Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
linux
Commits
207ebf51
Commit
207ebf51
authored
May 27, 2004
by
Jeff Garzik
Browse files
Options
Browse Files
Download
Plain Diff
Merge redhat.com:/spare/repo/netdev-2.6/via-rhine
into redhat.com:/spare/repo/net-drivers-2.6
parents
159ea78e
336cb453
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
575 additions
and
552 deletions
+575
-552
drivers/net/via-rhine.c
drivers/net/via-rhine.c
+575
-552
No files found.
drivers/net/via-rhine.c
View file @
207ebf51
...
...
@@ -74,8 +74,8 @@
LK1.1.11:
- David Woodhouse: Set dev->base_addr before the first time we call
wait_for_reset(). It's a lot happier that way.
Free np->tx_bufs only if we actually allocated it.
wait_for_reset(). It's a lot happier that way.
Free np->tx_bufs only if we actually allocated it.
LK1.1.12:
- Martin Eriksson: Allow Memory-Mapped IO to be enabled.
...
...
@@ -85,7 +85,7 @@
- Replace some MII-related magic numbers with constants
LK1.1.14 (Ivan G.):
- fixes comments for Rhine-III
- fixes comments for Rhine-III
- removes W_MAX_TIMEOUT (unused)
- adds HasDavicomPhy for Rhine-I (basis: linuxfet driver; my card
is R-I and has Davicom chip, flag is referenced in kernel driver)
...
...
@@ -96,10 +96,10 @@
- transmit frame queue message is off by one - fixed
- adds IntrNormalSummary to "Something Wicked" exclusion list
so normal interrupts will not trigger the message (src: Donald Becker)
(Roger Luethi)
- show confused chip where to continue after Tx error
- location of collision counter is chip specific
- allow selecting backoff algorithm (module parameter)
(Roger Luethi)
- show confused chip where to continue after Tx error
- location of collision counter is chip specific
- allow selecting backoff algorithm (module parameter)
LK1.1.15 (jgarzik):
- Use new MII lib helper generic_mii_ioctl
...
...
@@ -128,14 +128,14 @@
*/
#define DRV_NAME "via-rhine"
#define DRV_VERSION "1.1.
19-2.5
"
#define DRV_RELDATE "
July-12-2003
"
#define DRV_VERSION "1.1.
20-2.6
"
#define DRV_RELDATE "
May-23-2004
"
/* A few user-configurable values.
These may be modified when a driver module is loaded. */
static
int
debug
=
1
;
/* 1 normal messages, 0 quiet .. 7 verbose. */
static
int
debug
=
1
;
/* 1 normal messages, 0 quiet .. 7 verbose. */
static
int
max_interrupt_work
=
20
;
/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
...
...
@@ -155,12 +155,12 @@ static int backoff;
Use option values 0x10 and 0x100 for forcing half duplex fixed speed.
Use option values 0x20 and 0x200 for forcing full duplex operation.
*/
#define MAX_UNITS
8
/* More are supported, limit only on options */
#define MAX_UNITS
8
/* More are supported, limit only on options */
static
int
options
[
MAX_UNITS
]
=
{
-
1
,
-
1
,
-
1
,
-
1
,
-
1
,
-
1
,
-
1
,
-
1
};
static
int
full_duplex
[
MAX_UNITS
]
=
{
-
1
,
-
1
,
-
1
,
-
1
,
-
1
,
-
1
,
-
1
,
-
1
};
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
The Rhine has a 64 element 8390-like hash table.
*/
The Rhine has a 64 element 8390-like hash table. */
static
const
int
multicast_filter_limit
=
32
;
...
...
@@ -172,16 +172,16 @@ static const int multicast_filter_limit = 32;
bonding and packet priority.
There are no ill effects from too-large receive rings. */
#define TX_RING_SIZE 16
#define TX_QUEUE_LEN 10
/* Limit ring entries actually used.
*/
#define TX_QUEUE_LEN 10
/* Limit ring entries actually used.
*/
#define RX_RING_SIZE 16
/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT
(2*HZ)
#define TX_TIMEOUT
(2*HZ)
#define PKT_BUF_SZ
1536
/* Size of each temporary Rx buffer.*/
#define PKT_BUF_SZ
1536
/* Size of each temporary Rx buffer.*/
#if !defined(__OPTIMIZE__) || !defined(__KERNEL__)
#warning You must compile this file with the correct options!
...
...
@@ -206,7 +206,7 @@ static const int multicast_filter_limit = 32;
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <asm/processor.h>
/* Processor type for cache alignment. */
#include <asm/processor.h>
/* Processor type for cache alignment. */
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/irq.h>
...
...
@@ -214,18 +214,16 @@ static const int multicast_filter_limit = 32;
/* These identify the driver base version and may not be removed. */
static
char
version
[]
__devinitdata
=
KERN_INFO
DRV_NAME
".c:v1.10-LK"
DRV_VERSION
" "
DRV_RELDATE
" Written by Donald Becker
\n
"
KERN_INFO
" http://www.scyld.com/network/via-rhine.html
\n
"
;
KERN_INFO
DRV_NAME
".c:v1.10-LK"
DRV_VERSION
" "
DRV_RELDATE
" Written by Donald Becker
\n
"
;
static
char
shortname
[]
=
DRV_NAME
;
/* This driver was written to use PCI memory space
, however most
versions
of the Rhine only work correctly with I/O space accesses. */
/* This driver was written to use PCI memory space
. Some early
versions
of the Rhine
may
only work correctly with I/O space accesses. */
#ifdef CONFIG_VIA_RHINE_MMIO
#define USE_M
EM
#define USE_M
MIO
#else
#define USE_IO
#undef readb
#undef readw
#undef readl
...
...
@@ -258,7 +256,7 @@ MODULE_PARM_DESC(options, "VIA Rhine: Bits 0-3: media type, bit 17: full duplex"
MODULE_PARM_DESC
(
full_duplex
,
"VIA Rhine full duplex setting(s) (1)"
);
/*
Theory of Operation
Theory of Operation
I. Board Compatibility
...
...
@@ -281,7 +279,7 @@ IIIa. Ring buffers
This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list.
The ring sizes are set at compile time by RX/TX_RING_SIZE.
the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
IIIb/c. Transmit/Receive Structure
...
...
@@ -292,29 +290,29 @@ the driver must often copy transmit packets into bounce buffers.
The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers.
When an incoming frame is less than RX_COPYBREAK bytes long,
buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack.
Buffers consumed this way are replaced by newly allocated
skbuffs in the last phase of
via_
rhine_rx().
protocol stack. Buffers consumed this way are replaced by newly allocated
skbuffs in the last phase of rhine_rx().
The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames.
New boards are typically used in generously configured machines
frames. New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets.
When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine.
Copying also preloads the cache, which is
copying packets. When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine. Copying also preloads the cache, which is
most useful with small frames.
Since the VIA chips are only able to transfer data to buffers on 32 bit
boundaries, the IP header at offset 14 in an ethernet frame isn't
longword aligned for further processing.
Copying these unaligned buffers
longword aligned for further processing. Copying these unaligned buffers
has the beneficial effect of 16-byte aligning the IP header.
IIId. Synchronization
The driver runs as two independent, single-threaded flows of control.
One
The driver runs as two independent, single-threaded flows of control. One
is the send-packet routine, which enforces single-threaded use by the
dev->priv->lock spinlock. The other thread is the interrupt handler, which
is single threaded by the hardware and interrupt handling software.
...
...
@@ -324,7 +322,7 @@ dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
is not available it stops the transmit queue by calling netif_stop_queue.
The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.
After reaping the stats, it marks the Tx queue entry as
from the Tx ring. After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. If at least half of the entries in
the Rx ring are available the transmit queue is woken up if it was stopped.
...
...
@@ -350,7 +348,7 @@ The chip does not pad to minimum transmit length.
*/
/* This table drives the PCI probe routines.
It's mostly boilerplate in all
/* This table drives the PCI probe routines. It's mostly boilerplate in all
of the drivers, and will likely be provided by some future kernel.
Note the matching code -- the first table entry matchs all 56** cards but
second only the 1234 card.
...
...
@@ -361,14 +359,14 @@ enum pci_flags_bit {
PCI_ADDR0
=
0x10
<<
0
,
PCI_ADDR1
=
0x10
<<
1
,
PCI_ADDR2
=
0x10
<<
2
,
PCI_ADDR3
=
0x10
<<
3
,
};
enum
via_
rhine_chips
{
enum
rhine_chips
{
VT86C100A
=
0
,
VT6102
,
VT6105
,
VT6105M
};
struct
via_
rhine_chip_info
{
struct
rhine_chip_info
{
const
char
*
name
;
u16
pci_flags
;
int
io_size
;
...
...
@@ -378,9 +376,10 @@ struct via_rhine_chip_info {
enum
chip_capability_flags
{
CanHaveMII
=
1
,
HasESIPhy
=
2
,
HasDavicomPhy
=
4
,
ReqTxAlign
=
0x10
,
HasWOL
=
0x20
,
};
ReqTxAlign
=
0x10
,
HasWOL
=
0x20
,
};
#ifdef USE_M
EM
#ifdef USE_M
MIO
#define RHINE_IOTYPE (PCI_USES_MEM | PCI_USES_MASTER | PCI_ADDR1)
#else
#define RHINE_IOTYPE (PCI_USES_IO | PCI_USES_MASTER | PCI_ADDR0)
...
...
@@ -388,8 +387,8 @@ enum chip_capability_flags {
/* Beware of PCI posted writes */
#define IOSYNC do { readb(dev->base_addr + StationAddr); } while (0)
/* directly indexed by enum
via_
rhine_chips, above */
static
struct
via_rhine_chip_info
via_
rhine_chip_info
[]
__devinitdata
=
/* directly indexed by enum rhine_chips, above */
static
struct
rhine_chip_info
rhine_chip_info
[]
__devinitdata
=
{
{
"VIA VT86C100A Rhine"
,
RHINE_IOTYPE
,
128
,
CanHaveMII
|
ReqTxAlign
|
HasDavicomPhy
},
...
...
@@ -401,15 +400,15 @@ static struct via_rhine_chip_info via_rhine_chip_info[] __devinitdata =
CanHaveMII
|
HasWOL
},
};
static
struct
pci_device_id
via_
rhine_pci_tbl
[]
=
static
struct
pci_device_id
rhine_pci_tbl
[]
=
{
{
0x1106
,
0x3043
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
VT86C100A
},
{
0x1106
,
0x3065
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
VT6102
},
{
0x1106
,
0x3106
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
VT6105
},
/* 6105{,L,LOM} */
{
0x1106
,
0x3053
,
PCI_ANY_ID
,
PCI_ANY_ID
,
0
,
0
,
VT6105M
},
{
0
,}
/* terminate list */
{
0
,}
/* terminate list */
};
MODULE_DEVICE_TABLE
(
pci
,
via_
rhine_pci_tbl
);
MODULE_DEVICE_TABLE
(
pci
,
rhine_pci_tbl
);
/* Offsets to the device registers. */
...
...
@@ -432,7 +431,7 @@ enum backoff_bits {
BackCaptureEffect
=
0x04
,
BackRandom
=
0x08
};
#ifdef USE_M
EM
#ifdef USE_M
MIO
/* Registers we check that mmio and reg are the same. */
int
mmio_verify_registers
[]
=
{
RxConfig
,
TxConfig
,
IntrEnable
,
ConfigA
,
ConfigB
,
ConfigC
,
ConfigD
,
...
...
@@ -469,7 +468,7 @@ struct tx_desc {
};
/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
#define TXDESC
0x00e08000
#define TXDESC
0x00e08000
enum
rx_status_bits
{
RxOK
=
0x8000
,
RxWholePkt
=
0x0300
,
RxErr
=
0x008F
...
...
@@ -489,7 +488,7 @@ enum chip_cmd_bits {
};
#define MAX_MII_CNT 4
struct
netdev
_private
{
struct
rhine
_private
{
/* Descriptor rings */
struct
rx_desc
*
rx_ring
;
struct
tx_desc
*
tx_ring
;
...
...
@@ -517,48 +516,48 @@ struct netdev_private {
/* Frequently used values: keep some adjacent for cache effect. */
int
chip_id
,
drv_flags
;
struct
rx_desc
*
rx_head_desc
;
unsigned
int
cur_rx
,
dirty_rx
;
/* Producer/consumer ring indices */
unsigned
int
cur_rx
,
dirty_rx
;
/* Producer/consumer ring indices */
unsigned
int
cur_tx
,
dirty_tx
;
unsigned
int
rx_buf_sz
;
/* Based on MTU+slack. */
u16
chip_cmd
;
/* Current setting for ChipCmd */
unsigned
int
rx_buf_sz
;
/* Based on MTU+slack. */
u16
chip_cmd
;
/* Current setting for ChipCmd */
/* These values are keep track of the transceiver/media in use. */
unsigned
int
default_port
:
4
;
/* Last dev->if_port value. */
unsigned
int
default_port
:
4
;
/* Last dev->if_port value. */
u8
tx_thresh
,
rx_thresh
;
/* MII transceiver section. */
unsigned
char
phys
[
MAX_MII_CNT
];
/* MII device addresses. */
unsigned
int
mii_cnt
;
/* number of MIIs found, but only the first one is used */
u16
mii_status
;
/* last read MII status */
unsigned
char
phys
[
MAX_MII_CNT
];
/* MII device addresses. */
unsigned
int
mii_cnt
;
/* number of MIIs found, but only the first one is used */
u16
mii_status
;
/* last read MII status */
struct
mii_if_info
mii_if
;
};
static
int
mdio_read
(
struct
net_device
*
dev
,
int
phy_id
,
int
location
);
static
void
mdio_write
(
struct
net_device
*
dev
,
int
phy_id
,
int
location
,
int
value
);
static
int
via_
rhine_open
(
struct
net_device
*
dev
);
static
void
via_
rhine_check_duplex
(
struct
net_device
*
dev
);
static
void
via_
rhine_timer
(
unsigned
long
data
);
static
void
via_
rhine_tx_timeout
(
struct
net_device
*
dev
);
static
int
via_
rhine_start_tx
(
struct
sk_buff
*
skb
,
struct
net_device
*
dev
);
static
irqreturn_t
via_
rhine_interrupt
(
int
irq
,
void
*
dev_instance
,
struct
pt_regs
*
regs
);
static
void
via_
rhine_tx
(
struct
net_device
*
dev
);
static
void
via_
rhine_rx
(
struct
net_device
*
dev
);
static
void
via_
rhine_error
(
struct
net_device
*
dev
,
int
intr_status
);
static
void
via_
rhine_set_rx_mode
(
struct
net_device
*
dev
);
static
struct
net_device_stats
*
via_
rhine_get_stats
(
struct
net_device
*
dev
);
static
int
rhine_open
(
struct
net_device
*
dev
);
static
void
rhine_check_duplex
(
struct
net_device
*
dev
);
static
void
rhine_timer
(
unsigned
long
data
);
static
void
rhine_tx_timeout
(
struct
net_device
*
dev
);
static
int
rhine_start_tx
(
struct
sk_buff
*
skb
,
struct
net_device
*
dev
);
static
irqreturn_t
rhine_interrupt
(
int
irq
,
void
*
dev_instance
,
struct
pt_regs
*
regs
);
static
void
rhine_tx
(
struct
net_device
*
dev
);
static
void
rhine_rx
(
struct
net_device
*
dev
);
static
void
rhine_error
(
struct
net_device
*
dev
,
int
intr_status
);
static
void
rhine_set_rx_mode
(
struct
net_device
*
dev
);
static
struct
net_device_stats
*
rhine_get_stats
(
struct
net_device
*
dev
);
static
int
netdev_ioctl
(
struct
net_device
*
dev
,
struct
ifreq
*
rq
,
int
cmd
);
static
struct
ethtool_ops
netdev_ethtool_ops
;
static
int
via_
rhine_close
(
struct
net_device
*
dev
);
static
int
rhine_close
(
struct
net_device
*
dev
);
static
inline
u32
get_intr_status
(
struct
net_device
*
dev
)
{
long
ioaddr
=
dev
->
base_addr
;
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
u32
intr_status
;
intr_status
=
readw
(
ioaddr
+
IntrStatus
);
/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
if
(
n
p
->
chip_id
==
VT6102
)
if
(
r
p
->
chip_id
==
VT6102
)
intr_status
|=
readb
(
ioaddr
+
IntrStatus2
)
<<
16
;
return
intr_status
;
}
...
...
@@ -590,7 +589,7 @@ static void wait_for_reset(struct net_device *dev, int chip_id, char *name)
boguscnt
?
"succeeded"
:
"failed"
);
}
#ifdef USE_M
EM
#ifdef USE_M
MIO
static
void
__devinit
enable_mmio
(
long
ioaddr
,
int
chip_id
)
{
int
n
;
...
...
@@ -616,19 +615,19 @@ static void __devinit reload_eeprom(long ioaddr)
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static
void
via_
rhine_poll
(
struct
net_device
*
dev
)
static
void
rhine_poll
(
struct
net_device
*
dev
)
{
disable_irq
(
dev
->
irq
);
via_
rhine_interrupt
(
dev
->
irq
,
(
void
*
)
dev
,
NULL
);
rhine_interrupt
(
dev
->
irq
,
(
void
*
)
dev
,
NULL
);
enable_irq
(
dev
->
irq
);
}
#endif
static
int
__devinit
via_rhine_init_one
(
struct
pci_dev
*
pdev
,
const
struct
pci_device_id
*
ent
)
static
int
__devinit
rhine_init_one
(
struct
pci_dev
*
pdev
,
const
struct
pci_device_id
*
ent
)
{
struct
net_device
*
dev
;
struct
netdev_private
*
n
p
;
struct
rhine_private
*
r
p
;
int
i
,
option
;
int
chip_id
=
(
int
)
ent
->
driver_data
;
static
int
card_idx
=
-
1
;
...
...
@@ -636,7 +635,7 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
long
memaddr
;
int
io_size
;
int
pci_flags
;
#ifdef USE_M
EM
#ifdef USE_M
MIO
long
ioaddr0
;
#endif
...
...
@@ -649,34 +648,36 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
card_idx
++
;
option
=
card_idx
<
MAX_UNITS
?
options
[
card_idx
]
:
0
;
io_size
=
via_
rhine_chip_info
[
chip_id
].
io_size
;
pci_flags
=
via_
rhine_chip_info
[
chip_id
].
pci_flags
;
io_size
=
rhine_chip_info
[
chip_id
].
io_size
;
pci_flags
=
rhine_chip_info
[
chip_id
].
pci_flags
;
if
(
pci_enable_device
(
pdev
))
if
(
pci_enable_device
(
pdev
))
goto
err_out
;
/* this should always be supported */
if
(
pci_set_dma_mask
(
pdev
,
0xffffffff
))
{
printk
(
KERN_ERR
"32-bit PCI DMA addresses not supported by the card!?
\n
"
);
printk
(
KERN_ERR
"32-bit PCI DMA addresses not supported by "
"the card!?
\n
"
);
goto
err_out
;
}
/* sanity check */
if
((
pci_resource_len
(
pdev
,
0
)
<
io_size
)
||
(
pci_resource_len
(
pdev
,
1
)
<
io_size
))
{
printk
(
KERN_ERR
"Insufficient PCI resources, aborting
\n
"
);
if
((
pci_resource_len
(
pdev
,
0
)
<
io_size
)
||
(
pci_resource_len
(
pdev
,
1
)
<
io_size
))
{
printk
(
KERN_ERR
"Insufficient PCI resources, aborting
\n
"
);
goto
err_out
;
}
ioaddr
=
pci_resource_start
(
pdev
,
0
);
memaddr
=
pci_resource_start
(
pdev
,
1
);
ioaddr
=
pci_resource_start
(
pdev
,
0
);
memaddr
=
pci_resource_start
(
pdev
,
1
);
if
(
pci_flags
&
PCI_USES_MASTER
)
pci_set_master
(
pdev
);
pci_set_master
(
pdev
);
dev
=
alloc_etherdev
(
sizeof
(
*
n
p
));
dev
=
alloc_etherdev
(
sizeof
(
*
r
p
));
if
(
dev
==
NULL
)
{
printk
(
KERN_ERR
"init_ethernet failed for card #%d
\n
"
,
card_idx
);
printk
(
KERN_ERR
"init_ethernet failed for card #%d
\n
"
,
card_idx
);
goto
err_out
;
}
SET_MODULE_OWNER
(
dev
);
...
...
@@ -685,14 +686,14 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
if
(
pci_request_regions
(
pdev
,
shortname
))
goto
err_out_free_netdev
;
#ifdef USE_M
EM
#ifdef USE_M
MIO
ioaddr0
=
ioaddr
;
enable_mmio
(
ioaddr0
,
chip_id
);
ioaddr
=
(
long
)
ioremap
(
memaddr
,
io_size
);
ioaddr
=
(
long
)
ioremap
(
memaddr
,
io_size
);
if
(
!
ioaddr
)
{
printk
(
KERN_ERR
"ioremap failed for device %s, region 0x%X @ 0x%lX
\n
"
,
pci_name
(
pdev
),
io_size
,
memaddr
);
printk
(
KERN_ERR
"ioremap failed for device %s, region 0x%X "
"@ 0x%lX
\n
"
,
pci_name
(
pdev
),
io_size
,
memaddr
);
goto
err_out_free_res
;
}
...
...
@@ -703,15 +704,15 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
unsigned
char
a
=
inb
(
ioaddr0
+
reg
);
unsigned
char
b
=
readb
(
ioaddr
+
reg
);
if
(
a
!=
b
)
{
printk
(
KERN_ERR
"MMIO do not match PIO [%02x] (%02x != %02x)
\n
"
,
reg
,
a
,
b
);
printk
(
KERN_ERR
"MMIO do not match PIO [%02x] "
"(%02x != %02x)
\n
"
,
reg
,
a
,
b
);
goto
err_out_unmap
;
}
}
#endif
#endif
/* USE_MMIO */
/* D-Link provided reset code (with comment additions) */
if
(
via_
rhine_chip_info
[
chip_id
].
drv_flags
&
HasWOL
)
{
if
(
rhine_chip_info
[
chip_id
].
drv_flags
&
HasWOL
)
{
unsigned
char
byOrgValue
;
/* clear sticky bit before reset & read ethernet address */
...
...
@@ -735,14 +736,14 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
wait_for_reset
(
dev
,
chip_id
,
shortname
);
/* Reload the station address from the EEPROM. */
#ifdef USE_IO
reload_eeprom
(
ioaddr
);
#else
#ifdef USE_MMIO
reload_eeprom
(
ioaddr0
);
/* Reloading from eeprom overwrites cfgA-D, so we must re-enable MMIO.
If reload_eeprom() was done first this could be avoided, but it is
not known if that still works with the "win98-reboot" problem. */
enable_mmio
(
ioaddr0
,
chip_id
);
#else
reload_eeprom
(
ioaddr
);
#endif
for
(
i
=
0
;
i
<
6
;
i
++
)
...
...
@@ -756,7 +757,7 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
if
(
chip_id
==
VT6102
)
{
/*
* for 3065D, EEPROM reloaded will cause bit 0 in MAC_REG_CFGA
* turned on.
it makes MAC receive magic packet
* turned on. it makes MAC receive magic packet
* automatically. So, we turn it off. (D-Link)
*/
writeb
(
readb
(
ioaddr
+
ConfigA
)
&
0xFE
,
ioaddr
+
ConfigA
);
...
...
@@ -765,38 +766,38 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
/* Select backoff algorithm */
if
(
backoff
)
writeb
(
readb
(
ioaddr
+
ConfigD
)
&
(
0xF0
|
backoff
),
ioaddr
+
ConfigD
);
ioaddr
+
ConfigD
);
dev
->
irq
=
pdev
->
irq
;
np
=
dev
->
priv
;
spin_lock_init
(
&
n
p
->
lock
);
n
p
->
chip_id
=
chip_id
;
np
->
drv_flags
=
via_
rhine_chip_info
[
chip_id
].
drv_flags
;
n
p
->
pdev
=
pdev
;
n
p
->
mii_if
.
dev
=
dev
;
n
p
->
mii_if
.
mdio_read
=
mdio_read
;
n
p
->
mii_if
.
mdio_write
=
mdio_write
;
n
p
->
mii_if
.
phy_id_mask
=
0x1f
;
n
p
->
mii_if
.
reg_num_mask
=
0x1f
;
rp
=
netdev_priv
(
dev
)
;
spin_lock_init
(
&
r
p
->
lock
);
r
p
->
chip_id
=
chip_id
;
rp
->
drv_flags
=
rhine_chip_info
[
chip_id
].
drv_flags
;
r
p
->
pdev
=
pdev
;
r
p
->
mii_if
.
dev
=
dev
;
r
p
->
mii_if
.
mdio_read
=
mdio_read
;
r
p
->
mii_if
.
mdio_write
=
mdio_write
;
r
p
->
mii_if
.
phy_id_mask
=
0x1f
;
r
p
->
mii_if
.
reg_num_mask
=
0x1f
;
if
(
dev
->
mem_start
)
option
=
dev
->
mem_start
;
/* The chip-specific entries in the device structure. */
dev
->
open
=
via_
rhine_open
;
dev
->
hard_start_xmit
=
via_
rhine_start_tx
;
dev
->
stop
=
via_
rhine_close
;
dev
->
get_stats
=
via_
rhine_get_stats
;
dev
->
set_multicast_list
=
via_
rhine_set_rx_mode
;
dev
->
open
=
rhine_open
;
dev
->
hard_start_xmit
=
rhine_start_tx
;
dev
->
stop
=
rhine_close
;
dev
->
get_stats
=
rhine_get_stats
;
dev
->
set_multicast_list
=
rhine_set_rx_mode
;
dev
->
do_ioctl
=
netdev_ioctl
;
dev
->
ethtool_ops
=
&
netdev_ethtool_ops
;
dev
->
tx_timeout
=
via_
rhine_tx_timeout
;
dev
->
tx_timeout
=
rhine_tx_timeout
;
dev
->
watchdog_timeo
=
TX_TIMEOUT
;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev
->
poll_controller
=
via_
rhine_poll
;
dev
->
poll_controller
=
rhine_poll
;
#endif
if
(
n
p
->
drv_flags
&
ReqTxAlign
)
if
(
r
p
->
drv_flags
&
ReqTxAlign
)
dev
->
features
|=
NETIF_F_SG
|
NETIF_F_HW_CSUM
;
/* dev->name not defined before register_netdev()! */
...
...
@@ -807,40 +808,41 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
/* The lower four bits are the media type. */
if
(
option
>
0
)
{
if
(
option
&
0x220
)
n
p
->
mii_if
.
full_duplex
=
1
;
n
p
->
default_port
=
option
&
15
;
r
p
->
mii_if
.
full_duplex
=
1
;
r
p
->
default_port
=
option
&
15
;
}
if
(
card_idx
<
MAX_UNITS
&&
full_duplex
[
card_idx
]
>
0
)
n
p
->
mii_if
.
full_duplex
=
1
;
if
(
card_idx
<
MAX_UNITS
&&
full_duplex
[
card_idx
]
>
0
)
r
p
->
mii_if
.
full_duplex
=
1
;
if
(
n
p
->
mii_if
.
full_duplex
)
{
printk
(
KERN_INFO
"%s: Set to forced full duplex,
autonegotiation
"
"
disabled.
\n
"
,
dev
->
name
);
n
p
->
mii_if
.
force_media
=
1
;
if
(
r
p
->
mii_if
.
full_duplex
)
{
printk
(
KERN_INFO
"%s: Set to forced full duplex, "
"autonegotiation
disabled.
\n
"
,
dev
->
name
);
r
p
->
mii_if
.
force_media
=
1
;
}
printk
(
KERN_INFO
"%s: %s at 0x%lx, "
,
dev
->
name
,
via_
rhine_chip_info
[
chip_id
].
name
,
(
pci_flags
&
PCI_USES_IO
)
?
ioaddr
:
memaddr
);
dev
->
name
,
rhine_chip_info
[
chip_id
].
name
,
(
pci_flags
&
PCI_USES_IO
)
?
ioaddr
:
memaddr
);
for
(
i
=
0
;
i
<
5
;
i
++
)
printk
(
"%2.2x:"
,
dev
->
dev_addr
[
i
]);
printk
(
"%2.2x:"
,
dev
->
dev_addr
[
i
]);
printk
(
"%2.2x, IRQ %d.
\n
"
,
dev
->
dev_addr
[
i
],
pdev
->
irq
);
pci_set_drvdata
(
pdev
,
dev
);
if
(
n
p
->
drv_flags
&
CanHaveMII
)
{
if
(
r
p
->
drv_flags
&
CanHaveMII
)
{
int
phy
,
phy_idx
=
0
;
n
p
->
phys
[
0
]
=
1
;
/* Standard for this chip. */
r
p
->
phys
[
0
]
=
1
;
/* Standard for this chip. */
for
(
phy
=
1
;
phy
<
32
&&
phy_idx
<
MAX_MII_CNT
;
phy
++
)
{
int
mii_status
=
mdio_read
(
dev
,
phy
,
1
);
if
(
mii_status
!=
0xffff
&&
mii_status
!=
0x0000
)
{
np
->
phys
[
phy_idx
++
]
=
phy
;
np
->
mii_if
.
advertising
=
mdio_read
(
dev
,
phy
,
4
);
printk
(
KERN_INFO
"%s: MII PHY found at address %d, status "
"0x%4.4x advertising %4.4x Link %4.4x.
\n
"
,
dev
->
name
,
phy
,
mii_status
,
np
->
mii_if
.
advertising
,
mdio_read
(
dev
,
phy
,
5
));
if
(
mii_status
!=
0xffff
&&
mii_status
!=
0x0000
)
{
rp
->
phys
[
phy_idx
++
]
=
phy
;
rp
->
mii_if
.
advertising
=
mdio_read
(
dev
,
phy
,
4
);
printk
(
KERN_INFO
"%s: MII PHY found at address "
"%d, status 0x%4.4x advertising %4.4x "
"Link %4.4x.
\n
"
,
dev
->
name
,
phy
,
mii_status
,
rp
->
mii_if
.
advertising
,
mdio_read
(
dev
,
phy
,
5
));
/* set IFF_RUNNING */
if
(
mii_status
&
BMSR_LSTATUS
)
...
...
@@ -851,49 +853,50 @@ static int __devinit via_rhine_init_one (struct pci_dev *pdev,
break
;
}
}
n
p
->
mii_cnt
=
phy_idx
;
np
->
mii_if
.
phy_id
=
n
p
->
phys
[
0
];
r
p
->
mii_cnt
=
phy_idx
;
rp
->
mii_if
.
phy_id
=
r
p
->
phys
[
0
];
}
/* Allow forcing the media type. */
if
(
option
>
0
)
{
if
(
option
&
0x220
)
n
p
->
mii_if
.
full_duplex
=
1
;
n
p
->
default_port
=
option
&
0x3ff
;
if
(
np
->
default_port
&
0x330
)
{
r
p
->
mii_if
.
full_duplex
=
1
;
r
p
->
default_port
=
option
&
0x3ff
;
if
(
option
&
0x330
)
{
/* FIXME: shouldn't someone check this variable? */
/* np->medialock = 1; */
printk
(
KERN_INFO
" Forcing %dMbs %s-duplex operation.
\n
"
,
(
option
&
0x300
?
100
:
10
),
(
option
&
0x220
?
"full"
:
"half"
));
if
(
np
->
mii_cnt
)
mdio_write
(
dev
,
np
->
phys
[
0
],
MII_BMCR
,
((
option
&
0x300
)
?
0x2000
:
0
)
|
/* 100mbps? */
((
option
&
0x220
)
?
0x0100
:
0
));
/* Full duplex? */
/* rp->medialock = 1; */
printk
(
KERN_INFO
" Forcing %dMbs %s-duplex "
"operation.
\n
"
,
(
option
&
0x300
?
100
:
10
),
(
option
&
0x220
?
"full"
:
"half"
));
if
(
rp
->
mii_cnt
)
mdio_write
(
dev
,
rp
->
phys
[
0
],
MII_BMCR
,
((
option
&
0x300
)
?
0x2000
:
0
)
|
/* 100mbps? */
((
option
&
0x220
)
?
0x0100
:
0
));
/* Full duplex? */
}
}
return
0
;
err_out_unmap:
#ifdef USE_M
EM
#ifdef USE_M
MIO
iounmap
((
void
*
)
ioaddr
);
err_out_free_res:
#endif
pci_release_regions
(
pdev
);
err_out_free_netdev:
free_netdev
(
dev
);
free_netdev
(
dev
);
err_out:
return
-
ENODEV
;
}
static
int
alloc_ring
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
void
*
ring
;
dma_addr_t
ring_dma
;
ring
=
pci_alloc_consistent
(
n
p
->
pdev
,
ring
=
pci_alloc_consistent
(
r
p
->
pdev
,
RX_RING_SIZE
*
sizeof
(
struct
rx_desc
)
+
TX_RING_SIZE
*
sizeof
(
struct
tx_desc
),
&
ring_dma
);
...
...
@@ -901,11 +904,12 @@ static int alloc_ring(struct net_device* dev)
printk
(
KERN_ERR
"Could not allocate DMA memory.
\n
"
);
return
-
ENOMEM
;
}
if
(
np
->
drv_flags
&
ReqTxAlign
)
{
np
->
tx_bufs
=
pci_alloc_consistent
(
np
->
pdev
,
PKT_BUF_SZ
*
TX_RING_SIZE
,
&
np
->
tx_bufs_dma
);
if
(
np
->
tx_bufs
==
NULL
)
{
pci_free_consistent
(
np
->
pdev
,
if
(
rp
->
drv_flags
&
ReqTxAlign
)
{
rp
->
tx_bufs
=
pci_alloc_consistent
(
rp
->
pdev
,
PKT_BUF_SZ
*
TX_RING_SIZE
,
&
rp
->
tx_bufs_dma
);
if
(
rp
->
tx_bufs
==
NULL
)
{
pci_free_consistent
(
rp
->
pdev
,
RX_RING_SIZE
*
sizeof
(
struct
rx_desc
)
+
TX_RING_SIZE
*
sizeof
(
struct
tx_desc
),
ring
,
ring_dma
);
...
...
@@ -913,137 +917,138 @@ static int alloc_ring(struct net_device* dev)
}
}
n
p
->
rx_ring
=
ring
;
n
p
->
tx_ring
=
ring
+
RX_RING_SIZE
*
sizeof
(
struct
rx_desc
);
n
p
->
rx_ring_dma
=
ring_dma
;
n
p
->
tx_ring_dma
=
ring_dma
+
RX_RING_SIZE
*
sizeof
(
struct
rx_desc
);
r
p
->
rx_ring
=
ring
;
r
p
->
tx_ring
=
ring
+
RX_RING_SIZE
*
sizeof
(
struct
rx_desc
);
r
p
->
rx_ring_dma
=
ring_dma
;
r
p
->
tx_ring_dma
=
ring_dma
+
RX_RING_SIZE
*
sizeof
(
struct
rx_desc
);
return
0
;
}
void
free_ring
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
pci_free_consistent
(
n
p
->
pdev
,
pci_free_consistent
(
r
p
->
pdev
,
RX_RING_SIZE
*
sizeof
(
struct
rx_desc
)
+
TX_RING_SIZE
*
sizeof
(
struct
tx_desc
),
np
->
rx_ring
,
n
p
->
rx_ring_dma
);
n
p
->
tx_ring
=
NULL
;
rp
->
rx_ring
,
r
p
->
rx_ring_dma
);
r
p
->
tx_ring
=
NULL
;
if
(
n
p
->
tx_bufs
)
pci_free_consistent
(
n
p
->
pdev
,
PKT_BUF_SZ
*
TX_RING_SIZE
,
np
->
tx_bufs
,
n
p
->
tx_bufs_dma
);
if
(
r
p
->
tx_bufs
)
pci_free_consistent
(
r
p
->
pdev
,
PKT_BUF_SZ
*
TX_RING_SIZE
,
rp
->
tx_bufs
,
r
p
->
tx_bufs_dma
);
n
p
->
tx_bufs
=
NULL
;
r
p
->
tx_bufs
=
NULL
;
}
static
void
alloc_rbufs
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
dma_addr_t
next
;
int
i
;
np
->
dirty_rx
=
n
p
->
cur_rx
=
0
;
rp
->
dirty_rx
=
r
p
->
cur_rx
=
0
;
n
p
->
rx_buf_sz
=
(
dev
->
mtu
<=
1500
?
PKT_BUF_SZ
:
dev
->
mtu
+
32
);
np
->
rx_head_desc
=
&
n
p
->
rx_ring
[
0
];
next
=
n
p
->
rx_ring_dma
;
r
p
->
rx_buf_sz
=
(
dev
->
mtu
<=
1500
?
PKT_BUF_SZ
:
dev
->
mtu
+
32
);
rp
->
rx_head_desc
=
&
r
p
->
rx_ring
[
0
];
next
=
r
p
->
rx_ring_dma
;
/* Init the ring entries */
for
(
i
=
0
;
i
<
RX_RING_SIZE
;
i
++
)
{
n
p
->
rx_ring
[
i
].
rx_status
=
0
;
np
->
rx_ring
[
i
].
desc_length
=
cpu_to_le32
(
n
p
->
rx_buf_sz
);
r
p
->
rx_ring
[
i
].
rx_status
=
0
;
rp
->
rx_ring
[
i
].
desc_length
=
cpu_to_le32
(
r
p
->
rx_buf_sz
);
next
+=
sizeof
(
struct
rx_desc
);
n
p
->
rx_ring
[
i
].
next_desc
=
cpu_to_le32
(
next
);
n
p
->
rx_skbuff
[
i
]
=
0
;
r
p
->
rx_ring
[
i
].
next_desc
=
cpu_to_le32
(
next
);
r
p
->
rx_skbuff
[
i
]
=
0
;
}
/* Mark the last entry as wrapping the ring. */
np
->
rx_ring
[
i
-
1
].
next_desc
=
cpu_to_le32
(
n
p
->
rx_ring_dma
);
rp
->
rx_ring
[
i
-
1
].
next_desc
=
cpu_to_le32
(
r
p
->
rx_ring_dma
);
/* Fill in the Rx buffers. Handle allocation failure gracefully. */
for
(
i
=
0
;
i
<
RX_RING_SIZE
;
i
++
)
{
struct
sk_buff
*
skb
=
dev_alloc_skb
(
n
p
->
rx_buf_sz
);
n
p
->
rx_skbuff
[
i
]
=
skb
;
struct
sk_buff
*
skb
=
dev_alloc_skb
(
r
p
->
rx_buf_sz
);
r
p
->
rx_skbuff
[
i
]
=
skb
;
if
(
skb
==
NULL
)
break
;
skb
->
dev
=
dev
;
/* Mark as being used by this device. */
n
p
->
rx_skbuff_dma
[
i
]
=
pci_map_single
(
np
->
pdev
,
skb
->
tail
,
n
p
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
r
p
->
rx_skbuff_dma
[
i
]
=
pci_map_single
(
rp
->
pdev
,
skb
->
tail
,
r
p
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
np
->
rx_ring
[
i
].
addr
=
cpu_to_le32
(
n
p
->
rx_skbuff_dma
[
i
]);
n
p
->
rx_ring
[
i
].
rx_status
=
cpu_to_le32
(
DescOwn
);
rp
->
rx_ring
[
i
].
addr
=
cpu_to_le32
(
r
p
->
rx_skbuff_dma
[
i
]);
r
p
->
rx_ring
[
i
].
rx_status
=
cpu_to_le32
(
DescOwn
);
}
n
p
->
dirty_rx
=
(
unsigned
int
)(
i
-
RX_RING_SIZE
);
r
p
->
dirty_rx
=
(
unsigned
int
)(
i
-
RX_RING_SIZE
);
}
static
void
free_rbufs
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
int
i
;
/* Free all the skbuffs in the Rx queue. */
for
(
i
=
0
;
i
<
RX_RING_SIZE
;
i
++
)
{
n
p
->
rx_ring
[
i
].
rx_status
=
0
;
n
p
->
rx_ring
[
i
].
addr
=
cpu_to_le32
(
0xBADF00D0
);
/* An invalid address. */
if
(
n
p
->
rx_skbuff
[
i
])
{
pci_unmap_single
(
n
p
->
pdev
,
n
p
->
rx_skbuff_dma
[
i
],
n
p
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
dev_kfree_skb
(
n
p
->
rx_skbuff
[
i
]);
r
p
->
rx_ring
[
i
].
rx_status
=
0
;
r
p
->
rx_ring
[
i
].
addr
=
cpu_to_le32
(
0xBADF00D0
);
/* An invalid address. */
if
(
r
p
->
rx_skbuff
[
i
])
{
pci_unmap_single
(
r
p
->
pdev
,
r
p
->
rx_skbuff_dma
[
i
],
r
p
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
dev_kfree_skb
(
r
p
->
rx_skbuff
[
i
]);
}
n
p
->
rx_skbuff
[
i
]
=
0
;
r
p
->
rx_skbuff
[
i
]
=
0
;
}
}
static
void
alloc_tbufs
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
dma_addr_t
next
;
int
i
;
np
->
dirty_tx
=
n
p
->
cur_tx
=
0
;
next
=
n
p
->
tx_ring_dma
;
rp
->
dirty_tx
=
r
p
->
cur_tx
=
0
;
next
=
r
p
->
tx_ring_dma
;
for
(
i
=
0
;
i
<
TX_RING_SIZE
;
i
++
)
{
n
p
->
tx_skbuff
[
i
]
=
0
;
n
p
->
tx_ring
[
i
].
tx_status
=
0
;
n
p
->
tx_ring
[
i
].
desc_length
=
cpu_to_le32
(
TXDESC
);
r
p
->
tx_skbuff
[
i
]
=
0
;
r
p
->
tx_ring
[
i
].
tx_status
=
0
;
r
p
->
tx_ring
[
i
].
desc_length
=
cpu_to_le32
(
TXDESC
);
next
+=
sizeof
(
struct
tx_desc
);
n
p
->
tx_ring
[
i
].
next_desc
=
cpu_to_le32
(
next
);
np
->
tx_buf
[
i
]
=
&
n
p
->
tx_bufs
[
i
*
PKT_BUF_SZ
];
r
p
->
tx_ring
[
i
].
next_desc
=
cpu_to_le32
(
next
);
rp
->
tx_buf
[
i
]
=
&
r
p
->
tx_bufs
[
i
*
PKT_BUF_SZ
];
}
np
->
tx_ring
[
i
-
1
].
next_desc
=
cpu_to_le32
(
n
p
->
tx_ring_dma
);
rp
->
tx_ring
[
i
-
1
].
next_desc
=
cpu_to_le32
(
r
p
->
tx_ring_dma
);
}
static
void
free_tbufs
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
int
i
;
for
(
i
=
0
;
i
<
TX_RING_SIZE
;
i
++
)
{
np
->
tx_ring
[
i
].
tx_status
=
0
;
np
->
tx_ring
[
i
].
desc_length
=
cpu_to_le32
(
TXDESC
);
np
->
tx_ring
[
i
].
addr
=
cpu_to_le32
(
0xBADF00D0
);
/* An invalid address. */
if
(
np
->
tx_skbuff
[
i
])
{
if
(
np
->
tx_skbuff_dma
[
i
])
{
pci_unmap_single
(
np
->
pdev
,
np
->
tx_skbuff_dma
[
i
],
np
->
tx_skbuff
[
i
]
->
len
,
PCI_DMA_TODEVICE
);
rp
->
tx_ring
[
i
].
tx_status
=
0
;
rp
->
tx_ring
[
i
].
desc_length
=
cpu_to_le32
(
TXDESC
);
rp
->
tx_ring
[
i
].
addr
=
cpu_to_le32
(
0xBADF00D0
);
/* An invalid address. */
if
(
rp
->
tx_skbuff
[
i
])
{
if
(
rp
->
tx_skbuff_dma
[
i
])
{
pci_unmap_single
(
rp
->
pdev
,
rp
->
tx_skbuff_dma
[
i
],
rp
->
tx_skbuff
[
i
]
->
len
,
PCI_DMA_TODEVICE
);
}
dev_kfree_skb
(
n
p
->
tx_skbuff
[
i
]);
dev_kfree_skb
(
r
p
->
tx_skbuff
[
i
]);
}
n
p
->
tx_skbuff
[
i
]
=
0
;
n
p
->
tx_buf
[
i
]
=
0
;
r
p
->
tx_skbuff
[
i
]
=
0
;
r
p
->
tx_buf
[
i
]
=
0
;
}
}
static
void
init_registers
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
int
i
;
...
...
@@ -1054,38 +1059,39 @@ static void init_registers(struct net_device *dev)
writew
(
0x0006
,
ioaddr
+
PCIBusConfig
);
/* Tune configuration??? */
/* Configure initial FIFO thresholds. */
writeb
(
0x20
,
ioaddr
+
TxConfig
);
n
p
->
tx_thresh
=
0x20
;
np
->
rx_thresh
=
0x60
;
/* Written in via_
rhine_set_rx_mode(). */
n
p
->
mii_if
.
full_duplex
=
0
;
r
p
->
tx_thresh
=
0x20
;
rp
->
rx_thresh
=
0x60
;
/* Written in
rhine_set_rx_mode(). */
r
p
->
mii_if
.
full_duplex
=
0
;
if
(
dev
->
if_port
==
0
)
dev
->
if_port
=
n
p
->
default_port
;
dev
->
if_port
=
r
p
->
default_port
;
writel
(
n
p
->
rx_ring_dma
,
ioaddr
+
RxRingPtr
);
writel
(
n
p
->
tx_ring_dma
,
ioaddr
+
TxRingPtr
);
writel
(
r
p
->
rx_ring_dma
,
ioaddr
+
RxRingPtr
);
writel
(
r
p
->
tx_ring_dma
,
ioaddr
+
TxRingPtr
);
via_
rhine_set_rx_mode
(
dev
);
rhine_set_rx_mode
(
dev
);
/* Enable interrupts by setting the interrupt mask. */
writew
(
IntrRxDone
|
IntrRxErr
|
IntrRxEmpty
|
IntrRxOverflow
|
IntrRxDropped
|
IntrRxNoBuf
|
IntrTxAborted
|
IntrTxDone
|
IntrTxError
|
IntrTxUnderrun
|
IntrPCIErr
|
IntrStatsMax
|
IntrLinkChange
,
ioaddr
+
IntrEnable
);
IntrRxDropped
|
IntrRxNoBuf
|
IntrTxAborted
|
IntrTxDone
|
IntrTxError
|
IntrTxUnderrun
|
IntrPCIErr
|
IntrStatsMax
|
IntrLinkChange
,
ioaddr
+
IntrEnable
);
n
p
->
chip_cmd
=
CmdStart
|
CmdTxOn
|
CmdRxOn
|
CmdNoTxPoll
;
if
(
n
p
->
mii_if
.
force_media
)
n
p
->
chip_cmd
|=
CmdFDuplex
;
writew
(
n
p
->
chip_cmd
,
ioaddr
+
ChipCmd
);
r
p
->
chip_cmd
=
CmdStart
|
CmdTxOn
|
CmdRxOn
|
CmdNoTxPoll
;
if
(
r
p
->
mii_if
.
force_media
)
r
p
->
chip_cmd
|=
CmdFDuplex
;
writew
(
r
p
->
chip_cmd
,
ioaddr
+
ChipCmd
);
via_
rhine_check_duplex
(
dev
);
rhine_check_duplex
(
dev
);
/* The LED outputs of various MII xcvrs should be configured.
*/
/* The LED outputs of various MII xcvrs should be configured. */
/* For NS or Mison phys, turn on bit 1 in register 0x17 */
/* For ESI phys, turn on bit 7 in register 0x17. */
mdio_write
(
dev
,
np
->
phys
[
0
],
0x17
,
mdio_read
(
dev
,
n
p
->
phys
[
0
],
0x17
)
|
(
n
p
->
drv_flags
&
HasESIPhy
)
?
0x0080
:
0x0001
);
mdio_write
(
dev
,
rp
->
phys
[
0
],
0x17
,
mdio_read
(
dev
,
r
p
->
phys
[
0
],
0x17
)
|
(
r
p
->
drv_flags
&
HasESIPhy
)
?
0x0080
:
0x0001
);
}
/* Read and write over the MII Management Data I/O (MDIO) interface. */
static
int
mdio_read
(
struct
net_device
*
dev
,
int
phy_id
,
int
regnum
)
...
...
@@ -1099,7 +1105,7 @@ static int mdio_read(struct net_device *dev, int phy_id, int regnum)
writeb
(
0x00
,
ioaddr
+
MIICmd
);
writeb
(
phy_id
,
ioaddr
+
MIIPhyAddr
);
writeb
(
regnum
,
ioaddr
+
MIIRegAddr
);
writeb
(
0x40
,
ioaddr
+
MIICmd
);
/* Trigger read */
writeb
(
0x40
,
ioaddr
+
MIICmd
);
/* Trigger read */
boguscnt
=
1024
;
while
((
readb
(
ioaddr
+
MIICmd
)
&
0x40
)
&&
--
boguscnt
>
0
)
;
...
...
@@ -1108,20 +1114,20 @@ static int mdio_read(struct net_device *dev, int phy_id, int regnum)
static
void
mdio_write
(
struct
net_device
*
dev
,
int
phy_id
,
int
regnum
,
int
value
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
int
boguscnt
=
1024
;
if
(
phy_id
==
n
p
->
phys
[
0
])
{
if
(
phy_id
==
r
p
->
phys
[
0
])
{
switch
(
regnum
)
{
case
MII_BMCR
:
/* Is user forcing speed/duplex? */
if
(
value
&
0x9000
)
/* Autonegotiation. */
n
p
->
mii_if
.
force_media
=
0
;
case
MII_BMCR
:
/* Is user forcing speed/duplex? */
if
(
value
&
0x9000
)
/* Autonegotiation. */
r
p
->
mii_if
.
force_media
=
0
;
else
n
p
->
mii_if
.
full_duplex
=
(
value
&
0x0100
)
?
1
:
0
;
r
p
->
mii_if
.
full_duplex
=
(
value
&
0x0100
)
?
1
:
0
;
break
;
case
MII_ADVERTISE
:
n
p
->
mii_if
.
advertising
=
value
;
r
p
->
mii_if
.
advertising
=
value
;
break
;
}
}
...
...
@@ -1133,128 +1139,130 @@ static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value
writeb
(
phy_id
,
ioaddr
+
MIIPhyAddr
);
writeb
(
regnum
,
ioaddr
+
MIIRegAddr
);
writew
(
value
,
ioaddr
+
MIIData
);
writeb
(
0x20
,
ioaddr
+
MIICmd
);
/* Trigger write. */
writeb
(
0x20
,
ioaddr
+
MIICmd
);
/* Trigger write. */
}
static
int
via_
rhine_open
(
struct
net_device
*
dev
)
static
int
rhine_open
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
int
i
;
/* Reset the chip. */
writew
(
CmdReset
,
ioaddr
+
ChipCmd
);
i
=
request_irq
(
np
->
pdev
->
irq
,
&
via_rhine_interrupt
,
SA_SHIRQ
,
dev
->
name
,
dev
);
i
=
request_irq
(
rp
->
pdev
->
irq
,
&
rhine_interrupt
,
SA_SHIRQ
,
dev
->
name
,
dev
);
if
(
i
)
return
i
;
if
(
debug
>
1
)
printk
(
KERN_DEBUG
"%s:
via_
rhine_open() irq %d.
\n
"
,
dev
->
name
,
n
p
->
pdev
->
irq
);
printk
(
KERN_DEBUG
"%s: rhine_open() irq %d.
\n
"
,
dev
->
name
,
r
p
->
pdev
->
irq
);
i
=
alloc_ring
(
dev
);
if
(
i
)
return
i
;
alloc_rbufs
(
dev
);
alloc_tbufs
(
dev
);
wait_for_reset
(
dev
,
n
p
->
chip_id
,
dev
->
name
);
wait_for_reset
(
dev
,
r
p
->
chip_id
,
dev
->
name
);
init_registers
(
dev
);
if
(
debug
>
2
)
printk
(
KERN_DEBUG
"%s: Done
via_
rhine_open(), status %4.4x "
"MII status: %4.4x.
\n
"
,
dev
->
name
,
readw
(
ioaddr
+
ChipCmd
),
mdio_read
(
dev
,
n
p
->
phys
[
0
],
MII_BMSR
));
printk
(
KERN_DEBUG
"%s: Done rhine_open(), status %4.4x "
"MII status: %4.4x.
\n
"
,
dev
->
name
,
readw
(
ioaddr
+
ChipCmd
),
mdio_read
(
dev
,
r
p
->
phys
[
0
],
MII_BMSR
));
netif_start_queue
(
dev
);
/* Set the timer to check for link beat. */
init_timer
(
&
n
p
->
timer
);
n
p
->
timer
.
expires
=
jiffies
+
2
*
HZ
/
100
;
n
p
->
timer
.
data
=
(
unsigned
long
)
dev
;
np
->
timer
.
function
=
&
via_rhine_timer
;
/* timer handler */
add_timer
(
&
n
p
->
timer
);
init_timer
(
&
r
p
->
timer
);
r
p
->
timer
.
expires
=
jiffies
+
2
*
HZ
/
100
;
r
p
->
timer
.
data
=
(
unsigned
long
)
dev
;
rp
->
timer
.
function
=
&
rhine_timer
;
/* timer handler */
add_timer
(
&
r
p
->
timer
);
return
0
;
}
static
void
via_
rhine_check_duplex
(
struct
net_device
*
dev
)
static
void
rhine_check_duplex
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
int
mii_lpa
=
mdio_read
(
dev
,
n
p
->
phys
[
0
],
MII_LPA
);
int
negotiated
=
mii_lpa
&
n
p
->
mii_if
.
advertising
;
int
mii_lpa
=
mdio_read
(
dev
,
r
p
->
phys
[
0
],
MII_LPA
);
int
negotiated
=
mii_lpa
&
r
p
->
mii_if
.
advertising
;
int
duplex
;
if
(
np
->
mii_if
.
force_media
||
mii_lpa
==
0xffff
)
if
(
rp
->
mii_if
.
force_media
||
mii_lpa
==
0xffff
)
return
;
duplex
=
(
negotiated
&
0x0100
)
||
(
negotiated
&
0x01C0
)
==
0x0040
;
if
(
n
p
->
mii_if
.
full_duplex
!=
duplex
)
{
n
p
->
mii_if
.
full_duplex
=
duplex
;
if
(
r
p
->
mii_if
.
full_duplex
!=
duplex
)
{
r
p
->
mii_if
.
full_duplex
=
duplex
;
if
(
debug
)
printk
(
KERN_INFO
"%s: Setting %s-duplex based on MII #%d link"
" partner capability of %4.4x.
\n
"
,
dev
->
name
,
duplex
?
"full"
:
"half"
,
np
->
phys
[
0
],
mii_lpa
);
printk
(
KERN_INFO
"%s: Setting %s-duplex based on "
"MII #%d link partner capability of %4.4x.
\n
"
,
dev
->
name
,
duplex
?
"full"
:
"half"
,
rp
->
phys
[
0
],
mii_lpa
);
if
(
duplex
)
n
p
->
chip_cmd
|=
CmdFDuplex
;
r
p
->
chip_cmd
|=
CmdFDuplex
;
else
n
p
->
chip_cmd
&=
~
CmdFDuplex
;
writew
(
n
p
->
chip_cmd
,
ioaddr
+
ChipCmd
);
r
p
->
chip_cmd
&=
~
CmdFDuplex
;
writew
(
r
p
->
chip_cmd
,
ioaddr
+
ChipCmd
);
}
}
static
void
via_
rhine_timer
(
unsigned
long
data
)
static
void
rhine_timer
(
unsigned
long
data
)
{
struct
net_device
*
dev
=
(
struct
net_device
*
)
data
;
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
int
next_tick
=
10
*
HZ
;
int
mii_status
;
if
(
debug
>
3
)
{
printk
(
KERN_DEBUG
"%s: VIA Rhine monitor tick, status %4.4x.
\n
"
,
dev
->
name
,
readw
(
ioaddr
+
IntrStatus
));
dev
->
name
,
readw
(
ioaddr
+
IntrStatus
));
}
spin_lock_irq
(
&
n
p
->
lock
);
spin_lock_irq
(
&
r
p
->
lock
);
via_
rhine_check_duplex
(
dev
);
rhine_check_duplex
(
dev
);
/* make IFF_RUNNING follow the MII status bit "Link established" */
mii_status
=
mdio_read
(
dev
,
n
p
->
phys
[
0
],
MII_BMSR
);
if
(
(
mii_status
&
BMSR_LSTATUS
)
!=
(
np
->
mii_status
&
BMSR_LSTATUS
)
)
{
mii_status
=
mdio_read
(
dev
,
r
p
->
phys
[
0
],
MII_BMSR
);
if
(
(
mii_status
&
BMSR_LSTATUS
)
!=
(
rp
->
mii_status
&
BMSR_LSTATUS
)
)
{
if
(
mii_status
&
BMSR_LSTATUS
)
netif_carrier_on
(
dev
);
else
netif_carrier_off
(
dev
);
}
n
p
->
mii_status
=
mii_status
;
r
p
->
mii_status
=
mii_status
;
spin_unlock_irq
(
&
n
p
->
lock
);
spin_unlock_irq
(
&
r
p
->
lock
);
n
p
->
timer
.
expires
=
jiffies
+
next_tick
;
add_timer
(
&
n
p
->
timer
);
r
p
->
timer
.
expires
=
jiffies
+
next_tick
;
add_timer
(
&
r
p
->
timer
);
}
static
void
via_rhine_tx_timeout
(
struct
net_device
*
dev
)
static
void
rhine_tx_timeout
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
printk
(
KERN_WARNING
"%s: Transmit timed out, status %4.4x, PHY status "
"%4.4x, resetting...
\n
"
,
dev
->
name
,
readw
(
ioaddr
+
IntrStatus
),
mdio_read
(
dev
,
n
p
->
phys
[
0
],
MII_BMSR
));
printk
(
KERN_WARNING
"%s: Transmit timed out, status %4.4x, PHY status "
"%4.4x, resetting...
\n
"
,
dev
->
name
,
readw
(
ioaddr
+
IntrStatus
),
mdio_read
(
dev
,
r
p
->
phys
[
0
],
MII_BMSR
));
dev
->
if_port
=
0
;
/* protect against concurrent rx interrupts */
disable_irq
(
n
p
->
pdev
->
irq
);
disable_irq
(
r
p
->
pdev
->
irq
);
spin_lock
(
&
n
p
->
lock
);
spin_lock
(
&
r
p
->
lock
);
/* Reset the chip. */
writew
(
CmdReset
,
ioaddr
+
ChipCmd
);
...
...
@@ -1266,20 +1274,20 @@ static void via_rhine_tx_timeout (struct net_device *dev)
alloc_rbufs
(
dev
);
/* Reinitialize the hardware. */
wait_for_reset
(
dev
,
n
p
->
chip_id
,
dev
->
name
);
wait_for_reset
(
dev
,
r
p
->
chip_id
,
dev
->
name
);
init_registers
(
dev
);
spin_unlock
(
&
n
p
->
lock
);
enable_irq
(
n
p
->
pdev
->
irq
);
spin_unlock
(
&
r
p
->
lock
);
enable_irq
(
r
p
->
pdev
->
irq
);
dev
->
trans_start
=
jiffies
;
n
p
->
stats
.
tx_errors
++
;
r
p
->
stats
.
tx_errors
++
;
netif_wake_queue
(
dev
);
}
static
int
via_
rhine_start_tx
(
struct
sk_buff
*
skb
,
struct
net_device
*
dev
)
static
int
rhine_start_tx
(
struct
sk_buff
*
skb
,
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
unsigned
entry
;
u32
intr_status
;
...
...
@@ -1287,7 +1295,7 @@ static int via_rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
with the "ownership" bits last. */
/* Calculate the next Tx descriptor entry. */
entry
=
n
p
->
cur_tx
%
TX_RING_SIZE
;
entry
=
r
p
->
cur_tx
%
TX_RING_SIZE
;
if
(
skb
->
len
<
ETH_ZLEN
)
{
skb
=
skb_padto
(
skb
,
ETH_ZLEN
);
...
...
@@ -1295,39 +1303,40 @@ static int via_rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
return
0
;
}
n
p
->
tx_skbuff
[
entry
]
=
skb
;
r
p
->
tx_skbuff
[
entry
]
=
skb
;
if
((
np
->
drv_flags
&
ReqTxAlign
)
&&
(((
long
)
skb
->
data
&
3
)
||
skb_shinfo
(
skb
)
->
nr_frags
!=
0
||
skb
->
ip_summed
==
CHECKSUM_HW
)
)
{
if
((
rp
->
drv_flags
&
ReqTxAlign
)
&&
(((
long
)
skb
->
data
&
3
)
||
skb_shinfo
(
skb
)
->
nr_frags
!=
0
||
skb
->
ip_summed
==
CHECKSUM_HW
))
{
/* Must use alignment buffer. */
if
(
skb
->
len
>
PKT_BUF_SZ
)
{
/* packet too long, drop it */
dev_kfree_skb
(
skb
);
n
p
->
tx_skbuff
[
entry
]
=
NULL
;
n
p
->
stats
.
tx_dropped
++
;
r
p
->
tx_skbuff
[
entry
]
=
NULL
;
r
p
->
stats
.
tx_dropped
++
;
return
0
;
}
skb_copy_and_csum_dev
(
skb
,
np
->
tx_buf
[
entry
]);
np
->
tx_skbuff_dma
[
entry
]
=
0
;
np
->
tx_ring
[
entry
].
addr
=
cpu_to_le32
(
np
->
tx_bufs_dma
+
(
np
->
tx_buf
[
entry
]
-
np
->
tx_bufs
));
skb_copy_and_csum_dev
(
skb
,
rp
->
tx_buf
[
entry
]);
rp
->
tx_skbuff_dma
[
entry
]
=
0
;
rp
->
tx_ring
[
entry
].
addr
=
cpu_to_le32
(
rp
->
tx_bufs_dma
+
(
rp
->
tx_buf
[
entry
]
-
rp
->
tx_bufs
));
}
else
{
np
->
tx_skbuff_dma
[
entry
]
=
pci_map_single
(
np
->
pdev
,
skb
->
data
,
skb
->
len
,
PCI_DMA_TODEVICE
);
np
->
tx_ring
[
entry
].
addr
=
cpu_to_le32
(
np
->
tx_skbuff_dma
[
entry
]);
rp
->
tx_skbuff_dma
[
entry
]
=
pci_map_single
(
rp
->
pdev
,
skb
->
data
,
skb
->
len
,
PCI_DMA_TODEVICE
);
rp
->
tx_ring
[
entry
].
addr
=
cpu_to_le32
(
rp
->
tx_skbuff_dma
[
entry
]);
}
n
p
->
tx_ring
[
entry
].
desc_length
=
r
p
->
tx_ring
[
entry
].
desc_length
=
cpu_to_le32
(
TXDESC
|
(
skb
->
len
>=
ETH_ZLEN
?
skb
->
len
:
ETH_ZLEN
));
/* lock eth irq */
spin_lock_irq
(
&
n
p
->
lock
);
spin_lock_irq
(
&
r
p
->
lock
);
wmb
();
n
p
->
tx_ring
[
entry
].
tx_status
=
cpu_to_le32
(
DescOwn
);
r
p
->
tx_ring
[
entry
].
tx_status
=
cpu_to_le32
(
DescOwn
);
wmb
();
n
p
->
cur_tx
++
;
r
p
->
cur_tx
++
;
/* Non-x86 Todo: explicitly flush cache lines here. */
...
...
@@ -1337,27 +1346,27 @@ static int via_rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
*/
intr_status
=
get_intr_status
(
dev
);
if
((
intr_status
&
IntrTxErrSummary
)
==
0
)
{
writew
(
CmdTxDemand
|
n
p
->
chip_cmd
,
dev
->
base_addr
+
ChipCmd
);
writew
(
CmdTxDemand
|
r
p
->
chip_cmd
,
dev
->
base_addr
+
ChipCmd
);
}
IOSYNC
;
if
(
np
->
cur_tx
==
n
p
->
dirty_tx
+
TX_QUEUE_LEN
)
if
(
rp
->
cur_tx
==
r
p
->
dirty_tx
+
TX_QUEUE_LEN
)
netif_stop_queue
(
dev
);
dev
->
trans_start
=
jiffies
;
spin_unlock_irq
(
&
n
p
->
lock
);
spin_unlock_irq
(
&
r
p
->
lock
);
if
(
debug
>
4
)
{
printk
(
KERN_DEBUG
"%s: Transmit frame #%d queued in slot %d.
\n
"
,
dev
->
name
,
n
p
->
cur_tx
-
1
,
entry
);
dev
->
name
,
r
p
->
cur_tx
-
1
,
entry
);
}
return
0
;
}
/* The interrupt handler does all of the Rx thread work and cleans up
after the Tx thread. */
static
irqreturn_t
via_
rhine_interrupt
(
int
irq
,
void
*
dev_instance
,
struct
pt_regs
*
rgs
)
static
irqreturn_t
rhine_interrupt
(
int
irq
,
void
*
dev_instance
,
struct
pt_regs
*
rgs
)
{
struct
net_device
*
dev
=
dev_instance
;
long
ioaddr
;
...
...
@@ -1378,11 +1387,11 @@ static irqreturn_t via_rhine_interrupt(int irq, void *dev_instance, struct pt_re
if
(
debug
>
4
)
printk
(
KERN_DEBUG
"%s: Interrupt, status %8.8x.
\n
"
,
dev
->
name
,
intr_status
);
dev
->
name
,
intr_status
);
if
(
intr_status
&
(
IntrRxDone
|
IntrRxErr
|
IntrRxDropped
|
IntrRxWakeUp
|
IntrRxEmpty
|
IntrRxNoBuf
))
via_
rhine_rx
(
dev
);
IntrRxWakeUp
|
IntrRxEmpty
|
IntrRxNoBuf
))
rhine_rx
(
dev
);
if
(
intr_status
&
(
IntrTxErrSummary
|
IntrTxDone
))
{
if
(
intr_status
&
IntrTxErrSummary
)
{
...
...
@@ -1391,140 +1400,147 @@ static irqreturn_t via_rhine_interrupt(int irq, void *dev_instance, struct pt_re
while
((
readw
(
ioaddr
+
ChipCmd
)
&
CmdTxOn
)
&&
--
cnt
)
udelay
(
5
);
if
(
debug
>
2
&&
!
cnt
)
printk
(
KERN_WARNING
"%s:
via_rhine_interrupt()
"
"Tx engine still on.
\n
"
,
dev
->
name
);
printk
(
KERN_WARNING
"%s: "
"rhine_interrupt() Tx engine"
"still on.
\n
"
,
dev
->
name
);
}
via_
rhine_tx
(
dev
);
rhine_tx
(
dev
);
}
/* Abnormal error summary/uncommon events handlers. */
if
(
intr_status
&
(
IntrPCIErr
|
IntrLinkChange
|
IntrStatsMax
|
IntrTxError
|
IntrTxAborted
|
IntrTxUnderrun
|
IntrTxDescRace
))
via_
rhine_error
(
dev
,
intr_status
);
rhine_error
(
dev
,
intr_status
);
if
(
--
boguscnt
<
0
)
{
printk
(
KERN_WARNING
"%s: Too much work at interrupt, "
"status=%#8.8x.
\n
"
,
dev
->
name
,
intr_status
);
"status=%#8.8x.
\n
"
,
dev
->
name
,
intr_status
);
break
;
}
}
if
(
debug
>
3
)
printk
(
KERN_DEBUG
"%s: exiting interrupt, status=%8.8x.
\n
"
,
dev
->
name
,
readw
(
ioaddr
+
IntrStatus
));
dev
->
name
,
readw
(
ioaddr
+
IntrStatus
));
return
IRQ_RETVAL
(
handled
);
}
/* This routine is logically part of the interrupt handler, but isolated
for clarity. */
static
void
via_
rhine_tx
(
struct
net_device
*
dev
)
static
void
rhine_tx
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
int
txstatus
=
0
,
entry
=
n
p
->
dirty_tx
%
TX_RING_SIZE
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
int
txstatus
=
0
,
entry
=
r
p
->
dirty_tx
%
TX_RING_SIZE
;
spin_lock
(
&
n
p
->
lock
);
spin_lock
(
&
r
p
->
lock
);
/* find and cleanup dirty tx descriptors */
while
(
np
->
dirty_tx
!=
n
p
->
cur_tx
)
{
txstatus
=
le32_to_cpu
(
n
p
->
tx_ring
[
entry
].
tx_status
);
while
(
rp
->
dirty_tx
!=
r
p
->
cur_tx
)
{
txstatus
=
le32_to_cpu
(
r
p
->
tx_ring
[
entry
].
tx_status
);
if
(
debug
>
6
)
printk
(
KERN_DEBUG
" Tx scavenge %d status %8.8x.
\n
"
,
entry
,
txstatus
);
entry
,
txstatus
);
if
(
txstatus
&
DescOwn
)
break
;
if
(
txstatus
&
0x8000
)
{
if
(
debug
>
1
)
printk
(
KERN_DEBUG
"%s: Transmit error, Tx status %8.8x.
\n
"
,
dev
->
name
,
txstatus
);
np
->
stats
.
tx_errors
++
;
if
(
txstatus
&
0x0400
)
np
->
stats
.
tx_carrier_errors
++
;
if
(
txstatus
&
0x0200
)
np
->
stats
.
tx_window_errors
++
;
if
(
txstatus
&
0x0100
)
np
->
stats
.
tx_aborted_errors
++
;
if
(
txstatus
&
0x0080
)
np
->
stats
.
tx_heartbeat_errors
++
;
if
(((
np
->
chip_id
==
VT86C100A
)
&&
txstatus
&
0x0002
)
||
(
txstatus
&
0x0800
)
||
(
txstatus
&
0x1000
))
{
np
->
stats
.
tx_fifo_errors
++
;
np
->
tx_ring
[
entry
].
tx_status
=
cpu_to_le32
(
DescOwn
);
printk
(
KERN_DEBUG
"%s: Transmit error, "
"Tx status %8.8x.
\n
"
,
dev
->
name
,
txstatus
);
rp
->
stats
.
tx_errors
++
;
if
(
txstatus
&
0x0400
)
rp
->
stats
.
tx_carrier_errors
++
;
if
(
txstatus
&
0x0200
)
rp
->
stats
.
tx_window_errors
++
;
if
(
txstatus
&
0x0100
)
rp
->
stats
.
tx_aborted_errors
++
;
if
(
txstatus
&
0x0080
)
rp
->
stats
.
tx_heartbeat_errors
++
;
if
(((
rp
->
chip_id
==
VT86C100A
)
&&
txstatus
&
0x0002
)
||
(
txstatus
&
0x0800
)
||
(
txstatus
&
0x1000
))
{
rp
->
stats
.
tx_fifo_errors
++
;
rp
->
tx_ring
[
entry
].
tx_status
=
cpu_to_le32
(
DescOwn
);
break
;
/* Keep the skb - we try again */
}
/* Transmitter restarted in 'abnormal' handler. */
}
else
{
if
(
n
p
->
chip_id
==
VT86C100A
)
n
p
->
stats
.
collisions
+=
(
txstatus
>>
3
)
&
0x0F
;
if
(
r
p
->
chip_id
==
VT86C100A
)
r
p
->
stats
.
collisions
+=
(
txstatus
>>
3
)
&
0x0F
;
else
n
p
->
stats
.
collisions
+=
txstatus
&
0x0F
;
r
p
->
stats
.
collisions
+=
txstatus
&
0x0F
;
if
(
debug
>
6
)
printk
(
KERN_DEBUG
"collisions: %1.1x:%1.1x
\n
"
,
(
txstatus
>>
3
)
&
0xF
,
txstatus
&
0xF
);
np
->
stats
.
tx_bytes
+=
n
p
->
tx_skbuff
[
entry
]
->
len
;
n
p
->
stats
.
tx_packets
++
;
(
txstatus
>>
3
)
&
0xF
,
txstatus
&
0xF
);
rp
->
stats
.
tx_bytes
+=
r
p
->
tx_skbuff
[
entry
]
->
len
;
r
p
->
stats
.
tx_packets
++
;
}
/* Free the original skb. */
if
(
np
->
tx_skbuff_dma
[
entry
])
{
pci_unmap_single
(
np
->
pdev
,
np
->
tx_skbuff_dma
[
entry
],
np
->
tx_skbuff
[
entry
]
->
len
,
PCI_DMA_TODEVICE
);
if
(
rp
->
tx_skbuff_dma
[
entry
])
{
pci_unmap_single
(
rp
->
pdev
,
rp
->
tx_skbuff_dma
[
entry
],
rp
->
tx_skbuff
[
entry
]
->
len
,
PCI_DMA_TODEVICE
);
}
dev_kfree_skb_irq
(
n
p
->
tx_skbuff
[
entry
]);
n
p
->
tx_skbuff
[
entry
]
=
NULL
;
entry
=
(
++
n
p
->
dirty_tx
)
%
TX_RING_SIZE
;
dev_kfree_skb_irq
(
r
p
->
tx_skbuff
[
entry
]);
r
p
->
tx_skbuff
[
entry
]
=
NULL
;
entry
=
(
++
r
p
->
dirty_tx
)
%
TX_RING_SIZE
;
}
if
((
np
->
cur_tx
-
n
p
->
dirty_tx
)
<
TX_QUEUE_LEN
-
4
)
netif_wake_queue
(
dev
);
if
((
rp
->
cur_tx
-
r
p
->
dirty_tx
)
<
TX_QUEUE_LEN
-
4
)
netif_wake_queue
(
dev
);
spin_unlock
(
&
n
p
->
lock
);
spin_unlock
(
&
r
p
->
lock
);
}
/* This routine is logically part of the interrupt handler, but isolated
for clarity and better register allocation. */
static
void
via_
rhine_rx
(
struct
net_device
*
dev
)
static
void
rhine_rx
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
int
entry
=
n
p
->
cur_rx
%
RX_RING_SIZE
;
int
boguscnt
=
np
->
dirty_rx
+
RX_RING_SIZE
-
n
p
->
cur_rx
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
int
entry
=
r
p
->
cur_rx
%
RX_RING_SIZE
;
int
boguscnt
=
rp
->
dirty_rx
+
RX_RING_SIZE
-
r
p
->
cur_rx
;
if
(
debug
>
4
)
{
printk
(
KERN_DEBUG
"%s: via_rhine_rx(), entry %d status %8.8x.
\n
"
,
dev
->
name
,
entry
,
le32_to_cpu
(
np
->
rx_head_desc
->
rx_status
));
printk
(
KERN_DEBUG
"%s: rhine_rx(), entry %d status %8.8x.
\n
"
,
dev
->
name
,
entry
,
le32_to_cpu
(
rp
->
rx_head_desc
->
rx_status
));
}
/* If EOP is set on the next entry, it's a new packet. Send it up. */
while
(
!
(
n
p
->
rx_head_desc
->
rx_status
&
cpu_to_le32
(
DescOwn
)))
{
struct
rx_desc
*
desc
=
n
p
->
rx_head_desc
;
while
(
!
(
r
p
->
rx_head_desc
->
rx_status
&
cpu_to_le32
(
DescOwn
)))
{
struct
rx_desc
*
desc
=
r
p
->
rx_head_desc
;
u32
desc_status
=
le32_to_cpu
(
desc
->
rx_status
);
int
data_size
=
desc_status
>>
16
;
if
(
debug
>
4
)
printk
(
KERN_DEBUG
"
via_
rhine_rx() status is %8.8x.
\n
"
,
desc_status
);
printk
(
KERN_DEBUG
" rhine_rx() status is %8.8x.
\n
"
,
desc_status
);
if
(
--
boguscnt
<
0
)
break
;
if
(
(
desc_status
&
(
RxWholePkt
|
RxErr
))
!=
RxWholePkt
)
{
if
((
desc_status
&
RxWholePkt
)
!=
RxWholePkt
)
{
printk
(
KERN_WARNING
"%s: Oversized Ethernet frame spanned "
"multiple buffers, entry %#x length %d status %8.8x!
\n
"
,
dev
->
name
,
entry
,
data_size
,
desc_status
);
printk
(
KERN_WARNING
"%s: Oversized Ethernet frame %p vs %p.
\n
"
,
dev
->
name
,
np
->
rx_head_desc
,
&
np
->
rx_ring
[
entry
]);
np
->
stats
.
rx_length_errors
++
;
if
((
desc_status
&
(
RxWholePkt
|
RxErr
))
!=
RxWholePkt
)
{
if
((
desc_status
&
RxWholePkt
)
!=
RxWholePkt
)
{
printk
(
KERN_WARNING
"%s: Oversized Ethernet "
"frame spanned multiple buffers, entry "
"%#x length %d status %8.8x!
\n
"
,
dev
->
name
,
entry
,
data_size
,
desc_status
);
printk
(
KERN_WARNING
"%s: Oversized Ethernet "
"frame %p vs %p.
\n
"
,
dev
->
name
,
rp
->
rx_head_desc
,
&
rp
->
rx_ring
[
entry
]);
rp
->
stats
.
rx_length_errors
++
;
}
else
if
(
desc_status
&
RxErr
)
{
/* There was a error. */
if
(
debug
>
2
)
printk
(
KERN_DEBUG
" via_rhine_rx() Rx error was %8.8x.
\n
"
,
desc_status
);
np
->
stats
.
rx_errors
++
;
if
(
desc_status
&
0x0030
)
np
->
stats
.
rx_length_errors
++
;
if
(
desc_status
&
0x0048
)
np
->
stats
.
rx_fifo_errors
++
;
if
(
desc_status
&
0x0004
)
np
->
stats
.
rx_frame_errors
++
;
printk
(
KERN_DEBUG
" rhine_rx() Rx "
"error was %8.8x.
\n
"
,
desc_status
);
rp
->
stats
.
rx_errors
++
;
if
(
desc_status
&
0x0030
)
rp
->
stats
.
rx_length_errors
++
;
if
(
desc_status
&
0x0048
)
rp
->
stats
.
rx_fifo_errors
++
;
if
(
desc_status
&
0x0004
)
rp
->
stats
.
rx_frame_errors
++
;
if
(
desc_status
&
0x0002
)
{
/* this can also be updated outside the interrupt handler */
spin_lock
(
&
n
p
->
lock
);
n
p
->
stats
.
rx_crc_errors
++
;
spin_unlock
(
&
n
p
->
lock
);
spin_lock
(
&
r
p
->
lock
);
r
p
->
stats
.
rx_crc_errors
++
;
spin_unlock
(
&
r
p
->
lock
);
}
}
}
else
{
...
...
@@ -1532,76 +1548,89 @@ static void via_rhine_rx(struct net_device *dev)
/* Length should omit the CRC */
int
pkt_len
=
data_size
-
4
;
/* Check if the packet is long enough to accept without
copying
to a minimally-sized skbuff. */
/* Check if the packet is long enough to accept without
copying
to a minimally-sized skbuff. */
if
(
pkt_len
<
rx_copybreak
&&
(
skb
=
dev_alloc_skb
(
pkt_len
+
2
))
!=
NULL
)
{
skb
->
dev
=
dev
;
skb_reserve
(
skb
,
2
);
/* 16 byte align the IP header */
pci_dma_sync_single_for_cpu
(
np
->
pdev
,
np
->
rx_skbuff_dma
[
entry
],
np
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
/* *_IP_COPYSUM isn't defined anywhere and eth_copy_and_sum
is memcpy for all archs so this is kind of pointless right
now ... or? */
#if HAS_IP_COPYSUM
/* Call copy + cksum if available. */
eth_copy_and_sum
(
skb
,
np
->
rx_skbuff
[
entry
]
->
tail
,
pkt_len
,
0
);
pci_dma_sync_single_for_cpu
(
rp
->
pdev
,
rp
->
rx_skbuff_dma
[
entry
],
rp
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
/* *_IP_COPYSUM isn't defined anywhere and
eth_copy_and_sum is memcpy for all archs so
this is kind of pointless right now
... or? */
#if HAS_IP_COPYSUM
/* Call copy + cksum if available. */
eth_copy_and_sum
(
skb
,
rp
->
rx_skbuff
[
entry
]
->
tail
,
pkt_len
,
0
);
skb_put
(
skb
,
pkt_len
);
#else
memcpy
(
skb_put
(
skb
,
pkt_len
),
np
->
rx_skbuff
[
entry
]
->
tail
,
pkt_len
);
memcpy
(
skb_put
(
skb
,
pkt_len
),
rp
->
rx_skbuff
[
entry
]
->
tail
,
pkt_len
);
#endif
pci_dma_sync_single_for_device
(
np
->
pdev
,
np
->
rx_skbuff_dma
[
entry
],
np
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
pci_dma_sync_single_for_device
(
rp
->
pdev
,
rp
->
rx_skbuff_dma
[
entry
],
rp
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
}
else
{
skb
=
n
p
->
rx_skbuff
[
entry
];
skb
=
r
p
->
rx_skbuff
[
entry
];
if
(
skb
==
NULL
)
{
printk
(
KERN_ERR
"%s: Inconsistent Rx descriptor chain.
\n
"
,
dev
->
name
);
printk
(
KERN_ERR
"%s: Inconsistent Rx "
"descriptor chain.
\n
"
,
dev
->
name
);
break
;
}
n
p
->
rx_skbuff
[
entry
]
=
NULL
;
r
p
->
rx_skbuff
[
entry
]
=
NULL
;
skb_put
(
skb
,
pkt_len
);
pci_unmap_single
(
np
->
pdev
,
np
->
rx_skbuff_dma
[
entry
],
np
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
pci_unmap_single
(
rp
->
pdev
,
rp
->
rx_skbuff_dma
[
entry
],
rp
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
}
skb
->
protocol
=
eth_type_trans
(
skb
,
dev
);
netif_rx
(
skb
);
dev
->
last_rx
=
jiffies
;
n
p
->
stats
.
rx_bytes
+=
pkt_len
;
n
p
->
stats
.
rx_packets
++
;
r
p
->
stats
.
rx_bytes
+=
pkt_len
;
r
p
->
stats
.
rx_packets
++
;
}
entry
=
(
++
n
p
->
cur_rx
)
%
RX_RING_SIZE
;
np
->
rx_head_desc
=
&
n
p
->
rx_ring
[
entry
];
entry
=
(
++
r
p
->
cur_rx
)
%
RX_RING_SIZE
;
rp
->
rx_head_desc
=
&
r
p
->
rx_ring
[
entry
];
}
/* Refill the Rx ring buffers. */
for
(;
np
->
cur_rx
-
np
->
dirty_rx
>
0
;
n
p
->
dirty_rx
++
)
{
for
(;
rp
->
cur_rx
-
rp
->
dirty_rx
>
0
;
r
p
->
dirty_rx
++
)
{
struct
sk_buff
*
skb
;
entry
=
n
p
->
dirty_rx
%
RX_RING_SIZE
;
if
(
n
p
->
rx_skbuff
[
entry
]
==
NULL
)
{
skb
=
dev_alloc_skb
(
n
p
->
rx_buf_sz
);
n
p
->
rx_skbuff
[
entry
]
=
skb
;
entry
=
r
p
->
dirty_rx
%
RX_RING_SIZE
;
if
(
r
p
->
rx_skbuff
[
entry
]
==
NULL
)
{
skb
=
dev_alloc_skb
(
r
p
->
rx_buf_sz
);
r
p
->
rx_skbuff
[
entry
]
=
skb
;
if
(
skb
==
NULL
)
break
;
/* Better luck next round. */
skb
->
dev
=
dev
;
/* Mark as being used by this device. */
np
->
rx_skbuff_dma
[
entry
]
=
pci_map_single
(
np
->
pdev
,
skb
->
tail
,
np
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
np
->
rx_ring
[
entry
].
addr
=
cpu_to_le32
(
np
->
rx_skbuff_dma
[
entry
]);
break
;
/* Better luck next round. */
skb
->
dev
=
dev
;
/* Mark as being used by this device. */
rp
->
rx_skbuff_dma
[
entry
]
=
pci_map_single
(
rp
->
pdev
,
skb
->
tail
,
rp
->
rx_buf_sz
,
PCI_DMA_FROMDEVICE
);
rp
->
rx_ring
[
entry
].
addr
=
cpu_to_le32
(
rp
->
rx_skbuff_dma
[
entry
]);
}
n
p
->
rx_ring
[
entry
].
rx_status
=
cpu_to_le32
(
DescOwn
);
r
p
->
rx_ring
[
entry
].
rx_status
=
cpu_to_le32
(
DescOwn
);
}
/* Pre-emptively restart Rx engine. */
writew
(
readw
(
dev
->
base_addr
+
ChipCmd
)
|
CmdRxOn
|
CmdRxDemand
,
dev
->
base_addr
+
ChipCmd
);
dev
->
base_addr
+
ChipCmd
);
}
/* Clears the "tally counters" for CRC errors and missed frames(?).
It has been reported that some chips need a write of 0 to clear
these, for others the counters are set to 1 when written to and
instead cleared when read. So we clear them both ways ... */
/*
* Clears the "tally counters" for CRC errors and missed frames(?).
* It has been reported that some chips need a write of 0 to clear
* these, for others the counters are set to 1 when written to and
* instead cleared when read. So we clear them both ways ...
*/
static
inline
void
clear_tally_counters
(
const
long
ioaddr
)
{
writel
(
0
,
ioaddr
+
RxMissed
);
...
...
@@ -1609,10 +1638,10 @@ static inline void clear_tally_counters(const long ioaddr)
readw
(
ioaddr
+
RxMissed
);
}
static
void
via_
rhine_restart_tx
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
static
void
rhine_restart_tx
(
struct
net_device
*
dev
)
{
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
int
entry
=
n
p
->
dirty_tx
%
TX_RING_SIZE
;
int
entry
=
r
p
->
dirty_tx
%
TX_RING_SIZE
;
u32
intr_status
;
/*
...
...
@@ -1624,120 +1653,123 @@ static void via_rhine_restart_tx(struct net_device *dev) {
if
((
intr_status
&
IntrTxErrSummary
)
==
0
)
{
/* We know better than the chip where it should continue. */
writel
(
n
p
->
tx_ring_dma
+
entry
*
sizeof
(
struct
tx_desc
),
ioaddr
+
TxRingPtr
);
writel
(
r
p
->
tx_ring_dma
+
entry
*
sizeof
(
struct
tx_desc
),
ioaddr
+
TxRingPtr
);
writew
(
CmdTxDemand
|
n
p
->
chip_cmd
,
ioaddr
+
ChipCmd
);
writew
(
CmdTxDemand
|
r
p
->
chip_cmd
,
ioaddr
+
ChipCmd
);
IOSYNC
;
}
else
{
/* This should never happen */
if
(
debug
>
1
)
printk
(
KERN_WARNING
"%s:
via_
rhine_restart_tx() "
"Another error occured %8.8x.
\n
"
,
dev
->
name
,
intr_status
);
printk
(
KERN_WARNING
"%s: rhine_restart_tx() "
"Another error occured %8.8x.
\n
"
,
dev
->
name
,
intr_status
);
}
}
static
void
via_
rhine_error
(
struct
net_device
*
dev
,
int
intr_status
)
static
void
rhine_error
(
struct
net_device
*
dev
,
int
intr_status
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
spin_lock
(
&
n
p
->
lock
);
spin_lock
(
&
r
p
->
lock
);
if
(
intr_status
&
(
IntrLinkChange
))
{
if
(
readb
(
ioaddr
+
MIIStatus
)
&
0x02
)
{
/* Link failed, restart autonegotiation. */
if
(
n
p
->
drv_flags
&
HasDavicomPhy
)
mdio_write
(
dev
,
n
p
->
phys
[
0
],
MII_BMCR
,
0x3300
);
if
(
r
p
->
drv_flags
&
HasDavicomPhy
)
mdio_write
(
dev
,
r
p
->
phys
[
0
],
MII_BMCR
,
0x3300
);
}
else
via_
rhine_check_duplex
(
dev
);
rhine_check_duplex
(
dev
);
if
(
debug
)
printk
(
KERN_ERR
"%s: MII status changed: Autonegotiation "
"advertising %4.4x partner %4.4x.
\n
"
,
dev
->
name
,
mdio_read
(
dev
,
np
->
phys
[
0
],
MII_ADVERTISE
),
mdio_read
(
dev
,
np
->
phys
[
0
],
MII_LPA
));
printk
(
KERN_ERR
"%s: MII status changed: "
"Autonegotiation advertising %4.4x partner "
"%4.4x.
\n
"
,
dev
->
name
,
mdio_read
(
dev
,
rp
->
phys
[
0
],
MII_ADVERTISE
),
mdio_read
(
dev
,
rp
->
phys
[
0
],
MII_LPA
));
}
if
(
intr_status
&
IntrStatsMax
)
{
np
->
stats
.
rx_crc_errors
+=
readw
(
ioaddr
+
RxCRCErrs
);
np
->
stats
.
rx_missed_errors
+=
readw
(
ioaddr
+
RxMissed
);
rp
->
stats
.
rx_crc_errors
+=
readw
(
ioaddr
+
RxCRCErrs
);
rp
->
stats
.
rx_missed_errors
+=
readw
(
ioaddr
+
RxMissed
);
clear_tally_counters
(
ioaddr
);
}
if
(
intr_status
&
IntrTxAborted
)
{
if
(
debug
>
1
)
printk
(
KERN_INFO
"%s: Abort %8.8x, frame dropped.
\n
"
,
dev
->
name
,
intr_status
);
dev
->
name
,
intr_status
);
}
if
(
intr_status
&
IntrTxUnderrun
)
{
if
(
n
p
->
tx_thresh
<
0xE0
)
writeb
(
n
p
->
tx_thresh
+=
0x20
,
ioaddr
+
TxConfig
);
if
(
r
p
->
tx_thresh
<
0xE0
)
writeb
(
r
p
->
tx_thresh
+=
0x20
,
ioaddr
+
TxConfig
);
if
(
debug
>
1
)
printk
(
KERN_INFO
"%s: Transmitter underrun, Tx "
"threshold now %2.2x.
\n
"
,
dev
->
name
,
n
p
->
tx_thresh
);
"threshold now %2.2x.
\n
"
,
dev
->
name
,
r
p
->
tx_thresh
);
}
if
(
intr_status
&
IntrTxDescRace
)
{
if
(
debug
>
2
)
printk
(
KERN_INFO
"%s: Tx descriptor write-back race.
\n
"
,
dev
->
name
);
dev
->
name
);
}
if
((
intr_status
&
IntrTxError
)
&&
~
(
IntrTxAborted
|
IntrTxUnderrun
|
IntrTxDescRace
))
{
if
(
np
->
tx_thresh
<
0xE0
)
{
writeb
(
np
->
tx_thresh
+=
0x20
,
ioaddr
+
TxConfig
);
if
((
intr_status
&
IntrTxError
)
&&
(
intr_status
&
(
IntrTxAborted
|
IntrTxUnderrun
|
IntrTxDescRace
))
==
0
)
{
if
(
rp
->
tx_thresh
<
0xE0
)
{
writeb
(
rp
->
tx_thresh
+=
0x20
,
ioaddr
+
TxConfig
);
}
if
(
debug
>
1
)
printk
(
KERN_INFO
"%s: Unspecified error. Tx "
"threshold now %2.2x.
\n
"
,
dev
->
name
,
n
p
->
tx_thresh
);
"threshold now %2.2x.
\n
"
,
dev
->
name
,
r
p
->
tx_thresh
);
}
if
(
intr_status
&
(
IntrTxAborted
|
IntrTxUnderrun
|
IntrTxDescRace
|
IntrTxError
))
via_
rhine_restart_tx
(
dev
);
if
(
intr_status
&
(
IntrTxAborted
|
IntrTxUnderrun
|
IntrTxDescRace
|
IntrTxError
))
rhine_restart_tx
(
dev
);
if
(
intr_status
&
~
(
IntrLinkChange
|
IntrStatsMax
|
IntrTxUnderrun
|
IntrTxError
|
IntrTxAborted
|
IntrNormalSummary
|
IntrTxDescRace
))
{
if
(
intr_status
&
~
(
IntrLinkChange
|
IntrStatsMax
|
IntrTxUnderrun
|
IntrTxError
|
IntrTxAborted
|
IntrNormalSummary
|
IntrTxDescRace
))
{
if
(
debug
>
1
)
printk
(
KERN_ERR
"%s: Something Wicked happened!
%8.8x.
\n
"
,
dev
->
name
,
intr_status
);
printk
(
KERN_ERR
"%s: Something Wicked happened!
"
"%8.8x.
\n
"
,
dev
->
name
,
intr_status
);
}
spin_unlock
(
&
n
p
->
lock
);
spin_unlock
(
&
r
p
->
lock
);
}
static
struct
net_device_stats
*
via_
rhine_get_stats
(
struct
net_device
*
dev
)
static
struct
net_device_stats
*
rhine_get_stats
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
unsigned
long
flags
;
spin_lock_irqsave
(
&
n
p
->
lock
,
flags
);
np
->
stats
.
rx_crc_errors
+=
readw
(
ioaddr
+
RxCRCErrs
);
np
->
stats
.
rx_missed_errors
+=
readw
(
ioaddr
+
RxMissed
);
spin_lock_irqsave
(
&
r
p
->
lock
,
flags
);
rp
->
stats
.
rx_crc_errors
+=
readw
(
ioaddr
+
RxCRCErrs
);
rp
->
stats
.
rx_missed_errors
+=
readw
(
ioaddr
+
RxMissed
);
clear_tally_counters
(
ioaddr
);
spin_unlock_irqrestore
(
&
n
p
->
lock
,
flags
);
spin_unlock_irqrestore
(
&
r
p
->
lock
,
flags
);
return
&
n
p
->
stats
;
return
&
r
p
->
stats
;
}
static
void
via_
rhine_set_rx_mode
(
struct
net_device
*
dev
)
static
void
rhine_set_rx_mode
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
long
ioaddr
=
dev
->
base_addr
;
u32
mc_filter
[
2
];
/* Multicast hash filter */
u8
rx_mode
;
/* Note: 0x02=accept runt, 0x01=accept errs */
u32
mc_filter
[
2
];
/* Multicast hash filter */
u8
rx_mode
;
/* Note: 0x02=accept runt, 0x01=accept errs */
if
(
dev
->
flags
&
IFF_PROMISC
)
{
/* Set promiscuous. */
if
(
dev
->
flags
&
IFF_PROMISC
)
{
/* Set promiscuous. */
/* Unconditionally log net taps. */
printk
(
KERN_NOTICE
"%s: Promiscuous mode enabled.
\n
"
,
dev
->
name
);
printk
(
KERN_NOTICE
"%s: Promiscuous mode enabled.
\n
"
,
dev
->
name
);
rx_mode
=
0x1C
;
writel
(
0xffffffff
,
ioaddr
+
MulticastFilter0
);
writel
(
0xffffffff
,
ioaddr
+
MulticastFilter1
);
}
else
if
((
dev
->
mc_count
>
multicast_filter_limit
)
||
(
dev
->
flags
&
IFF_ALLMULTI
))
{
||
(
dev
->
flags
&
IFF_ALLMULTI
))
{
/* Too many to match, or accept all multicasts. */
writel
(
0xffffffff
,
ioaddr
+
MulticastFilter0
);
writel
(
0xffffffff
,
ioaddr
+
MulticastFilter1
);
...
...
@@ -1747,7 +1779,7 @@ static void via_rhine_set_rx_mode(struct net_device *dev)
int
i
;
memset
(
mc_filter
,
0
,
sizeof
(
mc_filter
));
for
(
i
=
0
,
mclist
=
dev
->
mc_list
;
mclist
&&
i
<
dev
->
mc_count
;
i
++
,
mclist
=
mclist
->
next
)
{
i
++
,
mclist
=
mclist
->
next
)
{
int
bit_nr
=
ether_crc
(
ETH_ALEN
,
mclist
->
dmi_addr
)
>>
26
;
mc_filter
[
bit_nr
>>
5
]
|=
cpu_to_le32
(
1
<<
(
bit_nr
&
31
));
...
...
@@ -1756,66 +1788,66 @@ static void via_rhine_set_rx_mode(struct net_device *dev)
writel
(
mc_filter
[
1
],
ioaddr
+
MulticastFilter1
);
rx_mode
=
0x0C
;
}
writeb
(
n
p
->
rx_thresh
|
rx_mode
,
ioaddr
+
RxConfig
);
writeb
(
r
p
->
rx_thresh
|
rx_mode
,
ioaddr
+
RxConfig
);
}
static
void
netdev_get_drvinfo
(
struct
net_device
*
dev
,
struct
ethtool_drvinfo
*
info
)
static
void
netdev_get_drvinfo
(
struct
net_device
*
dev
,
struct
ethtool_drvinfo
*
info
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
strcpy
(
info
->
driver
,
DRV_NAME
);
strcpy
(
info
->
version
,
DRV_VERSION
);
strcpy
(
info
->
bus_info
,
pci_name
(
n
p
->
pdev
));
strcpy
(
info
->
driver
,
DRV_NAME
);
strcpy
(
info
->
version
,
DRV_VERSION
);
strcpy
(
info
->
bus_info
,
pci_name
(
r
p
->
pdev
));
}
static
int
netdev_get_settings
(
struct
net_device
*
dev
,
struct
ethtool_cmd
*
cmd
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
int
rc
;
if
(
!
(
n
p
->
drv_flags
&
CanHaveMII
))
if
(
!
(
r
p
->
drv_flags
&
CanHaveMII
))
return
-
EINVAL
;
spin_lock_irq
(
&
n
p
->
lock
);
rc
=
mii_ethtool_gset
(
&
n
p
->
mii_if
,
cmd
);
spin_unlock_irq
(
&
n
p
->
lock
);
spin_lock_irq
(
&
r
p
->
lock
);
rc
=
mii_ethtool_gset
(
&
r
p
->
mii_if
,
cmd
);
spin_unlock_irq
(
&
r
p
->
lock
);
return
rc
;
}
static
int
netdev_set_settings
(
struct
net_device
*
dev
,
struct
ethtool_cmd
*
cmd
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
int
rc
;
if
(
!
(
n
p
->
drv_flags
&
CanHaveMII
))
if
(
!
(
r
p
->
drv_flags
&
CanHaveMII
))
return
-
EINVAL
;
spin_lock_irq
(
&
n
p
->
lock
);
rc
=
mii_ethtool_sset
(
&
n
p
->
mii_if
,
cmd
);
spin_unlock_irq
(
&
n
p
->
lock
);
spin_lock_irq
(
&
r
p
->
lock
);
rc
=
mii_ethtool_sset
(
&
r
p
->
mii_if
,
cmd
);
spin_unlock_irq
(
&
r
p
->
lock
);
return
rc
;
}
static
int
netdev_nway_reset
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
if
(
!
(
n
p
->
drv_flags
&
CanHaveMII
))
if
(
!
(
r
p
->
drv_flags
&
CanHaveMII
))
return
-
EINVAL
;
return
mii_nway_restart
(
&
n
p
->
mii_if
);
return
mii_nway_restart
(
&
r
p
->
mii_if
);
}
static
u32
netdev_get_link
(
struct
net_device
*
dev
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
if
(
!
(
n
p
->
drv_flags
&
CanHaveMII
))
if
(
!
(
r
p
->
drv_flags
&
CanHaveMII
))
return
0
;
/* -EINVAL */
return
mii_link_ok
(
&
n
p
->
mii_if
);
return
mii_link_ok
(
&
r
p
->
mii_if
);
}
static
u32
netdev_get_msglevel
(
struct
net_device
*
dev
)
...
...
@@ -1842,37 +1874,38 @@ static struct ethtool_ops netdev_ethtool_ops = {
static
int
netdev_ioctl
(
struct
net_device
*
dev
,
struct
ifreq
*
rq
,
int
cmd
)
{
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
struct
mii_ioctl_data
*
data
=
(
struct
mii_ioctl_data
*
)
&
rq
->
ifr_data
;
int
rc
;
if
(
!
netif_running
(
dev
))
return
-
EINVAL
;
spin_lock_irq
(
&
n
p
->
lock
);
rc
=
generic_mii_ioctl
(
&
n
p
->
mii_if
,
data
,
cmd
,
NULL
);
spin_unlock_irq
(
&
n
p
->
lock
);
spin_lock_irq
(
&
r
p
->
lock
);
rc
=
generic_mii_ioctl
(
&
r
p
->
mii_if
,
data
,
cmd
,
NULL
);
spin_unlock_irq
(
&
r
p
->
lock
);
return
rc
;
}
static
int
via_
rhine_close
(
struct
net_device
*
dev
)
static
int
rhine_close
(
struct
net_device
*
dev
)
{
long
ioaddr
=
dev
->
base_addr
;
struct
netdev_private
*
np
=
dev
->
priv
;
struct
rhine_private
*
rp
=
netdev_priv
(
dev
)
;
del_timer_sync
(
&
n
p
->
timer
);
del_timer_sync
(
&
r
p
->
timer
);
spin_lock_irq
(
&
n
p
->
lock
);
spin_lock_irq
(
&
r
p
->
lock
);
netif_stop_queue
(
dev
);
if
(
debug
>
1
)
printk
(
KERN_DEBUG
"%s: Shutting down ethercard, status was %4.4x.
\n
"
,
dev
->
name
,
readw
(
ioaddr
+
ChipCmd
));
printk
(
KERN_DEBUG
"%s: Shutting down ethercard, "
"status was %4.4x.
\n
"
,
dev
->
name
,
readw
(
ioaddr
+
ChipCmd
));
/* Switch to loopback mode to avoid hardware races. */
writeb
(
n
p
->
tx_thresh
|
0x02
,
ioaddr
+
TxConfig
);
writeb
(
r
p
->
tx_thresh
|
0x02
,
ioaddr
+
TxConfig
);
/* Disable interrupts by clearing the interrupt mask. */
writew
(
0x0000
,
ioaddr
+
IntrEnable
);
...
...
@@ -1880,9 +1913,9 @@ static int via_rhine_close(struct net_device *dev)
/* Stop the chip's Tx and Rx processes. */
writew
(
CmdStop
,
ioaddr
+
ChipCmd
);
spin_unlock_irq
(
&
n
p
->
lock
);
spin_unlock_irq
(
&
r
p
->
lock
);
free_irq
(
n
p
->
pdev
->
irq
,
dev
);
free_irq
(
r
p
->
pdev
->
irq
,
dev
);
free_rbufs
(
dev
);
free_tbufs
(
dev
);
free_ring
(
dev
);
...
...
@@ -1891,7 +1924,7 @@ static int via_rhine_close(struct net_device *dev)
}
static
void
__devexit
via_rhine_remove_one
(
struct
pci_dev
*
pdev
)
static
void
__devexit
rhine_remove_one
(
struct
pci_dev
*
pdev
)
{
struct
net_device
*
dev
=
pci_get_drvdata
(
pdev
);
...
...
@@ -1899,7 +1932,7 @@ static void __devexit via_rhine_remove_one (struct pci_dev *pdev)
pci_release_regions
(
pdev
);
#ifdef USE_M
EM
#ifdef USE_M
MIO
iounmap
((
char
*
)(
dev
->
base_addr
));
#endif
...
...
@@ -1909,39 +1942,29 @@ static void __devexit via_rhine_remove_one (struct pci_dev *pdev)
}
static
struct
pci_driver
via_
rhine_driver
=
{
static
struct
pci_driver
rhine_driver
=
{
.
name
=
"via-rhine"
,
.
id_table
=
via_
rhine_pci_tbl
,
.
probe
=
via_
rhine_init_one
,
.
remove
=
__devexit_p
(
via_
rhine_remove_one
),
.
id_table
=
rhine_pci_tbl
,
.
probe
=
rhine_init_one
,
.
remove
=
__devexit_p
(
rhine_remove_one
),
};
static
int
__init
via_rhine_init
(
void
)
static
int
__init
rhine_init
(
void
)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
printk
(
version
);
#endif
return
pci_module_init
(
&
via_
rhine_driver
);
return
pci_module_init
(
&
rhine_driver
);
}
static
void
__exit
via_rhine_cleanup
(
void
)
static
void
__exit
rhine_cleanup
(
void
)
{
pci_unregister_driver
(
&
via_
rhine_driver
);
pci_unregister_driver
(
&
rhine_driver
);
}
module_init
(
via_rhine_init
);
module_exit
(
via_rhine_cleanup
);
/*
* Local variables:
* compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c via-rhine.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 4
* End:
*/
module_init
(
rhine_init
);
module_exit
(
rhine_cleanup
);
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment