Commit 1dc32918 authored by Joe Perches's avatar Joe Perches Committed by Jeff Garzik

e1000: Use hw, er32, and ew32

Use struct e1000_hw *hw = adapter->hw; where necessary
Change macros E1000_READ_REG and E1000_WRITE_REG to er32 and ew32
Signed-off-by: default avatarAuke Kok <auke-jan.h.kok@intel.com>
Signed-off-by: default avatarJoe Perches <joe@perches.com>
Signed-off-by: default avatarJeff Garzik <jgarzik@redhat.com>
parent 64798845
...@@ -162,7 +162,7 @@ static int e1000_get_settings(struct net_device *netdev, ...@@ -162,7 +162,7 @@ static int e1000_get_settings(struct net_device *netdev,
ecmd->transceiver = XCVR_EXTERNAL; ecmd->transceiver = XCVR_EXTERNAL;
} }
if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) { if (er32(STATUS) & E1000_STATUS_LU) {
e1000_get_speed_and_duplex(hw, &adapter->link_speed, e1000_get_speed_and_duplex(hw, &adapter->link_speed,
&adapter->link_duplex); &adapter->link_duplex);
...@@ -313,8 +313,9 @@ static u32 e1000_get_tx_csum(struct net_device *netdev) ...@@ -313,8 +313,9 @@ static u32 e1000_get_tx_csum(struct net_device *netdev)
static int e1000_set_tx_csum(struct net_device *netdev, u32 data) static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if (adapter->hw.mac_type < e1000_82543) { if (hw->mac_type < e1000_82543) {
if (!data) if (!data)
return -EINVAL; return -EINVAL;
return 0; return 0;
...@@ -331,8 +332,10 @@ static int e1000_set_tx_csum(struct net_device *netdev, u32 data) ...@@ -331,8 +332,10 @@ static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
static int e1000_set_tso(struct net_device *netdev, u32 data) static int e1000_set_tso(struct net_device *netdev, u32 data)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
if ((adapter->hw.mac_type < e1000_82544) || struct e1000_hw *hw = &adapter->hw;
(adapter->hw.mac_type == e1000_82547))
if ((hw->mac_type < e1000_82544) ||
(hw->mac_type == e1000_82547))
return data ? -EINVAL : 0; return data ? -EINVAL : 0;
if (data) if (data)
...@@ -380,22 +383,22 @@ static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, ...@@ -380,22 +383,22 @@ static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
regs_buff[0] = E1000_READ_REG(hw, CTRL); regs_buff[0] = er32(CTRL);
regs_buff[1] = E1000_READ_REG(hw, STATUS); regs_buff[1] = er32(STATUS);
regs_buff[2] = E1000_READ_REG(hw, RCTL); regs_buff[2] = er32(RCTL);
regs_buff[3] = E1000_READ_REG(hw, RDLEN); regs_buff[3] = er32(RDLEN);
regs_buff[4] = E1000_READ_REG(hw, RDH); regs_buff[4] = er32(RDH);
regs_buff[5] = E1000_READ_REG(hw, RDT); regs_buff[5] = er32(RDT);
regs_buff[6] = E1000_READ_REG(hw, RDTR); regs_buff[6] = er32(RDTR);
regs_buff[7] = E1000_READ_REG(hw, TCTL); regs_buff[7] = er32(TCTL);
regs_buff[8] = E1000_READ_REG(hw, TDLEN); regs_buff[8] = er32(TDLEN);
regs_buff[9] = E1000_READ_REG(hw, TDH); regs_buff[9] = er32(TDH);
regs_buff[10] = E1000_READ_REG(hw, TDT); regs_buff[10] = er32(TDT);
regs_buff[11] = E1000_READ_REG(hw, TIDV); regs_buff[11] = er32(TIDV);
regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
if (hw->phy_type == e1000_phy_igp) { if (hw->phy_type == e1000_phy_igp) {
e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
IGP01E1000_PHY_AGC_A); IGP01E1000_PHY_AGC_A);
...@@ -453,14 +456,16 @@ static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, ...@@ -453,14 +456,16 @@ static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
if (hw->mac_type >= e1000_82540 && if (hw->mac_type >= e1000_82540 &&
hw->mac_type < e1000_82571 && hw->mac_type < e1000_82571 &&
hw->media_type == e1000_media_type_copper) { hw->media_type == e1000_media_type_copper) {
regs_buff[26] = E1000_READ_REG(hw, MANC); regs_buff[26] = er32(MANC);
} }
} }
static int e1000_get_eeprom_len(struct net_device *netdev) static int e1000_get_eeprom_len(struct net_device *netdev)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->hw.eeprom.word_size * 2; struct e1000_hw *hw = &adapter->hw;
return hw->eeprom.word_size * 2;
} }
static int e1000_get_eeprom(struct net_device *netdev, static int e1000_get_eeprom(struct net_device *netdev,
...@@ -574,6 +579,7 @@ static void e1000_get_drvinfo(struct net_device *netdev, ...@@ -574,6 +579,7 @@ static void e1000_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo) struct ethtool_drvinfo *drvinfo)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
char firmware_version[32]; char firmware_version[32];
u16 eeprom_data; u16 eeprom_data;
...@@ -582,8 +588,8 @@ static void e1000_get_drvinfo(struct net_device *netdev, ...@@ -582,8 +588,8 @@ static void e1000_get_drvinfo(struct net_device *netdev,
/* EEPROM image version # is reported as firmware version # for /* EEPROM image version # is reported as firmware version # for
* 8257{1|2|3} controllers */ * 8257{1|2|3} controllers */
e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data); e1000_read_eeprom(hw, 5, 1, &eeprom_data);
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
case e1000_82573: case e1000_82573:
...@@ -608,7 +614,8 @@ static void e1000_get_ringparam(struct net_device *netdev, ...@@ -608,7 +614,8 @@ static void e1000_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring) struct ethtool_ringparam *ring)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_mac_type mac_type = adapter->hw.mac_type; struct e1000_hw *hw = &adapter->hw;
e1000_mac_type mac_type = hw->mac_type;
struct e1000_tx_ring *txdr = adapter->tx_ring; struct e1000_tx_ring *txdr = adapter->tx_ring;
struct e1000_rx_ring *rxdr = adapter->rx_ring; struct e1000_rx_ring *rxdr = adapter->rx_ring;
...@@ -628,7 +635,8 @@ static int e1000_set_ringparam(struct net_device *netdev, ...@@ -628,7 +635,8 @@ static int e1000_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring) struct ethtool_ringparam *ring)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_mac_type mac_type = adapter->hw.mac_type; struct e1000_hw *hw = &adapter->hw;
e1000_mac_type mac_type = hw->mac_type;
struct e1000_tx_ring *txdr, *tx_old; struct e1000_tx_ring *txdr, *tx_old;
struct e1000_rx_ring *rxdr, *rx_old; struct e1000_rx_ring *rxdr, *rx_old;
int i, err; int i, err;
...@@ -714,9 +722,10 @@ static int e1000_set_ringparam(struct net_device *netdev, ...@@ -714,9 +722,10 @@ static int e1000_set_ringparam(struct net_device *netdev,
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
u32 mask, u32 write) u32 mask, u32 write)
{ {
struct e1000_hw *hw = &adapter->hw;
static const u32 test[] = static const u32 test[] =
{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
u8 __iomem *address = adapter->hw.hw_addr + reg; u8 __iomem *address = hw->hw_addr + reg;
u32 read; u32 read;
int i; int i;
...@@ -737,7 +746,8 @@ static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, ...@@ -737,7 +746,8 @@ static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
u32 mask, u32 write) u32 mask, u32 write)
{ {
u8 __iomem *address = adapter->hw.hw_addr + reg; struct e1000_hw *hw = &adapter->hw;
u8 __iomem *address = hw->hw_addr + reg;
u32 read; u32 read;
writel(write & mask, address); writel(write & mask, address);
...@@ -755,7 +765,7 @@ static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, ...@@ -755,7 +765,7 @@ static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
#define REG_PATTERN_TEST(reg, mask, write) \ #define REG_PATTERN_TEST(reg, mask, write) \
do { \ do { \
if (reg_pattern_test(adapter, data, \ if (reg_pattern_test(adapter, data, \
(adapter->hw.mac_type >= e1000_82543) \ (hw->mac_type >= e1000_82543) \
? E1000_##reg : E1000_82542_##reg, \ ? E1000_##reg : E1000_82542_##reg, \
mask, write)) \ mask, write)) \
return 1; \ return 1; \
...@@ -764,7 +774,7 @@ static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, ...@@ -764,7 +774,7 @@ static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
#define REG_SET_AND_CHECK(reg, mask, write) \ #define REG_SET_AND_CHECK(reg, mask, write) \
do { \ do { \
if (reg_set_and_check(adapter, data, \ if (reg_set_and_check(adapter, data, \
(adapter->hw.mac_type >= e1000_82543) \ (hw->mac_type >= e1000_82543) \
? E1000_##reg : E1000_82542_##reg, \ ? E1000_##reg : E1000_82542_##reg, \
mask, write)) \ mask, write)) \
return 1; \ return 1; \
...@@ -774,11 +784,12 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) ...@@ -774,11 +784,12 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{ {
u32 value, before, after; u32 value, before, after;
u32 i, toggle; u32 i, toggle;
struct e1000_hw *hw = &adapter->hw;
/* The status register is Read Only, so a write should fail. /* The status register is Read Only, so a write should fail.
* Some bits that get toggled are ignored. * Some bits that get toggled are ignored.
*/ */
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
/* there are several bits on newer hardware that are r/w */ /* there are several bits on newer hardware that are r/w */
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
...@@ -794,10 +805,10 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) ...@@ -794,10 +805,10 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
break; break;
} }
before = E1000_READ_REG(&adapter->hw, STATUS); before = er32(STATUS);
value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle); value = (er32(STATUS) & toggle);
E1000_WRITE_REG(&adapter->hw, STATUS, toggle); ew32(STATUS, toggle);
after = E1000_READ_REG(&adapter->hw, STATUS) & toggle; after = er32(STATUS) & toggle;
if (value != after) { if (value != after) {
DPRINTK(DRV, ERR, "failed STATUS register test got: " DPRINTK(DRV, ERR, "failed STATUS register test got: "
"0x%08X expected: 0x%08X\n", after, value); "0x%08X expected: 0x%08X\n", after, value);
...@@ -805,9 +816,9 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) ...@@ -805,9 +816,9 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
return 1; return 1;
} }
/* restore previous status */ /* restore previous status */
E1000_WRITE_REG(&adapter->hw, STATUS, before); ew32(STATUS, before);
if (adapter->hw.mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
...@@ -827,20 +838,20 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) ...@@ -827,20 +838,20 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
before = (adapter->hw.mac_type == e1000_ich8lan ? before = (hw->mac_type == e1000_ich8lan ?
0x06C3B33E : 0x06DFB3FE); 0x06C3B33E : 0x06DFB3FE);
REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
if (adapter->hw.mac_type >= e1000_82543) { if (hw->mac_type >= e1000_82543) {
REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
if (adapter->hw.mac_type != e1000_ich8lan) if (hw->mac_type != e1000_ich8lan)
REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
value = (adapter->hw.mac_type == e1000_ich8lan ? value = (hw->mac_type == e1000_ich8lan ?
E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES); E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
for (i = 0; i < value; i++) { for (i = 0; i < value; i++) {
REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
...@@ -856,7 +867,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) ...@@ -856,7 +867,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
} }
value = (adapter->hw.mac_type == e1000_ich8lan ? value = (hw->mac_type == e1000_ich8lan ?
E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE); E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
for (i = 0; i < value; i++) for (i = 0; i < value; i++)
REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
...@@ -867,6 +878,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) ...@@ -867,6 +878,7 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{ {
struct e1000_hw *hw = &adapter->hw;
u16 temp; u16 temp;
u16 checksum = 0; u16 checksum = 0;
u16 i; u16 i;
...@@ -874,7 +886,7 @@ static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) ...@@ -874,7 +886,7 @@ static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
*data = 0; *data = 0;
/* Read and add up the contents of the EEPROM */ /* Read and add up the contents of the EEPROM */
for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
*data = 1; *data = 1;
break; break;
} }
...@@ -892,8 +904,9 @@ static irqreturn_t e1000_test_intr(int irq, void *data) ...@@ -892,8 +904,9 @@ static irqreturn_t e1000_test_intr(int irq, void *data)
{ {
struct net_device *netdev = (struct net_device *) data; struct net_device *netdev = (struct net_device *) data;
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); adapter->test_icr |= er32(ICR);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -904,6 +917,7 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -904,6 +917,7 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
u32 mask, i = 0; u32 mask, i = 0;
bool shared_int = true; bool shared_int = true;
u32 irq = adapter->pdev->irq; u32 irq = adapter->pdev->irq;
struct e1000_hw *hw = &adapter->hw;
*data = 0; *data = 0;
...@@ -921,13 +935,13 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -921,13 +935,13 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
(shared_int ? "shared" : "unshared")); (shared_int ? "shared" : "unshared"));
/* Disable all the interrupts */ /* Disable all the interrupts */
E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); ew32(IMC, 0xFFFFFFFF);
msleep(10); msleep(10);
/* Test each interrupt */ /* Test each interrupt */
for (; i < 10; i++) { for (; i < 10; i++) {
if (adapter->hw.mac_type == e1000_ich8lan && i == 8) if (hw->mac_type == e1000_ich8lan && i == 8)
continue; continue;
/* Interrupt to test */ /* Interrupt to test */
...@@ -941,8 +955,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -941,8 +955,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
* test failed. * test failed.
*/ */
adapter->test_icr = 0; adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMC, mask); ew32(IMC, mask);
E1000_WRITE_REG(&adapter->hw, ICS, mask); ew32(ICS, mask);
msleep(10); msleep(10);
if (adapter->test_icr & mask) { if (adapter->test_icr & mask) {
...@@ -958,8 +972,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -958,8 +972,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
* test failed. * test failed.
*/ */
adapter->test_icr = 0; adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMS, mask); ew32(IMS, mask);
E1000_WRITE_REG(&adapter->hw, ICS, mask); ew32(ICS, mask);
msleep(10); msleep(10);
if (!(adapter->test_icr & mask)) { if (!(adapter->test_icr & mask)) {
...@@ -975,8 +989,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -975,8 +989,8 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
* test failed. * test failed.
*/ */
adapter->test_icr = 0; adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF); ew32(IMC, ~mask & 0x00007FFF);
E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF); ew32(ICS, ~mask & 0x00007FFF);
msleep(10); msleep(10);
if (adapter->test_icr) { if (adapter->test_icr) {
...@@ -987,7 +1001,7 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) ...@@ -987,7 +1001,7 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
} }
/* Disable all the interrupts */ /* Disable all the interrupts */
E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); ew32(IMC, 0xFFFFFFFF);
msleep(10); msleep(10);
/* Unhook test interrupt handler */ /* Unhook test interrupt handler */
...@@ -1044,6 +1058,7 @@ static void e1000_free_desc_rings(struct e1000_adapter *adapter) ...@@ -1044,6 +1058,7 @@ static void e1000_free_desc_rings(struct e1000_adapter *adapter)
static int e1000_setup_desc_rings(struct e1000_adapter *adapter) static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_ring *txdr = &adapter->test_tx_ring; struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev; struct pci_dev *pdev = adapter->pdev;
...@@ -1072,17 +1087,14 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter) ...@@ -1072,17 +1087,14 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
memset(txdr->desc, 0, txdr->size); memset(txdr->desc, 0, txdr->size);
txdr->next_to_use = txdr->next_to_clean = 0; txdr->next_to_use = txdr->next_to_clean = 0;
E1000_WRITE_REG(&adapter->hw, TDBAL, ew32(TDBAL, ((u64) txdr->dma & 0x00000000FFFFFFFF));
((u64) txdr->dma & 0x00000000FFFFFFFF)); ew32(TDBAH, ((u64) txdr->dma >> 32));
E1000_WRITE_REG(&adapter->hw, TDBAH, ((u64) txdr->dma >> 32)); ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
E1000_WRITE_REG(&adapter->hw, TDLEN, ew32(TDH, 0);
txdr->count * sizeof(struct e1000_tx_desc)); ew32(TDT, 0);
E1000_WRITE_REG(&adapter->hw, TDH, 0); ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
E1000_WRITE_REG(&adapter->hw, TDT, 0); E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
E1000_WRITE_REG(&adapter->hw, TCTL, E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
E1000_TCTL_PSP | E1000_TCTL_EN |
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
for (i = 0; i < txdr->count; i++) { for (i = 0; i < txdr->count; i++) {
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
...@@ -1127,18 +1139,17 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter) ...@@ -1127,18 +1139,17 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
memset(rxdr->desc, 0, rxdr->size); memset(rxdr->desc, 0, rxdr->size);
rxdr->next_to_use = rxdr->next_to_clean = 0; rxdr->next_to_use = rxdr->next_to_clean = 0;
rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl = er32(RCTL);
E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); ew32(RCTL, rctl & ~E1000_RCTL_EN);
E1000_WRITE_REG(&adapter->hw, RDBAL, ew32(RDBAL, ((u64) rxdr->dma & 0xFFFFFFFF));
((u64) rxdr->dma & 0xFFFFFFFF)); ew32(RDBAH, ((u64) rxdr->dma >> 32));
E1000_WRITE_REG(&adapter->hw, RDBAH, ((u64) rxdr->dma >> 32)); ew32(RDLEN, rxdr->size);
E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); ew32(RDH, 0);
E1000_WRITE_REG(&adapter->hw, RDH, 0); ew32(RDT, 0);
E1000_WRITE_REG(&adapter->hw, RDT, 0);
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
E1000_WRITE_REG(&adapter->hw, RCTL, rctl); ew32(RCTL, rctl);
for (i = 0; i < rxdr->count; i++) { for (i = 0; i < rxdr->count; i++) {
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
...@@ -1168,68 +1179,72 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter) ...@@ -1168,68 +1179,72 @@ static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
/* Write out to PHY registers 29 and 30 to disable the Receiver. */ /* Write out to PHY registers 29 and 30 to disable the Receiver. */
e1000_write_phy_reg(&adapter->hw, 29, 0x001F); e1000_write_phy_reg(hw, 29, 0x001F);
e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); e1000_write_phy_reg(hw, 30, 0x8FFC);
e1000_write_phy_reg(&adapter->hw, 29, 0x001A); e1000_write_phy_reg(hw, 29, 0x001A);
e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); e1000_write_phy_reg(hw, 30, 0x8FF0);
} }
static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
u16 phy_reg; u16 phy_reg;
/* Because we reset the PHY above, we need to re-force TX_CLK in the /* Because we reset the PHY above, we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock. This * Extended PHY Specific Control Register to 25MHz clock. This
* value defaults back to a 2.5MHz clock when the PHY is reset. * value defaults back to a 2.5MHz clock when the PHY is reset.
*/ */
e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
phy_reg |= M88E1000_EPSCR_TX_CLK_25; phy_reg |= M88E1000_EPSCR_TX_CLK_25;
e1000_write_phy_reg(&adapter->hw, e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
/* In addition, because of the s/w reset above, we need to enable /* In addition, because of the s/w reset above, we need to enable
* CRS on TX. This must be set for both full and half duplex * CRS on TX. This must be set for both full and half duplex
* operation. * operation.
*/ */
e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
e1000_write_phy_reg(&adapter->hw, e1000_write_phy_reg(hw,
M88E1000_PHY_SPEC_CTRL, phy_reg); M88E1000_PHY_SPEC_CTRL, phy_reg);
} }
static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_reg; u32 ctrl_reg;
u16 phy_reg; u16 phy_reg;
/* Setup the Device Control Register for PHY loopback test. */ /* Setup the Device Control Register for PHY loopback test. */
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); ctrl_reg = er32(CTRL);
ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */ E1000_CTRL_FD); /* Force Duplex to FULL */
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); ew32(CTRL, ctrl_reg);
/* Read the PHY Specific Control Register (0x10) */ /* Read the PHY Specific Control Register (0x10) */
e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
/* Clear Auto-Crossover bits in PHY Specific Control Register /* Clear Auto-Crossover bits in PHY Specific Control Register
* (bits 6:5). * (bits 6:5).
*/ */
phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
/* Perform software reset on the PHY */ /* Perform software reset on the PHY */
e1000_phy_reset(&adapter->hw); e1000_phy_reset(hw);
/* Have to setup TX_CLK and TX_CRS after software reset */ /* Have to setup TX_CLK and TX_CRS after software reset */
e1000_phy_reset_clk_and_crs(adapter); e1000_phy_reset_clk_and_crs(adapter);
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
/* Wait for reset to complete. */ /* Wait for reset to complete. */
udelay(500); udelay(500);
...@@ -1241,23 +1256,23 @@ static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) ...@@ -1241,23 +1256,23 @@ static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
e1000_phy_disable_receiver(adapter); e1000_phy_disable_receiver(adapter);
/* Set the loopback bit in the PHY control register. */ /* Set the loopback bit in the PHY control register. */
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
phy_reg |= MII_CR_LOOPBACK; phy_reg |= MII_CR_LOOPBACK;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
/* Setup TX_CLK and TX_CRS one more time. */ /* Setup TX_CLK and TX_CRS one more time. */
e1000_phy_reset_clk_and_crs(adapter); e1000_phy_reset_clk_and_crs(adapter);
/* Check Phy Configuration */ /* Check Phy Configuration */
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
if (phy_reg != 0x4100) if (phy_reg != 0x4100)
return 9; return 9;
e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
if (phy_reg != 0x0070) if (phy_reg != 0x0070)
return 10; return 10;
e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); e1000_read_phy_reg(hw, 29, &phy_reg);
if (phy_reg != 0x001A) if (phy_reg != 0x001A)
return 11; return 11;
...@@ -1266,29 +1281,30 @@ static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) ...@@ -1266,29 +1281,30 @@ static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_reg = 0; u32 ctrl_reg = 0;
u32 stat_reg = 0; u32 stat_reg = 0;
adapter->hw.autoneg = false; hw->autoneg = false;
if (adapter->hw.phy_type == e1000_phy_m88) { if (hw->phy_type == e1000_phy_m88) {
/* Auto-MDI/MDIX Off */ /* Auto-MDI/MDIX Off */
e1000_write_phy_reg(&adapter->hw, e1000_write_phy_reg(hw,
M88E1000_PHY_SPEC_CTRL, 0x0808); M88E1000_PHY_SPEC_CTRL, 0x0808);
/* reset to update Auto-MDI/MDIX */ /* reset to update Auto-MDI/MDIX */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
/* autoneg off */ /* autoneg off */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
} else if (adapter->hw.phy_type == e1000_phy_gg82563) } else if (hw->phy_type == e1000_phy_gg82563)
e1000_write_phy_reg(&adapter->hw, e1000_write_phy_reg(hw,
GG82563_PHY_KMRN_MODE_CTRL, GG82563_PHY_KMRN_MODE_CTRL,
0x1CC); 0x1CC);
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); ctrl_reg = er32(CTRL);
if (adapter->hw.phy_type == e1000_phy_ife) { if (hw->phy_type == e1000_phy_ife) {
/* force 100, set loopback */ /* force 100, set loopback */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100); e1000_write_phy_reg(hw, PHY_CTRL, 0x6100);
/* Now set up the MAC to the same speed/duplex as the PHY. */ /* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
...@@ -1298,10 +1314,10 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) ...@@ -1298,10 +1314,10 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
E1000_CTRL_FD); /* Force Duplex to FULL */ E1000_CTRL_FD); /* Force Duplex to FULL */
} else { } else {
/* force 1000, set loopback */ /* force 1000, set loopback */
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
/* Now set up the MAC to the same speed/duplex as the PHY. */ /* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); ctrl_reg = er32(CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
...@@ -1309,23 +1325,23 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) ...@@ -1309,23 +1325,23 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
E1000_CTRL_FD); /* Force Duplex to FULL */ E1000_CTRL_FD); /* Force Duplex to FULL */
} }
if (adapter->hw.media_type == e1000_media_type_copper && if (hw->media_type == e1000_media_type_copper &&
adapter->hw.phy_type == e1000_phy_m88) hw->phy_type == e1000_phy_m88)
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
else { else {
/* Set the ILOS bit on the fiber Nic is half /* Set the ILOS bit on the fiber Nic is half
* duplex link is detected. */ * duplex link is detected. */
stat_reg = E1000_READ_REG(&adapter->hw, STATUS); stat_reg = er32(STATUS);
if ((stat_reg & E1000_STATUS_FD) == 0) if ((stat_reg & E1000_STATUS_FD) == 0)
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
} }
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); ew32(CTRL, ctrl_reg);
/* Disable the receiver on the PHY so when a cable is plugged in, the /* Disable the receiver on the PHY so when a cable is plugged in, the
* PHY does not begin to autoneg when a cable is reconnected to the NIC. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
*/ */
if (adapter->hw.phy_type == e1000_phy_m88) if (hw->phy_type == e1000_phy_m88)
e1000_phy_disable_receiver(adapter); e1000_phy_disable_receiver(adapter);
udelay(500); udelay(500);
...@@ -1335,12 +1351,13 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) ...@@ -1335,12 +1351,13 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
static int e1000_set_phy_loopback(struct e1000_adapter *adapter) static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
u16 phy_reg = 0; u16 phy_reg = 0;
u16 count = 0; u16 count = 0;
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82543: case e1000_82543:
if (adapter->hw.media_type == e1000_media_type_copper) { if (hw->media_type == e1000_media_type_copper) {
/* Attempt to setup Loopback mode on Non-integrated PHY. /* Attempt to setup Loopback mode on Non-integrated PHY.
* Some PHY registers get corrupted at random, so * Some PHY registers get corrupted at random, so
* attempt this 10 times. * attempt this 10 times.
...@@ -1374,9 +1391,9 @@ static int e1000_set_phy_loopback(struct e1000_adapter *adapter) ...@@ -1374,9 +1391,9 @@ static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
/* Default PHY loopback work is to read the MII /* Default PHY loopback work is to read the MII
* control register and assert bit 14 (loopback mode). * control register and assert bit 14 (loopback mode).
*/ */
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
phy_reg |= MII_CR_LOOPBACK; phy_reg |= MII_CR_LOOPBACK;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
return 0; return 0;
break; break;
} }
...@@ -1402,14 +1419,14 @@ static int e1000_setup_loopback_test(struct e1000_adapter *adapter) ...@@ -1402,14 +1419,14 @@ static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
case e1000_82572: case e1000_82572:
#define E1000_SERDES_LB_ON 0x410 #define E1000_SERDES_LB_ON 0x410
e1000_set_phy_loopback(adapter); e1000_set_phy_loopback(adapter);
E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON); ew32(SCTL, E1000_SERDES_LB_ON);
msleep(10); msleep(10);
return 0; return 0;
break; break;
default: default:
rctl = E1000_READ_REG(hw, RCTL); rctl = er32(RCTL);
rctl |= E1000_RCTL_LBM_TCVR; rctl |= E1000_RCTL_LBM_TCVR;
E1000_WRITE_REG(hw, RCTL, rctl); ew32(RCTL, rctl);
return 0; return 0;
} }
} else if (hw->media_type == e1000_media_type_copper) } else if (hw->media_type == e1000_media_type_copper)
...@@ -1424,9 +1441,9 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter) ...@@ -1424,9 +1441,9 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
u32 rctl; u32 rctl;
u16 phy_reg; u16 phy_reg;
rctl = E1000_READ_REG(hw, RCTL); rctl = er32(RCTL);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
E1000_WRITE_REG(hw, RCTL, rctl); ew32(RCTL, rctl);
switch (hw->mac_type) { switch (hw->mac_type) {
case e1000_82571: case e1000_82571:
...@@ -1434,7 +1451,7 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter) ...@@ -1434,7 +1451,7 @@ static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
if (hw->media_type == e1000_media_type_fiber || if (hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes) { hw->media_type == e1000_media_type_internal_serdes) {
#define E1000_SERDES_LB_OFF 0x400 #define E1000_SERDES_LB_OFF 0x400
E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF); ew32(SCTL, E1000_SERDES_LB_OFF);
msleep(10); msleep(10);
break; break;
} }
...@@ -1484,13 +1501,14 @@ static int e1000_check_lbtest_frame(struct sk_buff *skb, ...@@ -1484,13 +1501,14 @@ static int e1000_check_lbtest_frame(struct sk_buff *skb,
static int e1000_run_loopback_test(struct e1000_adapter *adapter) static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_ring *txdr = &adapter->test_tx_ring; struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev; struct pci_dev *pdev = adapter->pdev;
int i, j, k, l, lc, good_cnt, ret_val=0; int i, j, k, l, lc, good_cnt, ret_val=0;
unsigned long time; unsigned long time;
E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); ew32(RDT, rxdr->count - 1);
/* Calculate the loop count based on the largest descriptor ring /* Calculate the loop count based on the largest descriptor ring
* The idea is to wrap the largest ring a number of times using 64 * The idea is to wrap the largest ring a number of times using 64
...@@ -1513,7 +1531,7 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter) ...@@ -1513,7 +1531,7 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
PCI_DMA_TODEVICE); PCI_DMA_TODEVICE);
if (unlikely(++k == txdr->count)) k = 0; if (unlikely(++k == txdr->count)) k = 0;
} }
E1000_WRITE_REG(&adapter->hw, TDT, k); ew32(TDT, k);
msleep(200); msleep(200);
time = jiffies; /* set the start time for the receive */ time = jiffies; /* set the start time for the receive */
good_cnt = 0; good_cnt = 0;
...@@ -1548,9 +1566,11 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter) ...@@ -1548,9 +1566,11 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter)
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{ {
struct e1000_hw *hw = &adapter->hw;
/* PHY loopback cannot be performed if SoL/IDER /* PHY loopback cannot be performed if SoL/IDER
* sessions are active */ * sessions are active */
if (e1000_check_phy_reset_block(&adapter->hw)) { if (e1000_check_phy_reset_block(hw)) {
DPRINTK(DRV, ERR, "Cannot do PHY loopback test " DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
"when SoL/IDER is active.\n"); "when SoL/IDER is active.\n");
*data = 0; *data = 0;
...@@ -1572,27 +1592,28 @@ static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) ...@@ -1572,27 +1592,28 @@ static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{ {
struct e1000_hw *hw = &adapter->hw;
*data = 0; *data = 0;
if (adapter->hw.media_type == e1000_media_type_internal_serdes) { if (hw->media_type == e1000_media_type_internal_serdes) {
int i = 0; int i = 0;
adapter->hw.serdes_link_down = true; hw->serdes_link_down = true;
/* On some blade server designs, link establishment /* On some blade server designs, link establishment
* could take as long as 2-3 minutes */ * could take as long as 2-3 minutes */
do { do {
e1000_check_for_link(&adapter->hw); e1000_check_for_link(hw);
if (!adapter->hw.serdes_link_down) if (!hw->serdes_link_down)
return *data; return *data;
msleep(20); msleep(20);
} while (i++ < 3750); } while (i++ < 3750);
*data = 1; *data = 1;
} else { } else {
e1000_check_for_link(&adapter->hw); e1000_check_for_link(hw);
if (adapter->hw.autoneg) /* if auto_neg is set wait for it */ if (hw->autoneg) /* if auto_neg is set wait for it */
msleep(4000); msleep(4000);
if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { if (!(er32(STATUS) & E1000_STATUS_LU)) {
*data = 1; *data = 1;
} }
} }
...@@ -1615,6 +1636,7 @@ static void e1000_diag_test(struct net_device *netdev, ...@@ -1615,6 +1636,7 @@ static void e1000_diag_test(struct net_device *netdev,
struct ethtool_test *eth_test, u64 *data) struct ethtool_test *eth_test, u64 *data)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
bool if_running = netif_running(netdev); bool if_running = netif_running(netdev);
set_bit(__E1000_TESTING, &adapter->flags); set_bit(__E1000_TESTING, &adapter->flags);
...@@ -1622,9 +1644,9 @@ static void e1000_diag_test(struct net_device *netdev, ...@@ -1622,9 +1644,9 @@ static void e1000_diag_test(struct net_device *netdev,
/* Offline tests */ /* Offline tests */
/* save speed, duplex, autoneg settings */ /* save speed, duplex, autoneg settings */
u16 autoneg_advertised = adapter->hw.autoneg_advertised; u16 autoneg_advertised = hw->autoneg_advertised;
u8 forced_speed_duplex = adapter->hw.forced_speed_duplex; u8 forced_speed_duplex = hw->forced_speed_duplex;
u8 autoneg = adapter->hw.autoneg; u8 autoneg = hw->autoneg;
DPRINTK(HW, INFO, "offline testing starting\n"); DPRINTK(HW, INFO, "offline testing starting\n");
...@@ -1657,9 +1679,9 @@ static void e1000_diag_test(struct net_device *netdev, ...@@ -1657,9 +1679,9 @@ static void e1000_diag_test(struct net_device *netdev,
eth_test->flags |= ETH_TEST_FL_FAILED; eth_test->flags |= ETH_TEST_FL_FAILED;
/* restore speed, duplex, autoneg settings */ /* restore speed, duplex, autoneg settings */
adapter->hw.autoneg_advertised = autoneg_advertised; hw->autoneg_advertised = autoneg_advertised;
adapter->hw.forced_speed_duplex = forced_speed_duplex; hw->forced_speed_duplex = forced_speed_duplex;
adapter->hw.autoneg = autoneg; hw->autoneg = autoneg;
e1000_reset(adapter); e1000_reset(adapter);
clear_bit(__E1000_TESTING, &adapter->flags); clear_bit(__E1000_TESTING, &adapter->flags);
...@@ -1708,7 +1730,7 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter, ...@@ -1708,7 +1730,7 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter,
case E1000_DEV_ID_82571EB_SERDES: case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_COPPER: case E1000_DEV_ID_82571EB_COPPER:
/* Wake events not supported on port B */ /* Wake events not supported on port B */
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { if (er32(STATUS) & E1000_STATUS_FUNC_1) {
wol->supported = 0; wol->supported = 0;
break; break;
} }
...@@ -1732,7 +1754,7 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter, ...@@ -1732,7 +1754,7 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter,
/* dual port cards only support WoL on port A from now on /* dual port cards only support WoL on port A from now on
* unless it was enabled in the eeprom for port B * unless it was enabled in the eeprom for port B
* so exclude FUNC_1 ports from having WoL enabled */ * so exclude FUNC_1 ports from having WoL enabled */
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 && if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
!adapter->eeprom_wol) { !adapter->eeprom_wol) {
wol->supported = 0; wol->supported = 0;
break; break;
...@@ -1748,6 +1770,7 @@ static void e1000_get_wol(struct net_device *netdev, ...@@ -1748,6 +1770,7 @@ static void e1000_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol) struct ethtool_wolinfo *wol)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
wol->supported = WAKE_UCAST | WAKE_MCAST | wol->supported = WAKE_UCAST | WAKE_MCAST |
WAKE_BCAST | WAKE_MAGIC; WAKE_BCAST | WAKE_MAGIC;
...@@ -1759,7 +1782,7 @@ static void e1000_get_wol(struct net_device *netdev, ...@@ -1759,7 +1782,7 @@ static void e1000_get_wol(struct net_device *netdev,
return; return;
/* apply any specific unsupported masks here */ /* apply any specific unsupported masks here */
switch (adapter->hw.device_id) { switch (hw->device_id) {
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
/* KSP3 does not suppport UCAST wake-ups */ /* KSP3 does not suppport UCAST wake-ups */
wol->supported &= ~WAKE_UCAST; wol->supported &= ~WAKE_UCAST;
...@@ -1831,11 +1854,12 @@ static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) ...@@ -1831,11 +1854,12 @@ static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
static void e1000_led_blink_callback(unsigned long data) static void e1000_led_blink_callback(unsigned long data)
{ {
struct e1000_adapter *adapter = (struct e1000_adapter *) data; struct e1000_adapter *adapter = (struct e1000_adapter *) data;
struct e1000_hw *hw = &adapter->hw;
if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
e1000_led_off(&adapter->hw); e1000_led_off(hw);
else else
e1000_led_on(&adapter->hw); e1000_led_on(hw);
mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
} }
...@@ -1843,21 +1867,22 @@ static void e1000_led_blink_callback(unsigned long data) ...@@ -1843,21 +1867,22 @@ static void e1000_led_blink_callback(unsigned long data)
static int e1000_phys_id(struct net_device *netdev, u32 data) static int e1000_phys_id(struct net_device *netdev, u32 data)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if (!data) if (!data)
data = INT_MAX; data = INT_MAX;
if (adapter->hw.mac_type < e1000_82571) { if (hw->mac_type < e1000_82571) {
if (!adapter->blink_timer.function) { if (!adapter->blink_timer.function) {
init_timer(&adapter->blink_timer); init_timer(&adapter->blink_timer);
adapter->blink_timer.function = e1000_led_blink_callback; adapter->blink_timer.function = e1000_led_blink_callback;
adapter->blink_timer.data = (unsigned long) adapter; adapter->blink_timer.data = (unsigned long) adapter;
} }
e1000_setup_led(&adapter->hw); e1000_setup_led(hw);
mod_timer(&adapter->blink_timer, jiffies); mod_timer(&adapter->blink_timer, jiffies);
msleep_interruptible(data * 1000); msleep_interruptible(data * 1000);
del_timer_sync(&adapter->blink_timer); del_timer_sync(&adapter->blink_timer);
} else if (adapter->hw.phy_type == e1000_phy_ife) { } else if (hw->phy_type == e1000_phy_ife) {
if (!adapter->blink_timer.function) { if (!adapter->blink_timer.function) {
init_timer(&adapter->blink_timer); init_timer(&adapter->blink_timer);
adapter->blink_timer.function = e1000_led_blink_callback; adapter->blink_timer.function = e1000_led_blink_callback;
...@@ -1868,13 +1893,13 @@ static int e1000_phys_id(struct net_device *netdev, u32 data) ...@@ -1868,13 +1893,13 @@ static int e1000_phys_id(struct net_device *netdev, u32 data)
del_timer_sync(&adapter->blink_timer); del_timer_sync(&adapter->blink_timer);
e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0); e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
} else { } else {
e1000_blink_led_start(&adapter->hw); e1000_blink_led_start(hw);
msleep_interruptible(data * 1000); msleep_interruptible(data * 1000);
} }
e1000_led_off(&adapter->hw); e1000_led_off(hw);
clear_bit(E1000_LED_ON, &adapter->led_status); clear_bit(E1000_LED_ON, &adapter->led_status);
e1000_cleanup_led(&adapter->hw); e1000_cleanup_led(hw);
return 0; return 0;
} }
......
...@@ -520,7 +520,7 @@ void e1000_set_media_type(struct e1000_hw *hw) ...@@ -520,7 +520,7 @@ void e1000_set_media_type(struct e1000_hw *hw)
hw->media_type = e1000_media_type_copper; hw->media_type = e1000_media_type_copper;
break; break;
default: default:
status = E1000_READ_REG(hw, STATUS); status = er32(STATUS);
if (status & E1000_STATUS_TBIMODE) { if (status & E1000_STATUS_TBIMODE) {
hw->media_type = e1000_media_type_fiber; hw->media_type = e1000_media_type_fiber;
/* tbi_compatibility not valid on fiber */ /* tbi_compatibility not valid on fiber */
...@@ -568,15 +568,15 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -568,15 +568,15 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
/* Clear interrupt mask to stop board from generating interrupts */ /* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n"); DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff); ew32(IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow /* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with * any pending transactions to complete before we hit the MAC with
* the global reset. * the global reset.
*/ */
E1000_WRITE_REG(hw, RCTL, 0); ew32(RCTL, 0);
E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); ew32(TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
hw->tbi_compatibility_on = false; hw->tbi_compatibility_on = false;
...@@ -586,11 +586,11 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -586,11 +586,11 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
*/ */
msleep(10); msleep(10);
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
/* Must reset the PHY before resetting the MAC */ /* Must reset the PHY before resetting the MAC */
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
msleep(5); msleep(5);
} }
...@@ -599,12 +599,12 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -599,12 +599,12 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
if (hw->mac_type == e1000_82573) { if (hw->mac_type == e1000_82573) {
timeout = 10; timeout = 10;
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); extcnf_ctrl = er32(EXTCNF_CTRL);
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
do { do {
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); ew32(EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break; break;
...@@ -619,9 +619,9 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -619,9 +619,9 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
/* Workaround for ICH8 bit corruption issue in FIFO memory */ /* Workaround for ICH8 bit corruption issue in FIFO memory */
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
/* Set Tx and Rx buffer allocation to 8k apiece. */ /* Set Tx and Rx buffer allocation to 8k apiece. */
E1000_WRITE_REG(hw, PBA, E1000_PBA_8K); ew32(PBA, E1000_PBA_8K);
/* Set Packet Buffer Size to 16k. */ /* Set Packet Buffer Size to 16k. */
E1000_WRITE_REG(hw, PBS, E1000_PBS_16K); ew32(PBS, E1000_PBS_16K);
} }
/* Issue a global reset to the MAC. This will reset the chip's /* Issue a global reset to the MAC. This will reset the chip's
...@@ -645,7 +645,7 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -645,7 +645,7 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
case e1000_82545_rev_3: case e1000_82545_rev_3:
case e1000_82546_rev_3: case e1000_82546_rev_3:
/* Reset is performed on a shadow of the control register */ /* Reset is performed on a shadow of the control register */
E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
break; break;
case e1000_ich8lan: case e1000_ich8lan:
if (!hw->phy_reset_disable && if (!hw->phy_reset_disable &&
...@@ -658,11 +658,11 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -658,11 +658,11 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
} }
e1000_get_software_flag(hw); e1000_get_software_flag(hw);
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); ew32(CTRL, (ctrl | E1000_CTRL_RST));
msleep(5); msleep(5);
break; break;
default: default:
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); ew32(CTRL, (ctrl | E1000_CTRL_RST));
break; break;
} }
...@@ -677,10 +677,10 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -677,10 +677,10 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
case e1000_82544: case e1000_82544:
/* Wait for reset to complete */ /* Wait for reset to complete */
udelay(10); udelay(10);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST; ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
/* Wait for EEPROM reload */ /* Wait for EEPROM reload */
msleep(2); msleep(2);
break; break;
...@@ -694,10 +694,10 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -694,10 +694,10 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
case e1000_82573: case e1000_82573:
if (!e1000_is_onboard_nvm_eeprom(hw)) { if (!e1000_is_onboard_nvm_eeprom(hw)) {
udelay(10); udelay(10);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST; ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
/* fall through */ /* fall through */
default: default:
...@@ -710,27 +710,27 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -710,27 +710,27 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
/* Disable HW ARPs on ASF enabled adapters */ /* Disable HW ARPs on ASF enabled adapters */
if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
manc = E1000_READ_REG(hw, MANC); manc = er32(MANC);
manc &= ~(E1000_MANC_ARP_EN); manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc); ew32(MANC, manc);
} }
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
e1000_phy_init_script(hw); e1000_phy_init_script(hw);
/* Configure activity LED after PHY reset */ /* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl = er32(LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl); ew32(LEDCTL, led_ctrl);
} }
/* Clear interrupt mask to stop board from generating interrupts */ /* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n"); DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff); ew32(IMC, 0xffffffff);
/* Clear any pending interrupt events. */ /* Clear any pending interrupt events. */
icr = E1000_READ_REG(hw, ICR); icr = er32(ICR);
/* If MWI was previously enabled, reenable it. */ /* If MWI was previously enabled, reenable it. */
if (hw->mac_type == e1000_82542_rev2_0) { if (hw->mac_type == e1000_82542_rev2_0) {
...@@ -739,9 +739,9 @@ s32 e1000_reset_hw(struct e1000_hw *hw) ...@@ -739,9 +739,9 @@ s32 e1000_reset_hw(struct e1000_hw *hw)
} }
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
u32 kab = E1000_READ_REG(hw, KABGTXD); u32 kab = er32(KABGTXD);
kab |= E1000_KABGTXD_BGSQLBIAS; kab |= E1000_KABGTXD_BGSQLBIAS;
E1000_WRITE_REG(hw, KABGTXD, kab); ew32(KABGTXD, kab);
} }
return E1000_SUCCESS; return E1000_SUCCESS;
...@@ -766,22 +766,22 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw) ...@@ -766,22 +766,22 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
u32 reg_txdctl, reg_txdctl1; u32 reg_txdctl, reg_txdctl1;
/* link autonegotiation/sync workarounds */ /* link autonegotiation/sync workarounds */
reg_tarc0 = E1000_READ_REG(hw, TARC0); reg_tarc0 = er32(TARC0);
reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
/* Enable not-done TX descriptor counting */ /* Enable not-done TX descriptor counting */
reg_txdctl = E1000_READ_REG(hw, TXDCTL); reg_txdctl = er32(TXDCTL);
reg_txdctl |= E1000_TXDCTL_COUNT_DESC; reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); ew32(TXDCTL, reg_txdctl);
reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); reg_txdctl1 = er32(TXDCTL1);
reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); ew32(TXDCTL1, reg_txdctl1);
switch (hw->mac_type) { switch (hw->mac_type) {
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
/* Clear PHY TX compatible mode bits */ /* Clear PHY TX compatible mode bits */
reg_tarc1 = E1000_READ_REG(hw, TARC1); reg_tarc1 = er32(TARC1);
reg_tarc1 &= ~((1 << 30)|(1 << 29)); reg_tarc1 &= ~((1 << 30)|(1 << 29));
/* link autonegotiation/sync workarounds */ /* link autonegotiation/sync workarounds */
...@@ -791,25 +791,25 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw) ...@@ -791,25 +791,25 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
/* Multiple read bit is reversed polarity */ /* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL); reg_tctl = er32(TCTL);
if (reg_tctl & E1000_TCTL_MULR) if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28); reg_tarc1 &= ~(1 << 28);
else else
reg_tarc1 |= (1 << 28); reg_tarc1 |= (1 << 28);
E1000_WRITE_REG(hw, TARC1, reg_tarc1); ew32(TARC1, reg_tarc1);
break; break;
case e1000_82573: case e1000_82573:
reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); reg_ctrl_ext = er32(CTRL_EXT);
reg_ctrl_ext &= ~(1 << 23); reg_ctrl_ext &= ~(1 << 23);
reg_ctrl_ext |= (1 << 22); reg_ctrl_ext |= (1 << 22);
/* TX byte count fix */ /* TX byte count fix */
reg_ctrl = E1000_READ_REG(hw, CTRL); reg_ctrl = er32(CTRL);
reg_ctrl &= ~(1 << 29); reg_ctrl &= ~(1 << 29);
E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); ew32(CTRL_EXT, reg_ctrl_ext);
E1000_WRITE_REG(hw, CTRL, reg_ctrl); ew32(CTRL, reg_ctrl);
break; break;
case e1000_80003es2lan: case e1000_80003es2lan:
/* improve small packet performace for fiber/serdes */ /* improve small packet performace for fiber/serdes */
...@@ -819,14 +819,14 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw) ...@@ -819,14 +819,14 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
} }
/* Multiple read bit is reversed polarity */ /* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL); reg_tctl = er32(TCTL);
reg_tarc1 = E1000_READ_REG(hw, TARC1); reg_tarc1 = er32(TARC1);
if (reg_tctl & E1000_TCTL_MULR) if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28); reg_tarc1 &= ~(1 << 28);
else else
reg_tarc1 |= (1 << 28); reg_tarc1 |= (1 << 28);
E1000_WRITE_REG(hw, TARC1, reg_tarc1); ew32(TARC1, reg_tarc1);
break; break;
case e1000_ich8lan: case e1000_ich8lan:
/* Reduce concurrent DMA requests to 3 from 4 */ /* Reduce concurrent DMA requests to 3 from 4 */
...@@ -835,16 +835,16 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw) ...@@ -835,16 +835,16 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
reg_tarc0 |= ((1 << 29)|(1 << 28)); reg_tarc0 |= ((1 << 29)|(1 << 28));
reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); reg_ctrl_ext = er32(CTRL_EXT);
reg_ctrl_ext |= (1 << 22); reg_ctrl_ext |= (1 << 22);
E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); ew32(CTRL_EXT, reg_ctrl_ext);
/* workaround TX hang with TSO=on */ /* workaround TX hang with TSO=on */
reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
/* Multiple read bit is reversed polarity */ /* Multiple read bit is reversed polarity */
reg_tctl = E1000_READ_REG(hw, TCTL); reg_tctl = er32(TCTL);
reg_tarc1 = E1000_READ_REG(hw, TARC1); reg_tarc1 = er32(TARC1);
if (reg_tctl & E1000_TCTL_MULR) if (reg_tctl & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28); reg_tarc1 &= ~(1 << 28);
else else
...@@ -853,13 +853,13 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw) ...@@ -853,13 +853,13 @@ static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
/* workaround TX hang with TSO=on */ /* workaround TX hang with TSO=on */
reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
E1000_WRITE_REG(hw, TARC1, reg_tarc1); ew32(TARC1, reg_tarc1);
break; break;
default: default:
break; break;
} }
E1000_WRITE_REG(hw, TARC0, reg_tarc0); ew32(TARC0, reg_tarc0);
} }
} }
...@@ -890,9 +890,9 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -890,9 +890,9 @@ s32 e1000_init_hw(struct e1000_hw *hw)
((hw->revision_id < 3) || ((hw->revision_id < 3) ||
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
reg_data = E1000_READ_REG(hw, STATUS); reg_data = er32(STATUS);
reg_data &= ~0x80000000; reg_data &= ~0x80000000;
E1000_WRITE_REG(hw, STATUS, reg_data); ew32(STATUS, reg_data);
} }
/* Initialize Identification LED */ /* Initialize Identification LED */
...@@ -913,7 +913,7 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -913,7 +913,7 @@ s32 e1000_init_hw(struct e1000_hw *hw)
/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
if (hw->mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
if (hw->mac_type < e1000_82545_rev_3) if (hw->mac_type < e1000_82545_rev_3)
E1000_WRITE_REG(hw, VET, 0); ew32(VET, 0);
e1000_clear_vfta(hw); e1000_clear_vfta(hw);
} }
...@@ -921,8 +921,8 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -921,8 +921,8 @@ s32 e1000_init_hw(struct e1000_hw *hw)
if (hw->mac_type == e1000_82542_rev2_0) { if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw); e1000_pci_clear_mwi(hw);
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); ew32(RCTL, E1000_RCTL_RST);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
msleep(5); msleep(5);
} }
...@@ -933,8 +933,8 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -933,8 +933,8 @@ s32 e1000_init_hw(struct e1000_hw *hw)
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if (hw->mac_type == e1000_82542_rev2_0) { if (hw->mac_type == e1000_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0); ew32(RCTL, 0);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
msleep(1); msleep(1);
if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
e1000_pci_set_mwi(hw); e1000_pci_set_mwi(hw);
...@@ -949,7 +949,7 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -949,7 +949,7 @@ s32 e1000_init_hw(struct e1000_hw *hw)
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* use write flush to prevent Memory Write Block (MWB) from /* use write flush to prevent Memory Write Block (MWB) from
* occuring when accessing our register space */ * occuring when accessing our register space */
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
/* Set the PCI priority bit correctly in the CTRL register. This /* Set the PCI priority bit correctly in the CTRL register. This
...@@ -958,8 +958,8 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -958,8 +958,8 @@ s32 e1000_init_hw(struct e1000_hw *hw)
* 82542 and 82543 silicon. * 82542 and 82543 silicon.
*/ */
if (hw->dma_fairness && hw->mac_type <= e1000_82543) { if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
} }
switch (hw->mac_type) { switch (hw->mac_type) {
...@@ -982,9 +982,9 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -982,9 +982,9 @@ s32 e1000_init_hw(struct e1000_hw *hw)
/* Set the transmit descriptor write-back policy */ /* Set the transmit descriptor write-back policy */
if (hw->mac_type > e1000_82544) { if (hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL); ctrl = er32(TXDCTL);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, TXDCTL, ctrl); ew32(TXDCTL, ctrl);
} }
if (hw->mac_type == e1000_82573) { if (hw->mac_type == e1000_82573) {
...@@ -996,21 +996,21 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -996,21 +996,21 @@ s32 e1000_init_hw(struct e1000_hw *hw)
break; break;
case e1000_80003es2lan: case e1000_80003es2lan:
/* Enable retransmit on late collisions */ /* Enable retransmit on late collisions */
reg_data = E1000_READ_REG(hw, TCTL); reg_data = er32(TCTL);
reg_data |= E1000_TCTL_RTLC; reg_data |= E1000_TCTL_RTLC;
E1000_WRITE_REG(hw, TCTL, reg_data); ew32(TCTL, reg_data);
/* Configure Gigabit Carry Extend Padding */ /* Configure Gigabit Carry Extend Padding */
reg_data = E1000_READ_REG(hw, TCTL_EXT); reg_data = er32(TCTL_EXT);
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
E1000_WRITE_REG(hw, TCTL_EXT, reg_data); ew32(TCTL_EXT, reg_data);
/* Configure Transmit Inter-Packet Gap */ /* Configure Transmit Inter-Packet Gap */
reg_data = E1000_READ_REG(hw, TIPG); reg_data = er32(TIPG);
reg_data &= ~E1000_TIPG_IPGT_MASK; reg_data &= ~E1000_TIPG_IPGT_MASK;
reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, reg_data); ew32(TIPG, reg_data);
reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
reg_data &= ~0x00100000; reg_data &= ~0x00100000;
...@@ -1019,17 +1019,17 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -1019,17 +1019,17 @@ s32 e1000_init_hw(struct e1000_hw *hw)
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
case e1000_ich8lan: case e1000_ich8lan:
ctrl = E1000_READ_REG(hw, TXDCTL1); ctrl = er32(TXDCTL1);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, TXDCTL1, ctrl); ew32(TXDCTL1, ctrl);
break; break;
} }
if (hw->mac_type == e1000_82573) { if (hw->mac_type == e1000_82573) {
u32 gcr = E1000_READ_REG(hw, GCR); u32 gcr = er32(GCR);
gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
E1000_WRITE_REG(hw, GCR, gcr); ew32(GCR, gcr);
} }
/* Clear all of the statistics registers (clear on read). It is /* Clear all of the statistics registers (clear on read). It is
...@@ -1046,11 +1046,11 @@ s32 e1000_init_hw(struct e1000_hw *hw) ...@@ -1046,11 +1046,11 @@ s32 e1000_init_hw(struct e1000_hw *hw)
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
/* Relaxed ordering must be disabled to avoid a parity /* Relaxed ordering must be disabled to avoid a parity
* error crash in a PCI slot. */ * error crash in a PCI slot. */
ctrl_ext |= E1000_CTRL_EXT_RO_DIS; ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
} }
return ret_val; return ret_val;
...@@ -1181,7 +1181,7 @@ s32 e1000_setup_link(struct e1000_hw *hw) ...@@ -1181,7 +1181,7 @@ s32 e1000_setup_link(struct e1000_hw *hw)
} }
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT); SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
} }
/* Call the necessary subroutine to configure the link. */ /* Call the necessary subroutine to configure the link. */
...@@ -1198,12 +1198,12 @@ s32 e1000_setup_link(struct e1000_hw *hw) ...@@ -1198,12 +1198,12 @@ s32 e1000_setup_link(struct e1000_hw *hw)
/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
if (hw->mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); ew32(FCT, FLOW_CONTROL_TYPE);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
} }
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); ew32(FCTTV, hw->fc_pause_time);
/* Set the flow control receive threshold registers. Normally, /* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be * these registers will be set to a default threshold that may be
...@@ -1212,18 +1212,18 @@ s32 e1000_setup_link(struct e1000_hw *hw) ...@@ -1212,18 +1212,18 @@ s32 e1000_setup_link(struct e1000_hw *hw)
* registers will be set to 0. * registers will be set to 0.
*/ */
if (!(hw->fc & E1000_FC_TX_PAUSE)) { if (!(hw->fc & E1000_FC_TX_PAUSE)) {
E1000_WRITE_REG(hw, FCRTL, 0); ew32(FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0); ew32(FCRTH, 0);
} else { } else {
/* We need to set up the Receive Threshold high and low water marks /* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames. * as well as (optionally) enabling the transmission of XON frames.
*/ */
if (hw->fc_send_xon) { if (hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); ew32(FCRTH, hw->fc_high_water);
} else { } else {
E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); ew32(FCRTL, hw->fc_low_water);
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); ew32(FCRTH, hw->fc_high_water);
} }
} }
return ret_val; return ret_val;
...@@ -1255,7 +1255,7 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) ...@@ -1255,7 +1255,7 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
* loopback mode is disabled during initialization. * loopback mode is disabled during initialization.
*/ */
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK); ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK);
/* On adapters with a MAC newer than 82544, SWDP 1 will be /* On adapters with a MAC newer than 82544, SWDP 1 will be
* set when the optics detect a signal. On older adapters, it will be * set when the optics detect a signal. On older adapters, it will be
...@@ -1263,7 +1263,7 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) ...@@ -1263,7 +1263,7 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
* If we're on serdes media, adjust the output amplitude to value * If we're on serdes media, adjust the output amplitude to value
* set in the EEPROM. * set in the EEPROM.
*/ */
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
if (hw->media_type == e1000_media_type_fiber) if (hw->media_type == e1000_media_type_fiber)
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
...@@ -1334,9 +1334,9 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) ...@@ -1334,9 +1334,9 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
*/ */
DEBUGOUT("Auto-negotiation enabled\n"); DEBUGOUT("Auto-negotiation enabled\n");
E1000_WRITE_REG(hw, TXCW, txcw); ew32(TXCW, txcw);
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
hw->txcw = txcw; hw->txcw = txcw;
msleep(1); msleep(1);
...@@ -1348,11 +1348,11 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) ...@@ -1348,11 +1348,11 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
* For internal serdes, we just assume a signal is present, then poll. * For internal serdes, we just assume a signal is present, then poll.
*/ */
if (hw->media_type == e1000_media_type_internal_serdes || if (hw->media_type == e1000_media_type_internal_serdes ||
(E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n"); DEBUGOUT("Looking for Link\n");
for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
msleep(10); msleep(10);
status = E1000_READ_REG(hw, STATUS); status = er32(STATUS);
if (status & E1000_STATUS_LU) break; if (status & E1000_STATUS_LU) break;
} }
if (i == (LINK_UP_TIMEOUT / 10)) { if (i == (LINK_UP_TIMEOUT / 10)) {
...@@ -1392,7 +1392,7 @@ static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) ...@@ -1392,7 +1392,7 @@ static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
DEBUGFUNC("e1000_copper_link_preconfig"); DEBUGFUNC("e1000_copper_link_preconfig");
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what /* With 82543, we need to force speed and duplex on the MAC equal to what
* the PHY speed and duplex configuration is. In addition, we need to * the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset. * perform a hardware reset on the PHY to take it out of reset.
...@@ -1400,10 +1400,10 @@ static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) ...@@ -1400,10 +1400,10 @@ static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
if (hw->mac_type > e1000_82543) { if (hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU; ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
} else { } else {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
ret_val = e1000_phy_hw_reset(hw); ret_val = e1000_phy_hw_reset(hw);
if (ret_val) if (ret_val)
return ret_val; return ret_val;
...@@ -1464,10 +1464,10 @@ static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) ...@@ -1464,10 +1464,10 @@ static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
msleep(15); msleep(15);
if (hw->mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
/* Configure activity LED after PHY reset */ /* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl = er32(LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl); ew32(LEDCTL, led_ctrl);
} }
/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
...@@ -1680,9 +1680,9 @@ static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw) ...@@ -1680,9 +1680,9 @@ static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
if (ret_val) if (ret_val)
return ret_val; return ret_val;
reg_data = E1000_READ_REG(hw, CTRL_EXT); reg_data = er32(CTRL_EXT);
reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
E1000_WRITE_REG(hw, CTRL_EXT, reg_data); ew32(CTRL_EXT, reg_data);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
&phy_data); &phy_data);
...@@ -2074,10 +2074,10 @@ static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex) ...@@ -2074,10 +2074,10 @@ static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex)
return ret_val; return ret_val;
/* Configure Transmit Inter-Packet Gap */ /* Configure Transmit Inter-Packet Gap */
tipg = E1000_READ_REG(hw, TIPG); tipg = er32(TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK; tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
E1000_WRITE_REG(hw, TIPG, tipg); ew32(TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data); ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
...@@ -2109,10 +2109,10 @@ static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw) ...@@ -2109,10 +2109,10 @@ static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
return ret_val; return ret_val;
/* Configure Transmit Inter-Packet Gap */ /* Configure Transmit Inter-Packet Gap */
tipg = E1000_READ_REG(hw, TIPG); tipg = er32(TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK; tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
E1000_WRITE_REG(hw, TIPG, tipg); ew32(TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data); ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
...@@ -2295,7 +2295,7 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) ...@@ -2295,7 +2295,7 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
DEBUGOUT1("hw->fc = %d\n", hw->fc); DEBUGOUT1("hw->fc = %d\n", hw->fc);
/* Read the Device Control Register. */ /* Read the Device Control Register. */
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
...@@ -2350,7 +2350,7 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) ...@@ -2350,7 +2350,7 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
e1000_config_collision_dist(hw); e1000_config_collision_dist(hw);
/* Write the configured values back to the Device Control Reg. */ /* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
if ((hw->phy_type == e1000_phy_m88) || if ((hw->phy_type == e1000_phy_m88) ||
(hw->phy_type == e1000_phy_gg82563)) { (hw->phy_type == e1000_phy_gg82563)) {
...@@ -2539,13 +2539,13 @@ void e1000_config_collision_dist(struct e1000_hw *hw) ...@@ -2539,13 +2539,13 @@ void e1000_config_collision_dist(struct e1000_hw *hw)
else else
coll_dist = E1000_COLLISION_DISTANCE; coll_dist = E1000_COLLISION_DISTANCE;
tctl = E1000_READ_REG(hw, TCTL); tctl = er32(TCTL);
tctl &= ~E1000_TCTL_COLD; tctl &= ~E1000_TCTL_COLD;
tctl |= coll_dist << E1000_COLD_SHIFT; tctl |= coll_dist << E1000_COLD_SHIFT;
E1000_WRITE_REG(hw, TCTL, tctl); ew32(TCTL, tctl);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
/****************************************************************************** /******************************************************************************
...@@ -2573,7 +2573,7 @@ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) ...@@ -2573,7 +2573,7 @@ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
/* Read the Device Control Register and set the bits to Force Speed /* Read the Device Control Register and set the bits to Force Speed
* and Duplex. * and Duplex.
*/ */
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
...@@ -2600,7 +2600,7 @@ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) ...@@ -2600,7 +2600,7 @@ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
ctrl |= E1000_CTRL_SPD_100; ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */ /* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
return E1000_SUCCESS; return E1000_SUCCESS;
} }
...@@ -2622,7 +2622,7 @@ s32 e1000_force_mac_fc(struct e1000_hw *hw) ...@@ -2622,7 +2622,7 @@ s32 e1000_force_mac_fc(struct e1000_hw *hw)
DEBUGFUNC("e1000_force_mac_fc"); DEBUGFUNC("e1000_force_mac_fc");
/* Get the current configuration of the Device Control Register */ /* Get the current configuration of the Device Control Register */
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
/* Because we didn't get link via the internal auto-negotiation /* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY * mechanism (we either forced link or we got link via PHY
...@@ -2666,7 +2666,7 @@ s32 e1000_force_mac_fc(struct e1000_hw *hw) ...@@ -2666,7 +2666,7 @@ s32 e1000_force_mac_fc(struct e1000_hw *hw)
if (hw->mac_type == e1000_82542_rev2_0) if (hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE); ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
return E1000_SUCCESS; return E1000_SUCCESS;
} }
...@@ -2898,8 +2898,8 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -2898,8 +2898,8 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
DEBUGFUNC("e1000_check_for_link"); DEBUGFUNC("e1000_check_for_link");
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
status = E1000_READ_REG(hw, STATUS); status = er32(STATUS);
/* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be * set when the optics detect a signal. On older adapters, it will be
...@@ -2907,7 +2907,7 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -2907,7 +2907,7 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
*/ */
if ((hw->media_type == e1000_media_type_fiber) || if ((hw->media_type == e1000_media_type_fiber) ||
(hw->media_type == e1000_media_type_internal_serdes)) { (hw->media_type == e1000_media_type_internal_serdes)) {
rxcw = E1000_READ_REG(hw, RXCW); rxcw = er32(RXCW);
if (hw->media_type == e1000_media_type_fiber) { if (hw->media_type == e1000_media_type_fiber) {
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
...@@ -2953,11 +2953,11 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -2953,11 +2953,11 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
(!hw->autoneg) && (!hw->autoneg) &&
(hw->forced_speed_duplex == e1000_10_full || (hw->forced_speed_duplex == e1000_10_full ||
hw->forced_speed_duplex == e1000_10_half)) { hw->forced_speed_duplex == e1000_10_half)) {
E1000_WRITE_REG(hw, IMC, 0xffffffff); ew32(IMC, 0xffffffff);
ret_val = e1000_polarity_reversal_workaround(hw); ret_val = e1000_polarity_reversal_workaround(hw);
icr = E1000_READ_REG(hw, ICR); icr = er32(ICR);
E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); ew32(ICS, (icr & ~E1000_ICS_LSC));
E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); ew32(IMS, IMS_ENABLE_MASK);
} }
} else { } else {
...@@ -3022,9 +3022,9 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -3022,9 +3022,9 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
*/ */
if (hw->tbi_compatibility_on) { if (hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */ /* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL); rctl = er32(RCTL);
rctl &= ~E1000_RCTL_SBP; rctl &= ~E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl); ew32(RCTL, rctl);
hw->tbi_compatibility_on = false; hw->tbi_compatibility_on = false;
} }
} else { } else {
...@@ -3035,9 +3035,9 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -3035,9 +3035,9 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
*/ */
if (!hw->tbi_compatibility_on) { if (!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = true; hw->tbi_compatibility_on = true;
rctl = E1000_READ_REG(hw, RCTL); rctl = er32(RCTL);
rctl |= E1000_RCTL_SBP; rctl |= E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl); ew32(RCTL, rctl);
} }
} }
} }
...@@ -3061,12 +3061,12 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -3061,12 +3061,12 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */ /* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */ /* Force link-up and also force full-duplex. */
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
/* Configure Flow Control after forcing link up. */ /* Configure Flow Control after forcing link up. */
ret_val = e1000_config_fc_after_link_up(hw); ret_val = e1000_config_fc_after_link_up(hw);
...@@ -3084,8 +3084,8 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -3084,8 +3084,8 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
(hw->media_type == e1000_media_type_internal_serdes)) && (hw->media_type == e1000_media_type_internal_serdes)) &&
(ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw); ew32(TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
hw->serdes_link_down = false; hw->serdes_link_down = false;
} }
...@@ -3093,10 +3093,10 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -3093,10 +3093,10 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
* based on MAC synchronization for internal serdes media type. * based on MAC synchronization for internal serdes media type.
*/ */
else if ((hw->media_type == e1000_media_type_internal_serdes) && else if ((hw->media_type == e1000_media_type_internal_serdes) &&
!(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { !(E1000_TXCW_ANE & er32(TXCW))) {
/* SYNCH bit and IV bit are sticky. */ /* SYNCH bit and IV bit are sticky. */
udelay(10); udelay(10);
if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { if (E1000_RXCW_SYNCH & er32(RXCW)) {
if (!(rxcw & E1000_RXCW_IV)) { if (!(rxcw & E1000_RXCW_IV)) {
hw->serdes_link_down = false; hw->serdes_link_down = false;
DEBUGOUT("SERDES: Link is up.\n"); DEBUGOUT("SERDES: Link is up.\n");
...@@ -3107,8 +3107,8 @@ s32 e1000_check_for_link(struct e1000_hw *hw) ...@@ -3107,8 +3107,8 @@ s32 e1000_check_for_link(struct e1000_hw *hw)
} }
} }
if ((hw->media_type == e1000_media_type_internal_serdes) && if ((hw->media_type == e1000_media_type_internal_serdes) &&
(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { (E1000_TXCW_ANE & er32(TXCW))) {
hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS));
} }
return E1000_SUCCESS; return E1000_SUCCESS;
} }
...@@ -3129,7 +3129,7 @@ s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) ...@@ -3129,7 +3129,7 @@ s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
DEBUGFUNC("e1000_get_speed_and_duplex"); DEBUGFUNC("e1000_get_speed_and_duplex");
if (hw->mac_type >= e1000_82543) { if (hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS); status = er32(STATUS);
if (status & E1000_STATUS_SPEED_1000) { if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000; *speed = SPEED_1000;
DEBUGOUT("1000 Mbs, "); DEBUGOUT("1000 Mbs, ");
...@@ -3238,8 +3238,8 @@ static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) ...@@ -3238,8 +3238,8 @@ static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
/* Raise the clock input to the Management Data Clock (by setting the MDC /* Raise the clock input to the Management Data Clock (by setting the MDC
* bit), and then delay 10 microseconds. * bit), and then delay 10 microseconds.
*/ */
E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(10); udelay(10);
} }
...@@ -3254,8 +3254,8 @@ static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) ...@@ -3254,8 +3254,8 @@ static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
/* Lower the clock input to the Management Data Clock (by clearing the MDC /* Lower the clock input to the Management Data Clock (by clearing the MDC
* bit), and then delay 10 microseconds. * bit), and then delay 10 microseconds.
*/ */
E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(10); udelay(10);
} }
...@@ -3280,7 +3280,7 @@ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) ...@@ -3280,7 +3280,7 @@ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
mask = 0x01; mask = 0x01;
mask <<= (count - 1); mask <<= (count - 1);
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
...@@ -3296,8 +3296,8 @@ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) ...@@ -3296,8 +3296,8 @@ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
else else
ctrl &= ~E1000_CTRL_MDIO; ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(10); udelay(10);
...@@ -3328,14 +3328,14 @@ static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) ...@@ -3328,14 +3328,14 @@ static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
* by raising the input to the Management Data Clock (setting the MDC bit), * by raising the input to the Management Data Clock (setting the MDC bit),
* and then reading the value of the MDIO bit. * and then reading the value of the MDIO bit.
*/ */
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
ctrl &= ~E1000_CTRL_MDIO_DIR; ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO; ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
/* Raise and Lower the clock before reading in the data. This accounts for /* Raise and Lower the clock before reading in the data. This accounts for
* the turnaround bits. The first clock occurred when we clocked out the * the turnaround bits. The first clock occurred when we clocked out the
...@@ -3347,7 +3347,7 @@ static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) ...@@ -3347,7 +3347,7 @@ static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
for (data = 0, i = 0; i < 16; i++) { for (data = 0, i = 0; i < 16; i++) {
data = data << 1; data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl); e1000_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
/* Check to see if we shifted in a "1". */ /* Check to see if we shifted in a "1". */
if (ctrl & E1000_CTRL_MDIO) if (ctrl & E1000_CTRL_MDIO)
data |= 1; data |= 1;
...@@ -3379,7 +3379,7 @@ static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask) ...@@ -3379,7 +3379,7 @@ static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask)
if (e1000_get_hw_eeprom_semaphore(hw)) if (e1000_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC; return -E1000_ERR_SWFW_SYNC;
swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); swfw_sync = er32(SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask))) { if (!(swfw_sync & (fwmask | swmask))) {
break; break;
} }
...@@ -3397,7 +3397,7 @@ static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask) ...@@ -3397,7 +3397,7 @@ static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask)
} }
swfw_sync |= swmask; swfw_sync |= swmask;
E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); ew32(SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw); e1000_put_hw_eeprom_semaphore(hw);
return E1000_SUCCESS; return E1000_SUCCESS;
...@@ -3425,9 +3425,9 @@ static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask) ...@@ -3425,9 +3425,9 @@ static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask)
while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
/* empty */ /* empty */
swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); swfw_sync = er32(SW_FW_SYNC);
swfw_sync &= ~swmask; swfw_sync &= ~swmask;
E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); ew32(SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw); e1000_put_hw_eeprom_semaphore(hw);
} }
...@@ -3446,7 +3446,7 @@ s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) ...@@ -3446,7 +3446,7 @@ s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
DEBUGFUNC("e1000_read_phy_reg"); DEBUGFUNC("e1000_read_phy_reg");
if ((hw->mac_type == e1000_80003es2lan) && if ((hw->mac_type == e1000_80003es2lan) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { (er32(STATUS) & E1000_STATUS_FUNC_1)) {
swfw = E1000_SWFW_PHY1_SM; swfw = E1000_SWFW_PHY1_SM;
} else { } else {
swfw = E1000_SWFW_PHY0_SM; swfw = E1000_SWFW_PHY0_SM;
...@@ -3517,12 +3517,12 @@ static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, ...@@ -3517,12 +3517,12 @@ static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
(phy_addr << E1000_MDIC_PHY_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ)); (E1000_MDIC_OP_READ));
E1000_WRITE_REG(hw, MDIC, mdic); ew32(MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */ /* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) { for (i = 0; i < 64; i++) {
udelay(50); udelay(50);
mdic = E1000_READ_REG(hw, MDIC); mdic = er32(MDIC);
if (mdic & E1000_MDIC_READY) break; if (mdic & E1000_MDIC_READY) break;
} }
if (!(mdic & E1000_MDIC_READY)) { if (!(mdic & E1000_MDIC_READY)) {
...@@ -3581,7 +3581,7 @@ s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) ...@@ -3581,7 +3581,7 @@ s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
DEBUGFUNC("e1000_write_phy_reg"); DEBUGFUNC("e1000_write_phy_reg");
if ((hw->mac_type == e1000_80003es2lan) && if ((hw->mac_type == e1000_80003es2lan) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { (er32(STATUS) & E1000_STATUS_FUNC_1)) {
swfw = E1000_SWFW_PHY1_SM; swfw = E1000_SWFW_PHY1_SM;
} else { } else {
swfw = E1000_SWFW_PHY0_SM; swfw = E1000_SWFW_PHY0_SM;
...@@ -3653,12 +3653,12 @@ static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, ...@@ -3653,12 +3653,12 @@ static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
(phy_addr << E1000_MDIC_PHY_SHIFT) | (phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE)); (E1000_MDIC_OP_WRITE));
E1000_WRITE_REG(hw, MDIC, mdic); ew32(MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */ /* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 641; i++) { for (i = 0; i < 641; i++) {
udelay(5); udelay(5);
mdic = E1000_READ_REG(hw, MDIC); mdic = er32(MDIC);
if (mdic & E1000_MDIC_READY) break; if (mdic & E1000_MDIC_READY) break;
} }
if (!(mdic & E1000_MDIC_READY)) { if (!(mdic & E1000_MDIC_READY)) {
...@@ -3697,7 +3697,7 @@ static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data) ...@@ -3697,7 +3697,7 @@ static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data)
DEBUGFUNC("e1000_read_kmrn_reg"); DEBUGFUNC("e1000_read_kmrn_reg");
if ((hw->mac_type == e1000_80003es2lan) && if ((hw->mac_type == e1000_80003es2lan) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { (er32(STATUS) & E1000_STATUS_FUNC_1)) {
swfw = E1000_SWFW_PHY1_SM; swfw = E1000_SWFW_PHY1_SM;
} else { } else {
swfw = E1000_SWFW_PHY0_SM; swfw = E1000_SWFW_PHY0_SM;
...@@ -3709,11 +3709,11 @@ static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data) ...@@ -3709,11 +3709,11 @@ static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data)
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_OFFSET) |
E1000_KUMCTRLSTA_REN; E1000_KUMCTRLSTA_REN;
E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); ew32(KUMCTRLSTA, reg_val);
udelay(2); udelay(2);
/* Read the data returned */ /* Read the data returned */
reg_val = E1000_READ_REG(hw, KUMCTRLSTA); reg_val = er32(KUMCTRLSTA);
*data = (u16)reg_val; *data = (u16)reg_val;
e1000_swfw_sync_release(hw, swfw); e1000_swfw_sync_release(hw, swfw);
...@@ -3727,7 +3727,7 @@ static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data) ...@@ -3727,7 +3727,7 @@ static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data)
DEBUGFUNC("e1000_write_kmrn_reg"); DEBUGFUNC("e1000_write_kmrn_reg");
if ((hw->mac_type == e1000_80003es2lan) && if ((hw->mac_type == e1000_80003es2lan) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { (er32(STATUS) & E1000_STATUS_FUNC_1)) {
swfw = E1000_SWFW_PHY1_SM; swfw = E1000_SWFW_PHY1_SM;
} else { } else {
swfw = E1000_SWFW_PHY0_SM; swfw = E1000_SWFW_PHY0_SM;
...@@ -3737,7 +3737,7 @@ static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data) ...@@ -3737,7 +3737,7 @@ static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data)
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
E1000_KUMCTRLSTA_OFFSET) | data; E1000_KUMCTRLSTA_OFFSET) | data;
E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); ew32(KUMCTRLSTA, reg_val);
udelay(2); udelay(2);
e1000_swfw_sync_release(hw, swfw); e1000_swfw_sync_release(hw, swfw);
...@@ -3768,7 +3768,7 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw) ...@@ -3768,7 +3768,7 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw)
if (hw->mac_type > e1000_82543) { if (hw->mac_type > e1000_82543) {
if ((hw->mac_type == e1000_80003es2lan) && if ((hw->mac_type == e1000_80003es2lan) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { (er32(STATUS) & E1000_STATUS_FUNC_1)) {
swfw = E1000_SWFW_PHY1_SM; swfw = E1000_SWFW_PHY1_SM;
} else { } else {
swfw = E1000_SWFW_PHY0_SM; swfw = E1000_SWFW_PHY0_SM;
...@@ -3783,17 +3783,17 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw) ...@@ -3783,17 +3783,17 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw)
* and deassert. For e1000_82571 hardware and later, we instead delay * and deassert. For e1000_82571 hardware and later, we instead delay
* for 50us between and 10ms after the deassertion. * for 50us between and 10ms after the deassertion.
*/ */
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
if (hw->mac_type < e1000_82571) if (hw->mac_type < e1000_82571)
msleep(10); msleep(10);
else else
udelay(100); udelay(100);
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
if (hw->mac_type >= e1000_82571) if (hw->mac_type >= e1000_82571)
mdelay(10); mdelay(10);
...@@ -3803,24 +3803,24 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw) ...@@ -3803,24 +3803,24 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw)
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset. * bit to put the PHY into reset. Then, take it out of reset.
*/ */
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
msleep(10); msleep(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
udelay(150); udelay(150);
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Configure activity LED after PHY reset */ /* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL); led_ctrl = er32(LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl); ew32(LEDCTL, led_ctrl);
} }
/* Wait for FW to finish PHY configuration. */ /* Wait for FW to finish PHY configuration. */
...@@ -3906,8 +3906,8 @@ void e1000_phy_powerdown_workaround(struct e1000_hw *hw) ...@@ -3906,8 +3906,8 @@ void e1000_phy_powerdown_workaround(struct e1000_hw *hw)
do { do {
/* Disable link */ /* Disable link */
reg = E1000_READ_REG(hw, PHY_CTRL); reg = er32(PHY_CTRL);
E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE); E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
/* Write VR power-down enable - bits 9:8 should be 10b */ /* Write VR power-down enable - bits 9:8 should be 10b */
...@@ -3922,8 +3922,8 @@ void e1000_phy_powerdown_workaround(struct e1000_hw *hw) ...@@ -3922,8 +3922,8 @@ void e1000_phy_powerdown_workaround(struct e1000_hw *hw)
break; break;
/* Issue PHY reset and repeat at most one more time */ /* Issue PHY reset and repeat at most one more time */
reg = E1000_READ_REG(hw, CTRL); reg = er32(CTRL);
E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST); ew32(CTRL, reg | E1000_CTRL_PHY_RST);
retry++; retry++;
} while (retry); } while (retry);
...@@ -3981,8 +3981,8 @@ static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) ...@@ -3981,8 +3981,8 @@ static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
mdelay(5); mdelay(5);
} }
/* Disable GigE link negotiation */ /* Disable GigE link negotiation */
reg = E1000_READ_REG(hw, PHY_CTRL); reg = er32(PHY_CTRL);
E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE); E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
/* unable to acquire PCS lock */ /* unable to acquire PCS lock */
...@@ -4388,7 +4388,7 @@ s32 e1000_validate_mdi_setting(struct e1000_hw *hw) ...@@ -4388,7 +4388,7 @@ s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
s32 e1000_init_eeprom_params(struct e1000_hw *hw) s32 e1000_init_eeprom_params(struct e1000_hw *hw)
{ {
struct e1000_eeprom_info *eeprom = &hw->eeprom; struct e1000_eeprom_info *eeprom = &hw->eeprom;
u32 eecd = E1000_READ_REG(hw, EECD); u32 eecd = er32(EECD);
s32 ret_val = E1000_SUCCESS; s32 ret_val = E1000_SUCCESS;
u16 eeprom_size; u16 eeprom_size;
...@@ -4490,7 +4490,7 @@ s32 e1000_init_eeprom_params(struct e1000_hw *hw) ...@@ -4490,7 +4490,7 @@ s32 e1000_init_eeprom_params(struct e1000_hw *hw)
/* Ensure that the Autonomous FLASH update bit is cleared due to /* Ensure that the Autonomous FLASH update bit is cleared due to
* Flash update issue on parts which use a FLASH for NVM. */ * Flash update issue on parts which use a FLASH for NVM. */
eecd &= ~E1000_EECD_AUPDEN; eecd &= ~E1000_EECD_AUPDEN;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
} }
break; break;
case e1000_80003es2lan: case e1000_80003es2lan:
...@@ -4580,8 +4580,8 @@ static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) ...@@ -4580,8 +4580,8 @@ static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
* wait <delay> microseconds. * wait <delay> microseconds.
*/ */
*eecd = *eecd | E1000_EECD_SK; *eecd = *eecd | E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd); ew32(EECD, *eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec); udelay(hw->eeprom.delay_usec);
} }
...@@ -4597,8 +4597,8 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) ...@@ -4597,8 +4597,8 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
* wait 50 microseconds. * wait 50 microseconds.
*/ */
*eecd = *eecd & ~E1000_EECD_SK; *eecd = *eecd & ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd); ew32(EECD, *eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec); udelay(hw->eeprom.delay_usec);
} }
...@@ -4620,7 +4620,7 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) ...@@ -4620,7 +4620,7 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
* In order to do this, "data" must be broken down into bits. * In order to do this, "data" must be broken down into bits.
*/ */
mask = 0x01 << (count - 1); mask = 0x01 << (count - 1);
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
if (eeprom->type == e1000_eeprom_microwire) { if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~E1000_EECD_DO; eecd &= ~E1000_EECD_DO;
} else if (eeprom->type == e1000_eeprom_spi) { } else if (eeprom->type == e1000_eeprom_spi) {
...@@ -4637,8 +4637,8 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) ...@@ -4637,8 +4637,8 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
if (data & mask) if (data & mask)
eecd |= E1000_EECD_DI; eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec); udelay(eeprom->delay_usec);
...@@ -4651,7 +4651,7 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) ...@@ -4651,7 +4651,7 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
/* We leave the "DI" bit set to "0" when we leave this routine. */ /* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI; eecd &= ~E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
} }
/****************************************************************************** /******************************************************************************
...@@ -4672,7 +4672,7 @@ static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) ...@@ -4672,7 +4672,7 @@ static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
* always be clear. * always be clear.
*/ */
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0; data = 0;
...@@ -4681,7 +4681,7 @@ static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) ...@@ -4681,7 +4681,7 @@ static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
data = data << 1; data = data << 1;
e1000_raise_ee_clk(hw, &eecd); e1000_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
eecd &= ~(E1000_EECD_DI); eecd &= ~(E1000_EECD_DI);
if (eecd & E1000_EECD_DO) if (eecd & E1000_EECD_DO)
...@@ -4710,23 +4710,23 @@ static s32 e1000_acquire_eeprom(struct e1000_hw *hw) ...@@ -4710,23 +4710,23 @@ static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
return -E1000_ERR_SWFW_SYNC; return -E1000_ERR_SWFW_SYNC;
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
if (hw->mac_type != e1000_82573) { if (hw->mac_type != e1000_82573) {
/* Request EEPROM Access */ /* Request EEPROM Access */
if (hw->mac_type > e1000_82544) { if (hw->mac_type > e1000_82544) {
eecd |= E1000_EECD_REQ; eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
while ((!(eecd & E1000_EECD_GNT)) && while ((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) { (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++; i++;
udelay(5); udelay(5);
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
} }
if (!(eecd & E1000_EECD_GNT)) { if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ; eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n"); DEBUGOUT("Could not acquire EEPROM grant\n");
e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
return -E1000_ERR_EEPROM; return -E1000_ERR_EEPROM;
...@@ -4739,15 +4739,15 @@ static s32 e1000_acquire_eeprom(struct e1000_hw *hw) ...@@ -4739,15 +4739,15 @@ static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
if (eeprom->type == e1000_eeprom_microwire) { if (eeprom->type == e1000_eeprom_microwire) {
/* Clear SK and DI */ /* Clear SK and DI */
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
/* Set CS */ /* Set CS */
eecd |= E1000_EECD_CS; eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
} else if (eeprom->type == e1000_eeprom_spi) { } else if (eeprom->type == e1000_eeprom_spi) {
/* Clear SK and CS */ /* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
udelay(1); udelay(1);
} }
...@@ -4764,40 +4764,40 @@ static void e1000_standby_eeprom(struct e1000_hw *hw) ...@@ -4764,40 +4764,40 @@ static void e1000_standby_eeprom(struct e1000_hw *hw)
struct e1000_eeprom_info *eeprom = &hw->eeprom; struct e1000_eeprom_info *eeprom = &hw->eeprom;
u32 eecd; u32 eecd;
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
if (eeprom->type == e1000_eeprom_microwire) { if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec); udelay(eeprom->delay_usec);
/* Clock high */ /* Clock high */
eecd |= E1000_EECD_SK; eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec); udelay(eeprom->delay_usec);
/* Select EEPROM */ /* Select EEPROM */
eecd |= E1000_EECD_CS; eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec); udelay(eeprom->delay_usec);
/* Clock low */ /* Clock low */
eecd &= ~E1000_EECD_SK; eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec); udelay(eeprom->delay_usec);
} else if (eeprom->type == e1000_eeprom_spi) { } else if (eeprom->type == e1000_eeprom_spi) {
/* Toggle CS to flush commands */ /* Toggle CS to flush commands */
eecd |= E1000_EECD_CS; eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec); udelay(eeprom->delay_usec);
eecd &= ~E1000_EECD_CS; eecd &= ~E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(eeprom->delay_usec); udelay(eeprom->delay_usec);
} }
} }
...@@ -4813,13 +4813,13 @@ static void e1000_release_eeprom(struct e1000_hw *hw) ...@@ -4813,13 +4813,13 @@ static void e1000_release_eeprom(struct e1000_hw *hw)
DEBUGFUNC("e1000_release_eeprom"); DEBUGFUNC("e1000_release_eeprom");
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
if (hw->eeprom.type == e1000_eeprom_spi) { if (hw->eeprom.type == e1000_eeprom_spi) {
eecd |= E1000_EECD_CS; /* Pull CS high */ eecd |= E1000_EECD_CS; /* Pull CS high */
eecd &= ~E1000_EECD_SK; /* Lower SCK */ eecd &= ~E1000_EECD_SK; /* Lower SCK */
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
udelay(hw->eeprom.delay_usec); udelay(hw->eeprom.delay_usec);
} else if (hw->eeprom.type == e1000_eeprom_microwire) { } else if (hw->eeprom.type == e1000_eeprom_microwire) {
...@@ -4828,25 +4828,25 @@ static void e1000_release_eeprom(struct e1000_hw *hw) ...@@ -4828,25 +4828,25 @@ static void e1000_release_eeprom(struct e1000_hw *hw)
/* CS on Microwire is active-high */ /* CS on Microwire is active-high */
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
/* Rising edge of clock */ /* Rising edge of clock */
eecd |= E1000_EECD_SK; eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec); udelay(hw->eeprom.delay_usec);
/* Falling edge of clock */ /* Falling edge of clock */
eecd &= ~E1000_EECD_SK; eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
udelay(hw->eeprom.delay_usec); udelay(hw->eeprom.delay_usec);
} }
/* Stop requesting EEPROM access */ /* Stop requesting EEPROM access */
if (hw->mac_type > e1000_82544) { if (hw->mac_type > e1000_82544) {
eecd &= ~E1000_EECD_REQ; eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd); ew32(EECD, eecd);
} }
e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
...@@ -5009,13 +5009,13 @@ static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, ...@@ -5009,13 +5009,13 @@ static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words,
eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
E1000_EEPROM_RW_REG_START; E1000_EEPROM_RW_REG_START;
E1000_WRITE_REG(hw, EERD, eerd); ew32(EERD, eerd);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
if (error) { if (error) {
break; break;
} }
data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA);
} }
...@@ -5050,7 +5050,7 @@ static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, ...@@ -5050,7 +5050,7 @@ static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words,
break; break;
} }
E1000_WRITE_REG(hw, EEWR, register_value); ew32(EEWR, register_value);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
...@@ -5076,9 +5076,9 @@ static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) ...@@ -5076,9 +5076,9 @@ static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
for (i = 0; i < attempts; i++) { for (i = 0; i < attempts; i++) {
if (eerd == E1000_EEPROM_POLL_READ) if (eerd == E1000_EEPROM_POLL_READ)
reg = E1000_READ_REG(hw, EERD); reg = er32(EERD);
else else
reg = E1000_READ_REG(hw, EEWR); reg = er32(EEWR);
if (reg & E1000_EEPROM_RW_REG_DONE) { if (reg & E1000_EEPROM_RW_REG_DONE) {
done = E1000_SUCCESS; done = E1000_SUCCESS;
...@@ -5105,7 +5105,7 @@ static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) ...@@ -5105,7 +5105,7 @@ static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
return false; return false;
if (hw->mac_type == e1000_82573) { if (hw->mac_type == e1000_82573) {
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
/* Isolate bits 15 & 16 */ /* Isolate bits 15 & 16 */
eecd = ((eecd >> 15) & 0x03); eecd = ((eecd >> 15) & 0x03);
...@@ -5215,9 +5215,9 @@ s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) ...@@ -5215,9 +5215,9 @@ s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
e1000_commit_shadow_ram(hw); e1000_commit_shadow_ram(hw);
/* Reload the EEPROM, or else modifications will not appear /* Reload the EEPROM, or else modifications will not appear
* until after next adapter reset. */ * until after next adapter reset. */
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST; ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
msleep(10); msleep(10);
} }
return E1000_SUCCESS; return E1000_SUCCESS;
...@@ -5395,7 +5395,7 @@ static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, ...@@ -5395,7 +5395,7 @@ static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
* If DO does not go high in 10 milliseconds, then error out. * If DO does not go high in 10 milliseconds, then error out.
*/ */
for (i = 0; i < 200; i++) { for (i = 0; i < 200; i++) {
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
if (eecd & E1000_EECD_DO) break; if (eecd & E1000_EECD_DO) break;
udelay(50); udelay(50);
} }
...@@ -5449,9 +5449,9 @@ static s32 e1000_commit_shadow_ram(struct e1000_hw *hw) ...@@ -5449,9 +5449,9 @@ static s32 e1000_commit_shadow_ram(struct e1000_hw *hw)
if (hw->mac_type == e1000_82573) { if (hw->mac_type == e1000_82573) {
/* The flop register will be used to determine if flash type is STM */ /* The flop register will be used to determine if flash type is STM */
flop = E1000_READ_REG(hw, FLOP); flop = er32(FLOP);
for (i=0; i < attempts; i++) { for (i=0; i < attempts; i++) {
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
if ((eecd & E1000_EECD_FLUPD) == 0) { if ((eecd & E1000_EECD_FLUPD) == 0) {
break; break;
} }
...@@ -5464,14 +5464,14 @@ static s32 e1000_commit_shadow_ram(struct e1000_hw *hw) ...@@ -5464,14 +5464,14 @@ static s32 e1000_commit_shadow_ram(struct e1000_hw *hw)
/* If STM opcode located in bits 15:8 of flop, reset firmware */ /* If STM opcode located in bits 15:8 of flop, reset firmware */
if ((flop & 0xFF00) == E1000_STM_OPCODE) { if ((flop & 0xFF00) == E1000_STM_OPCODE) {
E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); ew32(HICR, E1000_HICR_FW_RESET);
} }
/* Perform the flash update */ /* Perform the flash update */
E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); ew32(EECD, eecd | E1000_EECD_FLUPD);
for (i=0; i < attempts; i++) { for (i=0; i < attempts; i++) {
eecd = E1000_READ_REG(hw, EECD); eecd = er32(EECD);
if ((eecd & E1000_EECD_FLUPD) == 0) { if ((eecd & E1000_EECD_FLUPD) == 0) {
break; break;
} }
...@@ -5487,7 +5487,7 @@ static s32 e1000_commit_shadow_ram(struct e1000_hw *hw) ...@@ -5487,7 +5487,7 @@ static s32 e1000_commit_shadow_ram(struct e1000_hw *hw)
/* We're writing to the opposite bank so if we're on bank 1, /* We're writing to the opposite bank so if we're on bank 1,
* write to bank 0 etc. We also need to erase the segment that * write to bank 0 etc. We also need to erase the segment that
* is going to be written */ * is going to be written */
if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) { if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
new_bank_offset = hw->flash_bank_size * 2; new_bank_offset = hw->flash_bank_size * 2;
old_bank_offset = 0; old_bank_offset = 0;
e1000_erase_ich8_4k_segment(hw, 1); e1000_erase_ich8_4k_segment(hw, 1);
...@@ -5621,7 +5621,7 @@ s32 e1000_read_mac_addr(struct e1000_hw *hw) ...@@ -5621,7 +5621,7 @@ s32 e1000_read_mac_addr(struct e1000_hw *hw)
case e1000_82546_rev_3: case e1000_82546_rev_3:
case e1000_82571: case e1000_82571:
case e1000_80003es2lan: case e1000_80003es2lan:
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) if (er32(STATUS) & E1000_STATUS_FUNC_1)
hw->perm_mac_addr[5] ^= 0x01; hw->perm_mac_addr[5] ^= 0x01;
break; break;
} }
...@@ -5666,9 +5666,9 @@ static void e1000_init_rx_addrs(struct e1000_hw *hw) ...@@ -5666,9 +5666,9 @@ static void e1000_init_rx_addrs(struct e1000_hw *hw)
DEBUGOUT("Clearing RAR[1-15]\n"); DEBUGOUT("Clearing RAR[1-15]\n");
for (i = 1; i < rar_num; i++) { for (i = 1; i < rar_num; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
} }
...@@ -5772,12 +5772,12 @@ void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) ...@@ -5772,12 +5772,12 @@ void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} else { } else {
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
} }
...@@ -5831,9 +5831,9 @@ void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) ...@@ -5831,9 +5831,9 @@ void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
} }
E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
/****************************************************************************** /******************************************************************************
...@@ -5853,12 +5853,12 @@ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) ...@@ -5853,12 +5853,12 @@ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} else { } else {
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
} }
...@@ -5896,7 +5896,7 @@ static void e1000_clear_vfta(struct e1000_hw *hw) ...@@ -5896,7 +5896,7 @@ static void e1000_clear_vfta(struct e1000_hw *hw)
* manageability unit */ * manageability unit */
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
} }
...@@ -5916,7 +5916,7 @@ static s32 e1000_id_led_init(struct e1000_hw *hw) ...@@ -5916,7 +5916,7 @@ static s32 e1000_id_led_init(struct e1000_hw *hw)
return E1000_SUCCESS; return E1000_SUCCESS;
} }
ledctl = E1000_READ_REG(hw, LEDCTL); ledctl = er32(LEDCTL);
hw->ledctl_default = ledctl; hw->ledctl_default = ledctl;
hw->ledctl_mode1 = hw->ledctl_default; hw->ledctl_mode1 = hw->ledctl_default;
hw->ledctl_mode2 = hw->ledctl_default; hw->ledctl_mode2 = hw->ledctl_default;
...@@ -6013,7 +6013,7 @@ s32 e1000_setup_led(struct e1000_hw *hw) ...@@ -6013,7 +6013,7 @@ s32 e1000_setup_led(struct e1000_hw *hw)
/* Fall Through */ /* Fall Through */
default: default:
if (hw->media_type == e1000_media_type_fiber) { if (hw->media_type == e1000_media_type_fiber) {
ledctl = E1000_READ_REG(hw, LEDCTL); ledctl = er32(LEDCTL);
/* Save current LEDCTL settings */ /* Save current LEDCTL settings */
hw->ledctl_default = ledctl; hw->ledctl_default = ledctl;
/* Turn off LED0 */ /* Turn off LED0 */
...@@ -6022,9 +6022,9 @@ s32 e1000_setup_led(struct e1000_hw *hw) ...@@ -6022,9 +6022,9 @@ s32 e1000_setup_led(struct e1000_hw *hw)
E1000_LEDCTL_LED0_MODE_MASK); E1000_LEDCTL_LED0_MODE_MASK);
ledctl |= (E1000_LEDCTL_MODE_LED_OFF << ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT); E1000_LEDCTL_LED0_MODE_SHIFT);
E1000_WRITE_REG(hw, LEDCTL, ledctl); ew32(LEDCTL, ledctl);
} else if (hw->media_type == e1000_media_type_copper) } else if (hw->media_type == e1000_media_type_copper)
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); ew32(LEDCTL, hw->ledctl_mode1);
break; break;
} }
...@@ -6064,7 +6064,7 @@ s32 e1000_blink_led_start(struct e1000_hw *hw) ...@@ -6064,7 +6064,7 @@ s32 e1000_blink_led_start(struct e1000_hw *hw)
ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
} }
E1000_WRITE_REG(hw, LEDCTL, ledctl_blink); ew32(LEDCTL, ledctl_blink);
return E1000_SUCCESS; return E1000_SUCCESS;
} }
...@@ -6103,7 +6103,7 @@ s32 e1000_cleanup_led(struct e1000_hw *hw) ...@@ -6103,7 +6103,7 @@ s32 e1000_cleanup_led(struct e1000_hw *hw)
break; break;
} }
/* Restore LEDCTL settings */ /* Restore LEDCTL settings */
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); ew32(LEDCTL, hw->ledctl_default);
break; break;
} }
...@@ -6117,7 +6117,7 @@ s32 e1000_cleanup_led(struct e1000_hw *hw) ...@@ -6117,7 +6117,7 @@ s32 e1000_cleanup_led(struct e1000_hw *hw)
*****************************************************************************/ *****************************************************************************/
s32 e1000_led_on(struct e1000_hw *hw) s32 e1000_led_on(struct e1000_hw *hw)
{ {
u32 ctrl = E1000_READ_REG(hw, CTRL); u32 ctrl = er32(CTRL);
DEBUGFUNC("e1000_led_on"); DEBUGFUNC("e1000_led_on");
...@@ -6149,13 +6149,13 @@ s32 e1000_led_on(struct e1000_hw *hw) ...@@ -6149,13 +6149,13 @@ s32 e1000_led_on(struct e1000_hw *hw)
e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
} else if (hw->media_type == e1000_media_type_copper) { } else if (hw->media_type == e1000_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); ew32(LEDCTL, hw->ledctl_mode2);
return E1000_SUCCESS; return E1000_SUCCESS;
} }
break; break;
} }
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
return E1000_SUCCESS; return E1000_SUCCESS;
} }
...@@ -6167,7 +6167,7 @@ s32 e1000_led_on(struct e1000_hw *hw) ...@@ -6167,7 +6167,7 @@ s32 e1000_led_on(struct e1000_hw *hw)
*****************************************************************************/ *****************************************************************************/
s32 e1000_led_off(struct e1000_hw *hw) s32 e1000_led_off(struct e1000_hw *hw)
{ {
u32 ctrl = E1000_READ_REG(hw, CTRL); u32 ctrl = er32(CTRL);
DEBUGFUNC("e1000_led_off"); DEBUGFUNC("e1000_led_off");
...@@ -6199,13 +6199,13 @@ s32 e1000_led_off(struct e1000_hw *hw) ...@@ -6199,13 +6199,13 @@ s32 e1000_led_off(struct e1000_hw *hw)
e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
} else if (hw->media_type == e1000_media_type_copper) { } else if (hw->media_type == e1000_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); ew32(LEDCTL, hw->ledctl_mode1);
return E1000_SUCCESS; return E1000_SUCCESS;
} }
break; break;
} }
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
return E1000_SUCCESS; return E1000_SUCCESS;
} }
...@@ -6219,93 +6219,93 @@ static void e1000_clear_hw_cntrs(struct e1000_hw *hw) ...@@ -6219,93 +6219,93 @@ static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
{ {
volatile u32 temp; volatile u32 temp;
temp = E1000_READ_REG(hw, CRCERRS); temp = er32(CRCERRS);
temp = E1000_READ_REG(hw, SYMERRS); temp = er32(SYMERRS);
temp = E1000_READ_REG(hw, MPC); temp = er32(MPC);
temp = E1000_READ_REG(hw, SCC); temp = er32(SCC);
temp = E1000_READ_REG(hw, ECOL); temp = er32(ECOL);
temp = E1000_READ_REG(hw, MCC); temp = er32(MCC);
temp = E1000_READ_REG(hw, LATECOL); temp = er32(LATECOL);
temp = E1000_READ_REG(hw, COLC); temp = er32(COLC);
temp = E1000_READ_REG(hw, DC); temp = er32(DC);
temp = E1000_READ_REG(hw, SEC); temp = er32(SEC);
temp = E1000_READ_REG(hw, RLEC); temp = er32(RLEC);
temp = E1000_READ_REG(hw, XONRXC); temp = er32(XONRXC);
temp = E1000_READ_REG(hw, XONTXC); temp = er32(XONTXC);
temp = E1000_READ_REG(hw, XOFFRXC); temp = er32(XOFFRXC);
temp = E1000_READ_REG(hw, XOFFTXC); temp = er32(XOFFTXC);
temp = E1000_READ_REG(hw, FCRUC); temp = er32(FCRUC);
if (hw->mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
temp = E1000_READ_REG(hw, PRC64); temp = er32(PRC64);
temp = E1000_READ_REG(hw, PRC127); temp = er32(PRC127);
temp = E1000_READ_REG(hw, PRC255); temp = er32(PRC255);
temp = E1000_READ_REG(hw, PRC511); temp = er32(PRC511);
temp = E1000_READ_REG(hw, PRC1023); temp = er32(PRC1023);
temp = E1000_READ_REG(hw, PRC1522); temp = er32(PRC1522);
} }
temp = E1000_READ_REG(hw, GPRC); temp = er32(GPRC);
temp = E1000_READ_REG(hw, BPRC); temp = er32(BPRC);
temp = E1000_READ_REG(hw, MPRC); temp = er32(MPRC);
temp = E1000_READ_REG(hw, GPTC); temp = er32(GPTC);
temp = E1000_READ_REG(hw, GORCL); temp = er32(GORCL);
temp = E1000_READ_REG(hw, GORCH); temp = er32(GORCH);
temp = E1000_READ_REG(hw, GOTCL); temp = er32(GOTCL);
temp = E1000_READ_REG(hw, GOTCH); temp = er32(GOTCH);
temp = E1000_READ_REG(hw, RNBC); temp = er32(RNBC);
temp = E1000_READ_REG(hw, RUC); temp = er32(RUC);
temp = E1000_READ_REG(hw, RFC); temp = er32(RFC);
temp = E1000_READ_REG(hw, ROC); temp = er32(ROC);
temp = E1000_READ_REG(hw, RJC); temp = er32(RJC);
temp = E1000_READ_REG(hw, TORL); temp = er32(TORL);
temp = E1000_READ_REG(hw, TORH); temp = er32(TORH);
temp = E1000_READ_REG(hw, TOTL); temp = er32(TOTL);
temp = E1000_READ_REG(hw, TOTH); temp = er32(TOTH);
temp = E1000_READ_REG(hw, TPR); temp = er32(TPR);
temp = E1000_READ_REG(hw, TPT); temp = er32(TPT);
if (hw->mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
temp = E1000_READ_REG(hw, PTC64); temp = er32(PTC64);
temp = E1000_READ_REG(hw, PTC127); temp = er32(PTC127);
temp = E1000_READ_REG(hw, PTC255); temp = er32(PTC255);
temp = E1000_READ_REG(hw, PTC511); temp = er32(PTC511);
temp = E1000_READ_REG(hw, PTC1023); temp = er32(PTC1023);
temp = E1000_READ_REG(hw, PTC1522); temp = er32(PTC1522);
} }
temp = E1000_READ_REG(hw, MPTC); temp = er32(MPTC);
temp = E1000_READ_REG(hw, BPTC); temp = er32(BPTC);
if (hw->mac_type < e1000_82543) return; if (hw->mac_type < e1000_82543) return;
temp = E1000_READ_REG(hw, ALGNERRC); temp = er32(ALGNERRC);
temp = E1000_READ_REG(hw, RXERRC); temp = er32(RXERRC);
temp = E1000_READ_REG(hw, TNCRS); temp = er32(TNCRS);
temp = E1000_READ_REG(hw, CEXTERR); temp = er32(CEXTERR);
temp = E1000_READ_REG(hw, TSCTC); temp = er32(TSCTC);
temp = E1000_READ_REG(hw, TSCTFC); temp = er32(TSCTFC);
if (hw->mac_type <= e1000_82544) return; if (hw->mac_type <= e1000_82544) return;
temp = E1000_READ_REG(hw, MGTPRC); temp = er32(MGTPRC);
temp = E1000_READ_REG(hw, MGTPDC); temp = er32(MGTPDC);
temp = E1000_READ_REG(hw, MGTPTC); temp = er32(MGTPTC);
if (hw->mac_type <= e1000_82547_rev_2) return; if (hw->mac_type <= e1000_82547_rev_2) return;
temp = E1000_READ_REG(hw, IAC); temp = er32(IAC);
temp = E1000_READ_REG(hw, ICRXOC); temp = er32(ICRXOC);
if (hw->mac_type == e1000_ich8lan) return; if (hw->mac_type == e1000_ich8lan) return;
temp = E1000_READ_REG(hw, ICRXPTC); temp = er32(ICRXPTC);
temp = E1000_READ_REG(hw, ICRXATC); temp = er32(ICRXATC);
temp = E1000_READ_REG(hw, ICTXPTC); temp = er32(ICTXPTC);
temp = E1000_READ_REG(hw, ICTXATC); temp = er32(ICTXATC);
temp = E1000_READ_REG(hw, ICTXQEC); temp = er32(ICTXQEC);
temp = E1000_READ_REG(hw, ICTXQMTC); temp = er32(ICTXQMTC);
temp = E1000_READ_REG(hw, ICRXDMTC); temp = er32(ICRXDMTC);
} }
/****************************************************************************** /******************************************************************************
...@@ -6331,7 +6331,7 @@ void e1000_reset_adaptive(struct e1000_hw *hw) ...@@ -6331,7 +6331,7 @@ void e1000_reset_adaptive(struct e1000_hw *hw)
hw->ifs_ratio = IFS_RATIO; hw->ifs_ratio = IFS_RATIO;
} }
hw->in_ifs_mode = false; hw->in_ifs_mode = false;
E1000_WRITE_REG(hw, AIT, 0); ew32(AIT, 0);
} else { } else {
DEBUGOUT("Not in Adaptive IFS mode!\n"); DEBUGOUT("Not in Adaptive IFS mode!\n");
} }
...@@ -6358,14 +6358,14 @@ void e1000_update_adaptive(struct e1000_hw *hw) ...@@ -6358,14 +6358,14 @@ void e1000_update_adaptive(struct e1000_hw *hw)
hw->current_ifs_val = hw->ifs_min_val; hw->current_ifs_val = hw->ifs_min_val;
else else
hw->current_ifs_val += hw->ifs_step_size; hw->current_ifs_val += hw->ifs_step_size;
E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); ew32(AIT, hw->current_ifs_val);
} }
} }
} else { } else {
if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
hw->current_ifs_val = 0; hw->current_ifs_val = 0;
hw->in_ifs_mode = false; hw->in_ifs_mode = false;
E1000_WRITE_REG(hw, AIT, 0); ew32(AIT, 0);
} }
} }
} else { } else {
...@@ -6489,7 +6489,7 @@ void e1000_get_bus_info(struct e1000_hw *hw) ...@@ -6489,7 +6489,7 @@ void e1000_get_bus_info(struct e1000_hw *hw)
hw->bus_width = e1000_bus_width_pciex_1; hw->bus_width = e1000_bus_width_pciex_1;
break; break;
default: default:
status = E1000_READ_REG(hw, STATUS); status = er32(STATUS);
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
e1000_bus_type_pcix : e1000_bus_type_pci; e1000_bus_type_pcix : e1000_bus_type_pci;
...@@ -7114,7 +7114,7 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) ...@@ -7114,7 +7114,7 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
/* MAC writes into PHY register based on the state transition /* MAC writes into PHY register based on the state transition
* and start auto-negotiation. SW driver can overwrite the settings * and start auto-negotiation. SW driver can overwrite the settings
* in CSR PHY power control E1000_PHY_CTRL register. */ * in CSR PHY power control E1000_PHY_CTRL register. */
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); phy_ctrl = er32(PHY_CTRL);
} else { } else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
if (ret_val) if (ret_val)
...@@ -7131,7 +7131,7 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) ...@@ -7131,7 +7131,7 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
} else { } else {
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
} else { } else {
phy_data &= ~IGP02E1000_PM_D3_LPLU; phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
...@@ -7182,7 +7182,7 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) ...@@ -7182,7 +7182,7 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
} else { } else {
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
} else { } else {
phy_data |= IGP02E1000_PM_D3_LPLU; phy_data |= IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
...@@ -7231,7 +7231,7 @@ static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) ...@@ -7231,7 +7231,7 @@ static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
return E1000_SUCCESS; return E1000_SUCCESS;
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); phy_ctrl = er32(PHY_CTRL);
} else { } else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
if (ret_val) if (ret_val)
...@@ -7241,7 +7241,7 @@ static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) ...@@ -7241,7 +7241,7 @@ static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
if (!active) { if (!active) {
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
} else { } else {
phy_data &= ~IGP02E1000_PM_D0_LPLU; phy_data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
...@@ -7282,7 +7282,7 @@ static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) ...@@ -7282,7 +7282,7 @@ static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); ew32(PHY_CTRL, phy_ctrl);
} else { } else {
phy_data |= IGP02E1000_PM_D0_LPLU; phy_data |= IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
...@@ -7404,14 +7404,14 @@ static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) ...@@ -7404,14 +7404,14 @@ static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
u8 i; u8 i;
/* Check that the host interface is enabled. */ /* Check that the host interface is enabled. */
hicr = E1000_READ_REG(hw, HICR); hicr = er32(HICR);
if ((hicr & E1000_HICR_EN) == 0) { if ((hicr & E1000_HICR_EN) == 0) {
DEBUGOUT("E1000_HOST_EN bit disabled.\n"); DEBUGOUT("E1000_HOST_EN bit disabled.\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND; return -E1000_ERR_HOST_INTERFACE_COMMAND;
} }
/* check the previous command is completed */ /* check the previous command is completed */
for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
hicr = E1000_READ_REG(hw, HICR); hicr = er32(HICR);
if (!(hicr & E1000_HICR_C)) if (!(hicr & E1000_HICR_C))
break; break;
mdelay(1); mdelay(1);
...@@ -7524,7 +7524,7 @@ static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, ...@@ -7524,7 +7524,7 @@ static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
/* The device driver writes the relevant command block into the ram area. */ /* The device driver writes the relevant command block into the ram area. */
for (i = 0; i < length; i++) { for (i = 0; i < length; i++) {
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *) hdr + i)); E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *) hdr + i));
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
return E1000_SUCCESS; return E1000_SUCCESS;
...@@ -7541,9 +7541,9 @@ static s32 e1000_mng_write_commit(struct e1000_hw *hw) ...@@ -7541,9 +7541,9 @@ static s32 e1000_mng_write_commit(struct e1000_hw *hw)
{ {
u32 hicr; u32 hicr;
hicr = E1000_READ_REG(hw, HICR); hicr = er32(HICR);
/* Setting this bit tells the ARC that a new command is pending. */ /* Setting this bit tells the ARC that a new command is pending. */
E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); ew32(HICR, hicr | E1000_HICR_C);
return E1000_SUCCESS; return E1000_SUCCESS;
} }
...@@ -7558,7 +7558,7 @@ bool e1000_check_mng_mode(struct e1000_hw *hw) ...@@ -7558,7 +7558,7 @@ bool e1000_check_mng_mode(struct e1000_hw *hw)
{ {
u32 fwsm; u32 fwsm;
fwsm = E1000_READ_REG(hw, FWSM); fwsm = er32(FWSM);
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
if ((fwsm & E1000_FWSM_MODE_MASK) == if ((fwsm & E1000_FWSM_MODE_MASK) ==
...@@ -7671,14 +7671,14 @@ u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) ...@@ -7671,14 +7671,14 @@ u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
u32 fwsm, factps; u32 fwsm, factps;
if (hw->asf_firmware_present) { if (hw->asf_firmware_present) {
manc = E1000_READ_REG(hw, MANC); manc = er32(MANC);
if (!(manc & E1000_MANC_RCV_TCO_EN) || if (!(manc & E1000_MANC_RCV_TCO_EN) ||
!(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
return false; return false;
if (e1000_arc_subsystem_valid(hw)) { if (e1000_arc_subsystem_valid(hw)) {
fwsm = E1000_READ_REG(hw, FWSM); fwsm = er32(FWSM);
factps = E1000_READ_REG(hw, FACTPS); factps = er32(FACTPS);
if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) == if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) ==
e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG)) e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG))
...@@ -7792,9 +7792,9 @@ static void e1000_set_pci_express_master_disable(struct e1000_hw *hw) ...@@ -7792,9 +7792,9 @@ static void e1000_set_pci_express_master_disable(struct e1000_hw *hw)
if (hw->bus_type != e1000_bus_type_pci_express) if (hw->bus_type != e1000_bus_type_pci_express)
return; return;
ctrl = E1000_READ_REG(hw, CTRL); ctrl = er32(CTRL);
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
E1000_WRITE_REG(hw, CTRL, ctrl); ew32(CTRL, ctrl);
} }
/******************************************************************************* /*******************************************************************************
...@@ -7820,7 +7820,7 @@ s32 e1000_disable_pciex_master(struct e1000_hw *hw) ...@@ -7820,7 +7820,7 @@ s32 e1000_disable_pciex_master(struct e1000_hw *hw)
e1000_set_pci_express_master_disable(hw); e1000_set_pci_express_master_disable(hw);
while (timeout) { while (timeout) {
if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
break; break;
else else
udelay(100); udelay(100);
...@@ -7861,7 +7861,7 @@ static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) ...@@ -7861,7 +7861,7 @@ static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
case e1000_80003es2lan: case e1000_80003es2lan:
case e1000_ich8lan: case e1000_ich8lan:
while (timeout) { while (timeout) {
if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) if (er32(EECD) & E1000_EECD_AUTO_RD)
break; break;
else msleep(1); else msleep(1);
timeout--; timeout--;
...@@ -7905,13 +7905,13 @@ static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) ...@@ -7905,13 +7905,13 @@ static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
break; break;
case e1000_80003es2lan: case e1000_80003es2lan:
/* Separate *_CFG_DONE_* bit for each port */ /* Separate *_CFG_DONE_* bit for each port */
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) if (er32(STATUS) & E1000_STATUS_FUNC_1)
cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
/* Fall Through */ /* Fall Through */
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
while (timeout) { while (timeout) {
if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) if (er32(EEMNGCTL) & cfg_mask)
break; break;
else else
msleep(1); msleep(1);
...@@ -7957,11 +7957,11 @@ static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) ...@@ -7957,11 +7957,11 @@ static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
/* Get the FW semaphore. */ /* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1; timeout = hw->eeprom.word_size + 1;
while (timeout) { while (timeout) {
swsm = E1000_READ_REG(hw, SWSM); swsm = er32(SWSM);
swsm |= E1000_SWSM_SWESMBI; swsm |= E1000_SWSM_SWESMBI;
E1000_WRITE_REG(hw, SWSM, swsm); ew32(SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */ /* if we managed to set the bit we got the semaphore. */
swsm = E1000_READ_REG(hw, SWSM); swsm = er32(SWSM);
if (swsm & E1000_SWSM_SWESMBI) if (swsm & E1000_SWSM_SWESMBI)
break; break;
...@@ -7996,13 +7996,13 @@ static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) ...@@ -7996,13 +7996,13 @@ static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
if (!hw->eeprom_semaphore_present) if (!hw->eeprom_semaphore_present)
return; return;
swsm = E1000_READ_REG(hw, SWSM); swsm = er32(SWSM);
if (hw->mac_type == e1000_80003es2lan) { if (hw->mac_type == e1000_80003es2lan) {
/* Release both semaphores. */ /* Release both semaphores. */
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
} else } else
swsm &= ~(E1000_SWSM_SWESMBI); swsm &= ~(E1000_SWSM_SWESMBI);
E1000_WRITE_REG(hw, SWSM, swsm); ew32(SWSM, swsm);
} }
/*************************************************************************** /***************************************************************************
...@@ -8027,7 +8027,7 @@ static s32 e1000_get_software_semaphore(struct e1000_hw *hw) ...@@ -8027,7 +8027,7 @@ static s32 e1000_get_software_semaphore(struct e1000_hw *hw)
} }
while (timeout) { while (timeout) {
swsm = E1000_READ_REG(hw, SWSM); swsm = er32(SWSM);
/* If SMBI bit cleared, it is now set and we hold the semaphore */ /* If SMBI bit cleared, it is now set and we hold the semaphore */
if (!(swsm & E1000_SWSM_SMBI)) if (!(swsm & E1000_SWSM_SMBI))
break; break;
...@@ -8060,10 +8060,10 @@ static void e1000_release_software_semaphore(struct e1000_hw *hw) ...@@ -8060,10 +8060,10 @@ static void e1000_release_software_semaphore(struct e1000_hw *hw)
return; return;
} }
swsm = E1000_READ_REG(hw, SWSM); swsm = er32(SWSM);
/* Release the SW semaphores.*/ /* Release the SW semaphores.*/
swsm &= ~E1000_SWSM_SMBI; swsm &= ~E1000_SWSM_SMBI;
E1000_WRITE_REG(hw, SWSM, swsm); ew32(SWSM, swsm);
} }
/****************************************************************************** /******************************************************************************
...@@ -8083,13 +8083,13 @@ s32 e1000_check_phy_reset_block(struct e1000_hw *hw) ...@@ -8083,13 +8083,13 @@ s32 e1000_check_phy_reset_block(struct e1000_hw *hw)
u32 fwsm = 0; u32 fwsm = 0;
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
fwsm = E1000_READ_REG(hw, FWSM); fwsm = er32(FWSM);
return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
: E1000_BLK_PHY_RESET; : E1000_BLK_PHY_RESET;
} }
if (hw->mac_type > e1000_82547_rev_2) if (hw->mac_type > e1000_82547_rev_2)
manc = E1000_READ_REG(hw, MANC); manc = er32(MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
E1000_BLK_PHY_RESET : E1000_SUCCESS; E1000_BLK_PHY_RESET : E1000_SUCCESS;
} }
...@@ -8108,7 +8108,7 @@ static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw) ...@@ -8108,7 +8108,7 @@ static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw)
case e1000_82572: case e1000_82572:
case e1000_82573: case e1000_82573:
case e1000_80003es2lan: case e1000_80003es2lan:
fwsm = E1000_READ_REG(hw, FWSM); fwsm = er32(FWSM);
if ((fwsm & E1000_FWSM_MODE_MASK) != 0) if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
return true; return true;
break; break;
...@@ -8143,19 +8143,19 @@ static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop) ...@@ -8143,19 +8143,19 @@ static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop)
return E1000_SUCCESS; return E1000_SUCCESS;
if (no_snoop) { if (no_snoop) {
gcr_reg = E1000_READ_REG(hw, GCR); gcr_reg = er32(GCR);
gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
gcr_reg |= no_snoop; gcr_reg |= no_snoop;
E1000_WRITE_REG(hw, GCR, gcr_reg); ew32(GCR, gcr_reg);
} }
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
u32 ctrl_ext; u32 ctrl_ext;
E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL); ew32(GCR, PCI_EX_82566_SNOOP_ALL);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_RO_DIS; ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
} }
return E1000_SUCCESS; return E1000_SUCCESS;
...@@ -8179,11 +8179,11 @@ static s32 e1000_get_software_flag(struct e1000_hw *hw) ...@@ -8179,11 +8179,11 @@ static s32 e1000_get_software_flag(struct e1000_hw *hw)
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
while (timeout) { while (timeout) {
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); extcnf_ctrl = er32(EXTCNF_CTRL);
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); ew32(EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
break; break;
mdelay(1); mdelay(1);
...@@ -8215,9 +8215,9 @@ static void e1000_release_software_flag(struct e1000_hw *hw) ...@@ -8215,9 +8215,9 @@ static void e1000_release_software_flag(struct e1000_hw *hw)
DEBUGFUNC("e1000_release_software_flag"); DEBUGFUNC("e1000_release_software_flag");
if (hw->mac_type == e1000_ich8lan) { if (hw->mac_type == e1000_ich8lan) {
extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL); extcnf_ctrl= er32(EXTCNF_CTRL);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); ew32(EXTCNF_CTRL, extcnf_ctrl);
} }
return; return;
...@@ -8248,7 +8248,7 @@ static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, ...@@ -8248,7 +8248,7 @@ static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words,
* to be updated with each read. * to be updated with each read.
*/ */
/* Value of bit 22 corresponds to the flash bank we're on. */ /* Value of bit 22 corresponds to the flash bank we're on. */
flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
/* Adjust offset appropriately if we're on bank 1 - adjust for word size */ /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
bank_offset = flash_bank * (hw->flash_bank_size * 2); bank_offset = flash_bank * (hw->flash_bank_size * 2);
...@@ -8813,32 +8813,32 @@ static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw) ...@@ -8813,32 +8813,32 @@ static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw)
return E1000_SUCCESS; return E1000_SUCCESS;
/* Check if SW needs configure the PHY */ /* Check if SW needs configure the PHY */
reg_data = E1000_READ_REG(hw, FEXTNVM); reg_data = er32(FEXTNVM);
if (!(reg_data & FEXTNVM_SW_CONFIG)) if (!(reg_data & FEXTNVM_SW_CONFIG))
return E1000_SUCCESS; return E1000_SUCCESS;
/* Wait for basic configuration completes before proceeding*/ /* Wait for basic configuration completes before proceeding*/
loop = 0; loop = 0;
do { do {
reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE; reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE;
udelay(100); udelay(100);
loop++; loop++;
} while ((!reg_data) && (loop < 50)); } while ((!reg_data) && (loop < 50));
/* Clear the Init Done bit for the next init event */ /* Clear the Init Done bit for the next init event */
reg_data = E1000_READ_REG(hw, STATUS); reg_data = er32(STATUS);
reg_data &= ~E1000_STATUS_LAN_INIT_DONE; reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
E1000_WRITE_REG(hw, STATUS, reg_data); ew32(STATUS, reg_data);
/* Make sure HW does not configure LCD from PHY extended configuration /* Make sure HW does not configure LCD from PHY extended configuration
before SW configuration */ before SW configuration */
reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); reg_data = er32(EXTCNF_CTRL);
if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
reg_data = E1000_READ_REG(hw, EXTCNF_SIZE); reg_data = er32(EXTCNF_SIZE);
cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
cnf_size >>= 16; cnf_size >>= 16;
if (cnf_size) { if (cnf_size) {
reg_data = E1000_READ_REG(hw, EXTCNF_CTRL); reg_data = er32(EXTCNF_CTRL);
cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
/* cnf_base_addr is in DWORD */ /* cnf_base_addr is in DWORD */
cnf_base_addr >>= 16; cnf_base_addr >>= 16;
......
...@@ -269,12 +269,13 @@ module_exit(e1000_exit_module); ...@@ -269,12 +269,13 @@ module_exit(e1000_exit_module);
static int e1000_request_irq(struct e1000_adapter *adapter) static int e1000_request_irq(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
irq_handler_t handler = e1000_intr; irq_handler_t handler = e1000_intr;
int irq_flags = IRQF_SHARED; int irq_flags = IRQF_SHARED;
int err; int err;
if (adapter->hw.mac_type >= e1000_82571) { if (hw->mac_type >= e1000_82571) {
adapter->have_msi = !pci_enable_msi(adapter->pdev); adapter->have_msi = !pci_enable_msi(adapter->pdev);
if (adapter->have_msi) { if (adapter->have_msi) {
handler = e1000_intr_msi; handler = e1000_intr_msi;
...@@ -311,8 +312,10 @@ static void e1000_free_irq(struct e1000_adapter *adapter) ...@@ -311,8 +312,10 @@ static void e1000_free_irq(struct e1000_adapter *adapter)
static void e1000_irq_disable(struct e1000_adapter *adapter) static void e1000_irq_disable(struct e1000_adapter *adapter)
{ {
E1000_WRITE_REG(&adapter->hw, IMC, ~0); struct e1000_hw *hw = &adapter->hw;
E1000_WRITE_FLUSH(&adapter->hw);
ew32(IMC, ~0);
E1000_WRITE_FLUSH();
synchronize_irq(adapter->pdev->irq); synchronize_irq(adapter->pdev->irq);
} }
...@@ -323,18 +326,21 @@ static void e1000_irq_disable(struct e1000_adapter *adapter) ...@@ -323,18 +326,21 @@ static void e1000_irq_disable(struct e1000_adapter *adapter)
static void e1000_irq_enable(struct e1000_adapter *adapter) static void e1000_irq_enable(struct e1000_adapter *adapter)
{ {
E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK); struct e1000_hw *hw = &adapter->hw;
E1000_WRITE_FLUSH(&adapter->hw);
ew32(IMS, IMS_ENABLE_MASK);
E1000_WRITE_FLUSH();
} }
static void e1000_update_mng_vlan(struct e1000_adapter *adapter) static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
u16 vid = adapter->hw.mng_cookie.vlan_id; u16 vid = hw->mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id; u16 old_vid = adapter->mng_vlan_id;
if (adapter->vlgrp) { if (adapter->vlgrp) {
if (!vlan_group_get_device(adapter->vlgrp, vid)) { if (!vlan_group_get_device(adapter->vlgrp, vid)) {
if (adapter->hw.mng_cookie.status & if (hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
e1000_vlan_rx_add_vid(netdev, vid); e1000_vlan_rx_add_vid(netdev, vid);
adapter->mng_vlan_id = vid; adapter->mng_vlan_id = vid;
...@@ -365,21 +371,20 @@ static void e1000_release_hw_control(struct e1000_adapter *adapter) ...@@ -365,21 +371,20 @@ static void e1000_release_hw_control(struct e1000_adapter *adapter)
{ {
u32 ctrl_ext; u32 ctrl_ext;
u32 swsm; u32 swsm;
struct e1000_hw *hw = &adapter->hw;
/* Let firmware taken over control of h/w */ /* Let firmware taken over control of h/w */
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82573: case e1000_82573:
swsm = E1000_READ_REG(&adapter->hw, SWSM); swsm = er32(SWSM);
E1000_WRITE_REG(&adapter->hw, SWSM, ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
swsm & ~E1000_SWSM_DRV_LOAD);
break; break;
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
case e1000_80003es2lan: case e1000_80003es2lan:
case e1000_ich8lan: case e1000_ich8lan:
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
break; break;
default: default:
break; break;
...@@ -401,21 +406,20 @@ static void e1000_get_hw_control(struct e1000_adapter *adapter) ...@@ -401,21 +406,20 @@ static void e1000_get_hw_control(struct e1000_adapter *adapter)
{ {
u32 ctrl_ext; u32 ctrl_ext;
u32 swsm; u32 swsm;
struct e1000_hw *hw = &adapter->hw;
/* Let firmware know the driver has taken over */ /* Let firmware know the driver has taken over */
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82573: case e1000_82573:
swsm = E1000_READ_REG(&adapter->hw, SWSM); swsm = er32(SWSM);
E1000_WRITE_REG(&adapter->hw, SWSM, ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
swsm | E1000_SWSM_DRV_LOAD);
break; break;
case e1000_82571: case e1000_82571:
case e1000_82572: case e1000_82572:
case e1000_80003es2lan: case e1000_80003es2lan:
case e1000_ich8lan: case e1000_ich8lan:
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
break; break;
default: default:
break; break;
...@@ -424,8 +428,10 @@ static void e1000_get_hw_control(struct e1000_adapter *adapter) ...@@ -424,8 +428,10 @@ static void e1000_get_hw_control(struct e1000_adapter *adapter)
static void e1000_init_manageability(struct e1000_adapter *adapter) static void e1000_init_manageability(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
if (adapter->en_mng_pt) { if (adapter->en_mng_pt) {
u32 manc = E1000_READ_REG(&adapter->hw, MANC); u32 manc = er32(MANC);
/* disable hardware interception of ARP */ /* disable hardware interception of ARP */
manc &= ~(E1000_MANC_ARP_EN); manc &= ~(E1000_MANC_ARP_EN);
...@@ -433,36 +439,38 @@ static void e1000_init_manageability(struct e1000_adapter *adapter) ...@@ -433,36 +439,38 @@ static void e1000_init_manageability(struct e1000_adapter *adapter)
/* enable receiving management packets to the host */ /* enable receiving management packets to the host */
/* this will probably generate destination unreachable messages /* this will probably generate destination unreachable messages
* from the host OS, but the packets will be handled on SMBUS */ * from the host OS, but the packets will be handled on SMBUS */
if (adapter->hw.has_manc2h) { if (hw->has_manc2h) {
u32 manc2h = E1000_READ_REG(&adapter->hw, MANC2H); u32 manc2h = er32(MANC2H);
manc |= E1000_MANC_EN_MNG2HOST; manc |= E1000_MANC_EN_MNG2HOST;
#define E1000_MNG2HOST_PORT_623 (1 << 5) #define E1000_MNG2HOST_PORT_623 (1 << 5)
#define E1000_MNG2HOST_PORT_664 (1 << 6) #define E1000_MNG2HOST_PORT_664 (1 << 6)
manc2h |= E1000_MNG2HOST_PORT_623; manc2h |= E1000_MNG2HOST_PORT_623;
manc2h |= E1000_MNG2HOST_PORT_664; manc2h |= E1000_MNG2HOST_PORT_664;
E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h); ew32(MANC2H, manc2h);
} }
E1000_WRITE_REG(&adapter->hw, MANC, manc); ew32(MANC, manc);
} }
} }
static void e1000_release_manageability(struct e1000_adapter *adapter) static void e1000_release_manageability(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
if (adapter->en_mng_pt) { if (adapter->en_mng_pt) {
u32 manc = E1000_READ_REG(&adapter->hw, MANC); u32 manc = er32(MANC);
/* re-enable hardware interception of ARP */ /* re-enable hardware interception of ARP */
manc |= E1000_MANC_ARP_EN; manc |= E1000_MANC_ARP_EN;
if (adapter->hw.has_manc2h) if (hw->has_manc2h)
manc &= ~E1000_MANC_EN_MNG2HOST; manc &= ~E1000_MANC_EN_MNG2HOST;
/* don't explicitly have to mess with MANC2H since /* don't explicitly have to mess with MANC2H since
* MANC has an enable disable that gates MANC2H */ * MANC has an enable disable that gates MANC2H */
E1000_WRITE_REG(&adapter->hw, MANC, manc); ew32(MANC, manc);
} }
} }
...@@ -497,6 +505,8 @@ static void e1000_configure(struct e1000_adapter *adapter) ...@@ -497,6 +505,8 @@ static void e1000_configure(struct e1000_adapter *adapter)
int e1000_up(struct e1000_adapter *adapter) int e1000_up(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
/* hardware has been reset, we need to reload some things */ /* hardware has been reset, we need to reload some things */
e1000_configure(adapter); e1000_configure(adapter);
...@@ -508,7 +518,7 @@ int e1000_up(struct e1000_adapter *adapter) ...@@ -508,7 +518,7 @@ int e1000_up(struct e1000_adapter *adapter)
e1000_irq_enable(adapter); e1000_irq_enable(adapter);
/* fire a link change interrupt to start the watchdog */ /* fire a link change interrupt to start the watchdog */
E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC); ew32(ICS, E1000_ICS_LSC);
return 0; return 0;
} }
...@@ -524,30 +534,33 @@ int e1000_up(struct e1000_adapter *adapter) ...@@ -524,30 +534,33 @@ int e1000_up(struct e1000_adapter *adapter)
void e1000_power_up_phy(struct e1000_adapter *adapter) void e1000_power_up_phy(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
u16 mii_reg = 0; u16 mii_reg = 0;
/* Just clear the power down bit to wake the phy back up */ /* Just clear the power down bit to wake the phy back up */
if (adapter->hw.media_type == e1000_media_type_copper) { if (hw->media_type == e1000_media_type_copper) {
/* according to the manual, the phy will retain its /* according to the manual, the phy will retain its
* settings across a power-down/up cycle */ * settings across a power-down/up cycle */
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN; mii_reg &= ~MII_CR_POWER_DOWN;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
} }
} }
static void e1000_power_down_phy(struct e1000_adapter *adapter) static void e1000_power_down_phy(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
/* Power down the PHY so no link is implied when interface is down * /* Power down the PHY so no link is implied when interface is down *
* The PHY cannot be powered down if any of the following is true * * The PHY cannot be powered down if any of the following is true *
* (a) WoL is enabled * (a) WoL is enabled
* (b) AMT is active * (b) AMT is active
* (c) SoL/IDER session is active */ * (c) SoL/IDER session is active */
if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && if (!adapter->wol && hw->mac_type >= e1000_82540 &&
adapter->hw.media_type == e1000_media_type_copper) { hw->media_type == e1000_media_type_copper) {
u16 mii_reg = 0; u16 mii_reg = 0;
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82540: case e1000_82540:
case e1000_82545: case e1000_82545:
case e1000_82545_rev_3: case e1000_82545_rev_3:
...@@ -557,8 +570,7 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter) ...@@ -557,8 +570,7 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
case e1000_82541_rev_2: case e1000_82541_rev_2:
case e1000_82547: case e1000_82547:
case e1000_82547_rev_2: case e1000_82547_rev_2:
if (E1000_READ_REG(&adapter->hw, MANC) & if (er32(MANC) & E1000_MANC_SMBUS_EN)
E1000_MANC_SMBUS_EN)
goto out; goto out;
break; break;
case e1000_82571: case e1000_82571:
...@@ -566,16 +578,16 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter) ...@@ -566,16 +578,16 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
case e1000_82573: case e1000_82573:
case e1000_80003es2lan: case e1000_80003es2lan:
case e1000_ich8lan: case e1000_ich8lan:
if (e1000_check_mng_mode(&adapter->hw) || if (e1000_check_mng_mode(hw) ||
e1000_check_phy_reset_block(&adapter->hw)) e1000_check_phy_reset_block(hw))
goto out; goto out;
break; break;
default: default:
goto out; goto out;
} }
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN; mii_reg |= MII_CR_POWER_DOWN;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
mdelay(1); mdelay(1);
} }
out: out:
...@@ -622,6 +634,7 @@ void e1000_reinit_locked(struct e1000_adapter *adapter) ...@@ -622,6 +634,7 @@ void e1000_reinit_locked(struct e1000_adapter *adapter)
void e1000_reset(struct e1000_adapter *adapter) void e1000_reset(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
u32 pba = 0, tx_space, min_tx_space, min_rx_space; u32 pba = 0, tx_space, min_tx_space, min_rx_space;
u16 fc_high_water_mark = E1000_FC_HIGH_DIFF; u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
bool legacy_pba_adjust = false; bool legacy_pba_adjust = false;
...@@ -630,7 +643,7 @@ void e1000_reset(struct e1000_adapter *adapter) ...@@ -630,7 +643,7 @@ void e1000_reset(struct e1000_adapter *adapter)
* To take effect CTRL.RST is required. * To take effect CTRL.RST is required.
*/ */
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82542_rev2_0: case e1000_82542_rev2_0:
case e1000_82542_rev2_1: case e1000_82542_rev2_1:
case e1000_82543: case e1000_82543:
...@@ -671,16 +684,16 @@ void e1000_reset(struct e1000_adapter *adapter) ...@@ -671,16 +684,16 @@ void e1000_reset(struct e1000_adapter *adapter)
if (adapter->netdev->mtu > E1000_RXBUFFER_8192) if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
pba -= 8; /* allocate more FIFO for Tx */ pba -= 8; /* allocate more FIFO for Tx */
if (adapter->hw.mac_type == e1000_82547) { if (hw->mac_type == e1000_82547) {
adapter->tx_fifo_head = 0; adapter->tx_fifo_head = 0;
adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
adapter->tx_fifo_size = adapter->tx_fifo_size =
(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
atomic_set(&adapter->tx_fifo_stall, 0); atomic_set(&adapter->tx_fifo_stall, 0);
} }
} else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) { } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
/* adjust PBA for jumbo frames */ /* adjust PBA for jumbo frames */
E1000_WRITE_REG(&adapter->hw, PBA, pba); ew32(PBA, pba);
/* To maintain wire speed transmits, the Tx FIFO should be /* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accomodate two full transmit packets, * large enough to accomodate two full transmit packets,
...@@ -688,7 +701,7 @@ void e1000_reset(struct e1000_adapter *adapter) ...@@ -688,7 +701,7 @@ void e1000_reset(struct e1000_adapter *adapter)
* the Rx FIFO should be large enough to accomodate at least * the Rx FIFO should be large enough to accomodate at least
* one full receive packet and is similarly rounded up and * one full receive packet and is similarly rounded up and
* expressed in KB. */ * expressed in KB. */
pba = E1000_READ_REG(&adapter->hw, PBA); pba = er32(PBA);
/* upper 16 bits has Tx packet buffer allocation size in KB */ /* upper 16 bits has Tx packet buffer allocation size in KB */
tx_space = pba >> 16; tx_space = pba >> 16;
/* lower 16 bits has Rx packet buffer allocation size in KB */ /* lower 16 bits has Rx packet buffer allocation size in KB */
...@@ -711,7 +724,7 @@ void e1000_reset(struct e1000_adapter *adapter) ...@@ -711,7 +724,7 @@ void e1000_reset(struct e1000_adapter *adapter)
pba = pba - (min_tx_space - tx_space); pba = pba - (min_tx_space - tx_space);
/* PCI/PCIx hardware has PBA alignment constraints */ /* PCI/PCIx hardware has PBA alignment constraints */
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82545 ... e1000_82546_rev_3: case e1000_82545 ... e1000_82546_rev_3:
pba &= ~(E1000_PBA_8K - 1); pba &= ~(E1000_PBA_8K - 1);
break; break;
...@@ -722,7 +735,7 @@ void e1000_reset(struct e1000_adapter *adapter) ...@@ -722,7 +735,7 @@ void e1000_reset(struct e1000_adapter *adapter)
/* if short on rx space, rx wins and must trump tx /* if short on rx space, rx wins and must trump tx
* adjustment or use Early Receive if available */ * adjustment or use Early Receive if available */
if (pba < min_rx_space) { if (pba < min_rx_space) {
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82573: case e1000_82573:
/* ERT enabled in e1000_configure_rx */ /* ERT enabled in e1000_configure_rx */
break; break;
...@@ -734,7 +747,7 @@ void e1000_reset(struct e1000_adapter *adapter) ...@@ -734,7 +747,7 @@ void e1000_reset(struct e1000_adapter *adapter)
} }
} }
E1000_WRITE_REG(&adapter->hw, PBA, pba); ew32(PBA, pba);
/* flow control settings */ /* flow control settings */
/* Set the FC high water mark to 90% of the FIFO size. /* Set the FC high water mark to 90% of the FIFO size.
...@@ -747,54 +760,54 @@ void e1000_reset(struct e1000_adapter *adapter) ...@@ -747,54 +760,54 @@ void e1000_reset(struct e1000_adapter *adapter)
if (pba < E1000_PBA_16K) if (pba < E1000_PBA_16K)
fc_high_water_mark = (pba * 1024) - 1600; fc_high_water_mark = (pba * 1024) - 1600;
adapter->hw.fc_high_water = fc_high_water_mark; hw->fc_high_water = fc_high_water_mark;
adapter->hw.fc_low_water = fc_high_water_mark - 8; hw->fc_low_water = fc_high_water_mark - 8;
if (adapter->hw.mac_type == e1000_80003es2lan) if (hw->mac_type == e1000_80003es2lan)
adapter->hw.fc_pause_time = 0xFFFF; hw->fc_pause_time = 0xFFFF;
else else
adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; hw->fc_pause_time = E1000_FC_PAUSE_TIME;
adapter->hw.fc_send_xon = 1; hw->fc_send_xon = 1;
adapter->hw.fc = adapter->hw.original_fc; hw->fc = hw->original_fc;
/* Allow time for pending master requests to run */ /* Allow time for pending master requests to run */
e1000_reset_hw(&adapter->hw); e1000_reset_hw(hw);
if (adapter->hw.mac_type >= e1000_82544) if (hw->mac_type >= e1000_82544)
E1000_WRITE_REG(&adapter->hw, WUC, 0); ew32(WUC, 0);
if (e1000_init_hw(&adapter->hw)) if (e1000_init_hw(hw))
DPRINTK(PROBE, ERR, "Hardware Error\n"); DPRINTK(PROBE, ERR, "Hardware Error\n");
e1000_update_mng_vlan(adapter); e1000_update_mng_vlan(adapter);
/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
if (adapter->hw.mac_type >= e1000_82544 && if (hw->mac_type >= e1000_82544 &&
adapter->hw.mac_type <= e1000_82547_rev_2 && hw->mac_type <= e1000_82547_rev_2 &&
adapter->hw.autoneg == 1 && hw->autoneg == 1 &&
adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) { hw->autoneg_advertised == ADVERTISE_1000_FULL) {
u32 ctrl = E1000_READ_REG(&adapter->hw, CTRL); u32 ctrl = er32(CTRL);
/* clear phy power management bit if we are in gig only mode, /* clear phy power management bit if we are in gig only mode,
* which if enabled will attempt negotiation to 100Mb, which * which if enabled will attempt negotiation to 100Mb, which
* can cause a loss of link at power off or driver unload */ * can cause a loss of link at power off or driver unload */
ctrl &= ~E1000_CTRL_SWDPIN3; ctrl &= ~E1000_CTRL_SWDPIN3;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); ew32(CTRL, ctrl);
} }
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
e1000_reset_adaptive(&adapter->hw); e1000_reset_adaptive(hw);
e1000_phy_get_info(&adapter->hw, &adapter->phy_info); e1000_phy_get_info(hw, &adapter->phy_info);
if (!adapter->smart_power_down && if (!adapter->smart_power_down &&
(adapter->hw.mac_type == e1000_82571 || (hw->mac_type == e1000_82571 ||
adapter->hw.mac_type == e1000_82572)) { hw->mac_type == e1000_82572)) {
u16 phy_data = 0; u16 phy_data = 0;
/* speed up time to link by disabling smart power down, ignore /* speed up time to link by disabling smart power down, ignore
* the return value of this function because there is nothing * the return value of this function because there is nothing
* different we would do if it failed */ * different we would do if it failed */
e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data); &phy_data);
phy_data &= ~IGP02E1000_PM_SPD; phy_data &= ~IGP02E1000_PM_SPD;
e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data); phy_data);
} }
...@@ -871,12 +884,12 @@ static void e1000_dump_eeprom(struct e1000_adapter *adapter) ...@@ -871,12 +884,12 @@ static void e1000_dump_eeprom(struct e1000_adapter *adapter)
* and a hardware reset occur. * and a hardware reset occur.
**/ **/
static int __devinit static int __devinit e1000_probe(struct pci_dev *pdev,
e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
const struct pci_device_id *ent)
{ {
struct net_device *netdev; struct net_device *netdev;
struct e1000_adapter *adapter; struct e1000_adapter *adapter;
struct e1000_hw *hw;
static int cards_found = 0; static int cards_found = 0;
static int global_quad_port_a = 0; /* global ksp3 port a indication */ static int global_quad_port_a = 0; /* global ksp3 port a indication */
...@@ -916,20 +929,22 @@ e1000_probe(struct pci_dev *pdev, ...@@ -916,20 +929,22 @@ e1000_probe(struct pci_dev *pdev,
adapter = netdev_priv(netdev); adapter = netdev_priv(netdev);
adapter->netdev = netdev; adapter->netdev = netdev;
adapter->pdev = pdev; adapter->pdev = pdev;
adapter->hw.back = adapter;
adapter->msg_enable = (1 << debug) - 1; adapter->msg_enable = (1 << debug) - 1;
hw = &adapter->hw;
hw->back = adapter;
err = -EIO; err = -EIO;
adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, BAR_0), hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
pci_resource_len(pdev, BAR_0)); pci_resource_len(pdev, BAR_0));
if (!adapter->hw.hw_addr) if (!hw->hw_addr)
goto err_ioremap; goto err_ioremap;
for (i = BAR_1; i <= BAR_5; i++) { for (i = BAR_1; i <= BAR_5; i++) {
if (pci_resource_len(pdev, i) == 0) if (pci_resource_len(pdev, i) == 0)
continue; continue;
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
adapter->hw.io_base = pci_resource_start(pdev, i); hw->io_base = pci_resource_start(pdev, i);
break; break;
} }
} }
...@@ -966,43 +981,43 @@ e1000_probe(struct pci_dev *pdev, ...@@ -966,43 +981,43 @@ e1000_probe(struct pci_dev *pdev,
err = -EIO; err = -EIO;
/* Flash BAR mapping must happen after e1000_sw_init /* Flash BAR mapping must happen after e1000_sw_init
* because it depends on mac_type */ * because it depends on mac_type */
if ((adapter->hw.mac_type == e1000_ich8lan) && if ((hw->mac_type == e1000_ich8lan) &&
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
adapter->hw.flash_address = hw->flash_address =
ioremap(pci_resource_start(pdev, 1), ioremap(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1)); pci_resource_len(pdev, 1));
if (!adapter->hw.flash_address) if (!hw->flash_address)
goto err_flashmap; goto err_flashmap;
} }
if (e1000_check_phy_reset_block(&adapter->hw)) if (e1000_check_phy_reset_block(hw))
DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
if (adapter->hw.mac_type >= e1000_82543) { if (hw->mac_type >= e1000_82543) {
netdev->features = NETIF_F_SG | netdev->features = NETIF_F_SG |
NETIF_F_HW_CSUM | NETIF_F_HW_CSUM |
NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_TX |
NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_FILTER; NETIF_F_HW_VLAN_FILTER;
if (adapter->hw.mac_type == e1000_ich8lan) if (hw->mac_type == e1000_ich8lan)
netdev->features &= ~NETIF_F_HW_VLAN_FILTER; netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
} }
if ((adapter->hw.mac_type >= e1000_82544) && if ((hw->mac_type >= e1000_82544) &&
(adapter->hw.mac_type != e1000_82547)) (hw->mac_type != e1000_82547))
netdev->features |= NETIF_F_TSO; netdev->features |= NETIF_F_TSO;
if (adapter->hw.mac_type > e1000_82547_rev_2) if (hw->mac_type > e1000_82547_rev_2)
netdev->features |= NETIF_F_TSO6; netdev->features |= NETIF_F_TSO6;
if (pci_using_dac) if (pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA; netdev->features |= NETIF_F_HIGHDMA;
netdev->features |= NETIF_F_LLTX; netdev->features |= NETIF_F_LLTX;
adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
/* initialize eeprom parameters */ /* initialize eeprom parameters */
if (e1000_init_eeprom_params(&adapter->hw)) { if (e1000_init_eeprom_params(hw)) {
E1000_ERR("EEPROM initialization failed\n"); E1000_ERR("EEPROM initialization failed\n");
goto err_eeprom; goto err_eeprom;
} }
...@@ -1010,10 +1025,10 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1010,10 +1025,10 @@ e1000_probe(struct pci_dev *pdev,
/* before reading the EEPROM, reset the controller to /* before reading the EEPROM, reset the controller to
* put the device in a known good starting state */ * put the device in a known good starting state */
e1000_reset_hw(&adapter->hw); e1000_reset_hw(hw);
/* make sure the EEPROM is good */ /* make sure the EEPROM is good */
if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) { if (e1000_validate_eeprom_checksum(hw) < 0) {
DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
e1000_dump_eeprom(adapter); e1000_dump_eeprom(adapter);
/* /*
...@@ -1024,20 +1039,20 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1024,20 +1039,20 @@ e1000_probe(struct pci_dev *pdev,
* interface after manually setting a hw addr using * interface after manually setting a hw addr using
* `ip set address` * `ip set address`
*/ */
memset(adapter->hw.mac_addr, 0, netdev->addr_len); memset(hw->mac_addr, 0, netdev->addr_len);
} else { } else {
/* copy the MAC address out of the EEPROM */ /* copy the MAC address out of the EEPROM */
if (e1000_read_mac_addr(&adapter->hw)) if (e1000_read_mac_addr(hw))
DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
} }
/* don't block initalization here due to bad MAC address */ /* don't block initalization here due to bad MAC address */
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len); memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) if (!is_valid_ether_addr(netdev->perm_addr))
DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
e1000_get_bus_info(&adapter->hw); e1000_get_bus_info(hw);
init_timer(&adapter->tx_fifo_stall_timer); init_timer(&adapter->tx_fifo_stall_timer);
adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
...@@ -1060,18 +1075,18 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1060,18 +1075,18 @@ e1000_probe(struct pci_dev *pdev,
* enable the ACPI Magic Packet filter * enable the ACPI Magic Packet filter
*/ */
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_82542_rev2_0: case e1000_82542_rev2_0:
case e1000_82542_rev2_1: case e1000_82542_rev2_1:
case e1000_82543: case e1000_82543:
break; break;
case e1000_82544: case e1000_82544:
e1000_read_eeprom(&adapter->hw, e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
eeprom_apme_mask = E1000_EEPROM_82544_APM; eeprom_apme_mask = E1000_EEPROM_82544_APM;
break; break;
case e1000_ich8lan: case e1000_ich8lan:
e1000_read_eeprom(&adapter->hw, e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
eeprom_apme_mask = E1000_EEPROM_ICH8_APME; eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
break; break;
...@@ -1079,14 +1094,14 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1079,14 +1094,14 @@ e1000_probe(struct pci_dev *pdev,
case e1000_82546_rev_3: case e1000_82546_rev_3:
case e1000_82571: case e1000_82571:
case e1000_80003es2lan: case e1000_80003es2lan:
if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){ if (er32(STATUS) & E1000_STATUS_FUNC_1){
e1000_read_eeprom(&adapter->hw, e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
break; break;
} }
/* Fall Through */ /* Fall Through */
default: default:
e1000_read_eeprom(&adapter->hw, e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
break; break;
} }
...@@ -1105,7 +1120,7 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1105,7 +1120,7 @@ e1000_probe(struct pci_dev *pdev,
case E1000_DEV_ID_82571EB_FIBER: case E1000_DEV_ID_82571EB_FIBER:
/* Wake events only supported on port A for dual fiber /* Wake events only supported on port A for dual fiber
* regardless of eeprom setting */ * regardless of eeprom setting */
if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1) if (er32(STATUS) & E1000_STATUS_FUNC_1)
adapter->eeprom_wol = 0; adapter->eeprom_wol = 0;
break; break;
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
...@@ -1128,8 +1143,6 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1128,8 +1143,6 @@ e1000_probe(struct pci_dev *pdev,
adapter->wol = adapter->eeprom_wol; adapter->wol = adapter->eeprom_wol;
/* print bus type/speed/width info */ /* print bus type/speed/width info */
{
struct e1000_hw *hw = &adapter->hw;
DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
(hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
...@@ -1142,11 +1155,10 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1142,11 +1155,10 @@ e1000_probe(struct pci_dev *pdev,
(hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
(hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
"32-bit")); "32-bit"));
}
printk("%s\n", print_mac(mac, netdev->dev_addr)); printk("%s\n", print_mac(mac, netdev->dev_addr));
if (adapter->hw.bus_type == e1000_bus_type_pci_express) { if (hw->bus_type == e1000_bus_type_pci_express) {
DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no " DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
"longer be supported by this driver in the future.\n", "longer be supported by this driver in the future.\n",
pdev->vendor, pdev->device); pdev->vendor, pdev->device);
...@@ -1161,8 +1173,8 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1161,8 +1173,8 @@ e1000_probe(struct pci_dev *pdev,
* DRV_LOAD until the interface is up. For all other cases, * DRV_LOAD until the interface is up. For all other cases,
* let the f/w know that the h/w is now under the control * let the f/w know that the h/w is now under the control
* of the driver. */ * of the driver. */
if (adapter->hw.mac_type != e1000_82573 || if (hw->mac_type != e1000_82573 ||
!e1000_check_mng_mode(&adapter->hw)) !e1000_check_mng_mode(hw))
e1000_get_hw_control(adapter); e1000_get_hw_control(adapter);
/* tell the stack to leave us alone until e1000_open() is called */ /* tell the stack to leave us alone until e1000_open() is called */
...@@ -1181,11 +1193,11 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1181,11 +1193,11 @@ e1000_probe(struct pci_dev *pdev,
err_register: err_register:
e1000_release_hw_control(adapter); e1000_release_hw_control(adapter);
err_eeprom: err_eeprom:
if (!e1000_check_phy_reset_block(&adapter->hw)) if (!e1000_check_phy_reset_block(hw))
e1000_phy_hw_reset(&adapter->hw); e1000_phy_hw_reset(hw);
if (adapter->hw.flash_address) if (hw->flash_address)
iounmap(adapter->hw.flash_address); iounmap(hw->flash_address);
err_flashmap: err_flashmap:
#ifdef CONFIG_E1000_NAPI #ifdef CONFIG_E1000_NAPI
for (i = 0; i < adapter->num_rx_queues; i++) for (i = 0; i < adapter->num_rx_queues; i++)
...@@ -1198,7 +1210,7 @@ e1000_probe(struct pci_dev *pdev, ...@@ -1198,7 +1210,7 @@ e1000_probe(struct pci_dev *pdev,
kfree(adapter->polling_netdev); kfree(adapter->polling_netdev);
#endif #endif
err_sw_init: err_sw_init:
iounmap(adapter->hw.hw_addr); iounmap(hw->hw_addr);
err_ioremap: err_ioremap:
free_netdev(netdev); free_netdev(netdev);
err_alloc_etherdev: err_alloc_etherdev:
...@@ -1223,6 +1235,7 @@ static void __devexit e1000_remove(struct pci_dev *pdev) ...@@ -1223,6 +1235,7 @@ static void __devexit e1000_remove(struct pci_dev *pdev)
{ {
struct net_device *netdev = pci_get_drvdata(pdev); struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
#ifdef CONFIG_E1000_NAPI #ifdef CONFIG_E1000_NAPI
int i; int i;
#endif #endif
...@@ -1242,8 +1255,8 @@ static void __devexit e1000_remove(struct pci_dev *pdev) ...@@ -1242,8 +1255,8 @@ static void __devexit e1000_remove(struct pci_dev *pdev)
unregister_netdev(netdev); unregister_netdev(netdev);
if (!e1000_check_phy_reset_block(&adapter->hw)) if (!e1000_check_phy_reset_block(hw))
e1000_phy_hw_reset(&adapter->hw); e1000_phy_hw_reset(hw);
kfree(adapter->tx_ring); kfree(adapter->tx_ring);
kfree(adapter->rx_ring); kfree(adapter->rx_ring);
...@@ -1251,9 +1264,9 @@ static void __devexit e1000_remove(struct pci_dev *pdev) ...@@ -1251,9 +1264,9 @@ static void __devexit e1000_remove(struct pci_dev *pdev)
kfree(adapter->polling_netdev); kfree(adapter->polling_netdev);
#endif #endif
iounmap(adapter->hw.hw_addr); iounmap(hw->hw_addr);
if (adapter->hw.flash_address) if (hw->flash_address)
iounmap(adapter->hw.flash_address); iounmap(hw->flash_address);
pci_release_regions(pdev); pci_release_regions(pdev);
free_netdev(netdev); free_netdev(netdev);
...@@ -1407,6 +1420,7 @@ static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) ...@@ -1407,6 +1420,7 @@ static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
static int e1000_open(struct net_device *netdev) static int e1000_open(struct net_device *netdev)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int err; int err;
/* disallow open during test */ /* disallow open during test */
...@@ -1426,15 +1440,15 @@ static int e1000_open(struct net_device *netdev) ...@@ -1426,15 +1440,15 @@ static int e1000_open(struct net_device *netdev)
e1000_power_up_phy(adapter); e1000_power_up_phy(adapter);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
if ((adapter->hw.mng_cookie.status & if ((hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
e1000_update_mng_vlan(adapter); e1000_update_mng_vlan(adapter);
} }
/* If AMT is enabled, let the firmware know that the network /* If AMT is enabled, let the firmware know that the network
* interface is now open */ * interface is now open */
if (adapter->hw.mac_type == e1000_82573 && if (hw->mac_type == e1000_82573 &&
e1000_check_mng_mode(&adapter->hw)) e1000_check_mng_mode(hw))
e1000_get_hw_control(adapter); e1000_get_hw_control(adapter);
/* before we allocate an interrupt, we must be ready to handle it. /* before we allocate an interrupt, we must be ready to handle it.
...@@ -1459,7 +1473,7 @@ static int e1000_open(struct net_device *netdev) ...@@ -1459,7 +1473,7 @@ static int e1000_open(struct net_device *netdev)
netif_start_queue(netdev); netif_start_queue(netdev);
/* fire a link status change interrupt to start the watchdog */ /* fire a link status change interrupt to start the watchdog */
E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC); ew32(ICS, E1000_ICS_LSC);
return E1000_SUCCESS; return E1000_SUCCESS;
...@@ -1490,6 +1504,7 @@ static int e1000_open(struct net_device *netdev) ...@@ -1490,6 +1504,7 @@ static int e1000_open(struct net_device *netdev)
static int e1000_close(struct net_device *netdev) static int e1000_close(struct net_device *netdev)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
e1000_down(adapter); e1000_down(adapter);
...@@ -1501,7 +1516,7 @@ static int e1000_close(struct net_device *netdev) ...@@ -1501,7 +1516,7 @@ static int e1000_close(struct net_device *netdev)
/* kill manageability vlan ID if supported, but not if a vlan with /* kill manageability vlan ID if supported, but not if a vlan with
* the same ID is registered on the host OS (let 8021q kill it) */ * the same ID is registered on the host OS (let 8021q kill it) */
if ((adapter->hw.mng_cookie.status & if ((hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
!(adapter->vlgrp && !(adapter->vlgrp &&
vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
...@@ -1510,8 +1525,8 @@ static int e1000_close(struct net_device *netdev) ...@@ -1510,8 +1525,8 @@ static int e1000_close(struct net_device *netdev)
/* If AMT is enabled, let the firmware know that the network /* If AMT is enabled, let the firmware know that the network
* interface is now closed */ * interface is now closed */
if (adapter->hw.mac_type == e1000_82573 && if (hw->mac_type == e1000_82573 &&
e1000_check_mng_mode(&adapter->hw)) e1000_check_mng_mode(hw))
e1000_release_hw_control(adapter); e1000_release_hw_control(adapter);
return 0; return 0;
...@@ -1526,13 +1541,14 @@ static int e1000_close(struct net_device *netdev) ...@@ -1526,13 +1541,14 @@ static int e1000_close(struct net_device *netdev)
static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
unsigned long len) unsigned long len)
{ {
struct e1000_hw *hw = &adapter->hw;
unsigned long begin = (unsigned long) start; unsigned long begin = (unsigned long) start;
unsigned long end = begin + len; unsigned long end = begin + len;
/* First rev 82545 and 82546 need to not allow any memory /* First rev 82545 and 82546 need to not allow any memory
* write location to cross 64k boundary due to errata 23 */ * write location to cross 64k boundary due to errata 23 */
if (adapter->hw.mac_type == e1000_82545 || if (hw->mac_type == e1000_82545 ||
adapter->hw.mac_type == e1000_82546) { hw->mac_type == e1000_82546) {
return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
} }
...@@ -1663,18 +1679,18 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) ...@@ -1663,18 +1679,18 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
tdba = adapter->tx_ring[0].dma; tdba = adapter->tx_ring[0].dma;
tdlen = adapter->tx_ring[0].count * tdlen = adapter->tx_ring[0].count *
sizeof(struct e1000_tx_desc); sizeof(struct e1000_tx_desc);
E1000_WRITE_REG(hw, TDLEN, tdlen); ew32(TDLEN, tdlen);
E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); ew32(TDBAH, (tdba >> 32));
E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(hw, TDT, 0); ew32(TDT, 0);
E1000_WRITE_REG(hw, TDH, 0); ew32(TDH, 0);
adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
break; break;
} }
/* Set the default values for the Tx Inter Packet Gap timer */ /* Set the default values for the Tx Inter Packet Gap timer */
if (adapter->hw.mac_type <= e1000_82547_rev_2 && if (hw->mac_type <= e1000_82547_rev_2 &&
(hw->media_type == e1000_media_type_fiber || (hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes)) hw->media_type == e1000_media_type_internal_serdes))
tipg = DEFAULT_82543_TIPG_IPGT_FIBER; tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
...@@ -1699,34 +1715,34 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) ...@@ -1699,34 +1715,34 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
} }
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
E1000_WRITE_REG(hw, TIPG, tipg); ew32(TIPG, tipg);
/* Set the Tx Interrupt Delay register */ /* Set the Tx Interrupt Delay register */
E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); ew32(TIDV, adapter->tx_int_delay);
if (hw->mac_type >= e1000_82540) if (hw->mac_type >= e1000_82540)
E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); ew32(TADV, adapter->tx_abs_int_delay);
/* Program the Transmit Control Register */ /* Program the Transmit Control Register */
tctl = E1000_READ_REG(hw, TCTL); tctl = er32(TCTL);
tctl &= ~E1000_TCTL_CT; tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
tarc = E1000_READ_REG(hw, TARC0); tarc = er32(TARC0);
/* set the speed mode bit, we'll clear it if we're not at /* set the speed mode bit, we'll clear it if we're not at
* gigabit link later */ * gigabit link later */
tarc |= (1 << 21); tarc |= (1 << 21);
E1000_WRITE_REG(hw, TARC0, tarc); ew32(TARC0, tarc);
} else if (hw->mac_type == e1000_80003es2lan) { } else if (hw->mac_type == e1000_80003es2lan) {
tarc = E1000_READ_REG(hw, TARC0); tarc = er32(TARC0);
tarc |= 1; tarc |= 1;
E1000_WRITE_REG(hw, TARC0, tarc); ew32(TARC0, tarc);
tarc = E1000_READ_REG(hw, TARC1); tarc = er32(TARC1);
tarc |= 1; tarc |= 1;
E1000_WRITE_REG(hw, TARC1, tarc); ew32(TARC1, tarc);
} }
e1000_config_collision_dist(hw); e1000_config_collision_dist(hw);
...@@ -1749,7 +1765,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) ...@@ -1749,7 +1765,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
hw->bus_type == e1000_bus_type_pcix) hw->bus_type == e1000_bus_type_pcix)
adapter->pcix_82544 = 1; adapter->pcix_82544 = 1;
E1000_WRITE_REG(hw, TCTL, tctl); ew32(TCTL, tctl);
} }
...@@ -1764,6 +1780,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) ...@@ -1764,6 +1780,7 @@ static void e1000_configure_tx(struct e1000_adapter *adapter)
static int e1000_setup_rx_resources(struct e1000_adapter *adapter, static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rxdr) struct e1000_rx_ring *rxdr)
{ {
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev; struct pci_dev *pdev = adapter->pdev;
int size, desc_len; int size, desc_len;
...@@ -1796,7 +1813,7 @@ static int e1000_setup_rx_resources(struct e1000_adapter *adapter, ...@@ -1796,7 +1813,7 @@ static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
return -ENOMEM; return -ENOMEM;
} }
if (adapter->hw.mac_type <= e1000_82547_rev_2) if (hw->mac_type <= e1000_82547_rev_2)
desc_len = sizeof(struct e1000_rx_desc); desc_len = sizeof(struct e1000_rx_desc);
else else
desc_len = sizeof(union e1000_rx_desc_packet_split); desc_len = sizeof(union e1000_rx_desc_packet_split);
...@@ -1892,21 +1909,22 @@ int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) ...@@ -1892,21 +1909,22 @@ int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
(((S) & (PAGE_SIZE - 1)) ? 1 : 0)) (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter) static void e1000_setup_rctl(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
u32 rctl, rfctl; u32 rctl, rfctl;
u32 psrctl = 0; u32 psrctl = 0;
#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
u32 pages = 0; u32 pages = 0;
#endif #endif
rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl = er32(RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
if (adapter->hw.tbi_compatibility_on == 1) if (hw->tbi_compatibility_on == 1)
rctl |= E1000_RCTL_SBP; rctl |= E1000_RCTL_SBP;
else else
rctl &= ~E1000_RCTL_SBP; rctl &= ~E1000_RCTL_SBP;
...@@ -1959,7 +1977,7 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter) ...@@ -1959,7 +1977,7 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter)
/* allocations using alloc_page take too long for regular MTU /* allocations using alloc_page take too long for regular MTU
* so only enable packet split for jumbo frames */ * so only enable packet split for jumbo frames */
pages = PAGE_USE_COUNT(adapter->netdev->mtu); pages = PAGE_USE_COUNT(adapter->netdev->mtu);
if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) && if ((hw->mac_type >= e1000_82571) && (pages <= 3) &&
PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE)) PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
adapter->rx_ps_pages = pages; adapter->rx_ps_pages = pages;
else else
...@@ -1967,14 +1985,14 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter) ...@@ -1967,14 +1985,14 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter)
#endif #endif
if (adapter->rx_ps_pages) { if (adapter->rx_ps_pages) {
/* Configure extra packet-split registers */ /* Configure extra packet-split registers */
rfctl = E1000_READ_REG(&adapter->hw, RFCTL); rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_EXTEN; rfctl |= E1000_RFCTL_EXTEN;
/* disable packet split support for IPv6 extension headers, /* disable packet split support for IPv6 extension headers,
* because some malformed IPv6 headers can hang the RX */ * because some malformed IPv6 headers can hang the RX */
rfctl |= (E1000_RFCTL_IPV6_EX_DIS | rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
E1000_RFCTL_NEW_IPV6_EXT_DIS); E1000_RFCTL_NEW_IPV6_EXT_DIS);
E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); ew32(RFCTL, rfctl);
rctl |= E1000_RCTL_DTYP_PS; rctl |= E1000_RCTL_DTYP_PS;
...@@ -1994,10 +2012,10 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter) ...@@ -1994,10 +2012,10 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter)
break; break;
} }
E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl); ew32(PSRCTL, psrctl);
} }
E1000_WRITE_REG(&adapter->hw, RCTL, rctl); ew32(RCTL, rctl);
} }
/** /**
...@@ -2027,30 +2045,29 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -2027,30 +2045,29 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
} }
/* disable receives while setting up the descriptors */ /* disable receives while setting up the descriptors */
rctl = E1000_READ_REG(hw, RCTL); rctl = er32(RCTL);
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); ew32(RCTL, rctl & ~E1000_RCTL_EN);
/* set the Receive Delay Timer Register */ /* set the Receive Delay Timer Register */
E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); ew32(RDTR, adapter->rx_int_delay);
if (hw->mac_type >= e1000_82540) { if (hw->mac_type >= e1000_82540) {
E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); ew32(RADV, adapter->rx_abs_int_delay);
if (adapter->itr_setting != 0) if (adapter->itr_setting != 0)
E1000_WRITE_REG(hw, ITR, ew32(ITR, 1000000000 / (adapter->itr * 256));
1000000000 / (adapter->itr * 256));
} }
if (hw->mac_type >= e1000_82571) { if (hw->mac_type >= e1000_82571) {
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
/* Reset delay timers after every interrupt */ /* Reset delay timers after every interrupt */
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
#ifdef CONFIG_E1000_NAPI #ifdef CONFIG_E1000_NAPI
/* Auto-Mask interrupts upon ICR access */ /* Auto-Mask interrupts upon ICR access */
ctrl_ext |= E1000_CTRL_EXT_IAME; ctrl_ext |= E1000_CTRL_EXT_IAME;
E1000_WRITE_REG(hw, IAM, 0xffffffff); ew32(IAM, 0xffffffff);
#endif #endif
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
/* Setup the HW Rx Head and Tail Descriptor Pointers and /* Setup the HW Rx Head and Tail Descriptor Pointers and
...@@ -2059,11 +2076,11 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -2059,11 +2076,11 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
case 1: case 1:
default: default:
rdba = adapter->rx_ring[0].dma; rdba = adapter->rx_ring[0].dma;
E1000_WRITE_REG(hw, RDLEN, rdlen); ew32(RDLEN, rdlen);
E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); ew32(RDBAH, (rdba >> 32));
E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(hw, RDT, 0); ew32(RDT, 0);
E1000_WRITE_REG(hw, RDH, 0); ew32(RDH, 0);
adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
break; break;
...@@ -2071,7 +2088,7 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -2071,7 +2088,7 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
/* Enable 82543 Receive Checksum Offload for TCP and UDP */ /* Enable 82543 Receive Checksum Offload for TCP and UDP */
if (hw->mac_type >= e1000_82543) { if (hw->mac_type >= e1000_82543) {
rxcsum = E1000_READ_REG(hw, RXCSUM); rxcsum = er32(RXCSUM);
if (adapter->rx_csum) { if (adapter->rx_csum) {
rxcsum |= E1000_RXCSUM_TUOFL; rxcsum |= E1000_RXCSUM_TUOFL;
...@@ -2085,17 +2102,17 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ...@@ -2085,17 +2102,17 @@ static void e1000_configure_rx(struct e1000_adapter *adapter)
rxcsum &= ~E1000_RXCSUM_TUOFL; rxcsum &= ~E1000_RXCSUM_TUOFL;
/* don't need to clear IPPCSE as it defaults to 0 */ /* don't need to clear IPPCSE as it defaults to 0 */
} }
E1000_WRITE_REG(hw, RXCSUM, rxcsum); ew32(RXCSUM, rxcsum);
} }
/* enable early receives on 82573, only takes effect if using > 2048 /* enable early receives on 82573, only takes effect if using > 2048
* byte total frame size. for example only for jumbo frames */ * byte total frame size. for example only for jumbo frames */
#define E1000_ERT_2048 0x100 #define E1000_ERT_2048 0x100
if (hw->mac_type == e1000_82573) if (hw->mac_type == e1000_82573)
E1000_WRITE_REG(hw, ERT, E1000_ERT_2048); ew32(ERT, E1000_ERT_2048);
/* Enable Receives */ /* Enable Receives */
E1000_WRITE_REG(hw, RCTL, rctl); ew32(RCTL, rctl);
} }
/** /**
...@@ -2162,6 +2179,7 @@ static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, ...@@ -2162,6 +2179,7 @@ static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
static void e1000_clean_tx_ring(struct e1000_adapter *adapter, static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring) struct e1000_tx_ring *tx_ring)
{ {
struct e1000_hw *hw = &adapter->hw;
struct e1000_buffer *buffer_info; struct e1000_buffer *buffer_info;
unsigned long size; unsigned long size;
unsigned int i; unsigned int i;
...@@ -2184,8 +2202,8 @@ static void e1000_clean_tx_ring(struct e1000_adapter *adapter, ...@@ -2184,8 +2202,8 @@ static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
tx_ring->next_to_clean = 0; tx_ring->next_to_clean = 0;
tx_ring->last_tx_tso = 0; tx_ring->last_tx_tso = 0;
writel(0, adapter->hw.hw_addr + tx_ring->tdh); writel(0, hw->hw_addr + tx_ring->tdh);
writel(0, adapter->hw.hw_addr + tx_ring->tdt); writel(0, hw->hw_addr + tx_ring->tdt);
} }
/** /**
...@@ -2252,6 +2270,7 @@ void e1000_free_all_rx_resources(struct e1000_adapter *adapter) ...@@ -2252,6 +2270,7 @@ void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
static void e1000_clean_rx_ring(struct e1000_adapter *adapter, static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring) struct e1000_rx_ring *rx_ring)
{ {
struct e1000_hw *hw = &adapter->hw;
struct e1000_buffer *buffer_info; struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page; struct e1000_ps_page *ps_page;
struct e1000_ps_page_dma *ps_page_dma; struct e1000_ps_page_dma *ps_page_dma;
...@@ -2298,8 +2317,8 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter, ...@@ -2298,8 +2317,8 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
rx_ring->next_to_clean = 0; rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0; rx_ring->next_to_use = 0;
writel(0, adapter->hw.hw_addr + rx_ring->rdh); writel(0, hw->hw_addr + rx_ring->rdh);
writel(0, adapter->hw.hw_addr + rx_ring->rdt); writel(0, hw->hw_addr + rx_ring->rdt);
} }
/** /**
...@@ -2320,15 +2339,16 @@ static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) ...@@ -2320,15 +2339,16 @@ static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
*/ */
static void e1000_enter_82542_rst(struct e1000_adapter *adapter) static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
u32 rctl; u32 rctl;
e1000_pci_clear_mwi(&adapter->hw); e1000_pci_clear_mwi(hw);
rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl = er32(RCTL);
rctl |= E1000_RCTL_RST; rctl |= E1000_RCTL_RST;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl); ew32(RCTL, rctl);
E1000_WRITE_FLUSH(&adapter->hw); E1000_WRITE_FLUSH();
mdelay(5); mdelay(5);
if (netif_running(netdev)) if (netif_running(netdev))
...@@ -2337,17 +2357,18 @@ static void e1000_enter_82542_rst(struct e1000_adapter *adapter) ...@@ -2337,17 +2357,18 @@ static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
static void e1000_leave_82542_rst(struct e1000_adapter *adapter) static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
u32 rctl; u32 rctl;
rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl = er32(RCTL);
rctl &= ~E1000_RCTL_RST; rctl &= ~E1000_RCTL_RST;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl); ew32(RCTL, rctl);
E1000_WRITE_FLUSH(&adapter->hw); E1000_WRITE_FLUSH();
mdelay(5); mdelay(5);
if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE) if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
e1000_pci_set_mwi(&adapter->hw); e1000_pci_set_mwi(hw);
if (netif_running(netdev)) { if (netif_running(netdev)) {
/* No need to loop, because 82542 supports only 1 queue */ /* No need to loop, because 82542 supports only 1 queue */
...@@ -2368,6 +2389,7 @@ static void e1000_leave_82542_rst(struct e1000_adapter *adapter) ...@@ -2368,6 +2389,7 @@ static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
static int e1000_set_mac(struct net_device *netdev, void *p) static int e1000_set_mac(struct net_device *netdev, void *p)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sockaddr *addr = p; struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data)) if (!is_valid_ether_addr(addr->sa_data))
...@@ -2375,19 +2397,19 @@ static int e1000_set_mac(struct net_device *netdev, void *p) ...@@ -2375,19 +2397,19 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
/* 82542 2.0 needs to be in reset to write receive address registers */ /* 82542 2.0 needs to be in reset to write receive address registers */
if (adapter->hw.mac_type == e1000_82542_rev2_0) if (hw->mac_type == e1000_82542_rev2_0)
e1000_enter_82542_rst(adapter); e1000_enter_82542_rst(adapter);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); e1000_rar_set(hw, hw->mac_addr, 0);
/* With 82571 controllers, LAA may be overwritten (with the default) /* With 82571 controllers, LAA may be overwritten (with the default)
* due to controller reset from the other port. */ * due to controller reset from the other port. */
if (adapter->hw.mac_type == e1000_82571) { if (hw->mac_type == e1000_82571) {
/* activate the work around */ /* activate the work around */
adapter->hw.laa_is_present = 1; hw->laa_is_present = 1;
/* Hold a copy of the LAA in RAR[14] This is done so that /* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it * between the time RAR[0] gets clobbered and the time it
...@@ -2395,11 +2417,11 @@ static int e1000_set_mac(struct net_device *netdev, void *p) ...@@ -2395,11 +2417,11 @@ static int e1000_set_mac(struct net_device *netdev, void *p)
* of the RARs and no incoming packets directed to this port * of the RARs and no incoming packets directed to this port
* are dropped. Eventaully the LAA will be in RAR[0] and * are dropped. Eventaully the LAA will be in RAR[0] and
* RAR[14] */ * RAR[14] */
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, e1000_rar_set(hw, hw->mac_addr,
E1000_RAR_ENTRIES - 1); E1000_RAR_ENTRIES - 1);
} }
if (adapter->hw.mac_type == e1000_82542_rev2_0) if (hw->mac_type == e1000_82542_rev2_0)
e1000_leave_82542_rst(adapter); e1000_leave_82542_rst(adapter);
return 0; return 0;
...@@ -2428,16 +2450,16 @@ static void e1000_set_rx_mode(struct net_device *netdev) ...@@ -2428,16 +2450,16 @@ static void e1000_set_rx_mode(struct net_device *netdev)
E1000_NUM_MTA_REGISTERS_ICH8LAN : E1000_NUM_MTA_REGISTERS_ICH8LAN :
E1000_NUM_MTA_REGISTERS; E1000_NUM_MTA_REGISTERS;
if (adapter->hw.mac_type == e1000_ich8lan) if (hw->mac_type == e1000_ich8lan)
rar_entries = E1000_RAR_ENTRIES_ICH8LAN; rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
/* reserve RAR[14] for LAA over-write work-around */ /* reserve RAR[14] for LAA over-write work-around */
if (adapter->hw.mac_type == e1000_82571) if (hw->mac_type == e1000_82571)
rar_entries--; rar_entries--;
/* Check for Promiscuous and All Multicast modes */ /* Check for Promiscuous and All Multicast modes */
rctl = E1000_READ_REG(hw, RCTL); rctl = er32(RCTL);
if (netdev->flags & IFF_PROMISC) { if (netdev->flags & IFF_PROMISC) {
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
...@@ -2460,7 +2482,7 @@ static void e1000_set_rx_mode(struct net_device *netdev) ...@@ -2460,7 +2482,7 @@ static void e1000_set_rx_mode(struct net_device *netdev)
uc_ptr = netdev->uc_list; uc_ptr = netdev->uc_list;
} }
E1000_WRITE_REG(hw, RCTL, rctl); ew32(RCTL, rctl);
/* 82542 2.0 needs to be in reset to write receive address registers */ /* 82542 2.0 needs to be in reset to write receive address registers */
...@@ -2486,9 +2508,9 @@ static void e1000_set_rx_mode(struct net_device *netdev) ...@@ -2486,9 +2508,9 @@ static void e1000_set_rx_mode(struct net_device *netdev)
mc_ptr = mc_ptr->next; mc_ptr = mc_ptr->next;
} else { } else {
E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
} }
WARN_ON(uc_ptr != NULL); WARN_ON(uc_ptr != NULL);
...@@ -2497,7 +2519,7 @@ static void e1000_set_rx_mode(struct net_device *netdev) ...@@ -2497,7 +2519,7 @@ static void e1000_set_rx_mode(struct net_device *netdev)
for (i = 0; i < mta_reg_count; i++) { for (i = 0; i < mta_reg_count; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
/* load any remaining addresses into the hash table */ /* load any remaining addresses into the hash table */
...@@ -2517,7 +2539,8 @@ static void e1000_set_rx_mode(struct net_device *netdev) ...@@ -2517,7 +2539,8 @@ static void e1000_set_rx_mode(struct net_device *netdev)
static void e1000_update_phy_info(unsigned long data) static void e1000_update_phy_info(unsigned long data)
{ {
struct e1000_adapter *adapter = (struct e1000_adapter *) data; struct e1000_adapter *adapter = (struct e1000_adapter *) data;
e1000_phy_get_info(&adapter->hw, &adapter->phy_info); struct e1000_hw *hw = &adapter->hw;
e1000_phy_get_info(hw, &adapter->phy_info);
} }
/** /**
...@@ -2528,29 +2551,22 @@ static void e1000_update_phy_info(unsigned long data) ...@@ -2528,29 +2551,22 @@ static void e1000_update_phy_info(unsigned long data)
static void e1000_82547_tx_fifo_stall(unsigned long data) static void e1000_82547_tx_fifo_stall(unsigned long data)
{ {
struct e1000_adapter *adapter = (struct e1000_adapter *) data; struct e1000_adapter *adapter = (struct e1000_adapter *) data;
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
u32 tctl; u32 tctl;
if (atomic_read(&adapter->tx_fifo_stall)) { if (atomic_read(&adapter->tx_fifo_stall)) {
if ((E1000_READ_REG(&adapter->hw, TDT) == if ((er32(TDT) == er32(TDH)) &&
E1000_READ_REG(&adapter->hw, TDH)) && (er32(TDFT) == er32(TDFH)) &&
(E1000_READ_REG(&adapter->hw, TDFT) == (er32(TDFTS) == er32(TDFHS))) {
E1000_READ_REG(&adapter->hw, TDFH)) && tctl = er32(TCTL);
(E1000_READ_REG(&adapter->hw, TDFTS) == ew32(TCTL, tctl & ~E1000_TCTL_EN);
E1000_READ_REG(&adapter->hw, TDFHS))) { ew32(TDFT, adapter->tx_head_addr);
tctl = E1000_READ_REG(&adapter->hw, TCTL); ew32(TDFH, adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TCTL, ew32(TDFTS, adapter->tx_head_addr);
tctl & ~E1000_TCTL_EN); ew32(TDFHS, adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TDFT, ew32(TCTL, tctl);
adapter->tx_head_addr); E1000_WRITE_FLUSH();
E1000_WRITE_REG(&adapter->hw, TDFH,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TDFTS,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TDFHS,
adapter->tx_head_addr);
E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
E1000_WRITE_FLUSH(&adapter->hw);
adapter->tx_fifo_head = 0; adapter->tx_fifo_head = 0;
atomic_set(&adapter->tx_fifo_stall, 0); atomic_set(&adapter->tx_fifo_stall, 0);
...@@ -2568,41 +2584,42 @@ static void e1000_82547_tx_fifo_stall(unsigned long data) ...@@ -2568,41 +2584,42 @@ static void e1000_82547_tx_fifo_stall(unsigned long data)
static void e1000_watchdog(unsigned long data) static void e1000_watchdog(unsigned long data)
{ {
struct e1000_adapter *adapter = (struct e1000_adapter *) data; struct e1000_adapter *adapter = (struct e1000_adapter *) data;
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
struct e1000_tx_ring *txdr = adapter->tx_ring; struct e1000_tx_ring *txdr = adapter->tx_ring;
u32 link, tctl; u32 link, tctl;
s32 ret_val; s32 ret_val;
ret_val = e1000_check_for_link(&adapter->hw); ret_val = e1000_check_for_link(hw);
if ((ret_val == E1000_ERR_PHY) && if ((ret_val == E1000_ERR_PHY) &&
(adapter->hw.phy_type == e1000_phy_igp_3) && (hw->phy_type == e1000_phy_igp_3) &&
(E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
/* See e1000_kumeran_lock_loss_workaround() */ /* See e1000_kumeran_lock_loss_workaround() */
DPRINTK(LINK, INFO, DPRINTK(LINK, INFO,
"Gigabit has been disabled, downgrading speed\n"); "Gigabit has been disabled, downgrading speed\n");
} }
if (adapter->hw.mac_type == e1000_82573) { if (hw->mac_type == e1000_82573) {
e1000_enable_tx_pkt_filtering(&adapter->hw); e1000_enable_tx_pkt_filtering(hw);
if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
e1000_update_mng_vlan(adapter); e1000_update_mng_vlan(adapter);
} }
if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && if ((hw->media_type == e1000_media_type_internal_serdes) &&
!(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) !(er32(TXCW) & E1000_TXCW_ANE))
link = !adapter->hw.serdes_link_down; link = !hw->serdes_link_down;
else else
link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU; link = er32(STATUS) & E1000_STATUS_LU;
if (link) { if (link) {
if (!netif_carrier_ok(netdev)) { if (!netif_carrier_ok(netdev)) {
u32 ctrl; u32 ctrl;
bool txb2b = true; bool txb2b = true;
e1000_get_speed_and_duplex(&adapter->hw, e1000_get_speed_and_duplex(hw,
&adapter->link_speed, &adapter->link_speed,
&adapter->link_duplex); &adapter->link_duplex);
ctrl = E1000_READ_REG(&adapter->hw, CTRL); ctrl = er32(CTRL);
DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, " DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
"Flow Control: %s\n", "Flow Control: %s\n",
adapter->link_speed, adapter->link_speed,
...@@ -2630,19 +2647,19 @@ static void e1000_watchdog(unsigned long data) ...@@ -2630,19 +2647,19 @@ static void e1000_watchdog(unsigned long data)
break; break;
} }
if ((adapter->hw.mac_type == e1000_82571 || if ((hw->mac_type == e1000_82571 ||
adapter->hw.mac_type == e1000_82572) && hw->mac_type == e1000_82572) &&
!txb2b) { !txb2b) {
u32 tarc0; u32 tarc0;
tarc0 = E1000_READ_REG(&adapter->hw, TARC0); tarc0 = er32(TARC0);
tarc0 &= ~(1 << 21); tarc0 &= ~(1 << 21);
E1000_WRITE_REG(&adapter->hw, TARC0, tarc0); ew32(TARC0, tarc0);
} }
/* disable TSO for pcie and 10/100 speeds, to avoid /* disable TSO for pcie and 10/100 speeds, to avoid
* some hardware issues */ * some hardware issues */
if (!adapter->tso_force && if (!adapter->tso_force &&
adapter->hw.bus_type == e1000_bus_type_pci_express){ hw->bus_type == e1000_bus_type_pci_express){
switch (adapter->link_speed) { switch (adapter->link_speed) {
case SPEED_10: case SPEED_10:
case SPEED_100: case SPEED_100:
...@@ -2663,9 +2680,9 @@ static void e1000_watchdog(unsigned long data) ...@@ -2663,9 +2680,9 @@ static void e1000_watchdog(unsigned long data)
/* enable transmits in the hardware, need to do this /* enable transmits in the hardware, need to do this
* after setting TARC0 */ * after setting TARC0 */
tctl = E1000_READ_REG(&adapter->hw, TCTL); tctl = er32(TCTL);
tctl |= E1000_TCTL_EN; tctl |= E1000_TCTL_EN;
E1000_WRITE_REG(&adapter->hw, TCTL, tctl); ew32(TCTL, tctl);
netif_carrier_on(netdev); netif_carrier_on(netdev);
netif_wake_queue(netdev); netif_wake_queue(netdev);
...@@ -2673,10 +2690,9 @@ static void e1000_watchdog(unsigned long data) ...@@ -2673,10 +2690,9 @@ static void e1000_watchdog(unsigned long data)
adapter->smartspeed = 0; adapter->smartspeed = 0;
} else { } else {
/* make sure the receive unit is started */ /* make sure the receive unit is started */
if (adapter->hw.rx_needs_kicking) { if (hw->rx_needs_kicking) {
struct e1000_hw *hw = &adapter->hw; u32 rctl = er32(RCTL);
u32 rctl = E1000_READ_REG(hw, RCTL); ew32(RCTL, rctl | E1000_RCTL_EN);
E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
} }
} }
} else { } else {
...@@ -2693,7 +2709,7 @@ static void e1000_watchdog(unsigned long data) ...@@ -2693,7 +2709,7 @@ static void e1000_watchdog(unsigned long data)
* disable receives in the ISR and * disable receives in the ISR and
* reset device here in the watchdog * reset device here in the watchdog
*/ */
if (adapter->hw.mac_type == e1000_80003es2lan) if (hw->mac_type == e1000_80003es2lan)
/* reset device */ /* reset device */
schedule_work(&adapter->reset_task); schedule_work(&adapter->reset_task);
} }
...@@ -2703,9 +2719,9 @@ static void e1000_watchdog(unsigned long data) ...@@ -2703,9 +2719,9 @@ static void e1000_watchdog(unsigned long data)
e1000_update_stats(adapter); e1000_update_stats(adapter);
adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
adapter->tpt_old = adapter->stats.tpt; adapter->tpt_old = adapter->stats.tpt;
adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old; hw->collision_delta = adapter->stats.colc - adapter->colc_old;
adapter->colc_old = adapter->stats.colc; adapter->colc_old = adapter->stats.colc;
adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
...@@ -2713,7 +2729,7 @@ static void e1000_watchdog(unsigned long data) ...@@ -2713,7 +2729,7 @@ static void e1000_watchdog(unsigned long data)
adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
adapter->gotcl_old = adapter->stats.gotcl; adapter->gotcl_old = adapter->stats.gotcl;
e1000_update_adaptive(&adapter->hw); e1000_update_adaptive(hw);
if (!netif_carrier_ok(netdev)) { if (!netif_carrier_ok(netdev)) {
if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
...@@ -2727,15 +2743,15 @@ static void e1000_watchdog(unsigned long data) ...@@ -2727,15 +2743,15 @@ static void e1000_watchdog(unsigned long data)
} }
/* Cause software interrupt to ensure rx ring is cleaned */ /* Cause software interrupt to ensure rx ring is cleaned */
E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); ew32(ICS, E1000_ICS_RXDMT0);
/* Force detection of hung controller every watchdog period */ /* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = true; adapter->detect_tx_hung = true;
/* With 82571 controllers, LAA may be overwritten due to controller /* With 82571 controllers, LAA may be overwritten due to controller
* reset from the other port. Set the appropriate LAA in RAR[0] */ * reset from the other port. Set the appropriate LAA in RAR[0] */
if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present) if (hw->mac_type == e1000_82571 && hw->laa_is_present)
e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); e1000_rar_set(hw, hw->mac_addr, 0);
/* Reset the timer */ /* Reset the timer */
mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
...@@ -2870,7 +2886,7 @@ static void e1000_set_itr(struct e1000_adapter *adapter) ...@@ -2870,7 +2886,7 @@ static void e1000_set_itr(struct e1000_adapter *adapter)
min(adapter->itr + (new_itr >> 2), new_itr) : min(adapter->itr + (new_itr >> 2), new_itr) :
new_itr; new_itr;
adapter->itr = new_itr; adapter->itr = new_itr;
E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256)); ew32(ITR, 1000000000 / (new_itr * 256));
} }
return; return;
...@@ -2999,6 +3015,7 @@ static int e1000_tx_map(struct e1000_adapter *adapter, ...@@ -2999,6 +3015,7 @@ static int e1000_tx_map(struct e1000_adapter *adapter,
unsigned int max_per_txd, unsigned int nr_frags, unsigned int max_per_txd, unsigned int nr_frags,
unsigned int mss) unsigned int mss)
{ {
struct e1000_hw *hw = &adapter->hw;
struct e1000_buffer *buffer_info; struct e1000_buffer *buffer_info;
unsigned int len = skb->len; unsigned int len = skb->len;
unsigned int offset = 0, size, count = 0, i; unsigned int offset = 0, size, count = 0, i;
...@@ -3029,7 +3046,7 @@ static int e1000_tx_map(struct e1000_adapter *adapter, ...@@ -3029,7 +3046,7 @@ static int e1000_tx_map(struct e1000_adapter *adapter,
* The fix is to make sure that the first descriptor of a * The fix is to make sure that the first descriptor of a
* packet is smaller than 2048 - 16 - 16 (or 2016) bytes * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
*/ */
if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
(size > 2015) && count == 0)) (size > 2015) && count == 0))
size = 2015; size = 2015;
...@@ -3105,6 +3122,7 @@ static void e1000_tx_queue(struct e1000_adapter *adapter, ...@@ -3105,6 +3122,7 @@ static void e1000_tx_queue(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring, int tx_flags, struct e1000_tx_ring *tx_ring, int tx_flags,
int count) int count)
{ {
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_desc *tx_desc = NULL; struct e1000_tx_desc *tx_desc = NULL;
struct e1000_buffer *buffer_info; struct e1000_buffer *buffer_info;
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
...@@ -3150,7 +3168,7 @@ static void e1000_tx_queue(struct e1000_adapter *adapter, ...@@ -3150,7 +3168,7 @@ static void e1000_tx_queue(struct e1000_adapter *adapter,
wmb(); wmb();
tx_ring->next_to_use = i; tx_ring->next_to_use = i;
writel(i, adapter->hw.hw_addr + tx_ring->tdt); writel(i, hw->hw_addr + tx_ring->tdt);
/* we need this if more than one processor can write to our tail /* we need this if more than one processor can write to our tail
* at a time, it syncronizes IO on IA64/Altix systems */ * at a time, it syncronizes IO on IA64/Altix systems */
mmiowb(); mmiowb();
...@@ -3201,8 +3219,8 @@ static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, ...@@ -3201,8 +3219,8 @@ static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u16 length, offset; u16 length, offset;
if (vlan_tx_tag_present(skb)) { if (vlan_tx_tag_present(skb)) {
if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
( adapter->hw.mng_cookie.status & ( hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
return 0; return 0;
} }
...@@ -3263,6 +3281,7 @@ static int e1000_maybe_stop_tx(struct net_device *netdev, ...@@ -3263,6 +3281,7 @@ static int e1000_maybe_stop_tx(struct net_device *netdev,
static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_ring *tx_ring; struct e1000_tx_ring *tx_ring;
unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
...@@ -3288,7 +3307,7 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) ...@@ -3288,7 +3307,7 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
/* 82571 and newer doesn't need the workaround that limited descriptor /* 82571 and newer doesn't need the workaround that limited descriptor
* length to 4kB */ * length to 4kB */
if (adapter->hw.mac_type >= e1000_82571) if (hw->mac_type >= e1000_82571)
max_per_txd = 8192; max_per_txd = 8192;
mss = skb_shinfo(skb)->gso_size; mss = skb_shinfo(skb)->gso_size;
...@@ -3308,7 +3327,7 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) ...@@ -3308,7 +3327,7 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
* frags into skb->data */ * frags into skb->data */
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
if (skb->data_len && hdr_len == len) { if (skb->data_len && hdr_len == len) {
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
unsigned int pull_size; unsigned int pull_size;
case e1000_82544: case e1000_82544:
/* Make sure we have room to chop off 4 bytes, /* Make sure we have room to chop off 4 bytes,
...@@ -3357,7 +3376,7 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) ...@@ -3357,7 +3376,7 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
/* work-around for errata 10 and it applies to all controllers /* work-around for errata 10 and it applies to all controllers
* in PCI-X mode, so add one more descriptor to the count * in PCI-X mode, so add one more descriptor to the count
*/ */
if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
(len > 2015))) (len > 2015)))
count++; count++;
...@@ -3369,8 +3388,8 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) ...@@ -3369,8 +3388,8 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
count += nr_frags; count += nr_frags;
if (adapter->hw.tx_pkt_filtering && if (hw->tx_pkt_filtering &&
(adapter->hw.mac_type == e1000_82573)) (hw->mac_type == e1000_82573))
e1000_transfer_dhcp_info(adapter, skb); e1000_transfer_dhcp_info(adapter, skb);
if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags)) if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
...@@ -3384,7 +3403,7 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) ...@@ -3384,7 +3403,7 @@ static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
return NETDEV_TX_BUSY; return NETDEV_TX_BUSY;
} }
if (unlikely(adapter->hw.mac_type == e1000_82547)) { if (unlikely(hw->mac_type == e1000_82547)) {
if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
netif_stop_queue(netdev); netif_stop_queue(netdev);
mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
...@@ -3481,6 +3500,7 @@ static struct net_device_stats *e1000_get_stats(struct net_device *netdev) ...@@ -3481,6 +3500,7 @@ static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
static int e1000_change_mtu(struct net_device *netdev, int new_mtu) static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
u16 eeprom_data = 0; u16 eeprom_data = 0;
...@@ -3491,7 +3511,7 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) ...@@ -3491,7 +3511,7 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
} }
/* Adapter-specific max frame size limits. */ /* Adapter-specific max frame size limits. */
switch (adapter->hw.mac_type) { switch (hw->mac_type) {
case e1000_undefined ... e1000_82542_rev2_1: case e1000_undefined ... e1000_82542_rev2_1:
case e1000_ich8lan: case e1000_ich8lan:
if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
...@@ -3503,9 +3523,9 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) ...@@ -3503,9 +3523,9 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
/* Jumbo Frames not supported if: /* Jumbo Frames not supported if:
* - this is not an 82573L device * - this is not an 82573L device
* - ASPM is enabled in any way (0x1A bits 3:2) */ * - ASPM is enabled in any way (0x1A bits 3:2) */
e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1, e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
&eeprom_data); &eeprom_data);
if ((adapter->hw.device_id != E1000_DEV_ID_82573L) || if ((hw->device_id != E1000_DEV_ID_82573L) ||
(eeprom_data & EEPROM_WORD1A_ASPM_MASK)) { (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
DPRINTK(PROBE, ERR, DPRINTK(PROBE, ERR,
...@@ -3552,13 +3572,13 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) ...@@ -3552,13 +3572,13 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
adapter->rx_buffer_len = E1000_RXBUFFER_16384; adapter->rx_buffer_len = E1000_RXBUFFER_16384;
/* adjust allocation if LPE protects us, and we aren't using SBP */ /* adjust allocation if LPE protects us, and we aren't using SBP */
if (!adapter->hw.tbi_compatibility_on && if (!hw->tbi_compatibility_on &&
((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
(max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
netdev->mtu = new_mtu; netdev->mtu = new_mtu;
adapter->hw.max_frame_size = max_frame; hw->max_frame_size = max_frame;
if (netif_running(netdev)) if (netif_running(netdev))
e1000_reinit_locked(adapter); e1000_reinit_locked(adapter);
...@@ -3596,89 +3616,89 @@ void e1000_update_stats(struct e1000_adapter *adapter) ...@@ -3596,89 +3616,89 @@ void e1000_update_stats(struct e1000_adapter *adapter)
* be written while holding adapter->stats_lock * be written while holding adapter->stats_lock
*/ */
adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS); adapter->stats.crcerrs += er32(CRCERRS);
adapter->stats.gprc += E1000_READ_REG(hw, GPRC); adapter->stats.gprc += er32(GPRC);
adapter->stats.gorcl += E1000_READ_REG(hw, GORCL); adapter->stats.gorcl += er32(GORCL);
adapter->stats.gorch += E1000_READ_REG(hw, GORCH); adapter->stats.gorch += er32(GORCH);
adapter->stats.bprc += E1000_READ_REG(hw, BPRC); adapter->stats.bprc += er32(BPRC);
adapter->stats.mprc += E1000_READ_REG(hw, MPRC); adapter->stats.mprc += er32(MPRC);
adapter->stats.roc += E1000_READ_REG(hw, ROC); adapter->stats.roc += er32(ROC);
if (adapter->hw.mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); adapter->stats.prc64 += er32(PRC64);
adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); adapter->stats.prc127 += er32(PRC127);
adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); adapter->stats.prc255 += er32(PRC255);
adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); adapter->stats.prc511 += er32(PRC511);
adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); adapter->stats.prc1023 += er32(PRC1023);
adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); adapter->stats.prc1522 += er32(PRC1522);
} }
adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); adapter->stats.symerrs += er32(SYMERRS);
adapter->stats.mpc += E1000_READ_REG(hw, MPC); adapter->stats.mpc += er32(MPC);
adapter->stats.scc += E1000_READ_REG(hw, SCC); adapter->stats.scc += er32(SCC);
adapter->stats.ecol += E1000_READ_REG(hw, ECOL); adapter->stats.ecol += er32(ECOL);
adapter->stats.mcc += E1000_READ_REG(hw, MCC); adapter->stats.mcc += er32(MCC);
adapter->stats.latecol += E1000_READ_REG(hw, LATECOL); adapter->stats.latecol += er32(LATECOL);
adapter->stats.dc += E1000_READ_REG(hw, DC); adapter->stats.dc += er32(DC);
adapter->stats.sec += E1000_READ_REG(hw, SEC); adapter->stats.sec += er32(SEC);
adapter->stats.rlec += E1000_READ_REG(hw, RLEC); adapter->stats.rlec += er32(RLEC);
adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC); adapter->stats.xonrxc += er32(XONRXC);
adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC); adapter->stats.xontxc += er32(XONTXC);
adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC); adapter->stats.xoffrxc += er32(XOFFRXC);
adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC); adapter->stats.xofftxc += er32(XOFFTXC);
adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC); adapter->stats.fcruc += er32(FCRUC);
adapter->stats.gptc += E1000_READ_REG(hw, GPTC); adapter->stats.gptc += er32(GPTC);
adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL); adapter->stats.gotcl += er32(GOTCL);
adapter->stats.gotch += E1000_READ_REG(hw, GOTCH); adapter->stats.gotch += er32(GOTCH);
adapter->stats.rnbc += E1000_READ_REG(hw, RNBC); adapter->stats.rnbc += er32(RNBC);
adapter->stats.ruc += E1000_READ_REG(hw, RUC); adapter->stats.ruc += er32(RUC);
adapter->stats.rfc += E1000_READ_REG(hw, RFC); adapter->stats.rfc += er32(RFC);
adapter->stats.rjc += E1000_READ_REG(hw, RJC); adapter->stats.rjc += er32(RJC);
adapter->stats.torl += E1000_READ_REG(hw, TORL); adapter->stats.torl += er32(TORL);
adapter->stats.torh += E1000_READ_REG(hw, TORH); adapter->stats.torh += er32(TORH);
adapter->stats.totl += E1000_READ_REG(hw, TOTL); adapter->stats.totl += er32(TOTL);
adapter->stats.toth += E1000_READ_REG(hw, TOTH); adapter->stats.toth += er32(TOTH);
adapter->stats.tpr += E1000_READ_REG(hw, TPR); adapter->stats.tpr += er32(TPR);
if (adapter->hw.mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); adapter->stats.ptc64 += er32(PTC64);
adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); adapter->stats.ptc127 += er32(PTC127);
adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); adapter->stats.ptc255 += er32(PTC255);
adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); adapter->stats.ptc511 += er32(PTC511);
adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); adapter->stats.ptc1023 += er32(PTC1023);
adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); adapter->stats.ptc1522 += er32(PTC1522);
} }
adapter->stats.mptc += E1000_READ_REG(hw, MPTC); adapter->stats.mptc += er32(MPTC);
adapter->stats.bptc += E1000_READ_REG(hw, BPTC); adapter->stats.bptc += er32(BPTC);
/* used for adaptive IFS */ /* used for adaptive IFS */
hw->tx_packet_delta = E1000_READ_REG(hw, TPT); hw->tx_packet_delta = er32(TPT);
adapter->stats.tpt += hw->tx_packet_delta; adapter->stats.tpt += hw->tx_packet_delta;
hw->collision_delta = E1000_READ_REG(hw, COLC); hw->collision_delta = er32(COLC);
adapter->stats.colc += hw->collision_delta; adapter->stats.colc += hw->collision_delta;
if (hw->mac_type >= e1000_82543) { if (hw->mac_type >= e1000_82543) {
adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC); adapter->stats.algnerrc += er32(ALGNERRC);
adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC); adapter->stats.rxerrc += er32(RXERRC);
adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS); adapter->stats.tncrs += er32(TNCRS);
adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR); adapter->stats.cexterr += er32(CEXTERR);
adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); adapter->stats.tsctc += er32(TSCTC);
adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); adapter->stats.tsctfc += er32(TSCTFC);
} }
if (hw->mac_type > e1000_82547_rev_2) { if (hw->mac_type > e1000_82547_rev_2) {
adapter->stats.iac += E1000_READ_REG(hw, IAC); adapter->stats.iac += er32(IAC);
adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); adapter->stats.icrxoc += er32(ICRXOC);
if (adapter->hw.mac_type != e1000_ich8lan) { if (hw->mac_type != e1000_ich8lan) {
adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); adapter->stats.icrxptc += er32(ICRXPTC);
adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); adapter->stats.icrxatc += er32(ICRXATC);
adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); adapter->stats.ictxptc += er32(ICTXPTC);
adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC); adapter->stats.ictxatc += er32(ICTXATC);
adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); adapter->stats.ictxqec += er32(ICTXQEC);
adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); adapter->stats.ictxqmtc += er32(ICTXQMTC);
adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); adapter->stats.icrxdmtc += er32(ICRXDMTC);
} }
} }
...@@ -3706,7 +3726,7 @@ void e1000_update_stats(struct e1000_adapter *adapter) ...@@ -3706,7 +3726,7 @@ void e1000_update_stats(struct e1000_adapter *adapter)
adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
adapter->net_stats.tx_window_errors = adapter->stats.latecol; adapter->net_stats.tx_window_errors = adapter->stats.latecol;
adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
if (adapter->hw.bad_tx_carr_stats_fd && if (hw->bad_tx_carr_stats_fd &&
adapter->link_duplex == FULL_DUPLEX) { adapter->link_duplex == FULL_DUPLEX) {
adapter->net_stats.tx_carrier_errors = 0; adapter->net_stats.tx_carrier_errors = 0;
adapter->stats.tncrs = 0; adapter->stats.tncrs = 0;
...@@ -3729,10 +3749,10 @@ void e1000_update_stats(struct e1000_adapter *adapter) ...@@ -3729,10 +3749,10 @@ void e1000_update_stats(struct e1000_adapter *adapter)
} }
/* Management Stats */ /* Management Stats */
if (adapter->hw.has_smbus) { if (hw->has_smbus) {
adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC); adapter->stats.mgptc += er32(MGTPTC);
adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC); adapter->stats.mgprc += er32(MGTPRC);
adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC); adapter->stats.mgpdc += er32(MGTPDC);
} }
spin_unlock_irqrestore(&adapter->stats_lock, flags); spin_unlock_irqrestore(&adapter->stats_lock, flags);
...@@ -3752,7 +3772,7 @@ static irqreturn_t e1000_intr_msi(int irq, void *data) ...@@ -3752,7 +3772,7 @@ static irqreturn_t e1000_intr_msi(int irq, void *data)
#ifndef CONFIG_E1000_NAPI #ifndef CONFIG_E1000_NAPI
int i; int i;
#endif #endif
u32 icr = E1000_READ_REG(hw, ICR); u32 icr = er32(ICR);
/* in NAPI mode read ICR disables interrupts using IAM */ /* in NAPI mode read ICR disables interrupts using IAM */
...@@ -3762,10 +3782,10 @@ static irqreturn_t e1000_intr_msi(int irq, void *data) ...@@ -3762,10 +3782,10 @@ static irqreturn_t e1000_intr_msi(int irq, void *data)
* link down event; disable receives here in the ISR and reset * link down event; disable receives here in the ISR and reset
* adapter in watchdog */ * adapter in watchdog */
if (netif_carrier_ok(netdev) && if (netif_carrier_ok(netdev) &&
(adapter->hw.mac_type == e1000_80003es2lan)) { (hw->mac_type == e1000_80003es2lan)) {
/* disable receives */ /* disable receives */
u32 rctl = E1000_READ_REG(hw, RCTL); u32 rctl = er32(RCTL);
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); ew32(RCTL, rctl & ~E1000_RCTL_EN);
} }
/* guard against interrupt when we're going down */ /* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->flags)) if (!test_bit(__E1000_DOWN, &adapter->flags))
...@@ -3810,7 +3830,7 @@ static irqreturn_t e1000_intr(int irq, void *data) ...@@ -3810,7 +3830,7 @@ static irqreturn_t e1000_intr(int irq, void *data)
struct net_device *netdev = data; struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw; struct e1000_hw *hw = &adapter->hw;
u32 rctl, icr = E1000_READ_REG(hw, ICR); u32 rctl, icr = er32(ICR);
#ifndef CONFIG_E1000_NAPI #ifndef CONFIG_E1000_NAPI
int i; int i;
#endif #endif
...@@ -3836,10 +3856,10 @@ static irqreturn_t e1000_intr(int irq, void *data) ...@@ -3836,10 +3856,10 @@ static irqreturn_t e1000_intr(int irq, void *data)
* reset adapter in watchdog * reset adapter in watchdog
*/ */
if (netif_carrier_ok(netdev) && if (netif_carrier_ok(netdev) &&
(adapter->hw.mac_type == e1000_80003es2lan)) { (hw->mac_type == e1000_80003es2lan)) {
/* disable receives */ /* disable receives */
rctl = E1000_READ_REG(hw, RCTL); rctl = er32(RCTL);
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); ew32(RCTL, rctl & ~E1000_RCTL_EN);
} }
/* guard against interrupt when we're going down */ /* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->flags)) if (!test_bit(__E1000_DOWN, &adapter->flags))
...@@ -3849,8 +3869,8 @@ static irqreturn_t e1000_intr(int irq, void *data) ...@@ -3849,8 +3869,8 @@ static irqreturn_t e1000_intr(int irq, void *data)
#ifdef CONFIG_E1000_NAPI #ifdef CONFIG_E1000_NAPI
if (unlikely(hw->mac_type < e1000_82571)) { if (unlikely(hw->mac_type < e1000_82571)) {
/* disable interrupts, without the synchronize_irq bit */ /* disable interrupts, without the synchronize_irq bit */
E1000_WRITE_REG(hw, IMC, ~0); ew32(IMC, ~0);
E1000_WRITE_FLUSH(hw); E1000_WRITE_FLUSH();
} }
if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
adapter->total_tx_bytes = 0; adapter->total_tx_bytes = 0;
...@@ -3874,7 +3894,7 @@ static irqreturn_t e1000_intr(int irq, void *data) ...@@ -3874,7 +3894,7 @@ static irqreturn_t e1000_intr(int irq, void *data)
* de-assertion state. * de-assertion state.
*/ */
if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
E1000_WRITE_REG(hw, IMC, ~0); ew32(IMC, ~0);
adapter->total_tx_bytes = 0; adapter->total_tx_bytes = 0;
adapter->total_rx_bytes = 0; adapter->total_rx_bytes = 0;
...@@ -3947,6 +3967,7 @@ static int e1000_clean(struct napi_struct *napi, int budget) ...@@ -3947,6 +3967,7 @@ static int e1000_clean(struct napi_struct *napi, int budget)
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring) struct e1000_tx_ring *tx_ring)
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
struct e1000_tx_desc *tx_desc, *eop_desc; struct e1000_tx_desc *tx_desc, *eop_desc;
struct e1000_buffer *buffer_info; struct e1000_buffer *buffer_info;
...@@ -4014,8 +4035,7 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, ...@@ -4014,8 +4035,7 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
if (tx_ring->buffer_info[eop].dma && if (tx_ring->buffer_info[eop].dma &&
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
(adapter->tx_timeout_factor * HZ)) (adapter->tx_timeout_factor * HZ))
&& !(E1000_READ_REG(&adapter->hw, STATUS) & && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
E1000_STATUS_TXOFF)) {
/* detected Tx unit hang */ /* detected Tx unit hang */
DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
...@@ -4031,8 +4051,8 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, ...@@ -4031,8 +4051,8 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
" next_to_watch.status <%x>\n", " next_to_watch.status <%x>\n",
(unsigned long)((tx_ring - adapter->tx_ring) / (unsigned long)((tx_ring - adapter->tx_ring) /
sizeof(struct e1000_tx_ring)), sizeof(struct e1000_tx_ring)),
readl(adapter->hw.hw_addr + tx_ring->tdh), readl(hw->hw_addr + tx_ring->tdh),
readl(adapter->hw.hw_addr + tx_ring->tdt), readl(hw->hw_addr + tx_ring->tdt),
tx_ring->next_to_use, tx_ring->next_to_use,
tx_ring->next_to_clean, tx_ring->next_to_clean,
tx_ring->buffer_info[eop].time_stamp, tx_ring->buffer_info[eop].time_stamp,
...@@ -4060,12 +4080,13 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, ...@@ -4060,12 +4080,13 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
u32 csum, struct sk_buff *skb) u32 csum, struct sk_buff *skb)
{ {
struct e1000_hw *hw = &adapter->hw;
u16 status = (u16)status_err; u16 status = (u16)status_err;
u8 errors = (u8)(status_err >> 24); u8 errors = (u8)(status_err >> 24);
skb->ip_summed = CHECKSUM_NONE; skb->ip_summed = CHECKSUM_NONE;
/* 82543 or newer only */ /* 82543 or newer only */
if (unlikely(adapter->hw.mac_type < e1000_82543)) return; if (unlikely(hw->mac_type < e1000_82543)) return;
/* Ignore Checksum bit is set */ /* Ignore Checksum bit is set */
if (unlikely(status & E1000_RXD_STAT_IXSM)) return; if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
/* TCP/UDP checksum error bit is set */ /* TCP/UDP checksum error bit is set */
...@@ -4075,7 +4096,7 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, ...@@ -4075,7 +4096,7 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
return; return;
} }
/* TCP/UDP Checksum has not been calculated */ /* TCP/UDP Checksum has not been calculated */
if (adapter->hw.mac_type <= e1000_82547_rev_2) { if (hw->mac_type <= e1000_82547_rev_2) {
if (!(status & E1000_RXD_STAT_TCPCS)) if (!(status & E1000_RXD_STAT_TCPCS))
return; return;
} else { } else {
...@@ -4086,7 +4107,7 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, ...@@ -4086,7 +4107,7 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
if (likely(status & E1000_RXD_STAT_TCPCS)) { if (likely(status & E1000_RXD_STAT_TCPCS)) {
/* TCP checksum is good */ /* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY; skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if (adapter->hw.mac_type > e1000_82547_rev_2) { } else if (hw->mac_type > e1000_82547_rev_2) {
/* IP fragment with UDP payload */ /* IP fragment with UDP payload */
/* Hardware complements the payload checksum, so we undo it /* Hardware complements the payload checksum, so we undo it
* and then put the value in host order for further stack use. * and then put the value in host order for further stack use.
...@@ -4111,6 +4132,7 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, ...@@ -4111,6 +4132,7 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring) struct e1000_rx_ring *rx_ring)
#endif #endif
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev; struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc, *next_rxd; struct e1000_rx_desc *rx_desc, *next_rxd;
...@@ -4168,11 +4190,10 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, ...@@ -4168,11 +4190,10 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
last_byte = *(skb->data + length - 1); last_byte = *(skb->data + length - 1);
if (TBI_ACCEPT(&adapter->hw, status, if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
rx_desc->errors, length, last_byte)) { last_byte)) {
spin_lock_irqsave(&adapter->stats_lock, flags); spin_lock_irqsave(&adapter->stats_lock, flags);
e1000_tbi_adjust_stats(&adapter->hw, e1000_tbi_adjust_stats(hw, &adapter->stats,
&adapter->stats,
length, skb->data); length, skb->data);
spin_unlock_irqrestore(&adapter->stats_lock, spin_unlock_irqrestore(&adapter->stats_lock,
flags); flags);
...@@ -4462,6 +4483,7 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, ...@@ -4462,6 +4483,7 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring, struct e1000_rx_ring *rx_ring,
int cleaned_count) int cleaned_count)
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev; struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc; struct e1000_rx_desc *rx_desc;
...@@ -4559,7 +4581,7 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, ...@@ -4559,7 +4581,7 @@ static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
* applicable for weak-ordered memory model archs, * applicable for weak-ordered memory model archs,
* such as IA-64). */ * such as IA-64). */
wmb(); wmb();
writel(i, adapter->hw.hw_addr + rx_ring->rdt); writel(i, hw->hw_addr + rx_ring->rdt);
} }
} }
...@@ -4572,6 +4594,7 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, ...@@ -4572,6 +4594,7 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring, struct e1000_rx_ring *rx_ring,
int cleaned_count) int cleaned_count)
{ {
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev; struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev; struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_packet_split *rx_desc; union e1000_rx_desc_packet_split *rx_desc;
...@@ -4656,7 +4679,7 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, ...@@ -4656,7 +4679,7 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
* descriptors are 32 bytes...so we increment tail * descriptors are 32 bytes...so we increment tail
* twice as much. * twice as much.
*/ */
writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt); writel(i<<1, hw->hw_addr + rx_ring->rdt);
} }
} }
...@@ -4667,46 +4690,47 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, ...@@ -4667,46 +4690,47 @@ static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
static void e1000_smartspeed(struct e1000_adapter *adapter) static void e1000_smartspeed(struct e1000_adapter *adapter)
{ {
struct e1000_hw *hw = &adapter->hw;
u16 phy_status; u16 phy_status;
u16 phy_ctrl; u16 phy_ctrl;
if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg || if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
!(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL)) !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
return; return;
if (adapter->smartspeed == 0) { if (adapter->smartspeed == 0) {
/* If Master/Slave config fault is asserted twice, /* If Master/Slave config fault is asserted twice,
* we assume back-to-back */ * we assume back-to-back */
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
if (phy_ctrl & CR_1000T_MS_ENABLE) { if (phy_ctrl & CR_1000T_MS_ENABLE) {
phy_ctrl &= ~CR_1000T_MS_ENABLE; phy_ctrl &= ~CR_1000T_MS_ENABLE;
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, e1000_write_phy_reg(hw, PHY_1000T_CTRL,
phy_ctrl); phy_ctrl);
adapter->smartspeed++; adapter->smartspeed++;
if (!e1000_phy_setup_autoneg(&adapter->hw) && if (!e1000_phy_setup_autoneg(hw) &&
!e1000_read_phy_reg(&adapter->hw, PHY_CTRL, !e1000_read_phy_reg(hw, PHY_CTRL,
&phy_ctrl)) { &phy_ctrl)) {
phy_ctrl |= (MII_CR_AUTO_NEG_EN | phy_ctrl |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG); MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, e1000_write_phy_reg(hw, PHY_CTRL,
phy_ctrl); phy_ctrl);
} }
} }
return; return;
} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
/* If still no link, perhaps using 2/3 pair cable */ /* If still no link, perhaps using 2/3 pair cable */
e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
phy_ctrl |= CR_1000T_MS_ENABLE; phy_ctrl |= CR_1000T_MS_ENABLE;
e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
if (!e1000_phy_setup_autoneg(&adapter->hw) && if (!e1000_phy_setup_autoneg(hw) &&
!e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
phy_ctrl |= (MII_CR_AUTO_NEG_EN | phy_ctrl |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG); MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
} }
} }
/* Restart process after E1000_SMARTSPEED_MAX iterations */ /* Restart process after E1000_SMARTSPEED_MAX iterations */
...@@ -4744,24 +4768,25 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, ...@@ -4744,24 +4768,25 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd) int cmd)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct mii_ioctl_data *data = if_mii(ifr); struct mii_ioctl_data *data = if_mii(ifr);
int retval; int retval;
u16 mii_reg; u16 mii_reg;
u16 spddplx; u16 spddplx;
unsigned long flags; unsigned long flags;
if (adapter->hw.media_type != e1000_media_type_copper) if (hw->media_type != e1000_media_type_copper)
return -EOPNOTSUPP; return -EOPNOTSUPP;
switch (cmd) { switch (cmd) {
case SIOCGMIIPHY: case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy_addr; data->phy_id = hw->phy_addr;
break; break;
case SIOCGMIIREG: case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN)) if (!capable(CAP_NET_ADMIN))
return -EPERM; return -EPERM;
spin_lock_irqsave(&adapter->stats_lock, flags); spin_lock_irqsave(&adapter->stats_lock, flags);
if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
&data->val_out)) { &data->val_out)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags); spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO; return -EIO;
...@@ -4775,20 +4800,20 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, ...@@ -4775,20 +4800,20 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
return -EFAULT; return -EFAULT;
mii_reg = data->val_in; mii_reg = data->val_in;
spin_lock_irqsave(&adapter->stats_lock, flags); spin_lock_irqsave(&adapter->stats_lock, flags);
if (e1000_write_phy_reg(&adapter->hw, data->reg_num, if (e1000_write_phy_reg(hw, data->reg_num,
mii_reg)) { mii_reg)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags); spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO; return -EIO;
} }
spin_unlock_irqrestore(&adapter->stats_lock, flags); spin_unlock_irqrestore(&adapter->stats_lock, flags);
if (adapter->hw.media_type == e1000_media_type_copper) { if (hw->media_type == e1000_media_type_copper) {
switch (data->reg_num) { switch (data->reg_num) {
case PHY_CTRL: case PHY_CTRL:
if (mii_reg & MII_CR_POWER_DOWN) if (mii_reg & MII_CR_POWER_DOWN)
break; break;
if (mii_reg & MII_CR_AUTO_NEG_EN) { if (mii_reg & MII_CR_AUTO_NEG_EN) {
adapter->hw.autoneg = 1; hw->autoneg = 1;
adapter->hw.autoneg_advertised = 0x2F; hw->autoneg_advertised = 0x2F;
} else { } else {
if (mii_reg & 0x40) if (mii_reg & 0x40)
spddplx = SPEED_1000; spddplx = SPEED_1000;
...@@ -4811,7 +4836,7 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, ...@@ -4811,7 +4836,7 @@ static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
break; break;
case M88E1000_PHY_SPEC_CTRL: case M88E1000_PHY_SPEC_CTRL:
case M88E1000_EXT_PHY_SPEC_CTRL: case M88E1000_EXT_PHY_SPEC_CTRL:
if (e1000_phy_reset(&adapter->hw)) if (e1000_phy_reset(hw))
return -EIO; return -EIO;
break; break;
} }
...@@ -4885,6 +4910,7 @@ static void e1000_vlan_rx_register(struct net_device *netdev, ...@@ -4885,6 +4910,7 @@ static void e1000_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp) struct vlan_group *grp)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, rctl; u32 ctrl, rctl;
if (!test_bit(__E1000_DOWN, &adapter->flags)) if (!test_bit(__E1000_DOWN, &adapter->flags))
...@@ -4893,22 +4919,22 @@ static void e1000_vlan_rx_register(struct net_device *netdev, ...@@ -4893,22 +4919,22 @@ static void e1000_vlan_rx_register(struct net_device *netdev,
if (grp) { if (grp) {
/* enable VLAN tag insert/strip */ /* enable VLAN tag insert/strip */
ctrl = E1000_READ_REG(&adapter->hw, CTRL); ctrl = er32(CTRL);
ctrl |= E1000_CTRL_VME; ctrl |= E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); ew32(CTRL, ctrl);
if (adapter->hw.mac_type != e1000_ich8lan) { if (adapter->hw.mac_type != e1000_ich8lan) {
/* enable VLAN receive filtering */ /* enable VLAN receive filtering */
rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl = er32(RCTL);
rctl &= ~E1000_RCTL_CFIEN; rctl &= ~E1000_RCTL_CFIEN;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl); ew32(RCTL, rctl);
e1000_update_mng_vlan(adapter); e1000_update_mng_vlan(adapter);
} }
} else { } else {
/* disable VLAN tag insert/strip */ /* disable VLAN tag insert/strip */
ctrl = E1000_READ_REG(&adapter->hw, CTRL); ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_VME; ctrl &= ~E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); ew32(CTRL, ctrl);
if (adapter->hw.mac_type != e1000_ich8lan) { if (adapter->hw.mac_type != e1000_ich8lan) {
if (adapter->mng_vlan_id != if (adapter->mng_vlan_id !=
...@@ -4927,22 +4953,24 @@ static void e1000_vlan_rx_register(struct net_device *netdev, ...@@ -4927,22 +4953,24 @@ static void e1000_vlan_rx_register(struct net_device *netdev,
static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index; u32 vfta, index;
if ((adapter->hw.mng_cookie.status & if ((hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
(vid == adapter->mng_vlan_id)) (vid == adapter->mng_vlan_id))
return; return;
/* add VID to filter table */ /* add VID to filter table */
index = (vid >> 5) & 0x7F; index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
vfta |= (1 << (vid & 0x1F)); vfta |= (1 << (vid & 0x1F));
e1000_write_vfta(&adapter->hw, index, vfta); e1000_write_vfta(hw, index, vfta);
} }
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{ {
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index; u32 vfta, index;
if (!test_bit(__E1000_DOWN, &adapter->flags)) if (!test_bit(__E1000_DOWN, &adapter->flags))
...@@ -4951,7 +4979,7 @@ static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) ...@@ -4951,7 +4979,7 @@ static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
if (!test_bit(__E1000_DOWN, &adapter->flags)) if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_enable(adapter); e1000_irq_enable(adapter);
if ((adapter->hw.mng_cookie.status & if ((hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
(vid == adapter->mng_vlan_id)) { (vid == adapter->mng_vlan_id)) {
/* release control to f/w */ /* release control to f/w */
...@@ -4961,9 +4989,9 @@ static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) ...@@ -4961,9 +4989,9 @@ static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
/* remove VID from filter table */ /* remove VID from filter table */
index = (vid >> 5) & 0x7F; index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
vfta &= ~(1 << (vid & 0x1F)); vfta &= ~(1 << (vid & 0x1F));
e1000_write_vfta(&adapter->hw, index, vfta); e1000_write_vfta(hw, index, vfta);
} }
static void e1000_restore_vlan(struct e1000_adapter *adapter) static void e1000_restore_vlan(struct e1000_adapter *adapter)
...@@ -4982,10 +5010,12 @@ static void e1000_restore_vlan(struct e1000_adapter *adapter) ...@@ -4982,10 +5010,12 @@ static void e1000_restore_vlan(struct e1000_adapter *adapter)
int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
{ {
adapter->hw.autoneg = 0; struct e1000_hw *hw = &adapter->hw;
hw->autoneg = 0;
/* Fiber NICs only allow 1000 gbps Full duplex */ /* Fiber NICs only allow 1000 gbps Full duplex */
if ((adapter->hw.media_type == e1000_media_type_fiber) && if ((hw->media_type == e1000_media_type_fiber) &&
spddplx != (SPEED_1000 + DUPLEX_FULL)) { spddplx != (SPEED_1000 + DUPLEX_FULL)) {
DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
return -EINVAL; return -EINVAL;
...@@ -4993,20 +5023,20 @@ int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) ...@@ -4993,20 +5023,20 @@ int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
switch (spddplx) { switch (spddplx) {
case SPEED_10 + DUPLEX_HALF: case SPEED_10 + DUPLEX_HALF:
adapter->hw.forced_speed_duplex = e1000_10_half; hw->forced_speed_duplex = e1000_10_half;
break; break;
case SPEED_10 + DUPLEX_FULL: case SPEED_10 + DUPLEX_FULL:
adapter->hw.forced_speed_duplex = e1000_10_full; hw->forced_speed_duplex = e1000_10_full;
break; break;
case SPEED_100 + DUPLEX_HALF: case SPEED_100 + DUPLEX_HALF:
adapter->hw.forced_speed_duplex = e1000_100_half; hw->forced_speed_duplex = e1000_100_half;
break; break;
case SPEED_100 + DUPLEX_FULL: case SPEED_100 + DUPLEX_FULL:
adapter->hw.forced_speed_duplex = e1000_100_full; hw->forced_speed_duplex = e1000_100_full;
break; break;
case SPEED_1000 + DUPLEX_FULL: case SPEED_1000 + DUPLEX_FULL:
adapter->hw.autoneg = 1; hw->autoneg = 1;
adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; hw->autoneg_advertised = ADVERTISE_1000_FULL;
break; break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */ case SPEED_1000 + DUPLEX_HALF: /* not supported */
default: default:
...@@ -5020,6 +5050,7 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) ...@@ -5020,6 +5050,7 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
{ {
struct net_device *netdev = pci_get_drvdata(pdev); struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, ctrl_ext, rctl, status; u32 ctrl, ctrl_ext, rctl, status;
u32 wufc = adapter->wol; u32 wufc = adapter->wol;
#ifdef CONFIG_PM #ifdef CONFIG_PM
...@@ -5039,7 +5070,7 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) ...@@ -5039,7 +5070,7 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
return retval; return retval;
#endif #endif
status = E1000_READ_REG(&adapter->hw, STATUS); status = er32(STATUS);
if (status & E1000_STATUS_LU) if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC; wufc &= ~E1000_WUFC_LNKC;
...@@ -5049,40 +5080,40 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) ...@@ -5049,40 +5080,40 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
/* turn on all-multi mode if wake on multicast is enabled */ /* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC) { if (wufc & E1000_WUFC_MC) {
rctl = E1000_READ_REG(&adapter->hw, RCTL); rctl = er32(RCTL);
rctl |= E1000_RCTL_MPE; rctl |= E1000_RCTL_MPE;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl); ew32(RCTL, rctl);
} }
if (adapter->hw.mac_type >= e1000_82540) { if (hw->mac_type >= e1000_82540) {
ctrl = E1000_READ_REG(&adapter->hw, CTRL); ctrl = er32(CTRL);
/* advertise wake from D3Cold */ /* advertise wake from D3Cold */
#define E1000_CTRL_ADVD3WUC 0x00100000 #define E1000_CTRL_ADVD3WUC 0x00100000
/* phy power management enable */ /* phy power management enable */
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
ctrl |= E1000_CTRL_ADVD3WUC | ctrl |= E1000_CTRL_ADVD3WUC |
E1000_CTRL_EN_PHY_PWR_MGMT; E1000_CTRL_EN_PHY_PWR_MGMT;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); ew32(CTRL, ctrl);
} }
if (adapter->hw.media_type == e1000_media_type_fiber || if (hw->media_type == e1000_media_type_fiber ||
adapter->hw.media_type == e1000_media_type_internal_serdes) { hw->media_type == e1000_media_type_internal_serdes) {
/* keep the laser running in D3 */ /* keep the laser running in D3 */
ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); ew32(CTRL_EXT, ctrl_ext);
} }
/* Allow time for pending master requests to run */ /* Allow time for pending master requests to run */
e1000_disable_pciex_master(&adapter->hw); e1000_disable_pciex_master(hw);
E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); ew32(WUC, E1000_WUC_PME_EN);
E1000_WRITE_REG(&adapter->hw, WUFC, wufc); ew32(WUFC, wufc);
pci_enable_wake(pdev, PCI_D3hot, 1); pci_enable_wake(pdev, PCI_D3hot, 1);
pci_enable_wake(pdev, PCI_D3cold, 1); pci_enable_wake(pdev, PCI_D3cold, 1);
} else { } else {
E1000_WRITE_REG(&adapter->hw, WUC, 0); ew32(WUC, 0);
E1000_WRITE_REG(&adapter->hw, WUFC, 0); ew32(WUFC, 0);
pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0); pci_enable_wake(pdev, PCI_D3cold, 0);
} }
...@@ -5095,8 +5126,8 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) ...@@ -5095,8 +5126,8 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
pci_enable_wake(pdev, PCI_D3cold, 1); pci_enable_wake(pdev, PCI_D3cold, 1);
} }
if (adapter->hw.phy_type == e1000_phy_igp_3) if (hw->phy_type == e1000_phy_igp_3)
e1000_phy_powerdown_workaround(&adapter->hw); e1000_phy_powerdown_workaround(hw);
if (netif_running(netdev)) if (netif_running(netdev))
e1000_free_irq(adapter); e1000_free_irq(adapter);
...@@ -5117,6 +5148,7 @@ static int e1000_resume(struct pci_dev *pdev) ...@@ -5117,6 +5148,7 @@ static int e1000_resume(struct pci_dev *pdev)
{ {
struct net_device *netdev = pci_get_drvdata(pdev); struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 err; u32 err;
pci_set_power_state(pdev, PCI_D0); pci_set_power_state(pdev, PCI_D0);
...@@ -5135,7 +5167,7 @@ static int e1000_resume(struct pci_dev *pdev) ...@@ -5135,7 +5167,7 @@ static int e1000_resume(struct pci_dev *pdev)
e1000_power_up_phy(adapter); e1000_power_up_phy(adapter);
e1000_reset(adapter); e1000_reset(adapter);
E1000_WRITE_REG(&adapter->hw, WUS, ~0); ew32(WUS, ~0);
e1000_init_manageability(adapter); e1000_init_manageability(adapter);
...@@ -5148,8 +5180,8 @@ static int e1000_resume(struct pci_dev *pdev) ...@@ -5148,8 +5180,8 @@ static int e1000_resume(struct pci_dev *pdev)
* DRV_LOAD until the interface is up. For all other cases, * DRV_LOAD until the interface is up. For all other cases,
* let the f/w know that the h/w is now under the control * let the f/w know that the h/w is now under the control
* of the driver. */ * of the driver. */
if (adapter->hw.mac_type != e1000_82573 || if (hw->mac_type != e1000_82573 ||
!e1000_check_mng_mode(&adapter->hw)) !e1000_check_mng_mode(hw))
e1000_get_hw_control(adapter); e1000_get_hw_control(adapter);
return 0; return 0;
...@@ -5215,6 +5247,7 @@ static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) ...@@ -5215,6 +5247,7 @@ static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{ {
struct net_device *netdev = pci_get_drvdata(pdev); struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev->priv; struct e1000_adapter *adapter = netdev->priv;
struct e1000_hw *hw = &adapter->hw;
if (pci_enable_device(pdev)) { if (pci_enable_device(pdev)) {
printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
...@@ -5226,7 +5259,7 @@ static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) ...@@ -5226,7 +5259,7 @@ static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
pci_enable_wake(pdev, PCI_D3cold, 0); pci_enable_wake(pdev, PCI_D3cold, 0);
e1000_reset(adapter); e1000_reset(adapter);
E1000_WRITE_REG(&adapter->hw, WUS, ~0); ew32(WUS, ~0);
return PCI_ERS_RESULT_RECOVERED; return PCI_ERS_RESULT_RECOVERED;
} }
...@@ -5243,6 +5276,7 @@ static void e1000_io_resume(struct pci_dev *pdev) ...@@ -5243,6 +5276,7 @@ static void e1000_io_resume(struct pci_dev *pdev)
{ {
struct net_device *netdev = pci_get_drvdata(pdev); struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev->priv; struct e1000_adapter *adapter = netdev->priv;
struct e1000_hw *hw = &adapter->hw;
e1000_init_manageability(adapter); e1000_init_manageability(adapter);
...@@ -5259,8 +5293,8 @@ static void e1000_io_resume(struct pci_dev *pdev) ...@@ -5259,8 +5293,8 @@ static void e1000_io_resume(struct pci_dev *pdev)
* DRV_LOAD until the interface is up. For all other cases, * DRV_LOAD until the interface is up. For all other cases,
* let the f/w know that the h/w is now under the control * let the f/w know that the h/w is now under the control
* of the driver. */ * of the driver. */
if (adapter->hw.mac_type != e1000_82573 || if (hw->mac_type != e1000_82573 ||
!e1000_check_mng_mode(&adapter->hw)) !e1000_check_mng_mode(hw))
e1000_get_hw_control(adapter); e1000_get_hw_control(adapter);
} }
......
...@@ -55,13 +55,13 @@ ...@@ -55,13 +55,13 @@
#define DEBUGOUT7 DEBUGOUT3 #define DEBUGOUT7 DEBUGOUT3
#define E1000_WRITE_REG(a, reg, value) ( \ #define er32(reg)\
writel((value), ((a)->hw_addr + \ (readl(hw->hw_addr + ((hw->mac_type >= e1000_82543) \
(((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg)))) ? E1000_##reg : E1000_82542_##reg)))
#define E1000_READ_REG(a, reg) ( \ #define ew32(reg, value) \
readl((a)->hw_addr + \ (writel((value), (hw->hw_addr + ((hw->mac_type >= e1000_82543) \
(((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg))) ? E1000_##reg : E1000_82542_##reg))))
#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \ #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
writel((value), ((a)->hw_addr + \ writel((value), ((a)->hw_addr + \
...@@ -96,7 +96,7 @@ ...@@ -96,7 +96,7 @@
(((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
(offset))) (offset)))
#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) #define E1000_WRITE_FLUSH() er32(STATUS)
#define E1000_WRITE_ICH_FLASH_REG(a, reg, value) ( \ #define E1000_WRITE_ICH_FLASH_REG(a, reg, value) ( \
writel((value), ((a)->flash_address + reg))) writel((value), ((a)->flash_address + reg)))
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment