Commit 0a18d7b5 authored by Alan Cox's avatar Alan Cox Committed by Greg Kroah-Hartman

Staging: sep: forward declaration removal time

Exterminate! Exterminate! Exterminate!
Signed-off-by: default avatarAlan Cox <alan@linux.intel.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent 91410066
......@@ -184,199 +184,6 @@ static DEFINE_MUTEX(sep_mutex);
/* wait queue head (event) of the driver */
static DECLARE_WAIT_QUEUE_HEAD(g_sep_event);
/*------------------------------------------------
PROTOTYPES
---------------------------------------------------*/
/*
this function registers the driver to the file system
*/
static int sep_register_driver_to_fs(void);
/*
this function calculates the size of data that can be inserted into the lli
table from this array the condition is that either the table is full
(all etnries are entered), or there are no more entries in the lli array
*/
static unsigned long sep_calculate_lli_table_max_size(struct sep_lli_entry_t *lli_in_array_ptr, unsigned long num_array_entries);
/*
this functions builds ont lli table from the lli_array according to the
given size of data
*/
static void sep_build_lli_table(struct sep_lli_entry_t *lli_array_ptr, struct sep_lli_entry_t *lli_table_ptr, unsigned long *num_processed_entries_ptr, unsigned long *num_table_entries_ptr, unsigned long table_data_size);
/*
this function goes over the list of the print created tables and prints
all the data
*/
static void sep_debug_print_lli_tables(struct sep_lli_entry_t *lli_table_ptr, unsigned long num_table_entries, unsigned long table_data_size);
/*
This function raises interrupt to SEPm that signals that is has a new
command from HOST
*/
static void sep_send_command_handler(void);
/*
This function raises interrupt to SEP that signals that is has a
new reply from HOST
*/
static void sep_send_reply_command_handler(void);
/*
This function handles the allocate data pool memory request
This function returns calculates the physical address of the allocated memory
and the offset of this area from the mapped address. Therefore, the FVOs in
user space can calculate the exact virtual address of this allocated memory
*/
static int sep_allocate_data_pool_memory_handler(unsigned long arg);
/*
This function handles write into allocated data pool command
*/
static int sep_write_into_data_pool_handler(unsigned long arg);
/*
this function handles the read from data pool command
*/
static int sep_read_from_data_pool_handler(unsigned long arg);
/*
this function handles tha request for creation of the DMA table
for the synchronic symmetric operations (AES,DES)
*/
static int sep_create_sync_dma_tables_handler(unsigned long arg);
/*
this function handles the request to create the DMA tables for flow
*/
static int sep_create_flow_dma_tables_handler(unsigned long arg);
/*
This API handles the end transaction request
*/
static int sep_end_transaction_handler(unsigned long arg);
/*
this function handles add tables to flow
*/
static int sep_add_flow_tables_handler(unsigned long arg);
/*
this function add the flow add message to the specific flow
*/
static int sep_add_flow_tables_message_handler(unsigned long arg);
/*
this function handles the request for SEP start
*/
static int sep_start_handler(void);
/*
this function handles the request for SEP initialization
*/
static int sep_init_handler(unsigned long arg);
/*
this function handles the request cache and resident reallocation
*/
static int sep_realloc_cache_resident_handler(unsigned long arg);
/*
This api handles the setting of API mode to blocking or non-blocking
*/
static int sep_set_api_mode_handler(unsigned long arg);
/*
This function locks all the physical pages of the kernel virtual buffer
and construct a basic lli array, where each entry holds the physical
page address and the size that application data holds in this physical pages
*/
static int sep_lock_kernel_pages(unsigned long kernel_virt_addr, unsigned long data_size, unsigned long *num_pages_ptr, struct sep_lli_entry_t **lli_array_ptr, struct page ***page_array_ptr);
/*
This function creates one DMA table for flow and returns its data,
and pointer to its info entry
*/
static int sep_prepare_one_flow_dma_table(unsigned long virt_buff_addr, unsigned long virt_buff_size, struct sep_lli_entry_t *table_data, struct sep_lli_entry_t **info_entry_ptr, struct sep_flow_context_t *flow_data_ptr, bool isKernelVirtualAddress);
/*
This function creates a list of tables for flow and returns the data for the
first and last tables of the list
*/
static int sep_prepare_flow_dma_tables(unsigned long num_virtual_buffers,
unsigned long first_buff_addr, struct sep_flow_context_t *flow_data_ptr, struct sep_lli_entry_t *first_table_data_ptr, struct sep_lli_entry_t *last_table_data_ptr, bool isKernelVirtualAddress);
/*
this function find a space for the new flow dma table
*/
static int sep_find_free_flow_dma_table_space(unsigned long **table_address_ptr);
/*
this function goes over all the flow tables connected to the given table and
deallocate them
*/
static void sep_deallocated_flow_tables(struct sep_lli_entry_t *first_table_ptr);
/*
This function handler the set flow id command
*/
static int sep_set_flow_id_handler(unsigned long arg);
/*
This function returns pointer to the flow data structure
that conatins the given id
*/
static int sep_find_flow_context(unsigned long flow_id, struct sep_flow_context_t **flow_data_ptr);
/*
this function returns the physical and virtual addresses of the static pool
*/
static int sep_get_static_pool_addr_handler(unsigned long arg);
/*
this address gets the offset of the physical address from the start of
the mapped area
*/
static int sep_get_physical_mapped_offset_handler(unsigned long arg);
/*
this function handles the request for get time
*/
static int sep_get_time_handler(unsigned long arg);
/*
calculates time and sets it at the predefined address
*/
static int sep_set_time(unsigned long *address_ptr, unsigned long *time_in_sec_ptr);
/*
PATCH for configuring the DMA to single burst instead of multi-burst
*/
static void sep_configure_dma_burst(void);
/*
This function locks all the physical pages of the
application virtual buffer and construct a basic lli
array, where each entry holds the physical page address
and the size that application data holds in this physical pages
*/
static int sep_lock_user_pages(unsigned long app_virt_addr, unsigned long data_size, unsigned long *num_pages_ptr, struct sep_lli_entry_t **lli_array_ptr, struct page ***page_array_ptr);
/*---------------------------------------------
FUNCTIONS
-----------------------------------------------*/
/*
This functions copies the cache and resident from their source location into
destination memory, which is external to Linux VM and is given as
......@@ -692,510 +499,463 @@ static unsigned int sep_poll(struct file *filp, poll_table * wait)
return mask;
}
static int sep_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
/*
calculates time and sets it at the predefined address
*/
static int sep_set_time(unsigned long *address_ptr, unsigned long *time_in_sec_ptr)
{
int error = 0;
dbg("------------>SEP Driver: ioctl start\n");
struct timeval time;
/* address of time in the kernel */
unsigned long time_addr;
edbg("SEP Driver: cmd is %x\n", cmd);
/* check that the command is for sep device */
if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER)
error = -ENOTTY;
dbg("SEP Driver:--------> sep_set_time start\n");
switch (cmd) {
case SEP_IOCSENDSEPCOMMAND:
/* send command to SEP */
sep_send_command_handler();
edbg("SEP Driver: after sep_send_command_handler\n");
break;
case SEP_IOCSENDSEPRPLYCOMMAND:
/* send reply command to SEP */
sep_send_reply_command_handler();
break;
case SEP_IOCALLOCDATAPOLL:
/* allocate data pool */
error = sep_allocate_data_pool_memory_handler(arg);
break;
case SEP_IOCWRITEDATAPOLL:
/* write data into memory pool */
error = sep_write_into_data_pool_handler(arg);
break;
case SEP_IOCREADDATAPOLL:
/* read data from data pool into application memory */
error = sep_read_from_data_pool_handler(arg);
break;
case SEP_IOCCREATESYMDMATABLE:
/* create dma table for synhronic operation */
error = sep_create_sync_dma_tables_handler(arg);
break;
case SEP_IOCCREATEFLOWDMATABLE:
/* create flow dma tables */
error = sep_create_flow_dma_tables_handler(arg);
break;
case SEP_IOCFREEDMATABLEDATA:
/* free the pages */
error = sep_free_dma_table_data_handler();
break;
case SEP_IOCSETFLOWID:
/* set flow id */
error = sep_set_flow_id_handler(arg);
break;
case SEP_IOCADDFLOWTABLE:
/* add tables to the dynamic flow */
error = sep_add_flow_tables_handler(arg);
break;
case SEP_IOCADDFLOWMESSAGE:
/* add message of add tables to flow */
error = sep_add_flow_tables_message_handler(arg);
break;
case SEP_IOCSEPSTART:
/* start command to sep */
error = sep_start_handler();
break;
case SEP_IOCSEPINIT:
/* init command to sep */
error = sep_init_handler(arg);
break;
case SEP_IOCSETAPIMODE:
/* set non- blocking mode */
error = sep_set_api_mode_handler(arg);
break;
case SEP_IOCGETSTATICPOOLADDR:
/* get the physical and virtual addresses of the static pool */
error = sep_get_static_pool_addr_handler(arg);
break;
case SEP_IOCENDTRANSACTION:
error = sep_end_transaction_handler(arg);
break;
case SEP_IOCREALLOCCACHERES:
error = sep_realloc_cache_resident_handler(arg);
break;
case SEP_IOCGETMAPPEDADDROFFSET:
error = sep_get_physical_mapped_offset_handler(arg);
break;
case SEP_IOCGETIME:
error = sep_get_time_handler(arg);
break;
default:
error = -ENOTTY;
break;
}
dbg("SEP Driver:<-------- ioctl end\n");
return error;
}
do_gettimeofday(&time);
/* set value in the SYSTEM MEMORY offset */
time_addr = sep_dev->message_shared_area_addr + SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES;
*(unsigned long *) time_addr = SEP_TIME_VAL_TOKEN;
*(unsigned long *) (time_addr + 4) = time.tv_sec;
#if !SEP_DRIVER_POLLING_MODE
edbg("SEP Driver:time.tv_sec is %lu\n", time.tv_sec);
edbg("SEP Driver:time_addr is %lu\n", time_addr);
edbg("SEP Driver:g_message_shared_area_addr is %lu\n", sep_dev->message_shared_area_addr);
/* handler for flow done interrupt */
/* set the output parameters if needed */
if (address_ptr)
*address_ptr = sep_shared_area_virt_to_phys(time_addr);
static void sep_flow_done_handler(struct work_struct *work)
{
struct sep_flow_context_t *flow_data_ptr;
if (time_in_sec_ptr)
*time_in_sec_ptr = time.tv_sec;
/* obtain the mutex */
mutex_lock(&sep_mutex);
dbg("SEP Driver:<-------- sep_set_time end\n");
/* get the pointer to context */
flow_data_ptr = (struct sep_flow_context_t *) work;
return 0;
}
/* free all the current input tables in sep */
sep_deallocated_flow_tables(&flow_data_ptr->input_tables_in_process);
/*
This function raises interrupt to SEP that signals that is has a new
command from HOST
*/
static void sep_send_command_handler(void)
{
unsigned long count;
/* free all the current tables output tables in SEP (if needed) */
if (flow_data_ptr->output_tables_in_process.physical_address != 0xffffffff)
sep_deallocated_flow_tables(&flow_data_ptr->output_tables_in_process);
dbg("SEP Driver:--------> sep_send_command_handler start\n");
sep_set_time(0, 0);
/* check if we have additional tables to be sent to SEP only input
flag may be checked */
if (flow_data_ptr->input_tables_flag) {
/* copy the message to the shared RAM and signal SEP */
memcpy((void *) flow_data_ptr->message, (void *) sep_dev->shared_area_addr, flow_data_ptr->message_size_in_bytes);
/* flash cache */
flush_cache_all();
sep_write_reg(sep_dev, HW_HOST_HOST_SEP_GPR2_REG_ADDR, 0x2);
}
mutex_unlock(&sep_mutex);
for (count = 0; count < 12 * 4; count += 4)
edbg("Word %lu of the message is %lu\n", count, *((unsigned long *) (sep_dev->shared_area_addr + count)));
/* update counter */
sep_dev->host_to_sep_send_counter++;
/* send interrupt to SEP */
sep_write_reg(sep_dev, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2);
dbg("SEP Driver:<-------- sep_send_command_handler end\n");
return;
}
/*
interrupt handler function
This function raises interrupt to SEPm that signals that is has a
new command from HOST
*/
static irqreturn_t sep_inthandler(int irq, void *dev_id)
static void sep_send_reply_command_handler(void)
{
irqreturn_t int_error;
unsigned long error;
unsigned long reg_val;
unsigned long flow_id;
struct sep_flow_context_t *flow_context_ptr;
unsigned long count;
int_error = IRQ_HANDLED;
dbg("SEP Driver:--------> sep_send_reply_command_handler start\n");
/* read the IRR register to check if this is SEP interrupt */
reg_val = sep_read_reg(sep_dev, HW_HOST_IRR_REG_ADDR);
edbg("SEP Interrupt - reg is %08lx\n", reg_val);
/* flash cache */
flush_cache_all();
for (count = 0; count < 12 * 4; count += 4)
edbg("Word %lu of the message is %lu\n", count, *((unsigned long *) (sep_dev->shared_area_addr + count)));
/* update counter */
sep_dev->host_to_sep_send_counter++;
/* send the interrupt to SEP */
sep_write_reg(sep_dev, HW_HOST_HOST_SEP_GPR2_REG_ADDR, sep_dev->host_to_sep_send_counter);
/* update both counters */
sep_dev->host_to_sep_send_counter++;
sep_dev->sep_to_host_reply_counter++;
dbg("SEP Driver:<-------- sep_send_reply_command_handler end\n");
}
/* check if this is the flow interrupt */
if (0 /*reg_val & (0x1 << 11) */ ) {
/* read GPRO to find out the which flow is done */
flow_id = sep_read_reg(sep_dev, HW_HOST_IRR_REG_ADDR);
/*
This function handles the allocate data pool memory request
This function returns calculates the physical address of the
allocated memory, and the offset of this area from the mapped address.
Therefore, the FVOs in user space can calculate the exact virtual
address of this allocated memory
*/
static int sep_allocate_data_pool_memory_handler(unsigned long arg)
{
int error;
struct sep_driver_alloc_t command_args;
/* find the contex of the flow */
error = sep_find_flow_context(flow_id >> 28, &flow_context_ptr);
if (error)
goto end_function_with_error;
dbg("SEP Driver:--------> sep_allocate_data_pool_memory_handler start\n");
INIT_WORK(&flow_context_ptr->flow_wq, sep_flow_done_handler);
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_alloc_t));
if (error)
goto end_function;
/* queue the work */
queue_work(sep_dev->flow_wq_ptr, &flow_context_ptr->flow_wq);
/* allocate memory */
if ((sep_dev->data_pool_bytes_allocated + command_args.num_bytes) > SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) {
error = -ENOTTY;
goto end_function;
}
} else {
/* check if this is reply interrupt from SEP */
if (reg_val & (0x1 << 13)) {
/* update the counter of reply messages */
sep_dev->sep_to_host_reply_counter++;
/* set the virtual and physical address */
command_args.offset = SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep_dev->data_pool_bytes_allocated;
command_args.phys_address = sep_dev->phys_shared_area_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep_dev->data_pool_bytes_allocated;
/* write the memory back to the user space */
error = copy_to_user((void *) arg, (void *) &command_args, sizeof(struct sep_driver_alloc_t));
if (error)
goto end_function;
/* set the allocation */
sep_dev->data_pool_bytes_allocated += command_args.num_bytes;
/* wake up the waiting process */
wake_up(&g_sep_event);
} else {
int_error = IRQ_NONE;
goto end_function;
}
}
end_function_with_error:
/* clear the interrupt */
sep_write_reg(sep_dev, HW_HOST_ICR_REG_ADDR, reg_val);
end_function:
return int_error;
dbg("SEP Driver:<-------- sep_allocate_data_pool_memory_handler end\n");
return error;
}
#endif
/*
This function prepares only input DMA table for synhronic symmetric
operations (HASH)
This function handles write into allocated data pool command
*/
static int sep_prepare_input_dma_table(unsigned long app_virt_addr, unsigned long data_size, unsigned long block_size, unsigned long *lli_table_ptr, unsigned long *num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress)
static int sep_write_into_data_pool_handler(unsigned long arg)
{
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_entry_ptr;
/* array of pointers ot page */
struct sep_lli_entry_t *lli_array_ptr;
/* points to the first entry to be processed in the lli_in_array */
unsigned long current_entry;
/* num entries in the virtual buffer */
unsigned long sep_lli_entries;
/* lli table pointer */
struct sep_lli_entry_t *in_lli_table_ptr;
/* the total data in one table */
unsigned long table_data_size;
/* number of entries in lli table */
unsigned long num_entries_in_table;
/* next table address */
unsigned long lli_table_alloc_addr;
unsigned long result;
int error;
unsigned long virt_address;
unsigned long app_in_address;
unsigned long num_bytes;
unsigned long data_pool_area_addr;
dbg("SEP Driver:--------> sep_prepare_input_dma_table start\n");
dbg("SEP Driver:--------> sep_write_into_data_pool_handler start\n");
edbg("SEP Driver:data_size is %lu\n", data_size);
edbg("SEP Driver:block_size is %lu\n", block_size);
/* get the application address */
error = get_user(app_in_address, &(((struct sep_driver_write_t *) arg)->app_address));
if (error)
goto end_function;
/* initialize the pages pointers */
sep_dev->in_page_array = 0;
sep_dev->in_num_pages = 0;
/* get the virtual kernel address address */
error = get_user(virt_address, &(((struct sep_driver_write_t *) arg)->datapool_address));
if (error)
goto end_function;
if (data_size == 0) {
/* special case - created 2 entries table with zero data */
in_lli_table_ptr = (struct sep_lli_entry_t *) (sep_dev->shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES);
in_lli_table_ptr->physical_address = sep_dev->shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
in_lli_table_ptr->block_size = 0;
/* get the number of bytes */
error = get_user(num_bytes, &(((struct sep_driver_write_t *) arg)->num_bytes));
if (error)
goto end_function;
in_lli_table_ptr++;
in_lli_table_ptr->physical_address = 0xFFFFFFFF;
in_lli_table_ptr->block_size = 0;
/* calculate the start of the data pool */
data_pool_area_addr = sep_dev->shared_area_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES;
*lli_table_ptr = sep_dev->phys_shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
*num_entries_ptr = 2;
*table_data_size_ptr = 0;
/* check that the range of the virtual kernel address is correct */
if ((virt_address < data_pool_area_addr) || (virt_address > (data_pool_area_addr + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES))) {
error = -ENOTTY;
goto end_function;
}
/* copy the application data */
error = copy_from_user((void *) virt_address, (void *) app_in_address, num_bytes);
end_function:
dbg("SEP Driver:<-------- sep_write_into_data_pool_handler end\n");
return error;
}
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true)
/* lock the pages of the kernel buffer and translate them to pages */
result = sep_lock_kernel_pages(app_virt_addr, data_size, &sep_dev->in_num_pages, &lli_array_ptr, &sep_dev->in_page_array);
else
/* lock the pages of the user buffer and translate them to pages */
result = sep_lock_user_pages(app_virt_addr, data_size, &sep_dev->in_num_pages, &lli_array_ptr, &sep_dev->in_page_array);
if (result)
return result;
edbg("SEP Driver:output sep_dev->in_num_pages is %lu\n", sep_dev->in_num_pages);
current_entry = 0;
info_entry_ptr = 0;
sep_lli_entries = sep_dev->in_num_pages;
/*
this function handles the read from data pool command
*/
static int sep_read_from_data_pool_handler(unsigned long arg)
{
int error;
/* virtual address of dest application buffer */
unsigned long app_out_address;
/* virtual address of the data pool */
unsigned long virt_address;
unsigned long num_bytes;
unsigned long data_pool_area_addr;
/* initiate to point after the message area */
lli_table_alloc_addr = sep_dev->shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
dbg("SEP Driver:--------> sep_read_from_data_pool_handler start\n");
/* loop till all the entries in in array are not processed */
while (current_entry < sep_lli_entries) {
/* set the new input and output tables */
in_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
/* get the application address */
error = get_user(app_out_address, &(((struct sep_driver_write_t *) arg)->app_address));
if (error)
goto end_function;
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* get the virtual kernel address address */
error = get_user(virt_address, &(((struct sep_driver_write_t *) arg)->datapool_address));
if (error)
goto end_function;
/* calculate the maximum size of data for input table */
table_data_size = sep_calculate_lli_table_max_size(&lli_array_ptr[current_entry], (sep_lli_entries - current_entry));
/* get the number of bytes */
error = get_user(num_bytes, &(((struct sep_driver_write_t *) arg)->num_bytes));
if (error)
goto end_function;
/* now calculate the table size so that it will be module block size */
table_data_size = (table_data_size / block_size) * block_size;
/* calculate the start of the data pool */
data_pool_area_addr = sep_dev->shared_area_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES;
edbg("SEP Driver:output table_data_size is %lu\n", table_data_size);
/* check that the range of the virtual kernel address is correct */
if ((virt_address < data_pool_area_addr) || (virt_address > (data_pool_area_addr + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES))) {
error = -ENOTTY;
goto end_function;
}
/* construct input lli table */
sep_build_lli_table(&lli_array_ptr[current_entry], in_lli_table_ptr, &current_entry, &num_entries_in_table, table_data_size);
/* copy the application data */
error = copy_to_user((void *) app_out_address, (void *) virt_address, num_bytes);
end_function:
dbg("SEP Driver:<-------- sep_read_from_data_pool_handler end\n");
return error;
}
if (info_entry_ptr == 0) {
/* set the output parameters to physical addresses */
*lli_table_ptr = sep_shared_area_virt_to_phys((unsigned long) in_lli_table_ptr);
*num_entries_ptr = num_entries_in_table;
*table_data_size_ptr = table_data_size;
/*
This function releases all the application virtual buffer physical pages,
that were previously locked
*/
static int sep_free_dma_pages(struct page **page_array_ptr, unsigned long num_pages, unsigned long dirtyFlag)
{
unsigned long count;
edbg("SEP Driver:output lli_table_in_ptr is %08lx\n", *lli_table_ptr);
} else {
/* update the info entry of the previous in table */
info_entry_ptr->physical_address = sep_shared_area_virt_to_phys((unsigned long) in_lli_table_ptr);
info_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size);
if (dirtyFlag) {
for (count = 0; count < num_pages; count++) {
/* the out array was written, therefore the data was changed */
if (!PageReserved(page_array_ptr[count]))
SetPageDirty(page_array_ptr[count]);
page_cache_release(page_array_ptr[count]);
}
/* save the pointer to the info entry of the current tables */
info_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
} else {
/* free in pages - the data was only read, therefore no update was done
on those pages */
for (count = 0; count < num_pages; count++)
page_cache_release(page_array_ptr[count]);
}
/* print input tables */
sep_debug_print_lli_tables((struct sep_lli_entry_t *)
sep_shared_area_phys_to_virt(*lli_table_ptr), *num_entries_ptr, *table_data_size_ptr);
if (page_array_ptr)
/* free the array */
kfree(page_array_ptr);
/* the array of the pages */
kfree(lli_array_ptr);
end_function:
dbg("SEP Driver:<-------- sep_prepare_input_dma_table end\n");
return 0;
}
/*
This function builds input and output DMA tables for synhronic
symmetric operations (AES, DES). It also checks that each table
is of the modular block size
This function locks all the physical pages of the kernel virtual buffer
and construct a basic lli array, where each entry holds the physical
page address and the size that application data holds in this physical pages
*/
static int sep_prepare_input_output_dma_table(unsigned long app_virt_in_addr,
unsigned long app_virt_out_addr,
unsigned long data_size,
unsigned long block_size,
unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress)
static int sep_lock_kernel_pages(unsigned long kernel_virt_addr, unsigned long data_size, unsigned long *num_pages_ptr, struct sep_lli_entry_t **lli_array_ptr, struct page ***page_array_ptr)
{
/* array of pointers of page */
struct sep_lli_entry_t *lli_in_array;
/* array of pointers of page */
struct sep_lli_entry_t *lli_out_array;
int result = 0;
int error = 0;
/* the the page of the end address of the user space buffer */
unsigned long end_page;
/* the page of the start address of the user space buffer */
unsigned long start_page;
/* the range in pages */
unsigned long num_pages;
struct sep_lli_entry_t *lli_array;
/* next kernel address to map */
unsigned long next_kernel_address;
unsigned long count;
dbg("SEP Driver:--------> sep_prepare_input_output_dma_table start\n");
dbg("SEP Driver:--------> sep_lock_kernel_pages start\n");
/* initialize the pages pointers */
sep_dev->in_page_array = 0;
sep_dev->out_page_array = 0;
/* set start and end pages and num pages */
end_page = (kernel_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = kernel_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true) {
/* lock the pages of the kernel buffer and translate them to pages */
result = sep_lock_kernel_pages(app_virt_in_addr, data_size, &sep_dev->in_num_pages, &lli_in_array, &sep_dev->in_page_array);
if (result) {
edbg("SEP Driver: sep_lock_kernel_pages for input virtual buffer failed\n");
goto end_function;
}
} else {
/* lock the pages of the user buffer and translate them to pages */
result = sep_lock_user_pages(app_virt_in_addr, data_size, &sep_dev->in_num_pages, &lli_in_array, &sep_dev->in_page_array);
if (result) {
edbg("SEP Driver: sep_lock_user_pages for input virtual buffer failed\n");
goto end_function;
}
}
edbg("SEP Driver: kernel_virt_addr is %08lx\n", kernel_virt_addr);
edbg("SEP Driver: data_size is %lu\n", data_size);
edbg("SEP Driver: start_page is %lx\n", start_page);
edbg("SEP Driver: end_page is %lx\n", end_page);
edbg("SEP Driver: num_pages is %lu\n", num_pages);
if (isKernelVirtualAddress == true) {
result = sep_lock_kernel_pages(app_virt_out_addr, data_size, &sep_dev->out_num_pages, &lli_out_array, &sep_dev->out_page_array);
if (result) {
edbg("SEP Driver: sep_lock_kernel_pages for output virtual buffer failed\n");
goto end_function_with_error1;
}
} else {
result = sep_lock_user_pages(app_virt_out_addr, data_size, &sep_dev->out_num_pages, &lli_out_array, &sep_dev->out_page_array);
if (result) {
edbg("SEP Driver: sep_lock_user_pages for output virtual buffer failed\n");
goto end_function_with_error1;
}
lli_array = kmalloc(sizeof(struct sep_lli_entry_t) * num_pages, GFP_ATOMIC);
if (!lli_array) {
edbg("SEP Driver: kmalloc for lli_array failed\n");
error = -ENOMEM;
goto end_function;
}
edbg("sep_dev->in_num_pages is %lu\n", sep_dev->in_num_pages);
edbg("sep_dev->out_num_pages is %lu\n", sep_dev->out_num_pages);
edbg("SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP is %x\n", SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
/* set the start address of the first page - app data may start not at
the beginning of the page */
lli_array[0].physical_address = (unsigned long) virt_to_phys((unsigned long *) kernel_virt_addr);
/* call the fucntion that creates table from the lli arrays */
result = sep_construct_dma_tables_from_lli(lli_in_array, sep_dev->in_num_pages, lli_out_array, sep_dev->out_num_pages, block_size, lli_table_in_ptr, lli_table_out_ptr, in_num_entries_ptr, out_num_entries_ptr, table_data_size_ptr);
if (result) {
edbg("SEP Driver: sep_construct_dma_tables_from_lli failed\n");
goto end_function_with_error2;
/* check that not all the data is in the first page only */
if ((PAGE_SIZE - (kernel_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size = PAGE_SIZE - (kernel_virt_addr & (~PAGE_MASK));
/* debug print */
dbg("lli_array[0].physical_address is %08lx, lli_array[0].block_size is %lu\n", lli_array[0].physical_address, lli_array[0].block_size);
/* advance the address to the start of the next page */
next_kernel_address = (kernel_virt_addr & PAGE_MASK) + PAGE_SIZE;
/* go from the second page to the prev before last */
for (count = 1; count < (num_pages - 1); count++) {
lli_array[count].physical_address = (unsigned long) virt_to_phys((unsigned long *) next_kernel_address);
lli_array[count].block_size = PAGE_SIZE;
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
next_kernel_address += PAGE_SIZE;
}
/* fall through - free the lli entry arrays */
dbg("in_num_entries_ptr is %08lx\n", *in_num_entries_ptr);
dbg("out_num_entries_ptr is %08lx\n", *out_num_entries_ptr);
dbg("table_data_size_ptr is %08lx\n", *table_data_size_ptr);
end_function_with_error2:
kfree(lli_out_array);
end_function_with_error1:
kfree(lli_in_array);
end_function:
dbg("SEP Driver:<-------- sep_prepare_input_output_dma_table end result = %d\n", (int) result);
return result;
/* if more then 1 pages locked - then update for the last page size needed */
if (num_pages > 1) {
/* update the address of the last page */
lli_array[count].physical_address = (unsigned long) virt_to_phys((unsigned long *) next_kernel_address);
}
/* set the size of the last page */
lli_array[count].block_size = (kernel_virt_addr + data_size) & (~PAGE_MASK);
if (lli_array[count].block_size == 0) {
dbg("app_virt_addr is %08lx\n", kernel_virt_addr);
dbg("data_size is %lu\n", data_size);
while (1);
}
/*
This function creates the input and output dma tables for
symmetric operations (AES/DES) according to the block size from LLI arays
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
}
/* set output params */
*lli_array_ptr = lli_array;
*num_pages_ptr = num_pages;
*page_array_ptr = 0;
end_function:
dbg("SEP Driver:<-------- sep_lock_kernel_pages end\n");
return 0;
}
/*
This function locks all the physical pages of the application virtual buffer
and construct a basic lli array, where each entry holds the physical page
address and the size that application data holds in this physical pages
*/
static int sep_construct_dma_tables_from_lli(struct sep_lli_entry_t *lli_in_array,
unsigned long sep_in_lli_entries,
struct sep_lli_entry_t *lli_out_array,
unsigned long sep_out_lli_entries,
unsigned long block_size, unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr)
static int sep_lock_user_pages(unsigned long app_virt_addr, unsigned long data_size, unsigned long *num_pages_ptr, struct sep_lli_entry_t **lli_array_ptr, struct page ***page_array_ptr)
{
/* points to the area where next lli table can be allocated */
unsigned long lli_table_alloc_addr;
/* input lli table */
struct sep_lli_entry_t *in_lli_table_ptr;
/* output lli table */
struct sep_lli_entry_t *out_lli_table_ptr;
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_in_entry_ptr;
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_out_entry_ptr;
/* points to the first entry to be processed in the lli_in_array */
unsigned long current_in_entry;
/* points to the first entry to be processed in the lli_out_array */
unsigned long current_out_entry;
/* max size of the input table */
unsigned long in_table_data_size;
/* max size of the output table */
unsigned long out_table_data_size;
/* flag te signifies if this is the first tables build from the arrays */
unsigned long first_table_flag;
/* the data size that should be in table */
unsigned long table_data_size;
/* number of etnries in the input table */
unsigned long num_entries_in_table;
/* number of etnries in the output table */
unsigned long num_entries_out_table;
dbg("SEP Driver:--------> sep_construct_dma_tables_from_lli start\n");
int error = 0;
/* the the page of the end address of the user space buffer */
unsigned long end_page;
/* the page of the start address of the user space buffer */
unsigned long start_page;
/* the range in pages */
unsigned long num_pages;
struct page **page_array;
struct sep_lli_entry_t *lli_array;
unsigned long count;
int result;
/* initiate to pint after the message area */
lli_table_alloc_addr = sep_dev->shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
dbg("SEP Driver:--------> sep_lock_user_pages start\n");
current_in_entry = 0;
current_out_entry = 0;
first_table_flag = 1;
info_in_entry_ptr = 0;
info_out_entry_ptr = 0;
/* set start and end pages and num pages */
end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = app_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
/* loop till all the entries in in array are not processed */
while (current_in_entry < sep_in_lli_entries) {
/* set the new input and output tables */
in_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
edbg("SEP Driver: app_virt_addr is %08lx\n", app_virt_addr);
edbg("SEP Driver: data_size is %lu\n", data_size);
edbg("SEP Driver: start_page is %lu\n", start_page);
edbg("SEP Driver: end_page is %lu\n", end_page);
edbg("SEP Driver: num_pages is %lu\n", num_pages);
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* allocate array of pages structure pointers */
page_array = kmalloc(sizeof(struct page *) * num_pages, GFP_ATOMIC);
if (!page_array) {
edbg("SEP Driver: kmalloc for page_array failed\n");
/* set the first output tables */
out_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
error = -ENOMEM;
goto end_function;
}
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
lli_array = kmalloc(sizeof(struct sep_lli_entry_t) * num_pages, GFP_ATOMIC);
if (!lli_array) {
edbg("SEP Driver: kmalloc for lli_array failed\n");
/* calculate the maximum size of data for input table */
in_table_data_size = sep_calculate_lli_table_max_size(&lli_in_array[current_in_entry], (sep_in_lli_entries - current_in_entry));
error = -ENOMEM;
goto end_function_with_error1;
}
/* calculate the maximum size of data for output table */
out_table_data_size = sep_calculate_lli_table_max_size(&lli_out_array[current_out_entry], (sep_out_lli_entries - current_out_entry));
/* convert the application virtual address into a set of physical */
down_read(&current->mm->mmap_sem);
result = get_user_pages(current, current->mm, app_virt_addr, num_pages, 1, 0, page_array, 0);
up_read(&current->mm->mmap_sem);
edbg("SEP Driver:in_table_data_size is %lu\n", in_table_data_size);
edbg("SEP Driver:out_table_data_size is %lu\n", out_table_data_size);
/* check the number of pages locked - if not all then exit with error */
if (result != num_pages) {
dbg("SEP Driver: not all pages locked by get_user_pages\n");
/* check where the data is smallest */
table_data_size = in_table_data_size;
if (table_data_size > out_table_data_size)
table_data_size = out_table_data_size;
error = -ENOMEM;
goto end_function_with_error2;
}
/* now calculate the table size so that it will be module block size */
table_data_size = (table_data_size / block_size) * block_size;
/* flush the cache */
for (count = 0; count < num_pages; count++)
flush_dcache_page(page_array[count]);
dbg("SEP Driver:table_data_size is %lu\n", table_data_size);
/* set the start address of the first page - app data may start not at
the beginning of the page */
lli_array[0].physical_address = ((unsigned long) page_to_phys(page_array[0])) + (app_virt_addr & (~PAGE_MASK));
/* construct input lli table */
sep_build_lli_table(&lli_in_array[current_in_entry], in_lli_table_ptr, &current_in_entry, &num_entries_in_table, table_data_size);
/* check that not all the data is in the first page only */
if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size = PAGE_SIZE - (app_virt_addr & (~PAGE_MASK));
/* construct output lli table */
sep_build_lli_table(&lli_out_array[current_out_entry], out_lli_table_ptr, &current_out_entry, &num_entries_out_table, table_data_size);
/* debug print */
dbg("lli_array[0].physical_address is %08lx, lli_array[0].block_size is %lu\n", lli_array[0].physical_address, lli_array[0].block_size);
/* if info entry is null - this is the first table built */
if (info_in_entry_ptr == 0) {
/* set the output parameters to physical addresses */
*lli_table_in_ptr = sep_shared_area_virt_to_phys((unsigned long) in_lli_table_ptr);
*in_num_entries_ptr = num_entries_in_table;
*lli_table_out_ptr = sep_shared_area_virt_to_phys((unsigned long) out_lli_table_ptr);
*out_num_entries_ptr = num_entries_out_table;
*table_data_size_ptr = table_data_size;
/* go from the second page to the prev before last */
for (count = 1; count < (num_pages - 1); count++) {
lli_array[count].physical_address = (unsigned long) page_to_phys(page_array[count]);
lli_array[count].block_size = PAGE_SIZE;
edbg("SEP Driver:output lli_table_in_ptr is %08lx\n", *lli_table_in_ptr);
edbg("SEP Driver:output lli_table_out_ptr is %08lx\n", *lli_table_out_ptr);
} else {
/* update the info entry of the previous in table */
info_in_entry_ptr->physical_address = sep_shared_area_virt_to_phys((unsigned long) in_lli_table_ptr);
info_in_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size);
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
}
/* update the info entry of the previous in table */
info_out_entry_ptr->physical_address = sep_shared_area_virt_to_phys((unsigned long) out_lli_table_ptr);
info_out_entry_ptr->block_size = ((num_entries_out_table) << 24) | (table_data_size);
}
/* if more then 1 pages locked - then update for the last page size needed */
if (num_pages > 1) {
/* update the address of the last page */
lli_array[count].physical_address = (unsigned long) page_to_phys(page_array[count]);
/* save the pointer to the info entry of the current tables */
info_in_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
info_out_entry_ptr = out_lli_table_ptr + num_entries_out_table - 1;
/* set the size of the last page */
lli_array[count].block_size = (app_virt_addr + data_size) & (~PAGE_MASK);
edbg("SEP Driver:output num_entries_out_table is %lu\n", (unsigned long) num_entries_out_table);
edbg("SEP Driver:output info_in_entry_ptr is %lu\n", (unsigned long) info_in_entry_ptr);
edbg("SEP Driver:output info_out_entry_ptr is %lu\n", (unsigned long) info_out_entry_ptr);
if (lli_array[count].block_size == 0) {
dbg("app_virt_addr is %08lx\n", app_virt_addr);
dbg("data_size is %lu\n", data_size);
while (1);
}
edbg("lli_array[%lu].physical_address is %08lx, \
lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
}
/* print input tables */
sep_debug_print_lli_tables((struct sep_lli_entry_t *)
sep_shared_area_phys_to_virt(*lli_table_in_ptr), *in_num_entries_ptr, *table_data_size_ptr);
/* print output tables */
sep_debug_print_lli_tables((struct sep_lli_entry_t *)
sep_shared_area_phys_to_virt(*lli_table_out_ptr), *out_num_entries_ptr, *table_data_size_ptr);
dbg("SEP Driver:<-------- sep_construct_dma_tables_from_lli end\n");
/* set output params */
*lli_array_ptr = lli_array;
*num_pages_ptr = num_pages;
*page_array_ptr = page_array;
goto end_function;
end_function_with_error2:
/* release the cache */
for (count = 0; count < num_pages; count++)
page_cache_release(page_array[count]);
kfree(lli_array);
end_function_with_error1:
kfree(page_array);
end_function:
dbg("SEP Driver:<-------- sep_lock_user_pages end\n");
return 0;
}
/*
this function calculates the size of data that can be inserted into the lli
table from this array the condition is that either the table is full
......@@ -1330,495 +1090,653 @@ static void sep_debug_print_lli_tables(struct sep_lli_entry_t *lli_table_ptr, un
/*
This function locks all the physical pages of the application virtual buffer
and construct a basic lli array, where each entry holds the physical page
address and the size that application data holds in this physical pages
This function prepares only input DMA table for synhronic symmetric
operations (HASH)
*/
static int sep_lock_user_pages(unsigned long app_virt_addr, unsigned long data_size, unsigned long *num_pages_ptr, struct sep_lli_entry_t **lli_array_ptr, struct page ***page_array_ptr)
static int sep_prepare_input_dma_table(unsigned long app_virt_addr, unsigned long data_size, unsigned long block_size, unsigned long *lli_table_ptr, unsigned long *num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress)
{
int error = 0;
/* the the page of the end address of the user space buffer */
unsigned long end_page;
/* the page of the start address of the user space buffer */
unsigned long start_page;
/* the range in pages */
unsigned long num_pages;
struct page **page_array;
struct sep_lli_entry_t *lli_array;
unsigned long count;
int result;
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_entry_ptr;
/* array of pointers ot page */
struct sep_lli_entry_t *lli_array_ptr;
/* points to the first entry to be processed in the lli_in_array */
unsigned long current_entry;
/* num entries in the virtual buffer */
unsigned long sep_lli_entries;
/* lli table pointer */
struct sep_lli_entry_t *in_lli_table_ptr;
/* the total data in one table */
unsigned long table_data_size;
/* number of entries in lli table */
unsigned long num_entries_in_table;
/* next table address */
unsigned long lli_table_alloc_addr;
unsigned long result;
dbg("SEP Driver:--------> sep_lock_user_pages start\n");
dbg("SEP Driver:--------> sep_prepare_input_dma_table start\n");
/* set start and end pages and num pages */
end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = app_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
edbg("SEP Driver:data_size is %lu\n", data_size);
edbg("SEP Driver:block_size is %lu\n", block_size);
edbg("SEP Driver: app_virt_addr is %08lx\n", app_virt_addr);
edbg("SEP Driver: data_size is %lu\n", data_size);
edbg("SEP Driver: start_page is %lu\n", start_page);
edbg("SEP Driver: end_page is %lu\n", end_page);
edbg("SEP Driver: num_pages is %lu\n", num_pages);
/* initialize the pages pointers */
sep_dev->in_page_array = 0;
sep_dev->in_num_pages = 0;
/* allocate array of pages structure pointers */
page_array = kmalloc(sizeof(struct page *) * num_pages, GFP_ATOMIC);
if (!page_array) {
edbg("SEP Driver: kmalloc for page_array failed\n");
if (data_size == 0) {
/* special case - created 2 entries table with zero data */
in_lli_table_ptr = (struct sep_lli_entry_t *) (sep_dev->shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES);
in_lli_table_ptr->physical_address = sep_dev->shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
in_lli_table_ptr->block_size = 0;
in_lli_table_ptr++;
in_lli_table_ptr->physical_address = 0xFFFFFFFF;
in_lli_table_ptr->block_size = 0;
*lli_table_ptr = sep_dev->phys_shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
*num_entries_ptr = 2;
*table_data_size_ptr = 0;
error = -ENOMEM;
goto end_function;
}
lli_array = kmalloc(sizeof(struct sep_lli_entry_t) * num_pages, GFP_ATOMIC);
if (!lli_array) {
edbg("SEP Driver: kmalloc for lli_array failed\n");
error = -ENOMEM;
goto end_function_with_error1;
}
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true)
/* lock the pages of the kernel buffer and translate them to pages */
result = sep_lock_kernel_pages(app_virt_addr, data_size, &sep_dev->in_num_pages, &lli_array_ptr, &sep_dev->in_page_array);
else
/* lock the pages of the user buffer and translate them to pages */
result = sep_lock_user_pages(app_virt_addr, data_size, &sep_dev->in_num_pages, &lli_array_ptr, &sep_dev->in_page_array);
/* convert the application virtual address into a set of physical */
down_read(&current->mm->mmap_sem);
result = get_user_pages(current, current->mm, app_virt_addr, num_pages, 1, 0, page_array, 0);
up_read(&current->mm->mmap_sem);
if (result)
return result;
/* check the number of pages locked - if not all then exit with error */
if (result != num_pages) {
dbg("SEP Driver: not all pages locked by get_user_pages\n");
edbg("SEP Driver:output sep_dev->in_num_pages is %lu\n", sep_dev->in_num_pages);
error = -ENOMEM;
goto end_function_with_error2;
}
current_entry = 0;
info_entry_ptr = 0;
sep_lli_entries = sep_dev->in_num_pages;
/* flush the cache */
for (count = 0; count < num_pages; count++)
flush_dcache_page(page_array[count]);
/* initiate to point after the message area */
lli_table_alloc_addr = sep_dev->shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
/* set the start address of the first page - app data may start not at
the beginning of the page */
lli_array[0].physical_address = ((unsigned long) page_to_phys(page_array[0])) + (app_virt_addr & (~PAGE_MASK));
/* loop till all the entries in in array are not processed */
while (current_entry < sep_lli_entries) {
/* set the new input and output tables */
in_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
/* check that not all the data is in the first page only */
if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size = PAGE_SIZE - (app_virt_addr & (~PAGE_MASK));
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* debug print */
dbg("lli_array[0].physical_address is %08lx, lli_array[0].block_size is %lu\n", lli_array[0].physical_address, lli_array[0].block_size);
/* calculate the maximum size of data for input table */
table_data_size = sep_calculate_lli_table_max_size(&lli_array_ptr[current_entry], (sep_lli_entries - current_entry));
/* go from the second page to the prev before last */
for (count = 1; count < (num_pages - 1); count++) {
lli_array[count].physical_address = (unsigned long) page_to_phys(page_array[count]);
lli_array[count].block_size = PAGE_SIZE;
/* now calculate the table size so that it will be module block size */
table_data_size = (table_data_size / block_size) * block_size;
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
}
edbg("SEP Driver:output table_data_size is %lu\n", table_data_size);
/* if more then 1 pages locked - then update for the last page size needed */
if (num_pages > 1) {
/* update the address of the last page */
lli_array[count].physical_address = (unsigned long) page_to_phys(page_array[count]);
/* construct input lli table */
sep_build_lli_table(&lli_array_ptr[current_entry], in_lli_table_ptr, &current_entry, &num_entries_in_table, table_data_size);
/* set the size of the last page */
lli_array[count].block_size = (app_virt_addr + data_size) & (~PAGE_MASK);
if (info_entry_ptr == 0) {
/* set the output parameters to physical addresses */
*lli_table_ptr = sep_shared_area_virt_to_phys((unsigned long) in_lli_table_ptr);
*num_entries_ptr = num_entries_in_table;
*table_data_size_ptr = table_data_size;
if (lli_array[count].block_size == 0) {
dbg("app_virt_addr is %08lx\n", app_virt_addr);
dbg("data_size is %lu\n", data_size);
while (1);
edbg("SEP Driver:output lli_table_in_ptr is %08lx\n", *lli_table_ptr);
} else {
/* update the info entry of the previous in table */
info_entry_ptr->physical_address = sep_shared_area_virt_to_phys((unsigned long) in_lli_table_ptr);
info_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size);
}
edbg("lli_array[%lu].physical_address is %08lx, \
lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
/* save the pointer to the info entry of the current tables */
info_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
}
/* set output params */
*lli_array_ptr = lli_array;
*num_pages_ptr = num_pages;
*page_array_ptr = page_array;
goto end_function;
/* print input tables */
sep_debug_print_lli_tables((struct sep_lli_entry_t *)
sep_shared_area_phys_to_virt(*lli_table_ptr), *num_entries_ptr, *table_data_size_ptr);
end_function_with_error2:
/* release the cache */
for (count = 0; count < num_pages; count++)
page_cache_release(page_array[count]);
kfree(lli_array);
end_function_with_error1:
kfree(page_array);
/* the array of the pages */
kfree(lli_array_ptr);
end_function:
dbg("SEP Driver:<-------- sep_lock_user_pages end\n");
dbg("SEP Driver:<-------- sep_prepare_input_dma_table end\n");
return 0;
}
/*
This function locks all the physical pages of the kernel virtual buffer
and construct a basic lli array, where each entry holds the physical
page address and the size that application data holds in this physical pages
This function creates the input and output dma tables for
symmetric operations (AES/DES) according to the block size from LLI arays
*/
static int sep_lock_kernel_pages(unsigned long kernel_virt_addr, unsigned long data_size, unsigned long *num_pages_ptr, struct sep_lli_entry_t **lli_array_ptr, struct page ***page_array_ptr)
static int sep_construct_dma_tables_from_lli(struct sep_lli_entry_t *lli_in_array,
unsigned long sep_in_lli_entries,
struct sep_lli_entry_t *lli_out_array,
unsigned long sep_out_lli_entries,
unsigned long block_size, unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr)
{
int error = 0;
/* the the page of the end address of the user space buffer */
unsigned long end_page;
/* the page of the start address of the user space buffer */
unsigned long start_page;
/* the range in pages */
unsigned long num_pages;
struct sep_lli_entry_t *lli_array;
/* next kernel address to map */
unsigned long next_kernel_address;
unsigned long count;
/* points to the area where next lli table can be allocated */
unsigned long lli_table_alloc_addr;
/* input lli table */
struct sep_lli_entry_t *in_lli_table_ptr;
/* output lli table */
struct sep_lli_entry_t *out_lli_table_ptr;
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_in_entry_ptr;
/* pointer to the info entry of the table - the last entry */
struct sep_lli_entry_t *info_out_entry_ptr;
/* points to the first entry to be processed in the lli_in_array */
unsigned long current_in_entry;
/* points to the first entry to be processed in the lli_out_array */
unsigned long current_out_entry;
/* max size of the input table */
unsigned long in_table_data_size;
/* max size of the output table */
unsigned long out_table_data_size;
/* flag te signifies if this is the first tables build from the arrays */
unsigned long first_table_flag;
/* the data size that should be in table */
unsigned long table_data_size;
/* number of etnries in the input table */
unsigned long num_entries_in_table;
/* number of etnries in the output table */
unsigned long num_entries_out_table;
dbg("SEP Driver:--------> sep_lock_kernel_pages start\n");
dbg("SEP Driver:--------> sep_construct_dma_tables_from_lli start\n");
/* set start and end pages and num pages */
end_page = (kernel_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = kernel_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
/* initiate to pint after the message area */
lli_table_alloc_addr = sep_dev->shared_area_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES;
edbg("SEP Driver: kernel_virt_addr is %08lx\n", kernel_virt_addr);
edbg("SEP Driver: data_size is %lu\n", data_size);
edbg("SEP Driver: start_page is %lx\n", start_page);
edbg("SEP Driver: end_page is %lx\n", end_page);
edbg("SEP Driver: num_pages is %lu\n", num_pages);
current_in_entry = 0;
current_out_entry = 0;
first_table_flag = 1;
info_in_entry_ptr = 0;
info_out_entry_ptr = 0;
lli_array = kmalloc(sizeof(struct sep_lli_entry_t) * num_pages, GFP_ATOMIC);
if (!lli_array) {
edbg("SEP Driver: kmalloc for lli_array failed\n");
error = -ENOMEM;
goto end_function;
}
/* loop till all the entries in in array are not processed */
while (current_in_entry < sep_in_lli_entries) {
/* set the new input and output tables */
in_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
/* set the start address of the first page - app data may start not at
the beginning of the page */
lli_array[0].physical_address = (unsigned long) virt_to_phys((unsigned long *) kernel_virt_addr);
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* check that not all the data is in the first page only */
if ((PAGE_SIZE - (kernel_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size = PAGE_SIZE - (kernel_virt_addr & (~PAGE_MASK));
/* set the first output tables */
out_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr;
/* debug print */
dbg("lli_array[0].physical_address is %08lx, lli_array[0].block_size is %lu\n", lli_array[0].physical_address, lli_array[0].block_size);
lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* advance the address to the start of the next page */
next_kernel_address = (kernel_virt_addr & PAGE_MASK) + PAGE_SIZE;
/* calculate the maximum size of data for input table */
in_table_data_size = sep_calculate_lli_table_max_size(&lli_in_array[current_in_entry], (sep_in_lli_entries - current_in_entry));
/* go from the second page to the prev before last */
for (count = 1; count < (num_pages - 1); count++) {
lli_array[count].physical_address = (unsigned long) virt_to_phys((unsigned long *) next_kernel_address);
lli_array[count].block_size = PAGE_SIZE;
/* calculate the maximum size of data for output table */
out_table_data_size = sep_calculate_lli_table_max_size(&lli_out_array[current_out_entry], (sep_out_lli_entries - current_out_entry));
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
next_kernel_address += PAGE_SIZE;
}
edbg("SEP Driver:in_table_data_size is %lu\n", in_table_data_size);
edbg("SEP Driver:out_table_data_size is %lu\n", out_table_data_size);
/* if more then 1 pages locked - then update for the last page size needed */
if (num_pages > 1) {
/* update the address of the last page */
lli_array[count].physical_address = (unsigned long) virt_to_phys((unsigned long *) next_kernel_address);
/* check where the data is smallest */
table_data_size = in_table_data_size;
if (table_data_size > out_table_data_size)
table_data_size = out_table_data_size;
/* set the size of the last page */
lli_array[count].block_size = (kernel_virt_addr + data_size) & (~PAGE_MASK);
/* now calculate the table size so that it will be module block size */
table_data_size = (table_data_size / block_size) * block_size;
if (lli_array[count].block_size == 0) {
dbg("app_virt_addr is %08lx\n", kernel_virt_addr);
dbg("data_size is %lu\n", data_size);
while (1);
dbg("SEP Driver:table_data_size is %lu\n", table_data_size);
/* construct input lli table */
sep_build_lli_table(&lli_in_array[current_in_entry], in_lli_table_ptr, &current_in_entry, &num_entries_in_table, table_data_size);
/* construct output lli table */
sep_build_lli_table(&lli_out_array[current_out_entry], out_lli_table_ptr, &current_out_entry, &num_entries_out_table, table_data_size);
/* if info entry is null - this is the first table built */
if (info_in_entry_ptr == 0) {
/* set the output parameters to physical addresses */
*lli_table_in_ptr = sep_shared_area_virt_to_phys((unsigned long) in_lli_table_ptr);
*in_num_entries_ptr = num_entries_in_table;
*lli_table_out_ptr = sep_shared_area_virt_to_phys((unsigned long) out_lli_table_ptr);
*out_num_entries_ptr = num_entries_out_table;
*table_data_size_ptr = table_data_size;
edbg("SEP Driver:output lli_table_in_ptr is %08lx\n", *lli_table_in_ptr);
edbg("SEP Driver:output lli_table_out_ptr is %08lx\n", *lli_table_out_ptr);
} else {
/* update the info entry of the previous in table */
info_in_entry_ptr->physical_address = sep_shared_area_virt_to_phys((unsigned long) in_lli_table_ptr);
info_in_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size);
/* update the info entry of the previous in table */
info_out_entry_ptr->physical_address = sep_shared_area_virt_to_phys((unsigned long) out_lli_table_ptr);
info_out_entry_ptr->block_size = ((num_entries_out_table) << 24) | (table_data_size);
}
edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size);
/* save the pointer to the info entry of the current tables */
info_in_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
info_out_entry_ptr = out_lli_table_ptr + num_entries_out_table - 1;
edbg("SEP Driver:output num_entries_out_table is %lu\n", (unsigned long) num_entries_out_table);
edbg("SEP Driver:output info_in_entry_ptr is %lu\n", (unsigned long) info_in_entry_ptr);
edbg("SEP Driver:output info_out_entry_ptr is %lu\n", (unsigned long) info_out_entry_ptr);
}
/* set output params */
*lli_array_ptr = lli_array;
*num_pages_ptr = num_pages;
*page_array_ptr = 0;
end_function:
dbg("SEP Driver:<-------- sep_lock_kernel_pages end\n");
/* print input tables */
sep_debug_print_lli_tables((struct sep_lli_entry_t *)
sep_shared_area_phys_to_virt(*lli_table_in_ptr), *in_num_entries_ptr, *table_data_size_ptr);
/* print output tables */
sep_debug_print_lli_tables((struct sep_lli_entry_t *)
sep_shared_area_phys_to_virt(*lli_table_out_ptr), *out_num_entries_ptr, *table_data_size_ptr);
dbg("SEP Driver:<-------- sep_construct_dma_tables_from_lli end\n");
return 0;
}
/*
This function releases all the application virtual buffer physical pages,
that were previously locked
This function builds input and output DMA tables for synhronic
symmetric operations (AES, DES). It also checks that each table
is of the modular block size
*/
static int sep_free_dma_pages(struct page **page_array_ptr, unsigned long num_pages, unsigned long dirtyFlag)
static int sep_prepare_input_output_dma_table(unsigned long app_virt_in_addr,
unsigned long app_virt_out_addr,
unsigned long data_size,
unsigned long block_size,
unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress)
{
unsigned long count;
/* array of pointers of page */
struct sep_lli_entry_t *lli_in_array;
/* array of pointers of page */
struct sep_lli_entry_t *lli_out_array;
int result = 0;
if (dirtyFlag) {
for (count = 0; count < num_pages; count++) {
/* the out array was written, therefore the data was changed */
if (!PageReserved(page_array_ptr[count]))
SetPageDirty(page_array_ptr[count]);
page_cache_release(page_array_ptr[count]);
dbg("SEP Driver:--------> sep_prepare_input_output_dma_table start\n");
/* initialize the pages pointers */
sep_dev->in_page_array = 0;
sep_dev->out_page_array = 0;
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true) {
/* lock the pages of the kernel buffer and translate them to pages */
result = sep_lock_kernel_pages(app_virt_in_addr, data_size, &sep_dev->in_num_pages, &lli_in_array, &sep_dev->in_page_array);
if (result) {
edbg("SEP Driver: sep_lock_kernel_pages for input virtual buffer failed\n");
goto end_function;
}
} else {
/* free in pages - the data was only read, therefore no update was done
on those pages */
for (count = 0; count < num_pages; count++)
page_cache_release(page_array_ptr[count]);
/* lock the pages of the user buffer and translate them to pages */
result = sep_lock_user_pages(app_virt_in_addr, data_size, &sep_dev->in_num_pages, &lli_in_array, &sep_dev->in_page_array);
if (result) {
edbg("SEP Driver: sep_lock_user_pages for input virtual buffer failed\n");
goto end_function;
}
}
if (page_array_ptr)
/* free the array */
kfree(page_array_ptr);
if (isKernelVirtualAddress == true) {
result = sep_lock_kernel_pages(app_virt_out_addr, data_size, &sep_dev->out_num_pages, &lli_out_array, &sep_dev->out_page_array);
if (result) {
edbg("SEP Driver: sep_lock_kernel_pages for output virtual buffer failed\n");
goto end_function_with_error1;
}
} else {
result = sep_lock_user_pages(app_virt_out_addr, data_size, &sep_dev->out_num_pages, &lli_out_array, &sep_dev->out_page_array);
if (result) {
edbg("SEP Driver: sep_lock_user_pages for output virtual buffer failed\n");
goto end_function_with_error1;
}
}
edbg("sep_dev->in_num_pages is %lu\n", sep_dev->in_num_pages);
edbg("sep_dev->out_num_pages is %lu\n", sep_dev->out_num_pages);
edbg("SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP is %x\n", SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
/* call the fucntion that creates table from the lli arrays */
result = sep_construct_dma_tables_from_lli(lli_in_array, sep_dev->in_num_pages, lli_out_array, sep_dev->out_num_pages, block_size, lli_table_in_ptr, lli_table_out_ptr, in_num_entries_ptr, out_num_entries_ptr, table_data_size_ptr);
if (result) {
edbg("SEP Driver: sep_construct_dma_tables_from_lli failed\n");
goto end_function_with_error2;
}
/* fall through - free the lli entry arrays */
dbg("in_num_entries_ptr is %08lx\n", *in_num_entries_ptr);
dbg("out_num_entries_ptr is %08lx\n", *out_num_entries_ptr);
dbg("table_data_size_ptr is %08lx\n", *table_data_size_ptr);
end_function_with_error2:
kfree(lli_out_array);
end_function_with_error1:
kfree(lli_in_array);
end_function:
dbg("SEP Driver:<-------- sep_prepare_input_output_dma_table end result = %d\n", (int) result);
return result;
return 0;
}
/*
This function raises interrupt to SEP that signals that is has a new
command from HOST
this function handles tha request for creation of the DMA table
for the synchronic symmetric operations (AES,DES)
*/
static void sep_send_command_handler(void)
static int sep_create_sync_dma_tables_handler(unsigned long arg)
{
unsigned long count;
int error;
/* command arguments */
struct sep_driver_build_sync_table_t command_args;
dbg("SEP Driver:--------> sep_send_command_handler start\n");
sep_set_time(0, 0);
dbg("SEP Driver:--------> sep_create_sync_dma_tables_handler start\n");
/* flash cache */
flush_cache_all();
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_build_sync_table_t));
if (error)
goto end_function;
for (count = 0; count < 12 * 4; count += 4)
edbg("Word %lu of the message is %lu\n", count, *((unsigned long *) (sep_dev->shared_area_addr + count)));
edbg("app_in_address is %08lx\n", command_args.app_in_address);
edbg("app_out_address is %08lx\n", command_args.app_out_address);
edbg("data_size is %lu\n", command_args.data_in_size);
edbg("block_size is %lu\n", command_args.block_size);
/* update counter */
sep_dev->host_to_sep_send_counter++;
/* send interrupt to SEP */
sep_write_reg(sep_dev, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2);
dbg("SEP Driver:<-------- sep_send_command_handler end\n");
return;
/* check if we need to build only input table or input/output */
if (command_args.app_out_address)
/* prepare input and output tables */
error = sep_prepare_input_output_dma_table(command_args.app_in_address,
command_args.app_out_address,
command_args.data_in_size,
command_args.block_size,
&command_args.in_table_address,
&command_args.out_table_address, &command_args.in_table_num_entries, &command_args.out_table_num_entries, &command_args.table_data_size, command_args.isKernelVirtualAddress);
else
/* prepare input tables */
error = sep_prepare_input_dma_table(command_args.app_in_address,
command_args.data_in_size, command_args.block_size, &command_args.in_table_address, &command_args.in_table_num_entries, &command_args.table_data_size, command_args.isKernelVirtualAddress);
if (error)
goto end_function;
/* copy to user */
error = copy_to_user((void *) arg, (void *) &command_args, sizeof(struct sep_driver_build_sync_table_t));
end_function:
dbg("SEP Driver:<-------- sep_create_sync_dma_tables_handler end\n");
return error;
}
/*
This function raises interrupt to SEPm that signals that is has a
new command from HOST
this function handles the request for freeing dma table for synhronic actions
*/
static void sep_send_reply_command_handler(void)
static int sep_free_dma_table_data_handler(void)
{
unsigned long count;
dbg("SEP Driver:--------> sep_send_reply_command_handler start\n");
dbg("SEP Driver:--------> sep_free_dma_table_data_handler start\n");
/* flash cache */
flush_cache_all();
for (count = 0; count < 12 * 4; count += 4)
edbg("Word %lu of the message is %lu\n", count, *((unsigned long *) (sep_dev->shared_area_addr + count)));
/* update counter */
sep_dev->host_to_sep_send_counter++;
/* send the interrupt to SEP */
sep_write_reg(sep_dev, HW_HOST_HOST_SEP_GPR2_REG_ADDR, sep_dev->host_to_sep_send_counter);
/* update both counters */
sep_dev->host_to_sep_send_counter++;
sep_dev->sep_to_host_reply_counter++;
dbg("SEP Driver:<-------- sep_send_reply_command_handler end\n");
}
/* free input pages array */
sep_free_dma_pages(sep_dev->in_page_array, sep_dev->in_num_pages, 0);
/* free output pages array if needed */
if (sep_dev->out_page_array)
sep_free_dma_pages(sep_dev->out_page_array, sep_dev->out_num_pages, 1);
/* reset all the values */
sep_dev->in_page_array = 0;
sep_dev->out_page_array = 0;
sep_dev->in_num_pages = 0;
sep_dev->out_num_pages = 0;
dbg("SEP Driver:<-------- sep_free_dma_table_data_handler end\n");
return 0;
}
/*
This function handles the allocate data pool memory request
This function returns calculates the physical address of the
allocated memory, and the offset of this area from the mapped address.
Therefore, the FVOs in user space can calculate the exact virtual
address of this allocated memory
this function find a space for the new flow dma table
*/
static int sep_allocate_data_pool_memory_handler(unsigned long arg)
static int sep_find_free_flow_dma_table_space(unsigned long **table_address_ptr)
{
int error;
struct sep_driver_alloc_t command_args;
int error = 0;
/* pointer to the id field of the flow dma table */
unsigned long *start_table_ptr;
unsigned long flow_dma_area_start_addr;
unsigned long flow_dma_area_end_addr;
/* maximum table size in words */
unsigned long table_size_in_words;
dbg("SEP Driver:--------> sep_allocate_data_pool_memory_handler start\n");
/* find the start address of the flow DMA table area */
flow_dma_area_start_addr = sep_dev->shared_area_addr + SEP_DRIVER_FLOW_DMA_TABLES_AREA_OFFSET_IN_BYTES;
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_alloc_t));
if (error)
goto end_function;
/* set end address of the flow table area */
flow_dma_area_end_addr = flow_dma_area_start_addr + SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES;
/* allocate memory */
if ((sep_dev->data_pool_bytes_allocated + command_args.num_bytes) > SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) {
error = -ENOTTY;
goto end_function;
}
/* set table size in words */
table_size_in_words = SEP_DRIVER_MAX_FLOW_NUM_ENTRIES_IN_TABLE * (sizeof(struct sep_lli_entry_t) / sizeof(long)) + 2;
/* set the virtual and physical address */
command_args.offset = SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep_dev->data_pool_bytes_allocated;
command_args.phys_address = sep_dev->phys_shared_area_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep_dev->data_pool_bytes_allocated;
/* set the pointer to the start address of DMA area */
start_table_ptr = (unsigned long *) flow_dma_area_start_addr;
/* write the memory back to the user space */
error = copy_to_user((void *) arg, (void *) &command_args, sizeof(struct sep_driver_alloc_t));
if (error)
goto end_function;
/* find the space for the next table */
while (((*start_table_ptr & 0x7FFFFFFF) != 0) && ((unsigned long) start_table_ptr < flow_dma_area_end_addr))
start_table_ptr += table_size_in_words;
/* set the allocation */
sep_dev->data_pool_bytes_allocated += command_args.num_bytes;
/* check if we reached the end of floa tables area */
if ((unsigned long) start_table_ptr >= flow_dma_area_end_addr)
error = -1;
else
*table_address_ptr = start_table_ptr;
end_function:
dbg("SEP Driver:<-------- sep_allocate_data_pool_memory_handler end\n");
return error;
}
/*
This function handles write into allocated data pool command
This function creates one DMA table for flow and returns its data,
and pointer to its info entry
*/
static int sep_write_into_data_pool_handler(unsigned long arg)
static int sep_prepare_one_flow_dma_table(unsigned long virt_buff_addr, unsigned long virt_buff_size, struct sep_lli_entry_t *table_data, struct sep_lli_entry_t **info_entry_ptr, struct sep_flow_context_t *flow_data_ptr, bool isKernelVirtualAddress)
{
int error;
unsigned long virt_address;
unsigned long app_in_address;
unsigned long num_bytes;
unsigned long data_pool_area_addr;
dbg("SEP Driver:--------> sep_write_into_data_pool_handler start\n");
/* the range in pages */
unsigned long lli_array_size;
struct sep_lli_entry_t *lli_array;
struct sep_lli_entry_t *flow_dma_table_entry_ptr;
unsigned long *start_dma_table_ptr;
/* total table data counter */
unsigned long dma_table_data_count;
/* pointer that will keep the pointer to the pages of the virtual buffer */
struct page **page_array_ptr;
unsigned long entry_count;
/* get the application address */
error = get_user(app_in_address, &(((struct sep_driver_write_t *) arg)->app_address));
/* find the space for the new table */
error = sep_find_free_flow_dma_table_space(&start_dma_table_ptr);
if (error)
goto end_function;
/* get the virtual kernel address address */
error = get_user(virt_address, &(((struct sep_driver_write_t *) arg)->datapool_address));
if (error)
goto end_function;
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true)
/* lock kernel buffer in the memory */
error = sep_lock_kernel_pages(virt_buff_addr, virt_buff_size, &lli_array_size, &lli_array, &page_array_ptr);
else
/* lock user buffer in the memory */
error = sep_lock_user_pages(virt_buff_addr, virt_buff_size, &lli_array_size, &lli_array, &page_array_ptr);
/* get the number of bytes */
error = get_user(num_bytes, &(((struct sep_driver_write_t *) arg)->num_bytes));
if (error)
goto end_function;
/* calculate the start of the data pool */
data_pool_area_addr = sep_dev->shared_area_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES;
/* set the pointer to page array at the beginning of table - this table is
now considered taken */
*start_dma_table_ptr = lli_array_size;
/* point to the place of the pages pointers of the table */
start_dma_table_ptr++;
/* check that the range of the virtual kernel address is correct */
if ((virt_address < data_pool_area_addr) || (virt_address > (data_pool_area_addr + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES))) {
error = -ENOTTY;
goto end_function;
/* set the pages pointer */
*start_dma_table_ptr = (unsigned long) page_array_ptr;
/* set the pointer to the first entry */
flow_dma_table_entry_ptr = (struct sep_lli_entry_t *) (++start_dma_table_ptr);
/* now create the entries for table */
for (dma_table_data_count = entry_count = 0; entry_count < lli_array_size; entry_count++) {
flow_dma_table_entry_ptr->physical_address = lli_array[entry_count].physical_address;
flow_dma_table_entry_ptr->block_size = lli_array[entry_count].block_size;
/* set the total data of a table */
dma_table_data_count += lli_array[entry_count].block_size;
flow_dma_table_entry_ptr++;
}
/* copy the application data */
error = copy_from_user((void *) virt_address, (void *) app_in_address, num_bytes);
/* set the physical address */
table_data->physical_address = virt_to_phys(start_dma_table_ptr);
/* set the num_entries and total data size */
table_data->block_size = ((lli_array_size + 1) << SEP_NUM_ENTRIES_OFFSET_IN_BITS) | (dma_table_data_count);
/* set the info entry */
flow_dma_table_entry_ptr->physical_address = 0xffffffff;
flow_dma_table_entry_ptr->block_size = 0;
/* set the pointer to info entry */
*info_entry_ptr = flow_dma_table_entry_ptr;
/* the array of the lli entries */
kfree(lli_array);
end_function:
dbg("SEP Driver:<-------- sep_write_into_data_pool_handler end\n");
return error;
}
/*
this function handles the read from data pool command
This function creates a list of tables for flow and returns the data for
the first and last tables of the list
*/
static int sep_read_from_data_pool_handler(unsigned long arg)
static int sep_prepare_flow_dma_tables(unsigned long num_virtual_buffers,
unsigned long first_buff_addr, struct sep_flow_context_t *flow_data_ptr, struct sep_lli_entry_t *first_table_data_ptr, struct sep_lli_entry_t *last_table_data_ptr, bool isKernelVirtualAddress)
{
int error;
/* virtual address of dest application buffer */
unsigned long app_out_address;
/* virtual address of the data pool */
unsigned long virt_address;
unsigned long num_bytes;
unsigned long data_pool_area_addr;
unsigned long virt_buff_addr;
unsigned long virt_buff_size;
struct sep_lli_entry_t table_data;
struct sep_lli_entry_t *info_entry_ptr;
struct sep_lli_entry_t *prev_info_entry_ptr;
unsigned long i;
dbg("SEP Driver:--------> sep_read_from_data_pool_handler start\n");
/* init vars */
error = 0;
prev_info_entry_ptr = 0;
/* get the application address */
error = get_user(app_out_address, &(((struct sep_driver_write_t *) arg)->app_address));
if (error)
goto end_function;
/* init the first table to default */
table_data.physical_address = 0xffffffff;
first_table_data_ptr->physical_address = 0xffffffff;
table_data.block_size = 0;
/* get the virtual kernel address address */
error = get_user(virt_address, &(((struct sep_driver_write_t *) arg)->datapool_address));
if (error)
goto end_function;
for (i = 0; i < num_virtual_buffers; i++) {
/* get the virtual buffer address */
error = get_user(virt_buff_addr, &first_buff_addr);
if (error)
goto end_function;
/* get the number of bytes */
error = get_user(num_bytes, &(((struct sep_driver_write_t *) arg)->num_bytes));
if (error)
goto end_function;
/* get the virtual buffer size */
first_buff_addr++;
error = get_user(virt_buff_size, &first_buff_addr);
if (error)
goto end_function;
/* calculate the start of the data pool */
data_pool_area_addr = sep_dev->shared_area_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES;
/* advance the address to point to the next pair of address|size */
first_buff_addr++;
/* check that the range of the virtual kernel address is correct */
if ((virt_address < data_pool_area_addr) || (virt_address > (data_pool_area_addr + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES))) {
error = -ENOTTY;
goto end_function;
/* now prepare the one flow LLI table from the data */
error = sep_prepare_one_flow_dma_table(virt_buff_addr, virt_buff_size, &table_data, &info_entry_ptr, flow_data_ptr, isKernelVirtualAddress);
if (error)
goto end_function;
if (i == 0) {
/* if this is the first table - save it to return to the user
application */
*first_table_data_ptr = table_data;
/* set the pointer to info entry */
prev_info_entry_ptr = info_entry_ptr;
} else {
/* not first table - the previous table info entry should
be updated */
prev_info_entry_ptr->block_size = (0x1 << SEP_INT_FLAG_OFFSET_IN_BITS) | (table_data.block_size);
/* set the pointer to info entry */
prev_info_entry_ptr = info_entry_ptr;
}
}
/* copy the application data */
error = copy_to_user((void *) app_out_address, (void *) virt_address, num_bytes);
/* set the last table data */
*last_table_data_ptr = table_data;
end_function:
dbg("SEP Driver:<-------- sep_read_from_data_pool_handler end\n");
return error;
}
/*
this function handles tha request for creation of the DMA table
for the synchronic symmetric operations (AES,DES)
this function goes over all the flow tables connected to the given
table and deallocate them
*/
static int sep_create_sync_dma_tables_handler(unsigned long arg)
static void sep_deallocated_flow_tables(struct sep_lli_entry_t *first_table_ptr)
{
int error;
/* command arguments */
struct sep_driver_build_sync_table_t command_args;
/* id pointer */
unsigned long *table_ptr;
/* end address of the flow dma area */
unsigned long num_entries;
unsigned long num_pages;
struct page **pages_ptr;
/* maximum table size in words */
struct sep_lli_entry_t *info_entry_ptr;
dbg("SEP Driver:--------> sep_create_sync_dma_tables_handler start\n");
/* set the pointer to the first table */
table_ptr = (unsigned long *) first_table_ptr->physical_address;
error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_build_sync_table_t));
if (error)
goto end_function;
/* set the num of entries */
num_entries = (first_table_ptr->block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS)
& SEP_NUM_ENTRIES_MASK;
edbg("app_in_address is %08lx\n", command_args.app_in_address);
edbg("app_out_address is %08lx\n", command_args.app_out_address);
edbg("data_size is %lu\n", command_args.data_in_size);
edbg("block_size is %lu\n", command_args.block_size);
/* go over all the connected tables */
while (*table_ptr != 0xffffffff) {
/* get number of pages */
num_pages = *(table_ptr - 2);
/* check if we need to build only input table or input/output */
if (command_args.app_out_address)
/* prepare input and output tables */
error = sep_prepare_input_output_dma_table(command_args.app_in_address,
command_args.app_out_address,
command_args.data_in_size,
command_args.block_size,
&command_args.in_table_address,
&command_args.out_table_address, &command_args.in_table_num_entries, &command_args.out_table_num_entries, &command_args.table_data_size, command_args.isKernelVirtualAddress);
else
/* prepare input tables */
error = sep_prepare_input_dma_table(command_args.app_in_address,
command_args.data_in_size, command_args.block_size, &command_args.in_table_address, &command_args.in_table_num_entries, &command_args.table_data_size, command_args.isKernelVirtualAddress);
/* get the pointer to the pages */
pages_ptr = (struct page **) (*(table_ptr - 1));
if (error)
goto end_function;
/* copy to user */
error = copy_to_user((void *) arg, (void *) &command_args, sizeof(struct sep_driver_build_sync_table_t));
end_function:
dbg("SEP Driver:<-------- sep_create_sync_dma_tables_handler end\n");
return error;
/* free the pages */
sep_free_dma_pages(pages_ptr, num_pages, 1);
/* goto to the info entry */
info_entry_ptr = ((struct sep_lli_entry_t *) table_ptr) + (num_entries - 1);
table_ptr = (unsigned long *) info_entry_ptr->physical_address;
num_entries = (info_entry_ptr->block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK;
}
return;
}
/*
this function handles the request for freeing dma table for synhronic actions
This function returns pointer to the flow data structure
that contains the given id
*/
static int sep_free_dma_table_data_handler(void)
static int sep_find_flow_context(unsigned long flow_id, struct sep_flow_context_t **flow_data_ptr)
{
dbg("SEP Driver:--------> sep_free_dma_table_data_handler start\n");
unsigned long count;
int error = 0;
/* free input pages array */
sep_free_dma_pages(sep_dev->in_page_array, sep_dev->in_num_pages, 0);
/*
always search for flow with id default first - in case we
already started working on the flow there can be no situation
when 2 flows are with default flag
*/
for (count = 0; count < SEP_DRIVER_NUM_FLOWS; count++) {
if (sep_dev->flows_data_array[count].flow_id == flow_id) {
*flow_data_ptr = &sep_dev->flows_data_array[count];
break;
}
}
/* free output pages array if needed */
if (sep_dev->out_page_array)
sep_free_dma_pages(sep_dev->out_page_array, sep_dev->out_num_pages, 1);
if (count == SEP_DRIVER_NUM_FLOWS)
/* no flow found */
error = -ENOMEM;
/* reset all the values */
sep_dev->in_page_array = 0;
sep_dev->out_page_array = 0;
sep_dev->in_num_pages = 0;
sep_dev->out_num_pages = 0;
dbg("SEP Driver:<-------- sep_free_dma_table_data_handler end\n");
return 0;
return error;
}
/*
this function handles the request to create the DMA tables for flow
*/
......@@ -2238,300 +2156,43 @@ static int sep_set_api_mode_handler(unsigned long arg)
int error;
unsigned long mode_flag;
dbg("SEP Driver:--------> sep_set_api_mode_handler start\n");
error = get_user(mode_flag, &(((struct sep_driver_set_api_mode_t *) arg)->mode));
if (error)
goto end_function;
/* set the global flag */
sep_dev->block_mode_flag = mode_flag;
end_function:
dbg("SEP Driver:<-------- sep_set_api_mode_handler end\n");
return error;
}
/*
This API handles the end transaction request
*/
static int sep_end_transaction_handler(unsigned long arg)
{
dbg("SEP Driver:--------> sep_end_transaction_handler start\n");
#if 0 /*!SEP_DRIVER_POLLING_MODE */
/* close IMR */
sep_write_reg(sep_dev, HW_HOST_IMR_REG_ADDR, 0x7FFF);
/* release IRQ line */
free_irq(SEP_DIRVER_IRQ_NUM, &sep_dev->reg_base_address);
/* lock the sep mutex */
mutex_unlock(&sep_mutex);
#endif
dbg("SEP Driver:<-------- sep_end_transaction_handler end\n");
return 0;
}
/*
This function creates a list of tables for flow and returns the data for
the first and last tables of the list
*/
static int sep_prepare_flow_dma_tables(unsigned long num_virtual_buffers,
unsigned long first_buff_addr, struct sep_flow_context_t *flow_data_ptr, struct sep_lli_entry_t *first_table_data_ptr, struct sep_lli_entry_t *last_table_data_ptr, bool isKernelVirtualAddress)
{
int error;
unsigned long virt_buff_addr;
unsigned long virt_buff_size;
struct sep_lli_entry_t table_data;
struct sep_lli_entry_t *info_entry_ptr;
struct sep_lli_entry_t *prev_info_entry_ptr;
unsigned long i;
/* init vars */
error = 0;
prev_info_entry_ptr = 0;
/* init the first table to default */
table_data.physical_address = 0xffffffff;
first_table_data_ptr->physical_address = 0xffffffff;
table_data.block_size = 0;
for (i = 0; i < num_virtual_buffers; i++) {
/* get the virtual buffer address */
error = get_user(virt_buff_addr, &first_buff_addr);
if (error)
goto end_function;
/* get the virtual buffer size */
first_buff_addr++;
error = get_user(virt_buff_size, &first_buff_addr);
if (error)
goto end_function;
/* advance the address to point to the next pair of address|size */
first_buff_addr++;
/* now prepare the one flow LLI table from the data */
error = sep_prepare_one_flow_dma_table(virt_buff_addr, virt_buff_size, &table_data, &info_entry_ptr, flow_data_ptr, isKernelVirtualAddress);
if (error)
goto end_function;
if (i == 0) {
/* if this is the first table - save it to return to the user
application */
*first_table_data_ptr = table_data;
/* set the pointer to info entry */
prev_info_entry_ptr = info_entry_ptr;
} else {
/* not first table - the previous table info entry should
be updated */
prev_info_entry_ptr->block_size = (0x1 << SEP_INT_FLAG_OFFSET_IN_BITS) | (table_data.block_size);
/* set the pointer to info entry */
prev_info_entry_ptr = info_entry_ptr;
}
}
/* set the last table data */
*last_table_data_ptr = table_data;
end_function:
return error;
}
/*
This function creates one DMA table for flow and returns its data,
and pointer to its info entry
*/
static int sep_prepare_one_flow_dma_table(unsigned long virt_buff_addr, unsigned long virt_buff_size, struct sep_lli_entry_t *table_data, struct sep_lli_entry_t **info_entry_ptr, struct sep_flow_context_t *flow_data_ptr, bool isKernelVirtualAddress)
{
int error;
/* the range in pages */
unsigned long lli_array_size;
struct sep_lli_entry_t *lli_array;
struct sep_lli_entry_t *flow_dma_table_entry_ptr;
unsigned long *start_dma_table_ptr;
/* total table data counter */
unsigned long dma_table_data_count;
/* pointer that will keep the pointer to the pages of the virtual buffer */
struct page **page_array_ptr;
unsigned long entry_count;
/* find the space for the new table */
error = sep_find_free_flow_dma_table_space(&start_dma_table_ptr);
if (error)
goto end_function;
/* check if the pages are in Kernel Virtual Address layout */
if (isKernelVirtualAddress == true)
/* lock kernel buffer in the memory */
error = sep_lock_kernel_pages(virt_buff_addr, virt_buff_size, &lli_array_size, &lli_array, &page_array_ptr);
else
/* lock user buffer in the memory */
error = sep_lock_user_pages(virt_buff_addr, virt_buff_size, &lli_array_size, &lli_array, &page_array_ptr);
if (error)
goto end_function;
/* set the pointer to page array at the beginning of table - this table is
now considered taken */
*start_dma_table_ptr = lli_array_size;
/* point to the place of the pages pointers of the table */
start_dma_table_ptr++;
/* set the pages pointer */
*start_dma_table_ptr = (unsigned long) page_array_ptr;
/* set the pointer to the first entry */
flow_dma_table_entry_ptr = (struct sep_lli_entry_t *) (++start_dma_table_ptr);
/* now create the entries for table */
for (dma_table_data_count = entry_count = 0; entry_count < lli_array_size; entry_count++) {
flow_dma_table_entry_ptr->physical_address = lli_array[entry_count].physical_address;
flow_dma_table_entry_ptr->block_size = lli_array[entry_count].block_size;
/* set the total data of a table */
dma_table_data_count += lli_array[entry_count].block_size;
flow_dma_table_entry_ptr++;
}
/* set the physical address */
table_data->physical_address = virt_to_phys(start_dma_table_ptr);
/* set the num_entries and total data size */
table_data->block_size = ((lli_array_size + 1) << SEP_NUM_ENTRIES_OFFSET_IN_BITS) | (dma_table_data_count);
/* set the info entry */
flow_dma_table_entry_ptr->physical_address = 0xffffffff;
flow_dma_table_entry_ptr->block_size = 0;
/* set the pointer to info entry */
*info_entry_ptr = flow_dma_table_entry_ptr;
/* the array of the lli entries */
kfree(lli_array);
end_function:
return error;
}
/*
This function returns pointer to the flow data structure
that contains the given id
*/
static int sep_find_flow_context(unsigned long flow_id, struct sep_flow_context_t **flow_data_ptr)
{
unsigned long count;
int error = 0;
/*
always search for flow with id default first - in case we
already started working on the flow there can be no situation
when 2 flows are with default flag
*/
for (count = 0; count < SEP_DRIVER_NUM_FLOWS; count++) {
if (sep_dev->flows_data_array[count].flow_id == flow_id) {
*flow_data_ptr = &sep_dev->flows_data_array[count];
break;
}
}
if (count == SEP_DRIVER_NUM_FLOWS)
/* no flow found */
error = -ENOMEM;
return error;
}
/*
this function find a space for the new flow dma table
*/
static int sep_find_free_flow_dma_table_space(unsigned long **table_address_ptr)
{
int error = 0;
/* pointer to the id field of the flow dma table */
unsigned long *start_table_ptr;
unsigned long flow_dma_area_start_addr;
unsigned long flow_dma_area_end_addr;
/* maximum table size in words */
unsigned long table_size_in_words;
/* find the start address of the flow DMA table area */
flow_dma_area_start_addr = sep_dev->shared_area_addr + SEP_DRIVER_FLOW_DMA_TABLES_AREA_OFFSET_IN_BYTES;
/* set end address of the flow table area */
flow_dma_area_end_addr = flow_dma_area_start_addr + SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES;
/* set table size in words */
table_size_in_words = SEP_DRIVER_MAX_FLOW_NUM_ENTRIES_IN_TABLE * (sizeof(struct sep_lli_entry_t) / sizeof(long)) + 2;
/* set the pointer to the start address of DMA area */
start_table_ptr = (unsigned long *) flow_dma_area_start_addr;
/* find the space for the next table */
while (((*start_table_ptr & 0x7FFFFFFF) != 0) && ((unsigned long) start_table_ptr < flow_dma_area_end_addr))
start_table_ptr += table_size_in_words;
dbg("SEP Driver:--------> sep_set_api_mode_handler start\n");
/* check if we reached the end of floa tables area */
if ((unsigned long) start_table_ptr >= flow_dma_area_end_addr)
error = -1;
else
*table_address_ptr = start_table_ptr;
error = get_user(mode_flag, &(((struct sep_driver_set_api_mode_t *) arg)->mode));
if (error)
goto end_function;
/* set the global flag */
sep_dev->block_mode_flag = mode_flag;
end_function:
dbg("SEP Driver:<-------- sep_set_api_mode_handler end\n");
return error;
}
/*
this function goes over all the flow tables connected to the given
table and deallocate them
This API handles the end transaction request
*/
static void sep_deallocated_flow_tables(struct sep_lli_entry_t *first_table_ptr)
static int sep_end_transaction_handler(unsigned long arg)
{
/* id pointer */
unsigned long *table_ptr;
/* end address of the flow dma area */
unsigned long num_entries;
unsigned long num_pages;
struct page **pages_ptr;
/* maximum table size in words */
struct sep_lli_entry_t *info_entry_ptr;
/* set the pointer to the first table */
table_ptr = (unsigned long *) first_table_ptr->physical_address;
/* set the num of entries */
num_entries = (first_table_ptr->block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS)
& SEP_NUM_ENTRIES_MASK;
/* go over all the connected tables */
while (*table_ptr != 0xffffffff) {
/* get number of pages */
num_pages = *(table_ptr - 2);
dbg("SEP Driver:--------> sep_end_transaction_handler start\n");
/* get the pointer to the pages */
pages_ptr = (struct page **) (*(table_ptr - 1));
#if 0 /*!SEP_DRIVER_POLLING_MODE */
/* close IMR */
sep_write_reg(sep_dev, HW_HOST_IMR_REG_ADDR, 0x7FFF);
/* free the pages */
sep_free_dma_pages(pages_ptr, num_pages, 1);
/* release IRQ line */
free_irq(SEP_DIRVER_IRQ_NUM, &sep_dev->reg_base_address);
/* goto to the info entry */
info_entry_ptr = ((struct sep_lli_entry_t *) table_ptr) + (num_entries - 1);
/* lock the sep mutex */
mutex_unlock(&sep_mutex);
#endif
table_ptr = (unsigned long *) info_entry_ptr->physical_address;
num_entries = (info_entry_ptr->block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK;
}
dbg("SEP Driver:<-------- sep_end_transaction_handler end\n");
return;
return 0;
}
/*
This function handler the set flow id command
*/
......@@ -2562,41 +2223,193 @@ static int sep_set_flow_id_handler(unsigned long arg)
}
static int sep_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
{
int error = 0;
dbg("------------>SEP Driver: ioctl start\n");
edbg("SEP Driver: cmd is %x\n", cmd);
/* check that the command is for sep device */
if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER)
error = -ENOTTY;
switch (cmd) {
case SEP_IOCSENDSEPCOMMAND:
/* send command to SEP */
sep_send_command_handler();
edbg("SEP Driver: after sep_send_command_handler\n");
break;
case SEP_IOCSENDSEPRPLYCOMMAND:
/* send reply command to SEP */
sep_send_reply_command_handler();
break;
case SEP_IOCALLOCDATAPOLL:
/* allocate data pool */
error = sep_allocate_data_pool_memory_handler(arg);
break;
case SEP_IOCWRITEDATAPOLL:
/* write data into memory pool */
error = sep_write_into_data_pool_handler(arg);
break;
case SEP_IOCREADDATAPOLL:
/* read data from data pool into application memory */
error = sep_read_from_data_pool_handler(arg);
break;
case SEP_IOCCREATESYMDMATABLE:
/* create dma table for synhronic operation */
error = sep_create_sync_dma_tables_handler(arg);
break;
case SEP_IOCCREATEFLOWDMATABLE:
/* create flow dma tables */
error = sep_create_flow_dma_tables_handler(arg);
break;
case SEP_IOCFREEDMATABLEDATA:
/* free the pages */
error = sep_free_dma_table_data_handler();
break;
case SEP_IOCSETFLOWID:
/* set flow id */
error = sep_set_flow_id_handler(arg);
break;
case SEP_IOCADDFLOWTABLE:
/* add tables to the dynamic flow */
error = sep_add_flow_tables_handler(arg);
break;
case SEP_IOCADDFLOWMESSAGE:
/* add message of add tables to flow */
error = sep_add_flow_tables_message_handler(arg);
break;
case SEP_IOCSEPSTART:
/* start command to sep */
error = sep_start_handler();
break;
case SEP_IOCSEPINIT:
/* init command to sep */
error = sep_init_handler(arg);
break;
case SEP_IOCSETAPIMODE:
/* set non- blocking mode */
error = sep_set_api_mode_handler(arg);
break;
case SEP_IOCGETSTATICPOOLADDR:
/* get the physical and virtual addresses of the static pool */
error = sep_get_static_pool_addr_handler(arg);
break;
case SEP_IOCENDTRANSACTION:
error = sep_end_transaction_handler(arg);
break;
case SEP_IOCREALLOCCACHERES:
error = sep_realloc_cache_resident_handler(arg);
break;
case SEP_IOCGETMAPPEDADDROFFSET:
error = sep_get_physical_mapped_offset_handler(arg);
break;
case SEP_IOCGETIME:
error = sep_get_time_handler(arg);
break;
default:
error = -ENOTTY;
break;
}
dbg("SEP Driver:<-------- ioctl end\n");
return error;
}
#if !SEP_DRIVER_POLLING_MODE
/* handler for flow done interrupt */
static void sep_flow_done_handler(struct work_struct *work)
{
struct sep_flow_context_t *flow_data_ptr;
/* obtain the mutex */
mutex_lock(&sep_mutex);
/* get the pointer to context */
flow_data_ptr = (struct sep_flow_context_t *) work;
/* free all the current input tables in sep */
sep_deallocated_flow_tables(&flow_data_ptr->input_tables_in_process);
/* free all the current tables output tables in SEP (if needed) */
if (flow_data_ptr->output_tables_in_process.physical_address != 0xffffffff)
sep_deallocated_flow_tables(&flow_data_ptr->output_tables_in_process);
/* check if we have additional tables to be sent to SEP only input
flag may be checked */
if (flow_data_ptr->input_tables_flag) {
/* copy the message to the shared RAM and signal SEP */
memcpy((void *) flow_data_ptr->message, (void *) sep_dev->shared_area_addr, flow_data_ptr->message_size_in_bytes);
sep_write_reg(sep_dev, HW_HOST_HOST_SEP_GPR2_REG_ADDR, 0x2);
}
mutex_unlock(&sep_mutex);
}
/*
calculates time and sets it at the predefined address
interrupt handler function
*/
static int sep_set_time(unsigned long *address_ptr, unsigned long *time_in_sec_ptr)
static irqreturn_t sep_inthandler(int irq, void *dev_id)
{
struct timeval time;
/* address of time in the kernel */
unsigned long time_addr;
irqreturn_t int_error;
unsigned long error;
unsigned long reg_val;
unsigned long flow_id;
struct sep_flow_context_t *flow_context_ptr;
int_error = IRQ_HANDLED;
dbg("SEP Driver:--------> sep_set_time start\n");
/* read the IRR register to check if this is SEP interrupt */
reg_val = sep_read_reg(sep_dev, HW_HOST_IRR_REG_ADDR);
edbg("SEP Interrupt - reg is %08lx\n", reg_val);
do_gettimeofday(&time);
/* check if this is the flow interrupt */
if (0 /*reg_val & (0x1 << 11) */ ) {
/* read GPRO to find out the which flow is done */
flow_id = sep_read_reg(sep_dev, HW_HOST_IRR_REG_ADDR);
/* set value in the SYSTEM MEMORY offset */
time_addr = sep_dev->message_shared_area_addr + SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES;
/* find the contex of the flow */
error = sep_find_flow_context(flow_id >> 28, &flow_context_ptr);
if (error)
goto end_function_with_error;
*(unsigned long *) time_addr = SEP_TIME_VAL_TOKEN;
*(unsigned long *) (time_addr + 4) = time.tv_sec;
INIT_WORK(&flow_context_ptr->flow_wq, sep_flow_done_handler);
edbg("SEP Driver:time.tv_sec is %lu\n", time.tv_sec);
edbg("SEP Driver:time_addr is %lu\n", time_addr);
edbg("SEP Driver:g_message_shared_area_addr is %lu\n", sep_dev->message_shared_area_addr);
/* queue the work */
queue_work(sep_dev->flow_wq_ptr, &flow_context_ptr->flow_wq);
} else {
/* check if this is reply interrupt from SEP */
if (reg_val & (0x1 << 13)) {
/* update the counter of reply messages */
sep_dev->sep_to_host_reply_counter++;
/* wake up the waiting process */
wake_up(&g_sep_event);
} else {
int_error = IRQ_NONE;
goto end_function;
}
}
end_function_with_error:
/* clear the interrupt */
sep_write_reg(sep_dev, HW_HOST_ICR_REG_ADDR, reg_val);
end_function:
return int_error;
}
#endif
/* set the output parameters if needed */
if (address_ptr)
*address_ptr = sep_shared_area_virt_to_phys(time_addr);
if (time_in_sec_ptr)
*time_in_sec_ptr = time.tv_sec;
dbg("SEP Driver:<-------- sep_set_time end\n");
return 0;
}
static void sep_wait_busy(struct sep_device *dev)
{
......
......@@ -451,46 +451,4 @@ struct sep_flow_context_t {
};
/*
This function releases all the application virtual
buffer physical pages, that were previously locked
*/
static int sep_free_dma_pages(struct page **page_array_ptr, unsigned long num_pages, unsigned long dirtyFlag);
/*
This function creates the input and output dma tables for
symmetric operations (AES/DES) according to the block size
from LLI arays
*/
static int sep_construct_dma_tables_from_lli(struct sep_lli_entry_t *lli_in_array,
unsigned long sep_in_lli_entries,
struct sep_lli_entry_t *lli_out_array,
unsigned long sep_out_lli_entries,
unsigned long block_size, unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr);
/*
This function builds input and output DMA tables for synhronic symmetric
operations (AES, DES) It also checks that each table is of the modular
block size
*/
static int sep_prepare_input_output_dma_table(unsigned long app_virt_in_addr,
unsigned long app_virt_out_addr,
unsigned long data_size,
unsigned long block_size,
unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress);
/*
This function prepares only input DMA table for synhronic symmetric
operations (HASH)
*/
static int sep_prepare_input_dma_table(unsigned long app_virt_addr, unsigned long data_size, unsigned long block_size, unsigned long *lli_table_ptr, unsigned long *num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress);
/*
this function handles the request for freeing dma table for
synhronic actions
*/
static int sep_free_dma_table_data_handler(void);
#endif
/*
*
* sep_driver_ext_api.h - Security Processor Driver external api definitions
*
* Copyright(c) 2009 Intel Corporation. All rights reserved.
* Copyright(c) 2009 Discretix. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* CONTACTS:
*
* Mark Allyn mark.a.allyn@intel.com
*
* CHANGES:
*
* 2009.06.26 Initial publish
*
*/
#ifndef __SEP_DRIVER_EXT_API_H__
#define __SEP_DRIVER_EXT_API_H__
/* shared variables */
static int sepDebug;
/*
this function loads the ROM code in SEP (needed only in the debug mode on FPGA)
*/
static void sep_load_rom_code(void);
/*
This functions copies the cache and resident from their source location into
destination memory, which is external to Linux VM and is given as physical
address
*/
static int sep_copy_cache_resident_to_area(unsigned long src_cache_addr, unsigned long cache_size_in_bytes, unsigned long src_resident_addr, unsigned long resident_size_in_bytes, unsigned long *dst_new_cache_addr_ptr, unsigned long *dst_new_resident_addr_ptr);
/*
This functions maps and allocates the shared area on the external
RAM (device) The input is shared_area_size - the size of the memory
to allocate. The outputs are kernel_shared_area_addr_ptr - the kerenl
address of the mapped and allocated shared area, and
phys_shared_area_addr_ptr - the physical address of the shared area
*/
static int sep_map_and_alloc_shared_area(unsigned long shared_area_size, unsigned long *kernel_shared_area_addr_ptr, unsigned long *phys_shared_area_addr_ptr);
/*
This functions unmaps and deallocates the shared area on the external
RAM (device) The input is shared_area_size - the size of the memory to
deallocate,kernel_shared_area_addr_ptr - the kernel address of the
mapped and allocated shared area,phys_shared_area_addr_ptr - the physical
address of the shared area
*/
static void sep_unmap_and_free_shared_area(unsigned long shared_area_size, unsigned long kernel_shared_area_addr, unsigned long phys_shared_area_addr);
/*
This functions returns the physical address inside shared area according
to the virtual address. It can be either on the externa RAM device
(ioremapped), or on the system RAM
*/
static unsigned long sep_shared_area_virt_to_phys(unsigned long virt_address);
/*
This functions returns the vitrual address inside shared area according
to the physical address. It can be either on the externa RAM device
(ioremapped), or on the system RAM This implementation is for the external RAM
*/
static unsigned long sep_shared_area_phys_to_virt(unsigned long phys_address);
#endif /*__SEP_DRIVER_EXT_API_H__*/
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment