Commit 243e2511 authored by Benjamin Herrenschmidt's avatar Benjamin Herrenschmidt Committed by Michael Ellerman

powerpc/xive: Native exploitation of the XIVE interrupt controller

The XIVE interrupt controller is the new interrupt controller
found in POWER9. It supports advanced virtualization capabilities
among other things.

Currently we use a set of firmware calls that simulate the old
"XICS" interrupt controller but this is fairly inefficient.

This adds the framework for using XIVE along with a native
backend which OPAL for configuration. Later, a backend allowing
the use in a KVM or PowerVM guest will also be provided.

This disables some fast path for interrupts in KVM when XIVE is
enabled as these rely on the firmware emulation code which is no
longer available when the XIVE is used natively by Linux.

A latter patch will make KVM also directly exploit the XIVE, thus
recovering the lost performance (and more).
Signed-off-by: default avatarBenjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Fixup pr_xxx("XIVE:"...), don't split pr_xxx() strings,
 tweak Kconfig so XIVE_NATIVE selects XIVE and depends on POWERNV,
 fix build errors when SMP=n, fold in fixes from Ben:
   Don't call cpu_online() on an invalid CPU number
   Fix irq target selection returning out of bounds cpu#
   Extra sanity checks on cpu numbers
 ]
Signed-off-by: default avatarMichael Ellerman <mpe@ellerman.id.au>
parent a978e139
/*
* Copyright 2016,2017 IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _ASM_POWERPC_XIVE_REGS_H
#define _ASM_POWERPC_XIVE_REGS_H
/*
* Thread Management (aka "TM") registers
*/
/* TM register offsets */
#define TM_QW0_USER 0x000 /* All rings */
#define TM_QW1_OS 0x010 /* Ring 0..2 */
#define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */
#define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */
/* Byte offsets inside a QW QW0 QW1 QW2 QW3 */
#define TM_NSR 0x0 /* + + - + */
#define TM_CPPR 0x1 /* - + - + */
#define TM_IPB 0x2 /* - + + + */
#define TM_LSMFB 0x3 /* - + + + */
#define TM_ACK_CNT 0x4 /* - + - - */
#define TM_INC 0x5 /* - + - + */
#define TM_AGE 0x6 /* - + - + */
#define TM_PIPR 0x7 /* - + - + */
#define TM_WORD0 0x0
#define TM_WORD1 0x4
/*
* QW word 2 contains the valid bit at the top and other fields
* depending on the QW.
*/
#define TM_WORD2 0x8
#define TM_QW0W2_VU PPC_BIT32(0)
#define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1,31) // XX 2,31 ?
#define TM_QW1W2_VO PPC_BIT32(0)
#define TM_QW1W2_OS_CAM PPC_BITMASK32(8,31)
#define TM_QW2W2_VP PPC_BIT32(0)
#define TM_QW2W2_POOL_CAM PPC_BITMASK32(8,31)
#define TM_QW3W2_VT PPC_BIT32(0)
#define TM_QW3W2_LP PPC_BIT32(6)
#define TM_QW3W2_LE PPC_BIT32(7)
#define TM_QW3W2_T PPC_BIT32(31)
/*
* In addition to normal loads to "peek" and writes (only when invalid)
* using 4 and 8 bytes accesses, the above registers support these
* "special" byte operations:
*
* - Byte load from QW0[NSR] - User level NSR (EBB)
* - Byte store to QW0[NSR] - User level NSR (EBB)
* - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
* - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
* otherwise VT||0000000
* - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
*
* Then we have all these "special" CI ops at these offset that trigger
* all sorts of side effects:
*/
#define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/
#define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */
#define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */
#define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user context */
#define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */
#define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS context to reg */
#define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool context to reg*/
#define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */
#define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd line */
#define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */
#define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even line */
#define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */
/* XXX more... */
/* NSR fields for the various QW ack types */
#define TM_QW0_NSR_EB PPC_BIT8(0)
#define TM_QW1_NSR_EO PPC_BIT8(0)
#define TM_QW3_NSR_HE PPC_BITMASK8(0,1)
#define TM_QW3_NSR_HE_NONE 0
#define TM_QW3_NSR_HE_POOL 1
#define TM_QW3_NSR_HE_PHYS 2
#define TM_QW3_NSR_HE_LSI 3
#define TM_QW3_NSR_I PPC_BIT8(2)
#define TM_QW3_NSR_GRP_LVL PPC_BIT8(3,7)
/* Utilities to manipulate these (originaly from OPAL) */
#define MASK_TO_LSH(m) (__builtin_ffsl(m) - 1)
#define GETFIELD(m, v) (((v) & (m)) >> MASK_TO_LSH(m))
#define SETFIELD(m, v, val) \
(((v) & ~(m)) | ((((typeof(v))(val)) << MASK_TO_LSH(m)) & (m)))
#endif /* _ASM_POWERPC_XIVE_REGS_H */
/*
* Copyright 2016,2017 IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _ASM_POWERPC_XIVE_H
#define _ASM_POWERPC_XIVE_H
#define XIVE_INVALID_VP 0xffffffff
#ifdef CONFIG_PPC_XIVE
/*
* Thread Interrupt Management Area (TIMA)
*
* This is a global MMIO region divided in 4 pages of varying access
* permissions, providing access to per-cpu interrupt management
* functions. It always identifies the CPU doing the access based
* on the PowerBus initiator ID, thus we always access via the
* same offset regardless of where the code is executing
*/
extern void __iomem *xive_tima;
/*
* Offset in the TM area of our current execution level (provided by
* the backend)
*/
extern u32 xive_tima_offset;
/*
* Per-irq data (irq_get_handler_data for normal IRQs), IPIs
* have it stored in the xive_cpu structure. We also cache
* for normal interrupts the current target CPU.
*
* This structure is setup by the backend for each interrupt.
*/
struct xive_irq_data {
u64 flags;
u64 eoi_page;
void __iomem *eoi_mmio;
u64 trig_page;
void __iomem *trig_mmio;
u32 esb_shift;
int src_chip;
/* Setup/used by frontend */
int target;
bool saved_p;
};
#define XIVE_IRQ_FLAG_STORE_EOI 0x01
#define XIVE_IRQ_FLAG_LSI 0x02
#define XIVE_IRQ_FLAG_SHIFT_BUG 0x04
#define XIVE_IRQ_FLAG_MASK_FW 0x08
#define XIVE_IRQ_FLAG_EOI_FW 0x10
#define XIVE_INVALID_CHIP_ID -1
/* A queue tracking structure in a CPU */
struct xive_q {
__be32 *qpage;
u32 msk;
u32 idx;
u32 toggle;
u64 eoi_phys;
u32 esc_irq;
atomic_t count;
atomic_t pending_count;
};
/*
* "magic" Event State Buffer (ESB) MMIO offsets.
*
* Each interrupt source has a 2-bit state machine called ESB
* which can be controlled by MMIO. It's made of 2 bits, P and
* Q. P indicates that an interrupt is pending (has been sent
* to a queue and is waiting for an EOI). Q indicates that the
* interrupt has been triggered while pending.
*
* This acts as a coalescing mechanism in order to guarantee
* that a given interrupt only occurs at most once in a queue.
*
* When doing an EOI, the Q bit will indicate if the interrupt
* needs to be re-triggered.
*
* The following offsets into the ESB MMIO allow to read or
* manipulate the PQ bits. They must be used with an 8-bytes
* load instruction. They all return the previous state of the
* interrupt (atomically).
*
* Additionally, some ESB pages support doing an EOI via a
* store at 0 and some ESBs support doing a trigger via a
* separate trigger page.
*/
#define XIVE_ESB_GET 0x800
#define XIVE_ESB_SET_PQ_00 0xc00
#define XIVE_ESB_SET_PQ_01 0xd00
#define XIVE_ESB_SET_PQ_10 0xe00
#define XIVE_ESB_SET_PQ_11 0xf00
#define XIVE_ESB_MASK XIVE_ESB_SET_PQ_01
#define XIVE_ESB_VAL_P 0x2
#define XIVE_ESB_VAL_Q 0x1
/* Global enable flags for the XIVE support */
extern bool __xive_enabled;
static inline bool xive_enabled(void) { return __xive_enabled; }
extern bool xive_native_init(void);
extern void xive_smp_probe(void);
extern int xive_smp_prepare_cpu(unsigned int cpu);
extern void xive_smp_setup_cpu(void);
extern void xive_smp_disable_cpu(void);
extern void xive_kexec_teardown_cpu(int secondary);
extern void xive_shutdown(void);
extern void xive_flush_interrupt(void);
/* xmon hook */
extern void xmon_xive_do_dump(int cpu);
/* APIs used by KVM */
extern u32 xive_native_default_eq_shift(void);
extern u32 xive_native_alloc_vp_block(u32 max_vcpus);
extern void xive_native_free_vp_block(u32 vp_base);
extern int xive_native_populate_irq_data(u32 hw_irq,
struct xive_irq_data *data);
extern void xive_cleanup_irq_data(struct xive_irq_data *xd);
extern u32 xive_native_alloc_irq(void);
extern void xive_native_free_irq(u32 irq);
extern int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq);
extern int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio,
__be32 *qpage, u32 order, bool can_escalate);
extern void xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio);
extern bool __xive_irq_trigger(struct xive_irq_data *xd);
extern bool __xive_irq_retrigger(struct xive_irq_data *xd);
extern void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd);
extern bool is_xive_irq(struct irq_chip *chip);
#else
static inline bool xive_enabled(void) { return false; }
static inline bool xive_native_init(void) { return false; }
static inline void xive_smp_probe(void) { }
extern inline int xive_smp_prepare_cpu(unsigned int cpu) { return -EINVAL; }
static inline void xive_smp_setup_cpu(void) { }
static inline void xive_smp_disable_cpu(void) { }
static inline void xive_kexec_teardown_cpu(int secondary) { }
static inline void xive_shutdown(void) { }
static inline void xive_flush_interrupt(void) { }
static inline u32 xive_native_alloc_vp_block(u32 max_vcpus) { return XIVE_INVALID_VP; }
static inline void xive_native_free_vp_block(u32 vp_base) { }
#endif
#endif /* _ASM_POWERPC_XIVE_H */
...@@ -29,5 +29,7 @@ static inline void xmon_register_spus(struct list_head *list) { }; ...@@ -29,5 +29,7 @@ static inline void xmon_register_spus(struct list_head *list) { };
extern int cpus_are_in_xmon(void); extern int cpus_are_in_xmon(void);
#endif #endif
extern void xmon_printf(const char *format, ...);
#endif /* __KERNEL __ */ #endif /* __KERNEL __ */
#endif /* __ASM_POWERPC_XMON_H */ #endif /* __ASM_POWERPC_XMON_H */
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include <asm/kvm_book3s.h> #include <asm/kvm_book3s.h>
#include <asm/archrandom.h> #include <asm/archrandom.h>
#include <asm/xics.h> #include <asm/xics.h>
#include <asm/xive.h>
#include <asm/dbell.h> #include <asm/dbell.h>
#include <asm/cputhreads.h> #include <asm/cputhreads.h>
#include <asm/io.h> #include <asm/io.h>
...@@ -224,6 +225,10 @@ void kvmhv_rm_send_ipi(int cpu) ...@@ -224,6 +225,10 @@ void kvmhv_rm_send_ipi(int cpu)
return; return;
} }
/* We should never reach this */
if (WARN_ON_ONCE(xive_enabled()))
return;
/* Else poke the target with an IPI */ /* Else poke the target with an IPI */
xics_phys = paca[cpu].kvm_hstate.xics_phys; xics_phys = paca[cpu].kvm_hstate.xics_phys;
if (xics_phys) if (xics_phys)
...@@ -386,6 +391,9 @@ long kvmppc_read_intr(void) ...@@ -386,6 +391,9 @@ long kvmppc_read_intr(void)
long rc; long rc;
bool again; bool again;
if (xive_enabled())
return 1;
do { do {
again = false; again = false;
rc = kvmppc_read_one_intr(&again); rc = kvmppc_read_one_intr(&again);
......
...@@ -4,6 +4,7 @@ config PPC_POWERNV ...@@ -4,6 +4,7 @@ config PPC_POWERNV
select PPC_NATIVE select PPC_NATIVE
select PPC_XICS select PPC_XICS
select PPC_ICP_NATIVE select PPC_ICP_NATIVE
select PPC_XIVE_NATIVE
select PPC_P7_NAP select PPC_P7_NAP
select PCI select PCI
select PCI_MSI select PCI_MSI
......
...@@ -32,6 +32,7 @@ ...@@ -32,6 +32,7 @@
#include <asm/machdep.h> #include <asm/machdep.h>
#include <asm/firmware.h> #include <asm/firmware.h>
#include <asm/xics.h> #include <asm/xics.h>
#include <asm/xive.h>
#include <asm/opal.h> #include <asm/opal.h>
#include <asm/kexec.h> #include <asm/kexec.h>
#include <asm/smp.h> #include <asm/smp.h>
...@@ -76,6 +77,8 @@ static void __init pnv_init(void) ...@@ -76,6 +77,8 @@ static void __init pnv_init(void)
static void __init pnv_init_IRQ(void) static void __init pnv_init_IRQ(void)
{ {
/* Try using a XIVE if available, otherwise use a XICS */
if (!xive_native_init())
xics_init(); xics_init();
WARN_ON(!ppc_md.get_irq); WARN_ON(!ppc_md.get_irq);
...@@ -218,10 +221,12 @@ static void pnv_kexec_wait_secondaries_down(void) ...@@ -218,10 +221,12 @@ static void pnv_kexec_wait_secondaries_down(void)
static void pnv_kexec_cpu_down(int crash_shutdown, int secondary) static void pnv_kexec_cpu_down(int crash_shutdown, int secondary)
{ {
if (xive_enabled())
xive_kexec_teardown_cpu(secondary);
else
xics_kexec_teardown_cpu(secondary); xics_kexec_teardown_cpu(secondary);
/* On OPAL, we return all CPUs to firmware */ /* On OPAL, we return all CPUs to firmware */
if (!firmware_has_feature(FW_FEATURE_OPAL)) if (!firmware_has_feature(FW_FEATURE_OPAL))
return; return;
...@@ -237,6 +242,10 @@ static void pnv_kexec_cpu_down(int crash_shutdown, int secondary) ...@@ -237,6 +242,10 @@ static void pnv_kexec_cpu_down(int crash_shutdown, int secondary)
/* Primary waits for the secondaries to have reached OPAL */ /* Primary waits for the secondaries to have reached OPAL */
pnv_kexec_wait_secondaries_down(); pnv_kexec_wait_secondaries_down();
/* Switch XIVE back to emulation mode */
if (xive_enabled())
xive_shutdown();
/* /*
* We might be running as little-endian - now that interrupts * We might be running as little-endian - now that interrupts
* are disabled, reset the HILE bit to big-endian so we don't * are disabled, reset the HILE bit to big-endian so we don't
......
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include <asm/vdso_datapage.h> #include <asm/vdso_datapage.h>
#include <asm/cputhreads.h> #include <asm/cputhreads.h>
#include <asm/xics.h> #include <asm/xics.h>
#include <asm/xive.h>
#include <asm/opal.h> #include <asm/opal.h>
#include <asm/runlatch.h> #include <asm/runlatch.h>
#include <asm/code-patching.h> #include <asm/code-patching.h>
...@@ -47,7 +48,9 @@ ...@@ -47,7 +48,9 @@
static void pnv_smp_setup_cpu(int cpu) static void pnv_smp_setup_cpu(int cpu)
{ {
if (cpu != boot_cpuid) if (xive_enabled())
xive_smp_setup_cpu();
else if (cpu != boot_cpuid)
xics_setup_cpu(); xics_setup_cpu();
#ifdef CONFIG_PPC_DOORBELL #ifdef CONFIG_PPC_DOORBELL
...@@ -132,6 +135,9 @@ static int pnv_smp_cpu_disable(void) ...@@ -132,6 +135,9 @@ static int pnv_smp_cpu_disable(void)
vdso_data->processorCount--; vdso_data->processorCount--;
if (cpu == boot_cpuid) if (cpu == boot_cpuid)
boot_cpuid = cpumask_any(cpu_online_mask); boot_cpuid = cpumask_any(cpu_online_mask);
if (xive_enabled())
xive_smp_disable_cpu();
else
xics_migrate_irqs_away(); xics_migrate_irqs_away();
return 0; return 0;
} }
...@@ -213,9 +219,12 @@ static void pnv_smp_cpu_kill_self(void) ...@@ -213,9 +219,12 @@ static void pnv_smp_cpu_kill_self(void)
if (((srr1 & wmask) == SRR1_WAKEEE) || if (((srr1 & wmask) == SRR1_WAKEEE) ||
((srr1 & wmask) == SRR1_WAKEHVI) || ((srr1 & wmask) == SRR1_WAKEHVI) ||
(local_paca->irq_happened & PACA_IRQ_EE)) { (local_paca->irq_happened & PACA_IRQ_EE)) {
if (cpu_has_feature(CPU_FTR_ARCH_300)) if (cpu_has_feature(CPU_FTR_ARCH_300)) {
icp_opal_flush_interrupt(); if (xive_enabled())
xive_flush_interrupt();
else else
icp_opal_flush_interrupt();
} else
icp_native_flush_interrupt(); icp_native_flush_interrupt();
} else if ((srr1 & wmask) == SRR1_WAKEHDBELL) { } else if ((srr1 & wmask) == SRR1_WAKEHDBELL) {
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
...@@ -252,10 +261,26 @@ static int pnv_cpu_bootable(unsigned int nr) ...@@ -252,10 +261,26 @@ static int pnv_cpu_bootable(unsigned int nr)
return smp_generic_cpu_bootable(nr); return smp_generic_cpu_bootable(nr);
} }
static int pnv_smp_prepare_cpu(int cpu)
{
if (xive_enabled())
return xive_smp_prepare_cpu(cpu);
return 0;
}
static void __init pnv_smp_probe(void)
{
if (xive_enabled())
xive_smp_probe();
else
xics_smp_probe();
}
static struct smp_ops_t pnv_smp_ops = { static struct smp_ops_t pnv_smp_ops = {
.message_pass = smp_muxed_ipi_message_pass, .message_pass = smp_muxed_ipi_message_pass,
.cause_ipi = NULL, /* Filled at runtime by xics_smp_probe() */ .cause_ipi = NULL, /* Filled at runtime by xi{cs,ve}_smp_probe() */
.probe = xics_smp_probe, .probe = pnv_smp_probe,
.prepare_cpu = pnv_smp_prepare_cpu,
.kick_cpu = pnv_smp_kick_cpu, .kick_cpu = pnv_smp_kick_cpu,
.setup_cpu = pnv_smp_setup_cpu, .setup_cpu = pnv_smp_setup_cpu,
.cpu_bootable = pnv_cpu_bootable, .cpu_bootable = pnv_cpu_bootable,
......
...@@ -28,6 +28,7 @@ config PPC_MSI_BITMAP ...@@ -28,6 +28,7 @@ config PPC_MSI_BITMAP
default y if PPC_POWERNV default y if PPC_POWERNV
source "arch/powerpc/sysdev/xics/Kconfig" source "arch/powerpc/sysdev/xics/Kconfig"
source "arch/powerpc/sysdev/xive/Kconfig"
config PPC_SCOM config PPC_SCOM
bool bool
......
...@@ -71,5 +71,6 @@ obj-$(CONFIG_PPC_EARLY_DEBUG_MEMCONS) += udbg_memcons.o ...@@ -71,5 +71,6 @@ obj-$(CONFIG_PPC_EARLY_DEBUG_MEMCONS) += udbg_memcons.o
subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror
obj-$(CONFIG_PPC_XICS) += xics/ obj-$(CONFIG_PPC_XICS) += xics/
obj-$(CONFIG_PPC_XIVE) += xive/
obj-$(CONFIG_GE_FPGA) += ge/ obj-$(CONFIG_GE_FPGA) += ge/
config PPC_XIVE
bool
default n
select PPC_SMP_MUXED_IPI
select HARDIRQS_SW_RESEND
config PPC_XIVE_NATIVE
bool
default n
select PPC_XIVE
depends on PPC_POWERNV
subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror
obj-y += common.o
obj-$(CONFIG_PPC_XIVE_NATIVE) += native.o
/*
* Copyright 2016,2017 IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) "xive: " fmt
#include <linux/types.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/irq.h>
#include <linux/debugfs.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/msi.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/irq.h>
#include <asm/errno.h>
#include <asm/xive.h>
#include <asm/xive-regs.h>
#include <asm/xmon.h>
#include "xive-internal.h"
#undef DEBUG_FLUSH
#undef DEBUG_ALL
#ifdef DEBUG_ALL
#define DBG_VERBOSE(fmt...) pr_devel(fmt)
#else
#define DBG_VERBOSE(fmt...) do { } while(0)
#endif
bool __xive_enabled;
bool xive_cmdline_disabled;
/* We use only one priority for now */
static u8 xive_irq_priority;
/* TIMA */
void __iomem *xive_tima;
u32 xive_tima_offset;
/* Backend ops */
static const struct xive_ops *xive_ops;
/* Our global interrupt domain */
static struct irq_domain *xive_irq_domain;
#ifdef CONFIG_SMP
/* The IPIs all use the same logical irq number */
static u32 xive_ipi_irq;
#endif
/* Xive state for each CPU */
static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
/*
* A "disabled" interrupt should never fire, to catch problems
* we set its logical number to this
*/
#define XIVE_BAD_IRQ 0x7fffffff
#define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1)
/* An invalid CPU target */
#define XIVE_INVALID_TARGET (-1)
/*
* Read the next entry in a queue, return its content if it's valid
* or 0 if there is no new entry.
*
* The queue pointer is moved forward unless "just_peek" is set
*/
static u32 xive_read_eq(struct xive_q *q, bool just_peek)
{
u32 cur;
if (!q->qpage)
return 0;
cur = be32_to_cpup(q->qpage + q->idx);
/* Check valid bit (31) vs current toggle polarity */
if ((cur >> 31) == q->toggle)
return 0;
/* If consuming from the queue ... */
if (!just_peek) {
/* Next entry */
q->idx = (q->idx + 1) & q->msk;
/* Wrap around: flip valid toggle */
if (q->idx == 0)
q->toggle ^= 1;
}
/* Mask out the valid bit (31) */
return cur & 0x7fffffff;
}
/*
* Scans all the queue that may have interrupts in them
* (based on "pending_prio") in priority order until an
* interrupt is found or all the queues are empty.
*
* Then updates the CPPR (Current Processor Priority
* Register) based on the most favored interrupt found
* (0xff if none) and return what was found (0 if none).
*
* If just_peek is set, return the most favored pending
* interrupt if any but don't update the queue pointers.
*
* Note: This function can operate generically on any number
* of queues (up to 8). The current implementation of the XIVE
* driver only uses a single queue however.
*
* Note2: This will also "flush" "the pending_count" of a queue
* into the "count" when that queue is observed to be empty.
* This is used to keep track of the amount of interrupts
* targetting a queue. When an interrupt is moved away from
* a queue, we only decrement that queue count once the queue
* has been observed empty to avoid races.
*/
static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
{
u32 irq = 0;
u8 prio;
/* Find highest pending priority */
while (xc->pending_prio != 0) {
struct xive_q *q;
prio = ffs(xc->pending_prio) - 1;
DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
/* Try to fetch */
irq = xive_read_eq(&xc->queue[prio], just_peek);
/* Found something ? That's it */
if (irq)
break;
/* Clear pending bits */
xc->pending_prio &= ~(1 << prio);
/*
* Check if the queue count needs adjusting due to
* interrupts being moved away. See description of
* xive_dec_target_count()
*/
q = &xc->queue[prio];
if (atomic_read(&q->pending_count)) {
int p = atomic_xchg(&q->pending_count, 0);
if (p) {
WARN_ON(p > atomic_read(&q->count));
atomic_sub(p, &q->count);
}
}
}
/* If nothing was found, set CPPR to 0xff */
if (irq == 0)
prio = 0xff;
/* Update HW CPPR to match if necessary */
if (prio != xc->cppr) {
DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
xc->cppr = prio;
out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
}
return irq;
}
/*
* This is used to perform the magic loads from an ESB
* described in xive.h
*/
static u8 xive_poke_esb(struct xive_irq_data *xd, u32 offset)
{
u64 val;
/* Handle HW errata */
if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
offset |= offset << 4;
val = in_be64(xd->eoi_mmio + offset);
return (u8)val;
}
#ifdef CONFIG_XMON
static void xive_dump_eq(const char *name, struct xive_q *q)
{
u32 i0, i1, idx;
if (!q->qpage)
return;
idx = q->idx;
i0 = be32_to_cpup(q->qpage + idx);
idx = (idx + 1) & q->msk;
i1 = be32_to_cpup(q->qpage + idx);
xmon_printf(" %s Q T=%d %08x %08x ...\n", name,
q->toggle, i0, i1);
}
void xmon_xive_do_dump(int cpu)
{
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
xmon_printf("XIVE state for CPU %d:\n", cpu);
xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
#ifdef CONFIG_SMP
{
u64 val = xive_poke_esb(&xc->ipi_data, XIVE_ESB_GET);
xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi,
val & XIVE_ESB_VAL_P ? 'P' : 'p',
val & XIVE_ESB_VAL_P ? 'Q' : 'q');
}
#endif
}
#endif /* CONFIG_XMON */
static unsigned int xive_get_irq(void)
{
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
u32 irq;
/*
* This can be called either as a result of a HW interrupt or
* as a "replay" because EOI decided there was still something
* in one of the queues.
*
* First we perform an ACK cycle in order to update our mask
* of pending priorities. This will also have the effect of
* updating the CPPR to the most favored pending interrupts.
*
* In the future, if we have a way to differenciate a first
* entry (on HW interrupt) from a replay triggered by EOI,
* we could skip this on replays unless we soft-mask tells us
* that a new HW interrupt occurred.
*/
xive_ops->update_pending(xc);
DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
/* Scan our queue(s) for interrupts */
irq = xive_scan_interrupts(xc, false);
DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
irq, xc->pending_prio);
/* Return pending interrupt if any */
if (irq == XIVE_BAD_IRQ)
return 0;
return irq;
}
/*
* After EOI'ing an interrupt, we need to re-check the queue
* to see if another interrupt is pending since multiple
* interrupts can coalesce into a single notification to the
* CPU.
*
* If we find that there is indeed more in there, we call
* force_external_irq_replay() to make Linux synthetize an
* external interrupt on the next call to local_irq_restore().
*/
static void xive_do_queue_eoi(struct xive_cpu *xc)
{
if (xive_scan_interrupts(xc, true) != 0) {
DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
force_external_irq_replay();
}
}
/*
* EOI an interrupt at the source. There are several methods
* to do this depending on the HW version and source type
*/
void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
{
/* If the XIVE supports the new "store EOI facility, use it */
if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
out_be64(xd->eoi_mmio, 0);
else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
/*
* The FW told us to call it. This happens for some
* interrupt sources that need additional HW whacking
* beyond the ESB manipulation. For example LPC interrupts
* on P9 DD1.0 need a latch to be clared in the LPC bridge
* itself. The Firmware will take care of it.
*/
if (WARN_ON_ONCE(!xive_ops->eoi))
return;
xive_ops->eoi(hw_irq);
} else {
u8 eoi_val;
/*
* Otherwise for EOI, we use the special MMIO that does
* a clear of both P and Q and returns the old Q,
* except for LSIs where we use the "EOI cycle" special
* load.
*
* This allows us to then do a re-trigger if Q was set
* rather than synthesizing an interrupt in software
*
* For LSIs, using the HW EOI cycle works around a problem
* on P9 DD1 PHBs where the other ESB accesses don't work
* properly.
*/
if (xd->flags & XIVE_IRQ_FLAG_LSI)
in_be64(xd->eoi_mmio);
else {
eoi_val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
DBG_VERBOSE("eoi_val=%x\n", offset, eoi_val);
/* Re-trigger if needed */
if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
out_be64(xd->trig_mmio, 0);
}
}
}
/* irq_chip eoi callback */
static void xive_irq_eoi(struct irq_data *d)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
d->irq, irqd_to_hwirq(d), xc->pending_prio);
/* EOI the source if it hasn't been disabled */
if (!irqd_irq_disabled(d))
xive_do_source_eoi(irqd_to_hwirq(d), xd);
/*
* Clear saved_p to indicate that it's no longer occupying
* a queue slot on the target queue
*/
xd->saved_p = false;
/* Check for more work in the queue */
xive_do_queue_eoi(xc);
}
/*
* Helper used to mask and unmask an interrupt source. This
* is only called for normal interrupts that do not require
* masking/unmasking via firmware.
*/
static void xive_do_source_set_mask(struct xive_irq_data *xd,
bool mask)
{
u64 val;
/*
* If the interrupt had P set, it may be in a queue.
*
* We need to make sure we don't re-enable it until it
* has been fetched from that queue and EOId. We keep
* a copy of that P state and use it to restore the
* ESB accordingly on unmask.
*/
if (mask) {
val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_01);
xd->saved_p = !!(val & XIVE_ESB_VAL_P);
} else if (xd->saved_p)
xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
else
xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
}
/*
* Try to chose "cpu" as a new interrupt target. Increments
* the queue accounting for that target if it's not already
* full.
*/
static bool xive_try_pick_target(int cpu)
{
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
struct xive_q *q = &xc->queue[xive_irq_priority];
int max;
/*
* Calculate max number of interrupts in that queue.
*
* We leave a gap of 1 just in case...
*/
max = (q->msk + 1) - 1;
return !!atomic_add_unless(&q->count, 1, max);
}
/*
* Un-account an interrupt for a target CPU. We don't directly
* decrement q->count since the interrupt might still be present
* in the queue.
*
* Instead increment a separate counter "pending_count" which
* will be substracted from "count" later when that CPU observes
* the queue to be empty.
*/
static void xive_dec_target_count(int cpu)
{
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
struct xive_q *q = &xc->queue[xive_irq_priority];
if (unlikely(WARN_ON(cpu < 0 || !xc))) {
pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
return;
}
/*
* We increment the "pending count" which will be used
* to decrement the target queue count whenever it's next
* processed and found empty. This ensure that we don't
* decrement while we still have the interrupt there
* occupying a slot.
*/
atomic_inc(&q->pending_count);
}
/* Find a tentative CPU target in a CPU mask */
static int xive_find_target_in_mask(const struct cpumask *mask,
unsigned int fuzz)
{
int cpu, first, num, i;
/* Pick up a starting point CPU in the mask based on fuzz */
num = cpumask_weight(mask);
first = fuzz % num;
/* Locate it */
cpu = cpumask_first(mask);
for (i = 0; i < first && cpu < nr_cpu_ids; i++)
cpu = cpumask_next(cpu, mask);
/* Sanity check */
if (WARN_ON(cpu >= nr_cpu_ids))
cpu = cpumask_first(cpu_online_mask);
/* Remember first one to handle wrap-around */
first = cpu;
/*
* Now go through the entire mask until we find a valid
* target.
*/
for (;;) {
/*
* We re-check online as the fallback case passes us
* an untested affinity mask
*/
if (cpu_online(cpu) && xive_try_pick_target(cpu))
return cpu;
cpu = cpumask_next(cpu, mask);
if (cpu == first)
break;
/* Wrap around */
if (cpu >= nr_cpu_ids)
cpu = cpumask_first(mask);
}
return -1;
}
/*
* Pick a target CPU for an interrupt. This is done at
* startup or if the affinity is changed in a way that
* invalidates the current target.
*/
static int xive_pick_irq_target(struct irq_data *d,
const struct cpumask *affinity)
{
static unsigned int fuzz;
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
cpumask_var_t mask;
int cpu = -1;
/*
* If we have chip IDs, first we try to build a mask of
* CPUs matching the CPU and find a target in there
*/
if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
/* Build a mask of matching chip IDs */
for_each_cpu_and(cpu, affinity, cpu_online_mask) {
struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
if (xc->chip_id == xd->src_chip)
cpumask_set_cpu(cpu, mask);
}
/* Try to find a target */
if (cpumask_empty(mask))
cpu = -1;
else
cpu = xive_find_target_in_mask(mask, fuzz++);
free_cpumask_var(mask);
if (cpu >= 0)
return cpu;
fuzz--;
}
/* No chip IDs, fallback to using the affinity mask */
return xive_find_target_in_mask(affinity, fuzz++);
}
static unsigned int xive_irq_startup(struct irq_data *d)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
int target, rc;
pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
d->irq, hw_irq, d);
#ifdef CONFIG_PCI_MSI
/*
* The generic MSI code returns with the interrupt disabled on the
* card, using the MSI mask bits. Firmware doesn't appear to unmask
* at that level, so we do it here by hand.
*/
if (irq_data_get_msi_desc(d))
pci_msi_unmask_irq(d);
#endif
/* Pick a target */
target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
if (target == XIVE_INVALID_TARGET) {
/* Try again breaking affinity */
target = xive_pick_irq_target(d, cpu_online_mask);
if (target == XIVE_INVALID_TARGET)
return -ENXIO;
pr_warn("irq %d started with broken affinity\n", d->irq);
}
/* Sanity check */
if (WARN_ON(target == XIVE_INVALID_TARGET ||
target >= nr_cpu_ids))
target = smp_processor_id();
xd->target = target;
/*
* Configure the logical number to be the Linux IRQ number
* and set the target queue
*/
rc = xive_ops->configure_irq(hw_irq,
get_hard_smp_processor_id(target),
xive_irq_priority, d->irq);
if (rc)
return rc;
/* Unmask the ESB */
xive_do_source_set_mask(xd, false);
return 0;
}
static void xive_irq_shutdown(struct irq_data *d)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
d->irq, hw_irq, d);
if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
return;
/* Mask the interrupt at the source */
xive_do_source_set_mask(xd, true);
/*
* The above may have set saved_p. We clear it otherwise it
* will prevent re-enabling later on. It is ok to forget the
* fact that the interrupt might be in a queue because we are
* accounting that already in xive_dec_target_count() and will
* be re-routing it to a new queue with proper accounting when
* it's started up again
*/
xd->saved_p = false;
/*
* Mask the interrupt in HW in the IVT/EAS and set the number
* to be the "bad" IRQ number
*/
xive_ops->configure_irq(hw_irq,
get_hard_smp_processor_id(xd->target),
0xff, XIVE_BAD_IRQ);
xive_dec_target_count(xd->target);
xd->target = XIVE_INVALID_TARGET;
}
static void xive_irq_unmask(struct irq_data *d)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
/*
* This is a workaround for PCI LSI problems on P9, for
* these, we call FW to set the mask. The problems might
* be fixed by P9 DD2.0, if that is the case, firmware
* will no longer set that flag.
*/
if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
xive_ops->configure_irq(hw_irq,
get_hard_smp_processor_id(xd->target),
xive_irq_priority, d->irq);
return;
}
xive_do_source_set_mask(xd, false);
}
static void xive_irq_mask(struct irq_data *d)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
/*
* This is a workaround for PCI LSI problems on P9, for
* these, we call OPAL to set the mask. The problems might
* be fixed by P9 DD2.0, if that is the case, firmware
* will no longer set that flag.
*/
if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
xive_ops->configure_irq(hw_irq,
get_hard_smp_processor_id(xd->target),
0xff, d->irq);
return;
}
xive_do_source_set_mask(xd, true);
}
static int xive_irq_set_affinity(struct irq_data *d,
const struct cpumask *cpumask,
bool force)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
u32 target, old_target;
int rc = 0;
pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
/* Is this valid ? */
if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
return -EINVAL;
/*
* If existing target is already in the new mask, and is
* online then do nothing.
*/
if (xd->target != XIVE_INVALID_TARGET &&
cpu_online(xd->target) &&
cpumask_test_cpu(xd->target, cpumask))
return IRQ_SET_MASK_OK;
/* Pick a new target */
target = xive_pick_irq_target(d, cpumask);
/* No target found */
if (target == XIVE_INVALID_TARGET)
return -ENXIO;
/* Sanity check */
if (WARN_ON(target >= nr_cpu_ids))
target = smp_processor_id();
old_target = xd->target;
rc = xive_ops->configure_irq(hw_irq,
get_hard_smp_processor_id(target),
xive_irq_priority, d->irq);
if (rc < 0) {
pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
return rc;
}
pr_devel(" target: 0x%x\n", target);
xd->target = target;
/* Give up previous target */
if (old_target != XIVE_INVALID_TARGET)
xive_dec_target_count(old_target);
return IRQ_SET_MASK_OK;
}
static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
/*
* We only support these. This has really no effect other than setting
* the corresponding descriptor bits mind you but those will in turn
* affect the resend function when re-enabling an edge interrupt.
*
* Set set the default to edge as explained in map().
*/
if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
flow_type = IRQ_TYPE_EDGE_RISING;
if (flow_type != IRQ_TYPE_EDGE_RISING &&
flow_type != IRQ_TYPE_LEVEL_LOW)
return -EINVAL;
irqd_set_trigger_type(d, flow_type);
/*
* Double check it matches what the FW thinks
*
* NOTE: We don't know yet if the PAPR interface will provide
* the LSI vs MSI information apart from the device-tree so
* this check might have to move into an optional backend call
* that is specific to the native backend
*/
if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
!!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
d->irq, (u32)irqd_to_hwirq(d),
(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
}
return IRQ_SET_MASK_OK_NOCOPY;
}
static int xive_irq_retrigger(struct irq_data *d)
{
struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
/* This should be only for MSIs */
if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
return 0;
/*
* To perform a retrigger, we first set the PQ bits to
* 11, then perform an EOI.
*/
xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
/*
* Note: We pass "0" to the hw_irq argument in order to
* avoid calling into the backend EOI code which we don't
* want to do in the case of a re-trigger. Backends typically
* only do EOI for LSIs anyway.
*/
xive_do_source_eoi(0, xd);
return 1;
}
static struct irq_chip xive_irq_chip = {
.name = "XIVE-IRQ",
.irq_startup = xive_irq_startup,
.irq_shutdown = xive_irq_shutdown,
.irq_eoi = xive_irq_eoi,
.irq_mask = xive_irq_mask,
.irq_unmask = xive_irq_unmask,
.irq_set_affinity = xive_irq_set_affinity,
.irq_set_type = xive_irq_set_type,
.irq_retrigger = xive_irq_retrigger,
};
bool is_xive_irq(struct irq_chip *chip)
{
return chip == &xive_irq_chip;
}
void xive_cleanup_irq_data(struct xive_irq_data *xd)
{
if (xd->eoi_mmio) {
iounmap(xd->eoi_mmio);
if (xd->eoi_mmio == xd->trig_mmio)
xd->trig_mmio = NULL;
xd->eoi_mmio = NULL;
}
if (xd->trig_mmio) {
iounmap(xd->trig_mmio);
xd->trig_mmio = NULL;
}
}
static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
{
struct xive_irq_data *xd;
int rc;
xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
if (!xd)
return -ENOMEM;
rc = xive_ops->populate_irq_data(hw, xd);
if (rc) {
kfree(xd);
return rc;
}
xd->target = XIVE_INVALID_TARGET;
irq_set_handler_data(virq, xd);
return 0;
}
static void xive_irq_free_data(unsigned int virq)
{
struct xive_irq_data *xd = irq_get_handler_data(virq);
if (!xd)
return;
irq_set_handler_data(virq, NULL);
xive_cleanup_irq_data(xd);
kfree(xd);
}
#ifdef CONFIG_SMP
static void xive_cause_ipi(int cpu, unsigned long msg)
{
struct xive_cpu *xc;
struct xive_irq_data *xd;
xc = per_cpu(xive_cpu, cpu);
DBG_VERBOSE("IPI msg#%ld CPU %d -> %d (HW IRQ 0x%x)\n",
msg, smp_processor_id(), cpu, xc->hw_ipi);
xd = &xc->ipi_data;
if (WARN_ON(!xd->trig_mmio))
return;
out_be64(xd->trig_mmio, 0);
}
static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
{
return smp_ipi_demux();
}
static void xive_ipi_eoi(struct irq_data *d)
{
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
/* Handle possible race with unplug and drop stale IPIs */
if (!xc)
return;
xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
xive_do_queue_eoi(xc);
}
static void xive_ipi_do_nothing(struct irq_data *d)
{
/*
* Nothing to do, we never mask/unmask IPIs, but the callback
* has to exist for the struct irq_chip.
*/
}
static struct irq_chip xive_ipi_chip = {
.name = "XIVE-IPI",
.irq_eoi = xive_ipi_eoi,
.irq_mask = xive_ipi_do_nothing,
.irq_unmask = xive_ipi_do_nothing,
};
static void __init xive_request_ipi(void)
{
unsigned int virq;
/*
* Initialization failed, move on, we might manage to
* reach the point where we display our errors before
* the system falls appart
*/
if (!xive_irq_domain)
return;
/* Initialize it */
virq = irq_create_mapping(xive_irq_domain, 0);
xive_ipi_irq = virq;
WARN_ON(request_irq(virq, xive_muxed_ipi_action,
IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
}
static int xive_setup_cpu_ipi(unsigned int cpu)
{
struct xive_cpu *xc;
int rc;
pr_debug("Setting up IPI for CPU %d\n", cpu);
xc = per_cpu(xive_cpu, cpu);
/* Check if we are already setup */
if (xc->hw_ipi != 0)
return 0;
/* Grab an IPI from the backend, this will populate xc->hw_ipi */
if (xive_ops->get_ipi(cpu, xc))
return -EIO;
/*
* Populate the IRQ data in the xive_cpu structure and
* configure the HW / enable the IPIs.
*/
rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
if (rc) {
pr_err("Failed to populate IPI data on CPU %d\n", cpu);
return -EIO;
}
rc = xive_ops->configure_irq(xc->hw_ipi,
get_hard_smp_processor_id(cpu),
xive_irq_priority, xive_ipi_irq);
if (rc) {
pr_err("Failed to map IPI CPU %d\n", cpu);
return -EIO;
}
pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
/* Unmask it */
xive_do_source_set_mask(&xc->ipi_data, false);
return 0;
}
static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
{
/* Disable the IPI and free the IRQ data */
/* Already cleaned up ? */
if (xc->hw_ipi == 0)
return;
/* Mask the IPI */
xive_do_source_set_mask(&xc->ipi_data, true);
/*
* Note: We don't call xive_cleanup_irq_data() to free
* the mappings as this is called from an IPI on kexec
* which is not a safe environment to call iounmap()
*/
/* Deconfigure/mask in the backend */
xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
0xff, xive_ipi_irq);
/* Free the IPIs in the backend */
xive_ops->put_ipi(cpu, xc);
}
void __init xive_smp_probe(void)
{
smp_ops->cause_ipi = xive_cause_ipi;
/* Register the IPI */
xive_request_ipi();
/* Allocate and setup IPI for the boot CPU */
xive_setup_cpu_ipi(smp_processor_id());
}
#endif /* CONFIG_SMP */
static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
irq_hw_number_t hw)
{
int rc;
/*
* Mark interrupts as edge sensitive by default so that resend
* actually works. Will fix that up below if needed.
*/
irq_clear_status_flags(virq, IRQ_LEVEL);
#ifdef CONFIG_SMP
/* IPIs are special and come up with HW number 0 */
if (hw == 0) {
/*
* IPIs are marked per-cpu. We use separate HW interrupts under
* the hood but associated with the same "linux" interrupt
*/
irq_set_chip_and_handler(virq, &xive_ipi_chip,
handle_percpu_irq);
return 0;
}
#endif
rc = xive_irq_alloc_data(virq, hw);
if (rc)
return rc;
irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
return 0;
}
static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
{
struct irq_data *data = irq_get_irq_data(virq);
unsigned int hw_irq;
/* XXX Assign BAD number */
if (!data)
return;
hw_irq = (unsigned int)irqd_to_hwirq(data);
if (hw_irq)
xive_irq_free_data(virq);
}
static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
const u32 *intspec, unsigned int intsize,
irq_hw_number_t *out_hwirq, unsigned int *out_flags)
{
*out_hwirq = intspec[0];
/*
* If intsize is at least 2, we look for the type in the second cell,
* we assume the LSB indicates a level interrupt.
*/
if (intsize > 1) {
if (intspec[1] & 1)
*out_flags = IRQ_TYPE_LEVEL_LOW;
else
*out_flags = IRQ_TYPE_EDGE_RISING;
} else
*out_flags = IRQ_TYPE_LEVEL_LOW;
return 0;
}
static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
enum irq_domain_bus_token bus_token)
{
return xive_ops->match(node);
}
static const struct irq_domain_ops xive_irq_domain_ops = {
.match = xive_irq_domain_match,
.map = xive_irq_domain_map,
.unmap = xive_irq_domain_unmap,
.xlate = xive_irq_domain_xlate,
};
static void __init xive_init_host(void)
{
xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
&xive_irq_domain_ops, NULL);
if (WARN_ON(xive_irq_domain == NULL))
return;
irq_set_default_host(xive_irq_domain);
}
static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
{
if (xc->queue[xive_irq_priority].qpage)
xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
}
static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
{
int rc = 0;
/* We setup 1 queues for now with a 64k page */
if (!xc->queue[xive_irq_priority].qpage)
rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
return rc;
}
static int xive_prepare_cpu(unsigned int cpu)
{
struct xive_cpu *xc;
xc = per_cpu(xive_cpu, cpu);
if (!xc) {
struct device_node *np;
xc = kzalloc_node(sizeof(struct xive_cpu),
GFP_KERNEL, cpu_to_node(cpu));
if (!xc)
return -ENOMEM;
np = of_get_cpu_node(cpu, NULL);
if (np)
xc->chip_id = of_get_ibm_chip_id(np);
of_node_put(np);
per_cpu(xive_cpu, cpu) = xc;
}
/* Setup EQs if not already */
return xive_setup_cpu_queues(cpu, xc);
}
static void xive_setup_cpu(void)
{
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
/* Debug: Dump the TM state */
pr_devel("CPU %d [HW 0x%02x] VT=%02x\n",
smp_processor_id(), hard_smp_processor_id(),
in_8(xive_tima + xive_tima_offset + TM_WORD2));
/* The backend might have additional things to do */
if (xive_ops->setup_cpu)
xive_ops->setup_cpu(smp_processor_id(), xc);
/* Set CPPR to 0xff to enable flow of interrupts */
xc->cppr = 0xff;
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
}
#ifdef CONFIG_SMP
void xive_smp_setup_cpu(void)
{
pr_devel("SMP setup CPU %d\n", smp_processor_id());
/* This will have already been done on the boot CPU */
if (smp_processor_id() != boot_cpuid)
xive_setup_cpu();
}
int xive_smp_prepare_cpu(unsigned int cpu)
{
int rc;
/* Allocate per-CPU data and queues */
rc = xive_prepare_cpu(cpu);
if (rc)
return rc;
/* Allocate and setup IPI for the new CPU */
return xive_setup_cpu_ipi(cpu);
}
#ifdef CONFIG_HOTPLUG_CPU
static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
{
u32 irq;
/* We assume local irqs are disabled */
WARN_ON(!irqs_disabled());
/* Check what's already in the CPU queue */
while ((irq = xive_scan_interrupts(xc, false)) != 0) {
/*
* We need to re-route that interrupt to its new destination.
* First get and lock the descriptor
*/
struct irq_desc *desc = irq_to_desc(irq);
struct irq_data *d = irq_desc_get_irq_data(desc);
struct xive_irq_data *xd;
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
/*
* Ignore anything that isn't a XIVE irq and ignore
* IPIs, so can just be dropped.
*/
if (d->domain != xive_irq_domain || hw_irq == 0)
continue;
/*
* The IRQ should have already been re-routed, it's just a
* stale in the old queue, so re-trigger it in order to make
* it reach is new destination.
*/
#ifdef DEBUG_FLUSH
pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
cpu, irq);
#endif
raw_spin_lock(&desc->lock);
xd = irq_desc_get_handler_data(desc);
/*
* For LSIs, we EOI, this will cause a resend if it's
* still asserted. Otherwise do an MSI retrigger.
*/
if (xd->flags & XIVE_IRQ_FLAG_LSI)
xive_do_source_eoi(irqd_to_hwirq(d), xd);
else
xive_irq_retrigger(d);
raw_spin_unlock(&desc->lock);
}
}
void xive_smp_disable_cpu(void)
{
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
unsigned int cpu = smp_processor_id();
/* Migrate interrupts away from the CPU */
irq_migrate_all_off_this_cpu();
/* Set CPPR to 0 to disable flow of interrupts */
xc->cppr = 0;
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
/* Flush everything still in the queue */
xive_flush_cpu_queue(cpu, xc);
/* Re-enable CPPR */
xc->cppr = 0xff;
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
}
void xive_flush_interrupt(void)
{
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
unsigned int cpu = smp_processor_id();
/* Called if an interrupt occurs while the CPU is hot unplugged */
xive_flush_cpu_queue(cpu, xc);
}
#endif /* CONFIG_HOTPLUG_CPU */
#endif /* CONFIG_SMP */
void xive_kexec_teardown_cpu(int secondary)
{
struct xive_cpu *xc = __this_cpu_read(xive_cpu);
unsigned int cpu = smp_processor_id();
/* Set CPPR to 0 to disable flow of interrupts */
xc->cppr = 0;
out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
/* Backend cleanup if any */
if (xive_ops->teardown_cpu)
xive_ops->teardown_cpu(cpu, xc);
#ifdef CONFIG_SMP
/* Get rid of IPI */
xive_cleanup_cpu_ipi(cpu, xc);
#endif
/* Disable and free the queues */
xive_cleanup_cpu_queues(cpu, xc);
}
void xive_shutdown(void)
{
xive_ops->shutdown();
}
bool xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
u8 max_prio)
{
xive_tima = area;
xive_tima_offset = offset;
xive_ops = ops;
xive_irq_priority = max_prio;
ppc_md.get_irq = xive_get_irq;
__xive_enabled = true;
pr_devel("Initializing host..\n");
xive_init_host();
pr_devel("Initializing boot CPU..\n");
/* Allocate per-CPU data and queues */
xive_prepare_cpu(smp_processor_id());
/* Get ready for interrupts */
xive_setup_cpu();
pr_info("Interrupt handling intialized with %s backend\n",
xive_ops->name);
pr_info("Using priority %d for all interrupts\n", max_prio);
return true;
}
static int __init xive_off(char *arg)
{
xive_cmdline_disabled = true;
return 0;
}
__setup("xive=off", xive_off);
/*
* Copyright 2016,2017 IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) "xive: " fmt
#include <linux/types.h>
#include <linux/irq.h>
#include <linux/debugfs.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/cpumask.h>
#include <linux/mm.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/irq.h>
#include <asm/errno.h>
#include <asm/xive.h>
#include <asm/xive-regs.h>
#include <asm/opal.h>
#include "xive-internal.h"
static u32 xive_provision_size;
static u32 *xive_provision_chips;
static u32 xive_provision_chip_count;
static u32 xive_queue_shift;
static u32 xive_pool_vps = XIVE_INVALID_VP;
static struct kmem_cache *xive_provision_cache;
int xive_native_populate_irq_data(u32 hw_irq, struct xive_irq_data *data)
{
__be64 flags, eoi_page, trig_page;
__be32 esb_shift, src_chip;
u64 opal_flags;
s64 rc;
memset(data, 0, sizeof(*data));
rc = opal_xive_get_irq_info(hw_irq, &flags, &eoi_page, &trig_page,
&esb_shift, &src_chip);
if (rc) {
pr_err("opal_xive_get_irq_info(0x%x) returned %lld\n",
hw_irq, rc);
return -EINVAL;
}
opal_flags = be64_to_cpu(flags);
if (opal_flags & OPAL_XIVE_IRQ_STORE_EOI)
data->flags |= XIVE_IRQ_FLAG_STORE_EOI;
if (opal_flags & OPAL_XIVE_IRQ_LSI)
data->flags |= XIVE_IRQ_FLAG_LSI;
if (opal_flags & OPAL_XIVE_IRQ_SHIFT_BUG)
data->flags |= XIVE_IRQ_FLAG_SHIFT_BUG;
if (opal_flags & OPAL_XIVE_IRQ_MASK_VIA_FW)
data->flags |= XIVE_IRQ_FLAG_MASK_FW;
if (opal_flags & OPAL_XIVE_IRQ_EOI_VIA_FW)
data->flags |= XIVE_IRQ_FLAG_EOI_FW;
data->eoi_page = be64_to_cpu(eoi_page);
data->trig_page = be64_to_cpu(trig_page);
data->esb_shift = be32_to_cpu(esb_shift);
data->src_chip = be32_to_cpu(src_chip);
data->eoi_mmio = ioremap(data->eoi_page, 1u << data->esb_shift);
if (!data->eoi_mmio) {
pr_err("Failed to map EOI page for irq 0x%x\n", hw_irq);
return -ENOMEM;
}
if (!data->trig_page)
return 0;
if (data->trig_page == data->eoi_page) {
data->trig_mmio = data->eoi_mmio;
return 0;
}
data->trig_mmio = ioremap(data->trig_page, 1u << data->esb_shift);
if (!data->trig_mmio) {
pr_err("Failed to map trigger page for irq 0x%x\n", hw_irq);
return -ENOMEM;
}
return 0;
}
int xive_native_configure_irq(u32 hw_irq, u32 target, u8 prio, u32 sw_irq)
{
s64 rc;
for (;;) {
rc = opal_xive_set_irq_config(hw_irq, target, prio, sw_irq);
if (rc != OPAL_BUSY)
break;
msleep(1);
}
return rc == 0 ? 0 : -ENXIO;
}
/* This can be called multiple time to change a queue configuration */
int xive_native_configure_queue(u32 vp_id, struct xive_q *q, u8 prio,
__be32 *qpage, u32 order, bool can_escalate)
{
s64 rc = 0;
__be64 qeoi_page_be;
__be32 esc_irq_be;
u64 flags, qpage_phys;
/* If there's an actual queue page, clean it */
if (order) {
if (WARN_ON(!qpage))
return -EINVAL;
qpage_phys = __pa(qpage);
} else
qpage_phys = 0;
/* Initialize the rest of the fields */
q->msk = order ? ((1u << (order - 2)) - 1) : 0;
q->idx = 0;
q->toggle = 0;
rc = opal_xive_get_queue_info(vp_id, prio, NULL, NULL,
&qeoi_page_be,
&esc_irq_be,
NULL);
if (rc) {
pr_err("Error %lld getting queue info prio %d\n", rc, prio);
rc = -EIO;
goto fail;
}
q->eoi_phys = be64_to_cpu(qeoi_page_be);
/* Default flags */
flags = OPAL_XIVE_EQ_ALWAYS_NOTIFY | OPAL_XIVE_EQ_ENABLED;
/* Escalation needed ? */
if (can_escalate) {
q->esc_irq = be32_to_cpu(esc_irq_be);
flags |= OPAL_XIVE_EQ_ESCALATE;
}
/* Configure and enable the queue in HW */
for (;;) {
rc = opal_xive_set_queue_info(vp_id, prio, qpage_phys, order, flags);
if (rc != OPAL_BUSY)
break;
msleep(1);
}
if (rc) {
pr_err("Error %lld setting queue for prio %d\n", rc, prio);
rc = -EIO;
} else {
/*
* KVM code requires all of the above to be visible before
* q->qpage is set due to how it manages IPI EOIs
*/
wmb();
q->qpage = qpage;
}
fail:
return rc;
}
static void __xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio)
{
s64 rc;
/* Disable the queue in HW */
for (;;) {
rc = opal_xive_set_queue_info(vp_id, prio, 0, 0, 0);
break;
msleep(1);
}
if (rc)
pr_err("Error %lld disabling queue for prio %d\n", rc, prio);
}
void xive_native_disable_queue(u32 vp_id, struct xive_q *q, u8 prio)
{
__xive_native_disable_queue(vp_id, q, prio);
}
static int xive_native_setup_queue(unsigned int cpu, struct xive_cpu *xc, u8 prio)
{
struct xive_q *q = &xc->queue[prio];
unsigned int alloc_order;
struct page *pages;
__be32 *qpage;
alloc_order = (xive_queue_shift > PAGE_SHIFT) ?
(xive_queue_shift - PAGE_SHIFT) : 0;
pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
if (!pages)
return -ENOMEM;
qpage = (__be32 *)page_address(pages);
memset(qpage, 0, 1 << xive_queue_shift);
return xive_native_configure_queue(get_hard_smp_processor_id(cpu),
q, prio, qpage, xive_queue_shift, false);
}
static void xive_native_cleanup_queue(unsigned int cpu, struct xive_cpu *xc, u8 prio)
{
struct xive_q *q = &xc->queue[prio];
unsigned int alloc_order;
/*
* We use the variant with no iounmap as this is called on exec
* from an IPI and iounmap isn't safe
*/
__xive_native_disable_queue(get_hard_smp_processor_id(cpu), q, prio);
alloc_order = (xive_queue_shift > PAGE_SHIFT) ?
(xive_queue_shift - PAGE_SHIFT) : 0;
free_pages((unsigned long)q->qpage, alloc_order);
q->qpage = NULL;
}
static bool xive_native_match(struct device_node *node)
{
return of_device_is_compatible(node, "ibm,opal-xive-vc");
}
#ifdef CONFIG_SMP
static int xive_native_get_ipi(unsigned int cpu, struct xive_cpu *xc)
{
struct device_node *np;
unsigned int chip_id;
s64 irq;
/* Find the chip ID */
np = of_get_cpu_node(cpu, NULL);
if (np) {
if (of_property_read_u32(np, "ibm,chip-id", &chip_id) < 0)
chip_id = 0;
}
/* Allocate an IPI and populate info about it */
for (;;) {
irq = opal_xive_allocate_irq(chip_id);
if (irq == OPAL_BUSY) {
msleep(1);
continue;
}
if (irq < 0) {
pr_err("Failed to allocate IPI on CPU %d\n", cpu);
return -ENXIO;
}
xc->hw_ipi = irq;
break;
}
return 0;
}
u32 xive_native_alloc_irq(void)
{
s64 rc;
for (;;) {
rc = opal_xive_allocate_irq(OPAL_XIVE_ANY_CHIP);
if (rc != OPAL_BUSY)
break;
msleep(1);
}
if (rc < 0)
return 0;
return rc;
}
void xive_native_free_irq(u32 irq)
{
for (;;) {
s64 rc = opal_xive_free_irq(irq);
if (rc != OPAL_BUSY)
break;
msleep(1);
}
}
static void xive_native_put_ipi(unsigned int cpu, struct xive_cpu *xc)
{
s64 rc;
/* Free the IPI */
if (!xc->hw_ipi)
return;
for (;;) {
rc = opal_xive_free_irq(xc->hw_ipi);
if (rc == OPAL_BUSY) {
msleep(1);
continue;
}
xc->hw_ipi = 0;
break;
}
}
#endif /* CONFIG_SMP */
static void xive_native_shutdown(void)
{
/* Switch the XIVE to emulation mode */
opal_xive_reset(OPAL_XIVE_MODE_EMU);
}
/*
* Perform an "ack" cycle on the current thread, thus
* grabbing the pending active priorities and updating
* the CPPR to the most favored one.
*/
static void xive_native_update_pending(struct xive_cpu *xc)
{
u8 he, cppr;
u16 ack;
/* Perform the acknowledge hypervisor to register cycle */
ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_HV_REG));
/* Synchronize subsequent queue accesses */
mb();
/*
* Grab the CPPR and the "HE" field which indicates the source
* of the hypervisor interrupt (if any)
*/
cppr = ack & 0xff;
he = GETFIELD(TM_QW3_NSR_HE, (ack >> 8));
switch(he) {
case TM_QW3_NSR_HE_NONE: /* Nothing to see here */
break;
case TM_QW3_NSR_HE_PHYS: /* Physical thread interrupt */
if (cppr == 0xff)
return;
/* Mark the priority pending */
xc->pending_prio |= 1 << cppr;
/*
* A new interrupt should never have a CPPR less favored
* than our current one.
*/
if (cppr >= xc->cppr)
pr_err("CPU %d odd ack CPPR, got %d at %d\n",
smp_processor_id(), cppr, xc->cppr);
/* Update our idea of what the CPPR is */
xc->cppr = cppr;
break;
case TM_QW3_NSR_HE_POOL: /* HV Pool interrupt (unused) */
case TM_QW3_NSR_HE_LSI: /* Legacy FW LSI (unused) */
pr_err("CPU %d got unexpected interrupt type HE=%d\n",
smp_processor_id(), he);
return;
}
}
static void xive_native_eoi(u32 hw_irq)
{
/*
* Not normally used except if specific interrupts need
* a workaround on EOI.
*/
opal_int_eoi(hw_irq);
}
static void xive_native_setup_cpu(unsigned int cpu, struct xive_cpu *xc)
{
s64 rc;
u32 vp;
__be64 vp_cam_be;
u64 vp_cam;
if (xive_pool_vps == XIVE_INVALID_VP)
return;
/* Enable the pool VP */
vp = xive_pool_vps + get_hard_smp_processor_id(cpu);
pr_debug("CPU %d setting up pool VP 0x%x\n", cpu, vp);
for (;;) {
rc = opal_xive_set_vp_info(vp, OPAL_XIVE_VP_ENABLED, 0);
if (rc != OPAL_BUSY)
break;
msleep(1);
}
if (rc) {
pr_err("Failed to enable pool VP on CPU %d\n", cpu);
return;
}
/* Grab it's CAM value */
rc = opal_xive_get_vp_info(vp, NULL, &vp_cam_be, NULL, NULL);
if (rc) {
pr_err("Failed to get pool VP info CPU %d\n", cpu);
return;
}
vp_cam = be64_to_cpu(vp_cam_be);
pr_debug("VP CAM = %llx\n", vp_cam);
/* Push it on the CPU (set LSMFB to 0xff to skip backlog scan) */
pr_debug("(Old HW value: %08x)\n",
in_be32(xive_tima + TM_QW2_HV_POOL + TM_WORD2));
out_be32(xive_tima + TM_QW2_HV_POOL + TM_WORD0, 0xff);
out_be32(xive_tima + TM_QW2_HV_POOL + TM_WORD2,
TM_QW2W2_VP | vp_cam);
pr_debug("(New HW value: %08x)\n",
in_be32(xive_tima + TM_QW2_HV_POOL + TM_WORD2));
}
static void xive_native_teardown_cpu(unsigned int cpu, struct xive_cpu *xc)
{
s64 rc;
u32 vp;
if (xive_pool_vps == XIVE_INVALID_VP)
return;
/* Pull the pool VP from the CPU */
in_be64(xive_tima + TM_SPC_PULL_POOL_CTX);
/* Disable it */
vp = xive_pool_vps + get_hard_smp_processor_id(cpu);
for (;;) {
rc = opal_xive_set_vp_info(vp, 0, 0);
if (rc != OPAL_BUSY)
break;
msleep(1);
}
}
static void xive_native_sync_source(u32 hw_irq)
{
opal_xive_sync(XIVE_SYNC_EAS, hw_irq);
}
static const struct xive_ops xive_native_ops = {
.populate_irq_data = xive_native_populate_irq_data,
.configure_irq = xive_native_configure_irq,
.setup_queue = xive_native_setup_queue,
.cleanup_queue = xive_native_cleanup_queue,
.match = xive_native_match,
.shutdown = xive_native_shutdown,
.update_pending = xive_native_update_pending,
.eoi = xive_native_eoi,
.setup_cpu = xive_native_setup_cpu,
.teardown_cpu = xive_native_teardown_cpu,
.sync_source = xive_native_sync_source,
#ifdef CONFIG_SMP
.get_ipi = xive_native_get_ipi,
.put_ipi = xive_native_put_ipi,
#endif /* CONFIG_SMP */
.name = "native",
};
static bool xive_parse_provisioning(struct device_node *np)
{
int rc;
if (of_property_read_u32(np, "ibm,xive-provision-page-size",
&xive_provision_size) < 0)
return true;
rc = of_property_count_elems_of_size(np, "ibm,xive-provision-chips", 4);
if (rc < 0) {
pr_err("Error %d getting provision chips array\n", rc);
return false;
}
xive_provision_chip_count = rc;
if (rc == 0)
return true;
xive_provision_chips = kzalloc(4 * xive_provision_chip_count,
GFP_KERNEL);
if (WARN_ON(!xive_provision_chips))
return false;
rc = of_property_read_u32_array(np, "ibm,xive-provision-chips",
xive_provision_chips,
xive_provision_chip_count);
if (rc < 0) {
pr_err("Error %d reading provision chips array\n", rc);
return false;
}
xive_provision_cache = kmem_cache_create("xive-provision",
xive_provision_size,
xive_provision_size,
0, NULL);
if (!xive_provision_cache) {
pr_err("Failed to allocate provision cache\n");
return false;
}
return true;
}
u32 xive_native_default_eq_shift(void)
{
return xive_queue_shift;
}
bool xive_native_init(void)
{
struct device_node *np;
struct resource r;
void __iomem *tima;
struct property *prop;
u8 max_prio = 7;
const __be32 *p;
u32 val;
s64 rc;
if (xive_cmdline_disabled)
return false;
pr_devel("xive_native_init()\n");
np = of_find_compatible_node(NULL, NULL, "ibm,opal-xive-pe");
if (!np) {
pr_devel("not found !\n");
return false;
}
pr_devel("Found %s\n", np->full_name);
/* Resource 1 is HV window */
if (of_address_to_resource(np, 1, &r)) {
pr_err("Failed to get thread mgmnt area resource\n");
return false;
}
tima = ioremap(r.start, resource_size(&r));
if (!tima) {
pr_err("Failed to map thread mgmnt area\n");
return false;
}
/* Read number of priorities */
if (of_property_read_u32(np, "ibm,xive-#priorities", &val) == 0)
max_prio = val - 1;
/* Iterate the EQ sizes and pick one */
of_property_for_each_u32(np, "ibm,xive-eq-sizes", prop, p, val) {
xive_queue_shift = val;
if (val == PAGE_SHIFT)
break;
}
/* Grab size of provisioning pages */
xive_parse_provisioning(np);
/* Switch the XIVE to exploitation mode */
rc = opal_xive_reset(OPAL_XIVE_MODE_EXPL);
if (rc) {
pr_err("Switch to exploitation mode failed with error %lld\n", rc);
return false;
}
/* Initialize XIVE core with our backend */
if (!xive_core_init(&xive_native_ops, tima, TM_QW3_HV_PHYS,
max_prio)) {
opal_xive_reset(OPAL_XIVE_MODE_EMU);
return false;
}
pr_info("Using %dkB queues\n", 1 << (xive_queue_shift - 10));
return true;
}
static bool xive_native_provision_pages(void)
{
u32 i;
void *p;
for (i = 0; i < xive_provision_chip_count; i++) {
u32 chip = xive_provision_chips[i];
/*
* XXX TODO: Try to make the allocation local to the node where
* the chip resides.
*/
p = kmem_cache_alloc(xive_provision_cache, GFP_KERNEL);
if (!p) {
pr_err("Failed to allocate provisioning page\n");
return false;
}
opal_xive_donate_page(chip, __pa(p));
}
return true;
}
u32 xive_native_alloc_vp_block(u32 max_vcpus)
{
s64 rc;
u32 order;
order = fls(max_vcpus) - 1;
if (max_vcpus > (1 << order))
order++;
pr_info("VP block alloc, for max VCPUs %d use order %d\n",
max_vcpus, order);
for (;;) {
rc = opal_xive_alloc_vp_block(order);
switch (rc) {
case OPAL_BUSY:
msleep(1);
break;
case OPAL_XIVE_PROVISIONING:
if (!xive_native_provision_pages())
return XIVE_INVALID_VP;
break;
default:
if (rc < 0) {
pr_err("OPAL failed to allocate VCPUs order %d, err %lld\n",
order, rc);
return XIVE_INVALID_VP;
}
return rc;
}
}
}
EXPORT_SYMBOL_GPL(xive_native_alloc_vp_block);
void xive_native_free_vp_block(u32 vp_base)
{
s64 rc;
if (vp_base == XIVE_INVALID_VP)
return;
rc = opal_xive_free_vp_block(vp_base);
if (rc < 0)
pr_warn("OPAL error %lld freeing VP block\n", rc);
}
EXPORT_SYMBOL_GPL(xive_native_free_vp_block);
/*
* Copyright 2016,2017 IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef __XIVE_INTERNAL_H
#define __XIVE_INTERNAL_H
/* Each CPU carry one of these with various per-CPU state */
struct xive_cpu {
#ifdef CONFIG_SMP
/* HW irq number and data of IPI */
u32 hw_ipi;
struct xive_irq_data ipi_data;
#endif /* CONFIG_SMP */
int chip_id;
/* Queue datas. Only one is populated */
#define XIVE_MAX_QUEUES 8
struct xive_q queue[XIVE_MAX_QUEUES];
/*
* Pending mask. Each bit corresponds to a priority that
* potentially has pending interrupts.
*/
u8 pending_prio;
/* Cache of HW CPPR */
u8 cppr;
};
/* Backend ops */
struct xive_ops {
int (*populate_irq_data)(u32 hw_irq, struct xive_irq_data *data);
int (*configure_irq)(u32 hw_irq, u32 target, u8 prio, u32 sw_irq);
int (*setup_queue)(unsigned int cpu, struct xive_cpu *xc, u8 prio);
void (*cleanup_queue)(unsigned int cpu, struct xive_cpu *xc, u8 prio);
void (*setup_cpu)(unsigned int cpu, struct xive_cpu *xc);
void (*teardown_cpu)(unsigned int cpu, struct xive_cpu *xc);
bool (*match)(struct device_node *np);
void (*shutdown)(void);
void (*update_pending)(struct xive_cpu *xc);
void (*eoi)(u32 hw_irq);
void (*sync_source)(u32 hw_irq);
#ifdef CONFIG_SMP
int (*get_ipi)(unsigned int cpu, struct xive_cpu *xc);
void (*put_ipi)(unsigned int cpu, struct xive_cpu *xc);
#endif
const char *name;
};
bool xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
u8 max_prio);
extern bool xive_cmdline_disabled;
#endif /* __XIVE_INTERNAL_H */
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
#include <linux/ctype.h> #include <linux/ctype.h>
#include <asm/ptrace.h> #include <asm/ptrace.h>
#include <asm/smp.h>
#include <asm/string.h> #include <asm/string.h>
#include <asm/prom.h> #include <asm/prom.h>
#include <asm/machdep.h> #include <asm/machdep.h>
...@@ -48,7 +49,7 @@ ...@@ -48,7 +49,7 @@
#include <asm/reg.h> #include <asm/reg.h>
#include <asm/debug.h> #include <asm/debug.h>
#include <asm/hw_breakpoint.h> #include <asm/hw_breakpoint.h>
#include <asm/xive.h>
#include <asm/opal.h> #include <asm/opal.h>
#include <asm/firmware.h> #include <asm/firmware.h>
...@@ -232,7 +233,13 @@ Commands:\n\ ...@@ -232,7 +233,13 @@ Commands:\n\
"\ "\
dr dump stream of raw bytes\n\ dr dump stream of raw bytes\n\
dt dump the tracing buffers (uses printk)\n\ dt dump the tracing buffers (uses printk)\n\
e print exception information\n\ "
#ifdef CONFIG_PPC_POWERNV
" dx# dump xive on CPU #\n\
dxi# dump xive irq state #\n\
dxa dump xive on all CPUs\n"
#endif
" e print exception information\n\
f flush cache\n\ f flush cache\n\
la lookup symbol+offset of specified address\n\ la lookup symbol+offset of specified address\n\
ls lookup address of specified symbol\n\ ls lookup address of specified symbol\n\
...@@ -2338,6 +2345,81 @@ static void dump_pacas(void) ...@@ -2338,6 +2345,81 @@ static void dump_pacas(void)
} }
#endif #endif
#ifdef CONFIG_PPC_POWERNV
static void dump_one_xive(int cpu)
{
unsigned int hwid = get_hard_smp_processor_id(cpu);
opal_xive_dump(XIVE_DUMP_TM_HYP, hwid);
opal_xive_dump(XIVE_DUMP_TM_POOL, hwid);
opal_xive_dump(XIVE_DUMP_TM_OS, hwid);
opal_xive_dump(XIVE_DUMP_TM_USER, hwid);
opal_xive_dump(XIVE_DUMP_VP, hwid);
opal_xive_dump(XIVE_DUMP_EMU_STATE, hwid);
if (setjmp(bus_error_jmp) != 0) {
catch_memory_errors = 0;
printf("*** Error dumping xive on cpu %d\n", cpu);
return;
}
catch_memory_errors = 1;
sync();
xmon_xive_do_dump(cpu);
sync();
__delay(200);
catch_memory_errors = 0;
}
static void dump_all_xives(void)
{
int cpu;
if (num_possible_cpus() == 0) {
printf("No possible cpus, use 'dx #' to dump individual cpus\n");
return;
}
for_each_possible_cpu(cpu)
dump_one_xive(cpu);
}
static void dump_one_xive_irq(u32 num)
{
s64 rc;
__be64 vp;
u8 prio;
__be32 lirq;
rc = opal_xive_get_irq_config(num, &vp, &prio, &lirq);
xmon_printf("IRQ 0x%x config: vp=0x%llx prio=%d lirq=0x%x (rc=%lld)\n",
num, be64_to_cpu(vp), prio, be32_to_cpu(lirq), rc);
}
static void dump_xives(void)
{
unsigned long num;
int c;
c = inchar();
if (c == 'a') {
dump_all_xives();
return;
} else if (c == 'i') {
if (scanhex(&num))
dump_one_xive_irq(num);
return;
}
termch = c; /* Put c back, it wasn't 'a' */
if (scanhex(&num))
dump_one_xive(num);
else
dump_one_xive(xmon_owner);
}
#endif /* CONFIG_PPC_POWERNV */
static void dump_by_size(unsigned long addr, long count, int size) static void dump_by_size(unsigned long addr, long count, int size)
{ {
unsigned char temp[16]; unsigned char temp[16];
...@@ -2386,6 +2468,14 @@ dump(void) ...@@ -2386,6 +2468,14 @@ dump(void)
return; return;
} }
#endif #endif
#ifdef CONFIG_PPC_POWERNV
if (c == 'x') {
xmon_start_pagination();
dump_xives();
xmon_end_pagination();
return;
}
#endif
if (c == '\n') if (c == '\n')
termch = c; termch = c;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment