Commit 0580e22a authored by Ingo Molnar's avatar Ingo Molnar Committed by Linus Torvalds

[PATCH] generic irq subsystem: x86_64 port

x86_64 port of generic hardirq handling.
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
Signed-off-by: default avatarChristoph Hellwig <hch@lst.de>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent d31d4e52
...@@ -329,6 +329,12 @@ config X86_MCE ...@@ -329,6 +329,12 @@ config X86_MCE
endmenu endmenu
#
# Use the generic interrupt handling code in kernel/hardirq.c:
#
config GENERIC_HARDIRQS
bool
default y
menu "Power management options" menu "Power management options"
......
...@@ -3,127 +3,19 @@ ...@@ -3,127 +3,19 @@
* *
* Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
* *
* This file contains the code used by various IRQ handling routines: * This file contains the lowest level x86_64-specific interrupt
* asking for different IRQ's should be done through these routines * entry and irq statistics code. All the remaining irq logic is
* instead of just grabbing them. Thus setups with different IRQ numbers * done by the generic kernel/hardirq.c code and in the
* shouldn't result in any weird surprises, and installing new handlers * x86_64-specific irq controller code. (e.g. i8259.c and
* should be easier. * io_apic.c.)
*/ */
/*
* (mostly architecture independent, will move to kernel/irq.c in 2.5.)
*
* IRQs are in fact implemented a bit like signal handlers for the kernel.
* Naturally it's not a 1:1 relation, but there are similarities.
*/
#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/smp_lock.h>
#include <linux/init.h>
#include <linux/kernel_stat.h> #include <linux/kernel_stat.h>
#include <linux/irq.h> #include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h> #include <linux/seq_file.h>
#include <linux/module.h>
#include <asm/atomic.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/pgalloc.h> #include <asm/io_apic.h>
#include <asm/delay.h>
#include <asm/desc.h>
#include <asm/irq.h>
/*
* Linux has a controller-independent x86 interrupt architecture.
* every controller has a 'controller-template', that is used
* by the main code to do the right thing. Each driver-visible
* interrupt source is transparently wired to the appropriate
* controller. Thus drivers need not be aware of the
* interrupt-controller.
*
* Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
* PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
* (IO-APICs assumed to be messaging to Pentium local-APICs)
*
* the code is designed to be easily extended with new/different
* interrupt controllers, without having to do assembly magic.
*/
/*
* Controller mappings for all interrupt sources:
*/
irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned = {
[0 ... NR_IRQS-1] = {
.handler = &no_irq_type,
.lock = SPIN_LOCK_UNLOCKED
}
};
static void register_irq_proc (unsigned int irq);
/*
* Special irq handlers.
*/
irqreturn_t no_action(int cpl, void *dev_id, struct pt_regs *regs) { return IRQ_NONE; }
/*
* Generic no controller code
*/
static void enable_none(unsigned int irq) { }
static unsigned int startup_none(unsigned int irq) { return 0; }
static void disable_none(unsigned int irq) { }
static void ack_none(unsigned int irq)
{
/*
* 'what should we do if we get a hw irq event on an illegal vector'.
* each architecture has to answer this themselves, it doesn't deserve
* a generic callback i think.
*/
#ifdef CONFIG_X86
printk("unexpected IRQ trap at vector %02x\n", irq);
#ifdef CONFIG_X86_LOCAL_APIC
/*
* Currently unexpected vectors happen only on SMP and APIC.
* We _must_ ack these because every local APIC has only N
* irq slots per priority level, and a 'hanging, unacked' IRQ
* holds up an irq slot - in excessive cases (when multiple
* unexpected vectors occur) that might lock up the APIC
* completely.
*/
ack_APIC_irq();
#endif
#endif
}
/* startup is the same as "enable", shutdown is same as "disable" */
#define shutdown_none disable_none
#define end_none enable_none
struct hw_interrupt_type no_irq_type = {
"none",
startup_none,
shutdown_none,
enable_none,
disable_none,
ack_none,
end_none
};
atomic_t irq_err_count; atomic_t irq_err_count;
#ifdef CONFIG_X86_IO_APIC #ifdef CONFIG_X86_IO_APIC
...@@ -195,131 +87,6 @@ int show_interrupts(struct seq_file *p, void *v) ...@@ -195,131 +87,6 @@ int show_interrupts(struct seq_file *p, void *v)
return 0; return 0;
} }
#ifdef CONFIG_SMP
inline void synchronize_irq(unsigned int irq)
{
while (irq_desc[irq].status & IRQ_INPROGRESS)
cpu_relax();
}
#endif
/*
* This should really return information about whether
* we should do bottom half handling etc. Right now we
* end up _always_ checking the bottom half, which is a
* waste of time and is not what some drivers would
* prefer.
*/
int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action)
{
int status = 1; /* Force the "do bottom halves" bit */
int ret;
if (!(action->flags & SA_INTERRUPT))
local_irq_enable();
do {
ret = action->handler(irq, action->dev_id, regs);
if (ret == IRQ_HANDLED)
status |= action->flags;
action = action->next;
} while (action);
if (status & SA_SAMPLE_RANDOM)
add_interrupt_randomness(irq);
local_irq_disable();
return status;
}
/*
* Generic enable/disable code: this just calls
* down into the PIC-specific version for the actual
* hardware disable after having gotten the irq
* controller lock.
*/
/**
* disable_irq_nosync - disable an irq without waiting
* @irq: Interrupt to disable
*
* Disable the selected interrupt line. Disables and Enables are
* nested.
* Unlike disable_irq(), this function does not ensure existing
* instances of the IRQ handler have completed before returning.
*
* This function must not be called from IRQ context.
*/
inline void disable_irq_nosync(unsigned int irq)
{
irq_desc_t *desc = irq_desc + irq;
unsigned long flags;
spin_lock_irqsave(&desc->lock, flags);
if (!desc->depth++) {
desc->status |= IRQ_DISABLED;
desc->handler->disable(irq);
}
spin_unlock_irqrestore(&desc->lock, flags);
}
/**
* disable_irq - disable an irq and wait for completion
* @irq: Interrupt to disable
*
* Disable the selected interrupt line. Enables and Disables are
* nested.
* This function waits for any pending IRQ handlers for this interrupt
* to complete before returning. If you use this function while
* holding a resource the IRQ handler may need you will deadlock.
*
* This function may be called - with care - from IRQ context.
*/
void disable_irq(unsigned int irq)
{
disable_irq_nosync(irq);
synchronize_irq(irq);
}
/**
* enable_irq - enable handling of an irq
* @irq: Interrupt to enable
*
* Undoes the effect of one call to disable_irq(). If this
* matches the last disable, processing of interrupts on this
* IRQ line is re-enabled.
*
* This function may be called from IRQ context.
*/
void enable_irq(unsigned int irq)
{
irq_desc_t *desc = irq_desc + irq;
unsigned long flags;
spin_lock_irqsave(&desc->lock, flags);
switch (desc->depth) {
case 1: {
unsigned int status = desc->status & ~IRQ_DISABLED;
desc->status = status;
if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) {
desc->status = status | IRQ_REPLAY;
hw_resend_irq(desc->handler,irq);
}
desc->handler->enable(irq);
/* fall-through */
}
default:
desc->depth--;
break;
case 0:
printk("enable_irq(%u) unbalanced from %p\n", irq,
__builtin_return_address(0));
}
spin_unlock_irqrestore(&desc->lock, flags);
}
/* /*
* do_IRQ handles all normal device IRQ's (the special * do_IRQ handles all normal device IRQ's (the special
* SMP cross-CPU interrupts have their own specific * SMP cross-CPU interrupts have their own specific
...@@ -327,591 +94,15 @@ void enable_irq(unsigned int irq) ...@@ -327,591 +94,15 @@ void enable_irq(unsigned int irq)
*/ */
asmlinkage unsigned int do_IRQ(struct pt_regs *regs) asmlinkage unsigned int do_IRQ(struct pt_regs *regs)
{ {
/* /* high bits used in ret_from_ code */
* We ack quickly, we don't want the irq controller unsigned irq = regs->orig_rax & 0xff;
* thinking we're snobs just because some other CPU has
* disabled global interrupts (we have already done the
* INT_ACK cycles, it's too late to try to pretend to the
* controller that we aren't taking the interrupt).
*
* 0 return value means that this irq is already being
* handled by some other CPU. (or is disabled)
*/
unsigned irq = regs->orig_rax & 0xff; /* high bits used in ret_from_ code */
int cpu = smp_processor_id();
irq_desc_t *desc = irq_desc + irq;
struct irqaction * action;
unsigned int status;
if (irq > 256) BUG();
irq_enter(); irq_enter();
kstat_cpu(cpu).irqs[irq]++; BUG_ON(irq > 256);
spin_lock(&desc->lock);
desc->handler->ack(irq);
/*
REPLAY is when Linux resends an IRQ that was dropped earlier
WAITING is used by probe to mark irqs that are being tested
*/
status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
status |= IRQ_PENDING; /* we _want_ to handle it */
/*
* If the IRQ is disabled for whatever reason, we cannot
* use the action we have.
*/
action = NULL;
if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
action = desc->action;
status &= ~IRQ_PENDING; /* we commit to handling */
status |= IRQ_INPROGRESS; /* we are handling it */
}
desc->status = status;
/*
* If there is no IRQ handler or it was disabled, exit early.
Since we set PENDING, if another processor is handling
a different instance of this same irq, the other processor
will take care of it.
*/
if (unlikely(!action))
goto out;
/*
* Edge triggered interrupts need to remember
* pending events.
* This applies to any hw interrupts that allow a second
* instance of the same irq to arrive while we are in do_IRQ
* or in the handler. But the code here only handles the _second_
* instance of the irq, not the third or fourth. So it is mostly
* useful for irq hardware that does not mask cleanly in an
* SMP environment.
*/
for (;;) {
spin_unlock(&desc->lock);
handle_IRQ_event(irq, regs, action);
spin_lock(&desc->lock);
if (unlikely(!(desc->status & IRQ_PENDING)))
break;
desc->status &= ~IRQ_PENDING;
}
desc->status &= ~IRQ_INPROGRESS;
out:
/*
* The ->end() handler has to deal with interrupts which got
* disabled while the handler was running.
*/
if (irq > 256) BUG();
desc->handler->end(irq);
spin_unlock(&desc->lock);
__do_IRQ(irq, regs);
irq_exit(); irq_exit();
return 1;
}
int can_request_irq(unsigned int irq, unsigned long irqflags)
{
struct irqaction *action;
if (irq >= NR_IRQS)
return 0;
action = irq_desc[irq].action;
if (action) {
if (irqflags & action->flags & SA_SHIRQ)
action = NULL;
}
return !action;
}
/**
* request_irq - allocate an interrupt line
* @irq: Interrupt line to allocate
* @handler: Function to be called when the IRQ occurs
* @irqflags: Interrupt type flags
* @devname: An ascii name for the claiming device
* @dev_id: A cookie passed back to the handler function
*
* This call allocates interrupt resources and enables the
* interrupt line and IRQ handling. From the point this
* call is made your handler function may be invoked. Since
* your handler function must clear any interrupt the board
* raises, you must take care both to initialise your hardware
* and to set up the interrupt handler in the right order.
*
* Dev_id must be globally unique. Normally the address of the
* device data structure is used as the cookie. Since the handler
* receives this value it makes sense to use it.
*
* If your interrupt is shared you must pass a non NULL dev_id
* as this is required when freeing the interrupt.
*
* Flags:
*
* SA_SHIRQ Interrupt is shared
*
* SA_INTERRUPT Disable local interrupts while processing
*
* SA_SAMPLE_RANDOM The interrupt can be used for entropy
*
*/
int request_irq(unsigned int irq,
irqreturn_t (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags,
const char * devname,
void *dev_id)
{
int retval;
struct irqaction * action;
#if 1
/*
* Sanity-check: shared interrupts should REALLY pass in
* a real dev-ID, otherwise we'll have trouble later trying
* to figure out which interrupt is which (messes up the
* interrupt freeing logic etc).
*/
if (irqflags & SA_SHIRQ) {
if (!dev_id)
printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]);
}
#endif
if (irq >= NR_IRQS)
return -EINVAL;
if (!handler)
return -EINVAL;
action = (struct irqaction *)
kmalloc(sizeof(struct irqaction), GFP_ATOMIC);
if (!action)
return -ENOMEM;
action->handler = handler;
action->flags = irqflags;
cpus_clear(action->mask);
action->name = devname;
action->next = NULL;
action->dev_id = dev_id;
retval = setup_irq(irq, action);
if (retval)
kfree(action);
return retval;
}
EXPORT_SYMBOL(request_irq);
/**
* free_irq - free an interrupt
* @irq: Interrupt line to free
* @dev_id: Device identity to free
*
* Remove an interrupt handler. The handler is removed and if the
* interrupt line is no longer in use by any driver it is disabled.
* On a shared IRQ the caller must ensure the interrupt is disabled
* on the card it drives before calling this function. The function
* does not return until any executing interrupts for this IRQ
* have completed.
*
* This function may be called from interrupt context.
*
* Bugs: Attempting to free an irq in a handler for the same irq hangs
* the machine.
*/
void free_irq(unsigned int irq, void *dev_id) return 1;
{
irq_desc_t *desc;
struct irqaction **p;
unsigned long flags;
if (irq >= NR_IRQS)
return;
desc = irq_desc + irq;
spin_lock_irqsave(&desc->lock,flags);
p = &desc->action;
for (;;) {
struct irqaction * action = *p;
if (action) {
struct irqaction **pp = p;
p = &action->next;
if (action->dev_id != dev_id)
continue;
/* Found it - now remove it from the list of entries */
*pp = action->next;
if (!desc->action) {
desc->status |= IRQ_DISABLED;
desc->handler->shutdown(irq);
}
spin_unlock_irqrestore(&desc->lock,flags);
synchronize_irq(irq);
kfree(action);
return;
}
printk("Trying to free free IRQ%d\n",irq);
spin_unlock_irqrestore(&desc->lock,flags);
return;
}
}
EXPORT_SYMBOL(free_irq);
/*
* IRQ autodetection code..
*
* This depends on the fact that any interrupt that
* comes in on to an unassigned handler will get stuck
* with "IRQ_WAITING" cleared and the interrupt
* disabled.
*/
static DECLARE_MUTEX(probe_sem);
/**
* probe_irq_on - begin an interrupt autodetect
*
* Commence probing for an interrupt. The interrupts are scanned
* and a mask of potential interrupt lines is returned.
*
*/
unsigned long probe_irq_on(void)
{
unsigned int i;
irq_desc_t *desc;
unsigned long val;
unsigned long delay;
down(&probe_sem);
/*
* something may have generated an irq long ago and we want to
* flush such a longstanding irq before considering it as spurious.
*/
for (i = NR_IRQS-1; i > 0; i--) {
desc = irq_desc + i;
spin_lock_irq(&desc->lock);
if (!irq_desc[i].action)
irq_desc[i].handler->startup(i);
spin_unlock_irq(&desc->lock);
}
/* Wait for longstanding interrupts to trigger. */
for (delay = jiffies + HZ/50; time_after(delay, jiffies); )
/* about 20ms delay */ barrier();
/*
* enable any unassigned irqs
* (we must startup again here because if a longstanding irq
* happened in the previous stage, it may have masked itself)
*/
for (i = NR_IRQS-1; i > 0; i--) {
desc = irq_desc + i;
spin_lock_irq(&desc->lock);
if (!desc->action) {
desc->status |= IRQ_AUTODETECT | IRQ_WAITING;
if (desc->handler->startup(i))
desc->status |= IRQ_PENDING;
}
spin_unlock_irq(&desc->lock);
}
/*
* Wait for spurious interrupts to trigger
*/
for (delay = jiffies + HZ/10; time_after(delay, jiffies); )
/* about 100ms delay */ barrier();
/*
* Now filter out any obviously spurious interrupts
*/
val = 0;
for (i = 0; i < NR_IRQS; i++) {
irq_desc_t *desc = irq_desc + i;
unsigned int status;
spin_lock_irq(&desc->lock);
status = desc->status;
if (status & IRQ_AUTODETECT) {
/* It triggered already - consider it spurious. */
if (!(status & IRQ_WAITING)) {
desc->status = status & ~IRQ_AUTODETECT;
desc->handler->shutdown(i);
} else
if (i < 32)
val |= 1 << i;
}
spin_unlock_irq(&desc->lock);
}
return val;
}
EXPORT_SYMBOL(probe_irq_on);
/*
* Return a mask of triggered interrupts (this
* can handle only legacy ISA interrupts).
*/
/**
* probe_irq_mask - scan a bitmap of interrupt lines
* @val: mask of interrupts to consider
*
* Scan the ISA bus interrupt lines and return a bitmap of
* active interrupts. The interrupt probe logic state is then
* returned to its previous value.
*
* Note: we need to scan all the irq's even though we will
* only return ISA irq numbers - just so that we reset them
* all to a known state.
*/
unsigned int probe_irq_mask(unsigned long val)
{
int i;
unsigned int mask;
mask = 0;
for (i = 0; i < NR_IRQS; i++) {
irq_desc_t *desc = irq_desc + i;
unsigned int status;
spin_lock_irq(&desc->lock);
status = desc->status;
if (status & IRQ_AUTODETECT) {
if (i < 16 && !(status & IRQ_WAITING))
mask |= 1 << i;
desc->status = status & ~IRQ_AUTODETECT;
desc->handler->shutdown(i);
}
spin_unlock_irq(&desc->lock);
}
up(&probe_sem);
return mask & val;
}
/*
* Return the one interrupt that triggered (this can
* handle any interrupt source).
*/
/**
* probe_irq_off - end an interrupt autodetect
* @val: mask of potential interrupts (unused)
*
* Scans the unused interrupt lines and returns the line which
* appears to have triggered the interrupt. If no interrupt was
* found then zero is returned. If more than one interrupt is
* found then minus the first candidate is returned to indicate
* their is doubt.
*
* The interrupt probe logic state is returned to its previous
* value.
*
* BUGS: When used in a module (which arguably shouldn't happen)
* nothing prevents two IRQ probe callers from overlapping. The
* results of this are non-optimal.
*/
int probe_irq_off(unsigned long val)
{
int i, irq_found, nr_irqs;
nr_irqs = 0;
irq_found = 0;
for (i = 0; i < NR_IRQS; i++) {
irq_desc_t *desc = irq_desc + i;
unsigned int status;
spin_lock_irq(&desc->lock);
status = desc->status;
if (status & IRQ_AUTODETECT) {
if (!(status & IRQ_WAITING)) {
if (!nr_irqs)
irq_found = i;
nr_irqs++;
}
desc->status = status & ~IRQ_AUTODETECT;
desc->handler->shutdown(i);
}
spin_unlock_irq(&desc->lock);
}
up(&probe_sem);
if (nr_irqs > 1)
irq_found = -irq_found;
return irq_found;
}
EXPORT_SYMBOL(probe_irq_off);
/* this was setup_x86_irq but it seems pretty generic */
int setup_irq(unsigned int irq, struct irqaction * new)
{
int shared = 0;
unsigned long flags;
struct irqaction *old, **p;
irq_desc_t *desc = irq_desc + irq;
if (desc->handler == &no_irq_type)
return -ENOSYS;
/*
* Some drivers like serial.c use request_irq() heavily,
* so we have to be careful not to interfere with a
* running system.
*/
if (new->flags & SA_SAMPLE_RANDOM) {
/*
* This function might sleep, we want to call it first,
* outside of the atomic block.
* Yes, this might clear the entropy pool if the wrong
* driver is attempted to be loaded, without actually
* installing a new handler, but is this really a problem,
* only the sysadmin is able to do this.
*/
rand_initialize_irq(irq);
}
/*
* The following block of code has to be executed atomically
*/
spin_lock_irqsave(&desc->lock,flags);
p = &desc->action;
if ((old = *p) != NULL) {
/* Can't share interrupts unless both agree to */
if (!(old->flags & new->flags & SA_SHIRQ)) {
spin_unlock_irqrestore(&desc->lock,flags);
return -EBUSY;
}
/* add new interrupt at end of irq queue */
do {
p = &old->next;
old = *p;
} while (old);
shared = 1;
}
*p = new;
if (!shared) {
desc->depth = 0;
desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);
desc->handler->startup(irq);
}
spin_unlock_irqrestore(&desc->lock,flags);
register_irq_proc(irq);
return 0;
}
static struct proc_dir_entry * root_irq_dir;
static struct proc_dir_entry * irq_dir [NR_IRQS];
#ifdef CONFIG_SMP
static struct proc_dir_entry * smp_affinity_entry [NR_IRQS];
static cpumask_t irq_affinity [NR_IRQS] = { [0 ... NR_IRQS-1] = CPU_MASK_ALL };
static int irq_affinity_read_proc (char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = cpumask_scnprintf(page, count, irq_affinity[(long)data]);
if (count - len < 2)
return -EINVAL;
len += sprintf(page + len, "\n");
return len;
}
static int irq_affinity_write_proc (struct file *file,
const char __user *buffer,
unsigned long count, void *data)
{
int irq = (long) data, full_count = count, err;
cpumask_t tmp, new_value;
if (!irq_desc[irq].handler->set_affinity)
return -EIO;
err = cpumask_parse(buffer, count, new_value);
/*
* Do not allow disabling IRQs completely - it's a too easy
* way to make the system unusable accidentally :-) At least
* one online CPU still has to be targeted.
*/
cpus_and(tmp, new_value, cpu_online_map);
if (cpus_empty(tmp))
return -EINVAL;
irq_affinity[irq] = new_value;
irq_desc[irq].handler->set_affinity(irq, new_value);
return full_count;
}
#endif
#define MAX_NAMELEN 10
static void register_irq_proc (unsigned int irq)
{
char name [MAX_NAMELEN];
if (!root_irq_dir || (irq_desc[irq].handler == &no_irq_type) ||
irq_dir[irq])
return;
memset(name, 0, MAX_NAMELEN);
sprintf(name, "%d", irq);
/* create /proc/irq/1234 */
irq_dir[irq] = proc_mkdir(name, root_irq_dir);
#ifdef CONFIG_SMP
{
struct proc_dir_entry *entry;
/* create /proc/irq/1234/smp_affinity */
entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
if (entry) {
entry->nlink = 1;
entry->data = (void *)(long)irq;
entry->read_proc = irq_affinity_read_proc;
entry->write_proc = irq_affinity_write_proc;
}
smp_affinity_entry[irq] = entry;
}
#endif
} }
void init_irq_proc (void)
{
int i;
/* create /proc/irq */
root_irq_dir = proc_mkdir("irq", NULL);
/* create /proc/irq/prof_cpu_mask */
create_prof_cpu_mask(root_irq_dir);
/*
* Create entries for all existing IRQs.
*/
for (i = 0; i < NR_IRQS; i++)
register_irq_proc(i);
}
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include <linux/threads.h> #include <linux/threads.h>
#include <linux/irq.h> #include <linux/irq.h>
#include <asm/pda.h> #include <asm/pda.h>
#include <asm/apic.h>
#define __ARCH_IRQ_STAT 1 #define __ARCH_IRQ_STAT 1
...@@ -15,47 +16,24 @@ ...@@ -15,47 +16,24 @@
#include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */ #include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */
/* /*
* We put the hardirq and softirq counter into the preemption * 'what should we do if we get a hw irq event on an illegal vector'.
* counter. The bitmask has the following meaning: * each architecture has to answer this themselves.
*
* - bits 0-7 are the preemption count (max preemption depth: 256)
* - bits 8-15 are the softirq count (max # of softirqs: 256)
* - bits 16-23 are the hardirq count (max # of hardirqs: 256)
*
* - ( bit 26 is the PREEMPT_ACTIVE flag. )
*
* PREEMPT_MASK: 0x000000ff
* HARDIRQ_MASK: 0x0000ff00
* SOFTIRQ_MASK: 0x00ff0000
*/ */
static inline void ack_bad_irq(unsigned int irq)
#define PREEMPT_BITS 8 {
#define SOFTIRQ_BITS 8 #ifdef CONFIG_X86
#define HARDIRQ_BITS 8 printk("unexpected IRQ trap at vector %02x\n", irq);
#ifdef CONFIG_X86_LOCAL_APIC
#define PREEMPT_SHIFT 0 /*
#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) * Currently unexpected vectors happen only on SMP and APIC.
#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) * We _must_ ack these because every local APIC has only N
* irq slots per priority level, and a 'hanging, unacked' IRQ
/* * holds up an irq slot - in excessive cases (when multiple
* The hardirq mask has to be large enough to have * unexpected vectors occur) that might lock up the APIC
* space for potentially all IRQ sources in the system * completely.
* nesting on a single CPU:
*/ */
#if (1 << HARDIRQ_BITS) < NR_IRQS ack_APIC_irq();
# error HARDIRQ_BITS is too low!
#endif #endif
#endif
#define nmi_enter() (irq_enter()) }
#define nmi_exit() (preempt_count() -= HARDIRQ_OFFSET)
#define irq_enter() (preempt_count() += HARDIRQ_OFFSET)
#define irq_exit() \
do { \
preempt_count() -= IRQ_EXIT_OFFSET; \
if (!in_interrupt() && softirq_pending(smp_processor_id())) \
do_softirq(); \
preempt_enable_no_resched(); \
} while (0)
#endif /* __ASM_HARDIRQ_H */ #endif /* __ASM_HARDIRQ_H */
...@@ -44,11 +44,6 @@ static __inline__ int irq_canonicalize(int irq) ...@@ -44,11 +44,6 @@ static __inline__ int irq_canonicalize(int irq)
return ((irq == 2) ? 9 : irq); return ((irq == 2) ? 9 : irq);
} }
extern void disable_irq(unsigned int);
extern void disable_irq_nosync(unsigned int);
extern void enable_irq(unsigned int);
extern int can_request_irq(unsigned int, unsigned long flags);
#ifdef CONFIG_X86_LOCAL_APIC #ifdef CONFIG_X86_LOCAL_APIC
#define ARCH_HAS_NMI_WATCHDOG /* See include/linux/nmi.h */ #define ARCH_HAS_NMI_WATCHDOG /* See include/linux/nmi.h */
#endif #endif
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment