Commit 15acb7ea authored by David S. Miller's avatar David S. Miller

Merge davem@nuts.davemloft.net:/disk1/BK/sparc-2.6

into kernel.bkbits.net:/home/davem/sparc-2.6
parents 85714da1 3085f02b
Semantics and Behavior of Atomic and
Bitmask Operations
David S. Miller
This document is intended to serve as a guide to Linux port
maintainers on how to implement atomic counter and bitops interfaces
properly.
The atomic_t type should be defined as a signed integer.
Also, it should be made opaque such that any kind of cast to a normal
C integer type will fail. Something like the following should
suffice:
typedef struct { volatile int counter; } atomic_t;
The first operations to implement for atomic_t's are the
initializers and plain reads.
#define ATOMIC_INIT(i) { (i) }
#define atomic_set(v, i) ((v)->counter = (i))
The first macro is used in definitions, such as:
static atomic_t my_counter = ATOMIC_INIT(1);
The second interface can be used at runtime, as in:
struct foo { atomic_t counter; };
...
struct foo *k;
k = kmalloc(sizeof(*k), GFP_KERNEL);
if (!k)
return -ENOMEM;
atomic_set(&k->counter, 0);
Next, we have:
#define atomic_read(v) ((v)->counter)
which simply reads the current value of the counter.
Now, we move onto the actual atomic operation interfaces.
void atomic_add(int i, atomic_t *v);
void atomic_sub(int i, atomic_t *v);
void atomic_inc(atomic_t *v);
void atomic_dec(atomic_t *v);
These four routines add and subtract integral values to/from the given
atomic_t value. The first two routines pass explicit integers by
which to make the adjustment, whereas the latter two use an implicit
adjustment value of "1".
One very important aspect of these two routines is that they DO NOT
require any explicit memory barriers. They need only perform the
atomic_t counter update in an SMP safe manner.
Next, we have:
int atomic_inc_return(atomic_t *v);
int atomic_dec_return(atomic_t *v);
These routines add 1 and subtract 1, respectively, from the given
atomic_t and return the new counter value after the operation is
performed.
Unlike the above routines, it is required that explicit memory
barriers are performed before and after the operation. It must be
done such that all memory operations before and after the atomic
operation calls are strongly ordered with respect to the atomic
operation itself.
For example, it should behave as if a smp_mb() call existed both
before and after the atomic operation.
If the atomic instructions used in an implementation provide explicit
memory barrier semantics which satisfy the above requirements, that is
fine as well.
Let's move on:
int atomic_add_return(int i, atomic_t *v);
int atomic_sub_return(int i, atomic_t *v);
These behave just like atomic_{inc,dec}_return() except that an
explicit counter adjustment is given instead of the implicit "1".
This means that like atomic_{inc,dec}_return(), the memory barrier
semantics are required.
Next:
int atomic_inc_and_test(atomic_t *v);
int atomic_dec_and_test(atomic_t *v);
These two routines increment and decrement by 1, respectively, the
given atomic counter. They return a boolean indicating whether the
resulting counter value was zero or not.
It requires explicit memory barrier semantics around the operation as
above.
int atomic_sub_and_test(int i, atomic_t *v);
This is identical to atomic_dec_and_test() except that an explicit
decrement is given instead of the implicit "1". It requires explicit
memory barrier semantics around the operation.
int atomic_add_negative(int i, atomic_t *v);
The given increment is added to the given atomic counter value. A
boolean is return which indicates whether the resulting counter value
is negative. It requires explicit memory barrier semantics around the
operation.
If a caller requires memory barrier semantics around an atomic_t
operation which does not return a value, a set of interfaces are
defined which accomplish this:
void smb_mb__before_atomic_dec(void);
void smb_mb__after_atomic_dec(void);
void smb_mb__before_atomic_inc(void);
void smb_mb__after_atomic_dec(void);
For example, smb_mb__before_atomic_dec() can be used like so:
obj->dead = 1;
smb_mb__before_atomic_dec();
atomic_dec(&obj->ref_count);
It makes sure that all memory operations preceeding the atomic_dec()
call are strongly ordered with respect to the atomic counter
operation. In the above example, it guarentees that the assignment of
"1" to obj->dead will be globally visible to other cpus before the
atomic counter decrement.
Without the explicitl smb_mb__before_atomic_dec() call, the
implementation could legally allow the atomic counter update visible
to other cpus before the "obj->dead = 1;" assignment.
The other three interfaces listed are used to provide explicit
ordering with respect to memory operations after an atomic_dec() call
(smb_mb__after_atomic_dec()) and around atomic_inc() calls
(smb_mb__{before,after}_atomic_inc()).
A missing memory barrier in the cases where they are required by the
atomic_t implementation above can have disasterous results. Here is
an example, which follows a pattern occuring frequently in the Linux
kernel. It is the use of atomic counters to implement reference
counting, and it works such that once the counter falls to zero it can
be guarenteed that no other entity can be accessing the object:
static void obj_list_add(struct obj *obj)
{
obj->active = 1;
list_add(&obj->list);
}
static void obj_list_del(struct obj *obj)
{
list_del(&obj->list);
obj->active = 0;
}
static void obj_destroy(struct obj *obj)
{
BUG_ON(obj->active);
kfree(obj);
}
struct obj *obj_list_peek(struct list_head *head)
{
if (!list_empty(head)) {
struct obj *obj;
obj = list_entry(head->next, struct obj, list);
atomic_inc(&obj->refcnt);
return obj;
}
return NULL;
}
void obj_poke(void)
{
struct obj *obj;
spin_lock(&global_list_lock);
obj = obj_list_peek(&global_list);
spin_unlock(&global_list_lock);
if (obj) {
obj->ops->poke(obj);
if (atomic_dec_and_test(&obj->refcnt))
obj_destroy(obj);
}
}
void obj_timeout(struct obj *obj)
{
spin_lock(&global_list_lock);
obj_list_del(obj);
spin_unlock(&global_list_lock);
if (atomic_dec_and_test(&obj->refcnt))
obj_destroy(obj);
}
(This is a simplification of the ARP queue management in the
generic neighbour discover code of the networking. Olaf Kirch
found a bug wrt. memory barriers in kfree_skb() that exposed
the atomic_t memory barrier requirements quite clearly.)
Given the above scheme, it must be the case that the obj->active
update done by the obj list deletion be visible to other processors
before the atomic counter decrement is performed.
Otherwise, the counter could fall to zero, yet obj->active would still
be set, thus triggering the assertion in obj_destroy(). The error
sequence looks like this:
cpu 0 cpu 1
obj_poke() obj_timeout()
obj = obj_list_peek();
... gains ref to obj, refcnt=2
obj_list_del(obj);
obj->active = 0 ...
... visibility delayed ...
atomic_dec_and_test()
... refcnt drops to 1 ...
atomic_dec_and_test()
... refcount drops to 0 ...
obj_destroy()
BUG() triggers since obj->active
still seen as one
obj->active update visibility occurs
With the memory barrier semantics required of the atomic_t operations
which return values, the above sequence of memory visibility can never
happen. Specifically, in the above case the atomic_dec_and_test()
counter decrement would not become globally visible until the
obj->active update does.
We will now cover the atomic bitmask operations. You will find that
their SMP and memory barrier semantics are similar in shape and scope
to the atomic_t ops above.
Native atomic bit operations are defined to operate on objects aligned
to the size of an "unsigned long" C data type, and are least of that
size. The endianness of the bits within each "unsigned long" are the
native endianness of the cpu.
void set_bit(unsigned long nr, volatils unsigned long *addr);
void clear_bit(unsigned long nr, volatils unsigned long *addr);
void change_bit(unsigned long nr, volatils unsigned long *addr);
These routines set, clear, and change, respectively, the bit number
indicated by "nr" on the bit mask pointed to by "ADDR".
They must execute atomically, yet there are no implicit memory barrier
semantics required of these interfaces.
int test_and_set_bit(unsigned long nr, volatils unsigned long *addr);
int test_and_clear_bit(unsigned long nr, volatils unsigned long *addr);
int test_and_change_bit(unsigned long nr, volatils unsigned long *addr);
Like the above, except that these routines return a boolean which
indicates whether the changed bit was set _BEFORE_ the atomic bit
operation.
WARNING! It is incredibly important that the value be a boolean,
ie. "0" or "1". Do not try to be fancy and save a few instructions by
declaring the above to return "long" and just returning something like
"old_val & mask" because that will not work.
For one thing, this return value gets truncated to int in many code
paths using these interfaces, so on 64-bit if the bit is set in the
upper 32-bits then testers will never see that.
One great example of where this problem crops up are the thread_info
flag operations. Routines such as test_and_set_ti_thread_flag() chop
the return value into an int. There are other places where things
like this occur as well.
These routines, like the atomic_t counter operations returning values,
require explicit memory barrier semantics around their execution. All
memory operations before the atomic bit operation call must be made
visible globally before the atomic bit operation is made visible.
Likewise, the atomic bit operation must be visible globally before any
subsequent memory operation is made visible. For example:
obj->dead = 1;
if (test_and_set_bit(0, &obj->flags))
/* ... */;
obj->killed = 1;
The implementation of test_and_set_bit() must guarentee that
"obj->dead = 1;" is visible to cpus before the atomic memory operation
done by test_and_set_bit() becomes visible. Likewise, the atomic
memory operation done by test_and_set_bit() must become visible before
"obj->killed = 1;" is visible.
Finally there is the basic operation:
int test_bit(unsigned long nr, __const__ volatile unsigned long *addr);
Which returns a boolean indicating if bit "nr" is set in the bitmask
pointed to by "addr".
If explicit memory barriers are required around clear_bit() (which
does not return a value, and thus does not need to provide memory
barrier semantics), two interfaces are provided:
void smp_mb__before_clear_bit(void);
void smp_mb__after_clear_bit(void);
They are used as follows, and are akin to their atomic_t operation
brothers:
/* All memory operations before this call will
* be globally visible before the clear_bit().
*/
smp_mb__before_clear_bit();
clear_bit( ... );
/* The clear_bit() will be visible before all
* subsequent memory operations.
*/
smp_mb__after_clear_bit();
Finally, there are non-atomic versions of the bitmask operations
provided. They are used in contexts where some other higher-level SMP
locking scheme is being used to protect the bitmask, and thus less
expensive non-atomic operations may be used in the implementation.
They have names similar to the above bitmask operation interfaces,
except that two underscores are prefixed to the interface name.
void __set_bit(unsigned long nr, volatile unsigned long *addr);
void __clear_bit(unsigned long nr, volatile unsigned long *addr);
void __change_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
These non-atomic variants also do not require any special memory
barrier semantics.
......@@ -333,9 +333,8 @@ static int load_aout32_binary(struct linux_binprm * bprm, struct pt_regs * regs)
current->mm->start_stack =
(unsigned long) create_aout32_tables((char __user *)bprm->p, bprm);
if (!(orig_thr_flags & _TIF_32BIT)) {
unsigned long pgd_cache;
unsigned long pgd_cache = get_pgd_cache(current->mm->pgd);
pgd_cache = ((unsigned long)pgd_val(current->mm->pgd[0]))<<11;
__asm__ __volatile__("stxa\t%0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
......
......@@ -440,7 +440,7 @@ void flush_thread(void)
pmd_t *page = pmd_alloc_one(mm, 0);
pud_set(pud0, page);
}
pgd_cache = ((unsigned long) pud_val(*pud0)) << 11UL;
pgd_cache = get_pgd_cache(pgd0);
}
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
......
......@@ -894,9 +894,8 @@ static unsigned long penguins_are_doing_time;
void smp_capture(void)
{
int result = __atomic_add(1, &smp_capture_depth);
int result = atomic_add_ret(1, &smp_capture_depth);
membar("#StoreStore | #LoadStore");
if (result == 1) {
int ncpus = num_online_cpus();
......
......@@ -172,18 +172,25 @@ EXPORT_SYMBOL(down_interruptible);
EXPORT_SYMBOL(up);
/* Atomic counter implementation. */
EXPORT_SYMBOL(__atomic_add);
EXPORT_SYMBOL(__atomic_sub);
EXPORT_SYMBOL(__atomic64_add);
EXPORT_SYMBOL(__atomic64_sub);
EXPORT_SYMBOL(atomic_add);
EXPORT_SYMBOL(atomic_add_ret);
EXPORT_SYMBOL(atomic_sub);
EXPORT_SYMBOL(atomic_sub_ret);
EXPORT_SYMBOL(atomic64_add);
EXPORT_SYMBOL(atomic64_add_ret);
EXPORT_SYMBOL(atomic64_sub);
EXPORT_SYMBOL(atomic64_sub_ret);
#ifdef CONFIG_SMP
EXPORT_SYMBOL(_atomic_dec_and_lock);
#endif
/* Atomic bit operations. */
EXPORT_SYMBOL(___test_and_set_bit);
EXPORT_SYMBOL(___test_and_clear_bit);
EXPORT_SYMBOL(___test_and_change_bit);
EXPORT_SYMBOL(test_and_set_bit);
EXPORT_SYMBOL(test_and_clear_bit);
EXPORT_SYMBOL(test_and_change_bit);
EXPORT_SYMBOL(set_bit);
EXPORT_SYMBOL(clear_bit);
EXPORT_SYMBOL(change_bit);
/* Bit searching */
EXPORT_SYMBOL(find_next_bit);
......
......@@ -4,73 +4,136 @@
* Copyright (C) 1999 David S. Miller (davem@redhat.com)
*/
#include <linux/config.h>
#include <asm/asi.h>
/* On SMP we need to use memory barriers to ensure
* correct memory operation ordering, nop these out
* for uniprocessor.
*/
#ifdef CONFIG_SMP
#define ATOMIC_PRE_BARRIER membar #StoreLoad | #LoadLoad
#define ATOMIC_POST_BARRIER membar #StoreLoad | #StoreStore
#else
#define ATOMIC_PRE_BARRIER nop
#define ATOMIC_POST_BARRIER nop
#endif
.text
/* We use these stubs for the uncommon case
* of contention on the atomic value. This is
* so that we can keep the main fast path 8
* instructions long and thus fit into a single
* L2 cache line.
/* Two versions of the atomic routines, one that
* does not return a value and does not perform
* memory barriers, and a second which returns
* a value and does the barriers.
*/
__atomic_add_membar:
ba,pt %xcc, __atomic_add
membar #StoreLoad | #StoreStore
.globl atomic_add
.type atomic_add,#function
atomic_add: /* %o0 = increment, %o1 = atomic_ptr */
1: lduw [%o1], %g5
add %g5, %o0, %g7
cas [%o1], %g5, %g7
cmp %g5, %g7
bne,pn %icc, 1b
nop
retl
nop
.size atomic_add, .-atomic_add
__atomic_sub_membar:
ba,pt %xcc, __atomic_sub
membar #StoreLoad | #StoreStore
.globl atomic_sub
.type atomic_sub,#function
atomic_sub: /* %o0 = decrement, %o1 = atomic_ptr */
1: lduw [%o1], %g5
sub %g5, %o0, %g7
cas [%o1], %g5, %g7
cmp %g5, %g7
bne,pn %icc, 1b
nop
retl
nop
.size atomic_sub, .-atomic_sub
.align 64
.globl __atomic_add
.type __atomic_add,#function
__atomic_add: /* %o0 = increment, %o1 = atomic_ptr */
lduw [%o1], %g5
.globl atomic_add_ret
.type atomic_add_ret,#function
atomic_add_ret: /* %o0 = increment, %o1 = atomic_ptr */
ATOMIC_PRE_BARRIER
1: lduw [%o1], %g5
add %g5, %o0, %g7
cas [%o1], %g5, %g7
cmp %g5, %g7
bne,pn %icc, __atomic_add_membar
bne,pn %icc, 1b
add %g7, %o0, %g7
ATOMIC_POST_BARRIER
retl
sra %g7, 0, %o0
.size __atomic_add, .-__atomic_add
.size atomic_add_ret, .-atomic_add_ret
.globl __atomic_sub
.type __atomic_sub,#function
__atomic_sub: /* %o0 = increment, %o1 = atomic_ptr */
lduw [%o1], %g5
.globl atomic_sub_ret
.type atomic_sub_ret,#function
atomic_sub_ret: /* %o0 = decrement, %o1 = atomic_ptr */
ATOMIC_PRE_BARRIER
1: lduw [%o1], %g5
sub %g5, %o0, %g7
cas [%o1], %g5, %g7
cmp %g5, %g7
bne,pn %icc, __atomic_sub_membar
bne,pn %icc, 1b
sub %g7, %o0, %g7
ATOMIC_POST_BARRIER
retl
sra %g7, 0, %o0
.size __atomic_sub, .-__atomic_sub
.size atomic_sub_ret, .-atomic_sub_ret
.globl atomic64_add
.type atomic64_add,#function
atomic64_add: /* %o0 = increment, %o1 = atomic_ptr */
1: ldx [%o1], %g5
add %g5, %o0, %g7
casx [%o1], %g5, %g7
cmp %g5, %g7
bne,pn %xcc, 1b
nop
retl
nop
.size atomic64_add, .-atomic64_add
.globl __atomic64_add
.type __atomic64_add,#function
__atomic64_add: /* %o0 = increment, %o1 = atomic_ptr */
ldx [%o1], %g5
.globl atomic64_sub
.type atomic64_sub,#function
atomic64_sub: /* %o0 = decrement, %o1 = atomic_ptr */
1: ldx [%o1], %g5
sub %g5, %o0, %g7
casx [%o1], %g5, %g7
cmp %g5, %g7
bne,pn %xcc, 1b
nop
retl
nop
.size atomic64_sub, .-atomic64_sub
.globl atomic64_add_ret
.type atomic64_add_ret,#function
atomic64_add_ret: /* %o0 = increment, %o1 = atomic_ptr */
ATOMIC_PRE_BARRIER
1: ldx [%o1], %g5
add %g5, %o0, %g7
casx [%o1], %g5, %g7
cmp %g5, %g7
bne,pn %xcc, __atomic64_add
membar #StoreLoad | #StoreStore
bne,pn %xcc, 1b
add %g7, %o0, %g7
ATOMIC_POST_BARRIER
retl
add %g7, %o0, %o0
.size __atomic64_add, .-__atomic64_add
mov %g7, %o0
.size atomic64_add_ret, .-atomic64_add_ret
.globl __atomic64_sub
.type __atomic64_sub,#function
__atomic64_sub: /* %o0 = increment, %o1 = atomic_ptr */
ldx [%o1], %g5
.globl atomic64_sub_ret
.type atomic64_sub_ret,#function
atomic64_sub_ret: /* %o0 = decrement, %o1 = atomic_ptr */
ATOMIC_PRE_BARRIER
1: ldx [%o1], %g5
sub %g5, %o0, %g7
casx [%o1], %g5, %g7
cmp %g5, %g7
bne,pn %xcc, __atomic64_sub
membar #StoreLoad | #StoreStore
bne,pn %xcc, 1b
sub %g7, %o0, %g7
ATOMIC_POST_BARRIER
retl
sub %g7, %o0, %o0
.size __atomic64_sub, .-__atomic64_sub
mov %g7, %o0
.size atomic64_sub_ret, .-atomic64_sub_ret
......@@ -4,69 +4,142 @@
* Copyright (C) 2000 David S. Miller (davem@redhat.com)
*/
#include <linux/config.h>
#include <asm/asi.h>
/* On SMP we need to use memory barriers to ensure
* correct memory operation ordering, nop these out
* for uniprocessor.
*/
#ifdef CONFIG_SMP
#define BITOP_PRE_BARRIER membar #StoreLoad | #LoadLoad
#define BITOP_POST_BARRIER membar #StoreLoad | #StoreStore
#else
#define BITOP_PRE_BARRIER nop
#define BITOP_POST_BARRIER nop
#endif
.text
.align 64
.globl ___test_and_set_bit
.type ___test_and_set_bit,#function
___test_and_set_bit: /* %o0=nr, %o1=addr */
.globl test_and_set_bit
.type test_and_set_bit,#function
test_and_set_bit: /* %o0=nr, %o1=addr */
BITOP_PRE_BARRIER
srlx %o0, 6, %g1
mov 1, %g5
sllx %g1, 3, %g3
and %o0, 63, %g2
sllx %g5, %g2, %g5
add %o1, %g3, %o1
1: ldx [%o1], %g7
or %g7, %g5, %g1
casx [%o1], %g7, %g1
cmp %g7, %g1
bne,pn %xcc, 1b
and %g7, %g5, %g2
BITOP_POST_BARRIER
clr %o0
retl
movrne %g2, 1, %o0
.size test_and_set_bit, .-test_and_set_bit
.globl test_and_clear_bit
.type test_and_clear_bit,#function
test_and_clear_bit: /* %o0=nr, %o1=addr */
BITOP_PRE_BARRIER
srlx %o0, 6, %g1
mov 1, %g5
sllx %g1, 3, %g3
and %o0, 63, %g2
sllx %g5, %g2, %g5
add %o1, %g3, %o1
1: ldx [%o1], %g7
andn %g7, %g5, %g1
casx [%o1], %g7, %g1
cmp %g7, %g1
bne,pn %xcc, 1b
and %g7, %g5, %g2
BITOP_POST_BARRIER
clr %o0
retl
movrne %g2, 1, %o0
.size test_and_clear_bit, .-test_and_clear_bit
.globl test_and_change_bit
.type test_and_change_bit,#function
test_and_change_bit: /* %o0=nr, %o1=addr */
BITOP_PRE_BARRIER
srlx %o0, 6, %g1
mov 1, %g5
sllx %g1, 3, %g3
and %o0, 63, %g2
sllx %g5, %g2, %g5
add %o1, %g3, %o1
1: ldx [%o1], %g7
xor %g7, %g5, %g1
casx [%o1], %g7, %g1
cmp %g7, %g1
bne,pn %xcc, 1b
and %g7, %g5, %g2
BITOP_POST_BARRIER
clr %o0
retl
movrne %g2, 1, %o0
.size test_and_change_bit, .-test_and_change_bit
.globl set_bit
.type set_bit,#function
set_bit: /* %o0=nr, %o1=addr */
srlx %o0, 6, %g1
mov 1, %g5
sllx %g1, 3, %g3
and %o0, 63, %g2
sllx %g5, %g2, %g5
add %o1, %g3, %o1
ldx [%o1], %g7
1: andcc %g7, %g5, %o0
bne,pn %xcc, 2f
xor %g7, %g5, %g1
1: ldx [%o1], %g7
or %g7, %g5, %g1
casx [%o1], %g7, %g1
cmp %g7, %g1
bne,a,pn %xcc, 1b
ldx [%o1], %g7
2: retl
membar #StoreLoad | #StoreStore
.size ___test_and_set_bit, .-___test_and_set_bit
bne,pn %xcc, 1b
nop
retl
nop
.size set_bit, .-set_bit
.globl ___test_and_clear_bit
.type ___test_and_clear_bit,#function
___test_and_clear_bit: /* %o0=nr, %o1=addr */
.globl clear_bit
.type clear_bit,#function
clear_bit: /* %o0=nr, %o1=addr */
srlx %o0, 6, %g1
mov 1, %g5
sllx %g1, 3, %g3
and %o0, 63, %g2
sllx %g5, %g2, %g5
add %o1, %g3, %o1
ldx [%o1], %g7
1: andcc %g7, %g5, %o0
be,pn %xcc, 2f
xor %g7, %g5, %g1
1: ldx [%o1], %g7
andn %g7, %g5, %g1
casx [%o1], %g7, %g1
cmp %g7, %g1
bne,a,pn %xcc, 1b
ldx [%o1], %g7
2: retl
membar #StoreLoad | #StoreStore
.size ___test_and_clear_bit, .-___test_and_clear_bit
bne,pn %xcc, 1b
nop
retl
nop
.size clear_bit, .-clear_bit
.globl ___test_and_change_bit
.type ___test_and_change_bit,#function
___test_and_change_bit: /* %o0=nr, %o1=addr */
.globl change_bit
.type change_bit,#function
change_bit: /* %o0=nr, %o1=addr */
srlx %o0, 6, %g1
mov 1, %g5
sllx %g1, 3, %g3
and %o0, 63, %g2
sllx %g5, %g2, %g5
add %o1, %g3, %o1
ldx [%o1], %g7
1: and %g7, %g5, %o0
1: ldx [%o1], %g7
xor %g7, %g5, %g1
casx [%o1], %g7, %g1
cmp %g7, %g1
bne,a,pn %xcc, 1b
ldx [%o1], %g7
2: retl
membar #StoreLoad | #StoreStore
nop
.size ___test_and_change_bit, .-___test_and_change_bit
bne,pn %xcc, 1b
nop
retl
nop
.size change_bit, .-change_bit
......@@ -469,9 +469,9 @@ static void cg14_init_one(struct sbus_dev *sdev, int node, int parent_node)
int is_8mb, linebytes, i;
if (!sdev) {
prom_getproperty(node, "address",
(char *) &bases[0], sizeof(bases));
if (!bases[0]) {
if (prom_getproperty(node, "address",
(char *) &bases[0], sizeof(bases)) <= 0
|| !bases[0]) {
printk(KERN_ERR "cg14: Device is not mapped.\n");
return;
}
......
......@@ -8,6 +8,7 @@
#ifndef __ARCH_SPARC64_ATOMIC__
#define __ARCH_SPARC64_ATOMIC__
#include <linux/config.h>
#include <linux/types.h>
typedef struct { volatile int counter; } atomic_t;
......@@ -22,29 +23,27 @@ typedef struct { volatile __s64 counter; } atomic64_t;
#define atomic_set(v, i) (((v)->counter) = i)
#define atomic64_set(v, i) (((v)->counter) = i)
extern int __atomic_add(int, atomic_t *);
extern int __atomic64_add(__s64, atomic64_t *);
extern void atomic_add(int, atomic_t *);
extern void atomic64_add(int, atomic64_t *);
extern void atomic_sub(int, atomic_t *);
extern void atomic64_sub(int, atomic64_t *);
extern int __atomic_sub(int, atomic_t *);
extern int __atomic64_sub(__s64, atomic64_t *);
extern int atomic_add_ret(int, atomic_t *);
extern int atomic64_add_ret(int, atomic64_t *);
extern int atomic_sub_ret(int, atomic_t *);
extern int atomic64_sub_ret(int, atomic64_t *);
#define atomic_add(i, v) ((void)__atomic_add(i, v))
#define atomic64_add(i, v) ((void)__atomic64_add(i, v))
#define atomic_dec_return(v) atomic_sub_ret(1, v)
#define atomic64_dec_return(v) atomic64_sub_ret(1, v)
#define atomic_sub(i, v) ((void)__atomic_sub(i, v))
#define atomic64_sub(i, v) ((void)__atomic64_sub(i, v))
#define atomic_inc_return(v) atomic_add_ret(1, v)
#define atomic64_inc_return(v) atomic64_add_ret(1, v)
#define atomic_dec_return(v) __atomic_sub(1, v)
#define atomic64_dec_return(v) __atomic64_sub(1, v)
#define atomic_sub_return(i, v) atomic_sub_ret(i, v)
#define atomic64_sub_return(i, v) atomic64_sub_ret(i, v)
#define atomic_inc_return(v) __atomic_add(1, v)
#define atomic64_inc_return(v) __atomic64_add(1, v)
#define atomic_sub_return(i, v) __atomic_sub(i, v)
#define atomic64_sub_return(i, v) __atomic64_sub(i, v)
#define atomic_add_return(i, v) __atomic_add(i, v)
#define atomic64_add_return(i, v) __atomic64_add(i, v)
#define atomic_add_return(i, v) atomic_add_ret(i, v)
#define atomic64_add_return(i, v) atomic64_add_ret(i, v)
/*
* atomic_inc_and_test - increment and test
......@@ -56,25 +55,32 @@ extern int __atomic64_sub(__s64, atomic64_t *);
*/
#define atomic_inc_and_test(v) (atomic_inc_return(v) == 0)
#define atomic_sub_and_test(i, v) (__atomic_sub(i, v) == 0)
#define atomic64_sub_and_test(i, v) (__atomic64_sub(i, v) == 0)
#define atomic_sub_and_test(i, v) (atomic_sub_ret(i, v) == 0)
#define atomic64_sub_and_test(i, v) (atomic64_sub_ret(i, v) == 0)
#define atomic_dec_and_test(v) (__atomic_sub(1, v) == 0)
#define atomic64_dec_and_test(v) (__atomic64_sub(1, v) == 0)
#define atomic_dec_and_test(v) (atomic_sub_ret(1, v) == 0)
#define atomic64_dec_and_test(v) (atomic64_sub_ret(1, v) == 0)
#define atomic_inc(v) ((void)__atomic_add(1, v))
#define atomic64_inc(v) ((void)__atomic64_add(1, v))
#define atomic_inc(v) atomic_add(1, v)
#define atomic64_inc(v) atomic64_add(1, v)
#define atomic_dec(v) ((void)__atomic_sub(1, v))
#define atomic64_dec(v) ((void)__atomic64_sub(1, v))
#define atomic_dec(v) atomic_sub(1, v)
#define atomic64_dec(v) atomic64_sub(1, v)
#define atomic_add_negative(i, v) (__atomic_add(i, v) < 0)
#define atomic64_add_negative(i, v) (__atomic64_add(i, v) < 0)
#define atomic_add_negative(i, v) (atomic_add_ret(i, v) < 0)
#define atomic64_add_negative(i, v) (atomic64_add_ret(i, v) < 0)
/* Atomic operations are already serializing */
#ifdef CONFIG_SMP
#define smp_mb__before_atomic_dec() membar("#StoreLoad | #LoadLoad")
#define smp_mb__after_atomic_dec() membar("#StoreLoad | #StoreStore")
#define smp_mb__before_atomic_inc() membar("#StoreLoad | #LoadLoad")
#define smp_mb__after_atomic_inc() membar("#StoreLoad | #StoreStore")
#else
#define smp_mb__before_atomic_dec() barrier()
#define smp_mb__after_atomic_dec() barrier()
#define smp_mb__before_atomic_inc() barrier()
#define smp_mb__after_atomic_inc() barrier()
#endif
#endif /* !(__ARCH_SPARC64_ATOMIC__) */
......@@ -7,19 +7,16 @@
#ifndef _SPARC64_BITOPS_H
#define _SPARC64_BITOPS_H
#include <linux/config.h>
#include <linux/compiler.h>
#include <asm/byteorder.h>
extern long ___test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
extern long ___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
extern long ___test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
#define test_and_set_bit(nr,addr) ({___test_and_set_bit(nr,addr)!=0;})
#define test_and_clear_bit(nr,addr) ({___test_and_clear_bit(nr,addr)!=0;})
#define test_and_change_bit(nr,addr) ({___test_and_change_bit(nr,addr)!=0;})
#define set_bit(nr,addr) ((void)___test_and_set_bit(nr,addr))
#define clear_bit(nr,addr) ((void)___test_and_clear_bit(nr,addr))
#define change_bit(nr,addr) ((void)___test_and_change_bit(nr,addr))
extern int test_and_set_bit(unsigned long nr, volatile unsigned long *addr);
extern int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr);
extern int test_and_change_bit(unsigned long nr, volatile unsigned long *addr);
extern void set_bit(unsigned long nr, volatile unsigned long *addr);
extern void clear_bit(unsigned long nr, volatile unsigned long *addr);
extern void change_bit(unsigned long nr, volatile unsigned long *addr);
/* "non-atomic" versions... */
......@@ -74,8 +71,13 @@ static __inline__ int __test_and_change_bit(int nr, volatile unsigned long *addr
return ((old & mask) != 0);
}
#define smp_mb__before_clear_bit() do { } while(0)
#define smp_mb__after_clear_bit() do { } while(0)
#ifdef CONFIG_SMP
#define smp_mb__before_clear_bit() membar("#StoreLoad | #LoadLoad")
#define smp_mb__after_clear_bit() membar("#StoreLoad | #StoreStore")
#else
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
#endif
static __inline__ int test_bit(int nr, __const__ volatile unsigned long *addr)
{
......@@ -230,9 +232,9 @@ extern unsigned long find_next_zero_bit(const unsigned long *,
find_next_zero_bit((addr), (size), 0)
#define test_and_set_le_bit(nr,addr) \
({ ___test_and_set_bit((nr) ^ 0x38, (addr)) != 0; })
test_and_set_bit((nr) ^ 0x38, (addr))
#define test_and_clear_le_bit(nr,addr) \
({ ___test_and_clear_bit((nr) ^ 0x38, (addr)) != 0; })
test_and_clear_bit((nr) ^ 0x38, (addr))
static __inline__ int test_le_bit(int nr, __const__ unsigned long * addr)
{
......@@ -251,12 +253,21 @@ extern unsigned long find_next_zero_le_bit(unsigned long *, unsigned long, unsig
#ifdef __KERNEL__
#define __set_le_bit(nr, addr) \
__set_bit((nr) ^ 0x38, (addr))
#define __clear_le_bit(nr, addr) \
__clear_bit((nr) ^ 0x38, (addr))
#define __test_and_clear_le_bit(nr, addr) \
__test_and_clear_bit((nr) ^ 0x38, (addr))
#define __test_and_set_le_bit(nr, addr) \
__test_and_set_bit((nr) ^ 0x38, (addr))
#define ext2_set_bit(nr,addr) \
test_and_set_le_bit((nr),(unsigned long *)(addr))
__test_and_set_le_bit((nr),(unsigned long *)(addr))
#define ext2_set_bit_atomic(lock,nr,addr) \
test_and_set_le_bit((nr),(unsigned long *)(addr))
#define ext2_clear_bit(nr,addr) \
test_and_clear_le_bit((nr),(unsigned long *)(addr))
__test_and_clear_le_bit((nr),(unsigned long *)(addr))
#define ext2_clear_bit_atomic(lock,nr,addr) \
test_and_clear_le_bit((nr),(unsigned long *)(addr))
#define ext2_test_bit(nr,addr) \
......
......@@ -83,8 +83,7 @@ do { \
paddr = __pa((__mm)->pgd); \
pgd_cache = 0UL; \
if ((__tsk)->thread_info->flags & _TIF_32BIT) \
pgd_cache = \
((unsigned long)pgd_val((__mm)->pgd[0])) << 11UL; \
pgd_cache = get_pgd_cache((__mm)->pgd); \
__asm__ __volatile__("wrpr %%g0, 0x494, %%pstate\n\t" \
"mov %3, %%g4\n\t" \
"mov %0, %%g7\n\t" \
......
......@@ -312,6 +312,11 @@ static inline pte_t pte_modify(pte_t orig_pte, pgprot_t new_prot)
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* extract the pgd cache used for optimizing the tlb miss
* slow path when executing 32-bit compat processes
*/
#define get_pgd_cache(pgd) ((unsigned long) pgd_val(*pgd) << 11)
/* Find an entry in the second-level page table.. */
#define pmd_offset(pudp, address) \
((pmd_t *) pud_page(*(pudp)) + \
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment