << 3);
/* Add '1' bit to terminate, then all 0 bits, up to next block - 8. */
add(ctx, pad, 1 + ((119 - (ctx->bytes % 64)) % 64));
/* Add number of bits of data (big endian) */
add(ctx, &sizedesc, 8);
for (i = 0; i < sizeof(ctx->s) / sizeof(ctx->s[0]); i++)
res->u.u32[i] = cpu_to_be32(ctx->s[i]);
invalidate_sha256(ctx);
}
#endif
void sha256_arr(struct sha256 *sha, const void *p, size_t num, size_t size)
{
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update_arr(&ctx, p, num, size);
sha256_done(&ctx, sha);
}
void sha256_u8(struct sha256_ctx *ctx, uint8_t v)
{
sha256_update_arr(ctx, &v, sizeof(v), 1);
}
void sha256_u16(struct sha256_ctx *ctx, uint16_t v)
{
sha256_update_arr(ctx, &v, sizeof(v), 1);
}
void sha256_u32(struct sha256_ctx *ctx, uint32_t v)
{
sha256_update_arr(ctx, &v, sizeof(v), 1);
}
void sha256_u64(struct sha256_ctx *ctx, uint64_t v)
{
sha256_update_arr(ctx, &v, sizeof(v), 1);
}
/* Add as little-endian */
void sha256_le16(struct sha256_ctx *ctx, uint16_t v)
{
leint16_t lev = cpu_to_le16(v);
sha256_update_arr(ctx, &lev, sizeof(lev), 1);
}
void sha256_le32(struct sha256_ctx *ctx, uint32_t v)
{
leint32_t lev = cpu_to_le32(v);
sha256_update_arr(ctx, &lev, sizeof(lev), 1);
}
void sha256_le64(struct sha256_ctx *ctx, uint64_t v)
{
leint64_t lev = cpu_to_le64(v);
sha256_update_arr(ctx, &lev, sizeof(lev), 1);
}
/* Add as big-endian */
void sha256_be16(struct sha256_ctx *ctx, uint16_t v)
{
beint16_t bev = cpu_to_be16(v);
sha256_update_arr(ctx, &bev, sizeof(bev), 1);
}
void sha256_be32(struct sha256_ctx *ctx, uint32_t v)
{
beint32_t bev = cpu_to_be32(v);
sha256_update_arr(ctx, &bev, sizeof(bev), 1);
}
void sha256_be64(struct sha256_ctx *ctx, uint64_t v)
{
beint64_t bev = cpu_to_be64(v);
sha256_update_arr(ctx, &bev, sizeof(bev), 1);
}
#ifndef CCAN_CRYPTO_SHA256_H
#define CCAN_CRYPTO_SHA256_H
/* BSD-MIT - see LICENSE file for details */
#include "config.h"
#include <stdint.h>
#include <stdlib.h>
/* Uncomment this to use openssl's SHA256 routines (and link with -lcrypto) */
//#define CCAN_CRYPTO_SHA256_USE_OPENSSL 1
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
#include <openssl/sha.h>
#endif
/**
* struct sha256 - structure representing a completed SHA256.
* @u.u8: an unsigned char array.
* @u.u32: a 32-bit integer array.
*
* Other fields may be added to the union in future.
*/
struct sha256 {
union {
/* Array of chars */
unsigned char u8[32];
/* Array of uint32_t */
uint32_t u32[8];
} u;
};
/**
* sha256 - return sha256 of an array of bytes.
* @sha256: the sha256 to fill in
* @p: array or pointer to first element
* @num: the number of elements to hash
*
* The bytes pointed to by @p is SHA256 hashes into @sha256. This is
* equivalent to sha256_init(), sha256_update() then sha256_done().
*/
#define sha256(sha256, p, num) sha256_arr((sha256), (p), (num), sizeof(*(p)))
/**
* struct sha256_ctx - structure to store running context for sha256
*/
struct sha256_ctx {
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
SHA256_CTX c;
#else
uint32_t s[8];
uint64_t bytes;
union {
uint32_t u32[8];
unsigned char u8[64];
} buf;
#endif
};
/**
* sha256_init - initialize an SHA256 context.
* @ctx: the sha256_ctx to initialize
*
* This must be called before sha256_update or sha256_done, or
* alternately you can assign SHA256_INIT.
*
* If it was already initialized, this forgets anything which was
* hashed before.
*
* Example:
* static void hash_all(const char **arr, struct sha256 *hash)
* {
* size_t i;
* struct sha256_ctx ctx;
*
* sha256_init(&ctx);
* for (i = 0; arr[i]; i++)
* sha256_update(&ctx, arr[i], strlen(arr[i]));
* sha256_done(&ctx, hash);
* }
*/
void sha256_init(struct sha256_ctx *ctx);
/**
* SHA256_INIT - initializer for an SHA256 context.
*
* This can be used to staticly initialize an SHA256 context (instead
* of sha256_init()).
*
* Example:
* static void hash_all(const char **arr, struct sha256 *hash)
* {
* size_t i;
* struct sha256_ctx ctx = SHA256_INIT;
*
* for (i = 0; arr[i]; i++)
* sha256_update(&ctx, arr[i], strlen(arr[i]));
* sha256_done(&ctx, hash);
* }
*/
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
#define SHA256_INIT \
{ { { 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, \
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul }, \
0x0, 0x0, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
0x0, 0x20 } }
#else
#define SHA256_INIT \
{ { 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, \
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul }, 0 }
#endif
/**
* sha256_update - include an array of data in the hash.
* @ctx: the sha256_ctx to use
* @p: array or pointer to first element
* @num: the number of elements to hash
*
* You can call this multiple times to hash more data, before calling
* sha256_done().
*/
#define sha256_update(ctx, p, num) \
sha256_update_arr((ctx), (p), (num), sizeof(*(p)))
/**
* sha256_done - finish SHA256 and return the hash
* @ctx: the sha256_ctx to complete
* @res: the hash to return.
*
* Note that @ctx is *destroyed* by this, and must be reinitialized.
* To avoid that, pass a copy instead.
*/
void sha256_done(struct sha256_ctx *sha256, struct sha256 *res);
/* Add various types to an SHA256 hash */
void sha256_u8(struct sha256_ctx *ctx, uint8_t v);
void sha256_u16(struct sha256_ctx *ctx, uint16_t v);
void sha256_u32(struct sha256_ctx *ctx, uint32_t v);
void sha256_u64(struct sha256_ctx *ctx, uint64_t v);
/* Add as little-endian */
void sha256_le16(struct sha256_ctx *ctx, uint16_t v);
void sha256_le32(struct sha256_ctx *ctx, uint32_t v);
void sha256_le64(struct sha256_ctx *ctx, uint64_t v);
/* Add as big-endian */
void sha256_be16(struct sha256_ctx *ctx, uint16_t v);
void sha256_be32(struct sha256_ctx *ctx, uint32_t v);
void sha256_be64(struct sha256_ctx *ctx, uint64_t v);
void sha256_update_arr(struct sha256_ctx *ctx, const void *p,
size_t num, size_t size);
void sha256_arr(struct sha256 *sha, const void *p, size_t num, size_t size);
#endif /* CCAN_CRYPTO_SHA256_H */
#include <ccan/crypto/sha256/sha256.h>
/* Include the C files directly. */
#include <ccan/crypto/sha256/sha256.c>
#include <ccan/tap/tap.h>
#include <stdio.h>
/* This is the test introduced for SHA-3, which checks for 33-bit overflow:
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno"
16777216 times.
*/
static uint32_t expected[] = {
CPU_TO_BE32(0x50e72a0e), CPU_TO_BE32(0x26442fe2),
CPU_TO_BE32(0x552dc393), CPU_TO_BE32(0x8ac58658),
CPU_TO_BE32(0x228c0cbf), CPU_TO_BE32(0xb1d2ca87),
CPU_TO_BE32(0x2ae43526), CPU_TO_BE32(0x6fcd055e)
};
/* Produced by actually running the code on x86. */
static const struct sha256_ctx after_16M_by_64 = {
#ifdef CCAN_CRYPTO_SHA256_USE_OPENSSL
{ { LE32_TO_CPU(0x515e3215), LE32_TO_CPU(0x592f4ae0),
LE32_TO_CPU(0xd407a8fc), LE32_TO_CPU(0x1fad409b),
LE32_TO_CPU(0x51fa46cc), LE32_TO_CPU(0xea528ae5),
LE32_TO_CPU(0x5fa58ebb), LE32_TO_CPU(0x8be97931) },
0x0, 0x2,
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
0x0, 0x20 }
#else
{ LE32_TO_CPU(0x515e3215), LE32_TO_CPU(0x592f4ae0),
LE32_TO_CPU(0xd407a8fc), LE32_TO_CPU(0x1fad409b),
LE32_TO_CPU(0x51fa46cc), LE32_TO_CPU(0xea528ae5),
LE32_TO_CPU(0x5fa58ebb), LE32_TO_CPU(0x8be97931) },
1073741824,
{ .u32 = { 0x64636261, 0x68676665, 0x65646362, 0x69686766,
0x66656463, 0x6a696867, 0x67666564, 0x6b6a6968 } }
#endif
};
int main(void)
{
struct sha256 h;
struct sha256_ctx ctx;
/* This is how many tests you plan to run */
plan_tests(1);
ctx = after_16M_by_64;
sha256_done(&ctx, &h);
ok1(memcmp(&h.u, expected, sizeof(expected)) == 0);
/* This exits depending on whether all tests passed */
return exit_status();
}
#include <ccan/crypto/sha256/sha256.h>
/* Include the C files directly. */
#include <ccan/crypto/sha256/sha256.c>
#include <ccan/tap/tap.h>
int main(void)
{
struct sha256 h, expected;
static const char zeroes[1000];
size_t i;
plan_tests(63);
/* Test different alignments. */
sha256(&expected, zeroes, sizeof(zeroes) - 64);
for (i = 1; i < 64; i++) {
sha256(&h, zeroes + i, sizeof(zeroes) - 64);
ok1(memcmp(&h, &expected, sizeof(h)) == 0);
}
/* This exits depending on whether all tests passed */
return exit_status();
}
#include <ccan/crypto/sha256/sha256.h>
/* Include the C files directly. */
#include <ccan/crypto/sha256/sha256.c>
#include <ccan/tap/tap.h>
/* Test vectors. */
struct test {
const char *test;
size_t repetitions;
beint32_t result[8];
};
static struct test tests[] = {
{ "", 1,
{ CPU_TO_BE32(0xe3b0c442), CPU_TO_BE32(0x98fc1c14),
CPU_TO_BE32(0x9afbf4c8), CPU_TO_BE32(0x996fb924),
CPU_TO_BE32(0x27ae41e4), CPU_TO_BE32(0x649b934c),
CPU_TO_BE32(0xa495991b), CPU_TO_BE32(0x7852b855) } },
{ "abc", 1,
{ CPU_TO_BE32(0xba7816bf), CPU_TO_BE32(0x8f01cfea),
CPU_TO_BE32(0x414140de), CPU_TO_BE32(0x5dae2223),
CPU_TO_BE32(0xb00361a3), CPU_TO_BE32(0x96177a9c),
CPU_TO_BE32(0xb410ff61), CPU_TO_BE32(0xf20015ad) } },
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 1,
{ CPU_TO_BE32(0x248d6a61), CPU_TO_BE32(0xd20638b8),
CPU_TO_BE32(0xe5c02693), CPU_TO_BE32(0x0c3e6039),
CPU_TO_BE32(0xa33ce459), CPU_TO_BE32(0x64ff2167),
CPU_TO_BE32(0xf6ecedd4), CPU_TO_BE32(0x19db06c1) } },
{ "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 1,
{ CPU_TO_BE32(0xcf5b16a7), CPU_TO_BE32(0x78af8380),
CPU_TO_BE32(0x036ce59e), CPU_TO_BE32(0x7b049237),
CPU_TO_BE32(0x0b249b11), CPU_TO_BE32(0xe8f07a51),
CPU_TO_BE32(0xafac4503), CPU_TO_BE32(0x7afee9d1) } },
{ "a", 1000000,
{ CPU_TO_BE32(0xcdc76e5c), CPU_TO_BE32(0x9914fb92),
CPU_TO_BE32(0x81a1c7e2), CPU_TO_BE32(0x84d73e67),
CPU_TO_BE32(0xf1809a48), CPU_TO_BE32(0xa497200e),
CPU_TO_BE32(0x046d39cc), CPU_TO_BE32(0xc7112cd0) } }
#if 0 /* Good test, but takes ages! */
, { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno", 16777216,
{ CPU_TO_BE32(0x50e72a0e), CPU_TO_BE32(0x26442fe2),
CPU_TO_BE32(0x552dc393), CPU_TO_BE32(0x8ac58658),
CPU_TO_BE32(0x228c0cbf), CPU_TO_BE32(0xb1d2ca87),
CPU_TO_BE32(0x2ae43526), CPU_TO_BE32(0x6fcd055e) } }
#endif
};
static bool do_test(const struct test *t, bool single)
{
struct sha256 h;
if (single) {
if (t->repetitions != 1)
return true;
sha256(&h, t->test, strlen(t->test));
} else {
struct sha256_ctx ctx = SHA256_INIT;
size_t i;
for (i = 0; i < t->repetitions; i++)
sha256_update(&ctx, t->test, strlen(t->test));
sha256_done(&ctx, &h);
}
return memcmp(&h.u, t->result, sizeof(t->result)) == 0;
}
int main(void)
{
size_t i;
/* This is how many tests you plan to run */
plan_tests(sizeof(tests) / sizeof(struct test) * 2);
for (i = 0; i < sizeof(tests) / sizeof(struct test); i++)
ok1(do_test(&tests[i], false));
for (i = 0; i < sizeof(tests) / sizeof(struct test); i++)
ok1(do_test(&tests[i], true));
/* This exits depending on whether all tests passed */
return exit_status();
}
#include <ccan/crypto/sha256/sha256.h>
/* Include the C files directly. */
#include <ccan/crypto/sha256/sha256.c>
#include <ccan/tap/tap.h>
static unsigned char arr[] = {
0x12,
#if HAVE_BIG_ENDIAN
/* u16 */
0x12, 0x34,
/* u32 */
0x12, 0x34, 0x56, 0x78,
/* u64 */
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
#else
/* u16 */
0x34, 0x12,
/* u32 */
0x78, 0x56, 0x34, 0x12,
/* u64 */
0xf0, 0xde, 0xbc, 0x9a, 0x78, 0x56, 0x34, 0x12,
#endif
/* le16 */
0x34, 0x12,
/* le32 */
0x78, 0x56, 0x34, 0x12,
/* le64 */
0xf0, 0xde, 0xbc, 0x9a, 0x78, 0x56, 0x34, 0x12,
/* be16 */
0x12, 0x34,
/* be32 */
0x12, 0x34, 0x56, 0x78,
/* be64 */
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
};
int main(void)
{
struct sha256 h, expected;
struct sha256_ctx ctx;
/* This is how many tests you plan to run */
plan_tests(1);
sha256_init(&ctx);
sha256_u8(&ctx, 0x12);
sha256_u16(&ctx, 0x1234);
sha256_u32(&ctx, 0x12345678);
sha256_u64(&ctx, 0x123456789abcdef0ULL);
sha256_le16(&ctx, 0x1234);
sha256_le32(&ctx, 0x12345678);
sha256_le64(&ctx, 0x123456789abcdef0ULL);
sha256_be16(&ctx, 0x1234);
sha256_be32(&ctx, 0x12345678);
sha256_be64(&ctx, 0x123456789abcdef0ULL);
sha256_done(&ctx, &h);
sha256(&expected, arr, sizeof(arr));
ok1(memcmp(&h, &expected, sizeof(h)) == 0);
/* This exits depending on whether all tests passed */
return exit_status();
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment