Commit ad8f000e authored by Nick Gaskill's avatar Nick Gaskill

Merge branch '349958-rework-performance-docs' into 'master'

Rework performance docs part 1

See merge request gitlab-org/gitlab!81280
parents c9f42a01 d9658af4
......@@ -95,8 +95,13 @@ end
This however leads to the question: how many iterations should we run to get
meaningful statistics?
The benchmark-ips Gem basically takes care of all this and much more, and as a
result of this should be used instead of the `Benchmark` module.
The [`benchmark-ips`](https://github.com/evanphx/benchmark-ips)
gem takes care of all this and much more. You should therefore use it instead of the `Benchmark`
module.
The GitLab Gemfile also contains the [`benchmark-memory`](https://github.com/michaelherold/benchmark-memory)
gem, which works similarly to the `benchmark` and `benchmark-ips` gems. However, `benchmark-memory`
instead returns the memory size, objects, and strings allocated and retained during the benchmark.
In short:
......@@ -110,7 +115,7 @@ In short:
- If you must write a benchmark use the benchmark-ips Gem instead of Ruby's
`Benchmark` module.
## Profiling
## Profiling with Stackprof
By collecting snapshots of process state at regular intervals, profiling allows
you to see where time is spent in a process. The
......@@ -124,15 +129,36 @@ frequency (for example, 100hz, that is 100 stacks per second). This type of prof
has quite a low (albeit non-zero) overhead and is generally considered to be
safe for production.
### Development
A profiler can be a very useful tool during development, even if it does run *in
an unrepresentative environment*. In particular, a method is not necessarily
troublesome just because it's executed many times, or takes a long time to
execute. Profiles are tools you can use to better understand what is happening
in an application - using that information wisely is up to you!
Keeping that in mind, to create a profile, identify (or create) a spec that
There are multiple ways to create a profile with Stackprof.
### Wrapping a code block
To profile a specific code block, you can wrap that block in a `Stackprof.run` call:
```ruby
StackProf.run(mode: :wall, out: 'tmp/stackprof-profiling.dump') do
#...
end
```
This creates a `.dump` file that you can [read](#reading-a-stackprof-profile).
For all available options, see the [Stackprof documentation](https://github.com/tmm1/stackprof#all-options).
### Performance bar
With the [Performance bar](../administration/monitoring/performance/performance_bar.md),
you have the option to profile a request using Stackprof and immediately output the results to a
[Speedscope flamegraph](profiling.md#speedscope-flamegraphs).
### RSpec profiling with Stackprof
To create a profile from a spec, identify (or create) a spec that
exercises the troublesome code path, then run it using the `bin/rspec-stackprof`
helper, for example:
......@@ -161,89 +187,10 @@ Finished in 18.19 seconds (files took 4.8 seconds to load)
187 (1.1%) 187 (1.1%) block (4 levels) in class_attribute
```
You can limit the specs that are run by passing any arguments `rspec` would
You can limit the specs that are run by passing any arguments `RSpec` would
normally take.
The output is sorted by the `Samples` column by default. This is the number of
samples taken where the method is the one currently being executed. The `Total`
column shows the number of samples taken where the method, or any of the methods
it calls, were being executed.
To create a graphical view of the call stack:
```shell
stackprof tmp/project_policy_spec.rb.dump --graphviz > project_policy_spec.dot
dot -Tsvg project_policy_spec.dot > project_policy_spec.svg
```
To load the profile in [KCachegrind](https://kcachegrind.github.io/):
```shell
stackprof tmp/project_policy_spec.rb.dump --callgrind > project_policy_spec.callgrind
kcachegrind project_policy_spec.callgrind # Linux
qcachegrind project_policy_spec.callgrind # Mac
```
For flame graphs, enable raw collection first. Note that raw
collection can generate a very large file, so increase the `INTERVAL`, or
run on a smaller number of specs for smaller file size:
```shell
RAW=true bin/rspec-stackprof spec/policies/group_member_policy_spec.rb
```
You can then generate, and view the resultant flame graph. It might take a
while to generate based on the output file size:
```shell
# Generate
stackprof --flamegraph tmp/group_member_policy_spec.rb.dump > group_member_policy_spec.flame
# View
stackprof --flamegraph-viewer=group_member_policy_spec.flame
```
It may be useful to zoom in on a specific method, for example:
```shell
$ stackprof tmp/project_policy_spec.rb.dump --method warm_asset_cache
TestEnv#warm_asset_cache (/Users/lupine/dev/gitlab.com/gitlab-org/gitlab-development-kit/gitlab/spec/support/test_env.rb:164)
samples: 0 self (0.0%) / 6288 total (36.9%)
callers:
6288 ( 100.0%) block (2 levels) in <top (required)>
callees (6288 total):
6288 ( 100.0%) Capybara::RackTest::Driver#visit
code:
| 164 | def warm_asset_cache
| 165 | return if warm_asset_cache?
| 166 | return unless defined?(Capybara)
| 167 |
6288 (36.9%) | 168 | Capybara.current_session.driver.visit '/'
| 169 | end
$ stackprof tmp/project_policy_spec.rb.dump --method BasePolicy#abilities
BasePolicy#abilities (/Users/lupine/dev/gitlab.com/gitlab-org/gitlab-development-kit/gitlab/app/policies/base_policy.rb:79)
samples: 0 self (0.0%) / 50 total (0.3%)
callers:
25 ( 50.0%) BasePolicy.abilities
25 ( 50.0%) BasePolicy#collect_rules
callees (50 total):
25 ( 50.0%) ProjectPolicy#rules
25 ( 50.0%) BasePolicy#collect_rules
code:
| 79 | def abilities
| 80 | return RuleSet.empty if @user && @user.blocked?
| 81 | return anonymous_abilities if @user.nil?
50 (0.3%) | 82 | collect_rules { rules }
| 83 | end
```
Since the profile includes the work done by the test suite as well as the
application code, these profiles can be used to investigate slow tests as well.
However, for smaller runs (like this example), this means that the cost of
setting up the test suite tends to dominate.
### Production
### Using Stackprof in production
Stackprof can also be used to profile production workloads.
......@@ -274,8 +221,8 @@ the timeout.
Once profiling stops, the profile is written out to disk at
`$STACKPROF_FILE_PREFIX/stackprof.$PID.$RAND.profile`. It can then be inspected
further via the `stackprof` command line tool, as described in the previous
section.
further through the `stackprof` command line tool, as described in the
[Reading a Stackprof profile section](#reading-a-stackprof-profile).
Currently supported profiling targets are:
......@@ -295,14 +242,85 @@ For Sidekiq, the signal can be sent to the `sidekiq-cluster` process via `pkill
-USR2 bin/sidekiq-cluster`, which forwards the signal to all Sidekiq
children. Alternatively, you can also select a specific PID of interest.
Production profiles can be especially noisy. It can be helpful to visualize them
as a [flame graph](https://github.com/brendangregg/FlameGraph). This can be done
via:
### Reading a Stackprof profile
The output is sorted by the `Samples` column by default. This is the number of samples taken where
the method is the one currently executed. The `Total` column shows the number of samples taken where
the method (or any of the methods it calls) is executed.
To create a graphical view of the call stack:
```shell
bundle exec stackprof --stackcollapse /tmp/stackprof.55769.c6c3906452.profile | flamegraph.pl > flamegraph.svg
stackprof tmp/project_policy_spec.rb.dump --graphviz > project_policy_spec.dot
dot -Tsvg project_policy_spec.dot > project_policy_spec.svg
```
To load the profile in [KCachegrind](https://kcachegrind.github.io/):
```shell
stackprof tmp/project_policy_spec.rb.dump --callgrind > project_policy_spec.callgrind
kcachegrind project_policy_spec.callgrind # Linux
qcachegrind project_policy_spec.callgrind # Mac
```
You can also generate and view the resultant flame graph. To view a flame graph that
`bin/rspec-stackprof` creates, you must set the `RAW` environment variable to `true` when running
`bin/rspec-stackprof`.
It might take a while to generate based on the output file size:
```shell
# Generate
stackprof --flamegraph tmp/group_member_policy_spec.rb.dump > group_member_policy_spec.flame
# View
stackprof --flamegraph-viewer=group_member_policy_spec.flame
```
To export the flame graph to an SVG file, use [Brendan Gregg's FlameGraph tool](https://github.com/brendangregg/FlameGraph):
```shell
stackprof --stackcollapse /tmp/group_member_policy_spec.rb.dump | flamegraph.pl > flamegraph.svg
```
It's also possible to view flame graphs through [speedscope](https://github.com/jlfwong/speedscope).
You can do this when using the [performance bar](profiling.md#speedscope-flamegraphs)
and when [profiling code blocks](https://github.com/jlfwong/speedscope/wiki/Importing-from-stackprof-(ruby)).
This option isn't supported by `bin/rspec-stackprof`.
You can profile speciific methods by using `--method method_name`:
```shell
$ stackprof tmp/project_policy_spec.rb.dump --method access_allowed_to
ProjectPolicy#access_allowed_to? (/Users/royzwambag/work/gitlab-development-kit/gitlab/app/policies/project_policy.rb:793)
samples: 0 self (0.0%) / 578 total (0.7%)
callers:
397 ( 68.7%) block (2 levels) in <class:ProjectPolicy>
95 ( 16.4%) block in <class:ProjectPolicy>
86 ( 14.9%) block in <class:ProjectPolicy>
callees (578 total):
399 ( 69.0%) ProjectPolicy#team_access_level
141 ( 24.4%) Project::GeneratedAssociationMethods#project_feature
30 ( 5.2%) DeclarativePolicy::Base#can?
8 ( 1.4%) Featurable#access_level
code:
| 793 | def access_allowed_to?(feature)
141 (0.2%) | 794 | return false unless project.project_feature
| 795 |
8 (0.0%) | 796 | case project.project_feature.access_level(feature)
| 797 | when ProjectFeature::DISABLED
| 798 | false
| 799 | when ProjectFeature::PRIVATE
429 (0.5%) | 800 | can?(:read_all_resources) || team_access_level >= ProjectFeature.required_minimum_access_level(feature)
| 801 | else
```
When using Stackprof to profile specs, the profile includes the work done by the test suite and the
application code. You can therefore use these profiles to investigate slow tests as well. However,
for smaller runs (like this example), this means that the cost of setting up the test suite tends to
dominate.
## RSpec profiling
The GitLab development environment also includes the
......@@ -648,7 +666,7 @@ end
## String Freezing
In recent Ruby versions calling `freeze` on a String leads to it being allocated
In recent Ruby versions calling `.freeze` on a String leads to it being allocated
only once and re-used. For example, on Ruby 2.3 or later this only allocates the
"foo" String once:
......@@ -662,6 +680,12 @@ Depending on the size of the String and how frequently it would be allocated
(before the `.freeze` call was added), this _may_ make things faster, but
this isn't guaranteed.
Freezing strings saves memory, as every allocated string uses at least one `RVALUE_SIZE` bytes (40
bytes on x64) of memory.
You can use the [memory profiler](#using-memory-profiler)
to see which strings are allocated often and could potentially benefit from a `.freeze`.
Strings are frozen by default in Ruby 3.0. To prepare our codebase for
this eventuality, we are adding the following header to all Ruby files:
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment