Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
converse.js
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
converse.js
Commits
a7247a7c
Commit
a7247a7c
authored
Aug 04, 2014
by
JC Brand
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Use the bigint shipped with newest otr.js
parent
28e65c94
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
5 additions
and
1690 deletions
+5
-1690
index.html
index.html
+2
-2
main.js
main.js
+1
-1
src/bigint.js
src/bigint.js
+0
-1685
src/build-website.js
src/build-website.js
+1
-1
src/build.js
src/build.js
+1
-1
No files found.
index.html
View file @
a7247a7c
...
...
@@ -12,10 +12,10 @@
<link
type=
"text/css"
rel=
"stylesheet"
media=
"screen"
href=
"components/fontawesome/css/font-awesome.min.css"
/>
<link
type=
"text/css"
rel=
"stylesheet"
media=
"screen"
href=
"css/theme.css"
/>
<link
type=
"text/css"
rel=
"stylesheet"
media=
"screen"
href=
"css/converse.min.css"
/>
<!--
<script
src=
"builds/converse.website.min.js"
></script>
<!-- For development
<script data-main="main" src="components/requirejs/require.js"></script>
-->
<script
src=
"builds/converse.website.min.js"
></script>
</head>
<body
id=
"page-top"
data-spy=
"scroll"
data-target=
".navbar-custom"
>
...
...
main.js
View file @
a7247a7c
...
...
@@ -19,7 +19,7 @@ config = {
"
strophe.vcard
"
:
"
components/strophe.vcard/index
"
,
"
strophe.disco
"
:
"
components/strophe.disco/index
"
,
"
salsa20
"
:
"
components/otr/build/dep/salsa20
"
,
"
bigint
"
:
"
src
/bigint
"
,
"
bigint
"
:
"
components/otr/vendor
/bigint
"
,
"
crypto.core
"
:
"
components/otr/vendor/cryptojs/core
"
,
"
crypto.enc-base64
"
:
"
components/otr/vendor/cryptojs/enc-base64
"
,
"
crypto.md5
"
:
"
components/crypto-js-evanvosberg/src/md5
"
,
...
...
src/bigint.js
deleted
100644 → 0
View file @
28e65c94
;(
function
(
root
,
factory
)
{
var
Salsa20
,
crypto
if
(
typeof
define
===
'
function
'
&&
define
.
amd
)
{
define
([
'
salsa20
'
],
factory
.
bind
(
root
,
root
.
crypto
))
}
else
if
(
typeof
module
!==
'
undefined
'
&&
module
.
exports
)
{
Salsa20
=
require
(
'
./salsa20.js
'
)
crypto
=
require
(
'
crypto
'
)
module
.
exports
=
factory
(
crypto
,
Salsa20
)
}
else
{
root
.
BigInt
=
factory
(
root
.
crypto
,
root
.
Salsa20
)
}
}(
this
,
function
(
crypto
,
Salsa20
)
{
////////////////////////////////////////////////////////////////////////////////////////
// Big Integer Library v. 5.5
// Created 2000, last modified 2013
// Leemon Baird
// www.leemon.com
//
// Version history:
// v 5.5 17 Mar 2013
// - two lines of a form like "if (x<0) x+=n" had the "if" changed to "while" to
// handle the case when x<-n. (Thanks to James Ansell for finding that bug)
// v 5.4 3 Oct 2009
// - added "var i" to greaterShift() so i is not global. (Thanks to Péter Szabó for finding that bug)
//
// v 5.3 21 Sep 2009
// - added randProbPrime(k) for probable primes
// - unrolled loop in mont_ (slightly faster)
// - millerRabin now takes a bigInt parameter rather than an int
//
// v 5.2 15 Sep 2009
// - fixed capitalization in call to int2bigInt in randBigInt
// (thanks to Emili Evripidou, Reinhold Behringer, and Samuel Macaleese for finding that bug)
//
// v 5.1 8 Oct 2007
// - renamed inverseModInt_ to inverseModInt since it doesn't change its parameters
// - added functions GCD and randBigInt, which call GCD_ and randBigInt_
// - fixed a bug found by Rob Visser (see comment with his name below)
// - improved comments
//
// This file is public domain. You can use it for any purpose without restriction.
// I do not guarantee that it is correct, so use it at your own risk. If you use
// it for something interesting, I'd appreciate hearing about it. If you find
// any bugs or make any improvements, I'd appreciate hearing about those too.
// It would also be nice if my name and URL were left in the comments. But none
// of that is required.
//
// This code defines a bigInt library for arbitrary-precision integers.
// A bigInt is an array of integers storing the value in chunks of bpe bits,
// little endian (buff[0] is the least significant word).
// Negative bigInts are stored two's complement. Almost all the functions treat
// bigInts as nonnegative. The few that view them as two's complement say so
// in their comments. Some functions assume their parameters have at least one
// leading zero element. Functions with an underscore at the end of the name put
// their answer into one of the arrays passed in, and have unpredictable behavior
// in case of overflow, so the caller must make sure the arrays are big enough to
// hold the answer. But the average user should never have to call any of the
// underscored functions. Each important underscored function has a wrapper function
// of the same name without the underscore that takes care of the details for you.
// For each underscored function where a parameter is modified, that same variable
// must not be used as another argument too. So, you cannot square x by doing
// multMod_(x,x,n). You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n).
// Or simply use the multMod(x,x,n) function without the underscore, where
// such issues never arise, because non-underscored functions never change
// their parameters; they always allocate new memory for the answer that is returned.
//
// These functions are designed to avoid frequent dynamic memory allocation in the inner loop.
// For most functions, if it needs a BigInt as a local variable it will actually use
// a global, and will only allocate to it only when it's not the right size. This ensures
// that when a function is called repeatedly with same-sized parameters, it only allocates
// memory on the first call.
//
// Note that for cryptographic purposes, the calls to Math.random() must
// be replaced with calls to a better pseudorandom number generator.
//
// In the following, "bigInt" means a bigInt with at least one leading zero element,
// and "integer" means a nonnegative integer less than radix. In some cases, integer
// can be negative. Negative bigInts are 2s complement.
//
// The following functions do not modify their inputs.
// Those returning a bigInt, string, or Array will dynamically allocate memory for that value.
// Those returning a boolean will return the integer 0 (false) or 1 (true).
// Those returning boolean or int will not allocate memory except possibly on the first
// time they're called with a given parameter size.
//
// bigInt add(x,y) //return (x+y) for bigInts x and y.
// bigInt addInt(x,n) //return (x+n) where x is a bigInt and n is an integer.
// string bigInt2str(x,base) //return a string form of bigInt x in a given base, with 2 <= base <= 95
// int bitSize(x) //return how many bits long the bigInt x is, not counting leading zeros
// bigInt dup(x) //return a copy of bigInt x
// boolean equals(x,y) //is the bigInt x equal to the bigint y?
// boolean equalsInt(x,y) //is bigint x equal to integer y?
// bigInt expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed
// Array findPrimes(n) //return array of all primes less than integer n
// bigInt GCD(x,y) //return greatest common divisor of bigInts x and y (each with same number of elements).
// boolean greater(x,y) //is x>y? (x and y are nonnegative bigInts)
// boolean greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y?
// bigInt int2bigInt(t,n,m) //return a bigInt equal to integer t, with at least n bits and m array elements
// bigInt inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
// int inverseModInt(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
// boolean isZero(x) //is the bigInt x equal to zero?
// boolean millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is bigInt, 1<b<x)
// boolean millerRabinInt(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is int, 1<b<x)
// bigInt mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n.
// int modInt(x,n) //return x mod n for bigInt x and integer n.
// bigInt mult(x,y) //return x*y for bigInts x and y. This is faster when y<x.
// bigInt multMod(x,y,n) //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
// boolean negative(x) //is bigInt x negative?
// bigInt powMod(x,y,n) //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
// bigInt randBigInt(n,s) //return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1.
// bigInt randTruePrime(k) //return a new, random, k-bit, true prime bigInt using Maurer's algorithm.
// bigInt randProbPrime(k) //return a new, random, k-bit, probable prime bigInt (probability it's composite less than 2^-80).
// bigInt str2bigInt(s,b,n,m) //return a bigInt for number represented in string s in base b with at least n bits and m array elements
// bigInt sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement
// bigInt trim(x,k) //return a copy of x with exactly k leading zero elements
//
//
// The following functions each have a non-underscored version, which most users should call instead.
// These functions each write to a single parameter, and the caller is responsible for ensuring the array
// passed in is large enough to hold the result.
//
// void addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer
// void add_(x,y) //do x=x+y for bigInts x and y
// void copy_(x,y) //do x=y on bigInts x and y
// void copyInt_(x,n) //do x=n on bigInt x and integer n
// void GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). (This never overflows its array).
// boolean inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist
// void mod_(x,n) //do x=x mod n for bigInts x and n. (This never overflows its array).
// void mult_(x,y) //do x=x*y for bigInts x and y.
// void multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n.
// void powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1.
// void randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1.
// void randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb.
// void sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement.
//
// The following functions do NOT have a non-underscored version.
// They each write a bigInt result to one or more parameters. The caller is responsible for
// ensuring the arrays passed in are large enough to hold the results.
//
// void addShift_(x,y,ys) //do x=x+(y<<(ys*bpe))
// void carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits.
// void divide_(x,y,q,r) //divide x by y giving quotient q and remainder r
// int divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder. (This never overflows its array).
// int eGCD_(x,y,d,a,b) //sets a,b,d to positive bigInts such that d = GCD_(x,y) = a*x-b*y
// void halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement. (This never overflows its array).
// void leftShift_(x,n) //left shift bigInt x by n bits. n<bpe.
// void linComb_(x,y,a,b) //do x=a*x+b*y for bigInts x and y and integers a and b
// void linCombShift_(x,y,b,ys) //do x=x+b*(y<<(ys*bpe)) for bigInts x and y, and integers b and ys
// void mont_(x,y,n,np) //Montgomery multiplication (see comments where the function is defined)
// void multInt_(x,n) //do x=x*n where x is a bigInt and n is an integer.
// void rightShift_(x,n) //right shift bigInt x by n bits. 0 <= n < bpe. (This never overflows its array).
// void squareMod_(x,n) //do x=x*x mod n for bigInts x,n
// void subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement.
//
// The following functions are based on algorithms from the _Handbook of Applied Cryptography_
// powMod_() = algorithm 14.94, Montgomery exponentiation
// eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_
// GCD_() = algorothm 14.57, Lehmer's algorithm
// mont_() = algorithm 14.36, Montgomery multiplication
// divide_() = algorithm 14.20 Multiple-precision division
// squareMod_() = algorithm 14.16 Multiple-precision squaring
// randTruePrime_() = algorithm 4.62, Maurer's algorithm
// millerRabin() = algorithm 4.24, Miller-Rabin algorithm
//
// Profiling shows:
// randTruePrime_() spends:
// 10% of its time in calls to powMod_()
// 85% of its time in calls to millerRabin()
// millerRabin() spends:
// 99% of its time in calls to powMod_() (always with a base of 2)
// powMod_() spends:
// 94% of its time in calls to mont_() (almost always with x==y)
//
// This suggests there are several ways to speed up this library slightly:
// - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window)
// -- this should especially focus on being fast when raising 2 to a power mod n
// - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test
// - tune the parameters in randTruePrime_(), including c, m, and recLimit
// - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking
// within the loop when all the parameters are the same length.
//
// There are several ideas that look like they wouldn't help much at all:
// - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway)
// - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32)
// - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square
// followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that
// method would be slower. This is unfortunate because the code currently spends almost all of its time
// doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring
// would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded
// sentences that seem to imply it's faster to do a non-modular square followed by a single
// Montgomery reduction, but that's obviously wrong.
////////////////////////////////////////////////////////////////////////////////////////
//globals
var
bpe
=
0
// bits stored per array element
var
mask
=
0
;
//AND this with an array element to chop it down to bpe bits
var
radix
=
mask
+
1
;
//equals 2^bpe. A single 1 bit to the left of the last bit of mask.
//the digits for converting to different bases
var
digitsStr
=
'
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~
\\\'\
"+-
'
;
//initialize the global variables
for
(
bpe
=
0
;
(
1
<<
(
bpe
+
1
))
>
(
1
<<
bpe
);
bpe
++
);
// bpe = number of bits in the mantissa on this platform
bpe
>>=
1
;
// bpe = number of bits in one element of the array representing the bigInt
mask
=
(
1
<<
bpe
)
-
1
;
//AND the mask with an integer to get its bpe least significant bits
radix
=
mask
+
1
;
//2^bpe. a single 1 bit to the left of the first bit of mask
var
one
=
int2bigInt
(
1
,
1
,
1
);
//constant used in powMod_()
//the following global variables are scratchpad memory to
//reduce dynamic memory allocation in the inner loop
var
t
=
new
Array
(
0
);
var
ss
=
t
;
//used in mult_()
var
s0
=
t
;
//used in multMod_(), squareMod_()
var
s1
=
t
;
//used in powMod_(), multMod_(), squareMod_()
var
s2
=
t
;
//used in powMod_(), multMod_()
var
s3
=
t
;
//used in powMod_()
var
s4
=
t
,
s5
=
t
;
//used in mod_()
var
s6
=
t
;
//used in bigInt2str()
var
s7
=
t
;
//used in powMod_()
var
T
=
t
;
//used in GCD_()
var
sa
=
t
;
//used in mont_()
var
mr_x1
=
t
,
mr_r
=
t
,
mr_a
=
t
;
//used in millerRabin()
var
eg_v
=
t
,
eg_u
=
t
,
eg_A
=
t
,
eg_B
=
t
,
eg_C
=
t
,
eg_D
=
t
;
//used in eGCD_(), inverseMod_()
var
md_q1
=
t
,
md_q2
=
t
,
md_q3
=
t
,
md_r
=
t
,
md_r1
=
t
,
md_r2
=
t
,
md_tt
=
t
;
//used in mod_()
var
primes
=
t
,
pows
=
t
,
s_i
=
t
,
s_i2
=
t
,
s_R
=
t
,
s_rm
=
t
,
s_q
=
t
,
s_n1
=
t
;
var
s_a
=
t
,
s_r2
=
t
,
s_n
=
t
,
s_b
=
t
,
s_d
=
t
,
s_x1
=
t
,
s_x2
=
t
,
s_aa
=
t
;
//used in randTruePrime_()
var
rpprb
=
t
;
//used in randProbPrimeRounds() (which also uses "primes")
////////////////////////////////////////////////////////////////////////////////////////
//return array of all primes less than integer n
function
findPrimes
(
n
)
{
var
i
,
s
,
p
,
ans
;
s
=
new
Array
(
n
);
for
(
i
=
0
;
i
<
n
;
i
++
)
s
[
i
]
=
0
;
s
[
0
]
=
2
;
p
=
0
;
//first p elements of s are primes, the rest are a sieve
for
(;
s
[
p
]
<
n
;)
{
//s[p] is the pth prime
for
(
i
=
s
[
p
]
*
s
[
p
];
i
<
n
;
i
+=
s
[
p
])
//mark multiples of s[p]
s
[
i
]
=
1
;
p
++
;
s
[
p
]
=
s
[
p
-
1
]
+
1
;
for
(;
s
[
p
]
<
n
&&
s
[
s
[
p
]];
s
[
p
]
++
);
//find next prime (where s[p]==0)
}
ans
=
new
Array
(
p
);
for
(
i
=
0
;
i
<
p
;
i
++
)
ans
[
i
]
=
s
[
i
];
return
ans
;
}
//does a single round of Miller-Rabin base b consider x to be a possible prime?
//x is a bigInt, and b is an integer, with b<x
function
millerRabinInt
(
x
,
b
)
{
if
(
mr_x1
.
length
!=
x
.
length
)
{
mr_x1
=
dup
(
x
);
mr_r
=
dup
(
x
);
mr_a
=
dup
(
x
);
}
copyInt_
(
mr_a
,
b
);
return
millerRabin
(
x
,
mr_a
);
}
//does a single round of Miller-Rabin base b consider x to be a possible prime?
//x and b are bigInts with b<x
function
millerRabin
(
x
,
b
)
{
var
i
,
j
,
k
,
s
;
if
(
mr_x1
.
length
!=
x
.
length
)
{
mr_x1
=
dup
(
x
);
mr_r
=
dup
(
x
);
mr_a
=
dup
(
x
);
}
copy_
(
mr_a
,
b
);
copy_
(
mr_r
,
x
);
copy_
(
mr_x1
,
x
);
addInt_
(
mr_r
,
-
1
);
addInt_
(
mr_x1
,
-
1
);
//s=the highest power of two that divides mr_r
/*
k=0;
for (i=0;i<mr_r.length;i++)
for (j=1;j<mask;j<<=1)
if (x[i] & j) {
s=(k<mr_r.length+bpe ? k : 0);
i=mr_r.length;
j=mask;
} else
k++;
*/
/* http://www.javascripter.net/math/primes/millerrabinbug-bigint54.htm */
if
(
isZero
(
mr_r
))
return
0
;
for
(
k
=
0
;
mr_r
[
k
]
==
0
;
k
++
);
for
(
i
=
1
,
j
=
2
;
mr_r
[
k
]
%
j
==
0
;
j
*=
2
,
i
++
);
s
=
k
*
bpe
+
i
-
1
;
/* end */
if
(
s
)
rightShift_
(
mr_r
,
s
);
powMod_
(
mr_a
,
mr_r
,
x
);
if
(
!
equalsInt
(
mr_a
,
1
)
&&
!
equals
(
mr_a
,
mr_x1
))
{
j
=
1
;
while
(
j
<=
s
-
1
&&
!
equals
(
mr_a
,
mr_x1
))
{
squareMod_
(
mr_a
,
x
);
if
(
equalsInt
(
mr_a
,
1
))
{
return
0
;
}
j
++
;
}
if
(
!
equals
(
mr_a
,
mr_x1
))
{
return
0
;
}
}
return
1
;
}
//returns how many bits long the bigInt is, not counting leading zeros.
function
bitSize
(
x
)
{
var
j
,
z
,
w
;
for
(
j
=
x
.
length
-
1
;
(
x
[
j
]
==
0
)
&&
(
j
>
0
);
j
--
);
for
(
z
=
0
,
w
=
x
[
j
];
w
;
(
w
>>=
1
),
z
++
);
z
+=
bpe
*
j
;
return
z
;
}
//return a copy of x with at least n elements, adding leading zeros if needed
function
expand
(
x
,
n
)
{
var
ans
=
int2bigInt
(
0
,(
x
.
length
>
n
?
x
.
length
:
n
)
*
bpe
,
0
);
copy_
(
ans
,
x
);
return
ans
;
}
//return a k-bit true random prime using Maurer's algorithm.
function
randTruePrime
(
k
)
{
var
ans
=
int2bigInt
(
0
,
k
,
0
);
randTruePrime_
(
ans
,
k
);
return
trim
(
ans
,
1
);
}
//return a k-bit random probable prime with probability of error < 2^-80
function
randProbPrime
(
k
)
{
if
(
k
>=
600
)
return
randProbPrimeRounds
(
k
,
2
);
//numbers from HAC table 4.3
if
(
k
>=
550
)
return
randProbPrimeRounds
(
k
,
4
);
if
(
k
>=
500
)
return
randProbPrimeRounds
(
k
,
5
);
if
(
k
>=
400
)
return
randProbPrimeRounds
(
k
,
6
);
if
(
k
>=
350
)
return
randProbPrimeRounds
(
k
,
7
);
if
(
k
>=
300
)
return
randProbPrimeRounds
(
k
,
9
);
if
(
k
>=
250
)
return
randProbPrimeRounds
(
k
,
12
);
//numbers from HAC table 4.4
if
(
k
>=
200
)
return
randProbPrimeRounds
(
k
,
15
);
if
(
k
>=
150
)
return
randProbPrimeRounds
(
k
,
18
);
if
(
k
>=
100
)
return
randProbPrimeRounds
(
k
,
27
);
return
randProbPrimeRounds
(
k
,
40
);
//number from HAC remark 4.26 (only an estimate)
}
//return a k-bit probable random prime using n rounds of Miller Rabin (after trial division with small primes)
function
randProbPrimeRounds
(
k
,
n
)
{
var
ans
,
i
,
divisible
,
B
;
B
=
30000
;
//B is largest prime to use in trial division
ans
=
int2bigInt
(
0
,
k
,
0
);
//optimization: try larger and smaller B to find the best limit.
if
(
primes
.
length
==
0
)
primes
=
findPrimes
(
30000
);
//check for divisibility by primes <=30000
if
(
rpprb
.
length
!=
ans
.
length
)
rpprb
=
dup
(
ans
);
for
(;;)
{
//keep trying random values for ans until one appears to be prime
//optimization: pick a random number times L=2*3*5*...*p, plus a
// random element of the list of all numbers in [0,L) not divisible by any prime up to p.
// This can reduce the amount of random number generation.
randBigInt_
(
ans
,
k
,
0
);
//ans = a random odd number to check
ans
[
0
]
|=
1
;
divisible
=
0
;
//check ans for divisibility by small primes up to B
for
(
i
=
0
;
(
i
<
primes
.
length
)
&&
(
primes
[
i
]
<=
B
);
i
++
)
if
(
modInt
(
ans
,
primes
[
i
])
==
0
&&
!
equalsInt
(
ans
,
primes
[
i
]))
{
divisible
=
1
;
break
;
}
//optimization: change millerRabin so the base can be bigger than the number being checked, then eliminate the while here.
//do n rounds of Miller Rabin, with random bases less than ans
for
(
i
=
0
;
i
<
n
&&
!
divisible
;
i
++
)
{
randBigInt_
(
rpprb
,
k
,
0
);
while
(
!
greater
(
ans
,
rpprb
))
//pick a random rpprb that's < ans
randBigInt_
(
rpprb
,
k
,
0
);
if
(
!
millerRabin
(
ans
,
rpprb
))
divisible
=
1
;
}
if
(
!
divisible
)
return
ans
;
}
}
//return a new bigInt equal to (x mod n) for bigInts x and n.
function
mod
(
x
,
n
)
{
var
ans
=
dup
(
x
);
mod_
(
ans
,
n
);
return
trim
(
ans
,
1
);
}
//return (x+n) where x is a bigInt and n is an integer.
function
addInt
(
x
,
n
)
{
var
ans
=
expand
(
x
,
x
.
length
+
1
);
addInt_
(
ans
,
n
);
return
trim
(
ans
,
1
);
}
//return x*y for bigInts x and y. This is faster when y<x.
function
mult
(
x
,
y
)
{
var
ans
=
expand
(
x
,
x
.
length
+
y
.
length
);
mult_
(
ans
,
y
);
return
trim
(
ans
,
1
);
}
//return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
function
powMod
(
x
,
y
,
n
)
{
var
ans
=
expand
(
x
,
n
.
length
);
powMod_
(
ans
,
trim
(
y
,
2
),
trim
(
n
,
2
),
0
);
//this should work without the trim, but doesn't
return
trim
(
ans
,
1
);
}
//return (x-y) for bigInts x and y. Negative answers will be 2s complement
function
sub
(
x
,
y
)
{
var
ans
=
expand
(
x
,(
x
.
length
>
y
.
length
?
x
.
length
+
1
:
y
.
length
+
1
));
sub_
(
ans
,
y
);
return
trim
(
ans
,
1
);
}
//return (x+y) for bigInts x and y.
function
add
(
x
,
y
)
{
var
ans
=
expand
(
x
,(
x
.
length
>
y
.
length
?
x
.
length
+
1
:
y
.
length
+
1
));
add_
(
ans
,
y
);
return
trim
(
ans
,
1
);
}
//return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
function
inverseMod
(
x
,
n
)
{
var
ans
=
expand
(
x
,
n
.
length
);
var
s
;
s
=
inverseMod_
(
ans
,
n
);
return
s
?
trim
(
ans
,
1
)
:
null
;
}
//return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
function
multMod
(
x
,
y
,
n
)
{
var
ans
=
expand
(
x
,
n
.
length
);
multMod_
(
ans
,
y
,
n
);
return
trim
(
ans
,
1
);
}
//generate a k-bit true random prime using Maurer's algorithm,
//and put it into ans. The bigInt ans must be large enough to hold it.
function
randTruePrime_
(
ans
,
k
)
{
var
c
,
w
,
m
,
pm
,
dd
,
j
,
r
,
B
,
divisible
,
z
,
zz
,
recSize
,
recLimit
;
if
(
primes
.
length
==
0
)
primes
=
findPrimes
(
30000
);
//check for divisibility by primes <=30000
if
(
pows
.
length
==
0
)
{
pows
=
new
Array
(
512
);
for
(
j
=
0
;
j
<
512
;
j
++
)
{
pows
[
j
]
=
Math
.
pow
(
2
,
j
/
511.0
-
1.0
);
}
}
//c and m should be tuned for a particular machine and value of k, to maximize speed
c
=
0.1
;
//c=0.1 in HAC
m
=
20
;
//generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
recLimit
=
20
;
//stop recursion when k <=recLimit. Must have recLimit >= 2
if
(
s_i2
.
length
!=
ans
.
length
)
{
s_i2
=
dup
(
ans
);
s_R
=
dup
(
ans
);
s_n1
=
dup
(
ans
);
s_r2
=
dup
(
ans
);
s_d
=
dup
(
ans
);
s_x1
=
dup
(
ans
);
s_x2
=
dup
(
ans
);
s_b
=
dup
(
ans
);
s_n
=
dup
(
ans
);
s_i
=
dup
(
ans
);
s_rm
=
dup
(
ans
);
s_q
=
dup
(
ans
);
s_a
=
dup
(
ans
);
s_aa
=
dup
(
ans
);
}
if
(
k
<=
recLimit
)
{
//generate small random primes by trial division up to its square root
pm
=
(
1
<<
((
k
+
2
)
>>
1
))
-
1
;
//pm is binary number with all ones, just over sqrt(2^k)
copyInt_
(
ans
,
0
);
for
(
dd
=
1
;
dd
;)
{
dd
=
0
;
ans
[
0
]
=
1
|
(
1
<<
(
k
-
1
))
|
randomBitInt
(
k
);
//random, k-bit, odd integer, with msb 1
for
(
j
=
1
;(
j
<
primes
.
length
)
&&
((
primes
[
j
]
&
pm
)
==
primes
[
j
]);
j
++
)
{
//trial division by all primes 3...sqrt(2^k)
if
(
0
==
(
ans
[
0
]
%
primes
[
j
]))
{
dd
=
1
;
break
;
}
}
}
carry_
(
ans
);
return
;
}
B
=
c
*
k
*
k
;
//try small primes up to B (or all the primes[] array if the largest is less than B).
if
(
k
>
2
*
m
)
//generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
for
(
r
=
1
;
k
-
k
*
r
<=
m
;
)
r
=
pows
[
randomBitInt
(
9
)];
//r=Math.pow(2,Math.random()-1);
else
r
=
0.5
;
//simulation suggests the more complex algorithm using r=.333 is only slightly faster.
recSize
=
Math
.
floor
(
r
*
k
)
+
1
;
randTruePrime_
(
s_q
,
recSize
);
copyInt_
(
s_i2
,
0
);
s_i2
[
Math
.
floor
((
k
-
2
)
/
bpe
)]
|=
(
1
<<
((
k
-
2
)
%
bpe
));
//s_i2=2^(k-2)
divide_
(
s_i2
,
s_q
,
s_i
,
s_rm
);
//s_i=floor((2^(k-1))/(2q))
z
=
bitSize
(
s_i
);
for
(;;)
{
for
(;;)
{
//generate z-bit numbers until one falls in the range [0,s_i-1]
randBigInt_
(
s_R
,
z
,
0
);
if
(
greater
(
s_i
,
s_R
))
break
;
}
//now s_R is in the range [0,s_i-1]
addInt_
(
s_R
,
1
);
//now s_R is in the range [1,s_i]
add_
(
s_R
,
s_i
);
//now s_R is in the range [s_i+1,2*s_i]
copy_
(
s_n
,
s_q
);
mult_
(
s_n
,
s_R
);
multInt_
(
s_n
,
2
);
addInt_
(
s_n
,
1
);
//s_n=2*s_R*s_q+1
copy_
(
s_r2
,
s_R
);
multInt_
(
s_r2
,
2
);
//s_r2=2*s_R
//check s_n for divisibility by small primes up to B
for
(
divisible
=
0
,
j
=
0
;
(
j
<
primes
.
length
)
&&
(
primes
[
j
]
<
B
);
j
++
)
if
(
modInt
(
s_n
,
primes
[
j
])
==
0
&&
!
equalsInt
(
s_n
,
primes
[
j
]))
{
divisible
=
1
;
break
;
}
if
(
!
divisible
)
//if it passes small primes check, then try a single Miller-Rabin base 2
if
(
!
millerRabinInt
(
s_n
,
2
))
//this line represents 75% of the total runtime for randTruePrime_
divisible
=
1
;
if
(
!
divisible
)
{
//if it passes that test, continue checking s_n
addInt_
(
s_n
,
-
3
);
for
(
j
=
s_n
.
length
-
1
;(
s_n
[
j
]
==
0
)
&&
(
j
>
0
);
j
--
);
//strip leading zeros
for
(
zz
=
0
,
w
=
s_n
[
j
];
w
;
(
w
>>=
1
),
zz
++
);
zz
+=
bpe
*
j
;
//zz=number of bits in s_n, ignoring leading zeros
for
(;;)
{
//generate z-bit numbers until one falls in the range [0,s_n-1]
randBigInt_
(
s_a
,
zz
,
0
);
if
(
greater
(
s_n
,
s_a
))
break
;
}
//now s_a is in the range [0,s_n-1]
addInt_
(
s_n
,
3
);
//now s_a is in the range [0,s_n-4]
addInt_
(
s_a
,
2
);
//now s_a is in the range [2,s_n-2]
copy_
(
s_b
,
s_a
);
copy_
(
s_n1
,
s_n
);
addInt_
(
s_n1
,
-
1
);
powMod_
(
s_b
,
s_n1
,
s_n
);
//s_b=s_a^(s_n-1) modulo s_n
addInt_
(
s_b
,
-
1
);
if
(
isZero
(
s_b
))
{
copy_
(
s_b
,
s_a
);
powMod_
(
s_b
,
s_r2
,
s_n
);
addInt_
(
s_b
,
-
1
);
copy_
(
s_aa
,
s_n
);
copy_
(
s_d
,
s_b
);
GCD_
(
s_d
,
s_n
);
//if s_b and s_n are relatively prime, then s_n is a prime
if
(
equalsInt
(
s_d
,
1
))
{
copy_
(
ans
,
s_aa
);
return
;
//if we've made it this far, then s_n is absolutely guaranteed to be prime
}
}
}
}
}
//Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1.
function
randBigInt
(
n
,
s
)
{
var
a
,
b
;
a
=
Math
.
floor
((
n
-
1
)
/
bpe
)
+
2
;
//# array elements to hold the BigInt with a leading 0 element
b
=
int2bigInt
(
0
,
0
,
a
);
randBigInt_
(
b
,
n
,
s
);
return
b
;
}
//Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1.
//Array b must be big enough to hold the result. Must have n>=1
function
randBigInt_
(
b
,
n
,
s
)
{
var
i
,
a
;
for
(
i
=
0
;
i
<
b
.
length
;
i
++
)
b
[
i
]
=
0
;
a
=
Math
.
floor
((
n
-
1
)
/
bpe
)
+
1
;
//# array elements to hold the BigInt
for
(
i
=
0
;
i
<
a
;
i
++
)
{
b
[
i
]
=
randomBitInt
(
bpe
);
}
b
[
a
-
1
]
&=
(
2
<<
((
n
-
1
)
%
bpe
))
-
1
;
if
(
s
==
1
)
b
[
a
-
1
]
|=
(
1
<<
((
n
-
1
)
%
bpe
));
}
//Return the greatest common divisor of bigInts x and y (each with same number of elements).
function
GCD
(
x
,
y
)
{
var
xc
,
yc
;
xc
=
dup
(
x
);
yc
=
dup
(
y
);
GCD_
(
xc
,
yc
);
return
xc
;
}
//set x to the greatest common divisor of bigInts x and y (each with same number of elements).
//y is destroyed.
function
GCD_
(
x
,
y
)
{
var
i
,
xp
,
yp
,
A
,
B
,
C
,
D
,
q
,
sing
,
qp
;
if
(
T
.
length
!=
x
.
length
)
T
=
dup
(
x
);
sing
=
1
;
while
(
sing
)
{
//while y has nonzero elements other than y[0]
sing
=
0
;
for
(
i
=
1
;
i
<
y
.
length
;
i
++
)
//check if y has nonzero elements other than 0
if
(
y
[
i
])
{
sing
=
1
;
break
;
}
if
(
!
sing
)
break
;
//quit when y all zero elements except possibly y[0]
for
(
i
=
x
.
length
;
!
x
[
i
]
&&
i
>=
0
;
i
--
);
//find most significant element of x
xp
=
x
[
i
];
yp
=
y
[
i
];
A
=
1
;
B
=
0
;
C
=
0
;
D
=
1
;
while
((
yp
+
C
)
&&
(
yp
+
D
))
{
q
=
Math
.
floor
((
xp
+
A
)
/
(
yp
+
C
));
qp
=
Math
.
floor
((
xp
+
B
)
/
(
yp
+
D
));
if
(
q
!=
qp
)
break
;
t
=
A
-
q
*
C
;
A
=
C
;
C
=
t
;
// do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp)
t
=
B
-
q
*
D
;
B
=
D
;
D
=
t
;
t
=
xp
-
q
*
yp
;
xp
=
yp
;
yp
=
t
;
}
if
(
B
)
{
copy_
(
T
,
x
);
linComb_
(
x
,
y
,
A
,
B
);
//x=A*x+B*y
linComb_
(
y
,
T
,
D
,
C
);
//y=D*y+C*T
}
else
{
mod_
(
x
,
y
);
copy_
(
T
,
x
);
copy_
(
x
,
y
);
copy_
(
y
,
T
);
}
}
if
(
y
[
0
]
==
0
)
return
;
t
=
modInt
(
x
,
y
[
0
]);
copyInt_
(
x
,
y
[
0
]);
y
[
0
]
=
t
;
while
(
y
[
0
])
{
x
[
0
]
%=
y
[
0
];
t
=
x
[
0
];
x
[
0
]
=
y
[
0
];
y
[
0
]
=
t
;
}
}
//do x=x**(-1) mod n, for bigInts x and n.
//If no inverse exists, it sets x to zero and returns 0, else it returns 1.
//The x array must be at least as large as the n array.
function
inverseMod_
(
x
,
n
)
{
var
k
=
1
+
2
*
Math
.
max
(
x
.
length
,
n
.
length
);
if
(
!
(
x
[
0
]
&
1
)
&&
!
(
n
[
0
]
&
1
))
{
//if both inputs are even, then inverse doesn't exist
copyInt_
(
x
,
0
);
return
0
;
}
if
(
eg_u
.
length
!=
k
)
{
eg_u
=
new
Array
(
k
);
eg_v
=
new
Array
(
k
);
eg_A
=
new
Array
(
k
);
eg_B
=
new
Array
(
k
);
eg_C
=
new
Array
(
k
);
eg_D
=
new
Array
(
k
);
}
copy_
(
eg_u
,
x
);
copy_
(
eg_v
,
n
);
copyInt_
(
eg_A
,
1
);
copyInt_
(
eg_B
,
0
);
copyInt_
(
eg_C
,
0
);
copyInt_
(
eg_D
,
1
);
for
(;;)
{
while
(
!
(
eg_u
[
0
]
&
1
))
{
//while eg_u is even
halve_
(
eg_u
);
if
(
!
(
eg_A
[
0
]
&
1
)
&&
!
(
eg_B
[
0
]
&
1
))
{
//if eg_A==eg_B==0 mod 2
halve_
(
eg_A
);
halve_
(
eg_B
);
}
else
{
add_
(
eg_A
,
n
);
halve_
(
eg_A
);
sub_
(
eg_B
,
x
);
halve_
(
eg_B
);
}
}
while
(
!
(
eg_v
[
0
]
&
1
))
{
//while eg_v is even
halve_
(
eg_v
);
if
(
!
(
eg_C
[
0
]
&
1
)
&&
!
(
eg_D
[
0
]
&
1
))
{
//if eg_C==eg_D==0 mod 2
halve_
(
eg_C
);
halve_
(
eg_D
);
}
else
{
add_
(
eg_C
,
n
);
halve_
(
eg_C
);
sub_
(
eg_D
,
x
);
halve_
(
eg_D
);
}
}
if
(
!
greater
(
eg_v
,
eg_u
))
{
//eg_v <= eg_u
sub_
(
eg_u
,
eg_v
);
sub_
(
eg_A
,
eg_C
);
sub_
(
eg_B
,
eg_D
);
}
else
{
//eg_v > eg_u
sub_
(
eg_v
,
eg_u
);
sub_
(
eg_C
,
eg_A
);
sub_
(
eg_D
,
eg_B
);
}
if
(
equalsInt
(
eg_u
,
0
))
{
while
(
negative
(
eg_C
))
//make sure answer is nonnegative
add_
(
eg_C
,
n
);
copy_
(
x
,
eg_C
);
if
(
!
equalsInt
(
eg_v
,
1
))
{
//if GCD_(x,n)!=1, then there is no inverse
copyInt_
(
x
,
0
);
return
0
;
}
return
1
;
}
}
}
//return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
function
inverseModInt
(
x
,
n
)
{
var
a
=
1
,
b
=
0
,
t
;
for
(;;)
{
if
(
x
==
1
)
return
a
;
if
(
x
==
0
)
return
0
;
b
-=
a
*
Math
.
floor
(
n
/
x
);
n
%=
x
;
if
(
n
==
1
)
return
b
;
//to avoid negatives, change this b to n-b, and each -= to +=
if
(
n
==
0
)
return
0
;
a
-=
b
*
Math
.
floor
(
x
/
n
);
x
%=
n
;
}
}
//this deprecated function is for backward compatibility only.
function
inverseModInt_
(
x
,
n
)
{
return
inverseModInt
(
x
,
n
);
}
//Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that:
// v = GCD_(x,y) = a*x-b*y
//The bigInts v, a, b, must have exactly as many elements as the larger of x and y.
function
eGCD_
(
x
,
y
,
v
,
a
,
b
)
{
var
g
=
0
;
var
k
=
Math
.
max
(
x
.
length
,
y
.
length
);
if
(
eg_u
.
length
!=
k
)
{
eg_u
=
new
Array
(
k
);
eg_A
=
new
Array
(
k
);
eg_B
=
new
Array
(
k
);
eg_C
=
new
Array
(
k
);
eg_D
=
new
Array
(
k
);
}
while
(
!
(
x
[
0
]
&
1
)
&&
!
(
y
[
0
]
&
1
))
{
//while x and y both even
halve_
(
x
);
halve_
(
y
);
g
++
;
}
copy_
(
eg_u
,
x
);
copy_
(
v
,
y
);
copyInt_
(
eg_A
,
1
);
copyInt_
(
eg_B
,
0
);
copyInt_
(
eg_C
,
0
);
copyInt_
(
eg_D
,
1
);
for
(;;)
{
while
(
!
(
eg_u
[
0
]
&
1
))
{
//while u is even
halve_
(
eg_u
);
if
(
!
(
eg_A
[
0
]
&
1
)
&&
!
(
eg_B
[
0
]
&
1
))
{
//if A==B==0 mod 2
halve_
(
eg_A
);
halve_
(
eg_B
);
}
else
{
add_
(
eg_A
,
y
);
halve_
(
eg_A
);
sub_
(
eg_B
,
x
);
halve_
(
eg_B
);
}
}
while
(
!
(
v
[
0
]
&
1
))
{
//while v is even
halve_
(
v
);
if
(
!
(
eg_C
[
0
]
&
1
)
&&
!
(
eg_D
[
0
]
&
1
))
{
//if C==D==0 mod 2
halve_
(
eg_C
);
halve_
(
eg_D
);
}
else
{
add_
(
eg_C
,
y
);
halve_
(
eg_C
);
sub_
(
eg_D
,
x
);
halve_
(
eg_D
);
}
}
if
(
!
greater
(
v
,
eg_u
))
{
//v<=u
sub_
(
eg_u
,
v
);
sub_
(
eg_A
,
eg_C
);
sub_
(
eg_B
,
eg_D
);
}
else
{
//v>u
sub_
(
v
,
eg_u
);
sub_
(
eg_C
,
eg_A
);
sub_
(
eg_D
,
eg_B
);
}
if
(
equalsInt
(
eg_u
,
0
))
{
while
(
negative
(
eg_C
))
{
//make sure a (C) is nonnegative
add_
(
eg_C
,
y
);
sub_
(
eg_D
,
x
);
}
multInt_
(
eg_D
,
-
1
);
///make sure b (D) is nonnegative
copy_
(
a
,
eg_C
);
copy_
(
b
,
eg_D
);
leftShift_
(
v
,
g
);
return
;
}
}
}
//is bigInt x negative?
function
negative
(
x
)
{
return
((
x
[
x
.
length
-
1
]
>>
(
bpe
-
1
))
&
1
);
}
//is (x << (shift*bpe)) > y?
//x and y are nonnegative bigInts
//shift is a nonnegative integer
function
greaterShift
(
x
,
y
,
shift
)
{
var
i
,
kx
=
x
.
length
,
ky
=
y
.
length
;
var
k
=
((
kx
+
shift
)
<
ky
)
?
(
kx
+
shift
)
:
ky
;
for
(
i
=
ky
-
1
-
shift
;
i
<
kx
&&
i
>=
0
;
i
++
)
if
(
x
[
i
]
>
0
)
return
1
;
//if there are nonzeros in x to the left of the first column of y, then x is bigger
for
(
i
=
kx
-
1
+
shift
;
i
<
ky
;
i
++
)
if
(
y
[
i
]
>
0
)
return
0
;
//if there are nonzeros in y to the left of the first column of x, then x is not bigger
for
(
i
=
k
-
1
;
i
>=
shift
;
i
--
)
if
(
x
[
i
-
shift
]
>
y
[
i
])
return
1
;
else
if
(
x
[
i
-
shift
]
<
y
[
i
])
return
0
;
return
0
;
}
//is x > y? (x and y both nonnegative)
function
greater
(
x
,
y
)
{
var
i
;
var
k
=
(
x
.
length
<
y
.
length
)
?
x
.
length
:
y
.
length
;
for
(
i
=
x
.
length
;
i
<
y
.
length
;
i
++
)
if
(
y
[
i
])
return
0
;
//y has more digits
for
(
i
=
y
.
length
;
i
<
x
.
length
;
i
++
)
if
(
x
[
i
])
return
1
;
//x has more digits
for
(
i
=
k
-
1
;
i
>=
0
;
i
--
)
if
(
x
[
i
]
>
y
[
i
])
return
1
;
else
if
(
x
[
i
]
<
y
[
i
])
return
0
;
return
0
;
}
//divide x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints.
//x must have at least one leading zero element.
//y must be nonzero.
//q and r must be arrays that are exactly the same length as x. (Or q can have more).
//Must have x.length >= y.length >= 2.
function
divide_
(
x
,
y
,
q
,
r
)
{
var
kx
,
ky
;
var
i
,
j
,
y1
,
y2
,
c
,
a
,
b
;
copy_
(
r
,
x
);
for
(
ky
=
y
.
length
;
y
[
ky
-
1
]
==
0
;
ky
--
);
//ky is number of elements in y, not including leading zeros
//normalize: ensure the most significant element of y has its highest bit set
b
=
y
[
ky
-
1
];
for
(
a
=
0
;
b
;
a
++
)
b
>>=
1
;
a
=
bpe
-
a
;
//a is how many bits to shift so that the high order bit of y is leftmost in its array element
leftShift_
(
y
,
a
);
//multiply both by 1<<a now, then divide both by that at the end
leftShift_
(
r
,
a
);
//Rob Visser discovered a bug: the following line was originally just before the normalization.
for
(
kx
=
r
.
length
;
r
[
kx
-
1
]
==
0
&&
kx
>
ky
;
kx
--
);
//kx is number of elements in normalized x, not including leading zeros
copyInt_
(
q
,
0
);
// q=0
while
(
!
greaterShift
(
y
,
r
,
kx
-
ky
))
{
// while (leftShift_(y,kx-ky) <= r) {
subShift_
(
r
,
y
,
kx
-
ky
);
// r=r-leftShift_(y,kx-ky)
q
[
kx
-
ky
]
++
;
// q[kx-ky]++;
}
// }
for
(
i
=
kx
-
1
;
i
>=
ky
;
i
--
)
{
if
(
r
[
i
]
==
y
[
ky
-
1
])
q
[
i
-
ky
]
=
mask
;
else
q
[
i
-
ky
]
=
Math
.
floor
((
r
[
i
]
*
radix
+
r
[
i
-
1
])
/
y
[
ky
-
1
]);
//The following for(;;) loop is equivalent to the commented while loop,
//except that the uncommented version avoids overflow.
//The commented loop comes from HAC, which assumes r[-1]==y[-1]==0
// while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2])
// q[i-ky]--;
for
(;;)
{
y2
=
(
ky
>
1
?
y
[
ky
-
2
]
:
0
)
*
q
[
i
-
ky
];
c
=
y2
>>
bpe
;
y2
=
y2
&
mask
;
y1
=
c
+
q
[
i
-
ky
]
*
y
[
ky
-
1
];
c
=
y1
>>
bpe
;
y1
=
y1
&
mask
;
if
(
c
==
r
[
i
]
?
y1
==
r
[
i
-
1
]
?
y2
>
(
i
>
1
?
r
[
i
-
2
]
:
0
)
:
y1
>
r
[
i
-
1
]
:
c
>
r
[
i
])
q
[
i
-
ky
]
--
;
else
break
;
}
linCombShift_
(
r
,
y
,
-
q
[
i
-
ky
],
i
-
ky
);
//r=r-q[i-ky]*leftShift_(y,i-ky)
if
(
negative
(
r
))
{
addShift_
(
r
,
y
,
i
-
ky
);
//r=r+leftShift_(y,i-ky)
q
[
i
-
ky
]
--
;
}
}
rightShift_
(
y
,
a
);
//undo the normalization step
rightShift_
(
r
,
a
);
//undo the normalization step
}
//do carries and borrows so each element of the bigInt x fits in bpe bits.
function
carry_
(
x
)
{
var
i
,
k
,
c
,
b
;
k
=
x
.
length
;
c
=
0
;
for
(
i
=
0
;
i
<
k
;
i
++
)
{
c
+=
x
[
i
];
b
=
0
;
if
(
c
<
0
)
{
b
=-
(
c
>>
bpe
);
c
+=
b
*
radix
;
}
x
[
i
]
=
c
&
mask
;
c
=
(
c
>>
bpe
)
-
b
;
}
}
//return x mod n for bigInt x and integer n.
function
modInt
(
x
,
n
)
{
var
i
,
c
=
0
;
for
(
i
=
x
.
length
-
1
;
i
>=
0
;
i
--
)
c
=
(
c
*
radix
+
x
[
i
])
%
n
;
return
c
;
}
//convert the integer t into a bigInt with at least the given number of bits.
//the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word)
//Pad the array with leading zeros so that it has at least minSize elements.
//There will always be at least one leading 0 element.
function
int2bigInt
(
t
,
bits
,
minSize
)
{
var
i
,
k
,
buff
;
k
=
Math
.
ceil
(
bits
/
bpe
)
+
1
;
k
=
minSize
>
k
?
minSize
:
k
;
buff
=
new
Array
(
k
);
copyInt_
(
buff
,
t
);
return
buff
;
}
//return the bigInt given a string representation in a given base.
//Pad the array with leading zeros so that it has at least minSize elements.
//If base=-1, then it reads in a space-separated list of array elements in decimal.
//The array will always have at least one leading zero, unless base=-1.
function
str2bigInt
(
s
,
base
,
minSize
)
{
var
d
,
i
,
j
,
x
,
y
,
kk
;
var
k
=
s
.
length
;
if
(
base
==-
1
)
{
//comma-separated list of array elements in decimal
x
=
new
Array
(
0
);
for
(;;)
{
y
=
new
Array
(
x
.
length
+
1
);
for
(
i
=
0
;
i
<
x
.
length
;
i
++
)
y
[
i
+
1
]
=
x
[
i
];
y
[
0
]
=
parseInt
(
s
,
10
);
x
=
y
;
d
=
s
.
indexOf
(
'
,
'
,
0
);
if
(
d
<
1
)
break
;
s
=
s
.
substring
(
d
+
1
);
if
(
s
.
length
==
0
)
break
;
}
if
(
x
.
length
<
minSize
)
{
y
=
new
Array
(
minSize
);
copy_
(
y
,
x
);
return
y
;
}
return
x
;
}
// log2(base)*k
var
bb
=
base
,
p
=
0
;
var
b
=
base
==
1
?
k
:
0
;
while
(
bb
>
1
)
{
if
(
bb
&
1
)
p
=
1
;
b
+=
k
;
bb
>>=
1
;
}
b
+=
p
*
k
;
x
=
int2bigInt
(
0
,
b
,
0
);
for
(
i
=
0
;
i
<
k
;
i
++
)
{
d
=
digitsStr
.
indexOf
(
s
.
substring
(
i
,
i
+
1
),
0
);
if
(
base
<=
36
&&
d
>=
36
)
//convert lowercase to uppercase if base<=36
d
-=
26
;
if
(
d
>=
base
||
d
<
0
)
{
//stop at first illegal character
break
;
}
multInt_
(
x
,
base
);
addInt_
(
x
,
d
);
}
for
(
k
=
x
.
length
;
k
>
0
&&
!
x
[
k
-
1
];
k
--
);
//strip off leading zeros
k
=
minSize
>
k
+
1
?
minSize
:
k
+
1
;
y
=
new
Array
(
k
);
kk
=
k
<
x
.
length
?
k
:
x
.
length
;
for
(
i
=
0
;
i
<
kk
;
i
++
)
y
[
i
]
=
x
[
i
];
for
(;
i
<
k
;
i
++
)
y
[
i
]
=
0
;
return
y
;
}
//is bigint x equal to integer y?
//y must have less than bpe bits
function
equalsInt
(
x
,
y
)
{
var
i
;
if
(
x
[
0
]
!=
y
)
return
0
;
for
(
i
=
1
;
i
<
x
.
length
;
i
++
)
if
(
x
[
i
])
return
0
;
return
1
;
}
//are bigints x and y equal?
//this works even if x and y are different lengths and have arbitrarily many leading zeros
function
equals
(
x
,
y
)
{
var
i
;
var
k
=
x
.
length
<
y
.
length
?
x
.
length
:
y
.
length
;
for
(
i
=
0
;
i
<
k
;
i
++
)
if
(
x
[
i
]
!=
y
[
i
])
return
0
;
if
(
x
.
length
>
y
.
length
)
{
for
(;
i
<
x
.
length
;
i
++
)
if
(
x
[
i
])
return
0
;
}
else
{
for
(;
i
<
y
.
length
;
i
++
)
if
(
y
[
i
])
return
0
;
}
return
1
;
}
//is the bigInt x equal to zero?
function
isZero
(
x
)
{
var
i
;
for
(
i
=
0
;
i
<
x
.
length
;
i
++
)
if
(
x
[
i
])
return
0
;
return
1
;
}
//convert a bigInt into a string in a given base, from base 2 up to base 95.
//Base -1 prints the contents of the array representing the number.
function
bigInt2str
(
x
,
base
)
{
var
i
,
t
,
s
=
""
;
if
(
s6
.
length
!=
x
.
length
)
s6
=
dup
(
x
);
else
copy_
(
s6
,
x
);
if
(
base
==-
1
)
{
//return the list of array contents
for
(
i
=
x
.
length
-
1
;
i
>
0
;
i
--
)
s
+=
x
[
i
]
+
'
,
'
;
s
+=
x
[
0
];
}
else
{
//return it in the given base
while
(
!
isZero
(
s6
))
{
t
=
divInt_
(
s6
,
base
);
//t=s6 % base; s6=floor(s6/base);
s
=
digitsStr
.
substring
(
t
,
t
+
1
)
+
s
;
}
}
if
(
s
.
length
==
0
)
s
=
"
0
"
;
return
s
;
}
//returns a duplicate of bigInt x
function
dup
(
x
)
{
var
i
,
buff
;
buff
=
new
Array
(
x
.
length
);
copy_
(
buff
,
x
);
return
buff
;
}
//do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y).
function
copy_
(
x
,
y
)
{
var
i
;
var
k
=
x
.
length
<
y
.
length
?
x
.
length
:
y
.
length
;
for
(
i
=
0
;
i
<
k
;
i
++
)
x
[
i
]
=
y
[
i
];
for
(
i
=
k
;
i
<
x
.
length
;
i
++
)
x
[
i
]
=
0
;
}
//do x=y on bigInt x and integer y.
function
copyInt_
(
x
,
n
)
{
var
i
,
c
;
for
(
c
=
n
,
i
=
0
;
i
<
x
.
length
;
i
++
)
{
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
}
//do x=x+n where x is a bigInt and n is an integer.
//x must be large enough to hold the result.
function
addInt_
(
x
,
n
)
{
var
i
,
k
,
c
,
b
;
x
[
0
]
+=
n
;
k
=
x
.
length
;
c
=
0
;
for
(
i
=
0
;
i
<
k
;
i
++
)
{
c
+=
x
[
i
];
b
=
0
;
if
(
c
<
0
)
{
b
=-
(
c
>>
bpe
);
c
+=
b
*
radix
;
}
x
[
i
]
=
c
&
mask
;
c
=
(
c
>>
bpe
)
-
b
;
if
(
!
c
)
return
;
//stop carrying as soon as the carry is zero
}
}
//right shift bigInt x by n bits. 0 <= n < bpe.
function
rightShift_
(
x
,
n
)
{
var
i
;
var
k
=
Math
.
floor
(
n
/
bpe
);
if
(
k
)
{
for
(
i
=
0
;
i
<
x
.
length
-
k
;
i
++
)
//right shift x by k elements
x
[
i
]
=
x
[
i
+
k
];
for
(;
i
<
x
.
length
;
i
++
)
x
[
i
]
=
0
;
n
%=
bpe
;
}
for
(
i
=
0
;
i
<
x
.
length
-
1
;
i
++
)
{
x
[
i
]
=
mask
&
((
x
[
i
+
1
]
<<
(
bpe
-
n
))
|
(
x
[
i
]
>>
n
));
}
x
[
i
]
>>=
n
;
}
//do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement
function
halve_
(
x
)
{
var
i
;
for
(
i
=
0
;
i
<
x
.
length
-
1
;
i
++
)
{
x
[
i
]
=
mask
&
((
x
[
i
+
1
]
<<
(
bpe
-
1
))
|
(
x
[
i
]
>>
1
));
}
x
[
i
]
=
(
x
[
i
]
>>
1
)
|
(
x
[
i
]
&
(
radix
>>
1
));
//most significant bit stays the same
}
//left shift bigInt x by n bits.
function
leftShift_
(
x
,
n
)
{
var
i
;
var
k
=
Math
.
floor
(
n
/
bpe
);
if
(
k
)
{
for
(
i
=
x
.
length
;
i
>=
k
;
i
--
)
//left shift x by k elements
x
[
i
]
=
x
[
i
-
k
];
for
(;
i
>=
0
;
i
--
)
x
[
i
]
=
0
;
n
%=
bpe
;
}
if
(
!
n
)
return
;
for
(
i
=
x
.
length
-
1
;
i
>
0
;
i
--
)
{
x
[
i
]
=
mask
&
((
x
[
i
]
<<
n
)
|
(
x
[
i
-
1
]
>>
(
bpe
-
n
)));
}
x
[
i
]
=
mask
&
(
x
[
i
]
<<
n
);
}
//do x=x*n where x is a bigInt and n is an integer.
//x must be large enough to hold the result.
function
multInt_
(
x
,
n
)
{
var
i
,
k
,
c
,
b
;
if
(
!
n
)
return
;
k
=
x
.
length
;
c
=
0
;
for
(
i
=
0
;
i
<
k
;
i
++
)
{
c
+=
x
[
i
]
*
n
;
b
=
0
;
if
(
c
<
0
)
{
b
=-
(
c
>>
bpe
);
c
+=
b
*
radix
;
}
x
[
i
]
=
c
&
mask
;
c
=
(
c
>>
bpe
)
-
b
;
}
}
//do x=floor(x/n) for bigInt x and integer n, and return the remainder
function
divInt_
(
x
,
n
)
{
var
i
,
r
=
0
,
s
;
for
(
i
=
x
.
length
-
1
;
i
>=
0
;
i
--
)
{
s
=
r
*
radix
+
x
[
i
];
x
[
i
]
=
Math
.
floor
(
s
/
n
);
r
=
s
%
n
;
}
return
r
;
}
//do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b.
//x must be large enough to hold the answer.
function
linComb_
(
x
,
y
,
a
,
b
)
{
var
i
,
c
,
k
,
kk
;
k
=
x
.
length
<
y
.
length
?
x
.
length
:
y
.
length
;
kk
=
x
.
length
;
for
(
c
=
0
,
i
=
0
;
i
<
k
;
i
++
)
{
c
+=
a
*
x
[
i
]
+
b
*
y
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
for
(
i
=
k
;
i
<
kk
;
i
++
)
{
c
+=
a
*
x
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
}
//do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys.
//x must be large enough to hold the answer.
function
linCombShift_
(
x
,
y
,
b
,
ys
)
{
var
i
,
c
,
k
,
kk
;
k
=
x
.
length
<
ys
+
y
.
length
?
x
.
length
:
ys
+
y
.
length
;
kk
=
x
.
length
;
for
(
c
=
0
,
i
=
ys
;
i
<
k
;
i
++
)
{
c
+=
x
[
i
]
+
b
*
y
[
i
-
ys
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
for
(
i
=
k
;
c
&&
i
<
kk
;
i
++
)
{
c
+=
x
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
}
//do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
//x must be large enough to hold the answer.
function
addShift_
(
x
,
y
,
ys
)
{
var
i
,
c
,
k
,
kk
;
k
=
x
.
length
<
ys
+
y
.
length
?
x
.
length
:
ys
+
y
.
length
;
kk
=
x
.
length
;
for
(
c
=
0
,
i
=
ys
;
i
<
k
;
i
++
)
{
c
+=
x
[
i
]
+
y
[
i
-
ys
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
for
(
i
=
k
;
c
&&
i
<
kk
;
i
++
)
{
c
+=
x
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
}
//do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
//x must be large enough to hold the answer.
function
subShift_
(
x
,
y
,
ys
)
{
var
i
,
c
,
k
,
kk
;
k
=
x
.
length
<
ys
+
y
.
length
?
x
.
length
:
ys
+
y
.
length
;
kk
=
x
.
length
;
for
(
c
=
0
,
i
=
ys
;
i
<
k
;
i
++
)
{
c
+=
x
[
i
]
-
y
[
i
-
ys
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
for
(
i
=
k
;
c
&&
i
<
kk
;
i
++
)
{
c
+=
x
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
}
//do x=x-y for bigInts x and y.
//x must be large enough to hold the answer.
//negative answers will be 2s complement
function
sub_
(
x
,
y
)
{
var
i
,
c
,
k
,
kk
;
k
=
x
.
length
<
y
.
length
?
x
.
length
:
y
.
length
;
for
(
c
=
0
,
i
=
0
;
i
<
k
;
i
++
)
{
c
+=
x
[
i
]
-
y
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
for
(
i
=
k
;
c
&&
i
<
x
.
length
;
i
++
)
{
c
+=
x
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
}
//do x=x+y for bigInts x and y.
//x must be large enough to hold the answer.
function
add_
(
x
,
y
)
{
var
i
,
c
,
k
,
kk
;
k
=
x
.
length
<
y
.
length
?
x
.
length
:
y
.
length
;
for
(
c
=
0
,
i
=
0
;
i
<
k
;
i
++
)
{
c
+=
x
[
i
]
+
y
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
for
(
i
=
k
;
c
&&
i
<
x
.
length
;
i
++
)
{
c
+=
x
[
i
];
x
[
i
]
=
c
&
mask
;
c
>>=
bpe
;
}
}
//do x=x*y for bigInts x and y. This is faster when y<x.
function
mult_
(
x
,
y
)
{
var
i
;
if
(
ss
.
length
!=
2
*
x
.
length
)
ss
=
new
Array
(
2
*
x
.
length
);
copyInt_
(
ss
,
0
);
for
(
i
=
0
;
i
<
y
.
length
;
i
++
)
if
(
y
[
i
])
linCombShift_
(
ss
,
x
,
y
[
i
],
i
);
//ss=1*ss+y[i]*(x<<(i*bpe))
copy_
(
x
,
ss
);
}
//do x=x mod n for bigInts x and n.
function
mod_
(
x
,
n
)
{
if
(
s4
.
length
!=
x
.
length
)
s4
=
dup
(
x
);
else
copy_
(
s4
,
x
);
if
(
s5
.
length
!=
x
.
length
)
s5
=
dup
(
x
);
divide_
(
s4
,
n
,
s5
,
x
);
//x = remainder of s4 / n
}
//do x=x*y mod n for bigInts x,y,n.
//for greater speed, let y<x.
function
multMod_
(
x
,
y
,
n
)
{
var
i
;
if
(
s0
.
length
!=
2
*
x
.
length
)
s0
=
new
Array
(
2
*
x
.
length
);
copyInt_
(
s0
,
0
);
for
(
i
=
0
;
i
<
y
.
length
;
i
++
)
if
(
y
[
i
])
linCombShift_
(
s0
,
x
,
y
[
i
],
i
);
//s0=1*s0+y[i]*(x<<(i*bpe))
mod_
(
s0
,
n
);
copy_
(
x
,
s0
);
}
//do x=x*x mod n for bigInts x,n.
function
squareMod_
(
x
,
n
)
{
var
i
,
j
,
d
,
c
,
kx
,
kn
,
k
;
for
(
kx
=
x
.
length
;
kx
>
0
&&
!
x
[
kx
-
1
];
kx
--
);
//ignore leading zeros in x
k
=
kx
>
n
.
length
?
2
*
kx
:
2
*
n
.
length
;
//k=# elements in the product, which is twice the elements in the larger of x and n
if
(
s0
.
length
!=
k
)
s0
=
new
Array
(
k
);
copyInt_
(
s0
,
0
);
for
(
i
=
0
;
i
<
kx
;
i
++
)
{
c
=
s0
[
2
*
i
]
+
x
[
i
]
*
x
[
i
];
s0
[
2
*
i
]
=
c
&
mask
;
c
>>=
bpe
;
for
(
j
=
i
+
1
;
j
<
kx
;
j
++
)
{
c
=
s0
[
i
+
j
]
+
2
*
x
[
i
]
*
x
[
j
]
+
c
;
s0
[
i
+
j
]
=
(
c
&
mask
);
c
>>=
bpe
;
}
s0
[
i
+
kx
]
=
c
;
}
mod_
(
s0
,
n
);
copy_
(
x
,
s0
);
}
//return x with exactly k leading zero elements
function
trim
(
x
,
k
)
{
var
i
,
y
;
for
(
i
=
x
.
length
;
i
>
0
&&
!
x
[
i
-
1
];
i
--
);
y
=
new
Array
(
i
+
k
);
copy_
(
y
,
x
);
return
y
;
}
//do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1.
//this is faster when n is odd. x usually needs to have as many elements as n.
function
powMod_
(
x
,
y
,
n
)
{
var
k1
,
k2
,
kn
,
np
;
if
(
s7
.
length
!=
n
.
length
)
s7
=
dup
(
n
);
//for even modulus, use a simple square-and-multiply algorithm,
//rather than using the more complex Montgomery algorithm.
if
((
n
[
0
]
&
1
)
==
0
)
{
copy_
(
s7
,
x
);
copyInt_
(
x
,
1
);
while
(
!
equalsInt
(
y
,
0
))
{
if
(
y
[
0
]
&
1
)
multMod_
(
x
,
s7
,
n
);
divInt_
(
y
,
2
);
squareMod_
(
s7
,
n
);
}
return
;
}
//calculate np from n for the Montgomery multiplications
copyInt_
(
s7
,
0
);
for
(
kn
=
n
.
length
;
kn
>
0
&&
!
n
[
kn
-
1
];
kn
--
);
np
=
radix
-
inverseModInt
(
modInt
(
n
,
radix
),
radix
);
s7
[
kn
]
=
1
;
multMod_
(
x
,
s7
,
n
);
// x = x * 2**(kn*bp) mod n
if
(
s3
.
length
!=
x
.
length
)
s3
=
dup
(
x
);
else
copy_
(
s3
,
x
);
for
(
k1
=
y
.
length
-
1
;
k1
>
0
&
!
y
[
k1
];
k1
--
);
//k1=first nonzero element of y
if
(
y
[
k1
]
==
0
)
{
//anything to the 0th power is 1
copyInt_
(
x
,
1
);
return
;
}
for
(
k2
=
1
<<
(
bpe
-
1
);
k2
&&
!
(
y
[
k1
]
&
k2
);
k2
>>=
1
);
//k2=position of first 1 bit in y[k1]
for
(;;)
{
if
(
!
(
k2
>>=
1
))
{
//look at next bit of y
k1
--
;
if
(
k1
<
0
)
{
mont_
(
x
,
one
,
n
,
np
);
return
;
}
k2
=
1
<<
(
bpe
-
1
);
}
mont_
(
x
,
x
,
n
,
np
);
if
(
k2
&
y
[
k1
])
//if next bit is a 1
mont_
(
x
,
s3
,
n
,
np
);
}
}
//do x=x*y*Ri mod n for bigInts x,y,n,
// where Ri = 2**(-kn*bpe) mod n, and kn is the
// number of elements in the n array, not
// counting leading zeros.
//x array must have at least as many elemnts as the n array
//It's OK if x and y are the same variable.
//must have:
// x,y < n
// n is odd
// np = -(n^(-1)) mod radix
function
mont_
(
x
,
y
,
n
,
np
)
{
var
i
,
j
,
c
,
ui
,
t
,
ks
;
var
kn
=
n
.
length
;
var
ky
=
y
.
length
;
if
(
sa
.
length
!=
kn
)
sa
=
new
Array
(
kn
);
copyInt_
(
sa
,
0
);
for
(;
kn
>
0
&&
n
[
kn
-
1
]
==
0
;
kn
--
);
//ignore leading zeros of n
for
(;
ky
>
0
&&
y
[
ky
-
1
]
==
0
;
ky
--
);
//ignore leading zeros of y
ks
=
sa
.
length
-
1
;
//sa will never have more than this many nonzero elements.
//the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large numbers
for
(
i
=
0
;
i
<
kn
;
i
++
)
{
t
=
sa
[
0
]
+
x
[
i
]
*
y
[
0
];
ui
=
((
t
&
mask
)
*
np
)
&
mask
;
//the inner "& mask" was needed on Safari (but not MSIE) at one time
c
=
(
t
+
ui
*
n
[
0
])
>>
bpe
;
t
=
x
[
i
];
//do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe. Loop is unrolled 5-fold for speed
j
=
1
;
for
(;
j
<
ky
-
4
;)
{
c
+=
sa
[
j
]
+
ui
*
n
[
j
]
+
t
*
y
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
c
+=
sa
[
j
]
+
ui
*
n
[
j
]
+
t
*
y
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
c
+=
sa
[
j
]
+
ui
*
n
[
j
]
+
t
*
y
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
c
+=
sa
[
j
]
+
ui
*
n
[
j
]
+
t
*
y
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
c
+=
sa
[
j
]
+
ui
*
n
[
j
]
+
t
*
y
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
}
for
(;
j
<
ky
;)
{
c
+=
sa
[
j
]
+
ui
*
n
[
j
]
+
t
*
y
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
}
for
(;
j
<
kn
-
4
;)
{
c
+=
sa
[
j
]
+
ui
*
n
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
c
+=
sa
[
j
]
+
ui
*
n
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
c
+=
sa
[
j
]
+
ui
*
n
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
c
+=
sa
[
j
]
+
ui
*
n
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
c
+=
sa
[
j
]
+
ui
*
n
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
}
for
(;
j
<
kn
;)
{
c
+=
sa
[
j
]
+
ui
*
n
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
}
for
(;
j
<
ks
;)
{
c
+=
sa
[
j
];
sa
[
j
-
1
]
=
c
&
mask
;
c
>>=
bpe
;
j
++
;
}
sa
[
j
-
1
]
=
c
&
mask
;
}
if
(
!
greater
(
n
,
sa
))
sub_
(
sa
,
n
);
copy_
(
x
,
sa
);
}
// otr.js stuff
var
BigInt
=
{
str2bigInt
:
str2bigInt
,
bigInt2str
:
bigInt2str
,
int2bigInt
:
int2bigInt
,
multMod
:
multMod
,
powMod
:
powMod
,
inverseMod
:
inverseMod
,
randBigInt
:
randBigInt
,
randBigInt_
:
randBigInt_
,
equals
:
equals
,
equalsInt
:
equalsInt
,
sub
:
sub
,
mod
:
mod
,
mod_
:
mod_
,
modInt
:
modInt
,
mult
:
mult
,
divInt_
:
divInt_
,
rightShift_
:
rightShift_
,
leftShift_
:
leftShift_
,
dup
:
dup
,
greater
:
greater
,
add
:
add
,
addInt
:
addInt
,
addInt_
:
addInt_
,
isZero
:
isZero
,
bitSize
:
bitSize
,
randTruePrime
:
randTruePrime
,
millerRabin
:
millerRabin
,
divide_
:
divide_
,
trim
:
trim
,
expand
:
expand
,
bpe
:
bpe
,
primes
:
primes
,
findPrimes
:
findPrimes
,
getSeed
:
getSeed
}
// from http://davidbau.com/encode/seedrandom.js
var
randomBitInt
function
seedRand
(
buf
)
{
var
state
=
new
Salsa20
([
buf
[
0
],
buf
[
1
],
buf
[
2
],
buf
[
3
],
buf
[
4
],
buf
[
5
],
buf
[
6
],
buf
[
7
],
buf
[
8
],
buf
[
9
],
buf
[
10
],
buf
[
11
],
buf
[
12
],
buf
[
13
],
buf
[
14
],
buf
[
15
],
buf
[
16
],
buf
[
17
],
buf
[
18
],
buf
[
19
],
buf
[
20
],
buf
[
21
],
buf
[
22
],
buf
[
23
],
buf
[
24
],
buf
[
25
],
buf
[
26
],
buf
[
27
],
buf
[
28
],
buf
[
29
],
buf
[
30
],
buf
[
31
]
],[
buf
[
32
],
buf
[
33
],
buf
[
34
],
buf
[
35
],
buf
[
36
],
buf
[
37
],
buf
[
38
],
buf
[
39
]
])
var
width
=
256
,
chunks
=
6
,
significance
=
Math
.
pow
(
2
,
52
)
,
overflow
=
significance
*
2
function
numerator
()
{
var
bytes
=
state
.
getBytes
(
chunks
)
var
i
=
0
,
r
=
0
for
(;
i
<
chunks
;
i
++
)
{
r
=
r
*
width
+
bytes
[
i
]
}
return
r
}
function
randomByte
()
{
return
state
.
getBytes
(
1
)[
0
]
}
randomBitInt
=
function
(
k
)
{
if
(
k
>
31
)
throw
new
Error
(
"
Too many bits.
"
)
var
i
=
0
,
r
=
0
var
b
=
Math
.
floor
(
k
/
8
)
var
mask
=
(
1
<<
(
k
%
8
))
-
1
if
(
mask
)
r
=
randomByte
()
&
mask
for
(;
i
<
b
;
i
++
)
r
=
(
256
*
r
)
+
randomByte
()
return
r
}
// This function returns a random double in [0, 1) that contains
// randomness in every bit of the mantissa of the IEEE 754 value.
return
function
()
{
// Closure to return a random double:
var
n
=
numerator
()
// Start with a numerator n < 2 ^ 48
,
d
=
Math
.
pow
(
width
,
chunks
)
// and denominator d = 2 ^ 48.
,
x
=
0
// and no 'extra last byte'.
while
(
n
<
significance
)
{
// Fill up all significant digits by
n
=
(
n
+
x
)
*
width
// shifting numerator and
d
*=
width
// denominator and generating a
x
=
randomByte
()
// new least-significant-byte.
}
while
(
n
>=
overflow
)
{
// To avoid rounding up, before adding
n
/=
2
// last byte, shift everything
d
/=
2
// right using integer math until
x
>>>=
1
// we have exactly the desired bits.
}
return
(
n
+
x
)
/
d
// Form the number within [0, 1).
}
}
function
getSeed
()
{
var
buf
if
(
(
typeof
crypto
!==
'
undefined
'
)
&&
(
typeof
crypto
.
randomBytes
===
'
function
'
)
)
{
try
{
buf
=
crypto
.
randomBytes
(
40
)
}
catch
(
e
)
{
throw
e
}
}
else
if
(
(
typeof
crypto
!==
'
undefined
'
)
&&
(
typeof
crypto
.
getRandomValues
===
'
function
'
)
)
{
buf
=
new
Uint8Array
(
40
)
crypto
.
getRandomValues
(
buf
)
}
else
{
throw
new
Error
(
'
Keys should not be generated without CSPRNG.
'
)
}
return
Array
.
prototype
.
slice
.
call
(
buf
,
0
)
}
;(
function
seed
()
{
var
HAS_CSPRNG
=
((
typeof
crypto
!==
'
undefined
'
)
&&
((
typeof
crypto
.
randomBytes
===
'
function
'
)
||
(
typeof
crypto
.
getRandomValues
===
'
function
'
)
));
if
(
!
HAS_CSPRNG
)
{
return
;
}
Math
.
random
=
seedRand
(
getSeed
())
// reseed every 5 mins (not in ww)
if
(
typeof
setTimeout
===
'
function
'
&&
typeof
document
!==
'
undefined
'
)
setTimeout
(
seed
,
5
*
60
*
1000
)
}())
return
BigInt
}))
src/build-website.js
View file @
a7247a7c
...
...
@@ -41,7 +41,7 @@
"
strophe.vcard
"
:
"
components/strophe.vcard/index
"
,
"
strophe.disco
"
:
"
components/strophe.disco/index
"
,
"
salsa20
"
:
"
components/otr/build/dep/salsa20
"
,
"
bigint
"
:
"
src
/bigint
"
,
"
bigint
"
:
"
components/otr/vendor
/bigint
"
,
"
crypto.core
"
:
"
components/otr/vendor/cryptojs/core
"
,
"
crypto.enc-base64
"
:
"
components/otr/vendor/cryptojs/enc-base64
"
,
"
crypto.md5
"
:
"
components/crypto-js-evanvosberg/src/md5
"
,
...
...
src/build.js
View file @
a7247a7c
...
...
@@ -39,7 +39,7 @@
"
strophe.vcard
"
:
"
components/strophe.vcard/index
"
,
"
strophe.disco
"
:
"
components/strophe.disco/index
"
,
"
salsa20
"
:
"
components/otr/build/dep/salsa20
"
,
"
bigint
"
:
"
src
/bigint
"
,
"
bigint
"
:
"
components/otr/vendor
/bigint
"
,
"
crypto.core
"
:
"
components/otr/vendor/cryptojs/core
"
,
"
crypto.enc-base64
"
:
"
components/otr/vendor/cryptojs/enc-base64
"
,
"
crypto.md5
"
:
"
components/crypto-js-evanvosberg/src/md5
"
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment