Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
linux
Commits
06d61cbf
Commit
06d61cbf
authored
Nov 11, 2005
by
Jeff Garzik
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'sky2'
parents
34afd638
d0bbccfa
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
4975 additions
and
3 deletions
+4975
-3
drivers/net/Kconfig
drivers/net/Kconfig
+19
-1
drivers/net/Makefile
drivers/net/Makefile
+1
-0
drivers/net/sky2.c
drivers/net/sky2.c
+3039
-0
drivers/net/sky2.h
drivers/net/sky2.h
+1910
-0
include/linux/netdevice.h
include/linux/netdevice.h
+6
-2
No files found.
drivers/net/Kconfig
View file @
06d61cbf
...
...
@@ -2008,7 +2008,25 @@ config SKGE
It does not support the link failover and network management
features that "portable" vendor supplied sk98lin driver does.
config SKY2
tristate "SysKonnect Yukon2 support (EXPERIMENTAL)"
depends on PCI && EXPERIMENTAL
select CRC32
---help---
This driver support the Marvell Yukon 2 Gigabit Ethernet adapter.
To compile this driver as a module, choose M here: the module
will be called sky2. This is recommended.
config SKY2_EC_A1
bool "Support old Yukon-EC A1 chipset"
depends on SKY2
---help---
Include support for early revisions of the Yukon EC chipset
that required extra workarounds. If in doubt, say N.
config SK98LIN
tristate "Marvell Yukon Chipset / SysKonnect SK-98xx Support"
depends on PCI
...
...
drivers/net/Makefile
View file @
06d61cbf
...
...
@@ -59,6 +59,7 @@ spidernet-y += spider_net.o spider_net_ethtool.o sungem_phy.o
obj-$(CONFIG_SPIDER_NET)
+=
spidernet.o
obj-$(CONFIG_TC35815)
+=
tc35815.o
obj-$(CONFIG_SKGE)
+=
skge.o
obj-$(CONFIG_SKY2)
+=
sky2.o
obj-$(CONFIG_SK98LIN)
+=
sk98lin/
obj-$(CONFIG_SKFP)
+=
skfp/
obj-$(CONFIG_VIA_RHINE)
+=
via-rhine.o
...
...
drivers/net/sky2.c
0 → 100644
View file @
06d61cbf
/*
* New driver for Marvell Yukon 2 chipset.
* Based on earlier sk98lin, and skge driver.
*
* This driver intentionally does not support all the features
* of the original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* TODO
* - coalescing setting?
*
* TOTEST
* - speed setting
* - suspend/resume
*/
#include <linux/config.h>
#include <linux/crc32.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/if_vlan.h>
#include <asm/irq.h>
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define SKY2_VLAN_TAG_USED 1
#endif
#include "sky2.h"
#define DRV_NAME "sky2"
#define DRV_VERSION "0.7"
#define PFX DRV_NAME " "
/*
* The Yukon II chipset takes 64 bit command blocks (called list elements)
* that are organized into three (receive, transmit, status) different rings
* similar to Tigon3. A transmit can require several elements;
* a receive requires one (or two if using 64 bit dma).
*/
#ifdef CONFIG_SKY2_EC_A1
#define is_ec_a1(hw) \
((hw)->chip_id == CHIP_ID_YUKON_EC && \
(hw)->chip_rev == CHIP_REV_YU_EC_A1)
#else
#define is_ec_a1(hw) 0
#endif
#define RX_LE_SIZE 256
#define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
#define RX_MAX_PENDING (RX_LE_SIZE/2 - 2)
#define RX_DEF_PENDING 128
#define RX_COPY_THRESHOLD 256
#define TX_RING_SIZE 512
#define TX_DEF_PENDING (TX_RING_SIZE - 1)
#define TX_MIN_PENDING 64
#define MAX_SKB_TX_LE (4 + 2*MAX_SKB_FRAGS)
#define STATUS_RING_SIZE 2048
/* 2 ports * (TX + 2*RX) */
#define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
#define ETH_JUMBO_MTU 9000
#define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64
#define PHY_RETRIES 1000
static
const
u32
default_msg
=
NETIF_MSG_DRV
|
NETIF_MSG_PROBE
|
NETIF_MSG_LINK
|
NETIF_MSG_TIMER
|
NETIF_MSG_TX_ERR
|
NETIF_MSG_RX_ERR
|
NETIF_MSG_IFUP
|
NETIF_MSG_IFDOWN
|
NETIF_MSG_INTR
;
static
int
debug
=
-
1
;
/* defaults above */
module_param
(
debug
,
int
,
0
);
MODULE_PARM_DESC
(
debug
,
"Debug level (0=none,...,16=all)"
);
static
const
struct
pci_device_id
sky2_id_table
[]
=
{
{
PCI_DEVICE
(
PCI_VENDOR_ID_SYSKONNECT
,
0x9000
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_SYSKONNECT
,
0x9E00
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_DLINK
,
0x4b00
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_DLINK
,
0x4b01
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4340
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4341
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4342
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4343
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4344
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4345
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4346
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4347
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4350
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4351
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4360
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4361
)
},
{
PCI_DEVICE
(
PCI_VENDOR_ID_MARVELL
,
0x4362
)
},
{
0
}
};
MODULE_DEVICE_TABLE
(
pci
,
sky2_id_table
);
/* Avoid conditionals by using array */
static
const
unsigned
txqaddr
[]
=
{
Q_XA1
,
Q_XA2
};
static
const
unsigned
rxqaddr
[]
=
{
Q_R1
,
Q_R2
};
static
const
char
*
yukon_name
[]
=
{
[
CHIP_ID_YUKON_LITE
-
CHIP_ID_YUKON
]
=
"Lite"
,
/* 0xb0 */
[
CHIP_ID_YUKON_LP
-
CHIP_ID_YUKON
]
=
"LP"
,
/* 0xb2 */
[
CHIP_ID_YUKON_XL
-
CHIP_ID_YUKON
]
=
"XL"
,
/* 0xb3 */
[
CHIP_ID_YUKON_EC
-
CHIP_ID_YUKON
]
=
"EC"
,
/* 0xb6 */
[
CHIP_ID_YUKON_FE
-
CHIP_ID_YUKON
]
=
"FE"
,
/* 0xb7 */
};
/* Access to external PHY */
static
void
gm_phy_write
(
struct
sky2_hw
*
hw
,
unsigned
port
,
u16
reg
,
u16
val
)
{
int
i
;
gma_write16
(
hw
,
port
,
GM_SMI_DATA
,
val
);
gma_write16
(
hw
,
port
,
GM_SMI_CTRL
,
GM_SMI_CT_PHY_AD
(
PHY_ADDR_MARV
)
|
GM_SMI_CT_REG_AD
(
reg
));
for
(
i
=
0
;
i
<
PHY_RETRIES
;
i
++
)
{
if
(
!
(
gma_read16
(
hw
,
port
,
GM_SMI_CTRL
)
&
GM_SMI_CT_BUSY
))
return
;
udelay
(
1
);
}
printk
(
KERN_WARNING
PFX
"%s: phy write timeout
\n
"
,
hw
->
dev
[
port
]
->
name
);
}
static
u16
gm_phy_read
(
struct
sky2_hw
*
hw
,
unsigned
port
,
u16
reg
)
{
int
i
;
gma_write16
(
hw
,
port
,
GM_SMI_CTRL
,
GM_SMI_CT_PHY_AD
(
PHY_ADDR_MARV
)
|
GM_SMI_CT_REG_AD
(
reg
)
|
GM_SMI_CT_OP_RD
);
for
(
i
=
0
;
i
<
PHY_RETRIES
;
i
++
)
{
if
(
gma_read16
(
hw
,
port
,
GM_SMI_CTRL
)
&
GM_SMI_CT_RD_VAL
)
goto
ready
;
udelay
(
1
);
}
printk
(
KERN_WARNING
PFX
"%s: phy read timeout
\n
"
,
hw
->
dev
[
port
]
->
name
);
ready:
return
gma_read16
(
hw
,
port
,
GM_SMI_DATA
);
}
static
int
sky2_set_power_state
(
struct
sky2_hw
*
hw
,
pci_power_t
state
)
{
u16
power_control
;
u32
reg1
;
int
vaux
;
int
ret
=
0
;
pr_debug
(
"sky2_set_power_state %d
\n
"
,
state
);
sky2_write8
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_ON
);
pci_read_config_word
(
hw
->
pdev
,
hw
->
pm_cap
+
PCI_PM_PMC
,
&
power_control
);
vaux
=
(
sky2_read8
(
hw
,
B0_CTST
)
&
Y2_VAUX_AVAIL
)
&&
(
power_control
&
PCI_PM_CAP_PME_D3cold
);
pci_read_config_word
(
hw
->
pdev
,
hw
->
pm_cap
+
PCI_PM_CTRL
,
&
power_control
);
power_control
|=
PCI_PM_CTRL_PME_STATUS
;
power_control
&=
~
(
PCI_PM_CTRL_STATE_MASK
);
switch
(
state
)
{
case
PCI_D0
:
/* switch power to VCC (WA for VAUX problem) */
sky2_write8
(
hw
,
B0_POWER_CTRL
,
PC_VAUX_ENA
|
PC_VCC_ENA
|
PC_VAUX_OFF
|
PC_VCC_ON
);
/* disable Core Clock Division, */
sky2_write32
(
hw
,
B2_Y2_CLK_CTRL
,
Y2_CLK_DIV_DIS
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
&&
hw
->
chip_rev
>
1
)
/* enable bits are inverted */
sky2_write8
(
hw
,
B2_Y2_CLK_GATE
,
Y2_PCI_CLK_LNK1_DIS
|
Y2_COR_CLK_LNK1_DIS
|
Y2_CLK_GAT_LNK1_DIS
|
Y2_PCI_CLK_LNK2_DIS
|
Y2_COR_CLK_LNK2_DIS
|
Y2_CLK_GAT_LNK2_DIS
);
else
sky2_write8
(
hw
,
B2_Y2_CLK_GATE
,
0
);
/* Turn off phy power saving */
pci_read_config_dword
(
hw
->
pdev
,
PCI_DEV_REG1
,
&
reg1
);
reg1
&=
~
(
PCI_Y2_PHY1_POWD
|
PCI_Y2_PHY2_POWD
);
/* looks like this XL is back asswards .. */
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
&&
hw
->
chip_rev
>
1
)
{
reg1
|=
PCI_Y2_PHY1_COMA
;
if
(
hw
->
ports
>
1
)
reg1
|=
PCI_Y2_PHY2_COMA
;
}
pci_write_config_dword
(
hw
->
pdev
,
PCI_DEV_REG1
,
reg1
);
break
;
case
PCI_D3hot
:
case
PCI_D3cold
:
/* Turn on phy power saving */
pci_read_config_dword
(
hw
->
pdev
,
PCI_DEV_REG1
,
&
reg1
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
&&
hw
->
chip_rev
>
1
)
reg1
&=
~
(
PCI_Y2_PHY1_POWD
|
PCI_Y2_PHY2_POWD
);
else
reg1
|=
(
PCI_Y2_PHY1_POWD
|
PCI_Y2_PHY2_POWD
);
pci_write_config_dword
(
hw
->
pdev
,
PCI_DEV_REG1
,
reg1
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
&&
hw
->
chip_rev
>
1
)
sky2_write8
(
hw
,
B2_Y2_CLK_GATE
,
0
);
else
/* enable bits are inverted */
sky2_write8
(
hw
,
B2_Y2_CLK_GATE
,
Y2_PCI_CLK_LNK1_DIS
|
Y2_COR_CLK_LNK1_DIS
|
Y2_CLK_GAT_LNK1_DIS
|
Y2_PCI_CLK_LNK2_DIS
|
Y2_COR_CLK_LNK2_DIS
|
Y2_CLK_GAT_LNK2_DIS
);
/* switch power to VAUX */
if
(
vaux
&&
state
!=
PCI_D3cold
)
sky2_write8
(
hw
,
B0_POWER_CTRL
,
(
PC_VAUX_ENA
|
PC_VCC_ENA
|
PC_VAUX_ON
|
PC_VCC_OFF
));
break
;
default:
printk
(
KERN_ERR
PFX
"Unknown power state %d
\n
"
,
state
);
ret
=
-
1
;
}
pci_write_config_byte
(
hw
->
pdev
,
hw
->
pm_cap
+
PCI_PM_CTRL
,
power_control
);
sky2_write8
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_OFF
);
return
ret
;
}
static
void
sky2_phy_reset
(
struct
sky2_hw
*
hw
,
unsigned
port
)
{
u16
reg
;
/* disable all GMAC IRQ's */
sky2_write8
(
hw
,
SK_REG
(
port
,
GMAC_IRQ_MSK
),
0
);
/* disable PHY IRQs */
gm_phy_write
(
hw
,
port
,
PHY_MARV_INT_MASK
,
0
);
gma_write16
(
hw
,
port
,
GM_MC_ADDR_H1
,
0
);
/* clear MC hash */
gma_write16
(
hw
,
port
,
GM_MC_ADDR_H2
,
0
);
gma_write16
(
hw
,
port
,
GM_MC_ADDR_H3
,
0
);
gma_write16
(
hw
,
port
,
GM_MC_ADDR_H4
,
0
);
reg
=
gma_read16
(
hw
,
port
,
GM_RX_CTRL
);
reg
|=
GM_RXCR_UCF_ENA
|
GM_RXCR_MCF_ENA
;
gma_write16
(
hw
,
port
,
GM_RX_CTRL
,
reg
);
}
static
void
sky2_phy_init
(
struct
sky2_hw
*
hw
,
unsigned
port
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
hw
->
dev
[
port
]);
u16
ctrl
,
ct1000
,
adv
,
pg
,
ledctrl
,
ledover
;
if
(
sky2
->
autoneg
==
AUTONEG_ENABLE
&&
hw
->
chip_id
!=
CHIP_ID_YUKON_XL
)
{
u16
ectrl
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_EXT_CTRL
);
ectrl
&=
~
(
PHY_M_EC_M_DSC_MSK
|
PHY_M_EC_S_DSC_MSK
|
PHY_M_EC_MAC_S_MSK
);
ectrl
|=
PHY_M_EC_MAC_S
(
MAC_TX_CLK_25_MHZ
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_EC
)
ectrl
|=
PHY_M_EC_DSC_2
(
2
)
|
PHY_M_EC_DOWN_S_ENA
;
else
ectrl
|=
PHY_M_EC_M_DSC
(
2
)
|
PHY_M_EC_S_DSC
(
3
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_CTRL
,
ectrl
);
}
ctrl
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_PHY_CTRL
);
if
(
hw
->
copper
)
{
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_FE
)
{
/* enable automatic crossover */
ctrl
|=
PHY_M_PC_MDI_XMODE
(
PHY_M_PC_ENA_AUTO
)
>>
1
;
}
else
{
/* disable energy detect */
ctrl
&=
~
PHY_M_PC_EN_DET_MSK
;
/* enable automatic crossover */
ctrl
|=
PHY_M_PC_MDI_XMODE
(
PHY_M_PC_ENA_AUTO
);
if
(
sky2
->
autoneg
==
AUTONEG_ENABLE
&&
hw
->
chip_id
==
CHIP_ID_YUKON_XL
)
{
ctrl
&=
~
PHY_M_PC_DSC_MSK
;
ctrl
|=
PHY_M_PC_DSC
(
2
)
|
PHY_M_PC_DOWN_S_ENA
;
}
}
gm_phy_write
(
hw
,
port
,
PHY_MARV_PHY_CTRL
,
ctrl
);
}
else
{
/* workaround for deviation #4.88 (CRC errors) */
/* disable Automatic Crossover */
ctrl
&=
~
PHY_M_PC_MDIX_MSK
;
gm_phy_write
(
hw
,
port
,
PHY_MARV_PHY_CTRL
,
ctrl
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
)
{
/* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
2
);
ctrl
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_PHY_CTRL
);
ctrl
&=
~
PHY_M_MAC_MD_MSK
;
ctrl
|=
PHY_M_MAC_MODE_SEL
(
PHY_M_MAC_MD_1000BX
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_PHY_CTRL
,
ctrl
);
/* select page 1 to access Fiber registers */
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
1
);
}
}
ctrl
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_CTRL
);
if
(
sky2
->
autoneg
==
AUTONEG_DISABLE
)
ctrl
&=
~
PHY_CT_ANE
;
else
ctrl
|=
PHY_CT_ANE
;
ctrl
|=
PHY_CT_RESET
;
gm_phy_write
(
hw
,
port
,
PHY_MARV_CTRL
,
ctrl
);
ctrl
=
0
;
ct1000
=
0
;
adv
=
PHY_AN_CSMA
;
if
(
sky2
->
autoneg
==
AUTONEG_ENABLE
)
{
if
(
hw
->
copper
)
{
if
(
sky2
->
advertising
&
ADVERTISED_1000baseT_Full
)
ct1000
|=
PHY_M_1000C_AFD
;
if
(
sky2
->
advertising
&
ADVERTISED_1000baseT_Half
)
ct1000
|=
PHY_M_1000C_AHD
;
if
(
sky2
->
advertising
&
ADVERTISED_100baseT_Full
)
adv
|=
PHY_M_AN_100_FD
;
if
(
sky2
->
advertising
&
ADVERTISED_100baseT_Half
)
adv
|=
PHY_M_AN_100_HD
;
if
(
sky2
->
advertising
&
ADVERTISED_10baseT_Full
)
adv
|=
PHY_M_AN_10_FD
;
if
(
sky2
->
advertising
&
ADVERTISED_10baseT_Half
)
adv
|=
PHY_M_AN_10_HD
;
}
else
/* special defines for FIBER (88E1011S only) */
adv
|=
PHY_M_AN_1000X_AHD
|
PHY_M_AN_1000X_AFD
;
/* Set Flow-control capabilities */
if
(
sky2
->
tx_pause
&&
sky2
->
rx_pause
)
adv
|=
PHY_AN_PAUSE_CAP
;
/* symmetric */
else
if
(
sky2
->
rx_pause
&&
!
sky2
->
tx_pause
)
adv
|=
PHY_AN_PAUSE_ASYM
|
PHY_AN_PAUSE_CAP
;
else
if
(
!
sky2
->
rx_pause
&&
sky2
->
tx_pause
)
adv
|=
PHY_AN_PAUSE_ASYM
;
/* local */
/* Restart Auto-negotiation */
ctrl
|=
PHY_CT_ANE
|
PHY_CT_RE_CFG
;
}
else
{
/* forced speed/duplex settings */
ct1000
=
PHY_M_1000C_MSE
;
if
(
sky2
->
duplex
==
DUPLEX_FULL
)
ctrl
|=
PHY_CT_DUP_MD
;
switch
(
sky2
->
speed
)
{
case
SPEED_1000
:
ctrl
|=
PHY_CT_SP1000
;
break
;
case
SPEED_100
:
ctrl
|=
PHY_CT_SP100
;
break
;
}
ctrl
|=
PHY_CT_RESET
;
}
if
(
hw
->
chip_id
!=
CHIP_ID_YUKON_FE
)
gm_phy_write
(
hw
,
port
,
PHY_MARV_1000T_CTRL
,
ct1000
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_AUNE_ADV
,
adv
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_CTRL
,
ctrl
);
/* Setup Phy LED's */
ledctrl
=
PHY_M_LED_PULS_DUR
(
PULS_170MS
);
ledover
=
0
;
switch
(
hw
->
chip_id
)
{
case
CHIP_ID_YUKON_FE
:
/* on 88E3082 these bits are at 11..9 (shifted left) */
ledctrl
|=
PHY_M_LED_BLINK_RT
(
BLINK_84MS
)
<<
1
;
ctrl
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_FE_LED_PAR
);
/* delete ACT LED control bits */
ctrl
&=
~
PHY_M_FELP_LED1_MSK
;
/* change ACT LED control to blink mode */
ctrl
|=
PHY_M_FELP_LED1_CTRL
(
LED_PAR_CTRL_ACT_BL
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_FE_LED_PAR
,
ctrl
);
break
;
case
CHIP_ID_YUKON_XL
:
pg
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_EXT_ADR
);
/* select page 3 to access LED control register */
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
3
);
/* set LED Function Control register */
gm_phy_write
(
hw
,
port
,
PHY_MARV_PHY_CTRL
,
(
PHY_M_LEDC_LOS_CTRL
(
1
)
|
/* LINK/ACT */
PHY_M_LEDC_INIT_CTRL
(
7
)
|
/* 10 Mbps */
PHY_M_LEDC_STA1_CTRL
(
7
)
|
/* 100 Mbps */
PHY_M_LEDC_STA0_CTRL
(
7
)));
/* 1000 Mbps */
/* set Polarity Control register */
gm_phy_write
(
hw
,
port
,
PHY_MARV_PHY_STAT
,
(
PHY_M_POLC_LS1_P_MIX
(
4
)
|
PHY_M_POLC_IS0_P_MIX
(
4
)
|
PHY_M_POLC_LOS_CTRL
(
2
)
|
PHY_M_POLC_INIT_CTRL
(
2
)
|
PHY_M_POLC_STA1_CTRL
(
2
)
|
PHY_M_POLC_STA0_CTRL
(
2
)));
/* restore page register */
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
pg
);
break
;
default:
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
ledctrl
|=
PHY_M_LED_BLINK_RT
(
BLINK_84MS
)
|
PHY_M_LEDC_TX_CTRL
;
/* turn off the Rx LED (LED_RX) */
ledover
|=
PHY_M_LED_MO_RX
(
MO_LED_OFF
);
}
gm_phy_write
(
hw
,
port
,
PHY_MARV_LED_CTRL
,
ledctrl
);
if
(
sky2
->
autoneg
==
AUTONEG_DISABLE
||
sky2
->
speed
==
SPEED_100
)
{
/* turn on 100 Mbps LED (LED_LINK100) */
ledover
|=
PHY_M_LED_MO_100
(
MO_LED_ON
);
}
if
(
ledover
)
gm_phy_write
(
hw
,
port
,
PHY_MARV_LED_OVER
,
ledover
);
/* Enable phy interrupt on auto-negotiation complete (or link up) */
if
(
sky2
->
autoneg
==
AUTONEG_ENABLE
)
gm_phy_write
(
hw
,
port
,
PHY_MARV_INT_MASK
,
PHY_M_IS_AN_COMPL
);
else
gm_phy_write
(
hw
,
port
,
PHY_MARV_INT_MASK
,
PHY_M_DEF_MSK
);
}
static
void
sky2_mac_init
(
struct
sky2_hw
*
hw
,
unsigned
port
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
hw
->
dev
[
port
]);
u16
reg
;
int
i
;
const
u8
*
addr
=
hw
->
dev
[
port
]
->
dev_addr
;
sky2_write8
(
hw
,
SK_REG
(
port
,
GPHY_CTRL
),
GPC_RST_SET
);
sky2_write8
(
hw
,
SK_REG
(
port
,
GPHY_CTRL
),
GPC_RST_CLR
);
sky2_write8
(
hw
,
SK_REG
(
port
,
GMAC_CTRL
),
GMC_RST_CLR
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
&&
hw
->
chip_rev
==
0
&&
port
==
1
)
{
/* WA DEV_472 -- looks like crossed wires on port 2 */
/* clear GMAC 1 Control reset */
sky2_write8
(
hw
,
SK_REG
(
0
,
GMAC_CTRL
),
GMC_RST_CLR
);
do
{
sky2_write8
(
hw
,
SK_REG
(
1
,
GMAC_CTRL
),
GMC_RST_SET
);
sky2_write8
(
hw
,
SK_REG
(
1
,
GMAC_CTRL
),
GMC_RST_CLR
);
}
while
(
gm_phy_read
(
hw
,
1
,
PHY_MARV_ID0
)
!=
PHY_MARV_ID0_VAL
||
gm_phy_read
(
hw
,
1
,
PHY_MARV_ID1
)
!=
PHY_MARV_ID1_Y2
||
gm_phy_read
(
hw
,
1
,
PHY_MARV_INT_MASK
)
!=
0
);
}
if
(
sky2
->
autoneg
==
AUTONEG_DISABLE
)
{
reg
=
gma_read16
(
hw
,
port
,
GM_GP_CTRL
);
reg
|=
GM_GPCR_AU_ALL_DIS
;
gma_write16
(
hw
,
port
,
GM_GP_CTRL
,
reg
);
gma_read16
(
hw
,
port
,
GM_GP_CTRL
);
switch
(
sky2
->
speed
)
{
case
SPEED_1000
:
reg
|=
GM_GPCR_SPEED_1000
;
/* fallthru */
case
SPEED_100
:
reg
|=
GM_GPCR_SPEED_100
;
}
if
(
sky2
->
duplex
==
DUPLEX_FULL
)
reg
|=
GM_GPCR_DUP_FULL
;
}
else
reg
=
GM_GPCR_SPEED_1000
|
GM_GPCR_SPEED_100
|
GM_GPCR_DUP_FULL
;
if
(
!
sky2
->
tx_pause
&&
!
sky2
->
rx_pause
)
{
sky2_write32
(
hw
,
SK_REG
(
port
,
GMAC_CTRL
),
GMC_PAUSE_OFF
);
reg
|=
GM_GPCR_FC_TX_DIS
|
GM_GPCR_FC_RX_DIS
|
GM_GPCR_AU_FCT_DIS
;
}
else
if
(
sky2
->
tx_pause
&&
!
sky2
->
rx_pause
)
{
/* disable Rx flow-control */
reg
|=
GM_GPCR_FC_RX_DIS
|
GM_GPCR_AU_FCT_DIS
;
}
gma_write16
(
hw
,
port
,
GM_GP_CTRL
,
reg
);
sky2_read16
(
hw
,
SK_REG
(
port
,
GMAC_IRQ_SRC
));
spin_lock_bh
(
&
hw
->
phy_lock
);
sky2_phy_init
(
hw
,
port
);
spin_unlock_bh
(
&
hw
->
phy_lock
);
/* MIB clear */
reg
=
gma_read16
(
hw
,
port
,
GM_PHY_ADDR
);
gma_write16
(
hw
,
port
,
GM_PHY_ADDR
,
reg
|
GM_PAR_MIB_CLR
);
for
(
i
=
0
;
i
<
GM_MIB_CNT_SIZE
;
i
++
)
gma_read16
(
hw
,
port
,
GM_MIB_CNT_BASE
+
8
*
i
);
gma_write16
(
hw
,
port
,
GM_PHY_ADDR
,
reg
);
/* transmit control */
gma_write16
(
hw
,
port
,
GM_TX_CTRL
,
TX_COL_THR
(
TX_COL_DEF
));
/* receive control reg: unicast + multicast + no FCS */
gma_write16
(
hw
,
port
,
GM_RX_CTRL
,
GM_RXCR_UCF_ENA
|
GM_RXCR_CRC_DIS
|
GM_RXCR_MCF_ENA
);
/* transmit flow control */
gma_write16
(
hw
,
port
,
GM_TX_FLOW_CTRL
,
0xffff
);
/* transmit parameter */
gma_write16
(
hw
,
port
,
GM_TX_PARAM
,
TX_JAM_LEN_VAL
(
TX_JAM_LEN_DEF
)
|
TX_JAM_IPG_VAL
(
TX_JAM_IPG_DEF
)
|
TX_IPG_JAM_DATA
(
TX_IPG_JAM_DEF
)
|
TX_BACK_OFF_LIM
(
TX_BOF_LIM_DEF
));
/* serial mode register */
reg
=
DATA_BLIND_VAL
(
DATA_BLIND_DEF
)
|
GM_SMOD_VLAN_ENA
|
IPG_DATA_VAL
(
IPG_DATA_DEF
);
if
(
hw
->
dev
[
port
]
->
mtu
>
ETH_DATA_LEN
)
reg
|=
GM_SMOD_JUMBO_ENA
;
gma_write16
(
hw
,
port
,
GM_SERIAL_MODE
,
reg
);
/* virtual address for data */
gma_set_addr
(
hw
,
port
,
GM_SRC_ADDR_2L
,
addr
);
/* physical address: used for pause frames */
gma_set_addr
(
hw
,
port
,
GM_SRC_ADDR_1L
,
addr
);
/* ignore counter overflows */
gma_write16
(
hw
,
port
,
GM_TX_IRQ_MSK
,
0
);
gma_write16
(
hw
,
port
,
GM_RX_IRQ_MSK
,
0
);
gma_write16
(
hw
,
port
,
GM_TR_IRQ_MSK
,
0
);
/* Configure Rx MAC FIFO */
sky2_write8
(
hw
,
SK_REG
(
port
,
RX_GMF_CTRL_T
),
GMF_RST_CLR
);
sky2_write16
(
hw
,
SK_REG
(
port
,
RX_GMF_CTRL_T
),
GMF_RX_CTRL_DEF
);
/* Flush Rx MAC FIFO on any flow control or error */
reg
=
GMR_FS_ANY_ERR
;
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
&&
hw
->
chip_rev
<=
1
)
reg
=
0
;
/* WA dev #4.115 */
sky2_write16
(
hw
,
SK_REG
(
port
,
RX_GMF_FL_MSK
),
reg
);
/* Set threshold to 0xa (64 bytes)
* ASF disabled so no need to do WA dev #4.30
*/
sky2_write16
(
hw
,
SK_REG
(
port
,
RX_GMF_FL_THR
),
RX_GMF_FL_THR_DEF
);
/* Configure Tx MAC FIFO */
sky2_write8
(
hw
,
SK_REG
(
port
,
TX_GMF_CTRL_T
),
GMF_RST_CLR
);
sky2_write16
(
hw
,
SK_REG
(
port
,
TX_GMF_CTRL_T
),
GMF_OPER_ON
);
}
static
void
sky2_ramset
(
struct
sky2_hw
*
hw
,
u16
q
,
u32
start
,
size_t
len
)
{
u32
end
;
start
/=
8
;
len
/=
8
;
end
=
start
+
len
-
1
;
sky2_write8
(
hw
,
RB_ADDR
(
q
,
RB_CTRL
),
RB_RST_CLR
);
sky2_write32
(
hw
,
RB_ADDR
(
q
,
RB_START
),
start
);
sky2_write32
(
hw
,
RB_ADDR
(
q
,
RB_END
),
end
);
sky2_write32
(
hw
,
RB_ADDR
(
q
,
RB_WP
),
start
);
sky2_write32
(
hw
,
RB_ADDR
(
q
,
RB_RP
),
start
);
if
(
q
==
Q_R1
||
q
==
Q_R2
)
{
u32
rxup
,
rxlo
;
rxlo
=
len
/
2
;
rxup
=
rxlo
+
len
/
4
;
/* Set thresholds on receive queue's */
sky2_write32
(
hw
,
RB_ADDR
(
q
,
RB_RX_UTPP
),
rxup
);
sky2_write32
(
hw
,
RB_ADDR
(
q
,
RB_RX_LTPP
),
rxlo
);
}
else
{
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 1K on Yukon
*/
sky2_write8
(
hw
,
RB_ADDR
(
q
,
RB_CTRL
),
RB_ENA_STFWD
);
}
sky2_write8
(
hw
,
RB_ADDR
(
q
,
RB_CTRL
),
RB_ENA_OP_MD
);
sky2_read8
(
hw
,
RB_ADDR
(
q
,
RB_CTRL
));
}
/* Setup Bus Memory Interface */
static
void
sky2_qset
(
struct
sky2_hw
*
hw
,
u16
q
,
u32
wm
)
{
sky2_write32
(
hw
,
Q_ADDR
(
q
,
Q_CSR
),
BMU_CLR_RESET
);
sky2_write32
(
hw
,
Q_ADDR
(
q
,
Q_CSR
),
BMU_OPER_INIT
);
sky2_write32
(
hw
,
Q_ADDR
(
q
,
Q_CSR
),
BMU_FIFO_OP_ON
);
sky2_write32
(
hw
,
Q_ADDR
(
q
,
Q_WM
),
wm
);
}
/* Setup prefetch unit registers. This is the interface between
* hardware and driver list elements
*/
static
inline
void
sky2_prefetch_init
(
struct
sky2_hw
*
hw
,
u32
qaddr
,
u64
addr
,
u32
last
)
{
sky2_write32
(
hw
,
Y2_QADDR
(
qaddr
,
PREF_UNIT_CTRL
),
PREF_UNIT_RST_SET
);
sky2_write32
(
hw
,
Y2_QADDR
(
qaddr
,
PREF_UNIT_CTRL
),
PREF_UNIT_RST_CLR
);
sky2_write32
(
hw
,
Y2_QADDR
(
qaddr
,
PREF_UNIT_ADDR_HI
),
addr
>>
32
);
sky2_write32
(
hw
,
Y2_QADDR
(
qaddr
,
PREF_UNIT_ADDR_LO
),
(
u32
)
addr
);
sky2_write16
(
hw
,
Y2_QADDR
(
qaddr
,
PREF_UNIT_LAST_IDX
),
last
);
sky2_write32
(
hw
,
Y2_QADDR
(
qaddr
,
PREF_UNIT_CTRL
),
PREF_UNIT_OP_ON
);
sky2_read32
(
hw
,
Y2_QADDR
(
qaddr
,
PREF_UNIT_CTRL
));
}
static
inline
struct
sky2_tx_le
*
get_tx_le
(
struct
sky2_port
*
sky2
)
{
struct
sky2_tx_le
*
le
=
sky2
->
tx_le
+
sky2
->
tx_prod
;
sky2
->
tx_prod
=
(
sky2
->
tx_prod
+
1
)
%
TX_RING_SIZE
;
return
le
;
}
/*
* This is a workaround code taken from SysKonnect sk98lin driver
* to deal with chip bug on Yukon EC rev 0 in the wraparound case.
*/
static
inline
void
sky2_put_idx
(
struct
sky2_hw
*
hw
,
unsigned
q
,
u16
idx
,
u16
*
last
,
u16
size
)
{
if
(
is_ec_a1
(
hw
)
&&
idx
<
*
last
)
{
u16
hwget
=
sky2_read16
(
hw
,
Y2_QADDR
(
q
,
PREF_UNIT_GET_IDX
));
if
(
hwget
==
0
)
{
/* Start prefetching again */
sky2_write8
(
hw
,
Y2_QADDR
(
q
,
PREF_UNIT_FIFO_WM
),
0xe0
);
goto
setnew
;
}
if
(
hwget
==
size
-
1
)
{
/* set watermark to one list element */
sky2_write8
(
hw
,
Y2_QADDR
(
q
,
PREF_UNIT_FIFO_WM
),
8
);
/* set put index to first list element */
sky2_write16
(
hw
,
Y2_QADDR
(
q
,
PREF_UNIT_PUT_IDX
),
0
);
}
else
/* have hardware go to end of list */
sky2_write16
(
hw
,
Y2_QADDR
(
q
,
PREF_UNIT_PUT_IDX
),
size
-
1
);
}
else
{
setnew:
sky2_write16
(
hw
,
Y2_QADDR
(
q
,
PREF_UNIT_PUT_IDX
),
idx
);
}
*
last
=
idx
;
}
static
inline
struct
sky2_rx_le
*
sky2_next_rx
(
struct
sky2_port
*
sky2
)
{
struct
sky2_rx_le
*
le
=
sky2
->
rx_le
+
sky2
->
rx_put
;
sky2
->
rx_put
=
(
sky2
->
rx_put
+
1
)
%
RX_LE_SIZE
;
return
le
;
}
/* Build description to hardware about buffer */
static
inline
void
sky2_rx_add
(
struct
sky2_port
*
sky2
,
struct
ring_info
*
re
)
{
struct
sky2_rx_le
*
le
;
u32
hi
=
(
re
->
mapaddr
>>
16
)
>>
16
;
re
->
idx
=
sky2
->
rx_put
;
if
(
sky2
->
rx_addr64
!=
hi
)
{
le
=
sky2_next_rx
(
sky2
);
le
->
addr
=
cpu_to_le32
(
hi
);
le
->
ctrl
=
0
;
le
->
opcode
=
OP_ADDR64
|
HW_OWNER
;
sky2
->
rx_addr64
=
hi
;
}
le
=
sky2_next_rx
(
sky2
);
le
->
addr
=
cpu_to_le32
((
u32
)
re
->
mapaddr
);
le
->
length
=
cpu_to_le16
(
re
->
maplen
);
le
->
ctrl
=
0
;
le
->
opcode
=
OP_PACKET
|
HW_OWNER
;
}
/* Tell chip where to start receive checksum.
* Actually has two checksums, but set both same to avoid possible byte
* order problems.
*/
static
void
rx_set_checksum
(
struct
sky2_port
*
sky2
)
{
struct
sky2_rx_le
*
le
;
le
=
sky2_next_rx
(
sky2
);
le
->
addr
=
(
ETH_HLEN
<<
16
)
|
ETH_HLEN
;
le
->
ctrl
=
0
;
le
->
opcode
=
OP_TCPSTART
|
HW_OWNER
;
sky2_write32
(
sky2
->
hw
,
Q_ADDR
(
rxqaddr
[
sky2
->
port
],
Q_CSR
),
sky2
->
rx_csum
?
BMU_ENA_RX_CHKSUM
:
BMU_DIS_RX_CHKSUM
);
}
/*
* The RX Stop command will not work for Yukon-2 if the BMU does not
* reach the end of packet and since we can't make sure that we have
* incoming data, we must reset the BMU while it is not doing a DMA
* transfer. Since it is possible that the RX path is still active,
* the RX RAM buffer will be stopped first, so any possible incoming
* data will not trigger a DMA. After the RAM buffer is stopped, the
* BMU is polled until any DMA in progress is ended and only then it
* will be reset.
*/
static
void
sky2_rx_stop
(
struct
sky2_port
*
sky2
)
{
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
rxq
=
rxqaddr
[
sky2
->
port
];
int
i
;
/* disable the RAM Buffer receive queue */
sky2_write8
(
hw
,
RB_ADDR
(
rxq
,
RB_CTRL
),
RB_DIS_OP_MD
);
for
(
i
=
0
;
i
<
0xffff
;
i
++
)
if
(
sky2_read8
(
hw
,
RB_ADDR
(
rxq
,
Q_RSL
))
==
sky2_read8
(
hw
,
RB_ADDR
(
rxq
,
Q_RL
)))
goto
stopped
;
printk
(
KERN_WARNING
PFX
"%s: receiver stop failed
\n
"
,
sky2
->
netdev
->
name
);
stopped:
sky2_write32
(
hw
,
Q_ADDR
(
rxq
,
Q_CSR
),
BMU_RST_SET
|
BMU_FIFO_RST
);
/* reset the Rx prefetch unit */
sky2_write32
(
hw
,
Y2_QADDR
(
rxq
,
PREF_UNIT_CTRL
),
PREF_UNIT_RST_SET
);
}
/* Clean out receive buffer area, assumes receiver hardware stopped */
static
void
sky2_rx_clean
(
struct
sky2_port
*
sky2
)
{
unsigned
i
;
memset
(
sky2
->
rx_le
,
0
,
RX_LE_BYTES
);
for
(
i
=
0
;
i
<
sky2
->
rx_pending
;
i
++
)
{
struct
ring_info
*
re
=
sky2
->
rx_ring
+
i
;
if
(
re
->
skb
)
{
pci_unmap_single
(
sky2
->
hw
->
pdev
,
re
->
mapaddr
,
re
->
maplen
,
PCI_DMA_FROMDEVICE
);
kfree_skb
(
re
->
skb
);
re
->
skb
=
NULL
;
}
}
}
#ifdef SKY2_VLAN_TAG_USED
static
void
sky2_vlan_rx_register
(
struct
net_device
*
dev
,
struct
vlan_group
*
grp
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
u16
port
=
sky2
->
port
;
unsigned
long
flags
;
spin_lock_irqsave
(
&
sky2
->
tx_lock
,
flags
);
sky2_write32
(
hw
,
SK_REG
(
port
,
RX_GMF_CTRL_T
),
RX_VLAN_STRIP_ON
);
sky2_write32
(
hw
,
SK_REG
(
port
,
TX_GMF_CTRL_T
),
TX_VLAN_TAG_ON
);
sky2
->
vlgrp
=
grp
;
spin_unlock_irqrestore
(
&
sky2
->
tx_lock
,
flags
);
}
static
void
sky2_vlan_rx_kill_vid
(
struct
net_device
*
dev
,
unsigned
short
vid
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
u16
port
=
sky2
->
port
;
unsigned
long
flags
;
spin_lock_irqsave
(
&
sky2
->
tx_lock
,
flags
);
sky2_write32
(
hw
,
SK_REG
(
port
,
RX_GMF_CTRL_T
),
RX_VLAN_STRIP_OFF
);
sky2_write32
(
hw
,
SK_REG
(
port
,
TX_GMF_CTRL_T
),
TX_VLAN_TAG_OFF
);
if
(
sky2
->
vlgrp
)
sky2
->
vlgrp
->
vlan_devices
[
vid
]
=
NULL
;
spin_unlock_irqrestore
(
&
sky2
->
tx_lock
,
flags
);
}
#endif
#define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
static
inline
unsigned
rx_size
(
const
struct
sky2_port
*
sky2
)
{
return
roundup
(
sky2
->
netdev
->
mtu
+
ETH_HLEN
+
4
,
8
);
}
/*
* Allocate and setup receiver buffer pool.
* In case of 64 bit dma, there are 2X as many list elements
* available as ring entries
* and need to reserve one list element so we don't wrap around.
*
* It appears the hardware has a bug in the FIFO logic that
* cause it to hang if the FIFO gets overrun and the receive buffer
* is not aligned. This means we can't use skb_reserve to align
* the IP header.
*/
static
int
sky2_rx_start
(
struct
sky2_port
*
sky2
)
{
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
size
=
rx_size
(
sky2
);
unsigned
rxq
=
rxqaddr
[
sky2
->
port
];
int
i
;
sky2
->
rx_put
=
sky2
->
rx_next
=
0
;
sky2_qset
(
hw
,
rxq
,
is_pciex
(
hw
)
?
0x80
:
0x600
);
sky2_prefetch_init
(
hw
,
rxq
,
sky2
->
rx_le_map
,
RX_LE_SIZE
-
1
);
rx_set_checksum
(
sky2
);
for
(
i
=
0
;
i
<
sky2
->
rx_pending
;
i
++
)
{
struct
ring_info
*
re
=
sky2
->
rx_ring
+
i
;
re
->
skb
=
dev_alloc_skb
(
size
);
if
(
!
re
->
skb
)
goto
nomem
;
re
->
mapaddr
=
pci_map_single
(
hw
->
pdev
,
re
->
skb
->
data
,
size
,
PCI_DMA_FROMDEVICE
);
re
->
maplen
=
size
;
sky2_rx_add
(
sky2
,
re
);
}
/* Tell chip about available buffers */
sky2_write16
(
hw
,
Y2_QADDR
(
rxq
,
PREF_UNIT_PUT_IDX
),
sky2
->
rx_put
);
sky2
->
rx_last_put
=
sky2_read16
(
hw
,
Y2_QADDR
(
rxq
,
PREF_UNIT_PUT_IDX
));
return
0
;
nomem:
sky2_rx_clean
(
sky2
);
return
-
ENOMEM
;
}
/* Bring up network interface. */
static
int
sky2_up
(
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
port
=
sky2
->
port
;
u32
ramsize
,
rxspace
;
int
err
=
-
ENOMEM
;
if
(
netif_msg_ifup
(
sky2
))
printk
(
KERN_INFO
PFX
"%s: enabling interface
\n
"
,
dev
->
name
);
/* must be power of 2 */
sky2
->
tx_le
=
pci_alloc_consistent
(
hw
->
pdev
,
TX_RING_SIZE
*
sizeof
(
struct
sky2_tx_le
),
&
sky2
->
tx_le_map
);
if
(
!
sky2
->
tx_le
)
goto
err_out
;
sky2
->
tx_ring
=
kzalloc
(
TX_RING_SIZE
*
sizeof
(
struct
ring_info
),
GFP_KERNEL
);
if
(
!
sky2
->
tx_ring
)
goto
err_out
;
sky2
->
tx_prod
=
sky2
->
tx_cons
=
0
;
sky2
->
rx_le
=
pci_alloc_consistent
(
hw
->
pdev
,
RX_LE_BYTES
,
&
sky2
->
rx_le_map
);
if
(
!
sky2
->
rx_le
)
goto
err_out
;
memset
(
sky2
->
rx_le
,
0
,
RX_LE_BYTES
);
sky2
->
rx_ring
=
kzalloc
(
sky2
->
rx_pending
*
sizeof
(
struct
ring_info
),
GFP_KERNEL
);
if
(
!
sky2
->
rx_ring
)
goto
err_out
;
sky2_mac_init
(
hw
,
port
);
/* Configure RAM buffers */
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_FE
||
(
hw
->
chip_id
==
CHIP_ID_YUKON_EC
&&
hw
->
chip_rev
==
2
))
ramsize
=
4096
;
else
{
u8
e0
=
sky2_read8
(
hw
,
B2_E_0
);
ramsize
=
(
e0
==
0
)
?
(
128
*
1024
)
:
(
e0
*
4096
);
}
/* 2/3 for Rx */
rxspace
=
(
2
*
ramsize
)
/
3
;
sky2_ramset
(
hw
,
rxqaddr
[
port
],
0
,
rxspace
);
sky2_ramset
(
hw
,
txqaddr
[
port
],
rxspace
,
ramsize
-
rxspace
);
/* Make sure SyncQ is disabled */
sky2_write8
(
hw
,
RB_ADDR
(
port
==
0
?
Q_XS1
:
Q_XS2
,
RB_CTRL
),
RB_RST_SET
);
sky2_qset
(
hw
,
txqaddr
[
port
],
0x600
);
sky2_prefetch_init
(
hw
,
txqaddr
[
port
],
sky2
->
tx_le_map
,
TX_RING_SIZE
-
1
);
err
=
sky2_rx_start
(
sky2
);
if
(
err
)
goto
err_out
;
/* Enable interrupts from phy/mac for port */
hw
->
intr_mask
|=
(
port
==
0
)
?
Y2_IS_PORT_1
:
Y2_IS_PORT_2
;
sky2_write32
(
hw
,
B0_IMSK
,
hw
->
intr_mask
);
return
0
;
err_out:
if
(
sky2
->
rx_le
)
pci_free_consistent
(
hw
->
pdev
,
RX_LE_BYTES
,
sky2
->
rx_le
,
sky2
->
rx_le_map
);
if
(
sky2
->
tx_le
)
pci_free_consistent
(
hw
->
pdev
,
TX_RING_SIZE
*
sizeof
(
struct
sky2_tx_le
),
sky2
->
tx_le
,
sky2
->
tx_le_map
);
if
(
sky2
->
tx_ring
)
kfree
(
sky2
->
tx_ring
);
if
(
sky2
->
rx_ring
)
kfree
(
sky2
->
rx_ring
);
return
err
;
}
/* Modular subtraction in ring */
static
inline
int
tx_dist
(
unsigned
tail
,
unsigned
head
)
{
return
(
head
>=
tail
?
head
:
head
+
TX_RING_SIZE
)
-
tail
;
}
/* Number of list elements available for next tx */
static
inline
int
tx_avail
(
const
struct
sky2_port
*
sky2
)
{
return
sky2
->
tx_pending
-
tx_dist
(
sky2
->
tx_cons
,
sky2
->
tx_prod
);
}
/* Estimate of number of transmit list elements required */
static
inline
unsigned
tx_le_req
(
const
struct
sk_buff
*
skb
)
{
unsigned
count
;
count
=
sizeof
(
dma_addr_t
)
/
sizeof
(
u32
);
count
+=
skb_shinfo
(
skb
)
->
nr_frags
*
count
;
if
(
skb_shinfo
(
skb
)
->
tso_size
)
++
count
;
if
(
skb
->
ip_summed
)
++
count
;
return
count
;
}
/*
* Put one packet in ring for transmit.
* A single packet can generate multiple list elements, and
* the number of ring elements will probably be less than the number
* of list elements used.
*/
static
int
sky2_xmit_frame
(
struct
sk_buff
*
skb
,
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
struct
sky2_tx_le
*
le
=
NULL
;
struct
ring_info
*
re
;
unsigned
long
flags
;
unsigned
i
,
len
;
dma_addr_t
mapping
;
u32
addr64
;
u16
mss
;
u8
ctrl
;
local_irq_save
(
flags
);
if
(
!
spin_trylock
(
&
sky2
->
tx_lock
))
{
local_irq_restore
(
flags
);
return
NETDEV_TX_LOCKED
;
}
if
(
unlikely
(
tx_avail
(
sky2
)
<
tx_le_req
(
skb
)))
{
netif_stop_queue
(
dev
);
spin_unlock_irqrestore
(
&
sky2
->
tx_lock
,
flags
);
printk
(
KERN_WARNING
PFX
"%s: ring full when queue awake!
\n
"
,
dev
->
name
);
return
NETDEV_TX_BUSY
;
}
if
(
unlikely
(
netif_msg_tx_queued
(
sky2
)))
printk
(
KERN_DEBUG
"%s: tx queued, slot %u, len %d
\n
"
,
dev
->
name
,
sky2
->
tx_prod
,
skb
->
len
);
len
=
skb_headlen
(
skb
);
mapping
=
pci_map_single
(
hw
->
pdev
,
skb
->
data
,
len
,
PCI_DMA_TODEVICE
);
addr64
=
(
mapping
>>
16
)
>>
16
;
re
=
sky2
->
tx_ring
+
sky2
->
tx_prod
;
/* Send high bits if changed */
if
(
addr64
!=
sky2
->
tx_addr64
)
{
le
=
get_tx_le
(
sky2
);
le
->
tx
.
addr
=
cpu_to_le32
(
addr64
);
le
->
ctrl
=
0
;
le
->
opcode
=
OP_ADDR64
|
HW_OWNER
;
sky2
->
tx_addr64
=
addr64
;
}
/* Check for TCP Segmentation Offload */
mss
=
skb_shinfo
(
skb
)
->
tso_size
;
if
(
mss
!=
0
)
{
/* just drop the packet if non-linear expansion fails */
if
(
skb_header_cloned
(
skb
)
&&
pskb_expand_head
(
skb
,
0
,
0
,
GFP_ATOMIC
))
{
dev_kfree_skb_any
(
skb
);
goto
out_unlock
;
}
mss
+=
((
skb
->
h
.
th
->
doff
-
5
)
*
4
);
/* TCP options */
mss
+=
(
skb
->
nh
.
iph
->
ihl
*
4
)
+
sizeof
(
struct
tcphdr
);
mss
+=
ETH_HLEN
;
}
if
(
mss
!=
sky2
->
tx_last_mss
)
{
le
=
get_tx_le
(
sky2
);
le
->
tx
.
tso
.
size
=
cpu_to_le16
(
mss
);
le
->
tx
.
tso
.
rsvd
=
0
;
le
->
opcode
=
OP_LRGLEN
|
HW_OWNER
;
le
->
ctrl
=
0
;
sky2
->
tx_last_mss
=
mss
;
}
ctrl
=
0
;
#ifdef SKY2_VLAN_TAG_USED
/* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
if
(
sky2
->
vlgrp
&&
vlan_tx_tag_present
(
skb
))
{
if
(
!
le
)
{
le
=
get_tx_le
(
sky2
);
le
->
tx
.
addr
=
0
;
le
->
opcode
=
OP_VLAN
|
HW_OWNER
;
le
->
ctrl
=
0
;
}
else
le
->
opcode
|=
OP_VLAN
;
le
->
length
=
cpu_to_be16
(
vlan_tx_tag_get
(
skb
));
ctrl
|=
INS_VLAN
;
}
#endif
/* Handle TCP checksum offload */
if
(
skb
->
ip_summed
==
CHECKSUM_HW
)
{
u16
hdr
=
skb
->
h
.
raw
-
skb
->
data
;
u16
offset
=
hdr
+
skb
->
csum
;
ctrl
=
CALSUM
|
WR_SUM
|
INIT_SUM
|
LOCK_SUM
;
if
(
skb
->
nh
.
iph
->
protocol
==
IPPROTO_UDP
)
ctrl
|=
UDPTCP
;
le
=
get_tx_le
(
sky2
);
le
->
tx
.
csum
.
start
=
cpu_to_le16
(
hdr
);
le
->
tx
.
csum
.
offset
=
cpu_to_le16
(
offset
);
le
->
length
=
0
;
/* initial checksum value */
le
->
ctrl
=
1
;
/* one packet */
le
->
opcode
=
OP_TCPLISW
|
HW_OWNER
;
}
le
=
get_tx_le
(
sky2
);
le
->
tx
.
addr
=
cpu_to_le32
((
u32
)
mapping
);
le
->
length
=
cpu_to_le16
(
len
);
le
->
ctrl
=
ctrl
;
le
->
opcode
=
mss
?
(
OP_LARGESEND
|
HW_OWNER
)
:
(
OP_PACKET
|
HW_OWNER
);
/* Record the transmit mapping info */
re
->
skb
=
skb
;
re
->
mapaddr
=
mapping
;
re
->
maplen
=
len
;
for
(
i
=
0
;
i
<
skb_shinfo
(
skb
)
->
nr_frags
;
i
++
)
{
skb_frag_t
*
frag
=
&
skb_shinfo
(
skb
)
->
frags
[
i
];
struct
ring_info
*
fre
;
mapping
=
pci_map_page
(
hw
->
pdev
,
frag
->
page
,
frag
->
page_offset
,
frag
->
size
,
PCI_DMA_TODEVICE
);
addr64
=
(
mapping
>>
16
)
>>
16
;
if
(
addr64
!=
sky2
->
tx_addr64
)
{
le
=
get_tx_le
(
sky2
);
le
->
tx
.
addr
=
cpu_to_le32
(
addr64
);
le
->
ctrl
=
0
;
le
->
opcode
=
OP_ADDR64
|
HW_OWNER
;
sky2
->
tx_addr64
=
addr64
;
}
le
=
get_tx_le
(
sky2
);
le
->
tx
.
addr
=
cpu_to_le32
((
u32
)
mapping
);
le
->
length
=
cpu_to_le16
(
frag
->
size
);
le
->
ctrl
=
ctrl
;
le
->
opcode
=
OP_BUFFER
|
HW_OWNER
;
fre
=
sky2
->
tx_ring
+
((
re
-
sky2
->
tx_ring
)
+
i
+
1
)
%
TX_RING_SIZE
;
fre
->
skb
=
NULL
;
fre
->
mapaddr
=
mapping
;
fre
->
maplen
=
frag
->
size
;
}
re
->
idx
=
sky2
->
tx_prod
;
le
->
ctrl
|=
EOP
;
sky2_put_idx
(
hw
,
txqaddr
[
sky2
->
port
],
sky2
->
tx_prod
,
&
sky2
->
tx_last_put
,
TX_RING_SIZE
);
if
(
tx_avail
(
sky2
)
<
MAX_SKB_TX_LE
+
1
)
netif_stop_queue
(
dev
);
out_unlock:
mmiowb
();
spin_unlock_irqrestore
(
&
sky2
->
tx_lock
,
flags
);
dev
->
trans_start
=
jiffies
;
return
NETDEV_TX_OK
;
}
/*
* Free ring elements from starting at tx_cons until "done"
*
* NB: the hardware will tell us about partial completion of multi-part
* buffers; these are deferred until completion.
*/
static
void
sky2_tx_complete
(
struct
sky2_port
*
sky2
,
u16
done
)
{
struct
net_device
*
dev
=
sky2
->
netdev
;
unsigned
i
;
if
(
unlikely
(
netif_msg_tx_done
(
sky2
)))
printk
(
KERN_DEBUG
"%s: tx done, up to %u
\n
"
,
dev
->
name
,
done
);
spin_lock
(
&
sky2
->
tx_lock
);
while
(
sky2
->
tx_cons
!=
done
)
{
struct
ring_info
*
re
=
sky2
->
tx_ring
+
sky2
->
tx_cons
;
struct
sk_buff
*
skb
;
/* Check for partial status */
if
(
tx_dist
(
sky2
->
tx_cons
,
done
)
<
tx_dist
(
sky2
->
tx_cons
,
re
->
idx
))
goto
out
;
skb
=
re
->
skb
;
pci_unmap_single
(
sky2
->
hw
->
pdev
,
re
->
mapaddr
,
re
->
maplen
,
PCI_DMA_TODEVICE
);
for
(
i
=
0
;
i
<
skb_shinfo
(
skb
)
->
nr_frags
;
i
++
)
{
struct
ring_info
*
fre
;
fre
=
sky2
->
tx_ring
+
(
sky2
->
tx_cons
+
i
+
1
)
%
TX_RING_SIZE
;
pci_unmap_page
(
sky2
->
hw
->
pdev
,
fre
->
mapaddr
,
fre
->
maplen
,
PCI_DMA_TODEVICE
);
}
dev_kfree_skb_any
(
skb
);
sky2
->
tx_cons
=
re
->
idx
;
}
out:
if
(
netif_queue_stopped
(
dev
)
&&
tx_avail
(
sky2
)
>
MAX_SKB_TX_LE
)
netif_wake_queue
(
dev
);
spin_unlock
(
&
sky2
->
tx_lock
);
}
/* Cleanup all untransmitted buffers, assume transmitter not running */
static
inline
void
sky2_tx_clean
(
struct
sky2_port
*
sky2
)
{
sky2_tx_complete
(
sky2
,
sky2
->
tx_prod
);
}
/* Network shutdown */
static
int
sky2_down
(
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
port
=
sky2
->
port
;
u16
ctrl
;
if
(
netif_msg_ifdown
(
sky2
))
printk
(
KERN_INFO
PFX
"%s: disabling interface
\n
"
,
dev
->
name
);
netif_stop_queue
(
dev
);
sky2_phy_reset
(
hw
,
port
);
/* Stop transmitter */
sky2_write32
(
hw
,
Q_ADDR
(
txqaddr
[
port
],
Q_CSR
),
BMU_STOP
);
sky2_read32
(
hw
,
Q_ADDR
(
txqaddr
[
port
],
Q_CSR
));
sky2_write32
(
hw
,
RB_ADDR
(
txqaddr
[
port
],
RB_CTRL
),
RB_RST_SET
|
RB_DIS_OP_MD
);
ctrl
=
gma_read16
(
hw
,
port
,
GM_GP_CTRL
);
ctrl
&=
~
(
GM_GPCR_TX_ENA
|
GM_GPCR_RX_ENA
);
gma_write16
(
hw
,
port
,
GM_GP_CTRL
,
ctrl
);
sky2_write8
(
hw
,
SK_REG
(
port
,
GPHY_CTRL
),
GPC_RST_SET
);
/* Workaround shared GMAC reset */
if
(
!
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
&&
hw
->
chip_rev
==
0
&&
port
==
0
&&
hw
->
dev
[
1
]
&&
netif_running
(
hw
->
dev
[
1
])))
sky2_write8
(
hw
,
SK_REG
(
port
,
GMAC_CTRL
),
GMC_RST_SET
);
/* Disable Force Sync bit and Enable Alloc bit */
sky2_write8
(
hw
,
SK_REG
(
port
,
TXA_CTRL
),
TXA_DIS_FSYNC
|
TXA_DIS_ALLOC
|
TXA_STOP_RC
);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
sky2_write32
(
hw
,
SK_REG
(
port
,
TXA_ITI_INI
),
0L
);
sky2_write32
(
hw
,
SK_REG
(
port
,
TXA_LIM_INI
),
0L
);
/* Reset the PCI FIFO of the async Tx queue */
sky2_write32
(
hw
,
Q_ADDR
(
txqaddr
[
port
],
Q_CSR
),
BMU_RST_SET
|
BMU_FIFO_RST
);
/* Reset the Tx prefetch units */
sky2_write32
(
hw
,
Y2_QADDR
(
txqaddr
[
port
],
PREF_UNIT_CTRL
),
PREF_UNIT_RST_SET
);
sky2_write32
(
hw
,
RB_ADDR
(
txqaddr
[
port
],
RB_CTRL
),
RB_RST_SET
);
sky2_rx_stop
(
sky2
);
sky2_write8
(
hw
,
SK_REG
(
port
,
RX_GMF_CTRL_T
),
GMF_RST_SET
);
sky2_write8
(
hw
,
SK_REG
(
port
,
TX_GMF_CTRL_T
),
GMF_RST_SET
);
/* turn off LED's */
sky2_write16
(
hw
,
B0_Y2LED
,
LED_STAT_OFF
);
sky2_tx_clean
(
sky2
);
sky2_rx_clean
(
sky2
);
pci_free_consistent
(
hw
->
pdev
,
RX_LE_BYTES
,
sky2
->
rx_le
,
sky2
->
rx_le_map
);
kfree
(
sky2
->
rx_ring
);
pci_free_consistent
(
hw
->
pdev
,
TX_RING_SIZE
*
sizeof
(
struct
sky2_tx_le
),
sky2
->
tx_le
,
sky2
->
tx_le_map
);
kfree
(
sky2
->
tx_ring
);
return
0
;
}
static
u16
sky2_phy_speed
(
const
struct
sky2_hw
*
hw
,
u16
aux
)
{
if
(
!
hw
->
copper
)
return
SPEED_1000
;
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_FE
)
return
(
aux
&
PHY_M_PS_SPEED_100
)
?
SPEED_100
:
SPEED_10
;
switch
(
aux
&
PHY_M_PS_SPEED_MSK
)
{
case
PHY_M_PS_SPEED_1000
:
return
SPEED_1000
;
case
PHY_M_PS_SPEED_100
:
return
SPEED_100
;
default:
return
SPEED_10
;
}
}
static
void
sky2_link_up
(
struct
sky2_port
*
sky2
)
{
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
port
=
sky2
->
port
;
u16
reg
;
/* disable Rx GMAC FIFO flush mode */
sky2_write8
(
hw
,
SK_REG
(
port
,
RX_GMF_CTRL_T
),
GMF_RX_F_FL_OFF
);
/* Enable Transmit FIFO Underrun */
sky2_write8
(
hw
,
SK_REG
(
port
,
GMAC_IRQ_MSK
),
GMAC_DEF_MSK
);
reg
=
gma_read16
(
hw
,
port
,
GM_GP_CTRL
);
if
(
sky2
->
duplex
==
DUPLEX_FULL
||
sky2
->
autoneg
==
AUTONEG_ENABLE
)
reg
|=
GM_GPCR_DUP_FULL
;
/* enable Rx/Tx */
reg
|=
GM_GPCR_RX_ENA
|
GM_GPCR_TX_ENA
;
gma_write16
(
hw
,
port
,
GM_GP_CTRL
,
reg
);
gma_read16
(
hw
,
port
,
GM_GP_CTRL
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_INT_MASK
,
PHY_M_DEF_MSK
);
netif_carrier_on
(
sky2
->
netdev
);
netif_wake_queue
(
sky2
->
netdev
);
/* Turn on link LED */
sky2_write8
(
hw
,
SK_REG
(
port
,
LNK_LED_REG
),
LINKLED_ON
|
LINKLED_BLINK_OFF
|
LINKLED_LINKSYNC_OFF
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
)
{
u16
pg
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_EXT_ADR
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
3
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_PHY_CTRL
,
PHY_M_LEDC_LOS_CTRL
(
1
)
|
/* LINK/ACT */
PHY_M_LEDC_INIT_CTRL
(
sky2
->
speed
==
SPEED_10
?
7
:
0
)
|
PHY_M_LEDC_STA1_CTRL
(
sky2
->
speed
==
SPEED_100
?
7
:
0
)
|
PHY_M_LEDC_STA0_CTRL
(
sky2
->
speed
==
SPEED_1000
?
7
:
0
));
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
pg
);
}
if
(
netif_msg_link
(
sky2
))
printk
(
KERN_INFO
PFX
"%s: Link is up at %d Mbps, %s duplex, flow control %s
\n
"
,
sky2
->
netdev
->
name
,
sky2
->
speed
,
sky2
->
duplex
==
DUPLEX_FULL
?
"full"
:
"half"
,
(
sky2
->
tx_pause
&&
sky2
->
rx_pause
)
?
"both"
:
sky2
->
tx_pause
?
"tx"
:
sky2
->
rx_pause
?
"rx"
:
"none"
);
}
static
void
sky2_link_down
(
struct
sky2_port
*
sky2
)
{
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
port
=
sky2
->
port
;
u16
reg
;
gm_phy_write
(
hw
,
port
,
PHY_MARV_INT_MASK
,
0
);
reg
=
gma_read16
(
hw
,
port
,
GM_GP_CTRL
);
reg
&=
~
(
GM_GPCR_RX_ENA
|
GM_GPCR_TX_ENA
);
gma_write16
(
hw
,
port
,
GM_GP_CTRL
,
reg
);
gma_read16
(
hw
,
port
,
GM_GP_CTRL
);
/* PCI post */
if
(
sky2
->
rx_pause
&&
!
sky2
->
tx_pause
)
{
/* restore Asymmetric Pause bit */
gm_phy_write
(
hw
,
port
,
PHY_MARV_AUNE_ADV
,
gm_phy_read
(
hw
,
port
,
PHY_MARV_AUNE_ADV
)
|
PHY_M_AN_ASP
);
}
sky2_phy_reset
(
hw
,
port
);
netif_carrier_off
(
sky2
->
netdev
);
netif_stop_queue
(
sky2
->
netdev
);
/* Turn on link LED */
sky2_write8
(
hw
,
SK_REG
(
port
,
LNK_LED_REG
),
LINKLED_OFF
);
if
(
netif_msg_link
(
sky2
))
printk
(
KERN_INFO
PFX
"%s: Link is down.
\n
"
,
sky2
->
netdev
->
name
);
sky2_phy_init
(
hw
,
port
);
}
static
int
sky2_autoneg_done
(
struct
sky2_port
*
sky2
,
u16
aux
)
{
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
port
=
sky2
->
port
;
u16
lpa
;
lpa
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_AUNE_LP
);
if
(
lpa
&
PHY_M_AN_RF
)
{
printk
(
KERN_ERR
PFX
"%s: remote fault"
,
sky2
->
netdev
->
name
);
return
-
1
;
}
if
(
hw
->
chip_id
!=
CHIP_ID_YUKON_FE
&&
gm_phy_read
(
hw
,
port
,
PHY_MARV_1000T_STAT
)
&
PHY_B_1000S_MSF
)
{
printk
(
KERN_ERR
PFX
"%s: master/slave fault"
,
sky2
->
netdev
->
name
);
return
-
1
;
}
if
(
!
(
aux
&
PHY_M_PS_SPDUP_RES
))
{
printk
(
KERN_ERR
PFX
"%s: speed/duplex mismatch"
,
sky2
->
netdev
->
name
);
return
-
1
;
}
sky2
->
duplex
=
(
aux
&
PHY_M_PS_FULL_DUP
)
?
DUPLEX_FULL
:
DUPLEX_HALF
;
sky2
->
speed
=
sky2_phy_speed
(
hw
,
aux
);
/* Pause bits are offset (9..8) */
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
)
aux
>>=
6
;
sky2
->
rx_pause
=
(
aux
&
PHY_M_PS_RX_P_EN
)
!=
0
;
sky2
->
tx_pause
=
(
aux
&
PHY_M_PS_TX_P_EN
)
!=
0
;
if
((
sky2
->
tx_pause
||
sky2
->
rx_pause
)
&&
!
(
sky2
->
speed
<
SPEED_1000
&&
sky2
->
duplex
==
DUPLEX_HALF
))
sky2_write8
(
hw
,
SK_REG
(
port
,
GMAC_CTRL
),
GMC_PAUSE_ON
);
else
sky2_write8
(
hw
,
SK_REG
(
port
,
GMAC_CTRL
),
GMC_PAUSE_OFF
);
return
0
;
}
/*
* Interrupt from PHY are handled in tasklet (soft irq)
* because accessing phy registers requires spin wait which might
* cause excess interrupt latency.
*/
static
void
sky2_phy_task
(
unsigned
long
data
)
{
struct
sky2_port
*
sky2
=
(
struct
sky2_port
*
)
data
;
struct
sky2_hw
*
hw
=
sky2
->
hw
;
u16
istatus
,
phystat
;
spin_lock
(
&
hw
->
phy_lock
);
istatus
=
gm_phy_read
(
hw
,
sky2
->
port
,
PHY_MARV_INT_STAT
);
phystat
=
gm_phy_read
(
hw
,
sky2
->
port
,
PHY_MARV_PHY_STAT
);
if
(
netif_msg_intr
(
sky2
))
printk
(
KERN_INFO
PFX
"%s: phy interrupt status 0x%x 0x%x
\n
"
,
sky2
->
netdev
->
name
,
istatus
,
phystat
);
if
(
istatus
&
PHY_M_IS_AN_COMPL
)
{
if
(
sky2_autoneg_done
(
sky2
,
phystat
)
==
0
)
sky2_link_up
(
sky2
);
goto
out
;
}
if
(
istatus
&
PHY_M_IS_LSP_CHANGE
)
sky2
->
speed
=
sky2_phy_speed
(
hw
,
phystat
);
if
(
istatus
&
PHY_M_IS_DUP_CHANGE
)
sky2
->
duplex
=
(
phystat
&
PHY_M_PS_FULL_DUP
)
?
DUPLEX_FULL
:
DUPLEX_HALF
;
if
(
istatus
&
PHY_M_IS_LST_CHANGE
)
{
if
(
phystat
&
PHY_M_PS_LINK_UP
)
sky2_link_up
(
sky2
);
else
sky2_link_down
(
sky2
);
}
out:
spin_unlock
(
&
hw
->
phy_lock
);
local_irq_disable
();
hw
->
intr_mask
|=
(
sky2
->
port
==
0
)
?
Y2_IS_IRQ_PHY1
:
Y2_IS_IRQ_PHY2
;
sky2_write32
(
hw
,
B0_IMSK
,
hw
->
intr_mask
);
local_irq_enable
();
}
static
void
sky2_tx_timeout
(
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
if
(
netif_msg_timer
(
sky2
))
printk
(
KERN_ERR
PFX
"%s: tx timeout
\n
"
,
dev
->
name
);
sky2_write32
(
sky2
->
hw
,
Q_ADDR
(
txqaddr
[
sky2
->
port
],
Q_CSR
),
BMU_STOP
);
sky2_read32
(
sky2
->
hw
,
Q_ADDR
(
txqaddr
[
sky2
->
port
],
Q_CSR
));
sky2_tx_clean
(
sky2
);
}
static
int
sky2_change_mtu
(
struct
net_device
*
dev
,
int
new_mtu
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
int
err
;
u16
ctl
,
mode
;
if
(
new_mtu
<
ETH_ZLEN
||
new_mtu
>
ETH_JUMBO_MTU
)
return
-
EINVAL
;
if
(
!
netif_running
(
dev
))
{
dev
->
mtu
=
new_mtu
;
return
0
;
}
local_irq_disable
();
sky2_write32
(
hw
,
B0_IMSK
,
0
);
ctl
=
gma_read16
(
hw
,
sky2
->
port
,
GM_GP_CTRL
);
gma_write16
(
hw
,
sky2
->
port
,
GM_GP_CTRL
,
ctl
&
~
GM_GPCR_RX_ENA
);
sky2_rx_stop
(
sky2
);
sky2_rx_clean
(
sky2
);
dev
->
mtu
=
new_mtu
;
mode
=
DATA_BLIND_VAL
(
DATA_BLIND_DEF
)
|
GM_SMOD_VLAN_ENA
|
IPG_DATA_VAL
(
IPG_DATA_DEF
);
if
(
dev
->
mtu
>
ETH_DATA_LEN
)
mode
|=
GM_SMOD_JUMBO_ENA
;
gma_write16
(
hw
,
sky2
->
port
,
GM_SERIAL_MODE
,
mode
);
sky2_write8
(
hw
,
RB_ADDR
(
rxqaddr
[
sky2
->
port
],
RB_CTRL
),
RB_ENA_OP_MD
);
err
=
sky2_rx_start
(
sky2
);
gma_write16
(
hw
,
sky2
->
port
,
GM_GP_CTRL
,
ctl
);
sky2_write32
(
hw
,
B0_IMSK
,
hw
->
intr_mask
);
sky2_read32
(
hw
,
B0_IMSK
);
local_irq_enable
();
return
err
;
}
/*
* Receive one packet.
* For small packets or errors, just reuse existing skb.
* For larger packets, get new buffer.
*/
static
struct
sk_buff
*
sky2_receive
(
struct
sky2_port
*
sky2
,
u16
length
,
u32
status
)
{
struct
ring_info
*
re
=
sky2
->
rx_ring
+
sky2
->
rx_next
;
struct
sk_buff
*
skb
=
NULL
;
struct
net_device
*
dev
;
const
unsigned
int
bufsize
=
rx_size
(
sky2
);
if
(
unlikely
(
netif_msg_rx_status
(
sky2
)))
printk
(
KERN_DEBUG
PFX
"%s: rx slot %u status 0x%x len %d
\n
"
,
sky2
->
netdev
->
name
,
sky2
->
rx_next
,
status
,
length
);
sky2
->
rx_next
=
(
sky2
->
rx_next
+
1
)
%
sky2
->
rx_pending
;
if
(
!
(
status
&
GMR_FS_RX_OK
)
||
(
status
&
GMR_FS_ANY_ERR
))
goto
error
;
if
(
length
<
RX_COPY_THRESHOLD
)
{
skb
=
alloc_skb
(
length
+
2
,
GFP_ATOMIC
);
if
(
!
skb
)
goto
resubmit
;
skb_reserve
(
skb
,
2
);
pci_dma_sync_single_for_cpu
(
sky2
->
hw
->
pdev
,
re
->
mapaddr
,
length
,
PCI_DMA_FROMDEVICE
);
memcpy
(
skb
->
data
,
re
->
skb
->
data
,
length
);
skb
->
ip_summed
=
re
->
skb
->
ip_summed
;
skb
->
csum
=
re
->
skb
->
csum
;
pci_dma_sync_single_for_device
(
sky2
->
hw
->
pdev
,
re
->
mapaddr
,
length
,
PCI_DMA_FROMDEVICE
);
}
else
{
struct
sk_buff
*
nskb
;
nskb
=
dev_alloc_skb
(
bufsize
);
if
(
!
nskb
)
goto
resubmit
;
skb
=
re
->
skb
;
re
->
skb
=
nskb
;
pci_unmap_single
(
sky2
->
hw
->
pdev
,
re
->
mapaddr
,
re
->
maplen
,
PCI_DMA_FROMDEVICE
);
prefetch
(
skb
->
data
);
re
->
mapaddr
=
pci_map_single
(
sky2
->
hw
->
pdev
,
nskb
->
data
,
bufsize
,
PCI_DMA_FROMDEVICE
);
re
->
maplen
=
bufsize
;
}
skb_put
(
skb
,
length
);
dev
=
sky2
->
netdev
;
skb
->
dev
=
dev
;
skb
->
protocol
=
eth_type_trans
(
skb
,
dev
);
dev
->
last_rx
=
jiffies
;
resubmit:
re
->
skb
->
ip_summed
=
CHECKSUM_NONE
;
sky2_rx_add
(
sky2
,
re
);
/* Tell receiver about new buffers. */
sky2_put_idx
(
sky2
->
hw
,
rxqaddr
[
sky2
->
port
],
sky2
->
rx_put
,
&
sky2
->
rx_last_put
,
RX_LE_SIZE
);
return
skb
;
error:
if
(
status
&
GMR_FS_GOOD_FC
)
goto
resubmit
;
if
(
netif_msg_rx_err
(
sky2
))
printk
(
KERN_INFO
PFX
"%s: rx error, status 0x%x length %d
\n
"
,
sky2
->
netdev
->
name
,
status
,
length
);
if
(
status
&
(
GMR_FS_LONG_ERR
|
GMR_FS_UN_SIZE
))
sky2
->
net_stats
.
rx_length_errors
++
;
if
(
status
&
GMR_FS_FRAGMENT
)
sky2
->
net_stats
.
rx_frame_errors
++
;
if
(
status
&
GMR_FS_CRC_ERR
)
sky2
->
net_stats
.
rx_crc_errors
++
;
if
(
status
&
GMR_FS_RX_FF_OV
)
sky2
->
net_stats
.
rx_fifo_errors
++
;
goto
resubmit
;
}
/* Transmit ring index in reported status block is encoded as:
*
* | TXS2 | TXA2 | TXS1 | TXA1
*/
static
inline
u16
tx_index
(
u8
port
,
u32
status
,
u16
len
)
{
if
(
port
==
0
)
return
status
&
0xfff
;
else
return
((
status
>>
24
)
&
0xff
)
|
(
len
&
0xf
)
<<
8
;
}
/*
* Both ports share the same status interrupt, therefore there is only
* one poll routine.
*/
static
int
sky2_poll
(
struct
net_device
*
dev0
,
int
*
budget
)
{
struct
sky2_hw
*
hw
=
((
struct
sky2_port
*
)
netdev_priv
(
dev0
))
->
hw
;
unsigned
int
to_do
=
min
(
dev0
->
quota
,
*
budget
);
unsigned
int
work_done
=
0
;
u16
hwidx
;
hwidx
=
sky2_read16
(
hw
,
STAT_PUT_IDX
);
BUG_ON
(
hwidx
>=
STATUS_RING_SIZE
);
rmb
();
do
{
struct
sky2_status_le
*
le
=
hw
->
st_le
+
hw
->
st_idx
;
struct
sky2_port
*
sky2
;
struct
sk_buff
*
skb
;
u32
status
;
u16
length
;
/* Are we done yet? */
if
(
hw
->
st_idx
==
hwidx
)
{
sky2_write32
(
hw
,
STAT_CTRL
,
SC_STAT_CLR_IRQ
);
hwidx
=
sky2_read16
(
hw
,
STAT_PUT_IDX
);
if
(
hwidx
==
hw
->
st_idx
)
break
;
}
hw
->
st_idx
=
(
hw
->
st_idx
+
1
)
%
STATUS_RING_SIZE
;
prefetch
(
&
hw
->
st_le
[
hw
->
st_idx
]);
BUG_ON
(
le
->
link
>=
hw
->
ports
||
!
hw
->
dev
[
le
->
link
]);
sky2
=
netdev_priv
(
hw
->
dev
[
le
->
link
]);
status
=
le32_to_cpu
(
le
->
status
);
length
=
le16_to_cpu
(
le
->
length
);
switch
(
le
->
opcode
&
~
HW_OWNER
)
{
case
OP_RXSTAT
:
skb
=
sky2_receive
(
sky2
,
length
,
status
);
if
(
!
skb
)
break
;
#ifdef SKY2_VLAN_TAG_USED
if
(
sky2
->
vlgrp
&&
(
status
&
GMR_FS_VLAN
))
{
vlan_hwaccel_receive_skb
(
skb
,
sky2
->
vlgrp
,
be16_to_cpu
(
sky2
->
rx_tag
));
}
else
#endif
netif_receive_skb
(
skb
);
++
work_done
;
break
;
#ifdef SKY2_VLAN_TAG_USED
case
OP_RXVLAN
:
sky2
->
rx_tag
=
length
;
break
;
case
OP_RXCHKSVLAN
:
sky2
->
rx_tag
=
length
;
/* fall through */
#endif
case
OP_RXCHKS
:
skb
=
sky2
->
rx_ring
[
sky2
->
rx_next
].
skb
;
skb
->
ip_summed
=
CHECKSUM_HW
;
skb
->
csum
=
le16_to_cpu
(
status
);
break
;
case
OP_TXINDEXLE
:
sky2_tx_complete
(
sky2
,
tx_index
(
sky2
->
port
,
status
,
length
));
break
;
default:
if
(
net_ratelimit
())
printk
(
KERN_WARNING
PFX
"unknown status opcode 0x%x
\n
"
,
le
->
opcode
);
break
;
}
le
->
opcode
=
0
;
/* paranoia */
}
while
(
work_done
<
to_do
);
mmiowb
();
*
budget
-=
work_done
;
dev0
->
quota
-=
work_done
;
if
(
work_done
<
to_do
)
{
/*
* Another chip workaround, need to restart TX timer if status
* LE was handled. WA_DEV_43_418
*/
if
(
is_ec_a1
(
hw
))
{
sky2_write8
(
hw
,
STAT_TX_TIMER_CTRL
,
TIM_STOP
);
sky2_write8
(
hw
,
STAT_TX_TIMER_CTRL
,
TIM_START
);
}
netif_rx_complete
(
dev0
);
hw
->
intr_mask
|=
Y2_IS_STAT_BMU
;
sky2_write32
(
hw
,
B0_IMSK
,
hw
->
intr_mask
);
sky2_read32
(
hw
,
B0_IMSK
);
}
return
work_done
>=
to_do
;
}
static
void
sky2_hw_error
(
struct
sky2_hw
*
hw
,
unsigned
port
,
u32
status
)
{
struct
net_device
*
dev
=
hw
->
dev
[
port
];
printk
(
KERN_INFO
PFX
"%s: hw error interrupt status 0x%x
\n
"
,
dev
->
name
,
status
);
if
(
status
&
Y2_IS_PAR_RD1
)
{
printk
(
KERN_ERR
PFX
"%s: ram data read parity error
\n
"
,
dev
->
name
);
/* Clear IRQ */
sky2_write16
(
hw
,
RAM_BUFFER
(
port
,
B3_RI_CTRL
),
RI_CLR_RD_PERR
);
}
if
(
status
&
Y2_IS_PAR_WR1
)
{
printk
(
KERN_ERR
PFX
"%s: ram data write parity error
\n
"
,
dev
->
name
);
sky2_write16
(
hw
,
RAM_BUFFER
(
port
,
B3_RI_CTRL
),
RI_CLR_WR_PERR
);
}
if
(
status
&
Y2_IS_PAR_MAC1
)
{
printk
(
KERN_ERR
PFX
"%s: MAC parity error
\n
"
,
dev
->
name
);
sky2_write8
(
hw
,
SK_REG
(
port
,
TX_GMF_CTRL_T
),
GMF_CLI_TX_PE
);
}
if
(
status
&
Y2_IS_PAR_RX1
)
{
printk
(
KERN_ERR
PFX
"%s: RX parity error
\n
"
,
dev
->
name
);
sky2_write32
(
hw
,
Q_ADDR
(
rxqaddr
[
port
],
Q_CSR
),
BMU_CLR_IRQ_PAR
);
}
if
(
status
&
Y2_IS_TCP_TXA1
)
{
printk
(
KERN_ERR
PFX
"%s: TCP segmentation error
\n
"
,
dev
->
name
);
sky2_write32
(
hw
,
Q_ADDR
(
txqaddr
[
port
],
Q_CSR
),
BMU_CLR_IRQ_TCP
);
}
}
static
void
sky2_hw_intr
(
struct
sky2_hw
*
hw
)
{
u32
status
=
sky2_read32
(
hw
,
B0_HWE_ISRC
);
if
(
status
&
Y2_IS_TIST_OV
)
sky2_write8
(
hw
,
GMAC_TI_ST_CTRL
,
GMT_ST_CLR_IRQ
);
if
(
status
&
(
Y2_IS_MST_ERR
|
Y2_IS_IRQ_STAT
))
{
u16
pci_err
;
pci_read_config_word
(
hw
->
pdev
,
PCI_STATUS
,
&
pci_err
);
printk
(
KERN_ERR
PFX
"%s: pci hw error (0x%x)
\n
"
,
pci_name
(
hw
->
pdev
),
pci_err
);
sky2_write8
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_ON
);
pci_write_config_word
(
hw
->
pdev
,
PCI_STATUS
,
pci_err
|
PCI_STATUS_ERROR_BITS
);
sky2_write8
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_OFF
);
}
if
(
status
&
Y2_IS_PCI_EXP
)
{
/* PCI-Express uncorrectable Error occurred */
u32
pex_err
;
pci_read_config_dword
(
hw
->
pdev
,
PEX_UNC_ERR_STAT
,
&
pex_err
);
printk
(
KERN_ERR
PFX
"%s: pci express error (0x%x)
\n
"
,
pci_name
(
hw
->
pdev
),
pex_err
);
/* clear the interrupt */
sky2_write32
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_ON
);
pci_write_config_dword
(
hw
->
pdev
,
PEX_UNC_ERR_STAT
,
0xffffffffUL
);
sky2_write32
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_OFF
);
if
(
pex_err
&
PEX_FATAL_ERRORS
)
{
u32
hwmsk
=
sky2_read32
(
hw
,
B0_HWE_IMSK
);
hwmsk
&=
~
Y2_IS_PCI_EXP
;
sky2_write32
(
hw
,
B0_HWE_IMSK
,
hwmsk
);
}
}
if
(
status
&
Y2_HWE_L1_MASK
)
sky2_hw_error
(
hw
,
0
,
status
);
status
>>=
8
;
if
(
status
&
Y2_HWE_L1_MASK
)
sky2_hw_error
(
hw
,
1
,
status
);
}
static
void
sky2_mac_intr
(
struct
sky2_hw
*
hw
,
unsigned
port
)
{
struct
net_device
*
dev
=
hw
->
dev
[
port
];
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
u8
status
=
sky2_read8
(
hw
,
SK_REG
(
port
,
GMAC_IRQ_SRC
));
if
(
netif_msg_intr
(
sky2
))
printk
(
KERN_INFO
PFX
"%s: mac interrupt status 0x%x
\n
"
,
dev
->
name
,
status
);
if
(
status
&
GM_IS_RX_FF_OR
)
{
++
sky2
->
net_stats
.
rx_fifo_errors
;
sky2_write8
(
hw
,
SK_REG
(
port
,
RX_GMF_CTRL_T
),
GMF_CLI_RX_FO
);
}
if
(
status
&
GM_IS_TX_FF_UR
)
{
++
sky2
->
net_stats
.
tx_fifo_errors
;
sky2_write8
(
hw
,
SK_REG
(
port
,
TX_GMF_CTRL_T
),
GMF_CLI_TX_FU
);
}
}
static
void
sky2_phy_intr
(
struct
sky2_hw
*
hw
,
unsigned
port
)
{
struct
net_device
*
dev
=
hw
->
dev
[
port
];
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
hw
->
intr_mask
&=
~
(
port
==
0
?
Y2_IS_IRQ_PHY1
:
Y2_IS_IRQ_PHY2
);
sky2_write32
(
hw
,
B0_IMSK
,
hw
->
intr_mask
);
tasklet_schedule
(
&
sky2
->
phy_task
);
}
static
irqreturn_t
sky2_intr
(
int
irq
,
void
*
dev_id
,
struct
pt_regs
*
regs
)
{
struct
sky2_hw
*
hw
=
dev_id
;
struct
net_device
*
dev0
=
hw
->
dev
[
0
];
u32
status
;
status
=
sky2_read32
(
hw
,
B0_Y2_SP_ISRC2
);
if
(
status
==
0
||
status
==
~
0
)
return
IRQ_NONE
;
if
(
status
&
Y2_IS_HW_ERR
)
sky2_hw_intr
(
hw
);
/* Do NAPI for Rx and Tx status */
if
(
status
&
Y2_IS_STAT_BMU
)
{
hw
->
intr_mask
&=
~
Y2_IS_STAT_BMU
;
sky2_write32
(
hw
,
B0_IMSK
,
hw
->
intr_mask
);
prefetch
(
&
hw
->
st_le
[
hw
->
st_idx
]);
if
(
netif_rx_schedule_test
(
dev0
))
__netif_rx_schedule
(
dev0
);
}
if
(
status
&
Y2_IS_IRQ_PHY1
)
sky2_phy_intr
(
hw
,
0
);
if
(
status
&
Y2_IS_IRQ_PHY2
)
sky2_phy_intr
(
hw
,
1
);
if
(
status
&
Y2_IS_IRQ_MAC1
)
sky2_mac_intr
(
hw
,
0
);
if
(
status
&
Y2_IS_IRQ_MAC2
)
sky2_mac_intr
(
hw
,
1
);
sky2_write32
(
hw
,
B0_Y2_SP_ICR
,
2
);
sky2_read32
(
hw
,
B0_IMSK
);
return
IRQ_HANDLED
;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static
void
sky2_netpoll
(
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
sky2_intr
(
sky2
->
hw
->
pdev
->
irq
,
sky2
->
hw
,
NULL
);
}
#endif
/* Chip internal frequency for clock calculations */
static
inline
u32
sky2_khz
(
const
struct
sky2_hw
*
hw
)
{
switch
(
hw
->
chip_id
)
{
case
CHIP_ID_YUKON_EC
:
return
125000
;
/* 125 Mhz */
case
CHIP_ID_YUKON_FE
:
return
100000
;
/* 100 Mhz */
default:
/* YUKON_XL */
return
156000
;
/* 156 Mhz */
}
}
static
inline
u32
sky2_ms2clk
(
const
struct
sky2_hw
*
hw
,
u32
ms
)
{
return
sky2_khz
(
hw
)
*
ms
;
}
static
inline
u32
sky2_us2clk
(
const
struct
sky2_hw
*
hw
,
u32
us
)
{
return
(
sky2_khz
(
hw
)
*
us
)
/
1000
;
}
static
int
sky2_reset
(
struct
sky2_hw
*
hw
)
{
u32
ctst
;
u16
status
;
u8
t8
,
pmd_type
;
int
i
;
ctst
=
sky2_read32
(
hw
,
B0_CTST
);
sky2_write8
(
hw
,
B0_CTST
,
CS_RST_CLR
);
hw
->
chip_id
=
sky2_read8
(
hw
,
B2_CHIP_ID
);
if
(
hw
->
chip_id
<
CHIP_ID_YUKON_XL
||
hw
->
chip_id
>
CHIP_ID_YUKON_FE
)
{
printk
(
KERN_ERR
PFX
"%s: unsupported chip type 0x%x
\n
"
,
pci_name
(
hw
->
pdev
),
hw
->
chip_id
);
return
-
EOPNOTSUPP
;
}
/* ring for status responses */
hw
->
st_le
=
pci_alloc_consistent
(
hw
->
pdev
,
STATUS_LE_BYTES
,
&
hw
->
st_dma
);
if
(
!
hw
->
st_le
)
return
-
ENOMEM
;
/* disable ASF */
if
(
hw
->
chip_id
<=
CHIP_ID_YUKON_EC
)
{
sky2_write8
(
hw
,
B28_Y2_ASF_STAT_CMD
,
Y2_ASF_RESET
);
sky2_write16
(
hw
,
B0_CTST
,
Y2_ASF_DISABLE
);
}
/* do a SW reset */
sky2_write8
(
hw
,
B0_CTST
,
CS_RST_SET
);
sky2_write8
(
hw
,
B0_CTST
,
CS_RST_CLR
);
/* clear PCI errors, if any */
pci_read_config_word
(
hw
->
pdev
,
PCI_STATUS
,
&
status
);
sky2_write8
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_ON
);
pci_write_config_word
(
hw
->
pdev
,
PCI_STATUS
,
status
|
PCI_STATUS_ERROR_BITS
);
sky2_write8
(
hw
,
B0_CTST
,
CS_MRST_CLR
);
/* clear any PEX errors */
if
(
is_pciex
(
hw
))
{
u16
lstat
;
pci_write_config_dword
(
hw
->
pdev
,
PEX_UNC_ERR_STAT
,
0xffffffffUL
);
pci_read_config_word
(
hw
->
pdev
,
PEX_LNK_STAT
,
&
lstat
);
}
pmd_type
=
sky2_read8
(
hw
,
B2_PMD_TYP
);
hw
->
copper
=
!
(
pmd_type
==
'L'
||
pmd_type
==
'S'
);
hw
->
ports
=
1
;
t8
=
sky2_read8
(
hw
,
B2_Y2_HW_RES
);
if
((
t8
&
CFG_DUAL_MAC_MSK
)
==
CFG_DUAL_MAC_MSK
)
{
if
(
!
(
sky2_read8
(
hw
,
B2_Y2_CLK_GATE
)
&
Y2_STATUS_LNK2_INAC
))
++
hw
->
ports
;
}
hw
->
chip_rev
=
(
sky2_read8
(
hw
,
B2_MAC_CFG
)
&
CFG_CHIP_R_MSK
)
>>
4
;
sky2_set_power_state
(
hw
,
PCI_D0
);
for
(
i
=
0
;
i
<
hw
->
ports
;
i
++
)
{
sky2_write8
(
hw
,
SK_REG
(
i
,
GMAC_LINK_CTRL
),
GMLC_RST_SET
);
sky2_write8
(
hw
,
SK_REG
(
i
,
GMAC_LINK_CTRL
),
GMLC_RST_CLR
);
}
sky2_write8
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_OFF
);
/* Clear I2C IRQ noise */
sky2_write32
(
hw
,
B2_I2C_IRQ
,
1
);
/* turn off hardware timer (unused) */
sky2_write8
(
hw
,
B2_TI_CTRL
,
TIM_STOP
);
sky2_write8
(
hw
,
B2_TI_CTRL
,
TIM_CLR_IRQ
);
sky2_write8
(
hw
,
B0_Y2LED
,
LED_STAT_ON
);
/* Turn on descriptor polling (every 75us) */
sky2_write32
(
hw
,
B28_DPT_INI
,
sky2_us2clk
(
hw
,
75
));
sky2_write8
(
hw
,
B28_DPT_CTRL
,
DPT_START
);
/* Turn off receive timestamp */
sky2_write8
(
hw
,
GMAC_TI_ST_CTRL
,
GMT_ST_STOP
);
sky2_write8
(
hw
,
GMAC_TI_ST_CTRL
,
GMT_ST_CLR_IRQ
);
/* enable the Tx Arbiters */
for
(
i
=
0
;
i
<
hw
->
ports
;
i
++
)
sky2_write8
(
hw
,
SK_REG
(
i
,
TXA_CTRL
),
TXA_ENA_ARB
);
/* Initialize ram interface */
for
(
i
=
0
;
i
<
hw
->
ports
;
i
++
)
{
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_CTRL
),
RI_RST_CLR
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_WTO_R1
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_WTO_XA1
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_WTO_XS1
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_RTO_R1
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_RTO_XA1
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_RTO_XS1
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_WTO_R2
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_WTO_XA2
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_WTO_XS2
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_RTO_R2
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_RTO_XA2
),
SK_RI_TO_53
);
sky2_write8
(
hw
,
RAM_BUFFER
(
i
,
B3_RI_RTO_XS2
),
SK_RI_TO_53
);
}
if
(
is_pciex
(
hw
))
{
u16
pctrl
;
/* change Max. Read Request Size to 2048 bytes */
pci_read_config_word
(
hw
->
pdev
,
PEX_DEV_CTRL
,
&
pctrl
);
pctrl
&=
~
PEX_DC_MAX_RRS_MSK
;
pctrl
|=
PEX_DC_MAX_RD_RQ_SIZE
(
4
);
sky2_write8
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_ON
);
pci_write_config_word
(
hw
->
pdev
,
PEX_DEV_CTRL
,
pctrl
);
sky2_write8
(
hw
,
B2_TST_CTRL1
,
TST_CFG_WRITE_OFF
);
}
sky2_write32
(
hw
,
B0_HWE_IMSK
,
Y2_HWE_ALL_MASK
);
spin_lock_bh
(
&
hw
->
phy_lock
);
for
(
i
=
0
;
i
<
hw
->
ports
;
i
++
)
sky2_phy_reset
(
hw
,
i
);
spin_unlock_bh
(
&
hw
->
phy_lock
);
memset
(
hw
->
st_le
,
0
,
STATUS_LE_BYTES
);
hw
->
st_idx
=
0
;
sky2_write32
(
hw
,
STAT_CTRL
,
SC_STAT_RST_SET
);
sky2_write32
(
hw
,
STAT_CTRL
,
SC_STAT_RST_CLR
);
sky2_write32
(
hw
,
STAT_LIST_ADDR_LO
,
hw
->
st_dma
);
sky2_write32
(
hw
,
STAT_LIST_ADDR_HI
,
(
u64
)
hw
->
st_dma
>>
32
);
/* Set the list last index */
sky2_write16
(
hw
,
STAT_LAST_IDX
,
STATUS_RING_SIZE
-
1
);
sky2_write32
(
hw
,
STAT_TX_TIMER_INI
,
sky2_ms2clk
(
hw
,
10
));
/* These status setup values are copied from SysKonnect's driver */
if
(
is_ec_a1
(
hw
))
{
/* WA for dev. #4.3 */
sky2_write16
(
hw
,
STAT_TX_IDX_TH
,
0xfff
);
/* Tx Threshold */
/* set Status-FIFO watermark */
sky2_write8
(
hw
,
STAT_FIFO_WM
,
0x21
);
/* WA for dev. #4.18 */
/* set Status-FIFO ISR watermark */
sky2_write8
(
hw
,
STAT_FIFO_ISR_WM
,
0x07
);
/* WA for dev. #4.18 */
}
else
{
sky2_write16
(
hw
,
STAT_TX_IDX_TH
,
0x000a
);
/* set Status-FIFO watermark */
sky2_write8
(
hw
,
STAT_FIFO_WM
,
0x10
);
/* set Status-FIFO ISR watermark */
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
&&
hw
->
chip_rev
==
0
)
sky2_write8
(
hw
,
STAT_FIFO_ISR_WM
,
0x10
);
else
/* WA dev 4.109 */
sky2_write8
(
hw
,
STAT_FIFO_ISR_WM
,
0x04
);
sky2_write32
(
hw
,
STAT_ISR_TIMER_INI
,
0x0190
);
}
/* enable status unit */
sky2_write32
(
hw
,
STAT_CTRL
,
SC_STAT_OP_ON
);
sky2_write8
(
hw
,
STAT_TX_TIMER_CTRL
,
TIM_START
);
sky2_write8
(
hw
,
STAT_LEV_TIMER_CTRL
,
TIM_START
);
sky2_write8
(
hw
,
STAT_ISR_TIMER_CTRL
,
TIM_START
);
return
0
;
}
static
inline
u32
sky2_supported_modes
(
const
struct
sky2_hw
*
hw
)
{
u32
modes
;
if
(
hw
->
copper
)
{
modes
=
SUPPORTED_10baseT_Half
|
SUPPORTED_10baseT_Full
|
SUPPORTED_100baseT_Half
|
SUPPORTED_100baseT_Full
|
SUPPORTED_Autoneg
|
SUPPORTED_TP
;
if
(
hw
->
chip_id
!=
CHIP_ID_YUKON_FE
)
modes
|=
SUPPORTED_1000baseT_Half
|
SUPPORTED_1000baseT_Full
;
}
else
modes
=
SUPPORTED_1000baseT_Full
|
SUPPORTED_FIBRE
|
SUPPORTED_Autoneg
;
return
modes
;
}
static
int
sky2_get_settings
(
struct
net_device
*
dev
,
struct
ethtool_cmd
*
ecmd
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
ecmd
->
transceiver
=
XCVR_INTERNAL
;
ecmd
->
supported
=
sky2_supported_modes
(
hw
);
ecmd
->
phy_address
=
PHY_ADDR_MARV
;
if
(
hw
->
copper
)
{
ecmd
->
supported
=
SUPPORTED_10baseT_Half
|
SUPPORTED_10baseT_Full
|
SUPPORTED_100baseT_Half
|
SUPPORTED_100baseT_Full
|
SUPPORTED_1000baseT_Half
|
SUPPORTED_1000baseT_Full
|
SUPPORTED_Autoneg
|
SUPPORTED_TP
;
ecmd
->
port
=
PORT_TP
;
}
else
ecmd
->
port
=
PORT_FIBRE
;
ecmd
->
advertising
=
sky2
->
advertising
;
ecmd
->
autoneg
=
sky2
->
autoneg
;
ecmd
->
speed
=
sky2
->
speed
;
ecmd
->
duplex
=
sky2
->
duplex
;
return
0
;
}
static
int
sky2_set_settings
(
struct
net_device
*
dev
,
struct
ethtool_cmd
*
ecmd
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
const
struct
sky2_hw
*
hw
=
sky2
->
hw
;
u32
supported
=
sky2_supported_modes
(
hw
);
if
(
ecmd
->
autoneg
==
AUTONEG_ENABLE
)
{
ecmd
->
advertising
=
supported
;
sky2
->
duplex
=
-
1
;
sky2
->
speed
=
-
1
;
}
else
{
u32
setting
;
switch
(
ecmd
->
speed
)
{
case
SPEED_1000
:
if
(
ecmd
->
duplex
==
DUPLEX_FULL
)
setting
=
SUPPORTED_1000baseT_Full
;
else
if
(
ecmd
->
duplex
==
DUPLEX_HALF
)
setting
=
SUPPORTED_1000baseT_Half
;
else
return
-
EINVAL
;
break
;
case
SPEED_100
:
if
(
ecmd
->
duplex
==
DUPLEX_FULL
)
setting
=
SUPPORTED_100baseT_Full
;
else
if
(
ecmd
->
duplex
==
DUPLEX_HALF
)
setting
=
SUPPORTED_100baseT_Half
;
else
return
-
EINVAL
;
break
;
case
SPEED_10
:
if
(
ecmd
->
duplex
==
DUPLEX_FULL
)
setting
=
SUPPORTED_10baseT_Full
;
else
if
(
ecmd
->
duplex
==
DUPLEX_HALF
)
setting
=
SUPPORTED_10baseT_Half
;
else
return
-
EINVAL
;
break
;
default:
return
-
EINVAL
;
}
if
((
setting
&
supported
)
==
0
)
return
-
EINVAL
;
sky2
->
speed
=
ecmd
->
speed
;
sky2
->
duplex
=
ecmd
->
duplex
;
}
sky2
->
autoneg
=
ecmd
->
autoneg
;
sky2
->
advertising
=
ecmd
->
advertising
;
if
(
netif_running
(
dev
))
{
sky2_down
(
dev
);
sky2_up
(
dev
);
}
return
0
;
}
static
void
sky2_get_drvinfo
(
struct
net_device
*
dev
,
struct
ethtool_drvinfo
*
info
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
strcpy
(
info
->
driver
,
DRV_NAME
);
strcpy
(
info
->
version
,
DRV_VERSION
);
strcpy
(
info
->
fw_version
,
"N/A"
);
strcpy
(
info
->
bus_info
,
pci_name
(
sky2
->
hw
->
pdev
));
}
static
const
struct
sky2_stat
{
char
name
[
ETH_GSTRING_LEN
];
u16
offset
;
}
sky2_stats
[]
=
{
{
"tx_bytes"
,
GM_TXO_OK_HI
},
{
"rx_bytes"
,
GM_RXO_OK_HI
},
{
"tx_broadcast"
,
GM_TXF_BC_OK
},
{
"rx_broadcast"
,
GM_RXF_BC_OK
},
{
"tx_multicast"
,
GM_TXF_MC_OK
},
{
"rx_multicast"
,
GM_RXF_MC_OK
},
{
"tx_unicast"
,
GM_TXF_UC_OK
},
{
"rx_unicast"
,
GM_RXF_UC_OK
},
{
"tx_mac_pause"
,
GM_TXF_MPAUSE
},
{
"rx_mac_pause"
,
GM_RXF_MPAUSE
},
{
"collisions"
,
GM_TXF_SNG_COL
},
{
"late_collision"
,
GM_TXF_LAT_COL
},
{
"aborted"
,
GM_TXF_ABO_COL
},
{
"multi_collisions"
,
GM_TXF_MUL_COL
},
{
"fifo_underrun"
,
GM_TXE_FIFO_UR
},
{
"fifo_overflow"
,
GM_RXE_FIFO_OV
},
{
"rx_toolong"
,
GM_RXF_LNG_ERR
},
{
"rx_jabber"
,
GM_RXF_JAB_PKT
},
{
"rx_runt"
,
GM_RXE_FRAG
},
{
"rx_too_long"
,
GM_RXF_LNG_ERR
},
{
"rx_fcs_error"
,
GM_RXF_FCS_ERR
},
};
static
u32
sky2_get_rx_csum
(
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
return
sky2
->
rx_csum
;
}
static
int
sky2_set_rx_csum
(
struct
net_device
*
dev
,
u32
data
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
sky2
->
rx_csum
=
data
;
sky2_write32
(
sky2
->
hw
,
Q_ADDR
(
rxqaddr
[
sky2
->
port
],
Q_CSR
),
data
?
BMU_ENA_RX_CHKSUM
:
BMU_DIS_RX_CHKSUM
);
return
0
;
}
static
u32
sky2_get_msglevel
(
struct
net_device
*
netdev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
netdev
);
return
sky2
->
msg_enable
;
}
static
int
sky2_nway_reset
(
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
if
(
sky2
->
autoneg
!=
AUTONEG_ENABLE
)
return
-
EINVAL
;
netif_stop_queue
(
dev
);
spin_lock_irq
(
&
hw
->
phy_lock
);
sky2_phy_reset
(
hw
,
sky2
->
port
);
sky2_phy_init
(
hw
,
sky2
->
port
);
spin_unlock_irq
(
&
hw
->
phy_lock
);
return
0
;
}
static
void
sky2_phy_stats
(
struct
sky2_port
*
sky2
,
u64
*
data
,
unsigned
count
)
{
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
port
=
sky2
->
port
;
int
i
;
data
[
0
]
=
(
u64
)
gma_read32
(
hw
,
port
,
GM_TXO_OK_HI
)
<<
32
|
(
u64
)
gma_read32
(
hw
,
port
,
GM_TXO_OK_LO
);
data
[
1
]
=
(
u64
)
gma_read32
(
hw
,
port
,
GM_RXO_OK_HI
)
<<
32
|
(
u64
)
gma_read32
(
hw
,
port
,
GM_RXO_OK_LO
);
for
(
i
=
2
;
i
<
count
;
i
++
)
data
[
i
]
=
(
u64
)
gma_read32
(
hw
,
port
,
sky2_stats
[
i
].
offset
);
}
static
void
sky2_set_msglevel
(
struct
net_device
*
netdev
,
u32
value
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
netdev
);
sky2
->
msg_enable
=
value
;
}
static
int
sky2_get_stats_count
(
struct
net_device
*
dev
)
{
return
ARRAY_SIZE
(
sky2_stats
);
}
static
void
sky2_get_ethtool_stats
(
struct
net_device
*
dev
,
struct
ethtool_stats
*
stats
,
u64
*
data
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
sky2_phy_stats
(
sky2
,
data
,
ARRAY_SIZE
(
sky2_stats
));
}
static
void
sky2_get_strings
(
struct
net_device
*
dev
,
u32
stringset
,
u8
*
data
)
{
int
i
;
switch
(
stringset
)
{
case
ETH_SS_STATS
:
for
(
i
=
0
;
i
<
ARRAY_SIZE
(
sky2_stats
);
i
++
)
memcpy
(
data
+
i
*
ETH_GSTRING_LEN
,
sky2_stats
[
i
].
name
,
ETH_GSTRING_LEN
);
break
;
}
}
/* Use hardware MIB variables for critical path statistics and
* transmit feedback not reported at interrupt.
* Other errors are accounted for in interrupt handler.
*/
static
struct
net_device_stats
*
sky2_get_stats
(
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
u64
data
[
13
];
sky2_phy_stats
(
sky2
,
data
,
ARRAY_SIZE
(
data
));
sky2
->
net_stats
.
tx_bytes
=
data
[
0
];
sky2
->
net_stats
.
rx_bytes
=
data
[
1
];
sky2
->
net_stats
.
tx_packets
=
data
[
2
]
+
data
[
4
]
+
data
[
6
];
sky2
->
net_stats
.
rx_packets
=
data
[
3
]
+
data
[
5
]
+
data
[
7
];
sky2
->
net_stats
.
multicast
=
data
[
5
]
+
data
[
7
];
sky2
->
net_stats
.
collisions
=
data
[
10
];
sky2
->
net_stats
.
tx_aborted_errors
=
data
[
12
];
return
&
sky2
->
net_stats
;
}
static
int
sky2_set_mac_address
(
struct
net_device
*
dev
,
void
*
p
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sockaddr
*
addr
=
p
;
int
err
=
0
;
if
(
!
is_valid_ether_addr
(
addr
->
sa_data
))
return
-
EADDRNOTAVAIL
;
sky2_down
(
dev
);
memcpy
(
dev
->
dev_addr
,
addr
->
sa_data
,
ETH_ALEN
);
memcpy_toio
(
sky2
->
hw
->
regs
+
B2_MAC_1
+
sky2
->
port
*
8
,
dev
->
dev_addr
,
ETH_ALEN
);
memcpy_toio
(
sky2
->
hw
->
regs
+
B2_MAC_2
+
sky2
->
port
*
8
,
dev
->
dev_addr
,
ETH_ALEN
);
if
(
dev
->
flags
&
IFF_UP
)
err
=
sky2_up
(
dev
);
return
err
;
}
static
void
sky2_set_multicast
(
struct
net_device
*
dev
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
port
=
sky2
->
port
;
struct
dev_mc_list
*
list
=
dev
->
mc_list
;
u16
reg
;
u8
filter
[
8
];
memset
(
filter
,
0
,
sizeof
(
filter
));
reg
=
gma_read16
(
hw
,
port
,
GM_RX_CTRL
);
reg
|=
GM_RXCR_UCF_ENA
;
if
(
dev
->
flags
&
IFF_PROMISC
)
/* promiscuous */
reg
&=
~
(
GM_RXCR_UCF_ENA
|
GM_RXCR_MCF_ENA
);
else
if
((
dev
->
flags
&
IFF_ALLMULTI
)
||
dev
->
mc_count
>
16
)
/* all multicast */
memset
(
filter
,
0xff
,
sizeof
(
filter
));
else
if
(
dev
->
mc_count
==
0
)
/* no multicast */
reg
&=
~
GM_RXCR_MCF_ENA
;
else
{
int
i
;
reg
|=
GM_RXCR_MCF_ENA
;
for
(
i
=
0
;
list
&&
i
<
dev
->
mc_count
;
i
++
,
list
=
list
->
next
)
{
u32
bit
=
ether_crc
(
ETH_ALEN
,
list
->
dmi_addr
)
&
0x3f
;
filter
[
bit
/
8
]
|=
1
<<
(
bit
%
8
);
}
}
gma_write16
(
hw
,
port
,
GM_MC_ADDR_H1
,
(
u16
)
filter
[
0
]
|
((
u16
)
filter
[
1
]
<<
8
));
gma_write16
(
hw
,
port
,
GM_MC_ADDR_H2
,
(
u16
)
filter
[
2
]
|
((
u16
)
filter
[
3
]
<<
8
));
gma_write16
(
hw
,
port
,
GM_MC_ADDR_H3
,
(
u16
)
filter
[
4
]
|
((
u16
)
filter
[
5
]
<<
8
));
gma_write16
(
hw
,
port
,
GM_MC_ADDR_H4
,
(
u16
)
filter
[
6
]
|
((
u16
)
filter
[
7
]
<<
8
));
gma_write16
(
hw
,
port
,
GM_RX_CTRL
,
reg
);
}
/* Can have one global because blinking is controlled by
* ethtool and that is always under RTNL mutex
*/
static
inline
void
sky2_led
(
struct
sky2_hw
*
hw
,
unsigned
port
,
int
on
)
{
u16
pg
;
spin_lock_bh
(
&
hw
->
phy_lock
);
switch
(
hw
->
chip_id
)
{
case
CHIP_ID_YUKON_XL
:
pg
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_EXT_ADR
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
3
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_PHY_CTRL
,
on
?
(
PHY_M_LEDC_LOS_CTRL
(
1
)
|
PHY_M_LEDC_INIT_CTRL
(
7
)
|
PHY_M_LEDC_STA1_CTRL
(
7
)
|
PHY_M_LEDC_STA0_CTRL
(
7
))
:
0
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
pg
);
break
;
default:
gm_phy_write
(
hw
,
port
,
PHY_MARV_LED_CTRL
,
0
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_LED_OVER
,
on
?
PHY_M_LED_MO_DUP
(
MO_LED_ON
)
|
PHY_M_LED_MO_10
(
MO_LED_ON
)
|
PHY_M_LED_MO_100
(
MO_LED_ON
)
|
PHY_M_LED_MO_1000
(
MO_LED_ON
)
|
PHY_M_LED_MO_RX
(
MO_LED_ON
)
:
PHY_M_LED_MO_DUP
(
MO_LED_OFF
)
|
PHY_M_LED_MO_10
(
MO_LED_OFF
)
|
PHY_M_LED_MO_100
(
MO_LED_OFF
)
|
PHY_M_LED_MO_1000
(
MO_LED_OFF
)
|
PHY_M_LED_MO_RX
(
MO_LED_OFF
));
}
spin_unlock_bh
(
&
hw
->
phy_lock
);
}
/* blink LED's for finding board */
static
int
sky2_phys_id
(
struct
net_device
*
dev
,
u32
data
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
unsigned
port
=
sky2
->
port
;
u16
ledctrl
,
ledover
=
0
;
long
ms
;
int
onoff
=
1
;
if
(
!
data
||
data
>
(
u32
)
(
MAX_SCHEDULE_TIMEOUT
/
HZ
))
ms
=
jiffies_to_msecs
(
MAX_SCHEDULE_TIMEOUT
);
else
ms
=
data
*
1000
;
/* save initial values */
spin_lock_bh
(
&
hw
->
phy_lock
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
)
{
u16
pg
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_EXT_ADR
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
3
);
ledctrl
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_PHY_CTRL
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
pg
);
}
else
{
ledctrl
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_LED_CTRL
);
ledover
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_LED_OVER
);
}
spin_unlock_bh
(
&
hw
->
phy_lock
);
while
(
ms
>
0
)
{
sky2_led
(
hw
,
port
,
onoff
);
onoff
=
!
onoff
;
if
(
msleep_interruptible
(
250
))
break
;
/* interrupted */
ms
-=
250
;
}
/* resume regularly scheduled programming */
spin_lock_bh
(
&
hw
->
phy_lock
);
if
(
hw
->
chip_id
==
CHIP_ID_YUKON_XL
)
{
u16
pg
=
gm_phy_read
(
hw
,
port
,
PHY_MARV_EXT_ADR
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
3
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_PHY_CTRL
,
ledctrl
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_EXT_ADR
,
pg
);
}
else
{
gm_phy_write
(
hw
,
port
,
PHY_MARV_LED_CTRL
,
ledctrl
);
gm_phy_write
(
hw
,
port
,
PHY_MARV_LED_OVER
,
ledover
);
}
spin_unlock_bh
(
&
hw
->
phy_lock
);
return
0
;
}
static
void
sky2_get_pauseparam
(
struct
net_device
*
dev
,
struct
ethtool_pauseparam
*
ecmd
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
ecmd
->
tx_pause
=
sky2
->
tx_pause
;
ecmd
->
rx_pause
=
sky2
->
rx_pause
;
ecmd
->
autoneg
=
sky2
->
autoneg
;
}
static
int
sky2_set_pauseparam
(
struct
net_device
*
dev
,
struct
ethtool_pauseparam
*
ecmd
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
int
err
=
0
;
sky2
->
autoneg
=
ecmd
->
autoneg
;
sky2
->
tx_pause
=
ecmd
->
tx_pause
!=
0
;
sky2
->
rx_pause
=
ecmd
->
rx_pause
!=
0
;
if
(
netif_running
(
dev
))
{
sky2_down
(
dev
);
err
=
sky2_up
(
dev
);
}
return
err
;
}
#ifdef CONFIG_PM
static
void
sky2_get_wol
(
struct
net_device
*
dev
,
struct
ethtool_wolinfo
*
wol
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
wol
->
supported
=
WAKE_MAGIC
;
wol
->
wolopts
=
sky2
->
wol
?
WAKE_MAGIC
:
0
;
}
static
int
sky2_set_wol
(
struct
net_device
*
dev
,
struct
ethtool_wolinfo
*
wol
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
struct
sky2_hw
*
hw
=
sky2
->
hw
;
if
(
wol
->
wolopts
!=
WAKE_MAGIC
&&
wol
->
wolopts
!=
0
)
return
-
EOPNOTSUPP
;
sky2
->
wol
=
wol
->
wolopts
==
WAKE_MAGIC
;
if
(
sky2
->
wol
)
{
memcpy_toio
(
hw
->
regs
+
WOL_MAC_ADDR
,
dev
->
dev_addr
,
ETH_ALEN
);
sky2_write16
(
hw
,
WOL_CTRL_STAT
,
WOL_CTL_ENA_PME_ON_MAGIC_PKT
|
WOL_CTL_ENA_MAGIC_PKT_UNIT
);
}
else
sky2_write16
(
hw
,
WOL_CTRL_STAT
,
WOL_CTL_DEFAULT
);
return
0
;
}
#endif
static
void
sky2_get_ringparam
(
struct
net_device
*
dev
,
struct
ethtool_ringparam
*
ering
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
ering
->
rx_max_pending
=
RX_MAX_PENDING
;
ering
->
rx_mini_max_pending
=
0
;
ering
->
rx_jumbo_max_pending
=
0
;
ering
->
tx_max_pending
=
TX_RING_SIZE
-
1
;
ering
->
rx_pending
=
sky2
->
rx_pending
;
ering
->
rx_mini_pending
=
0
;
ering
->
rx_jumbo_pending
=
0
;
ering
->
tx_pending
=
sky2
->
tx_pending
;
}
static
int
sky2_set_ringparam
(
struct
net_device
*
dev
,
struct
ethtool_ringparam
*
ering
)
{
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
int
err
=
0
;
if
(
ering
->
rx_pending
>
RX_MAX_PENDING
||
ering
->
rx_pending
<
8
||
ering
->
tx_pending
<
MAX_SKB_TX_LE
||
ering
->
tx_pending
>
TX_RING_SIZE
-
1
)
return
-
EINVAL
;
if
(
netif_running
(
dev
))
sky2_down
(
dev
);
sky2
->
rx_pending
=
ering
->
rx_pending
;
sky2
->
tx_pending
=
ering
->
tx_pending
;
if
(
netif_running
(
dev
))
err
=
sky2_up
(
dev
);
return
err
;
}
static
int
sky2_get_regs_len
(
struct
net_device
*
dev
)
{
return
0x4000
;
}
/*
* Returns copy of control register region
* Note: access to the RAM address register set will cause timeouts.
*/
static
void
sky2_get_regs
(
struct
net_device
*
dev
,
struct
ethtool_regs
*
regs
,
void
*
p
)
{
const
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
const
void
__iomem
*
io
=
sky2
->
hw
->
regs
;
BUG_ON
(
regs
->
len
<
B3_RI_WTO_R1
);
regs
->
version
=
1
;
memset
(
p
,
0
,
regs
->
len
);
memcpy_fromio
(
p
,
io
,
B3_RAM_ADDR
);
memcpy_fromio
(
p
+
B3_RI_WTO_R1
,
io
+
B3_RI_WTO_R1
,
regs
->
len
-
B3_RI_WTO_R1
);
}
static
struct
ethtool_ops
sky2_ethtool_ops
=
{
.
get_settings
=
sky2_get_settings
,
.
set_settings
=
sky2_set_settings
,
.
get_drvinfo
=
sky2_get_drvinfo
,
.
get_msglevel
=
sky2_get_msglevel
,
.
set_msglevel
=
sky2_set_msglevel
,
.
nway_reset
=
sky2_nway_reset
,
.
get_regs_len
=
sky2_get_regs_len
,
.
get_regs
=
sky2_get_regs
,
.
get_link
=
ethtool_op_get_link
,
.
get_sg
=
ethtool_op_get_sg
,
.
set_sg
=
ethtool_op_set_sg
,
.
get_tx_csum
=
ethtool_op_get_tx_csum
,
.
set_tx_csum
=
ethtool_op_set_tx_csum
,
.
get_tso
=
ethtool_op_get_tso
,
.
set_tso
=
ethtool_op_set_tso
,
.
get_rx_csum
=
sky2_get_rx_csum
,
.
set_rx_csum
=
sky2_set_rx_csum
,
.
get_strings
=
sky2_get_strings
,
.
get_ringparam
=
sky2_get_ringparam
,
.
set_ringparam
=
sky2_set_ringparam
,
.
get_pauseparam
=
sky2_get_pauseparam
,
.
set_pauseparam
=
sky2_set_pauseparam
,
#ifdef CONFIG_PM
.
get_wol
=
sky2_get_wol
,
.
set_wol
=
sky2_set_wol
,
#endif
.
phys_id
=
sky2_phys_id
,
.
get_stats_count
=
sky2_get_stats_count
,
.
get_ethtool_stats
=
sky2_get_ethtool_stats
,
.
get_perm_addr
=
ethtool_op_get_perm_addr
,
};
/* Initialize network device */
static
__devinit
struct
net_device
*
sky2_init_netdev
(
struct
sky2_hw
*
hw
,
unsigned
port
,
int
highmem
)
{
struct
sky2_port
*
sky2
;
struct
net_device
*
dev
=
alloc_etherdev
(
sizeof
(
*
sky2
));
if
(
!
dev
)
{
printk
(
KERN_ERR
"sky2 etherdev alloc failed"
);
return
NULL
;
}
SET_MODULE_OWNER
(
dev
);
SET_NETDEV_DEV
(
dev
,
&
hw
->
pdev
->
dev
);
dev
->
open
=
sky2_up
;
dev
->
stop
=
sky2_down
;
dev
->
hard_start_xmit
=
sky2_xmit_frame
;
dev
->
get_stats
=
sky2_get_stats
;
dev
->
set_multicast_list
=
sky2_set_multicast
;
dev
->
set_mac_address
=
sky2_set_mac_address
;
dev
->
change_mtu
=
sky2_change_mtu
;
SET_ETHTOOL_OPS
(
dev
,
&
sky2_ethtool_ops
);
dev
->
tx_timeout
=
sky2_tx_timeout
;
dev
->
watchdog_timeo
=
TX_WATCHDOG
;
if
(
port
==
0
)
dev
->
poll
=
sky2_poll
;
dev
->
weight
=
NAPI_WEIGHT
;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev
->
poll_controller
=
sky2_netpoll
;
#endif
sky2
=
netdev_priv
(
dev
);
sky2
->
netdev
=
dev
;
sky2
->
hw
=
hw
;
sky2
->
msg_enable
=
netif_msg_init
(
debug
,
default_msg
);
spin_lock_init
(
&
sky2
->
tx_lock
);
/* Auto speed and flow control */
sky2
->
autoneg
=
AUTONEG_ENABLE
;
sky2
->
tx_pause
=
0
;
sky2
->
rx_pause
=
1
;
sky2
->
duplex
=
-
1
;
sky2
->
speed
=
-
1
;
sky2
->
advertising
=
sky2_supported_modes
(
hw
);
sky2
->
rx_csum
=
1
;
tasklet_init
(
&
sky2
->
phy_task
,
sky2_phy_task
,
(
unsigned
long
)
sky2
);
sky2
->
tx_pending
=
TX_DEF_PENDING
;
sky2
->
rx_pending
=
is_ec_a1
(
hw
)
?
8
:
RX_DEF_PENDING
;
hw
->
dev
[
port
]
=
dev
;
sky2
->
port
=
port
;
dev
->
features
|=
NETIF_F_LLTX
|
NETIF_F_TSO
;
if
(
highmem
)
dev
->
features
|=
NETIF_F_HIGHDMA
;
dev
->
features
|=
NETIF_F_IP_CSUM
|
NETIF_F_SG
;
#ifdef SKY2_VLAN_TAG_USED
dev
->
features
|=
NETIF_F_HW_VLAN_TX
|
NETIF_F_HW_VLAN_RX
;
dev
->
vlan_rx_register
=
sky2_vlan_rx_register
;
dev
->
vlan_rx_kill_vid
=
sky2_vlan_rx_kill_vid
;
#endif
/* read the mac address */
memcpy_fromio
(
dev
->
dev_addr
,
hw
->
regs
+
B2_MAC_1
+
port
*
8
,
ETH_ALEN
);
memcpy
(
dev
->
perm_addr
,
dev
->
dev_addr
,
dev
->
addr_len
);
/* device is off until link detection */
netif_carrier_off
(
dev
);
netif_stop_queue
(
dev
);
return
dev
;
}
static
inline
void
sky2_show_addr
(
struct
net_device
*
dev
)
{
const
struct
sky2_port
*
sky2
=
netdev_priv
(
dev
);
if
(
netif_msg_probe
(
sky2
))
printk
(
KERN_INFO
PFX
"%s: addr %02x:%02x:%02x:%02x:%02x:%02x
\n
"
,
dev
->
name
,
dev
->
dev_addr
[
0
],
dev
->
dev_addr
[
1
],
dev
->
dev_addr
[
2
],
dev
->
dev_addr
[
3
],
dev
->
dev_addr
[
4
],
dev
->
dev_addr
[
5
]);
}
static
int
__devinit
sky2_probe
(
struct
pci_dev
*
pdev
,
const
struct
pci_device_id
*
ent
)
{
struct
net_device
*
dev
,
*
dev1
=
NULL
;
struct
sky2_hw
*
hw
;
int
err
,
pm_cap
,
using_dac
=
0
;
err
=
pci_enable_device
(
pdev
);
if
(
err
)
{
printk
(
KERN_ERR
PFX
"%s cannot enable PCI device
\n
"
,
pci_name
(
pdev
));
goto
err_out
;
}
err
=
pci_request_regions
(
pdev
,
DRV_NAME
);
if
(
err
)
{
printk
(
KERN_ERR
PFX
"%s cannot obtain PCI resources
\n
"
,
pci_name
(
pdev
));
goto
err_out
;
}
pci_set_master
(
pdev
);
/* Find power-management capability. */
pm_cap
=
pci_find_capability
(
pdev
,
PCI_CAP_ID_PM
);
if
(
pm_cap
==
0
)
{
printk
(
KERN_ERR
PFX
"Cannot find PowerManagement capability, "
"aborting.
\n
"
);
err
=
-
EIO
;
goto
err_out_free_regions
;
}
if
(
sizeof
(
dma_addr_t
)
>
sizeof
(
u32
))
{
err
=
pci_set_dma_mask
(
pdev
,
DMA_64BIT_MASK
);
if
(
!
err
)
using_dac
=
1
;
}
if
(
!
using_dac
)
{
err
=
pci_set_dma_mask
(
pdev
,
DMA_32BIT_MASK
);
if
(
err
)
{
printk
(
KERN_ERR
PFX
"%s no usable DMA configuration
\n
"
,
pci_name
(
pdev
));
goto
err_out_free_regions
;
}
}
#ifdef __BIG_ENDIAN
/* byte swap descriptors in hardware */
{
u32
reg
;
pci_read_config_dword
(
pdev
,
PCI_DEV_REG2
,
&
reg
);
reg
|=
PCI_REV_DESC
;
pci_write_config_dword
(
pdev
,
PCI_DEV_REG2
,
reg
);
}
#endif
err
=
-
ENOMEM
;
hw
=
kmalloc
(
sizeof
(
*
hw
),
GFP_KERNEL
);
if
(
!
hw
)
{
printk
(
KERN_ERR
PFX
"%s: cannot allocate hardware struct
\n
"
,
pci_name
(
pdev
));
goto
err_out_free_regions
;
}
memset
(
hw
,
0
,
sizeof
(
*
hw
));
hw
->
pdev
=
pdev
;
spin_lock_init
(
&
hw
->
phy_lock
);
hw
->
regs
=
ioremap_nocache
(
pci_resource_start
(
pdev
,
0
),
0x4000
);
if
(
!
hw
->
regs
)
{
printk
(
KERN_ERR
PFX
"%s: cannot map device registers
\n
"
,
pci_name
(
pdev
));
goto
err_out_free_hw
;
}
hw
->
pm_cap
=
pm_cap
;
err
=
sky2_reset
(
hw
);
if
(
err
)
goto
err_out_iounmap
;
printk
(
KERN_INFO
PFX
"addr 0x%lx irq %d Yukon-%s (0x%x) rev %d
\n
"
,
pci_resource_start
(
pdev
,
0
),
pdev
->
irq
,
yukon_name
[
hw
->
chip_id
-
CHIP_ID_YUKON
],
hw
->
chip_id
,
hw
->
chip_rev
);
dev
=
sky2_init_netdev
(
hw
,
0
,
using_dac
);
if
(
!
dev
)
goto
err_out_free_pci
;
err
=
register_netdev
(
dev
);
if
(
err
)
{
printk
(
KERN_ERR
PFX
"%s: cannot register net device
\n
"
,
pci_name
(
pdev
));
goto
err_out_free_netdev
;
}
sky2_show_addr
(
dev
);
if
(
hw
->
ports
>
1
&&
(
dev1
=
sky2_init_netdev
(
hw
,
1
,
using_dac
)))
{
if
(
register_netdev
(
dev1
)
==
0
)
sky2_show_addr
(
dev1
);
else
{
/* Failure to register second port need not be fatal */
printk
(
KERN_WARNING
PFX
"register of second port failed
\n
"
);
hw
->
dev
[
1
]
=
NULL
;
free_netdev
(
dev1
);
}
}
err
=
request_irq
(
pdev
->
irq
,
sky2_intr
,
SA_SHIRQ
,
DRV_NAME
,
hw
);
if
(
err
)
{
printk
(
KERN_ERR
PFX
"%s: cannot assign irq %d
\n
"
,
pci_name
(
pdev
),
pdev
->
irq
);
goto
err_out_unregister
;
}
hw
->
intr_mask
=
Y2_IS_BASE
;
sky2_write32
(
hw
,
B0_IMSK
,
hw
->
intr_mask
);
pci_set_drvdata
(
pdev
,
hw
);
return
0
;
err_out_unregister:
if
(
dev1
)
{
unregister_netdev
(
dev1
);
free_netdev
(
dev1
);
}
unregister_netdev
(
dev
);
err_out_free_netdev:
free_netdev
(
dev
);
err_out_free_pci:
sky2_write8
(
hw
,
B0_CTST
,
CS_RST_SET
);
pci_free_consistent
(
hw
->
pdev
,
STATUS_LE_BYTES
,
hw
->
st_le
,
hw
->
st_dma
);
err_out_iounmap:
iounmap
(
hw
->
regs
);
err_out_free_hw:
kfree
(
hw
);
err_out_free_regions:
pci_release_regions
(
pdev
);
pci_disable_device
(
pdev
);
err_out:
return
err
;
}
static
void
__devexit
sky2_remove
(
struct
pci_dev
*
pdev
)
{
struct
sky2_hw
*
hw
=
pci_get_drvdata
(
pdev
);
struct
net_device
*
dev0
,
*
dev1
;
if
(
!
hw
)
return
;
dev0
=
hw
->
dev
[
0
];
dev1
=
hw
->
dev
[
1
];
if
(
dev1
)
unregister_netdev
(
dev1
);
unregister_netdev
(
dev0
);
sky2_write32
(
hw
,
B0_IMSK
,
0
);
sky2_set_power_state
(
hw
,
PCI_D3hot
);
sky2_write16
(
hw
,
B0_Y2LED
,
LED_STAT_OFF
);
sky2_write8
(
hw
,
B0_CTST
,
CS_RST_SET
);
sky2_read8
(
hw
,
B0_CTST
);
free_irq
(
pdev
->
irq
,
hw
);
pci_free_consistent
(
pdev
,
STATUS_LE_BYTES
,
hw
->
st_le
,
hw
->
st_dma
);
pci_release_regions
(
pdev
);
pci_disable_device
(
pdev
);
if
(
dev1
)
free_netdev
(
dev1
);
free_netdev
(
dev0
);
iounmap
(
hw
->
regs
);
kfree
(
hw
);
pci_set_drvdata
(
pdev
,
NULL
);
}
#ifdef CONFIG_PM
static
int
sky2_suspend
(
struct
pci_dev
*
pdev
,
pm_message_t
state
)
{
struct
sky2_hw
*
hw
=
pci_get_drvdata
(
pdev
);
int
i
;
for
(
i
=
0
;
i
<
2
;
i
++
)
{
struct
net_device
*
dev
=
hw
->
dev
[
i
];
if
(
dev
)
{
if
(
!
netif_running
(
dev
))
continue
;
sky2_down
(
dev
);
netif_device_detach
(
dev
);
}
}
return
sky2_set_power_state
(
hw
,
pci_choose_state
(
pdev
,
state
));
}
static
int
sky2_resume
(
struct
pci_dev
*
pdev
)
{
struct
sky2_hw
*
hw
=
pci_get_drvdata
(
pdev
);
int
i
;
pci_restore_state
(
pdev
);
pci_enable_wake
(
pdev
,
PCI_D0
,
0
);
sky2_set_power_state
(
hw
,
PCI_D0
);
sky2_reset
(
hw
);
for
(
i
=
0
;
i
<
2
;
i
++
)
{
struct
net_device
*
dev
=
hw
->
dev
[
i
];
if
(
dev
)
{
if
(
netif_running
(
dev
))
{
netif_device_attach
(
dev
);
sky2_up
(
dev
);
}
}
}
return
0
;
}
#endif
static
struct
pci_driver
sky2_driver
=
{
.
name
=
DRV_NAME
,
.
id_table
=
sky2_id_table
,
.
probe
=
sky2_probe
,
.
remove
=
__devexit_p
(
sky2_remove
),
#ifdef CONFIG_PM
.
suspend
=
sky2_suspend
,
.
resume
=
sky2_resume
,
#endif
};
static
int
__init
sky2_init_module
(
void
)
{
return
pci_module_init
(
&
sky2_driver
);
}
static
void
__exit
sky2_cleanup_module
(
void
)
{
pci_unregister_driver
(
&
sky2_driver
);
}
module_init
(
sky2_init_module
);
module_exit
(
sky2_cleanup_module
);
MODULE_DESCRIPTION
(
"Marvell Yukon 2 Gigabit Ethernet driver"
);
MODULE_AUTHOR
(
"Stephen Hemminger <shemminger@osdl.org>"
);
MODULE_LICENSE
(
"GPL"
);
drivers/net/sky2.h
0 → 100644
View file @
06d61cbf
/*
* Definitions for the new Marvell Yukon 2 driver.
*/
#ifndef _SKY2_H
#define _SKY2_H
/* PCI config registers */
#define PCI_DEV_REG1 0x40
#define PCI_DEV_REG2 0x44
#define PCI_DEV_STATUS 0x7c
#define PCI_OS_PCI_X (1<<26)
#define PEX_LNK_STAT 0xf2
#define PEX_UNC_ERR_STAT 0x104
#define PEX_DEV_CTRL 0xe8
/* Yukon-2 */
enum
pci_dev_reg_1
{
PCI_Y2_PIG_ENA
=
1
<<
31
,
/* Enable Plug-in-Go (YUKON-2) */
PCI_Y2_DLL_DIS
=
1
<<
30
,
/* Disable PCI DLL (YUKON-2) */
PCI_Y2_PHY2_COMA
=
1
<<
29
,
/* Set PHY 2 to Coma Mode (YUKON-2) */
PCI_Y2_PHY1_COMA
=
1
<<
28
,
/* Set PHY 1 to Coma Mode (YUKON-2) */
PCI_Y2_PHY2_POWD
=
1
<<
27
,
/* Set PHY 2 to Power Down (YUKON-2) */
PCI_Y2_PHY1_POWD
=
1
<<
26
,
/* Set PHY 1 to Power Down (YUKON-2) */
};
enum
pci_dev_reg_2
{
PCI_VPD_WR_THR
=
0xffL
<<
24
,
/* Bit 31..24: VPD Write Threshold */
PCI_DEV_SEL
=
0x7fL
<<
17
,
/* Bit 23..17: EEPROM Device Select */
PCI_VPD_ROM_SZ
=
7L
<<
14
,
/* Bit 16..14: VPD ROM Size */
PCI_PATCH_DIR
=
0xfL
<<
8
,
/* Bit 11.. 8: Ext Patches dir 3..0 */
PCI_EXT_PATCHS
=
0xfL
<<
4
,
/* Bit 7.. 4: Extended Patches 3..0 */
PCI_EN_DUMMY_RD
=
1
<<
3
,
/* Enable Dummy Read */
PCI_REV_DESC
=
1
<<
2
,
/* Reverse Desc. Bytes */
PCI_USEDATA64
=
1
<<
0
,
/* Use 64Bit Data bus ext */
};
#define PCI_STATUS_ERROR_BITS (PCI_STATUS_DETECTED_PARITY | \
PCI_STATUS_SIG_SYSTEM_ERROR | \
PCI_STATUS_REC_MASTER_ABORT | \
PCI_STATUS_REC_TARGET_ABORT | \
PCI_STATUS_PARITY)
enum
pex_dev_ctrl
{
PEX_DC_MAX_RRS_MSK
=
7
<<
12
,
/* Bit 14..12: Max. Read Request Size */
PEX_DC_EN_NO_SNOOP
=
1
<<
11
,
/* Enable No Snoop */
PEX_DC_EN_AUX_POW
=
1
<<
10
,
/* Enable AUX Power */
PEX_DC_EN_PHANTOM
=
1
<<
9
,
/* Enable Phantom Functions */
PEX_DC_EN_EXT_TAG
=
1
<<
8
,
/* Enable Extended Tag Field */
PEX_DC_MAX_PLS_MSK
=
7
<<
5
,
/* Bit 7.. 5: Max. Payload Size Mask */
PEX_DC_EN_REL_ORD
=
1
<<
4
,
/* Enable Relaxed Ordering */
PEX_DC_EN_UNS_RQ_RP
=
1
<<
3
,
/* Enable Unsupported Request Reporting */
PEX_DC_EN_FAT_ER_RP
=
1
<<
2
,
/* Enable Fatal Error Reporting */
PEX_DC_EN_NFA_ER_RP
=
1
<<
1
,
/* Enable Non-Fatal Error Reporting */
PEX_DC_EN_COR_ER_RP
=
1
<<
0
,
/* Enable Correctable Error Reporting */
};
#define PEX_DC_MAX_RD_RQ_SIZE(x) (((x)<<12) & PEX_DC_MAX_RRS_MSK)
/* PEX_UNC_ERR_STAT PEX Uncorrectable Errors Status Register (Yukon-2) */
enum
pex_err
{
PEX_UNSUP_REQ
=
1
<<
20
,
/* Unsupported Request Error */
PEX_MALFOR_TLP
=
1
<<
18
,
/* Malformed TLP */
PEX_UNEXP_COMP
=
1
<<
16
,
/* Unexpected Completion */
PEX_COMP_TO
=
1
<<
14
,
/* Completion Timeout */
PEX_FLOW_CTRL_P
=
1
<<
13
,
/* Flow Control Protocol Error */
PEX_POIS_TLP
=
1
<<
12
,
/* Poisoned TLP */
PEX_DATA_LINK_P
=
1
<<
4
,
/* Data Link Protocol Error */
PEX_FATAL_ERRORS
=
(
PEX_MALFOR_TLP
|
PEX_FLOW_CTRL_P
|
PEX_DATA_LINK_P
),
};
enum
csr_regs
{
B0_RAP
=
0x0000
,
B0_CTST
=
0x0004
,
B0_Y2LED
=
0x0005
,
B0_POWER_CTRL
=
0x0007
,
B0_ISRC
=
0x0008
,
B0_IMSK
=
0x000c
,
B0_HWE_ISRC
=
0x0010
,
B0_HWE_IMSK
=
0x0014
,
/* Special ISR registers (Yukon-2 only) */
B0_Y2_SP_ISRC2
=
0x001c
,
B0_Y2_SP_ISRC3
=
0x0020
,
B0_Y2_SP_EISR
=
0x0024
,
B0_Y2_SP_LISR
=
0x0028
,
B0_Y2_SP_ICR
=
0x002c
,
B2_MAC_1
=
0x0100
,
B2_MAC_2
=
0x0108
,
B2_MAC_3
=
0x0110
,
B2_CONN_TYP
=
0x0118
,
B2_PMD_TYP
=
0x0119
,
B2_MAC_CFG
=
0x011a
,
B2_CHIP_ID
=
0x011b
,
B2_E_0
=
0x011c
,
B2_Y2_CLK_GATE
=
0x011d
,
B2_Y2_HW_RES
=
0x011e
,
B2_E_3
=
0x011f
,
B2_Y2_CLK_CTRL
=
0x0120
,
B2_TI_INI
=
0x0130
,
B2_TI_VAL
=
0x0134
,
B2_TI_CTRL
=
0x0138
,
B2_TI_TEST
=
0x0139
,
B2_TST_CTRL1
=
0x0158
,
B2_TST_CTRL2
=
0x0159
,
B2_GP_IO
=
0x015c
,
B2_I2C_CTRL
=
0x0160
,
B2_I2C_DATA
=
0x0164
,
B2_I2C_IRQ
=
0x0168
,
B2_I2C_SW
=
0x016c
,
B3_RAM_ADDR
=
0x0180
,
B3_RAM_DATA_LO
=
0x0184
,
B3_RAM_DATA_HI
=
0x0188
,
/* RAM Interface Registers */
/* Yukon-2: use RAM_BUFFER() to access the RAM buffer */
/*
* The HW-Spec. calls this registers Timeout Value 0..11. But this names are
* not usable in SW. Please notice these are NOT real timeouts, these are
* the number of qWords transferred continuously.
*/
#define RAM_BUFFER(port, reg) (reg | (port <<6))
B3_RI_WTO_R1
=
0x0190
,
B3_RI_WTO_XA1
=
0x0191
,
B3_RI_WTO_XS1
=
0x0192
,
B3_RI_RTO_R1
=
0x0193
,
B3_RI_RTO_XA1
=
0x0194
,
B3_RI_RTO_XS1
=
0x0195
,
B3_RI_WTO_R2
=
0x0196
,
B3_RI_WTO_XA2
=
0x0197
,
B3_RI_WTO_XS2
=
0x0198
,
B3_RI_RTO_R2
=
0x0199
,
B3_RI_RTO_XA2
=
0x019a
,
B3_RI_RTO_XS2
=
0x019b
,
B3_RI_TO_VAL
=
0x019c
,
B3_RI_CTRL
=
0x01a0
,
B3_RI_TEST
=
0x01a2
,
B3_MA_TOINI_RX1
=
0x01b0
,
B3_MA_TOINI_RX2
=
0x01b1
,
B3_MA_TOINI_TX1
=
0x01b2
,
B3_MA_TOINI_TX2
=
0x01b3
,
B3_MA_TOVAL_RX1
=
0x01b4
,
B3_MA_TOVAL_RX2
=
0x01b5
,
B3_MA_TOVAL_TX1
=
0x01b6
,
B3_MA_TOVAL_TX2
=
0x01b7
,
B3_MA_TO_CTRL
=
0x01b8
,
B3_MA_TO_TEST
=
0x01ba
,
B3_MA_RCINI_RX1
=
0x01c0
,
B3_MA_RCINI_RX2
=
0x01c1
,
B3_MA_RCINI_TX1
=
0x01c2
,
B3_MA_RCINI_TX2
=
0x01c3
,
B3_MA_RCVAL_RX1
=
0x01c4
,
B3_MA_RCVAL_RX2
=
0x01c5
,
B3_MA_RCVAL_TX1
=
0x01c6
,
B3_MA_RCVAL_TX2
=
0x01c7
,
B3_MA_RC_CTRL
=
0x01c8
,
B3_MA_RC_TEST
=
0x01ca
,
B3_PA_TOINI_RX1
=
0x01d0
,
B3_PA_TOINI_RX2
=
0x01d4
,
B3_PA_TOINI_TX1
=
0x01d8
,
B3_PA_TOINI_TX2
=
0x01dc
,
B3_PA_TOVAL_RX1
=
0x01e0
,
B3_PA_TOVAL_RX2
=
0x01e4
,
B3_PA_TOVAL_TX1
=
0x01e8
,
B3_PA_TOVAL_TX2
=
0x01ec
,
B3_PA_CTRL
=
0x01f0
,
B3_PA_TEST
=
0x01f2
,
Y2_CFG_SPC
=
0x1c00
,
};
/* B0_CTST 16 bit Control/Status register */
enum
{
Y2_VMAIN_AVAIL
=
1
<<
17
,
/* VMAIN available (YUKON-2 only) */
Y2_VAUX_AVAIL
=
1
<<
16
,
/* VAUX available (YUKON-2 only) */
Y2_ASF_ENABLE
=
1
<<
13
,
/* ASF Unit Enable (YUKON-2 only) */
Y2_ASF_DISABLE
=
1
<<
12
,
/* ASF Unit Disable (YUKON-2 only) */
Y2_CLK_RUN_ENA
=
1
<<
11
,
/* CLK_RUN Enable (YUKON-2 only) */
Y2_CLK_RUN_DIS
=
1
<<
10
,
/* CLK_RUN Disable (YUKON-2 only) */
Y2_LED_STAT_ON
=
1
<<
9
,
/* Status LED On (YUKON-2 only) */
Y2_LED_STAT_OFF
=
1
<<
8
,
/* Status LED Off (YUKON-2 only) */
CS_ST_SW_IRQ
=
1
<<
7
,
/* Set IRQ SW Request */
CS_CL_SW_IRQ
=
1
<<
6
,
/* Clear IRQ SW Request */
CS_STOP_DONE
=
1
<<
5
,
/* Stop Master is finished */
CS_STOP_MAST
=
1
<<
4
,
/* Command Bit to stop the master */
CS_MRST_CLR
=
1
<<
3
,
/* Clear Master reset */
CS_MRST_SET
=
1
<<
2
,
/* Set Master reset */
CS_RST_CLR
=
1
<<
1
,
/* Clear Software reset */
CS_RST_SET
=
1
,
/* Set Software reset */
};
/* B0_LED 8 Bit LED register */
enum
{
/* Bit 7.. 2: reserved */
LED_STAT_ON
=
1
<<
1
,
/* Status LED on */
LED_STAT_OFF
=
1
,
/* Status LED off */
};
/* B0_POWER_CTRL 8 Bit Power Control reg (YUKON only) */
enum
{
PC_VAUX_ENA
=
1
<<
7
,
/* Switch VAUX Enable */
PC_VAUX_DIS
=
1
<<
6
,
/* Switch VAUX Disable */
PC_VCC_ENA
=
1
<<
5
,
/* Switch VCC Enable */
PC_VCC_DIS
=
1
<<
4
,
/* Switch VCC Disable */
PC_VAUX_ON
=
1
<<
3
,
/* Switch VAUX On */
PC_VAUX_OFF
=
1
<<
2
,
/* Switch VAUX Off */
PC_VCC_ON
=
1
<<
1
,
/* Switch VCC On */
PC_VCC_OFF
=
1
<<
0
,
/* Switch VCC Off */
};
/* B2_IRQM_MSK 32 bit IRQ Moderation Mask */
/* B0_Y2_SP_ISRC2 32 bit Special Interrupt Source Reg 2 */
/* B0_Y2_SP_ISRC3 32 bit Special Interrupt Source Reg 3 */
/* B0_Y2_SP_EISR 32 bit Enter ISR Reg */
/* B0_Y2_SP_LISR 32 bit Leave ISR Reg */
enum
{
Y2_IS_HW_ERR
=
1
<<
31
,
/* Interrupt HW Error */
Y2_IS_STAT_BMU
=
1
<<
30
,
/* Status BMU Interrupt */
Y2_IS_ASF
=
1
<<
29
,
/* ASF subsystem Interrupt */
Y2_IS_POLL_CHK
=
1
<<
27
,
/* Check IRQ from polling unit */
Y2_IS_TWSI_RDY
=
1
<<
26
,
/* IRQ on end of TWSI Tx */
Y2_IS_IRQ_SW
=
1
<<
25
,
/* SW forced IRQ */
Y2_IS_TIMINT
=
1
<<
24
,
/* IRQ from Timer */
Y2_IS_IRQ_PHY2
=
1
<<
12
,
/* Interrupt from PHY 2 */
Y2_IS_IRQ_MAC2
=
1
<<
11
,
/* Interrupt from MAC 2 */
Y2_IS_CHK_RX2
=
1
<<
10
,
/* Descriptor error Rx 2 */
Y2_IS_CHK_TXS2
=
1
<<
9
,
/* Descriptor error TXS 2 */
Y2_IS_CHK_TXA2
=
1
<<
8
,
/* Descriptor error TXA 2 */
Y2_IS_IRQ_PHY1
=
1
<<
4
,
/* Interrupt from PHY 1 */
Y2_IS_IRQ_MAC1
=
1
<<
3
,
/* Interrupt from MAC 1 */
Y2_IS_CHK_RX1
=
1
<<
2
,
/* Descriptor error Rx 1 */
Y2_IS_CHK_TXS1
=
1
<<
1
,
/* Descriptor error TXS 1 */
Y2_IS_CHK_TXA1
=
1
<<
0
,
/* Descriptor error TXA 1 */
Y2_IS_BASE
=
Y2_IS_HW_ERR
|
Y2_IS_STAT_BMU
|
Y2_IS_POLL_CHK
|
Y2_IS_TWSI_RDY
|
Y2_IS_IRQ_SW
|
Y2_IS_TIMINT
,
Y2_IS_PORT_1
=
Y2_IS_IRQ_PHY1
|
Y2_IS_IRQ_MAC1
|
Y2_IS_CHK_RX1
|
Y2_IS_CHK_TXA1
|
Y2_IS_CHK_TXS1
,
Y2_IS_PORT_2
=
Y2_IS_IRQ_PHY2
|
Y2_IS_IRQ_MAC2
|
Y2_IS_CHK_RX2
|
Y2_IS_CHK_TXA2
|
Y2_IS_CHK_TXS2
,
};
/* B2_IRQM_HWE_MSK 32 bit IRQ Moderation HW Error Mask */
enum
{
IS_ERR_MSK
=
0x00003fff
,
/* All Error bits */
IS_IRQ_TIST_OV
=
1
<<
13
,
/* Time Stamp Timer Overflow (YUKON only) */
IS_IRQ_SENSOR
=
1
<<
12
,
/* IRQ from Sensor (YUKON only) */
IS_IRQ_MST_ERR
=
1
<<
11
,
/* IRQ master error detected */
IS_IRQ_STAT
=
1
<<
10
,
/* IRQ status exception */
IS_NO_STAT_M1
=
1
<<
9
,
/* No Rx Status from MAC 1 */
IS_NO_STAT_M2
=
1
<<
8
,
/* No Rx Status from MAC 2 */
IS_NO_TIST_M1
=
1
<<
7
,
/* No Time Stamp from MAC 1 */
IS_NO_TIST_M2
=
1
<<
6
,
/* No Time Stamp from MAC 2 */
IS_RAM_RD_PAR
=
1
<<
5
,
/* RAM Read Parity Error */
IS_RAM_WR_PAR
=
1
<<
4
,
/* RAM Write Parity Error */
IS_M1_PAR_ERR
=
1
<<
3
,
/* MAC 1 Parity Error */
IS_M2_PAR_ERR
=
1
<<
2
,
/* MAC 2 Parity Error */
IS_R1_PAR_ERR
=
1
<<
1
,
/* Queue R1 Parity Error */
IS_R2_PAR_ERR
=
1
<<
0
,
/* Queue R2 Parity Error */
};
/* Hardware error interrupt mask for Yukon 2 */
enum
{
Y2_IS_TIST_OV
=
1
<<
29
,
/* Time Stamp Timer overflow interrupt */
Y2_IS_SENSOR
=
1
<<
28
,
/* Sensor interrupt */
Y2_IS_MST_ERR
=
1
<<
27
,
/* Master error interrupt */
Y2_IS_IRQ_STAT
=
1
<<
26
,
/* Status exception interrupt */
Y2_IS_PCI_EXP
=
1
<<
25
,
/* PCI-Express interrupt */
Y2_IS_PCI_NEXP
=
1
<<
24
,
/* PCI-Express error similar to PCI error */
/* Link 2 */
Y2_IS_PAR_RD2
=
1
<<
13
,
/* Read RAM parity error interrupt */
Y2_IS_PAR_WR2
=
1
<<
12
,
/* Write RAM parity error interrupt */
Y2_IS_PAR_MAC2
=
1
<<
11
,
/* MAC hardware fault interrupt */
Y2_IS_PAR_RX2
=
1
<<
10
,
/* Parity Error Rx Queue 2 */
Y2_IS_TCP_TXS2
=
1
<<
9
,
/* TCP length mismatch sync Tx queue IRQ */
Y2_IS_TCP_TXA2
=
1
<<
8
,
/* TCP length mismatch async Tx queue IRQ */
/* Link 1 */
Y2_IS_PAR_RD1
=
1
<<
5
,
/* Read RAM parity error interrupt */
Y2_IS_PAR_WR1
=
1
<<
4
,
/* Write RAM parity error interrupt */
Y2_IS_PAR_MAC1
=
1
<<
3
,
/* MAC hardware fault interrupt */
Y2_IS_PAR_RX1
=
1
<<
2
,
/* Parity Error Rx Queue 1 */
Y2_IS_TCP_TXS1
=
1
<<
1
,
/* TCP length mismatch sync Tx queue IRQ */
Y2_IS_TCP_TXA1
=
1
<<
0
,
/* TCP length mismatch async Tx queue IRQ */
Y2_HWE_L1_MASK
=
Y2_IS_PAR_RD1
|
Y2_IS_PAR_WR1
|
Y2_IS_PAR_MAC1
|
Y2_IS_PAR_RX1
|
Y2_IS_TCP_TXS1
|
Y2_IS_TCP_TXA1
,
Y2_HWE_L2_MASK
=
Y2_IS_PAR_RD2
|
Y2_IS_PAR_WR2
|
Y2_IS_PAR_MAC2
|
Y2_IS_PAR_RX2
|
Y2_IS_TCP_TXS2
|
Y2_IS_TCP_TXA2
,
Y2_HWE_ALL_MASK
=
Y2_IS_TIST_OV
|
Y2_IS_MST_ERR
|
Y2_IS_IRQ_STAT
|
Y2_IS_PCI_EXP
|
Y2_IS_PCI_NEXP
|
Y2_HWE_L1_MASK
|
Y2_HWE_L2_MASK
,
};
/* B28_DPT_CTRL 8 bit Descriptor Poll Timer Ctrl Reg */
enum
{
DPT_START
=
1
<<
1
,
DPT_STOP
=
1
<<
0
,
};
/* B2_TST_CTRL1 8 bit Test Control Register 1 */
enum
{
TST_FRC_DPERR_MR
=
1
<<
7
,
/* force DATAPERR on MST RD */
TST_FRC_DPERR_MW
=
1
<<
6
,
/* force DATAPERR on MST WR */
TST_FRC_DPERR_TR
=
1
<<
5
,
/* force DATAPERR on TRG RD */
TST_FRC_DPERR_TW
=
1
<<
4
,
/* force DATAPERR on TRG WR */
TST_FRC_APERR_M
=
1
<<
3
,
/* force ADDRPERR on MST */
TST_FRC_APERR_T
=
1
<<
2
,
/* force ADDRPERR on TRG */
TST_CFG_WRITE_ON
=
1
<<
1
,
/* Enable Config Reg WR */
TST_CFG_WRITE_OFF
=
1
<<
0
,
/* Disable Config Reg WR */
};
/* B2_MAC_CFG 8 bit MAC Configuration / Chip Revision */
enum
{
CFG_CHIP_R_MSK
=
0xf
<<
4
,
/* Bit 7.. 4: Chip Revision */
/* Bit 3.. 2: reserved */
CFG_DIS_M2_CLK
=
1
<<
1
,
/* Disable Clock for 2nd MAC */
CFG_SNG_MAC
=
1
<<
0
,
/* MAC Config: 0=2 MACs / 1=1 MAC*/
};
/* B2_CHIP_ID 8 bit Chip Identification Number */
enum
{
CHIP_ID_GENESIS
=
0x0a
,
/* Chip ID for GENESIS */
CHIP_ID_YUKON
=
0xb0
,
/* Chip ID for YUKON */
CHIP_ID_YUKON_LITE
=
0xb1
,
/* Chip ID for YUKON-Lite (Rev. A1-A3) */
CHIP_ID_YUKON_LP
=
0xb2
,
/* Chip ID for YUKON-LP */
CHIP_ID_YUKON_XL
=
0xb3
,
/* Chip ID for YUKON-2 XL */
CHIP_ID_YUKON_EC
=
0xb6
,
/* Chip ID for YUKON-2 EC */
CHIP_ID_YUKON_FE
=
0xb7
,
/* Chip ID for YUKON-2 FE */
CHIP_REV_YU_EC_A1
=
0
,
/* Chip Rev. for Yukon-EC A1/A0 */
CHIP_REV_YU_EC_A2
=
1
,
/* Chip Rev. for Yukon-EC A2 */
CHIP_REV_YU_EC_A3
=
2
,
/* Chip Rev. for Yukon-EC A3 */
};
/* B2_Y2_CLK_GATE 8 bit Clock Gating (Yukon-2 only) */
enum
{
Y2_STATUS_LNK2_INAC
=
1
<<
7
,
/* Status Link 2 inactive (0 = active) */
Y2_CLK_GAT_LNK2_DIS
=
1
<<
6
,
/* Disable clock gating Link 2 */
Y2_COR_CLK_LNK2_DIS
=
1
<<
5
,
/* Disable Core clock Link 2 */
Y2_PCI_CLK_LNK2_DIS
=
1
<<
4
,
/* Disable PCI clock Link 2 */
Y2_STATUS_LNK1_INAC
=
1
<<
3
,
/* Status Link 1 inactive (0 = active) */
Y2_CLK_GAT_LNK1_DIS
=
1
<<
2
,
/* Disable clock gating Link 1 */
Y2_COR_CLK_LNK1_DIS
=
1
<<
1
,
/* Disable Core clock Link 1 */
Y2_PCI_CLK_LNK1_DIS
=
1
<<
0
,
/* Disable PCI clock Link 1 */
};
/* B2_Y2_HW_RES 8 bit HW Resources (Yukon-2 only) */
enum
{
CFG_LED_MODE_MSK
=
7
<<
2
,
/* Bit 4.. 2: LED Mode Mask */
CFG_LINK_2_AVAIL
=
1
<<
1
,
/* Link 2 available */
CFG_LINK_1_AVAIL
=
1
<<
0
,
/* Link 1 available */
};
#define CFG_LED_MODE(x) (((x) & CFG_LED_MODE_MSK) >> 2)
#define CFG_DUAL_MAC_MSK (CFG_LINK_2_AVAIL | CFG_LINK_1_AVAIL)
/* B2_Y2_CLK_CTRL 32 bit Clock Frequency Control Register (Yukon-2/EC) */
enum
{
Y2_CLK_DIV_VAL_MSK
=
0xff
<<
16
,
/* Bit 23..16: Clock Divisor Value */
#define Y2_CLK_DIV_VAL(x) (((x)<<16) & Y2_CLK_DIV_VAL_MSK)
Y2_CLK_DIV_VAL2_MSK
=
7
<<
21
,
/* Bit 23..21: Clock Divisor Value */
Y2_CLK_SELECT2_MSK
=
0x1f
<<
16
,
/* Bit 20..16: Clock Select */
#define Y2_CLK_DIV_VAL_2(x) (((x)<<21) & Y2_CLK_DIV_VAL2_MSK)
#define Y2_CLK_SEL_VAL_2(x) (((x)<<16) & Y2_CLK_SELECT2_MSK)
Y2_CLK_DIV_ENA
=
1
<<
1
,
/* Enable Core Clock Division */
Y2_CLK_DIV_DIS
=
1
<<
0
,
/* Disable Core Clock Division */
};
/* B2_TI_CTRL 8 bit Timer control */
/* B2_IRQM_CTRL 8 bit IRQ Moderation Timer Control */
enum
{
TIM_START
=
1
<<
2
,
/* Start Timer */
TIM_STOP
=
1
<<
1
,
/* Stop Timer */
TIM_CLR_IRQ
=
1
<<
0
,
/* Clear Timer IRQ (!IRQM) */
};
/* B2_TI_TEST 8 Bit Timer Test */
/* B2_IRQM_TEST 8 bit IRQ Moderation Timer Test */
/* B28_DPT_TST 8 bit Descriptor Poll Timer Test Reg */
enum
{
TIM_T_ON
=
1
<<
2
,
/* Test mode on */
TIM_T_OFF
=
1
<<
1
,
/* Test mode off */
TIM_T_STEP
=
1
<<
0
,
/* Test step */
};
/* B3_RAM_ADDR 32 bit RAM Address, to read or write */
/* Bit 31..19: reserved */
#define RAM_ADR_RAN 0x0007ffffL
/* Bit 18.. 0: RAM Address Range */
/* RAM Interface Registers */
/* B3_RI_CTRL 16 bit RAM Interface Control Register */
enum
{
RI_CLR_RD_PERR
=
1
<<
9
,
/* Clear IRQ RAM Read Parity Err */
RI_CLR_WR_PERR
=
1
<<
8
,
/* Clear IRQ RAM Write Parity Err*/
RI_RST_CLR
=
1
<<
1
,
/* Clear RAM Interface Reset */
RI_RST_SET
=
1
<<
0
,
/* Set RAM Interface Reset */
};
#define SK_RI_TO_53 36
/* RAM interface timeout */
/* Port related registers FIFO, and Arbiter */
#define SK_REG(port,reg) (((port)<<7)+(reg))
/* Transmit Arbiter Registers MAC 1 and 2, use SK_REG() to access */
/* TXA_ITI_INI 32 bit Tx Arb Interval Timer Init Val */
/* TXA_ITI_VAL 32 bit Tx Arb Interval Timer Value */
/* TXA_LIM_INI 32 bit Tx Arb Limit Counter Init Val */
/* TXA_LIM_VAL 32 bit Tx Arb Limit Counter Value */
#define TXA_MAX_VAL 0x00ffffffUL
/* Bit 23.. 0: Max TXA Timer/Cnt Val */
/* TXA_CTRL 8 bit Tx Arbiter Control Register */
enum
{
TXA_ENA_FSYNC
=
1
<<
7
,
/* Enable force of sync Tx queue */
TXA_DIS_FSYNC
=
1
<<
6
,
/* Disable force of sync Tx queue */
TXA_ENA_ALLOC
=
1
<<
5
,
/* Enable alloc of free bandwidth */
TXA_DIS_ALLOC
=
1
<<
4
,
/* Disable alloc of free bandwidth */
TXA_START_RC
=
1
<<
3
,
/* Start sync Rate Control */
TXA_STOP_RC
=
1
<<
2
,
/* Stop sync Rate Control */
TXA_ENA_ARB
=
1
<<
1
,
/* Enable Tx Arbiter */
TXA_DIS_ARB
=
1
<<
0
,
/* Disable Tx Arbiter */
};
/*
* Bank 4 - 5
*/
/* Transmit Arbiter Registers MAC 1 and 2, use SK_REG() to access */
enum
{
TXA_ITI_INI
=
0x0200
,
/* 32 bit Tx Arb Interval Timer Init Val*/
TXA_ITI_VAL
=
0x0204
,
/* 32 bit Tx Arb Interval Timer Value */
TXA_LIM_INI
=
0x0208
,
/* 32 bit Tx Arb Limit Counter Init Val */
TXA_LIM_VAL
=
0x020c
,
/* 32 bit Tx Arb Limit Counter Value */
TXA_CTRL
=
0x0210
,
/* 8 bit Tx Arbiter Control Register */
TXA_TEST
=
0x0211
,
/* 8 bit Tx Arbiter Test Register */
TXA_STAT
=
0x0212
,
/* 8 bit Tx Arbiter Status Register */
};
enum
{
B6_EXT_REG
=
0x0300
,
/* External registers (GENESIS only) */
B7_CFG_SPC
=
0x0380
,
/* copy of the Configuration register */
B8_RQ1_REGS
=
0x0400
,
/* Receive Queue 1 */
B8_RQ2_REGS
=
0x0480
,
/* Receive Queue 2 */
B8_TS1_REGS
=
0x0600
,
/* Transmit sync queue 1 */
B8_TA1_REGS
=
0x0680
,
/* Transmit async queue 1 */
B8_TS2_REGS
=
0x0700
,
/* Transmit sync queue 2 */
B8_TA2_REGS
=
0x0780
,
/* Transmit sync queue 2 */
B16_RAM_REGS
=
0x0800
,
/* RAM Buffer Registers */
};
/* Queue Register Offsets, use Q_ADDR() to access */
enum
{
B8_Q_REGS
=
0x0400
,
/* base of Queue registers */
Q_D
=
0x00
,
/* 8*32 bit Current Descriptor */
Q_DA_L
=
0x20
,
/* 32 bit Current Descriptor Address Low dWord */
Q_DA_H
=
0x24
,
/* 32 bit Current Descriptor Address High dWord */
Q_AC_L
=
0x28
,
/* 32 bit Current Address Counter Low dWord */
Q_AC_H
=
0x2c
,
/* 32 bit Current Address Counter High dWord */
Q_BC
=
0x30
,
/* 32 bit Current Byte Counter */
Q_CSR
=
0x34
,
/* 32 bit BMU Control/Status Register */
Q_F
=
0x38
,
/* 32 bit Flag Register */
Q_T1
=
0x3c
,
/* 32 bit Test Register 1 */
Q_T1_TR
=
0x3c
,
/* 8 bit Test Register 1 Transfer SM */
Q_T1_WR
=
0x3d
,
/* 8 bit Test Register 1 Write Descriptor SM */
Q_T1_RD
=
0x3e
,
/* 8 bit Test Register 1 Read Descriptor SM */
Q_T1_SV
=
0x3f
,
/* 8 bit Test Register 1 Supervisor SM */
Q_T2
=
0x40
,
/* 32 bit Test Register 2 */
Q_T3
=
0x44
,
/* 32 bit Test Register 3 */
/* Yukon-2 */
Q_DONE
=
0x24
,
/* 16 bit Done Index (Yukon-2 only) */
Q_WM
=
0x40
,
/* 16 bit FIFO Watermark */
Q_AL
=
0x42
,
/* 8 bit FIFO Alignment */
Q_RSP
=
0x44
,
/* 16 bit FIFO Read Shadow Pointer */
Q_RSL
=
0x46
,
/* 8 bit FIFO Read Shadow Level */
Q_RP
=
0x48
,
/* 8 bit FIFO Read Pointer */
Q_RL
=
0x4a
,
/* 8 bit FIFO Read Level */
Q_WP
=
0x4c
,
/* 8 bit FIFO Write Pointer */
Q_WSP
=
0x4d
,
/* 8 bit FIFO Write Shadow Pointer */
Q_WL
=
0x4e
,
/* 8 bit FIFO Write Level */
Q_WSL
=
0x4f
,
/* 8 bit FIFO Write Shadow Level */
};
#define Q_ADDR(reg, offs) (B8_Q_REGS + (reg) + (offs))
/* Queue Prefetch Unit Offsets, use Y2_QADDR() to address (Yukon-2 only)*/
enum
{
Y2_B8_PREF_REGS
=
0x0450
,
PREF_UNIT_CTRL
=
0x00
,
/* 32 bit Control register */
PREF_UNIT_LAST_IDX
=
0x04
,
/* 16 bit Last Index */
PREF_UNIT_ADDR_LO
=
0x08
,
/* 32 bit List start addr, low part */
PREF_UNIT_ADDR_HI
=
0x0c
,
/* 32 bit List start addr, high part*/
PREF_UNIT_GET_IDX
=
0x10
,
/* 16 bit Get Index */
PREF_UNIT_PUT_IDX
=
0x14
,
/* 16 bit Put Index */
PREF_UNIT_FIFO_WP
=
0x20
,
/* 8 bit FIFO write pointer */
PREF_UNIT_FIFO_RP
=
0x24
,
/* 8 bit FIFO read pointer */
PREF_UNIT_FIFO_WM
=
0x28
,
/* 8 bit FIFO watermark */
PREF_UNIT_FIFO_LEV
=
0x2c
,
/* 8 bit FIFO level */
PREF_UNIT_MASK_IDX
=
0x0fff
,
};
#define Y2_QADDR(q,reg) (Y2_B8_PREF_REGS + (q) + (reg))
/* RAM Buffer Register Offsets */
enum
{
RB_START
=
0x00
,
/* 32 bit RAM Buffer Start Address */
RB_END
=
0x04
,
/* 32 bit RAM Buffer End Address */
RB_WP
=
0x08
,
/* 32 bit RAM Buffer Write Pointer */
RB_RP
=
0x0c
,
/* 32 bit RAM Buffer Read Pointer */
RB_RX_UTPP
=
0x10
,
/* 32 bit Rx Upper Threshold, Pause Packet */
RB_RX_LTPP
=
0x14
,
/* 32 bit Rx Lower Threshold, Pause Packet */
RB_RX_UTHP
=
0x18
,
/* 32 bit Rx Upper Threshold, High Prio */
RB_RX_LTHP
=
0x1c
,
/* 32 bit Rx Lower Threshold, High Prio */
/* 0x10 - 0x1f: reserved at Tx RAM Buffer Registers */
RB_PC
=
0x20
,
/* 32 bit RAM Buffer Packet Counter */
RB_LEV
=
0x24
,
/* 32 bit RAM Buffer Level Register */
RB_CTRL
=
0x28
,
/* 32 bit RAM Buffer Control Register */
RB_TST1
=
0x29
,
/* 8 bit RAM Buffer Test Register 1 */
RB_TST2
=
0x2a
,
/* 8 bit RAM Buffer Test Register 2 */
};
/* Receive and Transmit Queues */
enum
{
Q_R1
=
0x0000
,
/* Receive Queue 1 */
Q_R2
=
0x0080
,
/* Receive Queue 2 */
Q_XS1
=
0x0200
,
/* Synchronous Transmit Queue 1 */
Q_XA1
=
0x0280
,
/* Asynchronous Transmit Queue 1 */
Q_XS2
=
0x0300
,
/* Synchronous Transmit Queue 2 */
Q_XA2
=
0x0380
,
/* Asynchronous Transmit Queue 2 */
};
/* Different PHY Types */
enum
{
PHY_ADDR_MARV
=
0
,
};
#define RB_ADDR(offs, queue) (B16_RAM_REGS + (queue) + (offs))
enum
{
LNK_SYNC_INI
=
0x0c30
,
/* 32 bit Link Sync Cnt Init Value */
LNK_SYNC_VAL
=
0x0c34
,
/* 32 bit Link Sync Cnt Current Value */
LNK_SYNC_CTRL
=
0x0c38
,
/* 8 bit Link Sync Cnt Control Register */
LNK_SYNC_TST
=
0x0c39
,
/* 8 bit Link Sync Cnt Test Register */
LNK_LED_REG
=
0x0c3c
,
/* 8 bit Link LED Register */
/* Receive GMAC FIFO (YUKON and Yukon-2) */
RX_GMF_EA
=
0x0c40
,
/* 32 bit Rx GMAC FIFO End Address */
RX_GMF_AF_THR
=
0x0c44
,
/* 32 bit Rx GMAC FIFO Almost Full Thresh. */
RX_GMF_CTRL_T
=
0x0c48
,
/* 32 bit Rx GMAC FIFO Control/Test */
RX_GMF_FL_MSK
=
0x0c4c
,
/* 32 bit Rx GMAC FIFO Flush Mask */
RX_GMF_FL_THR
=
0x0c50
,
/* 32 bit Rx GMAC FIFO Flush Threshold */
RX_GMF_TR_THR
=
0x0c54
,
/* 32 bit Rx Truncation Threshold (Yukon-2) */
RX_GMF_VLAN
=
0x0c5c
,
/* 32 bit Rx VLAN Type Register (Yukon-2) */
RX_GMF_WP
=
0x0c60
,
/* 32 bit Rx GMAC FIFO Write Pointer */
RX_GMF_WLEV
=
0x0c68
,
/* 32 bit Rx GMAC FIFO Write Level */
RX_GMF_RP
=
0x0c70
,
/* 32 bit Rx GMAC FIFO Read Pointer */
RX_GMF_RLEV
=
0x0c78
,
/* 32 bit Rx GMAC FIFO Read Level */
};
/* Q_BC 32 bit Current Byte Counter */
/* BMU Control Status Registers */
/* B0_R1_CSR 32 bit BMU Ctrl/Stat Rx Queue 1 */
/* B0_R2_CSR 32 bit BMU Ctrl/Stat Rx Queue 2 */
/* B0_XA1_CSR 32 bit BMU Ctrl/Stat Sync Tx Queue 1 */
/* B0_XS1_CSR 32 bit BMU Ctrl/Stat Async Tx Queue 1 */
/* B0_XA2_CSR 32 bit BMU Ctrl/Stat Sync Tx Queue 2 */
/* B0_XS2_CSR 32 bit BMU Ctrl/Stat Async Tx Queue 2 */
/* Q_CSR 32 bit BMU Control/Status Register */
/* Rx BMU Control / Status Registers (Yukon-2) */
enum
{
BMU_IDLE
=
1
<<
31
,
/* BMU Idle State */
BMU_RX_TCP_PKT
=
1
<<
30
,
/* Rx TCP Packet (when RSS Hash enabled) */
BMU_RX_IP_PKT
=
1
<<
29
,
/* Rx IP Packet (when RSS Hash enabled) */
BMU_ENA_RX_RSS_HASH
=
1
<<
15
,
/* Enable Rx RSS Hash */
BMU_DIS_RX_RSS_HASH
=
1
<<
14
,
/* Disable Rx RSS Hash */
BMU_ENA_RX_CHKSUM
=
1
<<
13
,
/* Enable Rx TCP/IP Checksum Check */
BMU_DIS_RX_CHKSUM
=
1
<<
12
,
/* Disable Rx TCP/IP Checksum Check */
BMU_CLR_IRQ_PAR
=
1
<<
11
,
/* Clear IRQ on Parity errors (Rx) */
BMU_CLR_IRQ_TCP
=
1
<<
11
,
/* Clear IRQ on TCP segment. error (Tx) */
BMU_CLR_IRQ_CHK
=
1
<<
10
,
/* Clear IRQ Check */
BMU_STOP
=
1
<<
9
,
/* Stop Rx/Tx Queue */
BMU_START
=
1
<<
8
,
/* Start Rx/Tx Queue */
BMU_FIFO_OP_ON
=
1
<<
7
,
/* FIFO Operational On */
BMU_FIFO_OP_OFF
=
1
<<
6
,
/* FIFO Operational Off */
BMU_FIFO_ENA
=
1
<<
5
,
/* Enable FIFO */
BMU_FIFO_RST
=
1
<<
4
,
/* Reset FIFO */
BMU_OP_ON
=
1
<<
3
,
/* BMU Operational On */
BMU_OP_OFF
=
1
<<
2
,
/* BMU Operational Off */
BMU_RST_CLR
=
1
<<
1
,
/* Clear BMU Reset (Enable) */
BMU_RST_SET
=
1
<<
0
,
/* Set BMU Reset */
BMU_CLR_RESET
=
BMU_FIFO_RST
|
BMU_OP_OFF
|
BMU_RST_CLR
,
BMU_OPER_INIT
=
BMU_CLR_IRQ_PAR
|
BMU_CLR_IRQ_CHK
|
BMU_START
|
BMU_FIFO_ENA
|
BMU_OP_ON
,
};
/* Tx BMU Control / Status Registers (Yukon-2) */
/* Bit 31: same as for Rx */
enum
{
BMU_TX_IPIDINCR_ON
=
1
<<
13
,
/* Enable IP ID Increment */
BMU_TX_IPIDINCR_OFF
=
1
<<
12
,
/* Disable IP ID Increment */
BMU_TX_CLR_IRQ_TCP
=
1
<<
11
,
/* Clear IRQ on TCP segment length mismatch */
};
/* Queue Prefetch Unit Offsets, use Y2_QADDR() to address (Yukon-2 only)*/
/* PREF_UNIT_CTRL 32 bit Prefetch Control register */
enum
{
PREF_UNIT_OP_ON
=
1
<<
3
,
/* prefetch unit operational */
PREF_UNIT_OP_OFF
=
1
<<
2
,
/* prefetch unit not operational */
PREF_UNIT_RST_CLR
=
1
<<
1
,
/* Clear Prefetch Unit Reset */
PREF_UNIT_RST_SET
=
1
<<
0
,
/* Set Prefetch Unit Reset */
};
/* RAM Buffer Register Offsets, use RB_ADDR(Queue, Offs) to access */
/* RB_START 32 bit RAM Buffer Start Address */
/* RB_END 32 bit RAM Buffer End Address */
/* RB_WP 32 bit RAM Buffer Write Pointer */
/* RB_RP 32 bit RAM Buffer Read Pointer */
/* RB_RX_UTPP 32 bit Rx Upper Threshold, Pause Pack */
/* RB_RX_LTPP 32 bit Rx Lower Threshold, Pause Pack */
/* RB_RX_UTHP 32 bit Rx Upper Threshold, High Prio */
/* RB_RX_LTHP 32 bit Rx Lower Threshold, High Prio */
/* RB_PC 32 bit RAM Buffer Packet Counter */
/* RB_LEV 32 bit RAM Buffer Level Register */
#define RB_MSK 0x0007ffff
/* Bit 18.. 0: RAM Buffer Pointer Bits */
/* RB_TST2 8 bit RAM Buffer Test Register 2 */
/* RB_TST1 8 bit RAM Buffer Test Register 1 */
/* RB_CTRL 8 bit RAM Buffer Control Register */
enum
{
RB_ENA_STFWD
=
1
<<
5
,
/* Enable Store & Forward */
RB_DIS_STFWD
=
1
<<
4
,
/* Disable Store & Forward */
RB_ENA_OP_MD
=
1
<<
3
,
/* Enable Operation Mode */
RB_DIS_OP_MD
=
1
<<
2
,
/* Disable Operation Mode */
RB_RST_CLR
=
1
<<
1
,
/* Clear RAM Buf STM Reset */
RB_RST_SET
=
1
<<
0
,
/* Set RAM Buf STM Reset */
};
/* Transmit GMAC FIFO (YUKON only) */
enum
{
TX_GMF_EA
=
0x0d40
,
/* 32 bit Tx GMAC FIFO End Address */
TX_GMF_AE_THR
=
0x0d44
,
/* 32 bit Tx GMAC FIFO Almost Empty Thresh.*/
TX_GMF_CTRL_T
=
0x0d48
,
/* 32 bit Tx GMAC FIFO Control/Test */
TX_GMF_WP
=
0x0d60
,
/* 32 bit Tx GMAC FIFO Write Pointer */
TX_GMF_WSP
=
0x0d64
,
/* 32 bit Tx GMAC FIFO Write Shadow Ptr. */
TX_GMF_WLEV
=
0x0d68
,
/* 32 bit Tx GMAC FIFO Write Level */
TX_GMF_RP
=
0x0d70
,
/* 32 bit Tx GMAC FIFO Read Pointer */
TX_GMF_RSTP
=
0x0d74
,
/* 32 bit Tx GMAC FIFO Restart Pointer */
TX_GMF_RLEV
=
0x0d78
,
/* 32 bit Tx GMAC FIFO Read Level */
};
/* Descriptor Poll Timer Registers */
enum
{
B28_DPT_INI
=
0x0e00
,
/* 24 bit Descriptor Poll Timer Init Val */
B28_DPT_VAL
=
0x0e04
,
/* 24 bit Descriptor Poll Timer Curr Val */
B28_DPT_CTRL
=
0x0e08
,
/* 8 bit Descriptor Poll Timer Ctrl Reg */
B28_DPT_TST
=
0x0e0a
,
/* 8 bit Descriptor Poll Timer Test Reg */
};
/* Time Stamp Timer Registers (YUKON only) */
enum
{
GMAC_TI_ST_VAL
=
0x0e14
,
/* 32 bit Time Stamp Timer Curr Val */
GMAC_TI_ST_CTRL
=
0x0e18
,
/* 8 bit Time Stamp Timer Ctrl Reg */
GMAC_TI_ST_TST
=
0x0e1a
,
/* 8 bit Time Stamp Timer Test Reg */
};
/* Polling Unit Registers (Yukon-2 only) */
enum
{
POLL_CTRL
=
0x0e20
,
/* 32 bit Polling Unit Control Reg */
POLL_LAST_IDX
=
0x0e24
,
/* 16 bit Polling Unit List Last Index */
POLL_LIST_ADDR_LO
=
0x0e28
,
/* 32 bit Poll. List Start Addr (low) */
POLL_LIST_ADDR_HI
=
0x0e2c
,
/* 32 bit Poll. List Start Addr (high) */
};
/* ASF Subsystem Registers (Yukon-2 only) */
enum
{
B28_Y2_SMB_CONFIG
=
0x0e40
,
/* 32 bit ASF SMBus Config Register */
B28_Y2_SMB_CSD_REG
=
0x0e44
,
/* 32 bit ASF SMB Control/Status/Data */
B28_Y2_ASF_IRQ_V_BASE
=
0x0e60
,
/* 32 bit ASF IRQ Vector Base */
B28_Y2_ASF_STAT_CMD
=
0x0e68
,
/* 32 bit ASF Status and Command Reg */
B28_Y2_ASF_HOST_COM
=
0x0e6c
,
/* 32 bit ASF Host Communication Reg */
B28_Y2_DATA_REG_1
=
0x0e70
,
/* 32 bit ASF/Host Data Register 1 */
B28_Y2_DATA_REG_2
=
0x0e74
,
/* 32 bit ASF/Host Data Register 2 */
B28_Y2_DATA_REG_3
=
0x0e78
,
/* 32 bit ASF/Host Data Register 3 */
B28_Y2_DATA_REG_4
=
0x0e7c
,
/* 32 bit ASF/Host Data Register 4 */
};
/* Status BMU Registers (Yukon-2 only)*/
enum
{
STAT_CTRL
=
0x0e80
,
/* 32 bit Status BMU Control Reg */
STAT_LAST_IDX
=
0x0e84
,
/* 16 bit Status BMU Last Index */
STAT_LIST_ADDR_LO
=
0x0e88
,
/* 32 bit Status List Start Addr (low) */
STAT_LIST_ADDR_HI
=
0x0e8c
,
/* 32 bit Status List Start Addr (high) */
STAT_TXA1_RIDX
=
0x0e90
,
/* 16 bit Status TxA1 Report Index Reg */
STAT_TXS1_RIDX
=
0x0e92
,
/* 16 bit Status TxS1 Report Index Reg */
STAT_TXA2_RIDX
=
0x0e94
,
/* 16 bit Status TxA2 Report Index Reg */
STAT_TXS2_RIDX
=
0x0e96
,
/* 16 bit Status TxS2 Report Index Reg */
STAT_TX_IDX_TH
=
0x0e98
,
/* 16 bit Status Tx Index Threshold Reg */
STAT_PUT_IDX
=
0x0e9c
,
/* 16 bit Status Put Index Reg */
/* FIFO Control/Status Registers (Yukon-2 only)*/
STAT_FIFO_WP
=
0x0ea0
,
/* 8 bit Status FIFO Write Pointer Reg */
STAT_FIFO_RP
=
0x0ea4
,
/* 8 bit Status FIFO Read Pointer Reg */
STAT_FIFO_RSP
=
0x0ea6
,
/* 8 bit Status FIFO Read Shadow Ptr */
STAT_FIFO_LEVEL
=
0x0ea8
,
/* 8 bit Status FIFO Level Reg */
STAT_FIFO_SHLVL
=
0x0eaa
,
/* 8 bit Status FIFO Shadow Level Reg */
STAT_FIFO_WM
=
0x0eac
,
/* 8 bit Status FIFO Watermark Reg */
STAT_FIFO_ISR_WM
=
0x0ead
,
/* 8 bit Status FIFO ISR Watermark Reg */
/* Level and ISR Timer Registers (Yukon-2 only)*/
STAT_LEV_TIMER_INI
=
0x0eb0
,
/* 32 bit Level Timer Init. Value Reg */
STAT_LEV_TIMER_CNT
=
0x0eb4
,
/* 32 bit Level Timer Counter Reg */
STAT_LEV_TIMER_CTRL
=
0x0eb8
,
/* 8 bit Level Timer Control Reg */
STAT_LEV_TIMER_TEST
=
0x0eb9
,
/* 8 bit Level Timer Test Reg */
STAT_TX_TIMER_INI
=
0x0ec0
,
/* 32 bit Tx Timer Init. Value Reg */
STAT_TX_TIMER_CNT
=
0x0ec4
,
/* 32 bit Tx Timer Counter Reg */
STAT_TX_TIMER_CTRL
=
0x0ec8
,
/* 8 bit Tx Timer Control Reg */
STAT_TX_TIMER_TEST
=
0x0ec9
,
/* 8 bit Tx Timer Test Reg */
STAT_ISR_TIMER_INI
=
0x0ed0
,
/* 32 bit ISR Timer Init. Value Reg */
STAT_ISR_TIMER_CNT
=
0x0ed4
,
/* 32 bit ISR Timer Counter Reg */
STAT_ISR_TIMER_CTRL
=
0x0ed8
,
/* 8 bit ISR Timer Control Reg */
STAT_ISR_TIMER_TEST
=
0x0ed9
,
/* 8 bit ISR Timer Test Reg */
};
enum
{
LINKLED_OFF
=
0x01
,
LINKLED_ON
=
0x02
,
LINKLED_LINKSYNC_OFF
=
0x04
,
LINKLED_LINKSYNC_ON
=
0x08
,
LINKLED_BLINK_OFF
=
0x10
,
LINKLED_BLINK_ON
=
0x20
,
};
/* GMAC and GPHY Control Registers (YUKON only) */
enum
{
GMAC_CTRL
=
0x0f00
,
/* 32 bit GMAC Control Reg */
GPHY_CTRL
=
0x0f04
,
/* 32 bit GPHY Control Reg */
GMAC_IRQ_SRC
=
0x0f08
,
/* 8 bit GMAC Interrupt Source Reg */
GMAC_IRQ_MSK
=
0x0f0c
,
/* 8 bit GMAC Interrupt Mask Reg */
GMAC_LINK_CTRL
=
0x0f10
,
/* 16 bit Link Control Reg */
/* Wake-up Frame Pattern Match Control Registers (YUKON only) */
WOL_REG_OFFS
=
0x20
,
/* HW-Bug: Address is + 0x20 against spec. */
WOL_CTRL_STAT
=
0x0f20
,
/* 16 bit WOL Control/Status Reg */
WOL_MATCH_CTL
=
0x0f22
,
/* 8 bit WOL Match Control Reg */
WOL_MATCH_RES
=
0x0f23
,
/* 8 bit WOL Match Result Reg */
WOL_MAC_ADDR
=
0x0f24
,
/* 32 bit WOL MAC Address */
WOL_PATT_PME
=
0x0f2a
,
/* 8 bit WOL PME Match Enable (Yukon-2) */
WOL_PATT_ASFM
=
0x0f2b
,
/* 8 bit WOL ASF Match Enable (Yukon-2) */
WOL_PATT_RPTR
=
0x0f2c
,
/* 8 bit WOL Pattern Read Pointer */
/* WOL Pattern Length Registers (YUKON only) */
WOL_PATT_LEN_LO
=
0x0f30
,
/* 32 bit WOL Pattern Length 3..0 */
WOL_PATT_LEN_HI
=
0x0f34
,
/* 24 bit WOL Pattern Length 6..4 */
/* WOL Pattern Counter Registers (YUKON only) */
WOL_PATT_CNT_0
=
0x0f38
,
/* 32 bit WOL Pattern Counter 3..0 */
WOL_PATT_CNT_4
=
0x0f3c
,
/* 24 bit WOL Pattern Counter 6..4 */
};
enum
{
WOL_PATT_RAM_1
=
0x1000
,
/* WOL Pattern RAM Link 1 */
WOL_PATT_RAM_2
=
0x1400
,
/* WOL Pattern RAM Link 2 */
};
enum
{
BASE_GMAC_1
=
0x2800
,
/* GMAC 1 registers */
BASE_GMAC_2
=
0x3800
,
/* GMAC 2 registers */
};
/*
* Marvel-PHY Registers, indirect addressed over GMAC
*/
enum
{
PHY_MARV_CTRL
=
0x00
,
/* 16 bit r/w PHY Control Register */
PHY_MARV_STAT
=
0x01
,
/* 16 bit r/o PHY Status Register */
PHY_MARV_ID0
=
0x02
,
/* 16 bit r/o PHY ID0 Register */
PHY_MARV_ID1
=
0x03
,
/* 16 bit r/o PHY ID1 Register */
PHY_MARV_AUNE_ADV
=
0x04
,
/* 16 bit r/w Auto-Neg. Advertisement */
PHY_MARV_AUNE_LP
=
0x05
,
/* 16 bit r/o Link Part Ability Reg */
PHY_MARV_AUNE_EXP
=
0x06
,
/* 16 bit r/o Auto-Neg. Expansion Reg */
PHY_MARV_NEPG
=
0x07
,
/* 16 bit r/w Next Page Register */
PHY_MARV_NEPG_LP
=
0x08
,
/* 16 bit r/o Next Page Link Partner */
/* Marvel-specific registers */
PHY_MARV_1000T_CTRL
=
0x09
,
/* 16 bit r/w 1000Base-T Control Reg */
PHY_MARV_1000T_STAT
=
0x0a
,
/* 16 bit r/o 1000Base-T Status Reg */
PHY_MARV_EXT_STAT
=
0x0f
,
/* 16 bit r/o Extended Status Reg */
PHY_MARV_PHY_CTRL
=
0x10
,
/* 16 bit r/w PHY Specific Ctrl Reg */
PHY_MARV_PHY_STAT
=
0x11
,
/* 16 bit r/o PHY Specific Stat Reg */
PHY_MARV_INT_MASK
=
0x12
,
/* 16 bit r/w Interrupt Mask Reg */
PHY_MARV_INT_STAT
=
0x13
,
/* 16 bit r/o Interrupt Status Reg */
PHY_MARV_EXT_CTRL
=
0x14
,
/* 16 bit r/w Ext. PHY Specific Ctrl */
PHY_MARV_RXE_CNT
=
0x15
,
/* 16 bit r/w Receive Error Counter */
PHY_MARV_EXT_ADR
=
0x16
,
/* 16 bit r/w Ext. Ad. for Cable Diag. */
PHY_MARV_PORT_IRQ
=
0x17
,
/* 16 bit r/o Port 0 IRQ (88E1111 only) */
PHY_MARV_LED_CTRL
=
0x18
,
/* 16 bit r/w LED Control Reg */
PHY_MARV_LED_OVER
=
0x19
,
/* 16 bit r/w Manual LED Override Reg */
PHY_MARV_EXT_CTRL_2
=
0x1a
,
/* 16 bit r/w Ext. PHY Specific Ctrl 2 */
PHY_MARV_EXT_P_STAT
=
0x1b
,
/* 16 bit r/w Ext. PHY Spec. Stat Reg */
PHY_MARV_CABLE_DIAG
=
0x1c
,
/* 16 bit r/o Cable Diagnostic Reg */
PHY_MARV_PAGE_ADDR
=
0x1d
,
/* 16 bit r/w Extended Page Address Reg */
PHY_MARV_PAGE_DATA
=
0x1e
,
/* 16 bit r/w Extended Page Data Reg */
/* for 10/100 Fast Ethernet PHY (88E3082 only) */
PHY_MARV_FE_LED_PAR
=
0x16
,
/* 16 bit r/w LED Parallel Select Reg. */
PHY_MARV_FE_LED_SER
=
0x17
,
/* 16 bit r/w LED Stream Select S. LED */
PHY_MARV_FE_VCT_TX
=
0x1a
,
/* 16 bit r/w VCT Reg. for TXP/N Pins */
PHY_MARV_FE_VCT_RX
=
0x1b
,
/* 16 bit r/o VCT Reg. for RXP/N Pins */
PHY_MARV_FE_SPEC_2
=
0x1c
,
/* 16 bit r/w Specific Control Reg. 2 */
};
enum
{
PHY_CT_RESET
=
1
<<
15
,
/* Bit 15: (sc) clear all PHY related regs */
PHY_CT_LOOP
=
1
<<
14
,
/* Bit 14: enable Loopback over PHY */
PHY_CT_SPS_LSB
=
1
<<
13
,
/* Bit 13: Speed select, lower bit */
PHY_CT_ANE
=
1
<<
12
,
/* Bit 12: Auto-Negotiation Enabled */
PHY_CT_PDOWN
=
1
<<
11
,
/* Bit 11: Power Down Mode */
PHY_CT_ISOL
=
1
<<
10
,
/* Bit 10: Isolate Mode */
PHY_CT_RE_CFG
=
1
<<
9
,
/* Bit 9: (sc) Restart Auto-Negotiation */
PHY_CT_DUP_MD
=
1
<<
8
,
/* Bit 8: Duplex Mode */
PHY_CT_COL_TST
=
1
<<
7
,
/* Bit 7: Collision Test enabled */
PHY_CT_SPS_MSB
=
1
<<
6
,
/* Bit 6: Speed select, upper bit */
};
enum
{
PHY_CT_SP1000
=
PHY_CT_SPS_MSB
,
/* enable speed of 1000 Mbps */
PHY_CT_SP100
=
PHY_CT_SPS_LSB
,
/* enable speed of 100 Mbps */
PHY_CT_SP10
=
0
,
/* enable speed of 10 Mbps */
};
enum
{
PHY_ST_EXT_ST
=
1
<<
8
,
/* Bit 8: Extended Status Present */
PHY_ST_PRE_SUP
=
1
<<
6
,
/* Bit 6: Preamble Suppression */
PHY_ST_AN_OVER
=
1
<<
5
,
/* Bit 5: Auto-Negotiation Over */
PHY_ST_REM_FLT
=
1
<<
4
,
/* Bit 4: Remote Fault Condition Occured */
PHY_ST_AN_CAP
=
1
<<
3
,
/* Bit 3: Auto-Negotiation Capability */
PHY_ST_LSYNC
=
1
<<
2
,
/* Bit 2: Link Synchronized */
PHY_ST_JAB_DET
=
1
<<
1
,
/* Bit 1: Jabber Detected */
PHY_ST_EXT_REG
=
1
<<
0
,
/* Bit 0: Extended Register available */
};
enum
{
PHY_I1_OUI_MSK
=
0x3f
<<
10
,
/* Bit 15..10: Organization Unique ID */
PHY_I1_MOD_NUM
=
0x3f
<<
4
,
/* Bit 9.. 4: Model Number */
PHY_I1_REV_MSK
=
0xf
,
/* Bit 3.. 0: Revision Number */
};
/* different Marvell PHY Ids */
enum
{
PHY_MARV_ID0_VAL
=
0x0141
,
/* Marvell Unique Identifier */
PHY_BCOM_ID1_A1
=
0x6041
,
PHY_BCOM_ID1_B2
=
0x6043
,
PHY_BCOM_ID1_C0
=
0x6044
,
PHY_BCOM_ID1_C5
=
0x6047
,
PHY_MARV_ID1_B0
=
0x0C23
,
/* Yukon (PHY 88E1011) */
PHY_MARV_ID1_B2
=
0x0C25
,
/* Yukon-Plus (PHY 88E1011) */
PHY_MARV_ID1_C2
=
0x0CC2
,
/* Yukon-EC (PHY 88E1111) */
PHY_MARV_ID1_Y2
=
0x0C91
,
/* Yukon-2 (PHY 88E1112) */
};
/* Advertisement register bits */
enum
{
PHY_AN_NXT_PG
=
1
<<
15
,
/* Bit 15: Request Next Page */
PHY_AN_ACK
=
1
<<
14
,
/* Bit 14: (ro) Acknowledge Received */
PHY_AN_RF
=
1
<<
13
,
/* Bit 13: Remote Fault Bits */
PHY_AN_PAUSE_ASYM
=
1
<<
11
,
/* Bit 11: Try for asymmetric */
PHY_AN_PAUSE_CAP
=
1
<<
10
,
/* Bit 10: Try for pause */
PHY_AN_100BASE4
=
1
<<
9
,
/* Bit 9: Try for 100mbps 4k packets */
PHY_AN_100FULL
=
1
<<
8
,
/* Bit 8: Try for 100mbps full-duplex */
PHY_AN_100HALF
=
1
<<
7
,
/* Bit 7: Try for 100mbps half-duplex */
PHY_AN_10FULL
=
1
<<
6
,
/* Bit 6: Try for 10mbps full-duplex */
PHY_AN_10HALF
=
1
<<
5
,
/* Bit 5: Try for 10mbps half-duplex */
PHY_AN_CSMA
=
1
<<
0
,
/* Bit 0: Only selector supported */
PHY_AN_SEL
=
0x1f
,
/* Bit 4..0: Selector Field, 00001=Ethernet*/
PHY_AN_FULL
=
PHY_AN_100FULL
|
PHY_AN_10FULL
|
PHY_AN_CSMA
,
PHY_AN_ALL
=
PHY_AN_10HALF
|
PHY_AN_10FULL
|
PHY_AN_100HALF
|
PHY_AN_100FULL
,
};
/***** PHY_BCOM_1000T_STAT 16 bit r/o 1000Base-T Status Reg *****/
/***** PHY_MARV_1000T_STAT 16 bit r/o 1000Base-T Status Reg *****/
enum
{
PHY_B_1000S_MSF
=
1
<<
15
,
/* Bit 15: Master/Slave Fault */
PHY_B_1000S_MSR
=
1
<<
14
,
/* Bit 14: Master/Slave Result */
PHY_B_1000S_LRS
=
1
<<
13
,
/* Bit 13: Local Receiver Status */
PHY_B_1000S_RRS
=
1
<<
12
,
/* Bit 12: Remote Receiver Status */
PHY_B_1000S_LP_FD
=
1
<<
11
,
/* Bit 11: Link Partner can FD */
PHY_B_1000S_LP_HD
=
1
<<
10
,
/* Bit 10: Link Partner can HD */
/* Bit 9..8: reserved */
PHY_B_1000S_IEC
=
0xff
,
/* Bit 7..0: Idle Error Count */
};
/** Marvell-Specific */
enum
{
PHY_M_AN_NXT_PG
=
1
<<
15
,
/* Request Next Page */
PHY_M_AN_ACK
=
1
<<
14
,
/* (ro) Acknowledge Received */
PHY_M_AN_RF
=
1
<<
13
,
/* Remote Fault */
PHY_M_AN_ASP
=
1
<<
11
,
/* Asymmetric Pause */
PHY_M_AN_PC
=
1
<<
10
,
/* MAC Pause implemented */
PHY_M_AN_100_T4
=
1
<<
9
,
/* Not cap. 100Base-T4 (always 0) */
PHY_M_AN_100_FD
=
1
<<
8
,
/* Advertise 100Base-TX Full Duplex */
PHY_M_AN_100_HD
=
1
<<
7
,
/* Advertise 100Base-TX Half Duplex */
PHY_M_AN_10_FD
=
1
<<
6
,
/* Advertise 10Base-TX Full Duplex */
PHY_M_AN_10_HD
=
1
<<
5
,
/* Advertise 10Base-TX Half Duplex */
PHY_M_AN_SEL_MSK
=
0x1f
<<
4
,
/* Bit 4.. 0: Selector Field Mask */
};
/* special defines for FIBER (88E1011S only) */
enum
{
PHY_M_AN_ASP_X
=
1
<<
8
,
/* Asymmetric Pause */
PHY_M_AN_PC_X
=
1
<<
7
,
/* MAC Pause implemented */
PHY_M_AN_1000X_AHD
=
1
<<
6
,
/* Advertise 10000Base-X Half Duplex */
PHY_M_AN_1000X_AFD
=
1
<<
5
,
/* Advertise 10000Base-X Full Duplex */
};
/* Pause Bits (PHY_M_AN_ASP_X and PHY_M_AN_PC_X) encoding */
enum
{
PHY_M_P_NO_PAUSE_X
=
0
<<
7
,
/* Bit 8.. 7: no Pause Mode */
PHY_M_P_SYM_MD_X
=
1
<<
7
,
/* Bit 8.. 7: symmetric Pause Mode */
PHY_M_P_ASYM_MD_X
=
2
<<
7
,
/* Bit 8.. 7: asymmetric Pause Mode */
PHY_M_P_BOTH_MD_X
=
3
<<
7
,
/* Bit 8.. 7: both Pause Mode */
};
/***** PHY_MARV_1000T_CTRL 16 bit r/w 1000Base-T Control Reg *****/
enum
{
PHY_M_1000C_TEST
=
7
<<
13
,
/* Bit 15..13: Test Modes */
PHY_M_1000C_MSE
=
1
<<
12
,
/* Manual Master/Slave Enable */
PHY_M_1000C_MSC
=
1
<<
11
,
/* M/S Configuration (1=Master) */
PHY_M_1000C_MPD
=
1
<<
10
,
/* Multi-Port Device */
PHY_M_1000C_AFD
=
1
<<
9
,
/* Advertise Full Duplex */
PHY_M_1000C_AHD
=
1
<<
8
,
/* Advertise Half Duplex */
};
/***** PHY_MARV_PHY_CTRL 16 bit r/w PHY Specific Ctrl Reg *****/
enum
{
PHY_M_PC_TX_FFD_MSK
=
3
<<
14
,
/* Bit 15..14: Tx FIFO Depth Mask */
PHY_M_PC_RX_FFD_MSK
=
3
<<
12
,
/* Bit 13..12: Rx FIFO Depth Mask */
PHY_M_PC_ASS_CRS_TX
=
1
<<
11
,
/* Assert CRS on Transmit */
PHY_M_PC_FL_GOOD
=
1
<<
10
,
/* Force Link Good */
PHY_M_PC_EN_DET_MSK
=
3
<<
8
,
/* Bit 9.. 8: Energy Detect Mask */
PHY_M_PC_ENA_EXT_D
=
1
<<
7
,
/* Enable Ext. Distance (10BT) */
PHY_M_PC_MDIX_MSK
=
3
<<
5
,
/* Bit 6.. 5: MDI/MDIX Config. Mask */
PHY_M_PC_DIS_125CLK
=
1
<<
4
,
/* Disable 125 CLK */
PHY_M_PC_MAC_POW_UP
=
1
<<
3
,
/* MAC Power up */
PHY_M_PC_SQE_T_ENA
=
1
<<
2
,
/* SQE Test Enabled */
PHY_M_PC_POL_R_DIS
=
1
<<
1
,
/* Polarity Reversal Disabled */
PHY_M_PC_DIS_JABBER
=
1
<<
0
,
/* Disable Jabber */
};
enum
{
PHY_M_PC_EN_DET
=
2
<<
8
,
/* Energy Detect (Mode 1) */
PHY_M_PC_EN_DET_PLUS
=
3
<<
8
,
/* Energy Detect Plus (Mode 2) */
};
#define PHY_M_PC_MDI_XMODE(x) (((x)<<5) & PHY_M_PC_MDIX_MSK)
enum
{
PHY_M_PC_MAN_MDI
=
0
,
/* 00 = Manual MDI configuration */
PHY_M_PC_MAN_MDIX
=
1
,
/* 01 = Manual MDIX configuration */
PHY_M_PC_ENA_AUTO
=
3
,
/* 11 = Enable Automatic Crossover */
};
/* for 10/100 Fast Ethernet PHY (88E3082 only) */
enum
{
PHY_M_PC_ENA_DTE_DT
=
1
<<
15
,
/* Enable Data Terminal Equ. (DTE) Detect */
PHY_M_PC_ENA_ENE_DT
=
1
<<
14
,
/* Enable Energy Detect (sense & pulse) */
PHY_M_PC_DIS_NLP_CK
=
1
<<
13
,
/* Disable Normal Link Puls (NLP) Check */
PHY_M_PC_ENA_LIP_NP
=
1
<<
12
,
/* Enable Link Partner Next Page Reg. */
PHY_M_PC_DIS_NLP_GN
=
1
<<
11
,
/* Disable Normal Link Puls Generation */
PHY_M_PC_DIS_SCRAMB
=
1
<<
9
,
/* Disable Scrambler */
PHY_M_PC_DIS_FEFI
=
1
<<
8
,
/* Disable Far End Fault Indic. (FEFI) */
PHY_M_PC_SH_TP_SEL
=
1
<<
6
,
/* Shielded Twisted Pair Select */
PHY_M_PC_RX_FD_MSK
=
3
<<
2
,
/* Bit 3.. 2: Rx FIFO Depth Mask */
};
/***** PHY_MARV_PHY_STAT 16 bit r/o PHY Specific Status Reg *****/
enum
{
PHY_M_PS_SPEED_MSK
=
3
<<
14
,
/* Bit 15..14: Speed Mask */
PHY_M_PS_SPEED_1000
=
1
<<
15
,
/* 10 = 1000 Mbps */
PHY_M_PS_SPEED_100
=
1
<<
14
,
/* 01 = 100 Mbps */
PHY_M_PS_SPEED_10
=
0
,
/* 00 = 10 Mbps */
PHY_M_PS_FULL_DUP
=
1
<<
13
,
/* Full Duplex */
PHY_M_PS_PAGE_REC
=
1
<<
12
,
/* Page Received */
PHY_M_PS_SPDUP_RES
=
1
<<
11
,
/* Speed & Duplex Resolved */
PHY_M_PS_LINK_UP
=
1
<<
10
,
/* Link Up */
PHY_M_PS_CABLE_MSK
=
7
<<
7
,
/* Bit 9.. 7: Cable Length Mask */
PHY_M_PS_MDI_X_STAT
=
1
<<
6
,
/* MDI Crossover Stat (1=MDIX) */
PHY_M_PS_DOWNS_STAT
=
1
<<
5
,
/* Downshift Status (1=downsh.) */
PHY_M_PS_ENDET_STAT
=
1
<<
4
,
/* Energy Detect Status (1=act) */
PHY_M_PS_TX_P_EN
=
1
<<
3
,
/* Tx Pause Enabled */
PHY_M_PS_RX_P_EN
=
1
<<
2
,
/* Rx Pause Enabled */
PHY_M_PS_POL_REV
=
1
<<
1
,
/* Polarity Reversed */
PHY_M_PS_JABBER
=
1
<<
0
,
/* Jabber */
};
#define PHY_M_PS_PAUSE_MSK (PHY_M_PS_TX_P_EN | PHY_M_PS_RX_P_EN)
/* for 10/100 Fast Ethernet PHY (88E3082 only) */
enum
{
PHY_M_PS_DTE_DETECT
=
1
<<
15
,
/* Data Terminal Equipment (DTE) Detected */
PHY_M_PS_RES_SPEED
=
1
<<
14
,
/* Resolved Speed (1=100 Mbps, 0=10 Mbps */
};
enum
{
PHY_M_IS_AN_ERROR
=
1
<<
15
,
/* Auto-Negotiation Error */
PHY_M_IS_LSP_CHANGE
=
1
<<
14
,
/* Link Speed Changed */
PHY_M_IS_DUP_CHANGE
=
1
<<
13
,
/* Duplex Mode Changed */
PHY_M_IS_AN_PR
=
1
<<
12
,
/* Page Received */
PHY_M_IS_AN_COMPL
=
1
<<
11
,
/* Auto-Negotiation Completed */
PHY_M_IS_LST_CHANGE
=
1
<<
10
,
/* Link Status Changed */
PHY_M_IS_SYMB_ERROR
=
1
<<
9
,
/* Symbol Error */
PHY_M_IS_FALSE_CARR
=
1
<<
8
,
/* False Carrier */
PHY_M_IS_FIFO_ERROR
=
1
<<
7
,
/* FIFO Overflow/Underrun Error */
PHY_M_IS_MDI_CHANGE
=
1
<<
6
,
/* MDI Crossover Changed */
PHY_M_IS_DOWNSH_DET
=
1
<<
5
,
/* Downshift Detected */
PHY_M_IS_END_CHANGE
=
1
<<
4
,
/* Energy Detect Changed */
PHY_M_IS_DTE_CHANGE
=
1
<<
2
,
/* DTE Power Det. Status Changed */
PHY_M_IS_POL_CHANGE
=
1
<<
1
,
/* Polarity Changed */
PHY_M_IS_JABBER
=
1
<<
0
,
/* Jabber */
PHY_M_DEF_MSK
=
PHY_M_IS_LSP_CHANGE
|
PHY_M_IS_LST_CHANGE
|
PHY_M_IS_FIFO_ERROR
,
PHY_M_AN_MSK
=
PHY_M_IS_AN_ERROR
|
PHY_M_IS_AN_COMPL
,
};
/***** PHY_MARV_EXT_CTRL 16 bit r/w Ext. PHY Specific Ctrl *****/
enum
{
PHY_M_EC_ENA_BC_EXT
=
1
<<
15
,
/* Enable Block Carr. Ext. (88E1111 only) */
PHY_M_EC_ENA_LIN_LB
=
1
<<
14
,
/* Enable Line Loopback (88E1111 only) */
PHY_M_EC_DIS_LINK_P
=
1
<<
12
,
/* Disable Link Pulses (88E1111 only) */
PHY_M_EC_M_DSC_MSK
=
3
<<
10
,
/* Bit 11..10: Master Downshift Counter */
/* (88E1011 only) */
PHY_M_EC_S_DSC_MSK
=
3
<<
8
,
/* Bit 9.. 8: Slave Downshift Counter */
/* (88E1011 only) */
PHY_M_EC_M_DSC_MSK2
=
7
<<
9
,
/* Bit 11.. 9: Master Downshift Counter */
/* (88E1111 only) */
PHY_M_EC_DOWN_S_ENA
=
1
<<
8
,
/* Downshift Enable (88E1111 only) */
/* !!! Errata in spec. (1 = disable) */
PHY_M_EC_RX_TIM_CT
=
1
<<
7
,
/* RGMII Rx Timing Control*/
PHY_M_EC_MAC_S_MSK
=
7
<<
4
,
/* Bit 6.. 4: Def. MAC interface speed */
PHY_M_EC_FIB_AN_ENA
=
1
<<
3
,
/* Fiber Auto-Neg. Enable (88E1011S only) */
PHY_M_EC_DTE_D_ENA
=
1
<<
2
,
/* DTE Detect Enable (88E1111 only) */
PHY_M_EC_TX_TIM_CT
=
1
<<
1
,
/* RGMII Tx Timing Control */
PHY_M_EC_TRANS_DIS
=
1
<<
0
,
/* Transmitter Disable (88E1111 only) */
};
#define PHY_M_EC_M_DSC(x) ((x)<<10 & PHY_M_EC_M_DSC_MSK)
/* 00=1x; 01=2x; 10=3x; 11=4x */
#define PHY_M_EC_S_DSC(x) ((x)<<8 & PHY_M_EC_S_DSC_MSK)
/* 00=dis; 01=1x; 10=2x; 11=3x */
#define PHY_M_EC_DSC_2(x) ((x)<<9 & PHY_M_EC_M_DSC_MSK2)
/* 000=1x; 001=2x; 010=3x; 011=4x */
#define PHY_M_EC_MAC_S(x) ((x)<<4 & PHY_M_EC_MAC_S_MSK)
/* 01X=0; 110=2.5; 111=25 (MHz) */
/* for Yukon-2 Gigabit Ethernet PHY (88E1112 only) */
enum
{
PHY_M_PC_DIS_LINK_Pa
=
1
<<
15
,
/* Disable Link Pulses */
PHY_M_PC_DSC_MSK
=
7
<<
12
,
/* Bit 14..12: Downshift Counter */
PHY_M_PC_DOWN_S_ENA
=
1
<<
11
,
/* Downshift Enable */
};
/* !!! Errata in spec. (1 = disable) */
#define PHY_M_PC_DSC(x) (((x)<<12) & PHY_M_PC_DSC_MSK)
/* 100=5x; 101=6x; 110=7x; 111=8x */
enum
{
MAC_TX_CLK_0_MHZ
=
2
,
MAC_TX_CLK_2_5_MHZ
=
6
,
MAC_TX_CLK_25_MHZ
=
7
,
};
/***** PHY_MARV_LED_CTRL 16 bit r/w LED Control Reg *****/
enum
{
PHY_M_LEDC_DIS_LED
=
1
<<
15
,
/* Disable LED */
PHY_M_LEDC_PULS_MSK
=
7
<<
12
,
/* Bit 14..12: Pulse Stretch Mask */
PHY_M_LEDC_F_INT
=
1
<<
11
,
/* Force Interrupt */
PHY_M_LEDC_BL_R_MSK
=
7
<<
8
,
/* Bit 10.. 8: Blink Rate Mask */
PHY_M_LEDC_DP_C_LSB
=
1
<<
7
,
/* Duplex Control (LSB, 88E1111 only) */
PHY_M_LEDC_TX_C_LSB
=
1
<<
6
,
/* Tx Control (LSB, 88E1111 only) */
PHY_M_LEDC_LK_C_MSK
=
7
<<
3
,
/* Bit 5.. 3: Link Control Mask */
/* (88E1111 only) */
};
enum
{
PHY_M_LEDC_LINK_MSK
=
3
<<
3
,
/* Bit 4.. 3: Link Control Mask */
/* (88E1011 only) */
PHY_M_LEDC_DP_CTRL
=
1
<<
2
,
/* Duplex Control */
PHY_M_LEDC_DP_C_MSB
=
1
<<
2
,
/* Duplex Control (MSB, 88E1111 only) */
PHY_M_LEDC_RX_CTRL
=
1
<<
1
,
/* Rx Activity / Link */
PHY_M_LEDC_TX_CTRL
=
1
<<
0
,
/* Tx Activity / Link */
PHY_M_LEDC_TX_C_MSB
=
1
<<
0
,
/* Tx Control (MSB, 88E1111 only) */
};
#define PHY_M_LED_PULS_DUR(x) (((x)<<12) & PHY_M_LEDC_PULS_MSK)
/***** PHY_MARV_PHY_STAT (page 3)16 bit r/w Polarity Control Reg. *****/
enum
{
PHY_M_POLC_LS1M_MSK
=
0xf
<<
12
,
/* Bit 15..12: LOS,STAT1 Mix % Mask */
PHY_M_POLC_IS0M_MSK
=
0xf
<<
8
,
/* Bit 11.. 8: INIT,STAT0 Mix % Mask */
PHY_M_POLC_LOS_MSK
=
0x3
<<
6
,
/* Bit 7.. 6: LOS Pol. Ctrl. Mask */
PHY_M_POLC_INIT_MSK
=
0x3
<<
4
,
/* Bit 5.. 4: INIT Pol. Ctrl. Mask */
PHY_M_POLC_STA1_MSK
=
0x3
<<
2
,
/* Bit 3.. 2: STAT1 Pol. Ctrl. Mask */
PHY_M_POLC_STA0_MSK
=
0x3
,
/* Bit 1.. 0: STAT0 Pol. Ctrl. Mask */
};
#define PHY_M_POLC_LS1_P_MIX(x) (((x)<<12) & PHY_M_POLC_LS1M_MSK)
#define PHY_M_POLC_IS0_P_MIX(x) (((x)<<8) & PHY_M_POLC_IS0M_MSK)
#define PHY_M_POLC_LOS_CTRL(x) (((x)<<6) & PHY_M_POLC_LOS_MSK)
#define PHY_M_POLC_INIT_CTRL(x) (((x)<<4) & PHY_M_POLC_INIT_MSK)
#define PHY_M_POLC_STA1_CTRL(x) (((x)<<2) & PHY_M_POLC_STA1_MSK)
#define PHY_M_POLC_STA0_CTRL(x) (((x)<<0) & PHY_M_POLC_STA0_MSK)
enum
{
PULS_NO_STR
=
0
,
/* no pulse stretching */
PULS_21MS
=
1
,
/* 21 ms to 42 ms */
PULS_42MS
=
2
,
/* 42 ms to 84 ms */
PULS_84MS
=
3
,
/* 84 ms to 170 ms */
PULS_170MS
=
4
,
/* 170 ms to 340 ms */
PULS_340MS
=
5
,
/* 340 ms to 670 ms */
PULS_670MS
=
6
,
/* 670 ms to 1.3 s */
PULS_1300MS
=
7
,
/* 1.3 s to 2.7 s */
};
#define PHY_M_LED_BLINK_RT(x) (((x)<<8) & PHY_M_LEDC_BL_R_MSK)
enum
{
BLINK_42MS
=
0
,
/* 42 ms */
BLINK_84MS
=
1
,
/* 84 ms */
BLINK_170MS
=
2
,
/* 170 ms */
BLINK_340MS
=
3
,
/* 340 ms */
BLINK_670MS
=
4
,
/* 670 ms */
};
/***** PHY_MARV_LED_OVER 16 bit r/w Manual LED Override Reg *****/
#define PHY_M_LED_MO_SGMII(x) ((x)<<14)
/* Bit 15..14: SGMII AN Timer */
/* Bit 13..12: reserved */
#define PHY_M_LED_MO_DUP(x) ((x)<<10)
/* Bit 11..10: Duplex */
#define PHY_M_LED_MO_10(x) ((x)<<8)
/* Bit 9.. 8: Link 10 */
#define PHY_M_LED_MO_100(x) ((x)<<6)
/* Bit 7.. 6: Link 100 */
#define PHY_M_LED_MO_1000(x) ((x)<<4)
/* Bit 5.. 4: Link 1000 */
#define PHY_M_LED_MO_RX(x) ((x)<<2)
/* Bit 3.. 2: Rx */
#define PHY_M_LED_MO_TX(x) ((x)<<0)
/* Bit 1.. 0: Tx */
enum
{
MO_LED_NORM
=
0
,
MO_LED_BLINK
=
1
,
MO_LED_OFF
=
2
,
MO_LED_ON
=
3
,
};
/***** PHY_MARV_EXT_CTRL_2 16 bit r/w Ext. PHY Specific Ctrl 2 *****/
enum
{
PHY_M_EC2_FI_IMPED
=
1
<<
6
,
/* Fiber Input Impedance */
PHY_M_EC2_FO_IMPED
=
1
<<
5
,
/* Fiber Output Impedance */
PHY_M_EC2_FO_M_CLK
=
1
<<
4
,
/* Fiber Mode Clock Enable */
PHY_M_EC2_FO_BOOST
=
1
<<
3
,
/* Fiber Output Boost */
PHY_M_EC2_FO_AM_MSK
=
7
,
/* Bit 2.. 0: Fiber Output Amplitude */
};
/***** PHY_MARV_EXT_P_STAT 16 bit r/w Ext. PHY Specific Status *****/
enum
{
PHY_M_FC_AUTO_SEL
=
1
<<
15
,
/* Fiber/Copper Auto Sel. Dis. */
PHY_M_FC_AN_REG_ACC
=
1
<<
14
,
/* Fiber/Copper AN Reg. Access */
PHY_M_FC_RESOLUTION
=
1
<<
13
,
/* Fiber/Copper Resolution */
PHY_M_SER_IF_AN_BP
=
1
<<
12
,
/* Ser. IF AN Bypass Enable */
PHY_M_SER_IF_BP_ST
=
1
<<
11
,
/* Ser. IF AN Bypass Status */
PHY_M_IRQ_POLARITY
=
1
<<
10
,
/* IRQ polarity */
PHY_M_DIS_AUT_MED
=
1
<<
9
,
/* Disable Aut. Medium Reg. Selection */
/* (88E1111 only) */
PHY_M_UNDOC1
=
1
<<
7
,
/* undocumented bit !! */
PHY_M_DTE_POW_STAT
=
1
<<
4
,
/* DTE Power Status (88E1111 only) */
PHY_M_MODE_MASK
=
0xf
,
/* Bit 3.. 0: copy of HWCFG MODE[3:0] */
};
/* for 10/100 Fast Ethernet PHY (88E3082 only) */
/***** PHY_MARV_FE_LED_PAR 16 bit r/w LED Parallel Select Reg. *****/
/* Bit 15..12: reserved (used internally) */
enum
{
PHY_M_FELP_LED2_MSK
=
0xf
<<
8
,
/* Bit 11.. 8: LED2 Mask (LINK) */
PHY_M_FELP_LED1_MSK
=
0xf
<<
4
,
/* Bit 7.. 4: LED1 Mask (ACT) */
PHY_M_FELP_LED0_MSK
=
0xf
,
/* Bit 3.. 0: LED0 Mask (SPEED) */
};
#define PHY_M_FELP_LED2_CTRL(x) (((x)<<8) & PHY_M_FELP_LED2_MSK)
#define PHY_M_FELP_LED1_CTRL(x) (((x)<<4) & PHY_M_FELP_LED1_MSK)
#define PHY_M_FELP_LED0_CTRL(x) (((x)<<0) & PHY_M_FELP_LED0_MSK)
enum
{
LED_PAR_CTRL_COLX
=
0x00
,
LED_PAR_CTRL_ERROR
=
0x01
,
LED_PAR_CTRL_DUPLEX
=
0x02
,
LED_PAR_CTRL_DP_COL
=
0x03
,
LED_PAR_CTRL_SPEED
=
0x04
,
LED_PAR_CTRL_LINK
=
0x05
,
LED_PAR_CTRL_TX
=
0x06
,
LED_PAR_CTRL_RX
=
0x07
,
LED_PAR_CTRL_ACT
=
0x08
,
LED_PAR_CTRL_LNK_RX
=
0x09
,
LED_PAR_CTRL_LNK_AC
=
0x0a
,
LED_PAR_CTRL_ACT_BL
=
0x0b
,
LED_PAR_CTRL_TX_BL
=
0x0c
,
LED_PAR_CTRL_RX_BL
=
0x0d
,
LED_PAR_CTRL_COL_BL
=
0x0e
,
LED_PAR_CTRL_INACT
=
0x0f
};
/*****,PHY_MARV_FE_SPEC_2 16 bit r/w Specific Control Reg. 2 *****/
enum
{
PHY_M_FESC_DIS_WAIT
=
1
<<
2
,
/* Disable TDR Waiting Period */
PHY_M_FESC_ENA_MCLK
=
1
<<
1
,
/* Enable MAC Rx Clock in sleep mode */
PHY_M_FESC_SEL_CL_A
=
1
<<
0
,
/* Select Class A driver (100B-TX) */
};
/* for Yukon-2 Gigabit Ethernet PHY (88E1112 only) */
/***** PHY_MARV_PHY_CTRL (page 2) 16 bit r/w MAC Specific Ctrl *****/
enum
{
PHY_M_MAC_MD_MSK
=
7
<<
7
,
/* Bit 9.. 7: Mode Select Mask */
PHY_M_MAC_MD_AUTO
=
3
,
/* Auto Copper/1000Base-X */
PHY_M_MAC_MD_COPPER
=
5
,
/* Copper only */
PHY_M_MAC_MD_1000BX
=
7
,
/* 1000Base-X only */
};
#define PHY_M_MAC_MODE_SEL(x) (((x)<<7) & PHY_M_MAC_MD_MSK)
/***** PHY_MARV_PHY_CTRL (page 3) 16 bit r/w LED Control Reg. *****/
enum
{
PHY_M_LEDC_LOS_MSK
=
0xf
<<
12
,
/* Bit 15..12: LOS LED Ctrl. Mask */
PHY_M_LEDC_INIT_MSK
=
0xf
<<
8
,
/* Bit 11.. 8: INIT LED Ctrl. Mask */
PHY_M_LEDC_STA1_MSK
=
0xf
<<
4
,
/* Bit 7.. 4: STAT1 LED Ctrl. Mask */
PHY_M_LEDC_STA0_MSK
=
0xf
,
/* Bit 3.. 0: STAT0 LED Ctrl. Mask */
};
#define PHY_M_LEDC_LOS_CTRL(x) (((x)<<12) & PHY_M_LEDC_LOS_MSK)
#define PHY_M_LEDC_INIT_CTRL(x) (((x)<<8) & PHY_M_LEDC_INIT_MSK)
#define PHY_M_LEDC_STA1_CTRL(x) (((x)<<4) & PHY_M_LEDC_STA1_MSK)
#define PHY_M_LEDC_STA0_CTRL(x) (((x)<<0) & PHY_M_LEDC_STA0_MSK)
/* GMAC registers */
/* Port Registers */
enum
{
GM_GP_STAT
=
0x0000
,
/* 16 bit r/o General Purpose Status */
GM_GP_CTRL
=
0x0004
,
/* 16 bit r/w General Purpose Control */
GM_TX_CTRL
=
0x0008
,
/* 16 bit r/w Transmit Control Reg. */
GM_RX_CTRL
=
0x000c
,
/* 16 bit r/w Receive Control Reg. */
GM_TX_FLOW_CTRL
=
0x0010
,
/* 16 bit r/w Transmit Flow-Control */
GM_TX_PARAM
=
0x0014
,
/* 16 bit r/w Transmit Parameter Reg. */
GM_SERIAL_MODE
=
0x0018
,
/* 16 bit r/w Serial Mode Register */
/* Source Address Registers */
GM_SRC_ADDR_1L
=
0x001c
,
/* 16 bit r/w Source Address 1 (low) */
GM_SRC_ADDR_1M
=
0x0020
,
/* 16 bit r/w Source Address 1 (middle) */
GM_SRC_ADDR_1H
=
0x0024
,
/* 16 bit r/w Source Address 1 (high) */
GM_SRC_ADDR_2L
=
0x0028
,
/* 16 bit r/w Source Address 2 (low) */
GM_SRC_ADDR_2M
=
0x002c
,
/* 16 bit r/w Source Address 2 (middle) */
GM_SRC_ADDR_2H
=
0x0030
,
/* 16 bit r/w Source Address 2 (high) */
/* Multicast Address Hash Registers */
GM_MC_ADDR_H1
=
0x0034
,
/* 16 bit r/w Multicast Address Hash 1 */
GM_MC_ADDR_H2
=
0x0038
,
/* 16 bit r/w Multicast Address Hash 2 */
GM_MC_ADDR_H3
=
0x003c
,
/* 16 bit r/w Multicast Address Hash 3 */
GM_MC_ADDR_H4
=
0x0040
,
/* 16 bit r/w Multicast Address Hash 4 */
/* Interrupt Source Registers */
GM_TX_IRQ_SRC
=
0x0044
,
/* 16 bit r/o Tx Overflow IRQ Source */
GM_RX_IRQ_SRC
=
0x0048
,
/* 16 bit r/o Rx Overflow IRQ Source */
GM_TR_IRQ_SRC
=
0x004c
,
/* 16 bit r/o Tx/Rx Over. IRQ Source */
/* Interrupt Mask Registers */
GM_TX_IRQ_MSK
=
0x0050
,
/* 16 bit r/w Tx Overflow IRQ Mask */
GM_RX_IRQ_MSK
=
0x0054
,
/* 16 bit r/w Rx Overflow IRQ Mask */
GM_TR_IRQ_MSK
=
0x0058
,
/* 16 bit r/w Tx/Rx Over. IRQ Mask */
/* Serial Management Interface (SMI) Registers */
GM_SMI_CTRL
=
0x0080
,
/* 16 bit r/w SMI Control Register */
GM_SMI_DATA
=
0x0084
,
/* 16 bit r/w SMI Data Register */
GM_PHY_ADDR
=
0x0088
,
/* 16 bit r/w GPHY Address Register */
};
/* MIB Counters */
#define GM_MIB_CNT_BASE 0x0100
/* Base Address of MIB Counters */
#define GM_MIB_CNT_SIZE 44
/* Number of MIB Counters */
/*
* MIB Counters base address definitions (low word) -
* use offset 4 for access to high word (32 bit r/o)
*/
enum
{
GM_RXF_UC_OK
=
GM_MIB_CNT_BASE
+
0
,
/* Unicast Frames Received OK */
GM_RXF_BC_OK
=
GM_MIB_CNT_BASE
+
8
,
/* Broadcast Frames Received OK */
GM_RXF_MPAUSE
=
GM_MIB_CNT_BASE
+
16
,
/* Pause MAC Ctrl Frames Received */
GM_RXF_MC_OK
=
GM_MIB_CNT_BASE
+
24
,
/* Multicast Frames Received OK */
GM_RXF_FCS_ERR
=
GM_MIB_CNT_BASE
+
32
,
/* Rx Frame Check Seq. Error */
/* GM_MIB_CNT_BASE + 40: reserved */
GM_RXO_OK_LO
=
GM_MIB_CNT_BASE
+
48
,
/* Octets Received OK Low */
GM_RXO_OK_HI
=
GM_MIB_CNT_BASE
+
56
,
/* Octets Received OK High */
GM_RXO_ERR_LO
=
GM_MIB_CNT_BASE
+
64
,
/* Octets Received Invalid Low */
GM_RXO_ERR_HI
=
GM_MIB_CNT_BASE
+
72
,
/* Octets Received Invalid High */
GM_RXF_SHT
=
GM_MIB_CNT_BASE
+
80
,
/* Frames <64 Byte Received OK */
GM_RXE_FRAG
=
GM_MIB_CNT_BASE
+
88
,
/* Frames <64 Byte Received with FCS Err */
GM_RXF_64B
=
GM_MIB_CNT_BASE
+
96
,
/* 64 Byte Rx Frame */
GM_RXF_127B
=
GM_MIB_CNT_BASE
+
104
,
/* 65-127 Byte Rx Frame */
GM_RXF_255B
=
GM_MIB_CNT_BASE
+
112
,
/* 128-255 Byte Rx Frame */
GM_RXF_511B
=
GM_MIB_CNT_BASE
+
120
,
/* 256-511 Byte Rx Frame */
GM_RXF_1023B
=
GM_MIB_CNT_BASE
+
128
,
/* 512-1023 Byte Rx Frame */
GM_RXF_1518B
=
GM_MIB_CNT_BASE
+
136
,
/* 1024-1518 Byte Rx Frame */
GM_RXF_MAX_SZ
=
GM_MIB_CNT_BASE
+
144
,
/* 1519-MaxSize Byte Rx Frame */
GM_RXF_LNG_ERR
=
GM_MIB_CNT_BASE
+
152
,
/* Rx Frame too Long Error */
GM_RXF_JAB_PKT
=
GM_MIB_CNT_BASE
+
160
,
/* Rx Jabber Packet Frame */
/* GM_MIB_CNT_BASE + 168: reserved */
GM_RXE_FIFO_OV
=
GM_MIB_CNT_BASE
+
176
,
/* Rx FIFO overflow Event */
/* GM_MIB_CNT_BASE + 184: reserved */
GM_TXF_UC_OK
=
GM_MIB_CNT_BASE
+
192
,
/* Unicast Frames Xmitted OK */
GM_TXF_BC_OK
=
GM_MIB_CNT_BASE
+
200
,
/* Broadcast Frames Xmitted OK */
GM_TXF_MPAUSE
=
GM_MIB_CNT_BASE
+
208
,
/* Pause MAC Ctrl Frames Xmitted */
GM_TXF_MC_OK
=
GM_MIB_CNT_BASE
+
216
,
/* Multicast Frames Xmitted OK */
GM_TXO_OK_LO
=
GM_MIB_CNT_BASE
+
224
,
/* Octets Transmitted OK Low */
GM_TXO_OK_HI
=
GM_MIB_CNT_BASE
+
232
,
/* Octets Transmitted OK High */
GM_TXF_64B
=
GM_MIB_CNT_BASE
+
240
,
/* 64 Byte Tx Frame */
GM_TXF_127B
=
GM_MIB_CNT_BASE
+
248
,
/* 65-127 Byte Tx Frame */
GM_TXF_255B
=
GM_MIB_CNT_BASE
+
256
,
/* 128-255 Byte Tx Frame */
GM_TXF_511B
=
GM_MIB_CNT_BASE
+
264
,
/* 256-511 Byte Tx Frame */
GM_TXF_1023B
=
GM_MIB_CNT_BASE
+
272
,
/* 512-1023 Byte Tx Frame */
GM_TXF_1518B
=
GM_MIB_CNT_BASE
+
280
,
/* 1024-1518 Byte Tx Frame */
GM_TXF_MAX_SZ
=
GM_MIB_CNT_BASE
+
288
,
/* 1519-MaxSize Byte Tx Frame */
GM_TXF_COL
=
GM_MIB_CNT_BASE
+
304
,
/* Tx Collision */
GM_TXF_LAT_COL
=
GM_MIB_CNT_BASE
+
312
,
/* Tx Late Collision */
GM_TXF_ABO_COL
=
GM_MIB_CNT_BASE
+
320
,
/* Tx aborted due to Exces. Col. */
GM_TXF_MUL_COL
=
GM_MIB_CNT_BASE
+
328
,
/* Tx Multiple Collision */
GM_TXF_SNG_COL
=
GM_MIB_CNT_BASE
+
336
,
/* Tx Single Collision */
GM_TXE_FIFO_UR
=
GM_MIB_CNT_BASE
+
344
,
/* Tx FIFO Underrun Event */
};
/* GMAC Bit Definitions */
/* GM_GP_STAT 16 bit r/o General Purpose Status Register */
enum
{
GM_GPSR_SPEED
=
1
<<
15
,
/* Bit 15: Port Speed (1 = 100 Mbps) */
GM_GPSR_DUPLEX
=
1
<<
14
,
/* Bit 14: Duplex Mode (1 = Full) */
GM_GPSR_FC_TX_DIS
=
1
<<
13
,
/* Bit 13: Tx Flow-Control Mode Disabled */
GM_GPSR_LINK_UP
=
1
<<
12
,
/* Bit 12: Link Up Status */
GM_GPSR_PAUSE
=
1
<<
11
,
/* Bit 11: Pause State */
GM_GPSR_TX_ACTIVE
=
1
<<
10
,
/* Bit 10: Tx in Progress */
GM_GPSR_EXC_COL
=
1
<<
9
,
/* Bit 9: Excessive Collisions Occured */
GM_GPSR_LAT_COL
=
1
<<
8
,
/* Bit 8: Late Collisions Occured */
GM_GPSR_PHY_ST_CH
=
1
<<
5
,
/* Bit 5: PHY Status Change */
GM_GPSR_GIG_SPEED
=
1
<<
4
,
/* Bit 4: Gigabit Speed (1 = 1000 Mbps) */
GM_GPSR_PART_MODE
=
1
<<
3
,
/* Bit 3: Partition mode */
GM_GPSR_FC_RX_DIS
=
1
<<
2
,
/* Bit 2: Rx Flow-Control Mode Disabled */
GM_GPSR_PROM_EN
=
1
<<
1
,
/* Bit 1: Promiscuous Mode Enabled */
};
/* GM_GP_CTRL 16 bit r/w General Purpose Control Register */
enum
{
GM_GPCR_PROM_ENA
=
1
<<
14
,
/* Bit 14: Enable Promiscuous Mode */
GM_GPCR_FC_TX_DIS
=
1
<<
13
,
/* Bit 13: Disable Tx Flow-Control Mode */
GM_GPCR_TX_ENA
=
1
<<
12
,
/* Bit 12: Enable Transmit */
GM_GPCR_RX_ENA
=
1
<<
11
,
/* Bit 11: Enable Receive */
GM_GPCR_BURST_ENA
=
1
<<
10
,
/* Bit 10: Enable Burst Mode */
GM_GPCR_LOOP_ENA
=
1
<<
9
,
/* Bit 9: Enable MAC Loopback Mode */
GM_GPCR_PART_ENA
=
1
<<
8
,
/* Bit 8: Enable Partition Mode */
GM_GPCR_GIGS_ENA
=
1
<<
7
,
/* Bit 7: Gigabit Speed (1000 Mbps) */
GM_GPCR_FL_PASS
=
1
<<
6
,
/* Bit 6: Force Link Pass */
GM_GPCR_DUP_FULL
=
1
<<
5
,
/* Bit 5: Full Duplex Mode */
GM_GPCR_FC_RX_DIS
=
1
<<
4
,
/* Bit 4: Disable Rx Flow-Control Mode */
GM_GPCR_SPEED_100
=
1
<<
3
,
/* Bit 3: Port Speed 100 Mbps */
GM_GPCR_AU_DUP_DIS
=
1
<<
2
,
/* Bit 2: Disable Auto-Update Duplex */
GM_GPCR_AU_FCT_DIS
=
1
<<
1
,
/* Bit 1: Disable Auto-Update Flow-C. */
GM_GPCR_AU_SPD_DIS
=
1
<<
0
,
/* Bit 0: Disable Auto-Update Speed */
};
#define GM_GPCR_SPEED_1000 (GM_GPCR_GIGS_ENA | GM_GPCR_SPEED_100)
#define GM_GPCR_AU_ALL_DIS (GM_GPCR_AU_DUP_DIS | GM_GPCR_AU_FCT_DIS|GM_GPCR_AU_SPD_DIS)
/* GM_TX_CTRL 16 bit r/w Transmit Control Register */
enum
{
GM_TXCR_FORCE_JAM
=
1
<<
15
,
/* Bit 15: Force Jam / Flow-Control */
GM_TXCR_CRC_DIS
=
1
<<
14
,
/* Bit 14: Disable insertion of CRC */
GM_TXCR_PAD_DIS
=
1
<<
13
,
/* Bit 13: Disable padding of packets */
GM_TXCR_COL_THR_MSK
=
1
<<
10
,
/* Bit 12..10: Collision Threshold */
};
#define TX_COL_THR(x) (((x)<<10) & GM_TXCR_COL_THR_MSK)
#define TX_COL_DEF 0x04
/* GM_RX_CTRL 16 bit r/w Receive Control Register */
enum
{
GM_RXCR_UCF_ENA
=
1
<<
15
,
/* Bit 15: Enable Unicast filtering */
GM_RXCR_MCF_ENA
=
1
<<
14
,
/* Bit 14: Enable Multicast filtering */
GM_RXCR_CRC_DIS
=
1
<<
13
,
/* Bit 13: Remove 4-byte CRC */
GM_RXCR_PASS_FC
=
1
<<
12
,
/* Bit 12: Pass FC packets to FIFO */
};
/* GM_TX_PARAM 16 bit r/w Transmit Parameter Register */
enum
{
GM_TXPA_JAMLEN_MSK
=
0x03
<<
14
,
/* Bit 15..14: Jam Length */
GM_TXPA_JAMIPG_MSK
=
0x1f
<<
9
,
/* Bit 13..9: Jam IPG */
GM_TXPA_JAMDAT_MSK
=
0x1f
<<
4
,
/* Bit 8..4: IPG Jam to Data */
GM_TXPA_BO_LIM_MSK
=
0x0f
,
/* Bit 3.. 0: Backoff Limit Mask */
TX_JAM_LEN_DEF
=
0x03
,
TX_JAM_IPG_DEF
=
0x0b
,
TX_IPG_JAM_DEF
=
0x1c
,
TX_BOF_LIM_DEF
=
0x04
,
};
#define TX_JAM_LEN_VAL(x) (((x)<<14) & GM_TXPA_JAMLEN_MSK)
#define TX_JAM_IPG_VAL(x) (((x)<<9) & GM_TXPA_JAMIPG_MSK)
#define TX_IPG_JAM_DATA(x) (((x)<<4) & GM_TXPA_JAMDAT_MSK)
#define TX_BACK_OFF_LIM(x) ((x) & GM_TXPA_BO_LIM_MSK)
/* GM_SERIAL_MODE 16 bit r/w Serial Mode Register */
enum
{
GM_SMOD_DATABL_MSK
=
0x1f
<<
11
,
/* Bit 15..11: Data Blinder (r/o) */
GM_SMOD_LIMIT_4
=
1
<<
10
,
/* Bit 10: 4 consecutive Tx trials */
GM_SMOD_VLAN_ENA
=
1
<<
9
,
/* Bit 9: Enable VLAN (Max. Frame Len) */
GM_SMOD_JUMBO_ENA
=
1
<<
8
,
/* Bit 8: Enable Jumbo (Max. Frame Len) */
GM_SMOD_IPG_MSK
=
0x1f
/* Bit 4..0: Inter-Packet Gap (IPG) */
};
#define DATA_BLIND_VAL(x) (((x)<<11) & GM_SMOD_DATABL_MSK)
#define DATA_BLIND_DEF 0x04
#define IPG_DATA_VAL(x) (x & GM_SMOD_IPG_MSK)
#define IPG_DATA_DEF 0x1e
/* GM_SMI_CTRL 16 bit r/w SMI Control Register */
enum
{
GM_SMI_CT_PHY_A_MSK
=
0x1f
<<
11
,
/* Bit 15..11: PHY Device Address */
GM_SMI_CT_REG_A_MSK
=
0x1f
<<
6
,
/* Bit 10.. 6: PHY Register Address */
GM_SMI_CT_OP_RD
=
1
<<
5
,
/* Bit 5: OpCode Read (0=Write)*/
GM_SMI_CT_RD_VAL
=
1
<<
4
,
/* Bit 4: Read Valid (Read completed) */
GM_SMI_CT_BUSY
=
1
<<
3
,
/* Bit 3: Busy (Operation in progress) */
};
#define GM_SMI_CT_PHY_AD(x) (((x)<<11) & GM_SMI_CT_PHY_A_MSK)
#define GM_SMI_CT_REG_AD(x) (((x)<<6) & GM_SMI_CT_REG_A_MSK)
/* GM_PHY_ADDR 16 bit r/w GPHY Address Register */
enum
{
GM_PAR_MIB_CLR
=
1
<<
5
,
/* Bit 5: Set MIB Clear Counter Mode */
GM_PAR_MIB_TST
=
1
<<
4
,
/* Bit 4: MIB Load Counter (Test Mode) */
};
/* Receive Frame Status Encoding */
enum
{
GMR_FS_LEN
=
0xffff
<<
16
,
/* Bit 31..16: Rx Frame Length */
GMR_FS_VLAN
=
1
<<
13
,
/* VLAN Packet */
GMR_FS_JABBER
=
1
<<
12
,
/* Jabber Packet */
GMR_FS_UN_SIZE
=
1
<<
11
,
/* Undersize Packet */
GMR_FS_MC
=
1
<<
10
,
/* Multicast Packet */
GMR_FS_BC
=
1
<<
9
,
/* Broadcast Packet */
GMR_FS_RX_OK
=
1
<<
8
,
/* Receive OK (Good Packet) */
GMR_FS_GOOD_FC
=
1
<<
7
,
/* Good Flow-Control Packet */
GMR_FS_BAD_FC
=
1
<<
6
,
/* Bad Flow-Control Packet */
GMR_FS_MII_ERR
=
1
<<
5
,
/* MII Error */
GMR_FS_LONG_ERR
=
1
<<
4
,
/* Too Long Packet */
GMR_FS_FRAGMENT
=
1
<<
3
,
/* Fragment */
GMR_FS_CRC_ERR
=
1
<<
1
,
/* CRC Error */
GMR_FS_RX_FF_OV
=
1
<<
0
,
/* Rx FIFO Overflow */
GMR_FS_ANY_ERR
=
GMR_FS_RX_FF_OV
|
GMR_FS_CRC_ERR
|
GMR_FS_FRAGMENT
|
GMR_FS_LONG_ERR
|
GMR_FS_MII_ERR
|
GMR_FS_BAD_FC
|
GMR_FS_GOOD_FC
|
GMR_FS_UN_SIZE
|
GMR_FS_JABBER
,
};
/* RX_GMF_CTRL_T 32 bit Rx GMAC FIFO Control/Test */
enum
{
RX_TRUNC_ON
=
1
<<
27
,
/* enable packet truncation */
RX_TRUNC_OFF
=
1
<<
26
,
/* disable packet truncation */
RX_VLAN_STRIP_ON
=
1
<<
25
,
/* enable VLAN stripping */
RX_VLAN_STRIP_OFF
=
1
<<
24
,
/* disable VLAN stripping */
GMF_WP_TST_ON
=
1
<<
14
,
/* Write Pointer Test On */
GMF_WP_TST_OFF
=
1
<<
13
,
/* Write Pointer Test Off */
GMF_WP_STEP
=
1
<<
12
,
/* Write Pointer Step/Increment */
GMF_RP_TST_ON
=
1
<<
10
,
/* Read Pointer Test On */
GMF_RP_TST_OFF
=
1
<<
9
,
/* Read Pointer Test Off */
GMF_RP_STEP
=
1
<<
8
,
/* Read Pointer Step/Increment */
GMF_RX_F_FL_ON
=
1
<<
7
,
/* Rx FIFO Flush Mode On */
GMF_RX_F_FL_OFF
=
1
<<
6
,
/* Rx FIFO Flush Mode Off */
GMF_CLI_RX_FO
=
1
<<
5
,
/* Clear IRQ Rx FIFO Overrun */
GMF_CLI_RX_C
=
1
<<
4
,
/* Clear IRQ Rx Frame Complete */
GMF_OPER_ON
=
1
<<
3
,
/* Operational Mode On */
GMF_OPER_OFF
=
1
<<
2
,
/* Operational Mode Off */
GMF_RST_CLR
=
1
<<
1
,
/* Clear GMAC FIFO Reset */
GMF_RST_SET
=
1
<<
0
,
/* Set GMAC FIFO Reset */
RX_GMF_FL_THR_DEF
=
0xa
,
/* flush threshold (default) */
GMF_RX_CTRL_DEF
=
GMF_OPER_ON
|
GMF_RX_F_FL_ON
,
};
/* TX_GMF_CTRL_T 32 bit Tx GMAC FIFO Control/Test */
enum
{
TX_VLAN_TAG_ON
=
1
<<
25
,
/* enable VLAN tagging */
TX_VLAN_TAG_OFF
=
1
<<
24
,
/* disable VLAN tagging */
GMF_WSP_TST_ON
=
1
<<
18
,
/* Write Shadow Pointer Test On */
GMF_WSP_TST_OFF
=
1
<<
17
,
/* Write Shadow Pointer Test Off */
GMF_WSP_STEP
=
1
<<
16
,
/* Write Shadow Pointer Step/Increment */
GMF_CLI_TX_FU
=
1
<<
6
,
/* Clear IRQ Tx FIFO Underrun */
GMF_CLI_TX_FC
=
1
<<
5
,
/* Clear IRQ Tx Frame Complete */
GMF_CLI_TX_PE
=
1
<<
4
,
/* Clear IRQ Tx Parity Error */
};
/* GMAC_TI_ST_CTRL 8 bit Time Stamp Timer Ctrl Reg (YUKON only) */
enum
{
GMT_ST_START
=
1
<<
2
,
/* Start Time Stamp Timer */
GMT_ST_STOP
=
1
<<
1
,
/* Stop Time Stamp Timer */
GMT_ST_CLR_IRQ
=
1
<<
0
,
/* Clear Time Stamp Timer IRQ */
};
/* B28_Y2_ASF_STAT_CMD 32 bit ASF Status and Command Reg */
enum
{
Y2_ASF_OS_PRES
=
1
<<
4
,
/* ASF operation system present */
Y2_ASF_RESET
=
1
<<
3
,
/* ASF system in reset state */
Y2_ASF_RUNNING
=
1
<<
2
,
/* ASF system operational */
Y2_ASF_CLR_HSTI
=
1
<<
1
,
/* Clear ASF IRQ */
Y2_ASF_IRQ
=
1
<<
0
,
/* Issue an IRQ to ASF system */
Y2_ASF_UC_STATE
=
3
<<
2
,
/* ASF uC State */
Y2_ASF_CLK_HALT
=
0
,
/* ASF system clock stopped */
};
/* B28_Y2_ASF_HOST_COM 32 bit ASF Host Communication Reg */
enum
{
Y2_ASF_CLR_ASFI
=
1
<<
1
,
/* Clear host IRQ */
Y2_ASF_HOST_IRQ
=
1
<<
0
,
/* Issue an IRQ to HOST system */
};
/* STAT_CTRL 32 bit Status BMU control register (Yukon-2 only) */
enum
{
SC_STAT_CLR_IRQ
=
1
<<
4
,
/* Status Burst IRQ clear */
SC_STAT_OP_ON
=
1
<<
3
,
/* Operational Mode On */
SC_STAT_OP_OFF
=
1
<<
2
,
/* Operational Mode Off */
SC_STAT_RST_CLR
=
1
<<
1
,
/* Clear Status Unit Reset (Enable) */
SC_STAT_RST_SET
=
1
<<
0
,
/* Set Status Unit Reset */
};
/* GMAC_CTRL 32 bit GMAC Control Reg (YUKON only) */
enum
{
GMC_H_BURST_ON
=
1
<<
7
,
/* Half Duplex Burst Mode On */
GMC_H_BURST_OFF
=
1
<<
6
,
/* Half Duplex Burst Mode Off */
GMC_F_LOOPB_ON
=
1
<<
5
,
/* FIFO Loopback On */
GMC_F_LOOPB_OFF
=
1
<<
4
,
/* FIFO Loopback Off */
GMC_PAUSE_ON
=
1
<<
3
,
/* Pause On */
GMC_PAUSE_OFF
=
1
<<
2
,
/* Pause Off */
GMC_RST_CLR
=
1
<<
1
,
/* Clear GMAC Reset */
GMC_RST_SET
=
1
<<
0
,
/* Set GMAC Reset */
};
/* GPHY_CTRL 32 bit GPHY Control Reg (YUKON only) */
enum
{
GPC_SEL_BDT
=
1
<<
28
,
/* Select Bi-Dir. Transfer for MDC/MDIO */
GPC_INT_POL_HI
=
1
<<
27
,
/* IRQ Polarity is Active HIGH */
GPC_75_OHM
=
1
<<
26
,
/* Use 75 Ohm Termination instead of 50 */
GPC_DIS_FC
=
1
<<
25
,
/* Disable Automatic Fiber/Copper Detection */
GPC_DIS_SLEEP
=
1
<<
24
,
/* Disable Energy Detect */
GPC_HWCFG_M_3
=
1
<<
23
,
/* HWCFG_MODE[3] */
GPC_HWCFG_M_2
=
1
<<
22
,
/* HWCFG_MODE[2] */
GPC_HWCFG_M_1
=
1
<<
21
,
/* HWCFG_MODE[1] */
GPC_HWCFG_M_0
=
1
<<
20
,
/* HWCFG_MODE[0] */
GPC_ANEG_0
=
1
<<
19
,
/* ANEG[0] */
GPC_ENA_XC
=
1
<<
18
,
/* Enable MDI crossover */
GPC_DIS_125
=
1
<<
17
,
/* Disable 125 MHz clock */
GPC_ANEG_3
=
1
<<
16
,
/* ANEG[3] */
GPC_ANEG_2
=
1
<<
15
,
/* ANEG[2] */
GPC_ANEG_1
=
1
<<
14
,
/* ANEG[1] */
GPC_ENA_PAUSE
=
1
<<
13
,
/* Enable Pause (SYM_OR_REM) */
GPC_PHYADDR_4
=
1
<<
12
,
/* Bit 4 of Phy Addr */
GPC_PHYADDR_3
=
1
<<
11
,
/* Bit 3 of Phy Addr */
GPC_PHYADDR_2
=
1
<<
10
,
/* Bit 2 of Phy Addr */
GPC_PHYADDR_1
=
1
<<
9
,
/* Bit 1 of Phy Addr */
GPC_PHYADDR_0
=
1
<<
8
,
/* Bit 0 of Phy Addr */
/* Bits 7..2: reserved */
GPC_RST_CLR
=
1
<<
1
,
/* Clear GPHY Reset */
GPC_RST_SET
=
1
<<
0
,
/* Set GPHY Reset */
};
/* GMAC_IRQ_SRC 8 bit GMAC Interrupt Source Reg (YUKON only) */
/* GMAC_IRQ_MSK 8 bit GMAC Interrupt Mask Reg (YUKON only) */
enum
{
GM_IS_TX_CO_OV
=
1
<<
5
,
/* Transmit Counter Overflow IRQ */
GM_IS_RX_CO_OV
=
1
<<
4
,
/* Receive Counter Overflow IRQ */
GM_IS_TX_FF_UR
=
1
<<
3
,
/* Transmit FIFO Underrun */
GM_IS_TX_COMPL
=
1
<<
2
,
/* Frame Transmission Complete */
GM_IS_RX_FF_OR
=
1
<<
1
,
/* Receive FIFO Overrun */
GM_IS_RX_COMPL
=
1
<<
0
,
/* Frame Reception Complete */
#define GMAC_DEF_MSK GM_IS_TX_FF_UR
/* GMAC_LINK_CTRL 16 bit GMAC Link Control Reg (YUKON only) */
/* Bits 15.. 2: reserved */
GMLC_RST_CLR
=
1
<<
1
,
/* Clear GMAC Link Reset */
GMLC_RST_SET
=
1
<<
0
,
/* Set GMAC Link Reset */
/* WOL_CTRL_STAT 16 bit WOL Control/Status Reg */
WOL_CTL_LINK_CHG_OCC
=
1
<<
15
,
WOL_CTL_MAGIC_PKT_OCC
=
1
<<
14
,
WOL_CTL_PATTERN_OCC
=
1
<<
13
,
WOL_CTL_CLEAR_RESULT
=
1
<<
12
,
WOL_CTL_ENA_PME_ON_LINK_CHG
=
1
<<
11
,
WOL_CTL_DIS_PME_ON_LINK_CHG
=
1
<<
10
,
WOL_CTL_ENA_PME_ON_MAGIC_PKT
=
1
<<
9
,
WOL_CTL_DIS_PME_ON_MAGIC_PKT
=
1
<<
8
,
WOL_CTL_ENA_PME_ON_PATTERN
=
1
<<
7
,
WOL_CTL_DIS_PME_ON_PATTERN
=
1
<<
6
,
WOL_CTL_ENA_LINK_CHG_UNIT
=
1
<<
5
,
WOL_CTL_DIS_LINK_CHG_UNIT
=
1
<<
4
,
WOL_CTL_ENA_MAGIC_PKT_UNIT
=
1
<<
3
,
WOL_CTL_DIS_MAGIC_PKT_UNIT
=
1
<<
2
,
WOL_CTL_ENA_PATTERN_UNIT
=
1
<<
1
,
WOL_CTL_DIS_PATTERN_UNIT
=
1
<<
0
,
};
#define WOL_CTL_DEFAULT \
(WOL_CTL_DIS_PME_ON_LINK_CHG | \
WOL_CTL_DIS_PME_ON_PATTERN | \
WOL_CTL_DIS_PME_ON_MAGIC_PKT | \
WOL_CTL_DIS_LINK_CHG_UNIT | \
WOL_CTL_DIS_PATTERN_UNIT | \
WOL_CTL_DIS_MAGIC_PKT_UNIT)
/* WOL_MATCH_CTL 8 bit WOL Match Control Reg */
#define WOL_CTL_PATT_ENA(x) (1 << (x))
/* Control flags */
enum
{
UDPTCP
=
1
<<
0
,
CALSUM
=
1
<<
1
,
WR_SUM
=
1
<<
2
,
INIT_SUM
=
1
<<
3
,
LOCK_SUM
=
1
<<
4
,
INS_VLAN
=
1
<<
5
,
FRC_STAT
=
1
<<
6
,
EOP
=
1
<<
7
,
};
enum
{
HW_OWNER
=
1
<<
7
,
OP_TCPWRITE
=
0x11
,
OP_TCPSTART
=
0x12
,
OP_TCPINIT
=
0x14
,
OP_TCPLCK
=
0x18
,
OP_TCPCHKSUM
=
OP_TCPSTART
,
OP_TCPIS
=
OP_TCPINIT
|
OP_TCPSTART
,
OP_TCPLW
=
OP_TCPLCK
|
OP_TCPWRITE
,
OP_TCPLSW
=
OP_TCPLCK
|
OP_TCPSTART
|
OP_TCPWRITE
,
OP_TCPLISW
=
OP_TCPLCK
|
OP_TCPINIT
|
OP_TCPSTART
|
OP_TCPWRITE
,
OP_ADDR64
=
0x21
,
OP_VLAN
=
0x22
,
OP_ADDR64VLAN
=
OP_ADDR64
|
OP_VLAN
,
OP_LRGLEN
=
0x24
,
OP_LRGLENVLAN
=
OP_LRGLEN
|
OP_VLAN
,
OP_BUFFER
=
0x40
,
OP_PACKET
=
0x41
,
OP_LARGESEND
=
0x43
,
/* YUKON-2 STATUS opcodes defines */
OP_RXSTAT
=
0x60
,
OP_RXTIMESTAMP
=
0x61
,
OP_RXVLAN
=
0x62
,
OP_RXCHKS
=
0x64
,
OP_RXCHKSVLAN
=
OP_RXCHKS
|
OP_RXVLAN
,
OP_RXTIMEVLAN
=
OP_RXTIMESTAMP
|
OP_RXVLAN
,
OP_RSS_HASH
=
0x65
,
OP_TXINDEXLE
=
0x68
,
};
/* Yukon 2 hardware interface
* Not tested on big endian
*/
struct
sky2_tx_le
{
union
{
u32
addr
;
struct
{
u16
offset
;
u16
start
;
}
csum
__attribute
((
packed
));
struct
{
u16
size
;
u16
rsvd
;
}
tso
__attribute
((
packed
));
}
tx
;
u16
length
;
/* also vlan tag or checksum start */
u8
ctrl
;
u8
opcode
;
}
__attribute
((
packed
));
struct
sky2_rx_le
{
u32
addr
;
u16
length
;
u8
ctrl
;
u8
opcode
;
}
__attribute
((
packed
));;
struct
sky2_status_le
{
u32
status
;
/* also checksum */
u16
length
;
/* also vlan tag */
u8
link
;
u8
opcode
;
}
__attribute
((
packed
));
struct
ring_info
{
struct
sk_buff
*
skb
;
dma_addr_t
mapaddr
;
u16
maplen
;
u16
idx
;
};
struct
sky2_port
{
struct
sky2_hw
*
hw
;
struct
net_device
*
netdev
;
unsigned
port
;
u32
msg_enable
;
struct
ring_info
*
tx_ring
;
struct
sky2_tx_le
*
tx_le
;
spinlock_t
tx_lock
;
u32
tx_addr64
;
u16
tx_cons
;
/* next le to check */
u16
tx_prod
;
/* next le to use */
u16
tx_pending
;
u16
tx_last_put
;
u16
tx_last_mss
;
struct
ring_info
*
rx_ring
;
struct
sky2_rx_le
*
rx_le
;
u32
rx_addr64
;
u16
rx_next
;
/* next re to check */
u16
rx_put
;
/* next le index to use */
u16
rx_pending
;
u16
rx_last_put
;
#ifdef SKY2_VLAN_TAG_USED
u16
rx_tag
;
struct
vlan_group
*
vlgrp
;
#endif
dma_addr_t
rx_le_map
;
dma_addr_t
tx_le_map
;
u32
advertising
;
/* ADVERTISED_ bits */
u16
speed
;
/* SPEED_1000, SPEED_100, ... */
u8
autoneg
;
/* AUTONEG_ENABLE, AUTONEG_DISABLE */
u8
duplex
;
/* DUPLEX_HALF, DUPLEX_FULL */
u8
rx_pause
;
u8
tx_pause
;
u8
rx_csum
;
u8
wol
;
struct
tasklet_struct
phy_task
;
struct
net_device_stats
net_stats
;
};
struct
sky2_hw
{
void
__iomem
*
regs
;
struct
pci_dev
*
pdev
;
u32
intr_mask
;
struct
net_device
*
dev
[
2
];
int
pm_cap
;
u8
chip_id
;
u8
chip_rev
;
u8
copper
;
u8
ports
;
struct
sky2_status_le
*
st_le
;
u32
st_idx
;
dma_addr_t
st_dma
;
spinlock_t
phy_lock
;
};
/* Register accessor for memory mapped device */
static
inline
u32
sky2_read32
(
const
struct
sky2_hw
*
hw
,
unsigned
reg
)
{
return
readl
(
hw
->
regs
+
reg
);
}
static
inline
u16
sky2_read16
(
const
struct
sky2_hw
*
hw
,
unsigned
reg
)
{
return
readw
(
hw
->
regs
+
reg
);
}
static
inline
u8
sky2_read8
(
const
struct
sky2_hw
*
hw
,
unsigned
reg
)
{
return
readb
(
hw
->
regs
+
reg
);
}
/* This should probably go away, bus based tweeks suck */
static
inline
int
is_pciex
(
const
struct
sky2_hw
*
hw
)
{
u32
status
;
pci_read_config_dword
(
hw
->
pdev
,
PCI_DEV_STATUS
,
&
status
);
return
(
status
&
PCI_OS_PCI_X
)
==
0
;
}
static
inline
void
sky2_write32
(
const
struct
sky2_hw
*
hw
,
unsigned
reg
,
u32
val
)
{
writel
(
val
,
hw
->
regs
+
reg
);
}
static
inline
void
sky2_write16
(
const
struct
sky2_hw
*
hw
,
unsigned
reg
,
u16
val
)
{
writew
(
val
,
hw
->
regs
+
reg
);
}
static
inline
void
sky2_write8
(
const
struct
sky2_hw
*
hw
,
unsigned
reg
,
u8
val
)
{
writeb
(
val
,
hw
->
regs
+
reg
);
}
/* Yukon PHY related registers */
#define SK_GMAC_REG(port,reg) \
(BASE_GMAC_1 + (port) * (BASE_GMAC_2-BASE_GMAC_1) + (reg))
#define GM_PHY_RETRIES 100
static
inline
u16
gma_read16
(
const
struct
sky2_hw
*
hw
,
unsigned
port
,
unsigned
reg
)
{
return
sky2_read16
(
hw
,
SK_GMAC_REG
(
port
,
reg
));
}
static
inline
u32
gma_read32
(
struct
sky2_hw
*
hw
,
unsigned
port
,
unsigned
reg
)
{
unsigned
base
=
SK_GMAC_REG
(
port
,
reg
);
return
(
u32
)
sky2_read16
(
hw
,
base
)
|
(
u32
)
sky2_read16
(
hw
,
base
+
4
)
<<
16
;
}
static
inline
void
gma_write16
(
const
struct
sky2_hw
*
hw
,
unsigned
port
,
int
r
,
u16
v
)
{
sky2_write16
(
hw
,
SK_GMAC_REG
(
port
,
r
),
v
);
}
static
inline
void
gma_set_addr
(
struct
sky2_hw
*
hw
,
unsigned
port
,
unsigned
reg
,
const
u8
*
addr
)
{
gma_write16
(
hw
,
port
,
reg
,
(
u16
)
addr
[
0
]
|
((
u16
)
addr
[
1
]
<<
8
));
gma_write16
(
hw
,
port
,
reg
+
4
,(
u16
)
addr
[
2
]
|
((
u16
)
addr
[
3
]
<<
8
));
gma_write16
(
hw
,
port
,
reg
+
8
,(
u16
)
addr
[
4
]
|
((
u16
)
addr
[
5
]
<<
8
));
}
#endif
include/linux/netdevice.h
View file @
06d61cbf
...
...
@@ -802,11 +802,15 @@ static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
}
/* Schedule rx intr now? */
static
inline
int
netif_rx_schedule_test
(
struct
net_device
*
dev
)
{
return
!
test_and_set_bit
(
__LINK_STATE_RX_SCHED
,
&
dev
->
state
);
}
/* Schedule only if device is up */
static
inline
int
netif_rx_schedule_prep
(
struct
net_device
*
dev
)
{
return
netif_running
(
dev
)
&&
!
test_and_set_bit
(
__LINK_STATE_RX_SCHED
,
&
dev
->
state
);
return
netif_running
(
dev
)
&&
netif_rx_schedule_test
(
dev
);
}
/* Add interface to tail of rx poll list. This assumes that _prep has
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment