Commit 293d984f authored by Peter Tiedemann's avatar Peter Tiedemann Committed by Jeff Garzik

ctcm: infrastructure for replaced ctc driver

ctcm driver supports the channel-to-channel connections of the
old ctc driver plus an additional MPC protocol to provide SNA
connectivity.

This new ctcm driver replaces the existing ctc driver.
Signed-off-by: default avatarPeter Tiedemann <ptiedem@de.ibm.com>
Signed-off-by: default avatarUrsula Braun <braunu@de.ibm.com>
Signed-off-by: default avatarJeff Garzik <jeff@garzik.org>
parent f423f735
......@@ -11,15 +11,17 @@ config LCS
To compile as a module, choose M. The module name is lcs.ko.
If you do not know what it is, it's safe to choose Y.
config CTC
tristate "CTC device support"
config CTCM
tristate "CTC and MPC SNA device support"
depends on CCW && NETDEVICES
help
Select this option if you want to use channel-to-channel
point-to-point networking on IBM System z.
This device driver supports real CTC coupling using ESCON.
It also supports virtual CTCs when running under VM.
To compile as a module, choose M. The module name is ctc.ko.
This driver also supports channel-to-channel MPC SNA devices.
MPC is an SNA protocol device used by Communication Server for Linux.
To compile as a module, choose M. The module name is ctcm.ko.
To compile into the kernel, choose Y.
If you do not need any channel-to-channel connection, choose N.
......@@ -85,6 +87,6 @@ config QETH_VLAN
config CCWGROUP
tristate
default (LCS || CTC || QETH)
default (LCS || CTCM || QETH)
endmenu
......@@ -2,11 +2,10 @@
# S/390 network devices
#
ctc-objs := ctcmain.o ctcdbug.o
ctcm-y += ctcm_main.o ctcm_fsms.o ctcm_mpc.o ctcm_sysfs.o ctcm_dbug.o
obj-$(CONFIG_CTCM) += ctcm.o fsm.o cu3088.o
obj-$(CONFIG_NETIUCV) += netiucv.o fsm.o
obj-$(CONFIG_SMSGIUCV) += smsgiucv.o
obj-$(CONFIG_CTC) += ctc.o fsm.o cu3088.o
obj-$(CONFIG_LCS) += lcs.o cu3088.o
obj-$(CONFIG_CLAW) += claw.o cu3088.o
qeth-y := qeth_main.o qeth_mpc.o qeth_sys.o qeth_eddp.o
......
/*
* drivers/s390/net/ctcm_dbug.c
*
* Copyright IBM Corp. 2001, 2007
* Authors: Peter Tiedemann (ptiedem@de.ibm.com)
*
*/
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/sysctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include "ctcm_dbug.h"
/*
* Debug Facility Stuff
*/
DEFINE_PER_CPU(char[256], ctcm_dbf_txt_buf);
struct ctcm_dbf_info ctcm_dbf[CTCM_DBF_INFOS] = {
[CTCM_DBF_SETUP] = {"ctc_setup", 8, 1, 64, 5, NULL},
[CTCM_DBF_ERROR] = {"ctc_error", 8, 1, 64, 3, NULL},
[CTCM_DBF_TRACE] = {"ctc_trace", 8, 1, 64, 3, NULL},
[CTCM_DBF_MPC_SETUP] = {"mpc_setup", 8, 1, 64, 5, NULL},
[CTCM_DBF_MPC_ERROR] = {"mpc_error", 8, 1, 64, 3, NULL},
[CTCM_DBF_MPC_TRACE] = {"mpc_trace", 8, 1, 64, 3, NULL},
};
void ctcm_unregister_dbf_views(void)
{
int x;
for (x = 0; x < CTCM_DBF_INFOS; x++) {
debug_unregister(ctcm_dbf[x].id);
ctcm_dbf[x].id = NULL;
}
}
int ctcm_register_dbf_views(void)
{
int x;
for (x = 0; x < CTCM_DBF_INFOS; x++) {
/* register the areas */
ctcm_dbf[x].id = debug_register(ctcm_dbf[x].name,
ctcm_dbf[x].pages,
ctcm_dbf[x].areas,
ctcm_dbf[x].len);
if (ctcm_dbf[x].id == NULL) {
ctcm_unregister_dbf_views();
return -ENOMEM;
}
/* register a view */
debug_register_view(ctcm_dbf[x].id, &debug_hex_ascii_view);
/* set a passing level */
debug_set_level(ctcm_dbf[x].id, ctcm_dbf[x].level);
}
return 0;
}
/*
* drivers/s390/net/ctcm_dbug.h
*
* Copyright IBM Corp. 2001, 2007
* Authors: Peter Tiedemann (ptiedem@de.ibm.com)
*
*/
#ifndef _CTCM_DBUG_H_
#define _CTCM_DBUG_H_
/*
* Debug Facility stuff
*/
#include <asm/debug.h>
#ifdef DEBUG
#define do_debug 1
#else
#define do_debug 0
#endif
#ifdef DEBUGDATA
#define do_debug_data 1
#else
#define do_debug_data 0
#endif
#ifdef DEBUGCCW
#define do_debug_ccw 1
#else
#define do_debug_ccw 0
#endif
/* define dbf debug levels similar to kernel msg levels */
#define CTC_DBF_ALWAYS 0 /* always print this */
#define CTC_DBF_EMERG 0 /* system is unusable */
#define CTC_DBF_ALERT 1 /* action must be taken immediately */
#define CTC_DBF_CRIT 2 /* critical conditions */
#define CTC_DBF_ERROR 3 /* error conditions */
#define CTC_DBF_WARN 4 /* warning conditions */
#define CTC_DBF_NOTICE 5 /* normal but significant condition */
#define CTC_DBF_INFO 5 /* informational */
#define CTC_DBF_DEBUG 6 /* debug-level messages */
DECLARE_PER_CPU(char[256], ctcm_dbf_txt_buf);
enum ctcm_dbf_names {
CTCM_DBF_SETUP,
CTCM_DBF_ERROR,
CTCM_DBF_TRACE,
CTCM_DBF_MPC_SETUP,
CTCM_DBF_MPC_ERROR,
CTCM_DBF_MPC_TRACE,
CTCM_DBF_INFOS /* must be last element */
};
struct ctcm_dbf_info {
char name[DEBUG_MAX_NAME_LEN];
int pages;
int areas;
int len;
int level;
debug_info_t *id;
};
extern struct ctcm_dbf_info ctcm_dbf[CTCM_DBF_INFOS];
int ctcm_register_dbf_views(void);
void ctcm_unregister_dbf_views(void);
static inline const char *strtail(const char *s, int n)
{
int l = strlen(s);
return (l > n) ? s + (l - n) : s;
}
/* sort out levels early to avoid unnecessary sprintfs */
static inline int ctcm_dbf_passes(debug_info_t *dbf_grp, int level)
{
return (dbf_grp->level >= level);
}
#define CTCM_FUNTAIL strtail((char *)__func__, 16)
#define CTCM_DBF_TEXT(name, level, text) \
do { \
debug_text_event(ctcm_dbf[CTCM_DBF_##name].id, level, text); \
} while (0)
#define CTCM_DBF_HEX(name, level, addr, len) \
do { \
debug_event(ctcm_dbf[CTCM_DBF_##name].id, \
level, (void *)(addr), len); \
} while (0)
#define CTCM_DBF_TEXT_(name, level, text...) \
do { \
if (ctcm_dbf_passes(ctcm_dbf[CTCM_DBF_##name].id, level)) { \
char *ctcm_dbf_txt_buf = \
get_cpu_var(ctcm_dbf_txt_buf); \
sprintf(ctcm_dbf_txt_buf, text); \
debug_text_event(ctcm_dbf[CTCM_DBF_##name].id, \
level, ctcm_dbf_txt_buf); \
put_cpu_var(ctcm_dbf_txt_buf); \
} \
} while (0)
/*
* cat : one of {setup, mpc_setup, trace, mpc_trace, error, mpc_error}.
* dev : netdevice with valid name field.
* text: any text string.
*/
#define CTCM_DBF_DEV_NAME(cat, dev, text) \
do { \
CTCM_DBF_TEXT_(cat, CTC_DBF_INFO, "%s(%s) : %s", \
CTCM_FUNTAIL, dev->name, text); \
} while (0)
#define MPC_DBF_DEV_NAME(cat, dev, text) \
do { \
CTCM_DBF_TEXT_(MPC_##cat, CTC_DBF_INFO, "%s(%s) : %s", \
CTCM_FUNTAIL, dev->name, text); \
} while (0)
#define CTCMY_DBF_DEV_NAME(cat, dev, text) \
do { \
if (IS_MPCDEV(dev)) \
MPC_DBF_DEV_NAME(cat, dev, text); \
else \
CTCM_DBF_DEV_NAME(cat, dev, text); \
} while (0)
/*
* cat : one of {setup, mpc_setup, trace, mpc_trace, error, mpc_error}.
* dev : netdevice.
* text: any text string.
*/
#define CTCM_DBF_DEV(cat, dev, text) \
do { \
CTCM_DBF_TEXT_(cat, CTC_DBF_INFO, "%s(%p) : %s", \
CTCM_FUNTAIL, dev, text); \
} while (0)
#define MPC_DBF_DEV(cat, dev, text) \
do { \
CTCM_DBF_TEXT_(MPC_##cat, CTC_DBF_INFO, "%s(%p) : %s", \
CTCM_FUNTAIL, dev, text); \
} while (0)
#define CTCMY_DBF_DEV(cat, dev, text) \
do { \
if (IS_MPCDEV(dev)) \
MPC_DBF_DEV(cat, dev, text); \
else \
CTCM_DBF_DEV(cat, dev, text); \
} while (0)
#endif
/*
* drivers/s390/net/ctcm_fsms.c
*
* Copyright IBM Corp. 2001, 2007
* Authors: Fritz Elfert (felfert@millenux.com)
* Peter Tiedemann (ptiedem@de.ibm.com)
* MPC additions :
* Belinda Thompson (belindat@us.ibm.com)
* Andy Richter (richtera@us.ibm.com)
*/
#undef DEBUG
#undef DEBUGDATA
#undef DEBUGCCW
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/bitops.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/ip.h>
#include <linux/if_arp.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ctype.h>
#include <net/dst.h>
#include <linux/io.h>
#include <asm/ccwdev.h>
#include <asm/ccwgroup.h>
#include <linux/uaccess.h>
#include <asm/idals.h>
#include "fsm.h"
#include "cu3088.h"
#include "ctcm_dbug.h"
#include "ctcm_main.h"
#include "ctcm_fsms.h"
const char *dev_state_names[] = {
[DEV_STATE_STOPPED] = "Stopped",
[DEV_STATE_STARTWAIT_RXTX] = "StartWait RXTX",
[DEV_STATE_STARTWAIT_RX] = "StartWait RX",
[DEV_STATE_STARTWAIT_TX] = "StartWait TX",
[DEV_STATE_STOPWAIT_RXTX] = "StopWait RXTX",
[DEV_STATE_STOPWAIT_RX] = "StopWait RX",
[DEV_STATE_STOPWAIT_TX] = "StopWait TX",
[DEV_STATE_RUNNING] = "Running",
};
const char *dev_event_names[] = {
[DEV_EVENT_START] = "Start",
[DEV_EVENT_STOP] = "Stop",
[DEV_EVENT_RXUP] = "RX up",
[DEV_EVENT_TXUP] = "TX up",
[DEV_EVENT_RXDOWN] = "RX down",
[DEV_EVENT_TXDOWN] = "TX down",
[DEV_EVENT_RESTART] = "Restart",
};
const char *ctc_ch_event_names[] = {
[CTC_EVENT_IO_SUCCESS] = "ccw_device success",
[CTC_EVENT_IO_EBUSY] = "ccw_device busy",
[CTC_EVENT_IO_ENODEV] = "ccw_device enodev",
[CTC_EVENT_IO_UNKNOWN] = "ccw_device unknown",
[CTC_EVENT_ATTNBUSY] = "Status ATTN & BUSY",
[CTC_EVENT_ATTN] = "Status ATTN",
[CTC_EVENT_BUSY] = "Status BUSY",
[CTC_EVENT_UC_RCRESET] = "Unit check remote reset",
[CTC_EVENT_UC_RSRESET] = "Unit check remote system reset",
[CTC_EVENT_UC_TXTIMEOUT] = "Unit check TX timeout",
[CTC_EVENT_UC_TXPARITY] = "Unit check TX parity",
[CTC_EVENT_UC_HWFAIL] = "Unit check Hardware failure",
[CTC_EVENT_UC_RXPARITY] = "Unit check RX parity",
[CTC_EVENT_UC_ZERO] = "Unit check ZERO",
[CTC_EVENT_UC_UNKNOWN] = "Unit check Unknown",
[CTC_EVENT_SC_UNKNOWN] = "SubChannel check Unknown",
[CTC_EVENT_MC_FAIL] = "Machine check failure",
[CTC_EVENT_MC_GOOD] = "Machine check operational",
[CTC_EVENT_IRQ] = "IRQ normal",
[CTC_EVENT_FINSTAT] = "IRQ final",
[CTC_EVENT_TIMER] = "Timer",
[CTC_EVENT_START] = "Start",
[CTC_EVENT_STOP] = "Stop",
/*
* additional MPC events
*/
[CTC_EVENT_SEND_XID] = "XID Exchange",
[CTC_EVENT_RSWEEP_TIMER] = "MPC Group Sweep Timer",
};
const char *ctc_ch_state_names[] = {
[CTC_STATE_IDLE] = "Idle",
[CTC_STATE_STOPPED] = "Stopped",
[CTC_STATE_STARTWAIT] = "StartWait",
[CTC_STATE_STARTRETRY] = "StartRetry",
[CTC_STATE_SETUPWAIT] = "SetupWait",
[CTC_STATE_RXINIT] = "RX init",
[CTC_STATE_TXINIT] = "TX init",
[CTC_STATE_RX] = "RX",
[CTC_STATE_TX] = "TX",
[CTC_STATE_RXIDLE] = "RX idle",
[CTC_STATE_TXIDLE] = "TX idle",
[CTC_STATE_RXERR] = "RX error",
[CTC_STATE_TXERR] = "TX error",
[CTC_STATE_TERM] = "Terminating",
[CTC_STATE_DTERM] = "Restarting",
[CTC_STATE_NOTOP] = "Not operational",
/*
* additional MPC states
*/
[CH_XID0_PENDING] = "Pending XID0 Start",
[CH_XID0_INPROGRESS] = "In XID0 Negotiations ",
[CH_XID7_PENDING] = "Pending XID7 P1 Start",
[CH_XID7_PENDING1] = "Active XID7 P1 Exchange ",
[CH_XID7_PENDING2] = "Pending XID7 P2 Start ",
[CH_XID7_PENDING3] = "Active XID7 P2 Exchange ",
[CH_XID7_PENDING4] = "XID7 Complete - Pending READY ",
};
static void ctcm_action_nop(fsm_instance *fi, int event, void *arg);
/*
* ----- static ctcm actions for channel statemachine -----
*
*/
static void chx_txdone(fsm_instance *fi, int event, void *arg);
static void chx_rx(fsm_instance *fi, int event, void *arg);
static void chx_rxidle(fsm_instance *fi, int event, void *arg);
static void chx_firstio(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_setmode(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_start(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_haltio(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_stopped(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_stop(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_fail(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_setuperr(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_restart(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_rxiniterr(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_rxinitfail(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_rxdisc(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_txiniterr(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_txretry(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_iofatal(fsm_instance *fi, int event, void *arg);
/*
* ----- static ctcmpc actions for ctcmpc channel statemachine -----
*
*/
static void ctcmpc_chx_txdone(fsm_instance *fi, int event, void *arg);
static void ctcmpc_chx_rx(fsm_instance *fi, int event, void *arg);
static void ctcmpc_chx_firstio(fsm_instance *fi, int event, void *arg);
/* shared :
static void ctcm_chx_setmode(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_start(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_haltio(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_stopped(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_stop(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_fail(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_setuperr(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_restart(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_rxiniterr(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_rxinitfail(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_rxdisc(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_txiniterr(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_txretry(fsm_instance *fi, int event, void *arg);
static void ctcm_chx_iofatal(fsm_instance *fi, int event, void *arg);
*/
static void ctcmpc_chx_attn(fsm_instance *fsm, int event, void *arg);
static void ctcmpc_chx_attnbusy(fsm_instance *, int, void *);
static void ctcmpc_chx_resend(fsm_instance *, int, void *);
static void ctcmpc_chx_send_sweep(fsm_instance *fsm, int event, void *arg);
/**
* Check return code of a preceeding ccw_device call, halt_IO etc...
*
* ch : The channel, the error belongs to.
* Returns the error code (!= 0) to inspect.
*/
void ctcm_ccw_check_rc(struct channel *ch, int rc, char *msg)
{
CTCM_DBF_TEXT_(ERROR, CTC_DBF_ERROR,
"ccw error %s (%s): %04x\n", ch->id, msg, rc);
switch (rc) {
case -EBUSY:
ctcm_pr_warn("%s (%s): Busy !\n", ch->id, msg);
fsm_event(ch->fsm, CTC_EVENT_IO_EBUSY, ch);
break;
case -ENODEV:
ctcm_pr_emerg("%s (%s): Invalid device called for IO\n",
ch->id, msg);
fsm_event(ch->fsm, CTC_EVENT_IO_ENODEV, ch);
break;
default:
ctcm_pr_emerg("%s (%s): Unknown error in do_IO %04x\n",
ch->id, msg, rc);
fsm_event(ch->fsm, CTC_EVENT_IO_UNKNOWN, ch);
}
}
void ctcm_purge_skb_queue(struct sk_buff_head *q)
{
struct sk_buff *skb;
CTCM_DBF_TEXT(TRACE, 3, __FUNCTION__);
while ((skb = skb_dequeue(q))) {
atomic_dec(&skb->users);
dev_kfree_skb_any(skb);
}
}
/**
* NOP action for statemachines
*/
static void ctcm_action_nop(fsm_instance *fi, int event, void *arg)
{
}
/*
* Actions for channel - statemachines.
*/
/**
* Normal data has been send. Free the corresponding
* skb (it's in io_queue), reset dev->tbusy and
* revert to idle state.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void chx_txdone(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct sk_buff *skb;
int first = 1;
int i;
unsigned long duration;
struct timespec done_stamp = current_kernel_time(); /* xtime */
duration =
(done_stamp.tv_sec - ch->prof.send_stamp.tv_sec) * 1000000 +
(done_stamp.tv_nsec - ch->prof.send_stamp.tv_nsec) / 1000;
if (duration > ch->prof.tx_time)
ch->prof.tx_time = duration;
if (ch->irb->scsw.count != 0)
ctcm_pr_debug("%s: TX not complete, remaining %d bytes\n",
dev->name, ch->irb->scsw.count);
fsm_deltimer(&ch->timer);
while ((skb = skb_dequeue(&ch->io_queue))) {
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len - LL_HEADER_LENGTH;
if (first) {
priv->stats.tx_bytes += 2;
first = 0;
}
atomic_dec(&skb->users);
dev_kfree_skb_irq(skb);
}
spin_lock(&ch->collect_lock);
clear_normalized_cda(&ch->ccw[4]);
if (ch->collect_len > 0) {
int rc;
if (ctcm_checkalloc_buffer(ch)) {
spin_unlock(&ch->collect_lock);
return;
}
ch->trans_skb->data = ch->trans_skb_data;
skb_reset_tail_pointer(ch->trans_skb);
ch->trans_skb->len = 0;
if (ch->prof.maxmulti < (ch->collect_len + 2))
ch->prof.maxmulti = ch->collect_len + 2;
if (ch->prof.maxcqueue < skb_queue_len(&ch->collect_queue))
ch->prof.maxcqueue = skb_queue_len(&ch->collect_queue);
*((__u16 *)skb_put(ch->trans_skb, 2)) = ch->collect_len + 2;
i = 0;
while ((skb = skb_dequeue(&ch->collect_queue))) {
skb_copy_from_linear_data(skb,
skb_put(ch->trans_skb, skb->len), skb->len);
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len - LL_HEADER_LENGTH;
atomic_dec(&skb->users);
dev_kfree_skb_irq(skb);
i++;
}
ch->collect_len = 0;
spin_unlock(&ch->collect_lock);
ch->ccw[1].count = ch->trans_skb->len;
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch);
ch->prof.send_stamp = current_kernel_time(); /* xtime */
rc = ccw_device_start(ch->cdev, &ch->ccw[0],
(unsigned long)ch, 0xff, 0);
ch->prof.doios_multi++;
if (rc != 0) {
priv->stats.tx_dropped += i;
priv->stats.tx_errors += i;
fsm_deltimer(&ch->timer);
ctcm_ccw_check_rc(ch, rc, "chained TX");
}
} else {
spin_unlock(&ch->collect_lock);
fsm_newstate(fi, CTC_STATE_TXIDLE);
}
ctcm_clear_busy_do(dev);
}
/**
* Initial data is sent.
* Notify device statemachine that we are up and
* running.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
void ctcm_chx_txidle(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
CTCM_DBF_TEXT(TRACE, 6, __FUNCTION__);
fsm_deltimer(&ch->timer);
fsm_newstate(fi, CTC_STATE_TXIDLE);
fsm_event(priv->fsm, DEV_EVENT_TXUP, ch->netdev);
}
/**
* Got normal data, check for sanity, queue it up, allocate new buffer
* trigger bottom half, and initiate next read.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void chx_rx(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
int len = ch->max_bufsize - ch->irb->scsw.count;
struct sk_buff *skb = ch->trans_skb;
__u16 block_len = *((__u16 *)skb->data);
int check_len;
int rc;
fsm_deltimer(&ch->timer);
if (len < 8) {
ctcm_pr_debug("%s: got packet with length %d < 8\n",
dev->name, len);
priv->stats.rx_dropped++;
priv->stats.rx_length_errors++;
goto again;
}
if (len > ch->max_bufsize) {
ctcm_pr_debug("%s: got packet with length %d > %d\n",
dev->name, len, ch->max_bufsize);
priv->stats.rx_dropped++;
priv->stats.rx_length_errors++;
goto again;
}
/*
* VM TCP seems to have a bug sending 2 trailing bytes of garbage.
*/
switch (ch->protocol) {
case CTCM_PROTO_S390:
case CTCM_PROTO_OS390:
check_len = block_len + 2;
break;
default:
check_len = block_len;
break;
}
if ((len < block_len) || (len > check_len)) {
ctcm_pr_debug("%s: got block length %d != rx length %d\n",
dev->name, block_len, len);
if (do_debug)
ctcmpc_dump_skb(skb, 0);
*((__u16 *)skb->data) = len;
priv->stats.rx_dropped++;
priv->stats.rx_length_errors++;
goto again;
}
block_len -= 2;
if (block_len > 0) {
*((__u16 *)skb->data) = block_len;
ctcm_unpack_skb(ch, skb);
}
again:
skb->data = ch->trans_skb_data;
skb_reset_tail_pointer(skb);
skb->len = 0;
if (ctcm_checkalloc_buffer(ch))
return;
ch->ccw[1].count = ch->max_bufsize;
rc = ccw_device_start(ch->cdev, &ch->ccw[0],
(unsigned long)ch, 0xff, 0);
if (rc != 0)
ctcm_ccw_check_rc(ch, rc, "normal RX");
}
/**
* Initialize connection by sending a __u16 of value 0.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void chx_firstio(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
int rc;
CTCM_DBF_TEXT(TRACE, 6, __FUNCTION__);
if (fsm_getstate(fi) == CTC_STATE_TXIDLE)
ctcm_pr_debug("%s: remote side issued READ?, init.\n", ch->id);
fsm_deltimer(&ch->timer);
if (ctcm_checkalloc_buffer(ch))
return;
if ((fsm_getstate(fi) == CTC_STATE_SETUPWAIT) &&
(ch->protocol == CTCM_PROTO_OS390)) {
/* OS/390 resp. z/OS */
if (CHANNEL_DIRECTION(ch->flags) == READ) {
*((__u16 *)ch->trans_skb->data) = CTCM_INITIAL_BLOCKLEN;
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC,
CTC_EVENT_TIMER, ch);
chx_rxidle(fi, event, arg);
} else {
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
fsm_newstate(fi, CTC_STATE_TXIDLE);
fsm_event(priv->fsm, DEV_EVENT_TXUP, dev);
}
return;
}
/*
* Don't setup a timer for receiving the initial RX frame
* if in compatibility mode, since VM TCP delays the initial
* frame until it has some data to send.
*/
if ((CHANNEL_DIRECTION(ch->flags) == WRITE) ||
(ch->protocol != CTCM_PROTO_S390))
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch);
*((__u16 *)ch->trans_skb->data) = CTCM_INITIAL_BLOCKLEN;
ch->ccw[1].count = 2; /* Transfer only length */
fsm_newstate(fi, (CHANNEL_DIRECTION(ch->flags) == READ)
? CTC_STATE_RXINIT : CTC_STATE_TXINIT);
rc = ccw_device_start(ch->cdev, &ch->ccw[0],
(unsigned long)ch, 0xff, 0);
if (rc != 0) {
fsm_deltimer(&ch->timer);
fsm_newstate(fi, CTC_STATE_SETUPWAIT);
ctcm_ccw_check_rc(ch, rc, "init IO");
}
/*
* If in compatibility mode since we don't setup a timer, we
* also signal RX channel up immediately. This enables us
* to send packets early which in turn usually triggers some
* reply from VM TCP which brings up the RX channel to it's
* final state.
*/
if ((CHANNEL_DIRECTION(ch->flags) == READ) &&
(ch->protocol == CTCM_PROTO_S390)) {
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
fsm_event(priv->fsm, DEV_EVENT_RXUP, dev);
}
}
/**
* Got initial data, check it. If OK,
* notify device statemachine that we are up and
* running.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void chx_rxidle(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
__u16 buflen;
int rc;
CTCM_DBF_TEXT(TRACE, 6, __FUNCTION__);
fsm_deltimer(&ch->timer);
buflen = *((__u16 *)ch->trans_skb->data);
if (do_debug)
ctcm_pr_debug("%s: Initial RX count %d\n", dev->name, buflen);
if (buflen >= CTCM_INITIAL_BLOCKLEN) {
if (ctcm_checkalloc_buffer(ch))
return;
ch->ccw[1].count = ch->max_bufsize;
fsm_newstate(fi, CTC_STATE_RXIDLE);
rc = ccw_device_start(ch->cdev, &ch->ccw[0],
(unsigned long)ch, 0xff, 0);
if (rc != 0) {
fsm_newstate(fi, CTC_STATE_RXINIT);
ctcm_ccw_check_rc(ch, rc, "initial RX");
} else
fsm_event(priv->fsm, DEV_EVENT_RXUP, dev);
} else {
if (do_debug)
ctcm_pr_debug("%s: Initial RX count %d not %d\n",
dev->name, buflen, CTCM_INITIAL_BLOCKLEN);
chx_firstio(fi, event, arg);
}
}
/**
* Set channel into extended mode.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_setmode(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
int rc;
unsigned long saveflags = 0;
int timeout = CTCM_TIME_5_SEC;
fsm_deltimer(&ch->timer);
if (IS_MPC(ch)) {
timeout = 1500;
if (do_debug)
ctcm_pr_debug("ctcm enter: %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id);
}
fsm_addtimer(&ch->timer, timeout, CTC_EVENT_TIMER, ch);
fsm_newstate(fi, CTC_STATE_SETUPWAIT);
if (do_debug_ccw && IS_MPC(ch))
ctcmpc_dumpit((char *)&ch->ccw[6], sizeof(struct ccw1) * 2);
if (event == CTC_EVENT_TIMER) /* only for timer not yet locked */
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
/* Such conditional locking is undeterministic in
* static view. => ignore sparse warnings here. */
rc = ccw_device_start(ch->cdev, &ch->ccw[6],
(unsigned long)ch, 0xff, 0);
if (event == CTC_EVENT_TIMER) /* see above comments */
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags);
if (rc != 0) {
fsm_deltimer(&ch->timer);
fsm_newstate(fi, CTC_STATE_STARTWAIT);
ctcm_ccw_check_rc(ch, rc, "set Mode");
} else
ch->retry = 0;
}
/**
* Setup channel.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_start(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
int rc;
struct net_device *dev;
unsigned long saveflags;
CTCM_DBF_TEXT(TRACE, 5, __FUNCTION__);
if (ch == NULL) {
ctcm_pr_warn("chx_start ch=NULL\n");
return;
}
if (ch->netdev == NULL) {
ctcm_pr_warn("chx_start dev=NULL, id=%s\n", ch->id);
return;
}
dev = ch->netdev;
if (do_debug)
ctcm_pr_debug("%s: %s channel start\n", dev->name,
(CHANNEL_DIRECTION(ch->flags) == READ) ? "RX" : "TX");
if (ch->trans_skb != NULL) {
clear_normalized_cda(&ch->ccw[1]);
dev_kfree_skb(ch->trans_skb);
ch->trans_skb = NULL;
}
if (CHANNEL_DIRECTION(ch->flags) == READ) {
ch->ccw[1].cmd_code = CCW_CMD_READ;
ch->ccw[1].flags = CCW_FLAG_SLI;
ch->ccw[1].count = 0;
} else {
ch->ccw[1].cmd_code = CCW_CMD_WRITE;
ch->ccw[1].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[1].count = 0;
}
if (ctcm_checkalloc_buffer(ch)) {
ctcm_pr_notice("%s: %s trans_skb allocation delayed "
"until first transfer\n", dev->name,
(CHANNEL_DIRECTION(ch->flags) == READ) ? "RX" : "TX");
}
ch->ccw[0].cmd_code = CCW_CMD_PREPARE;
ch->ccw[0].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[0].count = 0;
ch->ccw[0].cda = 0;
ch->ccw[2].cmd_code = CCW_CMD_NOOP; /* jointed CE + DE */
ch->ccw[2].flags = CCW_FLAG_SLI;
ch->ccw[2].count = 0;
ch->ccw[2].cda = 0;
memcpy(&ch->ccw[3], &ch->ccw[0], sizeof(struct ccw1) * 3);
ch->ccw[4].cda = 0;
ch->ccw[4].flags &= ~CCW_FLAG_IDA;
fsm_newstate(fi, CTC_STATE_STARTWAIT);
fsm_addtimer(&ch->timer, 1000, CTC_EVENT_TIMER, ch);
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
rc = ccw_device_halt(ch->cdev, (unsigned long)ch);
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags);
if (rc != 0) {
if (rc != -EBUSY)
fsm_deltimer(&ch->timer);
ctcm_ccw_check_rc(ch, rc, "initial HaltIO");
}
}
/**
* Shutdown a channel.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_haltio(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
unsigned long saveflags = 0;
int rc;
int oldstate;
CTCM_DBF_TEXT(TRACE, 2, __FUNCTION__);
fsm_deltimer(&ch->timer);
if (IS_MPC(ch))
fsm_deltimer(&ch->sweep_timer);
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch);
if (event == CTC_EVENT_STOP) /* only for STOP not yet locked */
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
/* Such conditional locking is undeterministic in
* static view. => ignore sparse warnings here. */
oldstate = fsm_getstate(fi);
fsm_newstate(fi, CTC_STATE_TERM);
rc = ccw_device_halt(ch->cdev, (unsigned long)ch);
if (event == CTC_EVENT_STOP)
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags);
/* see remark above about conditional locking */
if (rc != 0 && rc != -EBUSY) {
fsm_deltimer(&ch->timer);
if (event != CTC_EVENT_STOP) {
fsm_newstate(fi, oldstate);
ctcm_ccw_check_rc(ch, rc, (char *)__FUNCTION__);
}
}
}
/**
* Cleanup helper for chx_fail and chx_stopped
* cleanup channels queue and notify interface statemachine.
*
* fi An instance of a channel statemachine.
* state The next state (depending on caller).
* ch The channel to operate on.
*/
static void ctcm_chx_cleanup(fsm_instance *fi, int state,
struct channel *ch)
{
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
CTCM_DBF_TEXT(TRACE, 3, __FUNCTION__);
fsm_deltimer(&ch->timer);
if (IS_MPC(ch))
fsm_deltimer(&ch->sweep_timer);
fsm_newstate(fi, state);
if (state == CTC_STATE_STOPPED && ch->trans_skb != NULL) {
clear_normalized_cda(&ch->ccw[1]);
dev_kfree_skb_any(ch->trans_skb);
ch->trans_skb = NULL;
}
ch->th_seg = 0x00;
ch->th_seq_num = 0x00;
if (CHANNEL_DIRECTION(ch->flags) == READ) {
skb_queue_purge(&ch->io_queue);
fsm_event(priv->fsm, DEV_EVENT_RXDOWN, dev);
} else {
ctcm_purge_skb_queue(&ch->io_queue);
if (IS_MPC(ch))
ctcm_purge_skb_queue(&ch->sweep_queue);
spin_lock(&ch->collect_lock);
ctcm_purge_skb_queue(&ch->collect_queue);
ch->collect_len = 0;
spin_unlock(&ch->collect_lock);
fsm_event(priv->fsm, DEV_EVENT_TXDOWN, dev);
}
}
/**
* A channel has successfully been halted.
* Cleanup it's queue and notify interface statemachine.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_stopped(fsm_instance *fi, int event, void *arg)
{
CTCM_DBF_TEXT(TRACE, 3, __FUNCTION__);
ctcm_chx_cleanup(fi, CTC_STATE_STOPPED, arg);
}
/**
* A stop command from device statemachine arrived and we are in
* not operational mode. Set state to stopped.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_stop(fsm_instance *fi, int event, void *arg)
{
fsm_newstate(fi, CTC_STATE_STOPPED);
}
/**
* A machine check for no path, not operational status or gone device has
* happened.
* Cleanup queue and notify interface statemachine.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_fail(fsm_instance *fi, int event, void *arg)
{
CTCM_DBF_TEXT(TRACE, 3, __FUNCTION__);
ctcm_chx_cleanup(fi, CTC_STATE_NOTOP, arg);
}
/**
* Handle error during setup of channel.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_setuperr(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
/*
* Special case: Got UC_RCRESET on setmode.
* This means that remote side isn't setup. In this case
* simply retry after some 10 secs...
*/
if ((fsm_getstate(fi) == CTC_STATE_SETUPWAIT) &&
((event == CTC_EVENT_UC_RCRESET) ||
(event == CTC_EVENT_UC_RSRESET))) {
fsm_newstate(fi, CTC_STATE_STARTRETRY);
fsm_deltimer(&ch->timer);
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch);
if (!IS_MPC(ch) && (CHANNEL_DIRECTION(ch->flags) == READ)) {
int rc = ccw_device_halt(ch->cdev, (unsigned long)ch);
if (rc != 0)
ctcm_ccw_check_rc(ch, rc,
"HaltIO in chx_setuperr");
}
return;
}
CTCM_DBF_TEXT_(ERROR, CTC_DBF_CRIT,
"%s : %s error during %s channel setup state=%s\n",
dev->name, ctc_ch_event_names[event],
(CHANNEL_DIRECTION(ch->flags) == READ) ? "RX" : "TX",
fsm_getstate_str(fi));
if (CHANNEL_DIRECTION(ch->flags) == READ) {
fsm_newstate(fi, CTC_STATE_RXERR);
fsm_event(priv->fsm, DEV_EVENT_RXDOWN, dev);
} else {
fsm_newstate(fi, CTC_STATE_TXERR);
fsm_event(priv->fsm, DEV_EVENT_TXDOWN, dev);
}
}
/**
* Restart a channel after an error.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_restart(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
unsigned long saveflags = 0;
int oldstate;
int rc;
CTCM_DBF_TEXT(TRACE, CTC_DBF_NOTICE, __FUNCTION__);
fsm_deltimer(&ch->timer);
ctcm_pr_debug("%s: %s channel restart\n", dev->name,
(CHANNEL_DIRECTION(ch->flags) == READ) ? "RX" : "TX");
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch);
oldstate = fsm_getstate(fi);
fsm_newstate(fi, CTC_STATE_STARTWAIT);
if (event == CTC_EVENT_TIMER) /* only for timer not yet locked */
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
/* Such conditional locking is a known problem for
* sparse because its undeterministic in static view.
* Warnings should be ignored here. */
rc = ccw_device_halt(ch->cdev, (unsigned long)ch);
if (event == CTC_EVENT_TIMER)
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags);
if (rc != 0) {
if (rc != -EBUSY) {
fsm_deltimer(&ch->timer);
fsm_newstate(fi, oldstate);
}
ctcm_ccw_check_rc(ch, rc, "HaltIO in ctcm_chx_restart");
}
}
/**
* Handle error during RX initial handshake (exchange of
* 0-length block header)
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_rxiniterr(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
CTCM_DBF_TEXT(SETUP, 3, __FUNCTION__);
if (event == CTC_EVENT_TIMER) {
if (!IS_MPCDEV(dev))
/* TODO : check if MPC deletes timer somewhere */
fsm_deltimer(&ch->timer);
ctcm_pr_debug("%s: Timeout during RX init handshake\n",
dev->name);
if (ch->retry++ < 3)
ctcm_chx_restart(fi, event, arg);
else {
fsm_newstate(fi, CTC_STATE_RXERR);
fsm_event(priv->fsm, DEV_EVENT_RXDOWN, dev);
}
} else
ctcm_pr_warn("%s: Error during RX init handshake\n", dev->name);
}
/**
* Notify device statemachine if we gave up initialization
* of RX channel.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_rxinitfail(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
CTCM_DBF_TEXT(SETUP, 3, __FUNCTION__);
fsm_newstate(fi, CTC_STATE_RXERR);
ctcm_pr_warn("%s: RX busy. Initialization failed\n", dev->name);
fsm_event(priv->fsm, DEV_EVENT_RXDOWN, dev);
}
/**
* Handle RX Unit check remote reset (remote disconnected)
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_rxdisc(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct channel *ch2;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
CTCM_DBF_DEV_NAME(TRACE, dev, "Got remote disconnect, re-initializing");
fsm_deltimer(&ch->timer);
if (do_debug)
ctcm_pr_debug("%s: Got remote disconnect, "
"re-initializing ...\n", dev->name);
/*
* Notify device statemachine
*/
fsm_event(priv->fsm, DEV_EVENT_RXDOWN, dev);
fsm_event(priv->fsm, DEV_EVENT_TXDOWN, dev);
fsm_newstate(fi, CTC_STATE_DTERM);
ch2 = priv->channel[WRITE];
fsm_newstate(ch2->fsm, CTC_STATE_DTERM);
ccw_device_halt(ch->cdev, (unsigned long)ch);
ccw_device_halt(ch2->cdev, (unsigned long)ch2);
}
/**
* Handle error during TX channel initialization.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_txiniterr(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
if (event == CTC_EVENT_TIMER) {
fsm_deltimer(&ch->timer);
CTCM_DBF_DEV_NAME(ERROR, dev,
"Timeout during TX init handshake");
if (ch->retry++ < 3)
ctcm_chx_restart(fi, event, arg);
else {
fsm_newstate(fi, CTC_STATE_TXERR);
fsm_event(priv->fsm, DEV_EVENT_TXDOWN, dev);
}
} else {
CTCM_DBF_TEXT_(ERROR, CTC_DBF_ERROR,
"%s : %s error during channel setup state=%s",
dev->name, ctc_ch_event_names[event],
fsm_getstate_str(fi));
ctcm_pr_warn("%s: Error during TX init handshake\n", dev->name);
}
}
/**
* Handle TX timeout by retrying operation.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_txretry(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct sk_buff *skb;
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id);
fsm_deltimer(&ch->timer);
if (ch->retry++ > 3) {
struct mpc_group *gptr = priv->mpcg;
ctcm_pr_debug("%s: TX retry failed, restarting channel\n",
dev->name);
fsm_event(priv->fsm, DEV_EVENT_TXDOWN, dev);
/* call restart if not MPC or if MPC and mpcg fsm is ready.
use gptr as mpc indicator */
if (!(gptr && (fsm_getstate(gptr->fsm) != MPCG_STATE_READY)))
ctcm_chx_restart(fi, event, arg);
goto done;
}
ctcm_pr_debug("%s: TX retry %d\n", dev->name, ch->retry);
skb = skb_peek(&ch->io_queue);
if (skb) {
int rc = 0;
unsigned long saveflags = 0;
clear_normalized_cda(&ch->ccw[4]);
ch->ccw[4].count = skb->len;
if (set_normalized_cda(&ch->ccw[4], skb->data)) {
ctcm_pr_debug("%s: IDAL alloc failed, chan restart\n",
dev->name);
fsm_event(priv->fsm, DEV_EVENT_TXDOWN, dev);
ctcm_chx_restart(fi, event, arg);
goto done;
}
fsm_addtimer(&ch->timer, 1000, CTC_EVENT_TIMER, ch);
if (event == CTC_EVENT_TIMER) /* for TIMER not yet locked */
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
/* Such conditional locking is a known problem for
* sparse because its undeterministic in static view.
* Warnings should be ignored here. */
if (do_debug_ccw)
ctcmpc_dumpit((char *)&ch->ccw[3],
sizeof(struct ccw1) * 3);
rc = ccw_device_start(ch->cdev, &ch->ccw[3],
(unsigned long)ch, 0xff, 0);
if (event == CTC_EVENT_TIMER)
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev),
saveflags);
if (rc != 0) {
fsm_deltimer(&ch->timer);
ctcm_ccw_check_rc(ch, rc, "TX in chx_txretry");
ctcm_purge_skb_queue(&ch->io_queue);
}
}
done:
return;
}
/**
* Handle fatal errors during an I/O command.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcm_chx_iofatal(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
CTCM_DBF_TEXT(TRACE, 3, __FUNCTION__);
fsm_deltimer(&ch->timer);
ctcm_pr_warn("%s %s : unrecoverable channel error\n",
CTC_DRIVER_NAME, dev->name);
if (IS_MPC(ch)) {
priv->stats.tx_dropped++;
priv->stats.tx_errors++;
}
if (CHANNEL_DIRECTION(ch->flags) == READ) {
ctcm_pr_debug("%s: RX I/O error\n", dev->name);
fsm_newstate(fi, CTC_STATE_RXERR);
fsm_event(priv->fsm, DEV_EVENT_RXDOWN, dev);
} else {
ctcm_pr_debug("%s: TX I/O error\n", dev->name);
fsm_newstate(fi, CTC_STATE_TXERR);
fsm_event(priv->fsm, DEV_EVENT_TXDOWN, dev);
}
}
/*
* The ctcm statemachine for a channel.
*/
const fsm_node ch_fsm[] = {
{ CTC_STATE_STOPPED, CTC_EVENT_STOP, ctcm_action_nop },
{ CTC_STATE_STOPPED, CTC_EVENT_START, ctcm_chx_start },
{ CTC_STATE_STOPPED, CTC_EVENT_FINSTAT, ctcm_action_nop },
{ CTC_STATE_STOPPED, CTC_EVENT_MC_FAIL, ctcm_action_nop },
{ CTC_STATE_NOTOP, CTC_EVENT_STOP, ctcm_chx_stop },
{ CTC_STATE_NOTOP, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_NOTOP, CTC_EVENT_FINSTAT, ctcm_action_nop },
{ CTC_STATE_NOTOP, CTC_EVENT_MC_FAIL, ctcm_action_nop },
{ CTC_STATE_NOTOP, CTC_EVENT_MC_GOOD, ctcm_chx_start },
{ CTC_STATE_STARTWAIT, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_STARTWAIT, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_STARTWAIT, CTC_EVENT_FINSTAT, ctcm_chx_setmode },
{ CTC_STATE_STARTWAIT, CTC_EVENT_TIMER, ctcm_chx_setuperr },
{ CTC_STATE_STARTWAIT, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_STARTWAIT, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_STARTRETRY, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_STARTRETRY, CTC_EVENT_TIMER, ctcm_chx_setmode },
{ CTC_STATE_STARTRETRY, CTC_EVENT_FINSTAT, ctcm_action_nop },
{ CTC_STATE_STARTRETRY, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_FINSTAT, chx_firstio },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_TIMER, ctcm_chx_setmode },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_RXINIT, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_RXINIT, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_RXINIT, CTC_EVENT_FINSTAT, chx_rxidle },
{ CTC_STATE_RXINIT, CTC_EVENT_UC_RCRESET, ctcm_chx_rxiniterr },
{ CTC_STATE_RXINIT, CTC_EVENT_UC_RSRESET, ctcm_chx_rxiniterr },
{ CTC_STATE_RXINIT, CTC_EVENT_TIMER, ctcm_chx_rxiniterr },
{ CTC_STATE_RXINIT, CTC_EVENT_ATTNBUSY, ctcm_chx_rxinitfail },
{ CTC_STATE_RXINIT, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_RXINIT, CTC_EVENT_UC_ZERO, chx_firstio },
{ CTC_STATE_RXINIT, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_RXIDLE, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_RXIDLE, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_RXIDLE, CTC_EVENT_FINSTAT, chx_rx },
{ CTC_STATE_RXIDLE, CTC_EVENT_UC_RCRESET, ctcm_chx_rxdisc },
{ CTC_STATE_RXIDLE, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_RXIDLE, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_RXIDLE, CTC_EVENT_UC_ZERO, chx_rx },
{ CTC_STATE_TXINIT, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TXINIT, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_TXINIT, CTC_EVENT_FINSTAT, ctcm_chx_txidle },
{ CTC_STATE_TXINIT, CTC_EVENT_UC_RCRESET, ctcm_chx_txiniterr },
{ CTC_STATE_TXINIT, CTC_EVENT_UC_RSRESET, ctcm_chx_txiniterr },
{ CTC_STATE_TXINIT, CTC_EVENT_TIMER, ctcm_chx_txiniterr },
{ CTC_STATE_TXINIT, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_TXINIT, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_TXIDLE, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TXIDLE, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_TXIDLE, CTC_EVENT_FINSTAT, chx_firstio },
{ CTC_STATE_TXIDLE, CTC_EVENT_UC_RCRESET, ctcm_action_nop },
{ CTC_STATE_TXIDLE, CTC_EVENT_UC_RSRESET, ctcm_action_nop },
{ CTC_STATE_TXIDLE, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_TXIDLE, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_TERM, CTC_EVENT_STOP, ctcm_action_nop },
{ CTC_STATE_TERM, CTC_EVENT_START, ctcm_chx_restart },
{ CTC_STATE_TERM, CTC_EVENT_FINSTAT, ctcm_chx_stopped },
{ CTC_STATE_TERM, CTC_EVENT_UC_RCRESET, ctcm_action_nop },
{ CTC_STATE_TERM, CTC_EVENT_UC_RSRESET, ctcm_action_nop },
{ CTC_STATE_TERM, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_DTERM, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_DTERM, CTC_EVENT_START, ctcm_chx_restart },
{ CTC_STATE_DTERM, CTC_EVENT_FINSTAT, ctcm_chx_setmode },
{ CTC_STATE_DTERM, CTC_EVENT_UC_RCRESET, ctcm_action_nop },
{ CTC_STATE_DTERM, CTC_EVENT_UC_RSRESET, ctcm_action_nop },
{ CTC_STATE_DTERM, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_TX, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TX, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_TX, CTC_EVENT_FINSTAT, chx_txdone },
{ CTC_STATE_TX, CTC_EVENT_UC_RCRESET, ctcm_chx_txretry },
{ CTC_STATE_TX, CTC_EVENT_UC_RSRESET, ctcm_chx_txretry },
{ CTC_STATE_TX, CTC_EVENT_TIMER, ctcm_chx_txretry },
{ CTC_STATE_TX, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_TX, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_RXERR, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TXERR, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TXERR, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_RXERR, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
};
int ch_fsm_len = ARRAY_SIZE(ch_fsm);
/*
* MPC actions for mpc channel statemachine
* handling of MPC protocol requires extra
* statemachine and actions which are prefixed ctcmpc_ .
* The ctc_ch_states and ctc_ch_state_names,
* ctc_ch_events and ctc_ch_event_names share the ctcm definitions
* which are expanded by some elements.
*/
/*
* Actions for mpc channel statemachine.
*/
/**
* Normal data has been send. Free the corresponding
* skb (it's in io_queue), reset dev->tbusy and
* revert to idle state.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcmpc_chx_txdone(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
struct sk_buff *skb;
int first = 1;
int i;
struct timespec done_stamp;
__u32 data_space;
unsigned long duration;
struct sk_buff *peekskb;
int rc;
struct th_header *header;
struct pdu *p_header;
if (do_debug)
ctcm_pr_debug("%s cp:%i enter: %s()\n",
dev->name, smp_processor_id(), __FUNCTION__);
done_stamp = current_kernel_time(); /* xtime */
duration = (done_stamp.tv_sec - ch->prof.send_stamp.tv_sec) * 1000000
+ (done_stamp.tv_nsec - ch->prof.send_stamp.tv_nsec) / 1000;
if (duration > ch->prof.tx_time)
ch->prof.tx_time = duration;
if (ch->irb->scsw.count != 0)
ctcm_pr_debug("%s: TX not complete, remaining %d bytes\n",
dev->name, ch->irb->scsw.count);
fsm_deltimer(&ch->timer);
while ((skb = skb_dequeue(&ch->io_queue))) {
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len - TH_HEADER_LENGTH;
if (first) {
priv->stats.tx_bytes += 2;
first = 0;
}
atomic_dec(&skb->users);
dev_kfree_skb_irq(skb);
}
spin_lock(&ch->collect_lock);
clear_normalized_cda(&ch->ccw[4]);
if ((ch->collect_len <= 0) || (grp->in_sweep != 0)) {
spin_unlock(&ch->collect_lock);
fsm_newstate(fi, CTC_STATE_TXIDLE);
goto done;
}
if (ctcm_checkalloc_buffer(ch)) {
spin_unlock(&ch->collect_lock);
goto done;
}
ch->trans_skb->data = ch->trans_skb_data;
skb_reset_tail_pointer(ch->trans_skb);
ch->trans_skb->len = 0;
if (ch->prof.maxmulti < (ch->collect_len + TH_HEADER_LENGTH))
ch->prof.maxmulti = ch->collect_len + TH_HEADER_LENGTH;
if (ch->prof.maxcqueue < skb_queue_len(&ch->collect_queue))
ch->prof.maxcqueue = skb_queue_len(&ch->collect_queue);
i = 0;
if (do_debug_data)
ctcm_pr_debug("ctcmpc: %s() building "
"trans_skb from collect_q \n", __FUNCTION__);
data_space = grp->group_max_buflen - TH_HEADER_LENGTH;
if (do_debug_data)
ctcm_pr_debug("ctcmpc: %s() building trans_skb from collect_q"
" data_space:%04x\n", __FUNCTION__, data_space);
p_header = NULL;
while ((skb = skb_dequeue(&ch->collect_queue))) {
memcpy(skb_put(ch->trans_skb, skb->len), skb->data, skb->len);
p_header = (struct pdu *)
(skb_tail_pointer(ch->trans_skb) - skb->len);
p_header->pdu_flag = 0x00;
if (skb->protocol == ntohs(ETH_P_SNAP))
p_header->pdu_flag |= 0x60;
else
p_header->pdu_flag |= 0x20;
if (do_debug_data) {
ctcm_pr_debug("ctcmpc: %s()trans_skb len:%04x \n",
__FUNCTION__, ch->trans_skb->len);
ctcm_pr_debug("ctcmpc: %s() pdu header and data"
" for up to 32 bytes sent to vtam\n",
__FUNCTION__);
ctcmpc_dumpit((char *)p_header,
min_t(int, skb->len, 32));
}
ch->collect_len -= skb->len;
data_space -= skb->len;
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len;
atomic_dec(&skb->users);
dev_kfree_skb_any(skb);
peekskb = skb_peek(&ch->collect_queue);
if (peekskb->len > data_space)
break;
i++;
}
/* p_header points to the last one we handled */
if (p_header)
p_header->pdu_flag |= PDU_LAST; /*Say it's the last one*/
header = kzalloc(TH_HEADER_LENGTH, gfp_type());
if (!header) {
printk(KERN_WARNING "ctcmpc: OUT OF MEMORY IN %s()"
": Data Lost \n", __FUNCTION__);
spin_unlock(&ch->collect_lock);
fsm_event(priv->mpcg->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
header->th_ch_flag = TH_HAS_PDU; /* Normal data */
ch->th_seq_num++;
header->th_seq_num = ch->th_seq_num;
if (do_debug_data)
ctcm_pr_debug("%s: ToVTAM_th_seq= %08x\n" ,
__FUNCTION__, ch->th_seq_num);
memcpy(skb_push(ch->trans_skb, TH_HEADER_LENGTH), header,
TH_HEADER_LENGTH); /* put the TH on the packet */
kfree(header);
if (do_debug_data) {
ctcm_pr_debug("ctcmpc: %s()trans_skb len:%04x \n",
__FUNCTION__, ch->trans_skb->len);
ctcm_pr_debug("ctcmpc: %s() up-to-50 bytes of trans_skb "
"data to vtam from collect_q\n", __FUNCTION__);
ctcmpc_dumpit((char *)ch->trans_skb->data,
min_t(int, ch->trans_skb->len, 50));
}
spin_unlock(&ch->collect_lock);
clear_normalized_cda(&ch->ccw[1]);
if (set_normalized_cda(&ch->ccw[1], ch->trans_skb->data)) {
dev_kfree_skb_any(ch->trans_skb);
ch->trans_skb = NULL;
printk(KERN_WARNING
"ctcmpc: %s()CCW failure - data lost\n",
__FUNCTION__);
fsm_event(priv->mpcg->fsm, MPCG_EVENT_INOP, dev);
return;
}
ch->ccw[1].count = ch->trans_skb->len;
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch);
ch->prof.send_stamp = current_kernel_time(); /* xtime */
if (do_debug_ccw)
ctcmpc_dumpit((char *)&ch->ccw[0], sizeof(struct ccw1) * 3);
rc = ccw_device_start(ch->cdev, &ch->ccw[0],
(unsigned long)ch, 0xff, 0);
ch->prof.doios_multi++;
if (rc != 0) {
priv->stats.tx_dropped += i;
priv->stats.tx_errors += i;
fsm_deltimer(&ch->timer);
ctcm_ccw_check_rc(ch, rc, "chained TX");
}
done:
ctcm_clear_busy(dev);
ctcm_pr_debug("ctcmpc exit: %s %s()\n", dev->name, __FUNCTION__);
return;
}
/**
* Got normal data, check for sanity, queue it up, allocate new buffer
* trigger bottom half, and initiate next read.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcmpc_chx_rx(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
struct sk_buff *skb = ch->trans_skb;
struct sk_buff *new_skb;
unsigned long saveflags = 0; /* avoids compiler warning */
int len = ch->max_bufsize - ch->irb->scsw.count;
if (do_debug_data) {
CTCM_DBF_TEXT_(TRACE, CTC_DBF_DEBUG, "mpc_ch_rx %s cp:%i %s\n",
dev->name, smp_processor_id(), ch->id);
CTCM_DBF_TEXT_(TRACE, CTC_DBF_DEBUG, "mpc_ch_rx: maxbuf: %04x "
"len: %04x\n", ch->max_bufsize, len);
}
fsm_deltimer(&ch->timer);
if (skb == NULL) {
ctcm_pr_debug("ctcmpc exit: %s() TRANS_SKB = NULL \n",
__FUNCTION__);
goto again;
}
if (len < TH_HEADER_LENGTH) {
ctcm_pr_info("%s: got packet with invalid length %d\n",
dev->name, len);
priv->stats.rx_dropped++;
priv->stats.rx_length_errors++;
} else {
/* must have valid th header or game over */
__u32 block_len = len;
len = TH_HEADER_LENGTH + XID2_LENGTH + 4;
new_skb = __dev_alloc_skb(ch->max_bufsize, GFP_ATOMIC);
if (new_skb == NULL) {
printk(KERN_INFO "ctcmpc:%s() NEW_SKB = NULL\n",
__FUNCTION__);
printk(KERN_WARNING "ctcmpc: %s() MEMORY ALLOC FAILED"
" - DATA LOST - MPC FAILED\n",
__FUNCTION__);
fsm_event(priv->mpcg->fsm, MPCG_EVENT_INOP, dev);
goto again;
}
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_RESET:
case MPCG_STATE_INOP:
dev_kfree_skb_any(new_skb);
break;
case MPCG_STATE_FLOWC:
case MPCG_STATE_READY:
memcpy(skb_put(new_skb, block_len),
skb->data, block_len);
skb_queue_tail(&ch->io_queue, new_skb);
tasklet_schedule(&ch->ch_tasklet);
break;
default:
memcpy(skb_put(new_skb, len), skb->data, len);
skb_queue_tail(&ch->io_queue, new_skb);
tasklet_hi_schedule(&ch->ch_tasklet);
break;
}
}
again:
switch (fsm_getstate(grp->fsm)) {
int rc, dolock;
case MPCG_STATE_FLOWC:
case MPCG_STATE_READY:
if (ctcm_checkalloc_buffer(ch))
break;
ch->trans_skb->data = ch->trans_skb_data;
skb_reset_tail_pointer(ch->trans_skb);
ch->trans_skb->len = 0;
ch->ccw[1].count = ch->max_bufsize;
if (do_debug_ccw)
ctcmpc_dumpit((char *)&ch->ccw[0],
sizeof(struct ccw1) * 3);
dolock = !in_irq();
if (dolock)
spin_lock_irqsave(
get_ccwdev_lock(ch->cdev), saveflags);
rc = ccw_device_start(ch->cdev, &ch->ccw[0],
(unsigned long)ch, 0xff, 0);
if (dolock) /* see remark about conditional locking */
spin_unlock_irqrestore(
get_ccwdev_lock(ch->cdev), saveflags);
if (rc != 0)
ctcm_ccw_check_rc(ch, rc, "normal RX");
default:
break;
}
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s %s(): ch=0x%p id=%s\n",
dev->name, __FUNCTION__, ch, ch->id);
}
/**
* Initialize connection by sending a __u16 of value 0.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
static void ctcmpc_chx_firstio(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
if (do_debug) {
struct mpc_group *gptr = priv->mpcg;
ctcm_pr_debug("ctcmpc enter: %s(): ch=0x%p id=%s\n",
__FUNCTION__, ch, ch->id);
ctcm_pr_debug("%s() %s chstate:%i grpstate:%i chprotocol:%i\n",
__FUNCTION__, ch->id, fsm_getstate(fi),
fsm_getstate(gptr->fsm), ch->protocol);
}
if (fsm_getstate(fi) == CTC_STATE_TXIDLE)
MPC_DBF_DEV_NAME(TRACE, dev, "remote side issued READ? ");
fsm_deltimer(&ch->timer);
if (ctcm_checkalloc_buffer(ch))
goto done;
switch (fsm_getstate(fi)) {
case CTC_STATE_STARTRETRY:
case CTC_STATE_SETUPWAIT:
if (CHANNEL_DIRECTION(ch->flags) == READ) {
ctcmpc_chx_rxidle(fi, event, arg);
} else {
fsm_newstate(fi, CTC_STATE_TXIDLE);
fsm_event(priv->fsm, DEV_EVENT_TXUP, dev);
}
goto done;
default:
break;
};
fsm_newstate(fi, (CHANNEL_DIRECTION(ch->flags) == READ)
? CTC_STATE_RXINIT : CTC_STATE_TXINIT);
done:
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s(): ch=0x%p id=%s\n",
__FUNCTION__, ch, ch->id);
return;
}
/**
* Got initial data, check it. If OK,
* notify device statemachine that we are up and
* running.
*
* fi An instance of a channel statemachine.
* event The event, just happened.
* arg Generic pointer, casted from channel * upon call.
*/
void ctcmpc_chx_rxidle(fsm_instance *fi, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
int rc;
unsigned long saveflags = 0; /* avoids compiler warning */
fsm_deltimer(&ch->timer);
ctcm_pr_debug("%s cp:%i enter: %s()\n",
dev->name, smp_processor_id(), __FUNCTION__);
if (do_debug)
ctcm_pr_debug("%s() %s chstate:%i grpstate:%i\n",
__FUNCTION__, ch->id,
fsm_getstate(fi), fsm_getstate(grp->fsm));
fsm_newstate(fi, CTC_STATE_RXIDLE);
/* XID processing complete */
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_FLOWC:
case MPCG_STATE_READY:
if (ctcm_checkalloc_buffer(ch))
goto done;
ch->trans_skb->data = ch->trans_skb_data;
skb_reset_tail_pointer(ch->trans_skb);
ch->trans_skb->len = 0;
ch->ccw[1].count = ch->max_bufsize;
if (do_debug_ccw)
ctcmpc_dumpit((char *)&ch->ccw[0],
sizeof(struct ccw1) * 3);
if (event == CTC_EVENT_START)
/* see remark about conditional locking */
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
rc = ccw_device_start(ch->cdev, &ch->ccw[0],
(unsigned long)ch, 0xff, 0);
if (event == CTC_EVENT_START)
spin_unlock_irqrestore(
get_ccwdev_lock(ch->cdev), saveflags);
if (rc != 0) {
fsm_newstate(fi, CTC_STATE_RXINIT);
ctcm_ccw_check_rc(ch, rc, "initial RX");
goto done;
}
break;
default:
break;
}
fsm_event(priv->fsm, DEV_EVENT_RXUP, dev);
done:
if (do_debug)
ctcm_pr_debug("ctcmpc exit: %s %s()\n",
dev->name, __FUNCTION__);
return;
}
/*
* ctcmpc channel FSM action
* called from several points in ctcmpc_ch_fsm
* ctcmpc only
*/
static void ctcmpc_chx_attn(fsm_instance *fsm, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
if (do_debug) {
ctcm_pr_debug("ctcmpc enter: %s(): cp=%i ch=0x%p id=%s"
"GrpState:%s ChState:%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id,
fsm_getstate_str(grp->fsm),
fsm_getstate_str(ch->fsm));
}
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_XID2INITW:
/* ok..start yside xid exchanges */
if (!ch->in_mpcgroup)
break;
if (fsm_getstate(ch->fsm) == CH_XID0_PENDING) {
fsm_deltimer(&grp->timer);
fsm_addtimer(&grp->timer,
MPC_XID_TIMEOUT_VALUE,
MPCG_EVENT_TIMER, dev);
fsm_event(grp->fsm, MPCG_EVENT_XID0DO, ch);
} else if (fsm_getstate(ch->fsm) < CH_XID7_PENDING1)
/* attn rcvd before xid0 processed via bh */
fsm_newstate(ch->fsm, CH_XID7_PENDING1);
break;
case MPCG_STATE_XID2INITX:
case MPCG_STATE_XID0IOWAIT:
case MPCG_STATE_XID0IOWAIX:
/* attn rcvd before xid0 processed on ch
but mid-xid0 processing for group */
if (fsm_getstate(ch->fsm) < CH_XID7_PENDING1)
fsm_newstate(ch->fsm, CH_XID7_PENDING1);
break;
case MPCG_STATE_XID7INITW:
case MPCG_STATE_XID7INITX:
case MPCG_STATE_XID7INITI:
case MPCG_STATE_XID7INITZ:
switch (fsm_getstate(ch->fsm)) {
case CH_XID7_PENDING:
fsm_newstate(ch->fsm, CH_XID7_PENDING1);
break;
case CH_XID7_PENDING2:
fsm_newstate(ch->fsm, CH_XID7_PENDING3);
break;
}
fsm_event(grp->fsm, MPCG_EVENT_XID7DONE, dev);
break;
}
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id);
return;
}
/*
* ctcmpc channel FSM action
* called from one point in ctcmpc_ch_fsm
* ctcmpc only
*/
static void ctcmpc_chx_attnbusy(fsm_instance *fsm, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
ctcm_pr_debug("ctcmpc enter: %s %s() %s \nGrpState:%s ChState:%s\n",
dev->name,
__FUNCTION__, ch->id,
fsm_getstate_str(grp->fsm),
fsm_getstate_str(ch->fsm));
fsm_deltimer(&ch->timer);
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_XID0IOWAIT:
/* vtam wants to be primary.start yside xid exchanges*/
/* only receive one attn-busy at a time so must not */
/* change state each time */
grp->changed_side = 1;
fsm_newstate(grp->fsm, MPCG_STATE_XID2INITW);
break;
case MPCG_STATE_XID2INITW:
if (grp->changed_side == 1) {
grp->changed_side = 2;
break;
}
/* process began via call to establish_conn */
/* so must report failure instead of reverting */
/* back to ready-for-xid passive state */
if (grp->estconnfunc)
goto done;
/* this attnbusy is NOT the result of xside xid */
/* collisions so yside must have been triggered */
/* by an ATTN that was not intended to start XID */
/* processing. Revert back to ready-for-xid and */
/* wait for ATTN interrupt to signal xid start */
if (fsm_getstate(ch->fsm) == CH_XID0_INPROGRESS) {
fsm_newstate(ch->fsm, CH_XID0_PENDING) ;
fsm_deltimer(&grp->timer);
goto done;
}
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
goto done;
case MPCG_STATE_XID2INITX:
/* XID2 was received before ATTN Busy for second
channel.Send yside xid for second channel.
*/
if (grp->changed_side == 1) {
grp->changed_side = 2;
break;
}
case MPCG_STATE_XID0IOWAIX:
case MPCG_STATE_XID7INITW:
case MPCG_STATE_XID7INITX:
case MPCG_STATE_XID7INITI:
case MPCG_STATE_XID7INITZ:
default:
/* multiple attn-busy indicates too out-of-sync */
/* and they are certainly not being received as part */
/* of valid mpc group negotiations.. */
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
if (grp->changed_side == 1) {
fsm_deltimer(&grp->timer);
fsm_addtimer(&grp->timer, MPC_XID_TIMEOUT_VALUE,
MPCG_EVENT_TIMER, dev);
}
if (ch->in_mpcgroup)
fsm_event(grp->fsm, MPCG_EVENT_XID0DO, ch);
else
printk(KERN_WARNING "ctcmpc: %s() Not all channels have"
" been added to group\n", __FUNCTION__);
done:
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s()%s ch=0x%p id=%s\n",
__FUNCTION__, dev->name, ch, ch->id);
return;
}
/*
* ctcmpc channel FSM action
* called from several points in ctcmpc_ch_fsm
* ctcmpc only
*/
static void ctcmpc_chx_resend(fsm_instance *fsm, int event, void *arg)
{
struct channel *ch = arg;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
ctcm_pr_debug("ctcmpc enter: %s %s() %s \nGrpState:%s ChState:%s\n",
dev->name, __FUNCTION__, ch->id,
fsm_getstate_str(grp->fsm),
fsm_getstate_str(ch->fsm));
fsm_event(grp->fsm, MPCG_EVENT_XID0DO, ch);
return;
}
/*
* ctcmpc channel FSM action
* called from several points in ctcmpc_ch_fsm
* ctcmpc only
*/
static void ctcmpc_chx_send_sweep(fsm_instance *fsm, int event, void *arg)
{
struct channel *ach = arg;
struct net_device *dev = ach->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
struct channel *wch = priv->channel[WRITE];
struct channel *rch = priv->channel[READ];
struct sk_buff *skb;
struct th_sweep *header;
int rc = 0;
unsigned long saveflags = 0;
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ach, ach->id);
if (grp->in_sweep == 0)
goto done;
if (do_debug_data) {
ctcm_pr_debug("ctcmpc: %s() 1: ToVTAM_th_seq= %08x\n" ,
__FUNCTION__, wch->th_seq_num);
ctcm_pr_debug("ctcmpc: %s() 1: FromVTAM_th_seq= %08x\n" ,
__FUNCTION__, rch->th_seq_num);
}
if (fsm_getstate(wch->fsm) != CTC_STATE_TXIDLE) {
/* give the previous IO time to complete */
fsm_addtimer(&wch->sweep_timer,
200, CTC_EVENT_RSWEEP_TIMER, wch);
goto done;
}
skb = skb_dequeue(&wch->sweep_queue);
if (!skb)
goto done;
if (set_normalized_cda(&wch->ccw[4], skb->data)) {
grp->in_sweep = 0;
ctcm_clear_busy_do(dev);
dev_kfree_skb_any(skb);
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
goto done;
} else {
atomic_inc(&skb->users);
skb_queue_tail(&wch->io_queue, skb);
}
/* send out the sweep */
wch->ccw[4].count = skb->len;
header = (struct th_sweep *)skb->data;
switch (header->th.th_ch_flag) {
case TH_SWEEP_REQ:
grp->sweep_req_pend_num--;
break;
case TH_SWEEP_RESP:
grp->sweep_rsp_pend_num--;
break;
}
header->sw.th_last_seq = wch->th_seq_num;
if (do_debug_ccw)
ctcmpc_dumpit((char *)&wch->ccw[3], sizeof(struct ccw1) * 3);
ctcm_pr_debug("ctcmpc: %s() sweep packet\n", __FUNCTION__);
ctcmpc_dumpit((char *)header, TH_SWEEP_LENGTH);
fsm_addtimer(&wch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, wch);
fsm_newstate(wch->fsm, CTC_STATE_TX);
spin_lock_irqsave(get_ccwdev_lock(wch->cdev), saveflags);
wch->prof.send_stamp = current_kernel_time(); /* xtime */
rc = ccw_device_start(wch->cdev, &wch->ccw[3],
(unsigned long) wch, 0xff, 0);
spin_unlock_irqrestore(get_ccwdev_lock(wch->cdev), saveflags);
if ((grp->sweep_req_pend_num == 0) &&
(grp->sweep_rsp_pend_num == 0)) {
grp->in_sweep = 0;
rch->th_seq_num = 0x00;
wch->th_seq_num = 0x00;
ctcm_clear_busy_do(dev);
}
if (do_debug_data) {
ctcm_pr_debug("ctcmpc: %s()2: ToVTAM_th_seq= %08x\n" ,
__FUNCTION__, wch->th_seq_num);
ctcm_pr_debug("ctcmpc: %s()2: FromVTAM_th_seq= %08x\n" ,
__FUNCTION__, rch->th_seq_num);
}
if (rc != 0)
ctcm_ccw_check_rc(wch, rc, "send sweep");
done:
if (do_debug)
ctcm_pr_debug("ctcmpc exit: %s() %s\n", __FUNCTION__, ach->id);
return;
}
/*
* The ctcmpc statemachine for a channel.
*/
const fsm_node ctcmpc_ch_fsm[] = {
{ CTC_STATE_STOPPED, CTC_EVENT_STOP, ctcm_action_nop },
{ CTC_STATE_STOPPED, CTC_EVENT_START, ctcm_chx_start },
{ CTC_STATE_STOPPED, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_STOPPED, CTC_EVENT_FINSTAT, ctcm_action_nop },
{ CTC_STATE_STOPPED, CTC_EVENT_MC_FAIL, ctcm_action_nop },
{ CTC_STATE_NOTOP, CTC_EVENT_STOP, ctcm_chx_stop },
{ CTC_STATE_NOTOP, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_NOTOP, CTC_EVENT_FINSTAT, ctcm_action_nop },
{ CTC_STATE_NOTOP, CTC_EVENT_MC_FAIL, ctcm_action_nop },
{ CTC_STATE_NOTOP, CTC_EVENT_MC_GOOD, ctcm_chx_start },
{ CTC_STATE_NOTOP, CTC_EVENT_UC_RCRESET, ctcm_chx_stop },
{ CTC_STATE_NOTOP, CTC_EVENT_UC_RSRESET, ctcm_chx_stop },
{ CTC_STATE_NOTOP, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_STARTWAIT, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_STARTWAIT, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_STARTWAIT, CTC_EVENT_FINSTAT, ctcm_chx_setmode },
{ CTC_STATE_STARTWAIT, CTC_EVENT_TIMER, ctcm_chx_setuperr },
{ CTC_STATE_STARTWAIT, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_STARTWAIT, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_STARTRETRY, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_STARTRETRY, CTC_EVENT_TIMER, ctcm_chx_setmode },
{ CTC_STATE_STARTRETRY, CTC_EVENT_FINSTAT, ctcm_chx_setmode },
{ CTC_STATE_STARTRETRY, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_STARTRETRY, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_FINSTAT, ctcmpc_chx_firstio },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_TIMER, ctcm_chx_setmode },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_SETUPWAIT, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_RXINIT, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_RXINIT, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_RXINIT, CTC_EVENT_FINSTAT, ctcmpc_chx_rxidle },
{ CTC_STATE_RXINIT, CTC_EVENT_UC_RCRESET, ctcm_chx_rxiniterr },
{ CTC_STATE_RXINIT, CTC_EVENT_UC_RSRESET, ctcm_chx_rxiniterr },
{ CTC_STATE_RXINIT, CTC_EVENT_TIMER, ctcm_chx_rxiniterr },
{ CTC_STATE_RXINIT, CTC_EVENT_ATTNBUSY, ctcm_chx_rxinitfail },
{ CTC_STATE_RXINIT, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_RXINIT, CTC_EVENT_UC_ZERO, ctcmpc_chx_firstio },
{ CTC_STATE_RXINIT, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CH_XID0_PENDING, CTC_EVENT_FINSTAT, ctcm_action_nop },
{ CH_XID0_PENDING, CTC_EVENT_ATTN, ctcmpc_chx_attn },
{ CH_XID0_PENDING, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CH_XID0_PENDING, CTC_EVENT_START, ctcm_action_nop },
{ CH_XID0_PENDING, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CH_XID0_PENDING, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CH_XID0_PENDING, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CH_XID0_PENDING, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CH_XID0_PENDING, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CH_XID0_PENDING, CTC_EVENT_ATTNBUSY, ctcm_chx_iofatal },
{ CH_XID0_INPROGRESS, CTC_EVENT_FINSTAT, ctcmpc_chx_rx },
{ CH_XID0_INPROGRESS, CTC_EVENT_ATTN, ctcmpc_chx_attn },
{ CH_XID0_INPROGRESS, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CH_XID0_INPROGRESS, CTC_EVENT_START, ctcm_action_nop },
{ CH_XID0_INPROGRESS, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CH_XID0_INPROGRESS, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CH_XID0_INPROGRESS, CTC_EVENT_UC_ZERO, ctcmpc_chx_rx },
{ CH_XID0_INPROGRESS, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CH_XID0_INPROGRESS, CTC_EVENT_ATTNBUSY, ctcmpc_chx_attnbusy },
{ CH_XID0_INPROGRESS, CTC_EVENT_TIMER, ctcmpc_chx_resend },
{ CH_XID0_INPROGRESS, CTC_EVENT_IO_EBUSY, ctcm_chx_fail },
{ CH_XID7_PENDING, CTC_EVENT_FINSTAT, ctcmpc_chx_rx },
{ CH_XID7_PENDING, CTC_EVENT_ATTN, ctcmpc_chx_attn },
{ CH_XID7_PENDING, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CH_XID7_PENDING, CTC_EVENT_START, ctcm_action_nop },
{ CH_XID7_PENDING, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CH_XID7_PENDING, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CH_XID7_PENDING, CTC_EVENT_UC_ZERO, ctcmpc_chx_rx },
{ CH_XID7_PENDING, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING, CTC_EVENT_ATTNBUSY, ctcm_chx_iofatal },
{ CH_XID7_PENDING, CTC_EVENT_TIMER, ctcmpc_chx_resend },
{ CH_XID7_PENDING, CTC_EVENT_IO_EBUSY, ctcm_chx_fail },
{ CH_XID7_PENDING1, CTC_EVENT_FINSTAT, ctcmpc_chx_rx },
{ CH_XID7_PENDING1, CTC_EVENT_ATTN, ctcmpc_chx_attn },
{ CH_XID7_PENDING1, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CH_XID7_PENDING1, CTC_EVENT_START, ctcm_action_nop },
{ CH_XID7_PENDING1, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CH_XID7_PENDING1, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CH_XID7_PENDING1, CTC_EVENT_UC_ZERO, ctcmpc_chx_rx },
{ CH_XID7_PENDING1, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING1, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING1, CTC_EVENT_ATTNBUSY, ctcm_chx_iofatal },
{ CH_XID7_PENDING1, CTC_EVENT_TIMER, ctcmpc_chx_resend },
{ CH_XID7_PENDING1, CTC_EVENT_IO_EBUSY, ctcm_chx_fail },
{ CH_XID7_PENDING2, CTC_EVENT_FINSTAT, ctcmpc_chx_rx },
{ CH_XID7_PENDING2, CTC_EVENT_ATTN, ctcmpc_chx_attn },
{ CH_XID7_PENDING2, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CH_XID7_PENDING2, CTC_EVENT_START, ctcm_action_nop },
{ CH_XID7_PENDING2, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CH_XID7_PENDING2, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CH_XID7_PENDING2, CTC_EVENT_UC_ZERO, ctcmpc_chx_rx },
{ CH_XID7_PENDING2, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING2, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING2, CTC_EVENT_ATTNBUSY, ctcm_chx_iofatal },
{ CH_XID7_PENDING2, CTC_EVENT_TIMER, ctcmpc_chx_resend },
{ CH_XID7_PENDING2, CTC_EVENT_IO_EBUSY, ctcm_chx_fail },
{ CH_XID7_PENDING3, CTC_EVENT_FINSTAT, ctcmpc_chx_rx },
{ CH_XID7_PENDING3, CTC_EVENT_ATTN, ctcmpc_chx_attn },
{ CH_XID7_PENDING3, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CH_XID7_PENDING3, CTC_EVENT_START, ctcm_action_nop },
{ CH_XID7_PENDING3, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CH_XID7_PENDING3, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CH_XID7_PENDING3, CTC_EVENT_UC_ZERO, ctcmpc_chx_rx },
{ CH_XID7_PENDING3, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING3, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING3, CTC_EVENT_ATTNBUSY, ctcm_chx_iofatal },
{ CH_XID7_PENDING3, CTC_EVENT_TIMER, ctcmpc_chx_resend },
{ CH_XID7_PENDING3, CTC_EVENT_IO_EBUSY, ctcm_chx_fail },
{ CH_XID7_PENDING4, CTC_EVENT_FINSTAT, ctcmpc_chx_rx },
{ CH_XID7_PENDING4, CTC_EVENT_ATTN, ctcmpc_chx_attn },
{ CH_XID7_PENDING4, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CH_XID7_PENDING4, CTC_EVENT_START, ctcm_action_nop },
{ CH_XID7_PENDING4, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CH_XID7_PENDING4, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CH_XID7_PENDING4, CTC_EVENT_UC_ZERO, ctcmpc_chx_rx },
{ CH_XID7_PENDING4, CTC_EVENT_UC_RCRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING4, CTC_EVENT_UC_RSRESET, ctcm_chx_setuperr },
{ CH_XID7_PENDING4, CTC_EVENT_ATTNBUSY, ctcm_chx_iofatal },
{ CH_XID7_PENDING4, CTC_EVENT_TIMER, ctcmpc_chx_resend },
{ CH_XID7_PENDING4, CTC_EVENT_IO_EBUSY, ctcm_chx_fail },
{ CTC_STATE_RXIDLE, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_RXIDLE, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_RXIDLE, CTC_EVENT_FINSTAT, ctcmpc_chx_rx },
{ CTC_STATE_RXIDLE, CTC_EVENT_UC_RCRESET, ctcm_chx_rxdisc },
{ CTC_STATE_RXIDLE, CTC_EVENT_UC_RSRESET, ctcm_chx_fail },
{ CTC_STATE_RXIDLE, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_RXIDLE, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_RXIDLE, CTC_EVENT_UC_ZERO, ctcmpc_chx_rx },
{ CTC_STATE_TXINIT, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TXINIT, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_TXINIT, CTC_EVENT_FINSTAT, ctcm_chx_txidle },
{ CTC_STATE_TXINIT, CTC_EVENT_UC_RCRESET, ctcm_chx_txiniterr },
{ CTC_STATE_TXINIT, CTC_EVENT_UC_RSRESET, ctcm_chx_txiniterr },
{ CTC_STATE_TXINIT, CTC_EVENT_TIMER, ctcm_chx_txiniterr },
{ CTC_STATE_TXINIT, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_TXINIT, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_TXINIT, CTC_EVENT_RSWEEP_TIMER, ctcmpc_chx_send_sweep },
{ CTC_STATE_TXIDLE, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TXIDLE, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_TXIDLE, CTC_EVENT_FINSTAT, ctcmpc_chx_firstio },
{ CTC_STATE_TXIDLE, CTC_EVENT_UC_RCRESET, ctcm_chx_fail },
{ CTC_STATE_TXIDLE, CTC_EVENT_UC_RSRESET, ctcm_chx_fail },
{ CTC_STATE_TXIDLE, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_TXIDLE, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_TXIDLE, CTC_EVENT_RSWEEP_TIMER, ctcmpc_chx_send_sweep },
{ CTC_STATE_TERM, CTC_EVENT_STOP, ctcm_action_nop },
{ CTC_STATE_TERM, CTC_EVENT_START, ctcm_chx_restart },
{ CTC_STATE_TERM, CTC_EVENT_FINSTAT, ctcm_chx_stopped },
{ CTC_STATE_TERM, CTC_EVENT_UC_RCRESET, ctcm_action_nop },
{ CTC_STATE_TERM, CTC_EVENT_UC_RSRESET, ctcm_action_nop },
{ CTC_STATE_TERM, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_TERM, CTC_EVENT_IO_EBUSY, ctcm_chx_fail },
{ CTC_STATE_TERM, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_DTERM, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_DTERM, CTC_EVENT_START, ctcm_chx_restart },
{ CTC_STATE_DTERM, CTC_EVENT_FINSTAT, ctcm_chx_setmode },
{ CTC_STATE_DTERM, CTC_EVENT_UC_RCRESET, ctcm_action_nop },
{ CTC_STATE_DTERM, CTC_EVENT_UC_RSRESET, ctcm_action_nop },
{ CTC_STATE_DTERM, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_DTERM, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_TX, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TX, CTC_EVENT_START, ctcm_action_nop },
{ CTC_STATE_TX, CTC_EVENT_FINSTAT, ctcmpc_chx_txdone },
{ CTC_STATE_TX, CTC_EVENT_UC_RCRESET, ctcm_chx_fail },
{ CTC_STATE_TX, CTC_EVENT_UC_RSRESET, ctcm_chx_fail },
{ CTC_STATE_TX, CTC_EVENT_TIMER, ctcm_chx_txretry },
{ CTC_STATE_TX, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_TX, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_TX, CTC_EVENT_RSWEEP_TIMER, ctcmpc_chx_send_sweep },
{ CTC_STATE_TX, CTC_EVENT_IO_EBUSY, ctcm_chx_fail },
{ CTC_STATE_RXERR, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TXERR, CTC_EVENT_STOP, ctcm_chx_haltio },
{ CTC_STATE_TXERR, CTC_EVENT_IO_ENODEV, ctcm_chx_iofatal },
{ CTC_STATE_TXERR, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
{ CTC_STATE_RXERR, CTC_EVENT_MC_FAIL, ctcm_chx_fail },
};
int mpc_ch_fsm_len = ARRAY_SIZE(ctcmpc_ch_fsm);
/*
* Actions for interface - statemachine.
*/
/**
* Startup channels by sending CTC_EVENT_START to each channel.
*
* fi An instance of an interface statemachine.
* event The event, just happened.
* arg Generic pointer, casted from struct net_device * upon call.
*/
static void dev_action_start(fsm_instance *fi, int event, void *arg)
{
struct net_device *dev = arg;
struct ctcm_priv *priv = dev->priv;
int direction;
CTCMY_DBF_DEV_NAME(SETUP, dev, "");
fsm_deltimer(&priv->restart_timer);
fsm_newstate(fi, DEV_STATE_STARTWAIT_RXTX);
if (IS_MPC(priv))
priv->mpcg->channels_terminating = 0;
for (direction = READ; direction <= WRITE; direction++) {
struct channel *ch = priv->channel[direction];
fsm_event(ch->fsm, CTC_EVENT_START, ch);
}
}
/**
* Shutdown channels by sending CTC_EVENT_STOP to each channel.
*
* fi An instance of an interface statemachine.
* event The event, just happened.
* arg Generic pointer, casted from struct net_device * upon call.
*/
static void dev_action_stop(fsm_instance *fi, int event, void *arg)
{
int direction;
struct net_device *dev = arg;
struct ctcm_priv *priv = dev->priv;
CTCMY_DBF_DEV_NAME(SETUP, dev, "");
fsm_newstate(fi, DEV_STATE_STOPWAIT_RXTX);
for (direction = READ; direction <= WRITE; direction++) {
struct channel *ch = priv->channel[direction];
fsm_event(ch->fsm, CTC_EVENT_STOP, ch);
ch->th_seq_num = 0x00;
if (do_debug)
ctcm_pr_debug("ctcm: %s() CH_th_seq= %08x\n",
__FUNCTION__, ch->th_seq_num);
}
if (IS_MPC(priv))
fsm_newstate(priv->mpcg->fsm, MPCG_STATE_RESET);
}
static void dev_action_restart(fsm_instance *fi, int event, void *arg)
{
int restart_timer;
struct net_device *dev = arg;
struct ctcm_priv *priv = dev->priv;
CTCMY_DBF_DEV_NAME(TRACE, dev, "");
if (IS_MPC(priv)) {
ctcm_pr_info("ctcm: %s Restarting Device and "
"MPC Group in 5 seconds\n",
dev->name);
restart_timer = CTCM_TIME_1_SEC;
} else {
ctcm_pr_info("%s: Restarting\n", dev->name);
restart_timer = CTCM_TIME_5_SEC;
}
dev_action_stop(fi, event, arg);
fsm_event(priv->fsm, DEV_EVENT_STOP, dev);
if (IS_MPC(priv))
fsm_newstate(priv->mpcg->fsm, MPCG_STATE_RESET);
/* going back into start sequence too quickly can */
/* result in the other side becoming unreachable due */
/* to sense reported when IO is aborted */
fsm_addtimer(&priv->restart_timer, restart_timer,
DEV_EVENT_START, dev);
}
/**
* Called from channel statemachine
* when a channel is up and running.
*
* fi An instance of an interface statemachine.
* event The event, just happened.
* arg Generic pointer, casted from struct net_device * upon call.
*/
static void dev_action_chup(fsm_instance *fi, int event, void *arg)
{
struct net_device *dev = arg;
struct ctcm_priv *priv = dev->priv;
CTCMY_DBF_DEV_NAME(SETUP, dev, "");
switch (fsm_getstate(fi)) {
case DEV_STATE_STARTWAIT_RXTX:
if (event == DEV_EVENT_RXUP)
fsm_newstate(fi, DEV_STATE_STARTWAIT_TX);
else
fsm_newstate(fi, DEV_STATE_STARTWAIT_RX);
break;
case DEV_STATE_STARTWAIT_RX:
if (event == DEV_EVENT_RXUP) {
fsm_newstate(fi, DEV_STATE_RUNNING);
ctcm_pr_info("%s: connected with remote side\n",
dev->name);
ctcm_clear_busy(dev);
}
break;
case DEV_STATE_STARTWAIT_TX:
if (event == DEV_EVENT_TXUP) {
fsm_newstate(fi, DEV_STATE_RUNNING);
ctcm_pr_info("%s: connected with remote side\n",
dev->name);
ctcm_clear_busy(dev);
}
break;
case DEV_STATE_STOPWAIT_TX:
if (event == DEV_EVENT_RXUP)
fsm_newstate(fi, DEV_STATE_STOPWAIT_RXTX);
break;
case DEV_STATE_STOPWAIT_RX:
if (event == DEV_EVENT_TXUP)
fsm_newstate(fi, DEV_STATE_STOPWAIT_RXTX);
break;
}
if (IS_MPC(priv)) {
if (event == DEV_EVENT_RXUP)
mpc_channel_action(priv->channel[READ],
READ, MPC_CHANNEL_ADD);
else
mpc_channel_action(priv->channel[WRITE],
WRITE, MPC_CHANNEL_ADD);
}
}
/**
* Called from device statemachine
* when a channel has been shutdown.
*
* fi An instance of an interface statemachine.
* event The event, just happened.
* arg Generic pointer, casted from struct net_device * upon call.
*/
static void dev_action_chdown(fsm_instance *fi, int event, void *arg)
{
struct net_device *dev = arg;
struct ctcm_priv *priv = dev->priv;
CTCMY_DBF_DEV_NAME(SETUP, dev, "");
switch (fsm_getstate(fi)) {
case DEV_STATE_RUNNING:
if (event == DEV_EVENT_TXDOWN)
fsm_newstate(fi, DEV_STATE_STARTWAIT_TX);
else
fsm_newstate(fi, DEV_STATE_STARTWAIT_RX);
break;
case DEV_STATE_STARTWAIT_RX:
if (event == DEV_EVENT_TXDOWN)
fsm_newstate(fi, DEV_STATE_STARTWAIT_RXTX);
break;
case DEV_STATE_STARTWAIT_TX:
if (event == DEV_EVENT_RXDOWN)
fsm_newstate(fi, DEV_STATE_STARTWAIT_RXTX);
break;
case DEV_STATE_STOPWAIT_RXTX:
if (event == DEV_EVENT_TXDOWN)
fsm_newstate(fi, DEV_STATE_STOPWAIT_RX);
else
fsm_newstate(fi, DEV_STATE_STOPWAIT_TX);
break;
case DEV_STATE_STOPWAIT_RX:
if (event == DEV_EVENT_RXDOWN)
fsm_newstate(fi, DEV_STATE_STOPPED);
break;
case DEV_STATE_STOPWAIT_TX:
if (event == DEV_EVENT_TXDOWN)
fsm_newstate(fi, DEV_STATE_STOPPED);
break;
}
if (IS_MPC(priv)) {
if (event == DEV_EVENT_RXDOWN)
mpc_channel_action(priv->channel[READ],
READ, MPC_CHANNEL_REMOVE);
else
mpc_channel_action(priv->channel[WRITE],
WRITE, MPC_CHANNEL_REMOVE);
}
}
const fsm_node dev_fsm[] = {
{ DEV_STATE_STOPPED, DEV_EVENT_START, dev_action_start },
{ DEV_STATE_STOPWAIT_RXTX, DEV_EVENT_START, dev_action_start },
{ DEV_STATE_STOPWAIT_RXTX, DEV_EVENT_RXDOWN, dev_action_chdown },
{ DEV_STATE_STOPWAIT_RXTX, DEV_EVENT_TXDOWN, dev_action_chdown },
{ DEV_STATE_STOPWAIT_RXTX, DEV_EVENT_RESTART, dev_action_restart },
{ DEV_STATE_STOPWAIT_RX, DEV_EVENT_START, dev_action_start },
{ DEV_STATE_STOPWAIT_RX, DEV_EVENT_RXUP, dev_action_chup },
{ DEV_STATE_STOPWAIT_RX, DEV_EVENT_TXUP, dev_action_chup },
{ DEV_STATE_STOPWAIT_RX, DEV_EVENT_RXDOWN, dev_action_chdown },
{ DEV_STATE_STOPWAIT_RX, DEV_EVENT_RESTART, dev_action_restart },
{ DEV_STATE_STOPWAIT_TX, DEV_EVENT_START, dev_action_start },
{ DEV_STATE_STOPWAIT_TX, DEV_EVENT_RXUP, dev_action_chup },
{ DEV_STATE_STOPWAIT_TX, DEV_EVENT_TXUP, dev_action_chup },
{ DEV_STATE_STOPWAIT_TX, DEV_EVENT_TXDOWN, dev_action_chdown },
{ DEV_STATE_STOPWAIT_TX, DEV_EVENT_RESTART, dev_action_restart },
{ DEV_STATE_STARTWAIT_RXTX, DEV_EVENT_STOP, dev_action_stop },
{ DEV_STATE_STARTWAIT_RXTX, DEV_EVENT_RXUP, dev_action_chup },
{ DEV_STATE_STARTWAIT_RXTX, DEV_EVENT_TXUP, dev_action_chup },
{ DEV_STATE_STARTWAIT_RXTX, DEV_EVENT_RXDOWN, dev_action_chdown },
{ DEV_STATE_STARTWAIT_RXTX, DEV_EVENT_TXDOWN, dev_action_chdown },
{ DEV_STATE_STARTWAIT_RXTX, DEV_EVENT_RESTART, dev_action_restart },
{ DEV_STATE_STARTWAIT_TX, DEV_EVENT_STOP, dev_action_stop },
{ DEV_STATE_STARTWAIT_TX, DEV_EVENT_RXUP, dev_action_chup },
{ DEV_STATE_STARTWAIT_TX, DEV_EVENT_TXUP, dev_action_chup },
{ DEV_STATE_STARTWAIT_TX, DEV_EVENT_RXDOWN, dev_action_chdown },
{ DEV_STATE_STARTWAIT_TX, DEV_EVENT_RESTART, dev_action_restart },
{ DEV_STATE_STARTWAIT_RX, DEV_EVENT_STOP, dev_action_stop },
{ DEV_STATE_STARTWAIT_RX, DEV_EVENT_RXUP, dev_action_chup },
{ DEV_STATE_STARTWAIT_RX, DEV_EVENT_TXUP, dev_action_chup },
{ DEV_STATE_STARTWAIT_RX, DEV_EVENT_TXDOWN, dev_action_chdown },
{ DEV_STATE_STARTWAIT_RX, DEV_EVENT_RESTART, dev_action_restart },
{ DEV_STATE_RUNNING, DEV_EVENT_STOP, dev_action_stop },
{ DEV_STATE_RUNNING, DEV_EVENT_RXDOWN, dev_action_chdown },
{ DEV_STATE_RUNNING, DEV_EVENT_TXDOWN, dev_action_chdown },
{ DEV_STATE_RUNNING, DEV_EVENT_TXUP, ctcm_action_nop },
{ DEV_STATE_RUNNING, DEV_EVENT_RXUP, ctcm_action_nop },
{ DEV_STATE_RUNNING, DEV_EVENT_RESTART, dev_action_restart },
};
int dev_fsm_len = ARRAY_SIZE(dev_fsm);
/* --- This is the END my friend --- */
/*
* drivers/s390/net/ctcm_fsms.h
*
* Copyright IBM Corp. 2001, 2007
* Authors: Fritz Elfert (felfert@millenux.com)
* Peter Tiedemann (ptiedem@de.ibm.com)
* MPC additions :
* Belinda Thompson (belindat@us.ibm.com)
* Andy Richter (richtera@us.ibm.com)
*/
#ifndef _CTCM_FSMS_H_
#define _CTCM_FSMS_H_
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/bitops.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/ip.h>
#include <linux/if_arp.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ctype.h>
#include <net/dst.h>
#include <linux/io.h>
#include <asm/ccwdev.h>
#include <asm/ccwgroup.h>
#include <linux/uaccess.h>
#include <asm/idals.h>
#include "fsm.h"
#include "cu3088.h"
#include "ctcm_main.h"
/*
* Definitions for the channel statemachine(s) for ctc and ctcmpc
*
* To allow better kerntyping, prefix-less definitions for channel states
* and channel events have been replaced :
* ch_event... -> ctc_ch_event...
* CH_EVENT... -> CTC_EVENT...
* ch_state... -> ctc_ch_state...
* CH_STATE... -> CTC_STATE...
*/
/*
* Events of the channel statemachine(s) for ctc and ctcmpc
*/
enum ctc_ch_events {
/*
* Events, representing return code of
* I/O operations (ccw_device_start, ccw_device_halt et al.)
*/
CTC_EVENT_IO_SUCCESS,
CTC_EVENT_IO_EBUSY,
CTC_EVENT_IO_ENODEV,
CTC_EVENT_IO_UNKNOWN,
CTC_EVENT_ATTNBUSY,
CTC_EVENT_ATTN,
CTC_EVENT_BUSY,
/*
* Events, representing unit-check
*/
CTC_EVENT_UC_RCRESET,
CTC_EVENT_UC_RSRESET,
CTC_EVENT_UC_TXTIMEOUT,
CTC_EVENT_UC_TXPARITY,
CTC_EVENT_UC_HWFAIL,
CTC_EVENT_UC_RXPARITY,
CTC_EVENT_UC_ZERO,
CTC_EVENT_UC_UNKNOWN,
/*
* Events, representing subchannel-check
*/
CTC_EVENT_SC_UNKNOWN,
/*
* Events, representing machine checks
*/
CTC_EVENT_MC_FAIL,
CTC_EVENT_MC_GOOD,
/*
* Event, representing normal IRQ
*/
CTC_EVENT_IRQ,
CTC_EVENT_FINSTAT,
/*
* Event, representing timer expiry.
*/
CTC_EVENT_TIMER,
/*
* Events, representing commands from upper levels.
*/
CTC_EVENT_START,
CTC_EVENT_STOP,
CTC_NR_EVENTS,
/*
* additional MPC events
*/
CTC_EVENT_SEND_XID = CTC_NR_EVENTS,
CTC_EVENT_RSWEEP_TIMER,
/*
* MUST be always the last element!!
*/
CTC_MPC_NR_EVENTS,
};
/*
* States of the channel statemachine(s) for ctc and ctcmpc.
*/
enum ctc_ch_states {
/*
* Channel not assigned to any device,
* initial state, direction invalid
*/
CTC_STATE_IDLE,
/*
* Channel assigned but not operating
*/
CTC_STATE_STOPPED,
CTC_STATE_STARTWAIT,
CTC_STATE_STARTRETRY,
CTC_STATE_SETUPWAIT,
CTC_STATE_RXINIT,
CTC_STATE_TXINIT,
CTC_STATE_RX,
CTC_STATE_TX,
CTC_STATE_RXIDLE,
CTC_STATE_TXIDLE,
CTC_STATE_RXERR,
CTC_STATE_TXERR,
CTC_STATE_TERM,
CTC_STATE_DTERM,
CTC_STATE_NOTOP,
CTC_NR_STATES, /* MUST be the last element of non-expanded states */
/*
* additional MPC states
*/
CH_XID0_PENDING = CTC_NR_STATES,
CH_XID0_INPROGRESS,
CH_XID7_PENDING,
CH_XID7_PENDING1,
CH_XID7_PENDING2,
CH_XID7_PENDING3,
CH_XID7_PENDING4,
CTC_MPC_NR_STATES, /* MUST be the last element of expanded mpc states */
};
extern const char *ctc_ch_event_names[];
extern const char *ctc_ch_state_names[];
void ctcm_ccw_check_rc(struct channel *ch, int rc, char *msg);
void ctcm_purge_skb_queue(struct sk_buff_head *q);
void fsm_action_nop(fsm_instance *fi, int event, void *arg);
/*
* ----- non-static actions for ctcm channel statemachine -----
*
*/
void ctcm_chx_txidle(fsm_instance *fi, int event, void *arg);
/*
* ----- FSM (state/event/action) of the ctcm channel statemachine -----
*/
extern const fsm_node ch_fsm[];
extern int ch_fsm_len;
/*
* ----- non-static actions for ctcmpc channel statemachine ----
*
*/
/* shared :
void ctcm_chx_txidle(fsm_instance * fi, int event, void *arg);
*/
void ctcmpc_chx_rxidle(fsm_instance *fi, int event, void *arg);
/*
* ----- FSM (state/event/action) of the ctcmpc channel statemachine -----
*/
extern const fsm_node ctcmpc_ch_fsm[];
extern int mpc_ch_fsm_len;
/*
* Definitions for the device interface statemachine for ctc and mpc
*/
/*
* States of the device interface statemachine.
*/
enum dev_states {
DEV_STATE_STOPPED,
DEV_STATE_STARTWAIT_RXTX,
DEV_STATE_STARTWAIT_RX,
DEV_STATE_STARTWAIT_TX,
DEV_STATE_STOPWAIT_RXTX,
DEV_STATE_STOPWAIT_RX,
DEV_STATE_STOPWAIT_TX,
DEV_STATE_RUNNING,
/*
* MUST be always the last element!!
*/
CTCM_NR_DEV_STATES
};
extern const char *dev_state_names[];
/*
* Events of the device interface statemachine.
* ctcm and ctcmpc
*/
enum dev_events {
DEV_EVENT_START,
DEV_EVENT_STOP,
DEV_EVENT_RXUP,
DEV_EVENT_TXUP,
DEV_EVENT_RXDOWN,
DEV_EVENT_TXDOWN,
DEV_EVENT_RESTART,
/*
* MUST be always the last element!!
*/
CTCM_NR_DEV_EVENTS
};
extern const char *dev_event_names[];
/*
* Actions for the device interface statemachine.
* ctc and ctcmpc
*/
/*
static void dev_action_start(fsm_instance * fi, int event, void *arg);
static void dev_action_stop(fsm_instance * fi, int event, void *arg);
static void dev_action_restart(fsm_instance *fi, int event, void *arg);
static void dev_action_chup(fsm_instance * fi, int event, void *arg);
static void dev_action_chdown(fsm_instance * fi, int event, void *arg);
*/
/*
* The (state/event/action) fsm table of the device interface statemachine.
* ctcm and ctcmpc
*/
extern const fsm_node dev_fsm[];
extern int dev_fsm_len;
/*
* Definitions for the MPC Group statemachine
*/
/*
* MPC Group Station FSM States
State Name When In This State
====================== =======================================
MPCG_STATE_RESET Initial State When Driver Loaded
We receive and send NOTHING
MPCG_STATE_INOP INOP Received.
Group level non-recoverable error
MPCG_STATE_READY XID exchanges for at least 1 write and
1 read channel have completed.
Group is ready for data transfer.
States from ctc_mpc_alloc_channel
==============================================================
MPCG_STATE_XID2INITW Awaiting XID2(0) Initiation
ATTN from other side will start
XID negotiations.
Y-side protocol only.
MPCG_STATE_XID2INITX XID2(0) negotiations are in progress.
At least 1, but not all, XID2(0)'s
have been received from partner.
MPCG_STATE_XID7INITW XID2(0) complete
No XID2(7)'s have yet been received.
XID2(7) negotiations pending.
MPCG_STATE_XID7INITX XID2(7) negotiations in progress.
At least 1, but not all, XID2(7)'s
have been received from partner.
MPCG_STATE_XID7INITF XID2(7) negotiations complete.
Transitioning to READY.
MPCG_STATE_READY Ready for Data Transfer.
States from ctc_mpc_establish_connectivity call
==============================================================
MPCG_STATE_XID0IOWAIT Initiating XID2(0) negotiations.
X-side protocol only.
ATTN-BUSY from other side will convert
this to Y-side protocol and the
ctc_mpc_alloc_channel flow will begin.
MPCG_STATE_XID0IOWAIX XID2(0) negotiations are in progress.
At least 1, but not all, XID2(0)'s
have been received from partner.
MPCG_STATE_XID7INITI XID2(0) complete
No XID2(7)'s have yet been received.
XID2(7) negotiations pending.
MPCG_STATE_XID7INITZ XID2(7) negotiations in progress.
At least 1, but not all, XID2(7)'s
have been received from partner.
MPCG_STATE_XID7INITF XID2(7) negotiations complete.
Transitioning to READY.
MPCG_STATE_READY Ready for Data Transfer.
*/
enum mpcg_events {
MPCG_EVENT_INOP,
MPCG_EVENT_DISCONC,
MPCG_EVENT_XID0DO,
MPCG_EVENT_XID2,
MPCG_EVENT_XID2DONE,
MPCG_EVENT_XID7DONE,
MPCG_EVENT_TIMER,
MPCG_EVENT_DOIO,
MPCG_NR_EVENTS,
};
enum mpcg_states {
MPCG_STATE_RESET,
MPCG_STATE_INOP,
MPCG_STATE_XID2INITW,
MPCG_STATE_XID2INITX,
MPCG_STATE_XID7INITW,
MPCG_STATE_XID7INITX,
MPCG_STATE_XID0IOWAIT,
MPCG_STATE_XID0IOWAIX,
MPCG_STATE_XID7INITI,
MPCG_STATE_XID7INITZ,
MPCG_STATE_XID7INITF,
MPCG_STATE_FLOWC,
MPCG_STATE_READY,
MPCG_NR_STATES,
};
#endif
/* --- This is the END my friend --- */
/*
* drivers/s390/net/ctcm_main.c
*
* Copyright IBM Corp. 2001, 2007
* Author(s):
* Original CTC driver(s):
* Fritz Elfert (felfert@millenux.com)
* Dieter Wellerdiek (wel@de.ibm.com)
* Martin Schwidefsky (schwidefsky@de.ibm.com)
* Denis Joseph Barrow (barrow_dj@yahoo.com)
* Jochen Roehrig (roehrig@de.ibm.com)
* Cornelia Huck <cornelia.huck@de.ibm.com>
* MPC additions:
* Belinda Thompson (belindat@us.ibm.com)
* Andy Richter (richtera@us.ibm.com)
* Revived by:
* Peter Tiedemann (ptiedem@de.ibm.com)
*/
#undef DEBUG
#undef DEBUGDATA
#undef DEBUGCCW
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/bitops.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/ip.h>
#include <linux/if_arp.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ctype.h>
#include <net/dst.h>
#include <linux/io.h>
#include <asm/ccwdev.h>
#include <asm/ccwgroup.h>
#include <linux/uaccess.h>
#include <asm/idals.h>
#include "cu3088.h"
#include "ctcm_fsms.h"
#include "ctcm_main.h"
/* Some common global variables */
/*
* Linked list of all detected channels.
*/
struct channel *channels;
/**
* Unpack a just received skb and hand it over to
* upper layers.
*
* ch The channel where this skb has been received.
* pskb The received skb.
*/
void ctcm_unpack_skb(struct channel *ch, struct sk_buff *pskb)
{
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
__u16 len = *((__u16 *) pskb->data);
skb_put(pskb, 2 + LL_HEADER_LENGTH);
skb_pull(pskb, 2);
pskb->dev = dev;
pskb->ip_summed = CHECKSUM_UNNECESSARY;
while (len > 0) {
struct sk_buff *skb;
int skblen;
struct ll_header *header = (struct ll_header *)pskb->data;
skb_pull(pskb, LL_HEADER_LENGTH);
if ((ch->protocol == CTCM_PROTO_S390) &&
(header->type != ETH_P_IP)) {
if (!(ch->logflags & LOG_FLAG_ILLEGALPKT)) {
/*
* Check packet type only if we stick strictly
* to S/390's protocol of OS390. This only
* supports IP. Otherwise allow any packet
* type.
*/
ctcm_pr_warn("%s Illegal packet type 0x%04x "
"received, dropping\n",
dev->name, header->type);
ch->logflags |= LOG_FLAG_ILLEGALPKT;
}
priv->stats.rx_dropped++;
priv->stats.rx_frame_errors++;
return;
}
pskb->protocol = ntohs(header->type);
if (header->length <= LL_HEADER_LENGTH) {
if (!(ch->logflags & LOG_FLAG_ILLEGALSIZE)) {
ctcm_pr_warn(
"%s Illegal packet size %d "
"received (MTU=%d blocklen=%d), "
"dropping\n", dev->name, header->length,
dev->mtu, len);
ch->logflags |= LOG_FLAG_ILLEGALSIZE;
}
priv->stats.rx_dropped++;
priv->stats.rx_length_errors++;
return;
}
header->length -= LL_HEADER_LENGTH;
len -= LL_HEADER_LENGTH;
if ((header->length > skb_tailroom(pskb)) ||
(header->length > len)) {
if (!(ch->logflags & LOG_FLAG_OVERRUN)) {
ctcm_pr_warn(
"%s Illegal packet size %d (beyond the"
" end of received data), dropping\n",
dev->name, header->length);
ch->logflags |= LOG_FLAG_OVERRUN;
}
priv->stats.rx_dropped++;
priv->stats.rx_length_errors++;
return;
}
skb_put(pskb, header->length);
skb_reset_mac_header(pskb);
len -= header->length;
skb = dev_alloc_skb(pskb->len);
if (!skb) {
if (!(ch->logflags & LOG_FLAG_NOMEM)) {
ctcm_pr_warn(
"%s Out of memory in ctcm_unpack_skb\n",
dev->name);
ch->logflags |= LOG_FLAG_NOMEM;
}
priv->stats.rx_dropped++;
return;
}
skb_copy_from_linear_data(pskb, skb_put(skb, pskb->len),
pskb->len);
skb_reset_mac_header(skb);
skb->dev = pskb->dev;
skb->protocol = pskb->protocol;
pskb->ip_summed = CHECKSUM_UNNECESSARY;
skblen = skb->len;
/*
* reset logflags
*/
ch->logflags = 0;
priv->stats.rx_packets++;
priv->stats.rx_bytes += skblen;
netif_rx_ni(skb);
dev->last_rx = jiffies;
if (len > 0) {
skb_pull(pskb, header->length);
if (skb_tailroom(pskb) < LL_HEADER_LENGTH) {
if (!(ch->logflags & LOG_FLAG_OVERRUN)) {
CTCM_DBF_DEV_NAME(TRACE, dev,
"Overrun in ctcm_unpack_skb");
ch->logflags |= LOG_FLAG_OVERRUN;
}
return;
}
skb_put(pskb, LL_HEADER_LENGTH);
}
}
}
/**
* Release a specific channel in the channel list.
*
* ch Pointer to channel struct to be released.
*/
static void channel_free(struct channel *ch)
{
CTCM_DBF_TEXT(TRACE, 2, __FUNCTION__);
ch->flags &= ~CHANNEL_FLAGS_INUSE;
fsm_newstate(ch->fsm, CTC_STATE_IDLE);
}
/**
* Remove a specific channel in the channel list.
*
* ch Pointer to channel struct to be released.
*/
static void channel_remove(struct channel *ch)
{
struct channel **c = &channels;
char chid[CTCM_ID_SIZE+1];
int ok = 0;
if (ch == NULL)
return;
else
strncpy(chid, ch->id, CTCM_ID_SIZE);
channel_free(ch);
while (*c) {
if (*c == ch) {
*c = ch->next;
fsm_deltimer(&ch->timer);
if (IS_MPC(ch))
fsm_deltimer(&ch->sweep_timer);
kfree_fsm(ch->fsm);
clear_normalized_cda(&ch->ccw[4]);
if (ch->trans_skb != NULL) {
clear_normalized_cda(&ch->ccw[1]);
dev_kfree_skb_any(ch->trans_skb);
}
if (IS_MPC(ch)) {
tasklet_kill(&ch->ch_tasklet);
tasklet_kill(&ch->ch_disc_tasklet);
kfree(ch->discontact_th);
}
kfree(ch->ccw);
kfree(ch->irb);
kfree(ch);
ok = 1;
break;
}
c = &((*c)->next);
}
CTCM_DBF_TEXT_(SETUP, CTC_DBF_INFO, "%s(%s) %s", CTCM_FUNTAIL,
chid, ok ? "OK" : "failed");
}
/**
* Get a specific channel from the channel list.
*
* type Type of channel we are interested in.
* id Id of channel we are interested in.
* direction Direction we want to use this channel for.
*
* returns Pointer to a channel or NULL if no matching channel available.
*/
static struct channel *channel_get(enum channel_types type,
char *id, int direction)
{
struct channel *ch = channels;
if (do_debug) {
char buf[64];
sprintf(buf, "%s(%d, %s, %d)\n",
CTCM_FUNTAIL, type, id, direction);
CTCM_DBF_TEXT(TRACE, CTC_DBF_INFO, buf);
}
while (ch && (strncmp(ch->id, id, CTCM_ID_SIZE) || (ch->type != type)))
ch = ch->next;
if (!ch) {
char buf[64];
sprintf(buf, "%s(%d, %s, %d) not found in channel list\n",
CTCM_FUNTAIL, type, id, direction);
CTCM_DBF_TEXT(ERROR, CTC_DBF_ERROR, buf);
} else {
if (ch->flags & CHANNEL_FLAGS_INUSE)
ch = NULL;
else {
ch->flags |= CHANNEL_FLAGS_INUSE;
ch->flags &= ~CHANNEL_FLAGS_RWMASK;
ch->flags |= (direction == WRITE)
? CHANNEL_FLAGS_WRITE : CHANNEL_FLAGS_READ;
fsm_newstate(ch->fsm, CTC_STATE_STOPPED);
}
}
return ch;
}
static long ctcm_check_irb_error(struct ccw_device *cdev, struct irb *irb)
{
if (!IS_ERR(irb))
return 0;
CTCM_DBF_TEXT_(ERROR, CTC_DBF_WARN, "irb error %ld on device %s\n",
PTR_ERR(irb), cdev->dev.bus_id);
switch (PTR_ERR(irb)) {
case -EIO:
ctcm_pr_warn("i/o-error on device %s\n", cdev->dev.bus_id);
break;
case -ETIMEDOUT:
ctcm_pr_warn("timeout on device %s\n", cdev->dev.bus_id);
break;
default:
ctcm_pr_warn("unknown error %ld on device %s\n",
PTR_ERR(irb), cdev->dev.bus_id);
}
return PTR_ERR(irb);
}
/**
* Check sense of a unit check.
*
* ch The channel, the sense code belongs to.
* sense The sense code to inspect.
*/
static inline void ccw_unit_check(struct channel *ch, unsigned char sense)
{
CTCM_DBF_TEXT(TRACE, 5, __FUNCTION__);
if (sense & SNS0_INTERVENTION_REQ) {
if (sense & 0x01) {
ctcm_pr_debug("%s: Interface disc. or Sel. reset "
"(remote)\n", ch->id);
fsm_event(ch->fsm, CTC_EVENT_UC_RCRESET, ch);
} else {
ctcm_pr_debug("%s: System reset (remote)\n", ch->id);
fsm_event(ch->fsm, CTC_EVENT_UC_RSRESET, ch);
}
} else if (sense & SNS0_EQUIPMENT_CHECK) {
if (sense & SNS0_BUS_OUT_CHECK) {
ctcm_pr_warn("%s: Hardware malfunction (remote)\n",
ch->id);
fsm_event(ch->fsm, CTC_EVENT_UC_HWFAIL, ch);
} else {
ctcm_pr_warn("%s: Read-data parity error (remote)\n",
ch->id);
fsm_event(ch->fsm, CTC_EVENT_UC_RXPARITY, ch);
}
} else if (sense & SNS0_BUS_OUT_CHECK) {
if (sense & 0x04) {
ctcm_pr_warn("%s: Data-streaming timeout)\n", ch->id);
fsm_event(ch->fsm, CTC_EVENT_UC_TXTIMEOUT, ch);
} else {
ctcm_pr_warn("%s: Data-transfer parity error\n",
ch->id);
fsm_event(ch->fsm, CTC_EVENT_UC_TXPARITY, ch);
}
} else if (sense & SNS0_CMD_REJECT) {
ctcm_pr_warn("%s: Command reject\n", ch->id);
} else if (sense == 0) {
ctcm_pr_debug("%s: Unit check ZERO\n", ch->id);
fsm_event(ch->fsm, CTC_EVENT_UC_ZERO, ch);
} else {
ctcm_pr_warn("%s: Unit Check with sense code: %02x\n",
ch->id, sense);
fsm_event(ch->fsm, CTC_EVENT_UC_UNKNOWN, ch);
}
}
int ctcm_ch_alloc_buffer(struct channel *ch)
{
CTCM_DBF_TEXT(TRACE, 5, __FUNCTION__);
clear_normalized_cda(&ch->ccw[1]);
ch->trans_skb = __dev_alloc_skb(ch->max_bufsize, GFP_ATOMIC | GFP_DMA);
if (ch->trans_skb == NULL) {
ctcm_pr_warn("%s: Couldn't alloc %s trans_skb\n",
ch->id,
(CHANNEL_DIRECTION(ch->flags) == READ) ? "RX" : "TX");
return -ENOMEM;
}
ch->ccw[1].count = ch->max_bufsize;
if (set_normalized_cda(&ch->ccw[1], ch->trans_skb->data)) {
dev_kfree_skb(ch->trans_skb);
ch->trans_skb = NULL;
ctcm_pr_warn("%s: set_normalized_cda for %s "
"trans_skb failed, dropping packets\n",
ch->id,
(CHANNEL_DIRECTION(ch->flags) == READ) ? "RX" : "TX");
return -ENOMEM;
}
ch->ccw[1].count = 0;
ch->trans_skb_data = ch->trans_skb->data;
ch->flags &= ~CHANNEL_FLAGS_BUFSIZE_CHANGED;
return 0;
}
/*
* Interface API for upper network layers
*/
/**
* Open an interface.
* Called from generic network layer when ifconfig up is run.
*
* dev Pointer to interface struct.
*
* returns 0 on success, -ERRNO on failure. (Never fails.)
*/
int ctcm_open(struct net_device *dev)
{
struct ctcm_priv *priv = dev->priv;
CTCMY_DBF_DEV_NAME(SETUP, dev, "");
if (!IS_MPC(priv))
fsm_event(priv->fsm, DEV_EVENT_START, dev);
return 0;
}
/**
* Close an interface.
* Called from generic network layer when ifconfig down is run.
*
* dev Pointer to interface struct.
*
* returns 0 on success, -ERRNO on failure. (Never fails.)
*/
int ctcm_close(struct net_device *dev)
{
struct ctcm_priv *priv = dev->priv;
CTCMY_DBF_DEV_NAME(SETUP, dev, "");
if (!IS_MPC(priv))
fsm_event(priv->fsm, DEV_EVENT_STOP, dev);
return 0;
}
/**
* Transmit a packet.
* This is a helper function for ctcm_tx().
*
* ch Channel to be used for sending.
* skb Pointer to struct sk_buff of packet to send.
* The linklevel header has already been set up
* by ctcm_tx().
*
* returns 0 on success, -ERRNO on failure. (Never fails.)
*/
static int ctcm_transmit_skb(struct channel *ch, struct sk_buff *skb)
{
unsigned long saveflags;
struct ll_header header;
int rc = 0;
__u16 block_len;
int ccw_idx;
struct sk_buff *nskb;
unsigned long hi;
/* we need to acquire the lock for testing the state
* otherwise we can have an IRQ changing the state to
* TXIDLE after the test but before acquiring the lock.
*/
spin_lock_irqsave(&ch->collect_lock, saveflags);
if (fsm_getstate(ch->fsm) != CTC_STATE_TXIDLE) {
int l = skb->len + LL_HEADER_LENGTH;
if (ch->collect_len + l > ch->max_bufsize - 2) {
spin_unlock_irqrestore(&ch->collect_lock, saveflags);
return -EBUSY;
} else {
atomic_inc(&skb->users);
header.length = l;
header.type = skb->protocol;
header.unused = 0;
memcpy(skb_push(skb, LL_HEADER_LENGTH), &header,
LL_HEADER_LENGTH);
skb_queue_tail(&ch->collect_queue, skb);
ch->collect_len += l;
}
spin_unlock_irqrestore(&ch->collect_lock, saveflags);
goto done;
}
spin_unlock_irqrestore(&ch->collect_lock, saveflags);
/*
* Protect skb against beeing free'd by upper
* layers.
*/
atomic_inc(&skb->users);
ch->prof.txlen += skb->len;
header.length = skb->len + LL_HEADER_LENGTH;
header.type = skb->protocol;
header.unused = 0;
memcpy(skb_push(skb, LL_HEADER_LENGTH), &header, LL_HEADER_LENGTH);
block_len = skb->len + 2;
*((__u16 *)skb_push(skb, 2)) = block_len;
/*
* IDAL support in CTCM is broken, so we have to
* care about skb's above 2G ourselves.
*/
hi = ((unsigned long)skb_tail_pointer(skb) + LL_HEADER_LENGTH) >> 31;
if (hi) {
nskb = alloc_skb(skb->len, GFP_ATOMIC | GFP_DMA);
if (!nskb) {
atomic_dec(&skb->users);
skb_pull(skb, LL_HEADER_LENGTH + 2);
ctcm_clear_busy(ch->netdev);
return -ENOMEM;
} else {
memcpy(skb_put(nskb, skb->len), skb->data, skb->len);
atomic_inc(&nskb->users);
atomic_dec(&skb->users);
dev_kfree_skb_irq(skb);
skb = nskb;
}
}
ch->ccw[4].count = block_len;
if (set_normalized_cda(&ch->ccw[4], skb->data)) {
/*
* idal allocation failed, try via copying to
* trans_skb. trans_skb usually has a pre-allocated
* idal.
*/
if (ctcm_checkalloc_buffer(ch)) {
/*
* Remove our header. It gets added
* again on retransmit.
*/
atomic_dec(&skb->users);
skb_pull(skb, LL_HEADER_LENGTH + 2);
ctcm_clear_busy(ch->netdev);
return -EBUSY;
}
skb_reset_tail_pointer(ch->trans_skb);
ch->trans_skb->len = 0;
ch->ccw[1].count = skb->len;
skb_copy_from_linear_data(skb,
skb_put(ch->trans_skb, skb->len), skb->len);
atomic_dec(&skb->users);
dev_kfree_skb_irq(skb);
ccw_idx = 0;
} else {
skb_queue_tail(&ch->io_queue, skb);
ccw_idx = 3;
}
ch->retry = 0;
fsm_newstate(ch->fsm, CTC_STATE_TX);
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch);
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
ch->prof.send_stamp = current_kernel_time(); /* xtime */
rc = ccw_device_start(ch->cdev, &ch->ccw[ccw_idx],
(unsigned long)ch, 0xff, 0);
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags);
if (ccw_idx == 3)
ch->prof.doios_single++;
if (rc != 0) {
fsm_deltimer(&ch->timer);
ctcm_ccw_check_rc(ch, rc, "single skb TX");
if (ccw_idx == 3)
skb_dequeue_tail(&ch->io_queue);
/*
* Remove our header. It gets added
* again on retransmit.
*/
skb_pull(skb, LL_HEADER_LENGTH + 2);
} else if (ccw_idx == 0) {
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len - LL_HEADER_LENGTH;
}
done:
ctcm_clear_busy(ch->netdev);
return rc;
}
static void ctcmpc_send_sweep_req(struct channel *rch)
{
struct net_device *dev = rch->netdev;
struct ctcm_priv *priv;
struct mpc_group *grp;
struct th_sweep *header;
struct sk_buff *sweep_skb;
struct channel *ch;
int rc = 0;
priv = dev->priv;
grp = priv->mpcg;
ch = priv->channel[WRITE];
if (do_debug)
MPC_DBF_DEV_NAME(TRACE, dev, ch->id);
/* sweep processing is not complete until response and request */
/* has completed for all read channels in group */
if (grp->in_sweep == 0) {
grp->in_sweep = 1;
grp->sweep_rsp_pend_num = grp->active_channels[READ];
grp->sweep_req_pend_num = grp->active_channels[READ];
}
sweep_skb = __dev_alloc_skb(MPC_BUFSIZE_DEFAULT, GFP_ATOMIC|GFP_DMA);
if (sweep_skb == NULL) {
printk(KERN_INFO "Couldn't alloc sweep_skb\n");
rc = -ENOMEM;
goto done;
}
header = kmalloc(TH_SWEEP_LENGTH, gfp_type());
if (!header) {
dev_kfree_skb_any(sweep_skb);
rc = -ENOMEM;
goto done;
}
header->th.th_seg = 0x00 ;
header->th.th_ch_flag = TH_SWEEP_REQ; /* 0x0f */
header->th.th_blk_flag = 0x00;
header->th.th_is_xid = 0x00;
header->th.th_seq_num = 0x00;
header->sw.th_last_seq = ch->th_seq_num;
memcpy(skb_put(sweep_skb, TH_SWEEP_LENGTH), header, TH_SWEEP_LENGTH);
kfree(header);
dev->trans_start = jiffies;
skb_queue_tail(&ch->sweep_queue, sweep_skb);
fsm_addtimer(&ch->sweep_timer, 100, CTC_EVENT_RSWEEP_TIMER, ch);
return;
done:
if (rc != 0) {
grp->in_sweep = 0;
ctcm_clear_busy(dev);
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
}
return;
}
/*
* MPC mode version of transmit_skb
*/
static int ctcmpc_transmit_skb(struct channel *ch, struct sk_buff *skb)
{
struct pdu *p_header;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
struct th_header *header;
struct sk_buff *nskb;
int rc = 0;
int ccw_idx;
unsigned long hi;
unsigned long saveflags = 0; /* avoids compiler warning */
__u16 block_len;
if (do_debug)
ctcm_pr_debug(
"ctcm enter: %s(): %s cp=%i ch=0x%p id=%s state=%s\n",
__FUNCTION__, dev->name, smp_processor_id(), ch,
ch->id, fsm_getstate_str(ch->fsm));
if ((fsm_getstate(ch->fsm) != CTC_STATE_TXIDLE) || grp->in_sweep) {
spin_lock_irqsave(&ch->collect_lock, saveflags);
atomic_inc(&skb->users);
p_header = kmalloc(PDU_HEADER_LENGTH, gfp_type());
if (!p_header) {
printk(KERN_WARNING "ctcm: OUT OF MEMORY IN %s():"
" Data Lost \n", __FUNCTION__);
atomic_dec(&skb->users);
dev_kfree_skb_any(skb);
spin_unlock_irqrestore(&ch->collect_lock, saveflags);
fsm_event(priv->mpcg->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
p_header->pdu_offset = skb->len;
p_header->pdu_proto = 0x01;
p_header->pdu_flag = 0x00;
if (skb->protocol == ntohs(ETH_P_SNAP)) {
p_header->pdu_flag |= PDU_FIRST | PDU_CNTL;
} else {
p_header->pdu_flag |= PDU_FIRST;
}
p_header->pdu_seq = 0;
memcpy(skb_push(skb, PDU_HEADER_LENGTH), p_header,
PDU_HEADER_LENGTH);
if (do_debug_data) {
ctcm_pr_debug("ctcm: %s() Putting on collect_q"
" - skb len: %04x \n", __FUNCTION__, skb->len);
ctcm_pr_debug("ctcm: %s() pdu header and data"
" for up to 32 bytes\n", __FUNCTION__);
ctcmpc_dump32((char *)skb->data, skb->len);
}
skb_queue_tail(&ch->collect_queue, skb);
ch->collect_len += skb->len;
kfree(p_header);
spin_unlock_irqrestore(&ch->collect_lock, saveflags);
goto done;
}
/*
* Protect skb against beeing free'd by upper
* layers.
*/
atomic_inc(&skb->users);
block_len = skb->len + TH_HEADER_LENGTH + PDU_HEADER_LENGTH;
/*
* IDAL support in CTCM is broken, so we have to
* care about skb's above 2G ourselves.
*/
hi = ((unsigned long)skb->tail + TH_HEADER_LENGTH) >> 31;
if (hi) {
nskb = __dev_alloc_skb(skb->len, GFP_ATOMIC | GFP_DMA);
if (!nskb) {
printk(KERN_WARNING "ctcm: %s() OUT OF MEMORY"
"- Data Lost \n", __FUNCTION__);
atomic_dec(&skb->users);
dev_kfree_skb_any(skb);
fsm_event(priv->mpcg->fsm, MPCG_EVENT_INOP, dev);
goto done;
} else {
memcpy(skb_put(nskb, skb->len), skb->data, skb->len);
atomic_inc(&nskb->users);
atomic_dec(&skb->users);
dev_kfree_skb_irq(skb);
skb = nskb;
}
}
p_header = kmalloc(PDU_HEADER_LENGTH, gfp_type());
if (!p_header) {
printk(KERN_WARNING "ctcm: %s() OUT OF MEMORY"
": Data Lost \n", __FUNCTION__);
atomic_dec(&skb->users);
dev_kfree_skb_any(skb);
fsm_event(priv->mpcg->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
p_header->pdu_offset = skb->len;
p_header->pdu_proto = 0x01;
p_header->pdu_flag = 0x00;
p_header->pdu_seq = 0;
if (skb->protocol == ntohs(ETH_P_SNAP)) {
p_header->pdu_flag |= PDU_FIRST | PDU_CNTL;
} else {
p_header->pdu_flag |= PDU_FIRST;
}
memcpy(skb_push(skb, PDU_HEADER_LENGTH), p_header, PDU_HEADER_LENGTH);
kfree(p_header);
if (ch->collect_len > 0) {
spin_lock_irqsave(&ch->collect_lock, saveflags);
skb_queue_tail(&ch->collect_queue, skb);
ch->collect_len += skb->len;
skb = skb_dequeue(&ch->collect_queue);
ch->collect_len -= skb->len;
spin_unlock_irqrestore(&ch->collect_lock, saveflags);
}
p_header = (struct pdu *)skb->data;
p_header->pdu_flag |= PDU_LAST;
ch->prof.txlen += skb->len - PDU_HEADER_LENGTH;
header = kmalloc(TH_HEADER_LENGTH, gfp_type());
if (!header) {
printk(KERN_WARNING "ctcm: %s() OUT OF MEMORY: Data Lost \n",
__FUNCTION__);
atomic_dec(&skb->users);
dev_kfree_skb_any(skb);
fsm_event(priv->mpcg->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
header->th_seg = 0x00;
header->th_ch_flag = TH_HAS_PDU; /* Normal data */
header->th_blk_flag = 0x00;
header->th_is_xid = 0x00; /* Just data here */
ch->th_seq_num++;
header->th_seq_num = ch->th_seq_num;
if (do_debug_data)
ctcm_pr_debug("ctcm: %s() ToVTAM_th_seq= %08x\n" ,
__FUNCTION__, ch->th_seq_num);
/* put the TH on the packet */
memcpy(skb_push(skb, TH_HEADER_LENGTH), header, TH_HEADER_LENGTH);
kfree(header);
if (do_debug_data) {
ctcm_pr_debug("ctcm: %s(): skb len: %04x \n",
__FUNCTION__, skb->len);
ctcm_pr_debug("ctcm: %s(): pdu header and data for up to 32 "
"bytes sent to vtam\n", __FUNCTION__);
ctcmpc_dump32((char *)skb->data, skb->len);
}
ch->ccw[4].count = skb->len;
if (set_normalized_cda(&ch->ccw[4], skb->data)) {
/*
* idal allocation failed, try via copying to
* trans_skb. trans_skb usually has a pre-allocated
* idal.
*/
if (ctcm_checkalloc_buffer(ch)) {
/*
* Remove our header. It gets added
* again on retransmit.
*/
atomic_dec(&skb->users);
dev_kfree_skb_any(skb);
printk(KERN_WARNING "ctcm: %s()OUT OF MEMORY:"
" Data Lost \n", __FUNCTION__);
fsm_event(priv->mpcg->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
skb_reset_tail_pointer(ch->trans_skb);
ch->trans_skb->len = 0;
ch->ccw[1].count = skb->len;
memcpy(skb_put(ch->trans_skb, skb->len), skb->data, skb->len);
atomic_dec(&skb->users);
dev_kfree_skb_irq(skb);
ccw_idx = 0;
if (do_debug_data) {
ctcm_pr_debug("ctcm: %s() TRANS skb len: %d \n",
__FUNCTION__, ch->trans_skb->len);
ctcm_pr_debug("ctcm: %s up to 32 bytes of data"
" sent to vtam\n", __FUNCTION__);
ctcmpc_dump32((char *)ch->trans_skb->data,
ch->trans_skb->len);
}
} else {
skb_queue_tail(&ch->io_queue, skb);
ccw_idx = 3;
}
ch->retry = 0;
fsm_newstate(ch->fsm, CTC_STATE_TX);
fsm_addtimer(&ch->timer, CTCM_TIME_5_SEC, CTC_EVENT_TIMER, ch);
if (do_debug_ccw)
ctcmpc_dumpit((char *)&ch->ccw[ccw_idx],
sizeof(struct ccw1) * 3);
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
ch->prof.send_stamp = current_kernel_time(); /* xtime */
rc = ccw_device_start(ch->cdev, &ch->ccw[ccw_idx],
(unsigned long)ch, 0xff, 0);
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags);
if (ccw_idx == 3)
ch->prof.doios_single++;
if (rc != 0) {
fsm_deltimer(&ch->timer);
ctcm_ccw_check_rc(ch, rc, "single skb TX");
if (ccw_idx == 3)
skb_dequeue_tail(&ch->io_queue);
} else if (ccw_idx == 0) {
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len - TH_HEADER_LENGTH;
}
if (ch->th_seq_num > 0xf0000000) /* Chose 4Billion at random. */
ctcmpc_send_sweep_req(ch);
done:
if (do_debug)
ctcm_pr_debug("ctcm exit: %s %s()\n", dev->name, __FUNCTION__);
return 0;
}
/**
* Start transmission of a packet.
* Called from generic network device layer.
*
* skb Pointer to buffer containing the packet.
* dev Pointer to interface struct.
*
* returns 0 if packet consumed, !0 if packet rejected.
* Note: If we return !0, then the packet is free'd by
* the generic network layer.
*/
/* first merge version - leaving both functions separated */
static int ctcm_tx(struct sk_buff *skb, struct net_device *dev)
{
int rc = 0;
struct ctcm_priv *priv;
CTCM_DBF_TEXT(TRACE, 5, __FUNCTION__);
priv = dev->priv;
if (skb == NULL) {
ctcm_pr_warn("%s: NULL sk_buff passed\n", dev->name);
priv->stats.tx_dropped++;
return 0;
}
if (skb_headroom(skb) < (LL_HEADER_LENGTH + 2)) {
ctcm_pr_warn("%s: Got sk_buff with head room < %ld bytes\n",
dev->name, LL_HEADER_LENGTH + 2);
dev_kfree_skb(skb);
priv->stats.tx_dropped++;
return 0;
}
/*
* If channels are not running, try to restart them
* and throw away packet.
*/
if (fsm_getstate(priv->fsm) != DEV_STATE_RUNNING) {
fsm_event(priv->fsm, DEV_EVENT_START, dev);
dev_kfree_skb(skb);
priv->stats.tx_dropped++;
priv->stats.tx_errors++;
priv->stats.tx_carrier_errors++;
return 0;
}
if (ctcm_test_and_set_busy(dev))
return -EBUSY;
dev->trans_start = jiffies;
if (ctcm_transmit_skb(priv->channel[WRITE], skb) != 0)
rc = 1;
return rc;
}
/* unmerged MPC variant of ctcm_tx */
static int ctcmpc_tx(struct sk_buff *skb, struct net_device *dev)
{
int len = 0;
struct ctcm_priv *priv = NULL;
struct mpc_group *grp = NULL;
struct sk_buff *newskb = NULL;
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s(): skb:%0lx\n",
__FUNCTION__, (unsigned long)skb);
CTCM_DBF_TEXT_(MPC_TRACE, CTC_DBF_DEBUG,
"ctcmpc enter: %s(): skb:%0lx\n",
__FUNCTION__, (unsigned long)skb);
priv = dev->priv;
grp = priv->mpcg;
/*
* Some sanity checks ...
*/
if (skb == NULL) {
ctcm_pr_warn("ctcmpc: %s: NULL sk_buff passed\n", dev->name);
priv->stats.tx_dropped++;
goto done;
}
if (skb_headroom(skb) < (TH_HEADER_LENGTH + PDU_HEADER_LENGTH)) {
CTCM_DBF_TEXT_(MPC_TRACE, CTC_DBF_WARN,
"%s: Got sk_buff with head room < %ld bytes\n",
dev->name, TH_HEADER_LENGTH + PDU_HEADER_LENGTH);
if (do_debug_data)
ctcmpc_dump32((char *)skb->data, skb->len);
len = skb->len + TH_HEADER_LENGTH + PDU_HEADER_LENGTH;
newskb = __dev_alloc_skb(len, gfp_type() | GFP_DMA);
if (!newskb) {
printk(KERN_WARNING "ctcmpc: %s() OUT OF MEMORY-"
"Data Lost\n",
__FUNCTION__);
dev_kfree_skb_any(skb);
priv->stats.tx_dropped++;
priv->stats.tx_errors++;
priv->stats.tx_carrier_errors++;
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
newskb->protocol = skb->protocol;
skb_reserve(newskb, TH_HEADER_LENGTH + PDU_HEADER_LENGTH);
memcpy(skb_put(newskb, skb->len), skb->data, skb->len);
dev_kfree_skb_any(skb);
skb = newskb;
}
/*
* If channels are not running,
* notify anybody about a link failure and throw
* away packet.
*/
if ((fsm_getstate(priv->fsm) != DEV_STATE_RUNNING) ||
(fsm_getstate(grp->fsm) < MPCG_STATE_XID2INITW)) {
dev_kfree_skb_any(skb);
printk(KERN_INFO "ctcmpc: %s() DATA RCVD - MPC GROUP "
"NOT ACTIVE - DROPPED\n",
__FUNCTION__);
priv->stats.tx_dropped++;
priv->stats.tx_errors++;
priv->stats.tx_carrier_errors++;
goto done;
}
if (ctcm_test_and_set_busy(dev)) {
printk(KERN_WARNING "%s:DEVICE ERR - UNRECOVERABLE DATA LOSS\n",
__FUNCTION__);
dev_kfree_skb_any(skb);
priv->stats.tx_dropped++;
priv->stats.tx_errors++;
priv->stats.tx_carrier_errors++;
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
dev->trans_start = jiffies;
if (ctcmpc_transmit_skb(priv->channel[WRITE], skb) != 0) {
printk(KERN_WARNING "ctcmpc: %s() DEVICE ERROR"
": Data Lost \n",
__FUNCTION__);
printk(KERN_WARNING "ctcmpc: %s() DEVICE ERROR"
" - UNRECOVERABLE DATA LOSS\n",
__FUNCTION__);
dev_kfree_skb_any(skb);
priv->stats.tx_dropped++;
priv->stats.tx_errors++;
priv->stats.tx_carrier_errors++;
ctcm_clear_busy(dev);
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
goto done;
}
ctcm_clear_busy(dev);
done:
if (do_debug)
MPC_DBF_DEV_NAME(TRACE, dev, "exit");
return 0; /* handle freeing of skb here */
}
/**
* Sets MTU of an interface.
*
* dev Pointer to interface struct.
* new_mtu The new MTU to use for this interface.
*
* returns 0 on success, -EINVAL if MTU is out of valid range.
* (valid range is 576 .. 65527). If VM is on the
* remote side, maximum MTU is 32760, however this is
* not checked here.
*/
static int ctcm_change_mtu(struct net_device *dev, int new_mtu)
{
struct ctcm_priv *priv;
int max_bufsize;
CTCM_DBF_TEXT(SETUP, CTC_DBF_INFO, __FUNCTION__);
if (new_mtu < 576 || new_mtu > 65527)
return -EINVAL;
priv = dev->priv;
max_bufsize = priv->channel[READ]->max_bufsize;
if (IS_MPC(priv)) {
if (new_mtu > max_bufsize - TH_HEADER_LENGTH)
return -EINVAL;
dev->hard_header_len = TH_HEADER_LENGTH + PDU_HEADER_LENGTH;
} else {
if (new_mtu > max_bufsize - LL_HEADER_LENGTH - 2)
return -EINVAL;
dev->hard_header_len = LL_HEADER_LENGTH + 2;
}
dev->mtu = new_mtu;
return 0;
}
/**
* Returns interface statistics of a device.
*
* dev Pointer to interface struct.
*
* returns Pointer to stats struct of this interface.
*/
static struct net_device_stats *ctcm_stats(struct net_device *dev)
{
return &((struct ctcm_priv *)dev->priv)->stats;
}
static void ctcm_netdev_unregister(struct net_device *dev)
{
CTCM_DBF_TEXT(SETUP, CTC_DBF_INFO, __FUNCTION__);
if (!dev)
return;
unregister_netdev(dev);
}
static int ctcm_netdev_register(struct net_device *dev)
{
CTCM_DBF_TEXT(SETUP, CTC_DBF_INFO, __FUNCTION__);
return register_netdev(dev);
}
static void ctcm_free_netdevice(struct net_device *dev)
{
struct ctcm_priv *priv;
struct mpc_group *grp;
CTCM_DBF_TEXT(SETUP, CTC_DBF_INFO, __FUNCTION__);
if (!dev)
return;
priv = dev->priv;
if (priv) {
grp = priv->mpcg;
if (grp) {
if (grp->fsm)
kfree_fsm(grp->fsm);
if (grp->xid_skb)
dev_kfree_skb(grp->xid_skb);
if (grp->rcvd_xid_skb)
dev_kfree_skb(grp->rcvd_xid_skb);
tasklet_kill(&grp->mpc_tasklet2);
kfree(grp);
priv->mpcg = NULL;
}
if (priv->fsm) {
kfree_fsm(priv->fsm);
priv->fsm = NULL;
}
kfree(priv->xid);
priv->xid = NULL;
/*
* Note: kfree(priv); is done in "opposite" function of
* allocator function probe_device which is remove_device.
*/
}
#ifdef MODULE
free_netdev(dev);
#endif
}
struct mpc_group *ctcmpc_init_mpc_group(struct ctcm_priv *priv);
void static ctcm_dev_setup(struct net_device *dev)
{
dev->open = ctcm_open;
dev->stop = ctcm_close;
dev->get_stats = ctcm_stats;
dev->change_mtu = ctcm_change_mtu;
dev->type = ARPHRD_SLIP;
dev->tx_queue_len = 100;
dev->flags = IFF_POINTOPOINT | IFF_NOARP;
}
/*
* Initialize everything of the net device except the name and the
* channel structs.
*/
static struct net_device *ctcm_init_netdevice(struct ctcm_priv *priv)
{
struct net_device *dev;
struct mpc_group *grp;
if (!priv)
return NULL;
if (IS_MPC(priv))
dev = alloc_netdev(0, MPC_DEVICE_GENE, ctcm_dev_setup);
else
dev = alloc_netdev(0, CTC_DEVICE_GENE, ctcm_dev_setup);
if (!dev) {
ctcm_pr_err("%s: Out of memory\n", __FUNCTION__);
return NULL;
}
dev->priv = priv;
priv->fsm = init_fsm("ctcmdev", dev_state_names, dev_event_names,
CTCM_NR_DEV_STATES, CTCM_NR_DEV_EVENTS,
dev_fsm, dev_fsm_len, GFP_KERNEL);
if (priv->fsm == NULL) {
CTCMY_DBF_DEV(SETUP, dev, "init_fsm error");
kfree(dev);
return NULL;
}
fsm_newstate(priv->fsm, DEV_STATE_STOPPED);
fsm_settimer(priv->fsm, &priv->restart_timer);
if (IS_MPC(priv)) {
/* MPC Group Initializations */
grp = ctcmpc_init_mpc_group(priv);
if (grp == NULL) {
MPC_DBF_DEV(SETUP, dev, "init_mpc_group error");
kfree(dev);
return NULL;
}
tasklet_init(&grp->mpc_tasklet2,
mpc_group_ready, (unsigned long)dev);
dev->mtu = MPC_BUFSIZE_DEFAULT -
TH_HEADER_LENGTH - PDU_HEADER_LENGTH;
dev->hard_start_xmit = ctcmpc_tx;
dev->hard_header_len = TH_HEADER_LENGTH + PDU_HEADER_LENGTH;
priv->buffer_size = MPC_BUFSIZE_DEFAULT;
} else {
dev->mtu = CTCM_BUFSIZE_DEFAULT - LL_HEADER_LENGTH - 2;
dev->hard_start_xmit = ctcm_tx;
dev->hard_header_len = LL_HEADER_LENGTH + 2;
}
CTCMY_DBF_DEV(SETUP, dev, "finished");
return dev;
}
/**
* Main IRQ handler.
*
* cdev The ccw_device the interrupt is for.
* intparm interruption parameter.
* irb interruption response block.
*/
static void ctcm_irq_handler(struct ccw_device *cdev,
unsigned long intparm, struct irb *irb)
{
struct channel *ch;
struct net_device *dev;
struct ctcm_priv *priv;
struct ccwgroup_device *cgdev;
CTCM_DBF_TEXT(TRACE, CTC_DBF_DEBUG, __FUNCTION__);
if (ctcm_check_irb_error(cdev, irb))
return;
cgdev = dev_get_drvdata(&cdev->dev);
/* Check for unsolicited interrupts. */
if (cgdev == NULL) {
ctcm_pr_warn("ctcm: Got unsolicited irq: %s c-%02x d-%02x\n",
cdev->dev.bus_id, irb->scsw.cstat,
irb->scsw.dstat);
return;
}
priv = dev_get_drvdata(&cgdev->dev);
/* Try to extract channel from driver data. */
if (priv->channel[READ]->cdev == cdev)
ch = priv->channel[READ];
else if (priv->channel[WRITE]->cdev == cdev)
ch = priv->channel[WRITE];
else {
ctcm_pr_err("ctcm: Can't determine channel for interrupt, "
"device %s\n", cdev->dev.bus_id);
return;
}
dev = (struct net_device *)(ch->netdev);
if (dev == NULL) {
ctcm_pr_crit("ctcm: %s dev=NULL bus_id=%s, ch=0x%p\n",
__FUNCTION__, cdev->dev.bus_id, ch);
return;
}
if (do_debug)
ctcm_pr_debug("%s: interrupt for device: %s "
"received c-%02x d-%02x\n",
dev->name,
ch->id,
irb->scsw.cstat,
irb->scsw.dstat);
/* Copy interruption response block. */
memcpy(ch->irb, irb, sizeof(struct irb));
/* Check for good subchannel return code, otherwise error message */
if (irb->scsw.cstat) {
fsm_event(ch->fsm, CTC_EVENT_SC_UNKNOWN, ch);
ctcm_pr_warn("%s: subchannel check for dev: %s - %02x %02x\n",
dev->name, ch->id, irb->scsw.cstat,
irb->scsw.dstat);
return;
}
/* Check the reason-code of a unit check */
if (irb->scsw.dstat & DEV_STAT_UNIT_CHECK) {
ccw_unit_check(ch, irb->ecw[0]);
return;
}
if (irb->scsw.dstat & DEV_STAT_BUSY) {
if (irb->scsw.dstat & DEV_STAT_ATTENTION)
fsm_event(ch->fsm, CTC_EVENT_ATTNBUSY, ch);
else
fsm_event(ch->fsm, CTC_EVENT_BUSY, ch);
return;
}
if (irb->scsw.dstat & DEV_STAT_ATTENTION) {
fsm_event(ch->fsm, CTC_EVENT_ATTN, ch);
return;
}
if ((irb->scsw.stctl & SCSW_STCTL_SEC_STATUS) ||
(irb->scsw.stctl == SCSW_STCTL_STATUS_PEND) ||
(irb->scsw.stctl ==
(SCSW_STCTL_ALERT_STATUS | SCSW_STCTL_STATUS_PEND)))
fsm_event(ch->fsm, CTC_EVENT_FINSTAT, ch);
else
fsm_event(ch->fsm, CTC_EVENT_IRQ, ch);
}
/**
* Add ctcm specific attributes.
* Add ctcm private data.
*
* cgdev pointer to ccwgroup_device just added
*
* returns 0 on success, !0 on failure.
*/
static int ctcm_probe_device(struct ccwgroup_device *cgdev)
{
struct ctcm_priv *priv;
int rc;
CTCM_DBF_TEXT_(SETUP, CTC_DBF_INFO, "%s %p", __FUNCTION__, cgdev);
if (!get_device(&cgdev->dev))
return -ENODEV;
priv = kzalloc(sizeof(struct ctcm_priv), GFP_KERNEL);
if (!priv) {
ctcm_pr_err("%s: Out of memory\n", __FUNCTION__);
put_device(&cgdev->dev);
return -ENOMEM;
}
rc = ctcm_add_files(&cgdev->dev);
if (rc) {
kfree(priv);
put_device(&cgdev->dev);
return rc;
}
priv->buffer_size = CTCM_BUFSIZE_DEFAULT;
cgdev->cdev[0]->handler = ctcm_irq_handler;
cgdev->cdev[1]->handler = ctcm_irq_handler;
dev_set_drvdata(&cgdev->dev, priv);
return 0;
}
/**
* Add a new channel to the list of channels.
* Keeps the channel list sorted.
*
* cdev The ccw_device to be added.
* type The type class of the new channel.
* priv Points to the private data of the ccwgroup_device.
*
* returns 0 on success, !0 on error.
*/
static int add_channel(struct ccw_device *cdev, enum channel_types type,
struct ctcm_priv *priv)
{
struct channel **c = &channels;
struct channel *ch;
int ccw_num;
int rc = 0;
CTCM_DBF_TEXT(TRACE, 2, __FUNCTION__);
ch = kzalloc(sizeof(struct channel), GFP_KERNEL);
if (ch == NULL)
goto nomem_return;
ch->protocol = priv->protocol;
if (IS_MPC(priv)) {
ch->discontact_th = (struct th_header *)
kzalloc(TH_HEADER_LENGTH, gfp_type());
if (ch->discontact_th == NULL)
goto nomem_return;
ch->discontact_th->th_blk_flag = TH_DISCONTACT;
tasklet_init(&ch->ch_disc_tasklet,
mpc_action_send_discontact, (unsigned long)ch);
tasklet_init(&ch->ch_tasklet, ctcmpc_bh, (unsigned long)ch);
ch->max_bufsize = (MPC_BUFSIZE_DEFAULT - 35);
ccw_num = 17;
} else
ccw_num = 8;
ch->ccw = (struct ccw1 *)
kzalloc(ccw_num * sizeof(struct ccw1), GFP_KERNEL | GFP_DMA);
if (ch->ccw == NULL)
goto nomem_return;
ch->cdev = cdev;
snprintf(ch->id, CTCM_ID_SIZE, "ch-%s", cdev->dev.bus_id);
ch->type = type;
/**
* "static" ccws are used in the following way:
*
* ccw[0..2] (Channel program for generic I/O):
* 0: prepare
* 1: read or write (depending on direction) with fixed
* buffer (idal allocated once when buffer is allocated)
* 2: nop
* ccw[3..5] (Channel program for direct write of packets)
* 3: prepare
* 4: write (idal allocated on every write).
* 5: nop
* ccw[6..7] (Channel program for initial channel setup):
* 6: set extended mode
* 7: nop
*
* ch->ccw[0..5] are initialized in ch_action_start because
* the channel's direction is yet unknown here.
*
* ccws used for xid2 negotiations
* ch-ccw[8-14] need to be used for the XID exchange either
* X side XID2 Processing
* 8: write control
* 9: write th
* 10: write XID
* 11: read th from secondary
* 12: read XID from secondary
* 13: read 4 byte ID
* 14: nop
* Y side XID Processing
* 8: sense
* 9: read th
* 10: read XID
* 11: write th
* 12: write XID
* 13: write 4 byte ID
* 14: nop
*
* ccws used for double noop due to VM timing issues
* which result in unrecoverable Busy on channel
* 15: nop
* 16: nop
*/
ch->ccw[6].cmd_code = CCW_CMD_SET_EXTENDED;
ch->ccw[6].flags = CCW_FLAG_SLI;
ch->ccw[7].cmd_code = CCW_CMD_NOOP;
ch->ccw[7].flags = CCW_FLAG_SLI;
if (IS_MPC(priv)) {
ch->ccw[15].cmd_code = CCW_CMD_WRITE;
ch->ccw[15].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[15].count = TH_HEADER_LENGTH;
ch->ccw[15].cda = virt_to_phys(ch->discontact_th);
ch->ccw[16].cmd_code = CCW_CMD_NOOP;
ch->ccw[16].flags = CCW_FLAG_SLI;
ch->fsm = init_fsm(ch->id, ctc_ch_state_names,
ctc_ch_event_names, CTC_MPC_NR_STATES,
CTC_MPC_NR_EVENTS, ctcmpc_ch_fsm,
mpc_ch_fsm_len, GFP_KERNEL);
} else {
ch->fsm = init_fsm(ch->id, ctc_ch_state_names,
ctc_ch_event_names, CTC_NR_STATES,
CTC_NR_EVENTS, ch_fsm,
ch_fsm_len, GFP_KERNEL);
}
if (ch->fsm == NULL)
goto free_return;
fsm_newstate(ch->fsm, CTC_STATE_IDLE);
ch->irb = kzalloc(sizeof(struct irb), GFP_KERNEL);
if (ch->irb == NULL)
goto nomem_return;
while (*c && ctcm_less_than((*c)->id, ch->id))
c = &(*c)->next;
if (*c && (!strncmp((*c)->id, ch->id, CTCM_ID_SIZE))) {
CTCM_DBF_TEXT_(SETUP, CTC_DBF_INFO,
"%s (%s) already in list, using old entry",
__FUNCTION__, (*c)->id);
goto free_return;
}
spin_lock_init(&ch->collect_lock);
fsm_settimer(ch->fsm, &ch->timer);
skb_queue_head_init(&ch->io_queue);
skb_queue_head_init(&ch->collect_queue);
if (IS_MPC(priv)) {
fsm_settimer(ch->fsm, &ch->sweep_timer);
skb_queue_head_init(&ch->sweep_queue);
}
ch->next = *c;
*c = ch;
return 0;
nomem_return:
ctcm_pr_warn("ctcm: Out of memory in %s\n", __FUNCTION__);
rc = -ENOMEM;
free_return: /* note that all channel pointers are 0 or valid */
kfree(ch->ccw); /* TODO: check that again */
kfree(ch->discontact_th);
kfree_fsm(ch->fsm);
kfree(ch->irb);
kfree(ch);
return rc;
}
/*
* Return type of a detected device.
*/
static enum channel_types get_channel_type(struct ccw_device_id *id)
{
enum channel_types type;
type = (enum channel_types)id->driver_info;
if (type == channel_type_ficon)
type = channel_type_escon;
return type;
}
/**
*
* Setup an interface.
*
* cgdev Device to be setup.
*
* returns 0 on success, !0 on failure.
*/
static int ctcm_new_device(struct ccwgroup_device *cgdev)
{
char read_id[CTCM_ID_SIZE];
char write_id[CTCM_ID_SIZE];
int direction;
enum channel_types type;
struct ctcm_priv *priv;
struct net_device *dev;
int ret;
CTCM_DBF_TEXT(SETUP, CTC_DBF_INFO, __FUNCTION__);
priv = dev_get_drvdata(&cgdev->dev);
if (!priv)
return -ENODEV;
type = get_channel_type(&cgdev->cdev[0]->id);
snprintf(read_id, CTCM_ID_SIZE, "ch-%s", cgdev->cdev[0]->dev.bus_id);
snprintf(write_id, CTCM_ID_SIZE, "ch-%s", cgdev->cdev[1]->dev.bus_id);
ret = add_channel(cgdev->cdev[0], type, priv);
if (ret)
return ret;
ret = add_channel(cgdev->cdev[1], type, priv);
if (ret)
return ret;
ret = ccw_device_set_online(cgdev->cdev[0]);
if (ret != 0) {
CTCM_DBF_TEXT(SETUP, CTC_DBF_WARN,
"ccw_device_set_online (cdev[0]) failed ");
ctcm_pr_warn("ccw_device_set_online (cdev[0]) failed "
"with ret = %d\n", ret);
}
ret = ccw_device_set_online(cgdev->cdev[1]);
if (ret != 0) {
CTCM_DBF_TEXT(SETUP, CTC_DBF_WARN,
"ccw_device_set_online (cdev[1]) failed ");
ctcm_pr_warn("ccw_device_set_online (cdev[1]) failed "
"with ret = %d\n", ret);
}
dev = ctcm_init_netdevice(priv);
if (dev == NULL) {
ctcm_pr_warn("ctcm_init_netdevice failed\n");
goto out;
}
for (direction = READ; direction <= WRITE; direction++) {
priv->channel[direction] =
channel_get(type, direction == READ ? read_id : write_id,
direction);
if (priv->channel[direction] == NULL) {
if (direction == WRITE)
channel_free(priv->channel[READ]);
ctcm_free_netdevice(dev);
goto out;
}
priv->channel[direction]->netdev = dev;
priv->channel[direction]->protocol = priv->protocol;
priv->channel[direction]->max_bufsize = priv->buffer_size;
}
/* sysfs magic */
SET_NETDEV_DEV(dev, &cgdev->dev);
if (ctcm_netdev_register(dev) != 0) {
ctcm_free_netdevice(dev);
goto out;
}
if (ctcm_add_attributes(&cgdev->dev)) {
ctcm_netdev_unregister(dev);
/* dev->priv = NULL; why that ???? */
ctcm_free_netdevice(dev);
goto out;
}
strlcpy(priv->fsm->name, dev->name, sizeof(priv->fsm->name));
CTCM_DBF_TEXT_(SETUP, CTC_DBF_INFO,
"setup(%s) ok : r/w = %s / %s, proto : %d",
dev->name, priv->channel[READ]->id,
priv->channel[WRITE]->id, priv->protocol);
return 0;
out:
ccw_device_set_offline(cgdev->cdev[1]);
ccw_device_set_offline(cgdev->cdev[0]);
return -ENODEV;
}
/**
* Shutdown an interface.
*
* cgdev Device to be shut down.
*
* returns 0 on success, !0 on failure.
*/
static int ctcm_shutdown_device(struct ccwgroup_device *cgdev)
{
struct ctcm_priv *priv;
struct net_device *dev;
priv = dev_get_drvdata(&cgdev->dev);
if (!priv)
return -ENODEV;
if (priv->channel[READ]) {
dev = priv->channel[READ]->netdev;
CTCM_DBF_DEV(SETUP, dev, "");
/* Close the device */
ctcm_close(dev);
dev->flags &= ~IFF_RUNNING;
ctcm_remove_attributes(&cgdev->dev);
channel_free(priv->channel[READ]);
} else
dev = NULL;
if (priv->channel[WRITE])
channel_free(priv->channel[WRITE]);
if (dev) {
ctcm_netdev_unregister(dev);
/* dev->priv = NULL; why that ??? */
ctcm_free_netdevice(dev);
}
if (priv->fsm)
kfree_fsm(priv->fsm);
ccw_device_set_offline(cgdev->cdev[1]);
ccw_device_set_offline(cgdev->cdev[0]);
if (priv->channel[READ])
channel_remove(priv->channel[READ]);
if (priv->channel[WRITE])
channel_remove(priv->channel[WRITE]);
priv->channel[READ] = priv->channel[WRITE] = NULL;
return 0;
}
static void ctcm_remove_device(struct ccwgroup_device *cgdev)
{
struct ctcm_priv *priv;
CTCM_DBF_TEXT(SETUP, CTC_DBF_ERROR, __FUNCTION__);
priv = dev_get_drvdata(&cgdev->dev);
if (!priv)
return;
if (cgdev->state == CCWGROUP_ONLINE)
ctcm_shutdown_device(cgdev);
ctcm_remove_files(&cgdev->dev);
dev_set_drvdata(&cgdev->dev, NULL);
kfree(priv);
put_device(&cgdev->dev);
}
static struct ccwgroup_driver ctcm_group_driver = {
.owner = THIS_MODULE,
.name = CTC_DRIVER_NAME,
.max_slaves = 2,
.driver_id = 0xC3E3C3D4, /* CTCM */
.probe = ctcm_probe_device,
.remove = ctcm_remove_device,
.set_online = ctcm_new_device,
.set_offline = ctcm_shutdown_device,
};
/*
* Module related routines
*/
/*
* Prepare to be unloaded. Free IRQ's and release all resources.
* This is called just before this module is unloaded. It is
* not called, if the usage count is !0, so we don't need to check
* for that.
*/
static void __exit ctcm_exit(void)
{
unregister_cu3088_discipline(&ctcm_group_driver);
ctcm_unregister_dbf_views();
ctcm_pr_info("CTCM driver unloaded\n");
}
/*
* Print Banner.
*/
static void print_banner(void)
{
printk(KERN_INFO "CTCM driver initialized\n");
}
/**
* Initialize module.
* This is called just after the module is loaded.
*
* returns 0 on success, !0 on error.
*/
static int __init ctcm_init(void)
{
int ret;
channels = NULL;
ret = ctcm_register_dbf_views();
if (ret) {
ctcm_pr_crit("ctcm_init failed with ctcm_register_dbf_views "
"rc = %d\n", ret);
return ret;
}
ret = register_cu3088_discipline(&ctcm_group_driver);
if (ret) {
ctcm_unregister_dbf_views();
ctcm_pr_crit("ctcm_init failed with register_cu3088_discipline "
"(rc = %d)\n", ret);
return ret;
}
print_banner();
return ret;
}
module_init(ctcm_init);
module_exit(ctcm_exit);
MODULE_AUTHOR("Peter Tiedemann <ptiedem@de.ibm.com>");
MODULE_DESCRIPTION("Network driver for S/390 CTC + CTCMPC (SNA)");
MODULE_LICENSE("GPL");
/*
* drivers/s390/net/ctcm_main.h
*
* Copyright IBM Corp. 2001, 2007
* Authors: Fritz Elfert (felfert@millenux.com)
* Peter Tiedemann (ptiedem@de.ibm.com)
*/
#ifndef _CTCM_MAIN_H_
#define _CTCM_MAIN_H_
#include <asm/ccwdev.h>
#include <asm/ccwgroup.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include "fsm.h"
#include "cu3088.h"
#include "ctcm_dbug.h"
#include "ctcm_mpc.h"
#define CTC_DRIVER_NAME "ctcm"
#define CTC_DEVICE_NAME "ctc"
#define CTC_DEVICE_GENE "ctc%d"
#define MPC_DEVICE_NAME "mpc"
#define MPC_DEVICE_GENE "mpc%d"
#define CHANNEL_FLAGS_READ 0
#define CHANNEL_FLAGS_WRITE 1
#define CHANNEL_FLAGS_INUSE 2
#define CHANNEL_FLAGS_BUFSIZE_CHANGED 4
#define CHANNEL_FLAGS_FAILED 8
#define CHANNEL_FLAGS_WAITIRQ 16
#define CHANNEL_FLAGS_RWMASK 1
#define CHANNEL_DIRECTION(f) (f & CHANNEL_FLAGS_RWMASK)
#define LOG_FLAG_ILLEGALPKT 1
#define LOG_FLAG_ILLEGALSIZE 2
#define LOG_FLAG_OVERRUN 4
#define LOG_FLAG_NOMEM 8
#define ctcm_pr_debug(fmt, arg...) printk(KERN_DEBUG fmt, ##arg)
#define ctcm_pr_info(fmt, arg...) printk(KERN_INFO fmt, ##arg)
#define ctcm_pr_notice(fmt, arg...) printk(KERN_NOTICE fmt, ##arg)
#define ctcm_pr_warn(fmt, arg...) printk(KERN_WARNING fmt, ##arg)
#define ctcm_pr_emerg(fmt, arg...) printk(KERN_EMERG fmt, ##arg)
#define ctcm_pr_err(fmt, arg...) printk(KERN_ERR fmt, ##arg)
#define ctcm_pr_crit(fmt, arg...) printk(KERN_CRIT fmt, ##arg)
/*
* CCW commands, used in this driver.
*/
#define CCW_CMD_WRITE 0x01
#define CCW_CMD_READ 0x02
#define CCW_CMD_NOOP 0x03
#define CCW_CMD_TIC 0x08
#define CCW_CMD_SENSE_CMD 0x14
#define CCW_CMD_WRITE_CTL 0x17
#define CCW_CMD_SET_EXTENDED 0xc3
#define CCW_CMD_PREPARE 0xe3
#define CTCM_PROTO_S390 0
#define CTCM_PROTO_LINUX 1
#define CTCM_PROTO_LINUX_TTY 2
#define CTCM_PROTO_OS390 3
#define CTCM_PROTO_MPC 4
#define CTCM_PROTO_MAX 4
#define CTCM_BUFSIZE_LIMIT 65535
#define CTCM_BUFSIZE_DEFAULT 32768
#define MPC_BUFSIZE_DEFAULT CTCM_BUFSIZE_LIMIT
#define CTCM_TIME_1_SEC 1000
#define CTCM_TIME_5_SEC 5000
#define CTCM_TIME_10_SEC 10000
#define CTCM_INITIAL_BLOCKLEN 2
#define READ 0
#define WRITE 1
#define CTCM_ID_SIZE BUS_ID_SIZE+3
struct ctcm_profile {
unsigned long maxmulti;
unsigned long maxcqueue;
unsigned long doios_single;
unsigned long doios_multi;
unsigned long txlen;
unsigned long tx_time;
struct timespec send_stamp;
};
/*
* Definition of one channel
*/
struct channel {
struct channel *next;
char id[CTCM_ID_SIZE];
struct ccw_device *cdev;
/*
* Type of this channel.
* CTC/A or Escon for valid channels.
*/
enum channel_types type;
/*
* Misc. flags. See CHANNEL_FLAGS_... below
*/
__u32 flags;
__u16 protocol; /* protocol of this channel (4 = MPC) */
/*
* I/O and irq related stuff
*/
struct ccw1 *ccw;
struct irb *irb;
/*
* RX/TX buffer size
*/
int max_bufsize;
struct sk_buff *trans_skb; /* transmit/receive buffer */
struct sk_buff_head io_queue; /* universal I/O queue */
struct tasklet_struct ch_tasklet; /* MPC ONLY */
/*
* TX queue for collecting skb's during busy.
*/
struct sk_buff_head collect_queue;
/*
* Amount of data in collect_queue.
*/
int collect_len;
/*
* spinlock for collect_queue and collect_len
*/
spinlock_t collect_lock;
/*
* Timer for detecting unresposive
* I/O operations.
*/
fsm_timer timer;
/* MPC ONLY section begin */
__u32 th_seq_num; /* SNA TH seq number */
__u8 th_seg;
__u32 pdu_seq;
struct sk_buff *xid_skb;
char *xid_skb_data;
struct th_header *xid_th;
struct xid2 *xid;
char *xid_id;
struct th_header *rcvd_xid_th;
struct xid2 *rcvd_xid;
char *rcvd_xid_id;
__u8 in_mpcgroup;
fsm_timer sweep_timer;
struct sk_buff_head sweep_queue;
struct th_header *discontact_th;
struct tasklet_struct ch_disc_tasklet;
/* MPC ONLY section end */
int retry; /* retry counter for misc. operations */
fsm_instance *fsm; /* finite state machine of this channel */
struct net_device *netdev; /* corresponding net_device */
struct ctcm_profile prof;
unsigned char *trans_skb_data;
__u16 logflags;
};
struct ctcm_priv {
struct net_device_stats stats;
unsigned long tbusy;
/* The MPC group struct of this interface */
struct mpc_group *mpcg; /* MPC only */
struct xid2 *xid; /* MPC only */
/* The finite state machine of this interface */
fsm_instance *fsm;
/* The protocol of this device */
__u16 protocol;
/* Timer for restarting after I/O Errors */
fsm_timer restart_timer;
int buffer_size; /* ctc only */
struct channel *channel[2];
};
int ctcm_open(struct net_device *dev);
int ctcm_close(struct net_device *dev);
/*
* prototypes for non-static sysfs functions
*/
int ctcm_add_attributes(struct device *dev);
void ctcm_remove_attributes(struct device *dev);
int ctcm_add_files(struct device *dev);
void ctcm_remove_files(struct device *dev);
/*
* Compatibility macros for busy handling
* of network devices.
*/
static inline void ctcm_clear_busy_do(struct net_device *dev)
{
clear_bit(0, &(((struct ctcm_priv *)dev->priv)->tbusy));
netif_wake_queue(dev);
}
static inline void ctcm_clear_busy(struct net_device *dev)
{
struct mpc_group *grp;
grp = ((struct ctcm_priv *)dev->priv)->mpcg;
if (!(grp && grp->in_sweep))
ctcm_clear_busy_do(dev);
}
static inline int ctcm_test_and_set_busy(struct net_device *dev)
{
netif_stop_queue(dev);
return test_and_set_bit(0, &(((struct ctcm_priv *)dev->priv)->tbusy));
}
extern int loglevel;
extern struct channel *channels;
void ctcm_unpack_skb(struct channel *ch, struct sk_buff *pskb);
/*
* Functions related to setup and device detection.
*/
static inline int ctcm_less_than(char *id1, char *id2)
{
unsigned long dev1, dev2;
id1 = id1 + 5;
id2 = id2 + 5;
dev1 = simple_strtoul(id1, &id1, 16);
dev2 = simple_strtoul(id2, &id2, 16);
return (dev1 < dev2);
}
int ctcm_ch_alloc_buffer(struct channel *ch);
static inline int ctcm_checkalloc_buffer(struct channel *ch)
{
if (ch->trans_skb == NULL)
return ctcm_ch_alloc_buffer(ch);
if (ch->flags & CHANNEL_FLAGS_BUFSIZE_CHANGED) {
dev_kfree_skb(ch->trans_skb);
return ctcm_ch_alloc_buffer(ch);
}
return 0;
}
struct mpc_group *ctcmpc_init_mpc_group(struct ctcm_priv *priv);
/* test if protocol attribute (of struct ctcm_priv or struct channel)
* has MPC protocol setting. Type is not checked
*/
#define IS_MPC(p) ((p)->protocol == CTCM_PROTO_MPC)
/* test if struct ctcm_priv of struct net_device has MPC protocol setting */
#define IS_MPCDEV(d) IS_MPC((struct ctcm_priv *)d->priv)
static inline gfp_t gfp_type(void)
{
return in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
}
/*
* Definition of our link level header.
*/
struct ll_header {
__u16 length;
__u16 type;
__u16 unused;
};
#define LL_HEADER_LENGTH (sizeof(struct ll_header))
#endif
/*
* drivers/s390/net/ctcm_mpc.c
*
* Copyright IBM Corp. 2004, 2007
* Authors: Belinda Thompson (belindat@us.ibm.com)
* Andy Richter (richtera@us.ibm.com)
* Peter Tiedemann (ptiedem@de.ibm.com)
*/
/*
This module exports functions to be used by CCS:
EXPORT_SYMBOL(ctc_mpc_alloc_channel);
EXPORT_SYMBOL(ctc_mpc_establish_connectivity);
EXPORT_SYMBOL(ctc_mpc_dealloc_ch);
EXPORT_SYMBOL(ctc_mpc_flow_control);
*/
#undef DEBUG
#undef DEBUGDATA
#undef DEBUGCCW
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/sched.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/proc_fs.h>
#include <linux/ip.h>
#include <linux/if_arp.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ctype.h>
#include <linux/netdevice.h>
#include <net/dst.h>
#include <linux/io.h> /* instead of <asm/io.h> ok ? */
#include <asm/ccwdev.h>
#include <asm/ccwgroup.h>
#include <linux/bitops.h> /* instead of <asm/bitops.h> ok ? */
#include <linux/uaccess.h> /* instead of <asm/uaccess.h> ok ? */
#include <linux/wait.h>
#include <linux/moduleparam.h>
#include <asm/idals.h>
#include "cu3088.h"
#include "ctcm_mpc.h"
#include "ctcm_main.h"
#include "ctcm_fsms.h"
static const struct xid2 init_xid = {
.xid2_type_id = XID_FM2,
.xid2_len = 0x45,
.xid2_adj_id = 0,
.xid2_rlen = 0x31,
.xid2_resv1 = 0,
.xid2_flag1 = 0,
.xid2_fmtt = 0,
.xid2_flag4 = 0x80,
.xid2_resv2 = 0,
.xid2_tgnum = 0,
.xid2_sender_id = 0,
.xid2_flag2 = 0,
.xid2_option = XID2_0,
.xid2_resv3 = "\x00",
.xid2_resv4 = 0,
.xid2_dlc_type = XID2_READ_SIDE,
.xid2_resv5 = 0,
.xid2_mpc_flag = 0,
.xid2_resv6 = 0,
.xid2_buf_len = (MPC_BUFSIZE_DEFAULT - 35),
};
static const struct th_header thnorm = {
.th_seg = 0x00,
.th_ch_flag = TH_IS_XID,
.th_blk_flag = TH_DATA_IS_XID,
.th_is_xid = 0x01,
.th_seq_num = 0x00000000,
};
static const struct th_header thdummy = {
.th_seg = 0x00,
.th_ch_flag = 0x00,
.th_blk_flag = TH_DATA_IS_XID,
.th_is_xid = 0x01,
.th_seq_num = 0x00000000,
};
/*
* Definition of one MPC group
*/
/*
* Compatibility macros for busy handling
* of network devices.
*/
static void ctcmpc_unpack_skb(struct channel *ch, struct sk_buff *pskb);
/*
* MPC Group state machine actions (static prototypes)
*/
static void mpc_action_nop(fsm_instance *fsm, int event, void *arg);
static void mpc_action_go_ready(fsm_instance *fsm, int event, void *arg);
static void mpc_action_go_inop(fsm_instance *fi, int event, void *arg);
static void mpc_action_timeout(fsm_instance *fi, int event, void *arg);
static int mpc_validate_xid(struct mpcg_info *mpcginfo);
static void mpc_action_yside_xid(fsm_instance *fsm, int event, void *arg);
static void mpc_action_doxid0(fsm_instance *fsm, int event, void *arg);
static void mpc_action_doxid7(fsm_instance *fsm, int event, void *arg);
static void mpc_action_xside_xid(fsm_instance *fsm, int event, void *arg);
static void mpc_action_rcvd_xid0(fsm_instance *fsm, int event, void *arg);
static void mpc_action_rcvd_xid7(fsm_instance *fsm, int event, void *arg);
#ifdef DEBUGDATA
/*-------------------------------------------------------------------*
* Dump buffer format *
* *
*--------------------------------------------------------------------*/
void ctcmpc_dumpit(char *buf, int len)
{
__u32 ct, sw, rm, dup;
char *ptr, *rptr;
char tbuf[82], tdup[82];
#if (UTS_MACHINE == s390x)
char addr[22];
#else
char addr[12];
#endif
char boff[12];
char bhex[82], duphex[82];
char basc[40];
sw = 0;
rptr = ptr = buf;
rm = 16;
duphex[0] = 0x00;
dup = 0;
for (ct = 0; ct < len; ct++, ptr++, rptr++) {
if (sw == 0) {
#if (UTS_MACHINE == s390x)
sprintf(addr, "%16.16lx", (unsigned long)rptr);
#else
sprintf(addr, "%8.8X", (__u32)rptr);
#endif
sprintf(boff, "%4.4X", (__u32)ct);
bhex[0] = '\0';
basc[0] = '\0';
}
if ((sw == 4) || (sw == 12))
strcat(bhex, " ");
if (sw == 8)
strcat(bhex, " ");
#if (UTS_MACHINE == s390x)
sprintf(tbuf, "%2.2lX", (unsigned long)*ptr);
#else
sprintf(tbuf, "%2.2X", (__u32)*ptr);
#endif
tbuf[2] = '\0';
strcat(bhex, tbuf);
if ((0 != isprint(*ptr)) && (*ptr >= 0x20))
basc[sw] = *ptr;
else
basc[sw] = '.';
basc[sw+1] = '\0';
sw++;
rm--;
if (sw == 16) {
if ((strcmp(duphex, bhex)) != 0) {
if (dup != 0) {
sprintf(tdup, "Duplicate as above "
"to %s", addr);
printk(KERN_INFO " "
" --- %s ---\n", tdup);
}
printk(KERN_INFO " %s (+%s) : %s [%s]\n",
addr, boff, bhex, basc);
dup = 0;
strcpy(duphex, bhex);
} else
dup++;
sw = 0;
rm = 16;
}
} /* endfor */
if (sw != 0) {
for ( ; rm > 0; rm--, sw++) {
if ((sw == 4) || (sw == 12))
strcat(bhex, " ");
if (sw == 8)
strcat(bhex, " ");
strcat(bhex, " ");
strcat(basc, " ");
}
if (dup != 0) {
sprintf(tdup, "Duplicate as above to %s", addr);
printk(KERN_INFO " "
" --- %s ---\n", tdup);
}
printk(KERN_INFO " %s (+%s) : %s [%s]\n",
addr, boff, bhex, basc);
} else {
if (dup >= 1) {
sprintf(tdup, "Duplicate as above to %s", addr);
printk(KERN_INFO " "
" --- %s ---\n", tdup);
}
if (dup != 0) {
printk(KERN_INFO " %s (+%s) : %s [%s]\n",
addr, boff, bhex, basc);
}
}
return;
} /* end of ctcmpc_dumpit */
#endif
#ifdef DEBUGDATA
/*
* Dump header and first 16 bytes of an sk_buff for debugging purposes.
*
* skb The sk_buff to dump.
* offset Offset relative to skb-data, where to start the dump.
*/
void ctcmpc_dump_skb(struct sk_buff *skb, int offset)
{
unsigned char *p = skb->data;
struct th_header *header;
struct pdu *pheader;
int bl = skb->len;
int i;
if (p == NULL)
return;
p += offset;
header = (struct th_header *)p;
printk(KERN_INFO "dump:\n");
printk(KERN_INFO "skb len=%d \n", skb->len);
if (skb->len > 2) {
switch (header->th_ch_flag) {
case TH_HAS_PDU:
break;
case 0x00:
case TH_IS_XID:
if ((header->th_blk_flag == TH_DATA_IS_XID) &&
(header->th_is_xid == 0x01))
goto dumpth;
case TH_SWEEP_REQ:
goto dumpth;
case TH_SWEEP_RESP:
goto dumpth;
default:
break;
}
pheader = (struct pdu *)p;
printk(KERN_INFO "pdu->offset: %d hex: %04x\n",
pheader->pdu_offset, pheader->pdu_offset);
printk(KERN_INFO "pdu->flag : %02x\n", pheader->pdu_flag);
printk(KERN_INFO "pdu->proto : %02x\n", pheader->pdu_proto);
printk(KERN_INFO "pdu->seq : %02x\n", pheader->pdu_seq);
goto dumpdata;
dumpth:
printk(KERN_INFO "th->seg : %02x\n", header->th_seg);
printk(KERN_INFO "th->ch : %02x\n", header->th_ch_flag);
printk(KERN_INFO "th->blk_flag: %02x\n", header->th_blk_flag);
printk(KERN_INFO "th->type : %s\n",
(header->th_is_xid) ? "DATA" : "XID");
printk(KERN_INFO "th->seqnum : %04x\n", header->th_seq_num);
}
dumpdata:
if (bl > 32)
bl = 32;
printk(KERN_INFO "data: ");
for (i = 0; i < bl; i++)
printk(KERN_INFO "%02x%s", *p++, (i % 16) ? " " : "\n<7>");
printk(KERN_INFO "\n");
}
#endif
/*
* ctc_mpc_alloc_channel
* (exported interface)
*
* Device Initialization :
* ACTPATH driven IO operations
*/
int ctc_mpc_alloc_channel(int port_num, void (*callback)(int, int))
{
char device[20];
struct net_device *dev;
struct mpc_group *grp;
struct ctcm_priv *priv;
ctcm_pr_debug("ctcmpc enter: %s()\n", __FUNCTION__);
sprintf(device, "%s%i", MPC_DEVICE_NAME, port_num);
dev = __dev_get_by_name(&init_net, device);
if (dev == NULL) {
printk(KERN_INFO "ctc_mpc_alloc_channel %s dev=NULL\n", device);
return 1;
}
priv = dev->priv;
grp = priv->mpcg;
if (!grp)
return 1;
grp->allochanfunc = callback;
grp->port_num = port_num;
grp->port_persist = 1;
ctcm_pr_debug("ctcmpc: %s called for device %s state=%s\n",
__FUNCTION__,
dev->name,
fsm_getstate_str(grp->fsm));
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_INOP:
/* Group is in the process of terminating */
grp->alloc_called = 1;
break;
case MPCG_STATE_RESET:
/* MPC Group will transition to state */
/* MPCG_STATE_XID2INITW iff the minimum number */
/* of 1 read and 1 write channel have successfully*/
/* activated */
/*fsm_newstate(grp->fsm, MPCG_STATE_XID2INITW);*/
if (callback)
grp->send_qllc_disc = 1;
case MPCG_STATE_XID0IOWAIT:
fsm_deltimer(&grp->timer);
grp->outstanding_xid2 = 0;
grp->outstanding_xid7 = 0;
grp->outstanding_xid7_p2 = 0;
grp->saved_xid2 = NULL;
if (callback)
ctcm_open(dev);
fsm_event(priv->fsm, DEV_EVENT_START, dev);
break;
case MPCG_STATE_READY:
/* XID exchanges completed after PORT was activated */
/* Link station already active */
/* Maybe timing issue...retry callback */
grp->allocchan_callback_retries++;
if (grp->allocchan_callback_retries < 4) {
if (grp->allochanfunc)
grp->allochanfunc(grp->port_num,
grp->group_max_buflen);
} else {
/* there are problems...bail out */
/* there may be a state mismatch so restart */
grp->port_persist = 1;
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
grp->allocchan_callback_retries = 0;
}
break;
default:
return 0;
}
ctcm_pr_debug("ctcmpc exit: %s()\n", __FUNCTION__);
return 0;
}
EXPORT_SYMBOL(ctc_mpc_alloc_channel);
/*
* ctc_mpc_establish_connectivity
* (exported interface)
*/
void ctc_mpc_establish_connectivity(int port_num,
void (*callback)(int, int, int))
{
char device[20];
struct net_device *dev;
struct mpc_group *grp;
struct ctcm_priv *priv;
struct channel *rch, *wch;
ctcm_pr_debug("ctcmpc enter: %s()\n", __FUNCTION__);
sprintf(device, "%s%i", MPC_DEVICE_NAME, port_num);
dev = __dev_get_by_name(&init_net, device);
if (dev == NULL) {
printk(KERN_INFO "ctc_mpc_establish_connectivity "
"%s dev=NULL\n", device);
return;
}
priv = dev->priv;
rch = priv->channel[READ];
wch = priv->channel[WRITE];
grp = priv->mpcg;
ctcm_pr_debug("ctcmpc: %s() called for device %s state=%s\n",
__FUNCTION__, dev->name,
fsm_getstate_str(grp->fsm));
grp->estconnfunc = callback;
grp->port_num = port_num;
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_READY:
/* XID exchanges completed after PORT was activated */
/* Link station already active */
/* Maybe timing issue...retry callback */
fsm_deltimer(&grp->timer);
grp->estconn_callback_retries++;
if (grp->estconn_callback_retries < 4) {
if (grp->estconnfunc) {
grp->estconnfunc(grp->port_num, 0,
grp->group_max_buflen);
grp->estconnfunc = NULL;
}
} else {
/* there are problems...bail out */
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
grp->estconn_callback_retries = 0;
}
break;
case MPCG_STATE_INOP:
case MPCG_STATE_RESET:
/* MPC Group is not ready to start XID - min num of */
/* 1 read and 1 write channel have not been acquired*/
printk(KERN_WARNING "ctcmpc: %s() REJECTED ACTIVE XID Req"
"uest - Channel Pair is not Active\n", __FUNCTION__);
if (grp->estconnfunc) {
grp->estconnfunc(grp->port_num, -1, 0);
grp->estconnfunc = NULL;
}
break;
case MPCG_STATE_XID2INITW:
/* alloc channel was called but no XID exchange */
/* has occurred. initiate xside XID exchange */
/* make sure yside XID0 processing has not started */
if ((fsm_getstate(rch->fsm) > CH_XID0_PENDING) ||
(fsm_getstate(wch->fsm) > CH_XID0_PENDING)) {
printk(KERN_WARNING "mpc: %s() ABORT ACTIVE XID"
" Request- PASSIVE XID in process\n"
, __FUNCTION__);
break;
}
grp->send_qllc_disc = 1;
fsm_newstate(grp->fsm, MPCG_STATE_XID0IOWAIT);
fsm_deltimer(&grp->timer);
fsm_addtimer(&grp->timer, MPC_XID_TIMEOUT_VALUE,
MPCG_EVENT_TIMER, dev);
grp->outstanding_xid7 = 0;
grp->outstanding_xid7_p2 = 0;
grp->saved_xid2 = NULL;
if ((rch->in_mpcgroup) &&
(fsm_getstate(rch->fsm) == CH_XID0_PENDING))
fsm_event(grp->fsm, MPCG_EVENT_XID0DO, rch);
else {
printk(KERN_WARNING "mpc: %s() Unable to start"
" ACTIVE XID0 on read channel\n",
__FUNCTION__);
if (grp->estconnfunc) {
grp->estconnfunc(grp->port_num, -1, 0);
grp->estconnfunc = NULL;
}
fsm_deltimer(&grp->timer);
goto done;
}
if ((wch->in_mpcgroup) &&
(fsm_getstate(wch->fsm) == CH_XID0_PENDING))
fsm_event(grp->fsm, MPCG_EVENT_XID0DO, wch);
else {
printk(KERN_WARNING "mpc: %s() Unable to start"
" ACTIVE XID0 on write channel\n",
__FUNCTION__);
if (grp->estconnfunc) {
grp->estconnfunc(grp->port_num, -1, 0);
grp->estconnfunc = NULL;
}
fsm_deltimer(&grp->timer);
goto done;
}
break;
case MPCG_STATE_XID0IOWAIT:
/* already in active XID negotiations */
default:
break;
}
done:
ctcm_pr_debug("ctcmpc exit: %s()\n", __FUNCTION__);
return;
}
EXPORT_SYMBOL(ctc_mpc_establish_connectivity);
/*
* ctc_mpc_dealloc_ch
* (exported interface)
*/
void ctc_mpc_dealloc_ch(int port_num)
{
struct net_device *dev;
char device[20];
struct ctcm_priv *priv;
struct mpc_group *grp;
ctcm_pr_debug("ctcmpc enter: %s()\n", __FUNCTION__);
sprintf(device, "%s%i", MPC_DEVICE_NAME, port_num);
dev = __dev_get_by_name(&init_net, device);
if (dev == NULL) {
printk(KERN_INFO "%s() %s dev=NULL\n", __FUNCTION__, device);
goto done;
}
ctcm_pr_debug("ctcmpc:%s %s() called for device %s refcount=%d\n",
dev->name, __FUNCTION__,
dev->name, atomic_read(&dev->refcnt));
priv = dev->priv;
if (priv == NULL) {
printk(KERN_INFO "%s() %s priv=NULL\n",
__FUNCTION__, device);
goto done;
}
fsm_deltimer(&priv->restart_timer);
grp = priv->mpcg;
if (grp == NULL) {
printk(KERN_INFO "%s() %s dev=NULL\n", __FUNCTION__, device);
goto done;
}
grp->channels_terminating = 0;
fsm_deltimer(&grp->timer);
grp->allochanfunc = NULL;
grp->estconnfunc = NULL;
grp->port_persist = 0;
grp->send_qllc_disc = 0;
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
ctcm_close(dev);
done:
ctcm_pr_debug("ctcmpc exit: %s()\n", __FUNCTION__);
return;
}
EXPORT_SYMBOL(ctc_mpc_dealloc_ch);
/*
* ctc_mpc_flow_control
* (exported interface)
*/
void ctc_mpc_flow_control(int port_num, int flowc)
{
char device[20];
struct ctcm_priv *priv;
struct mpc_group *grp;
struct net_device *dev;
struct channel *rch;
int mpcg_state;
ctcm_pr_debug("ctcmpc enter: %s() %i\n", __FUNCTION__, flowc);
sprintf(device, "%s%i", MPC_DEVICE_NAME, port_num);
dev = __dev_get_by_name(&init_net, device);
if (dev == NULL) {
printk(KERN_INFO "ctc_mpc_flow_control %s dev=NULL\n", device);
return;
}
ctcm_pr_debug("ctcmpc: %s %s called \n", dev->name, __FUNCTION__);
priv = dev->priv;
if (priv == NULL) {
printk(KERN_INFO "ctcmpc:%s() %s priv=NULL\n",
__FUNCTION__, device);
return;
}
grp = priv->mpcg;
rch = priv->channel[READ];
mpcg_state = fsm_getstate(grp->fsm);
switch (flowc) {
case 1:
if (mpcg_state == MPCG_STATE_FLOWC)
break;
if (mpcg_state == MPCG_STATE_READY) {
if (grp->flow_off_called == 1)
grp->flow_off_called = 0;
else
fsm_newstate(grp->fsm, MPCG_STATE_FLOWC);
break;
}
break;
case 0:
if (mpcg_state == MPCG_STATE_FLOWC) {
fsm_newstate(grp->fsm, MPCG_STATE_READY);
/* ensure any data that has accumulated */
/* on the io_queue will now be sen t */
tasklet_schedule(&rch->ch_tasklet);
}
/* possible race condition */
if (mpcg_state == MPCG_STATE_READY) {
grp->flow_off_called = 1;
break;
}
break;
}
ctcm_pr_debug("ctcmpc exit: %s() %i\n", __FUNCTION__, flowc);
}
EXPORT_SYMBOL(ctc_mpc_flow_control);
static int mpc_send_qllc_discontact(struct net_device *);
/*
* helper function of ctcmpc_unpack_skb
*/
static void mpc_rcvd_sweep_resp(struct mpcg_info *mpcginfo)
{
struct channel *rch = mpcginfo->ch;
struct net_device *dev = rch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
struct channel *ch = priv->channel[WRITE];
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s(): ch=0x%p id=%s\n",
__FUNCTION__, ch, ch->id);
if (do_debug_data)
ctcmpc_dumpit((char *)mpcginfo->sweep, TH_SWEEP_LENGTH);
grp->sweep_rsp_pend_num--;
if ((grp->sweep_req_pend_num == 0) &&
(grp->sweep_rsp_pend_num == 0)) {
fsm_deltimer(&ch->sweep_timer);
grp->in_sweep = 0;
rch->th_seq_num = 0x00;
ch->th_seq_num = 0x00;
ctcm_clear_busy_do(dev);
}
kfree(mpcginfo);
return;
}
/*
* helper function of mpc_rcvd_sweep_req
* which is a helper of ctcmpc_unpack_skb
*/
static void ctcmpc_send_sweep_resp(struct channel *rch)
{
struct net_device *dev = rch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
int rc = 0;
struct th_sweep *header;
struct sk_buff *sweep_skb;
struct channel *ch = priv->channel[WRITE];
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s(): ch=0x%p id=%s\n",
__FUNCTION__, rch, rch->id);
sweep_skb = __dev_alloc_skb(MPC_BUFSIZE_DEFAULT,
GFP_ATOMIC|GFP_DMA);
if (sweep_skb == NULL) {
printk(KERN_INFO "Couldn't alloc sweep_skb\n");
rc = -ENOMEM;
goto done;
}
header = (struct th_sweep *)
kmalloc(sizeof(struct th_sweep), gfp_type());
if (!header) {
dev_kfree_skb_any(sweep_skb);
rc = -ENOMEM;
goto done;
}
header->th.th_seg = 0x00 ;
header->th.th_ch_flag = TH_SWEEP_RESP;
header->th.th_blk_flag = 0x00;
header->th.th_is_xid = 0x00;
header->th.th_seq_num = 0x00;
header->sw.th_last_seq = ch->th_seq_num;
memcpy(skb_put(sweep_skb, TH_SWEEP_LENGTH), header, TH_SWEEP_LENGTH);
kfree(header);
dev->trans_start = jiffies;
skb_queue_tail(&ch->sweep_queue, sweep_skb);
fsm_addtimer(&ch->sweep_timer, 100, CTC_EVENT_RSWEEP_TIMER, ch);
return;
done:
if (rc != 0) {
grp->in_sweep = 0;
ctcm_clear_busy_do(dev);
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
}
return;
}
/*
* helper function of ctcmpc_unpack_skb
*/
static void mpc_rcvd_sweep_req(struct mpcg_info *mpcginfo)
{
struct channel *rch = mpcginfo->ch;
struct net_device *dev = rch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
struct channel *ch = priv->channel[WRITE];
if (do_debug)
CTCM_DBF_TEXT_(MPC_TRACE, CTC_DBF_DEBUG,
" %s(): ch=0x%p id=%s\n", __FUNCTION__, ch, ch->id);
if (grp->in_sweep == 0) {
grp->in_sweep = 1;
ctcm_test_and_set_busy(dev);
grp->sweep_req_pend_num = grp->active_channels[READ];
grp->sweep_rsp_pend_num = grp->active_channels[READ];
}
if (do_debug_data)
ctcmpc_dumpit((char *)mpcginfo->sweep, TH_SWEEP_LENGTH);
grp->sweep_req_pend_num--;
ctcmpc_send_sweep_resp(ch);
kfree(mpcginfo);
return;
}
/*
* MPC Group Station FSM definitions
*/
static const char *mpcg_event_names[] = {
[MPCG_EVENT_INOP] = "INOP Condition",
[MPCG_EVENT_DISCONC] = "Discontact Received",
[MPCG_EVENT_XID0DO] = "Channel Active - Start XID",
[MPCG_EVENT_XID2] = "XID2 Received",
[MPCG_EVENT_XID2DONE] = "XID0 Complete",
[MPCG_EVENT_XID7DONE] = "XID7 Complete",
[MPCG_EVENT_TIMER] = "XID Setup Timer",
[MPCG_EVENT_DOIO] = "XID DoIO",
};
static const char *mpcg_state_names[] = {
[MPCG_STATE_RESET] = "Reset",
[MPCG_STATE_INOP] = "INOP",
[MPCG_STATE_XID2INITW] = "Passive XID- XID0 Pending Start",
[MPCG_STATE_XID2INITX] = "Passive XID- XID0 Pending Complete",
[MPCG_STATE_XID7INITW] = "Passive XID- XID7 Pending P1 Start",
[MPCG_STATE_XID7INITX] = "Passive XID- XID7 Pending P2 Complete",
[MPCG_STATE_XID0IOWAIT] = "Active XID- XID0 Pending Start",
[MPCG_STATE_XID0IOWAIX] = "Active XID- XID0 Pending Complete",
[MPCG_STATE_XID7INITI] = "Active XID- XID7 Pending Start",
[MPCG_STATE_XID7INITZ] = "Active XID- XID7 Pending Complete ",
[MPCG_STATE_XID7INITF] = "XID - XID7 Complete ",
[MPCG_STATE_FLOWC] = "FLOW CONTROL ON",
[MPCG_STATE_READY] = "READY",
};
/*
* The MPC Group Station FSM
* 22 events
*/
static const fsm_node mpcg_fsm[] = {
{ MPCG_STATE_RESET, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_INOP, MPCG_EVENT_INOP, mpc_action_nop },
{ MPCG_STATE_FLOWC, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_READY, MPCG_EVENT_DISCONC, mpc_action_discontact },
{ MPCG_STATE_READY, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID2INITW, MPCG_EVENT_XID0DO, mpc_action_doxid0 },
{ MPCG_STATE_XID2INITW, MPCG_EVENT_XID2, mpc_action_rcvd_xid0 },
{ MPCG_STATE_XID2INITW, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID2INITW, MPCG_EVENT_TIMER, mpc_action_timeout },
{ MPCG_STATE_XID2INITW, MPCG_EVENT_DOIO, mpc_action_yside_xid },
{ MPCG_STATE_XID2INITX, MPCG_EVENT_XID0DO, mpc_action_doxid0 },
{ MPCG_STATE_XID2INITX, MPCG_EVENT_XID2, mpc_action_rcvd_xid0 },
{ MPCG_STATE_XID2INITX, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID2INITX, MPCG_EVENT_TIMER, mpc_action_timeout },
{ MPCG_STATE_XID2INITX, MPCG_EVENT_DOIO, mpc_action_yside_xid },
{ MPCG_STATE_XID7INITW, MPCG_EVENT_XID2DONE, mpc_action_doxid7 },
{ MPCG_STATE_XID7INITW, MPCG_EVENT_DISCONC, mpc_action_discontact },
{ MPCG_STATE_XID7INITW, MPCG_EVENT_XID2, mpc_action_rcvd_xid7 },
{ MPCG_STATE_XID7INITW, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID7INITW, MPCG_EVENT_TIMER, mpc_action_timeout },
{ MPCG_STATE_XID7INITW, MPCG_EVENT_XID7DONE, mpc_action_doxid7 },
{ MPCG_STATE_XID7INITW, MPCG_EVENT_DOIO, mpc_action_yside_xid },
{ MPCG_STATE_XID7INITX, MPCG_EVENT_DISCONC, mpc_action_discontact },
{ MPCG_STATE_XID7INITX, MPCG_EVENT_XID2, mpc_action_rcvd_xid7 },
{ MPCG_STATE_XID7INITX, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID7INITX, MPCG_EVENT_XID7DONE, mpc_action_doxid7 },
{ MPCG_STATE_XID7INITX, MPCG_EVENT_TIMER, mpc_action_timeout },
{ MPCG_STATE_XID7INITX, MPCG_EVENT_DOIO, mpc_action_yside_xid },
{ MPCG_STATE_XID0IOWAIT, MPCG_EVENT_XID0DO, mpc_action_doxid0 },
{ MPCG_STATE_XID0IOWAIT, MPCG_EVENT_DISCONC, mpc_action_discontact },
{ MPCG_STATE_XID0IOWAIT, MPCG_EVENT_XID2, mpc_action_rcvd_xid0 },
{ MPCG_STATE_XID0IOWAIT, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID0IOWAIT, MPCG_EVENT_TIMER, mpc_action_timeout },
{ MPCG_STATE_XID0IOWAIT, MPCG_EVENT_DOIO, mpc_action_xside_xid },
{ MPCG_STATE_XID0IOWAIX, MPCG_EVENT_XID0DO, mpc_action_doxid0 },
{ MPCG_STATE_XID0IOWAIX, MPCG_EVENT_DISCONC, mpc_action_discontact },
{ MPCG_STATE_XID0IOWAIX, MPCG_EVENT_XID2, mpc_action_rcvd_xid0 },
{ MPCG_STATE_XID0IOWAIX, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID0IOWAIX, MPCG_EVENT_TIMER, mpc_action_timeout },
{ MPCG_STATE_XID0IOWAIX, MPCG_EVENT_DOIO, mpc_action_xside_xid },
{ MPCG_STATE_XID7INITI, MPCG_EVENT_XID2DONE, mpc_action_doxid7 },
{ MPCG_STATE_XID7INITI, MPCG_EVENT_XID2, mpc_action_rcvd_xid7 },
{ MPCG_STATE_XID7INITI, MPCG_EVENT_DISCONC, mpc_action_discontact },
{ MPCG_STATE_XID7INITI, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID7INITI, MPCG_EVENT_TIMER, mpc_action_timeout },
{ MPCG_STATE_XID7INITI, MPCG_EVENT_XID7DONE, mpc_action_doxid7 },
{ MPCG_STATE_XID7INITI, MPCG_EVENT_DOIO, mpc_action_xside_xid },
{ MPCG_STATE_XID7INITZ, MPCG_EVENT_XID2, mpc_action_rcvd_xid7 },
{ MPCG_STATE_XID7INITZ, MPCG_EVENT_XID7DONE, mpc_action_doxid7 },
{ MPCG_STATE_XID7INITZ, MPCG_EVENT_DISCONC, mpc_action_discontact },
{ MPCG_STATE_XID7INITZ, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID7INITZ, MPCG_EVENT_TIMER, mpc_action_timeout },
{ MPCG_STATE_XID7INITZ, MPCG_EVENT_DOIO, mpc_action_xside_xid },
{ MPCG_STATE_XID7INITF, MPCG_EVENT_INOP, mpc_action_go_inop },
{ MPCG_STATE_XID7INITF, MPCG_EVENT_XID7DONE, mpc_action_go_ready },
};
static int mpcg_fsm_len = ARRAY_SIZE(mpcg_fsm);
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static void mpc_action_go_ready(fsm_instance *fsm, int event, void *arg)
{
struct net_device *dev = arg;
struct ctcm_priv *priv = NULL;
struct mpc_group *grp = NULL;
if (dev == NULL) {
printk(KERN_INFO "%s() dev=NULL\n", __FUNCTION__);
return;
}
ctcm_pr_debug("ctcmpc enter: %s %s()\n", dev->name, __FUNCTION__);
priv = dev->priv;
if (priv == NULL) {
printk(KERN_INFO "%s() priv=NULL\n", __FUNCTION__);
return;
}
grp = priv->mpcg;
if (grp == NULL) {
printk(KERN_INFO "%s() grp=NULL\n", __FUNCTION__);
return;
}
fsm_deltimer(&grp->timer);
if (grp->saved_xid2->xid2_flag2 == 0x40) {
priv->xid->xid2_flag2 = 0x00;
if (grp->estconnfunc) {
grp->estconnfunc(grp->port_num, 1,
grp->group_max_buflen);
grp->estconnfunc = NULL;
} else if (grp->allochanfunc)
grp->send_qllc_disc = 1;
goto done;
}
grp->port_persist = 1;
grp->out_of_sequence = 0;
grp->estconn_called = 0;
tasklet_hi_schedule(&grp->mpc_tasklet2);
ctcm_pr_debug("ctcmpc exit: %s %s()\n", dev->name, __FUNCTION__);
return;
done:
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
ctcm_pr_info("ctcmpc: %s()failure occurred\n", __FUNCTION__);
}
/*
* helper of ctcm_init_netdevice
* CTCM_PROTO_MPC only
*/
void mpc_group_ready(unsigned long adev)
{
struct net_device *dev = (struct net_device *)adev;
struct ctcm_priv *priv = NULL;
struct mpc_group *grp = NULL;
struct channel *ch = NULL;
ctcm_pr_debug("ctcmpc enter: %s()\n", __FUNCTION__);
if (dev == NULL) {
printk(KERN_INFO "%s() dev=NULL\n", __FUNCTION__);
return;
}
priv = dev->priv;
if (priv == NULL) {
printk(KERN_INFO "%s() priv=NULL\n", __FUNCTION__);
return;
}
grp = priv->mpcg;
if (grp == NULL) {
printk(KERN_INFO "ctcmpc:%s() grp=NULL\n", __FUNCTION__);
return;
}
printk(KERN_NOTICE "ctcmpc: %s GROUP TRANSITIONED TO READY"
" maxbuf:%d\n",
dev->name, grp->group_max_buflen);
fsm_newstate(grp->fsm, MPCG_STATE_READY);
/* Put up a read on the channel */
ch = priv->channel[READ];
ch->pdu_seq = 0;
if (do_debug_data)
ctcm_pr_debug("ctcmpc: %s() ToDCM_pdu_seq= %08x\n" ,
__FUNCTION__, ch->pdu_seq);
ctcmpc_chx_rxidle(ch->fsm, CTC_EVENT_START, ch);
/* Put the write channel in idle state */
ch = priv->channel[WRITE];
if (ch->collect_len > 0) {
spin_lock(&ch->collect_lock);
ctcm_purge_skb_queue(&ch->collect_queue);
ch->collect_len = 0;
spin_unlock(&ch->collect_lock);
}
ctcm_chx_txidle(ch->fsm, CTC_EVENT_START, ch);
ctcm_clear_busy(dev);
if (grp->estconnfunc) {
grp->estconnfunc(grp->port_num, 0,
grp->group_max_buflen);
grp->estconnfunc = NULL;
} else
if (grp->allochanfunc)
grp->allochanfunc(grp->port_num,
grp->group_max_buflen);
grp->send_qllc_disc = 1;
grp->changed_side = 0;
ctcm_pr_debug("ctcmpc exit: %s()\n", __FUNCTION__);
return;
}
/*
* Increment the MPC Group Active Channel Counts
* helper of dev_action (called from channel fsm)
*/
int mpc_channel_action(struct channel *ch, int direction, int action)
{
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv;
struct mpc_group *grp = NULL;
int rc = 0;
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s(): ch=0x%p id=%s\n",
__FUNCTION__, ch, ch->id);
if (dev == NULL) {
printk(KERN_INFO "ctcmpc_channel_action %i dev=NULL\n",
action);
rc = 1;
goto done;
}
priv = dev->priv;
if (priv == NULL) {
printk(KERN_INFO
"ctcmpc_channel_action%i priv=NULL, dev=%s\n",
action, dev->name);
rc = 2;
goto done;
}
grp = priv->mpcg;
if (grp == NULL) {
printk(KERN_INFO "ctcmpc: %s()%i mpcgroup=NULL, dev=%s\n",
__FUNCTION__, action, dev->name);
rc = 3;
goto done;
}
ctcm_pr_info(
"ctcmpc: %s() %i(): Grp:%s total_channel_paths=%i "
"active_channels read=%i, write=%i\n",
__FUNCTION__,
action,
fsm_getstate_str(grp->fsm),
grp->num_channel_paths,
grp->active_channels[READ],
grp->active_channels[WRITE]);
if ((action == MPC_CHANNEL_ADD) && (ch->in_mpcgroup == 0)) {
grp->num_channel_paths++;
grp->active_channels[direction]++;
grp->outstanding_xid2++;
ch->in_mpcgroup = 1;
if (ch->xid_skb != NULL)
dev_kfree_skb_any(ch->xid_skb);
ch->xid_skb = __dev_alloc_skb(MPC_BUFSIZE_DEFAULT,
GFP_ATOMIC | GFP_DMA);
if (ch->xid_skb == NULL) {
printk(KERN_INFO "ctcmpc: %s()"
"Couldn't alloc ch xid_skb\n", __FUNCTION__);
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
return 1;
}
ch->xid_skb_data = ch->xid_skb->data;
ch->xid_th = (struct th_header *)ch->xid_skb->data;
skb_put(ch->xid_skb, TH_HEADER_LENGTH);
ch->xid = (struct xid2 *)skb_tail_pointer(ch->xid_skb);
skb_put(ch->xid_skb, XID2_LENGTH);
ch->xid_id = skb_tail_pointer(ch->xid_skb);
ch->xid_skb->data = ch->xid_skb_data;
skb_reset_tail_pointer(ch->xid_skb);
ch->xid_skb->len = 0;
memcpy(skb_put(ch->xid_skb, grp->xid_skb->len),
grp->xid_skb->data,
grp->xid_skb->len);
ch->xid->xid2_dlc_type = ((CHANNEL_DIRECTION(ch->flags) == READ)
? XID2_READ_SIDE : XID2_WRITE_SIDE);
if (CHANNEL_DIRECTION(ch->flags) == WRITE)
ch->xid->xid2_buf_len = 0x00;
ch->xid_skb->data = ch->xid_skb_data;
skb_reset_tail_pointer(ch->xid_skb);
ch->xid_skb->len = 0;
fsm_newstate(ch->fsm, CH_XID0_PENDING);
if ((grp->active_channels[READ] > 0) &&
(grp->active_channels[WRITE] > 0) &&
(fsm_getstate(grp->fsm) < MPCG_STATE_XID2INITW)) {
fsm_newstate(grp->fsm, MPCG_STATE_XID2INITW);
printk(KERN_NOTICE "ctcmpc: %s MPC GROUP "
"CHANNELS ACTIVE\n", dev->name);
}
} else if ((action == MPC_CHANNEL_REMOVE) &&
(ch->in_mpcgroup == 1)) {
ch->in_mpcgroup = 0;
grp->num_channel_paths--;
grp->active_channels[direction]--;
if (ch->xid_skb != NULL)
dev_kfree_skb_any(ch->xid_skb);
ch->xid_skb = NULL;
if (grp->channels_terminating)
goto done;
if (((grp->active_channels[READ] == 0) &&
(grp->active_channels[WRITE] > 0))
|| ((grp->active_channels[WRITE] == 0) &&
(grp->active_channels[READ] > 0)))
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
}
done:
if (do_debug) {
ctcm_pr_debug(
"ctcmpc: %s() %i Grp:%s ttl_chan_paths=%i "
"active_chans read=%i, write=%i\n",
__FUNCTION__,
action,
fsm_getstate_str(grp->fsm),
grp->num_channel_paths,
grp->active_channels[READ],
grp->active_channels[WRITE]);
ctcm_pr_debug("ctcmpc exit : %s(): ch=0x%p id=%s\n",
__FUNCTION__, ch, ch->id);
}
return rc;
}
/**
* Unpack a just received skb and hand it over to
* upper layers.
* special MPC version of unpack_skb.
*
* ch The channel where this skb has been received.
* pskb The received skb.
*/
static void ctcmpc_unpack_skb(struct channel *ch, struct sk_buff *pskb)
{
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
struct pdu *curr_pdu;
struct mpcg_info *mpcginfo;
struct th_header *header = NULL;
struct th_sweep *sweep = NULL;
int pdu_last_seen = 0;
__u32 new_len;
struct sk_buff *skb;
int skblen;
int sendrc = 0;
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s() %s cp:%i ch:%s\n",
__FUNCTION__, dev->name, smp_processor_id(), ch->id);
header = (struct th_header *)pskb->data;
if ((header->th_seg == 0) &&
(header->th_ch_flag == 0) &&
(header->th_blk_flag == 0) &&
(header->th_seq_num == 0))
/* nothing for us */ goto done;
if (do_debug_data) {
ctcm_pr_debug("ctcmpc: %s() th_header\n", __FUNCTION__);
ctcmpc_dumpit((char *)header, TH_HEADER_LENGTH);
ctcm_pr_debug("ctcmpc: %s() pskb len: %04x \n",
__FUNCTION__, pskb->len);
}
pskb->dev = dev;
pskb->ip_summed = CHECKSUM_UNNECESSARY;
skb_pull(pskb, TH_HEADER_LENGTH);
if (likely(header->th_ch_flag == TH_HAS_PDU)) {
if (do_debug_data)
ctcm_pr_debug("ctcmpc: %s() came into th_has_pdu\n",
__FUNCTION__);
if ((fsm_getstate(grp->fsm) == MPCG_STATE_FLOWC) ||
((fsm_getstate(grp->fsm) == MPCG_STATE_READY) &&
(header->th_seq_num != ch->th_seq_num + 1) &&
(ch->th_seq_num != 0))) {
/* This is NOT the next segment *
* we are not the correct race winner *
* go away and let someone else win *
* BUT..this only applies if xid negot *
* is done *
*/
grp->out_of_sequence += 1;
__skb_push(pskb, TH_HEADER_LENGTH);
skb_queue_tail(&ch->io_queue, pskb);
if (do_debug_data)
ctcm_pr_debug("ctcmpc: %s() th_seq_num "
"expect:%08x got:%08x\n", __FUNCTION__,
ch->th_seq_num + 1, header->th_seq_num);
return;
}
grp->out_of_sequence = 0;
ch->th_seq_num = header->th_seq_num;
if (do_debug_data)
ctcm_pr_debug("ctcmpc: %s() FromVTAM_th_seq=%08x\n",
__FUNCTION__, ch->th_seq_num);
if (unlikely(fsm_getstate(grp->fsm) != MPCG_STATE_READY))
goto done;
pdu_last_seen = 0;
while ((pskb->len > 0) && !pdu_last_seen) {
curr_pdu = (struct pdu *)pskb->data;
if (do_debug_data) {
ctcm_pr_debug("ctcm: %s() pdu_header\n",
__FUNCTION__);
ctcmpc_dumpit((char *)pskb->data,
PDU_HEADER_LENGTH);
ctcm_pr_debug("ctcm: %s() pskb len: %04x \n",
__FUNCTION__, pskb->len);
}
skb_pull(pskb, PDU_HEADER_LENGTH);
if (curr_pdu->pdu_flag & PDU_LAST)
pdu_last_seen = 1;
if (curr_pdu->pdu_flag & PDU_CNTL)
pskb->protocol = htons(ETH_P_SNAP);
else
pskb->protocol = htons(ETH_P_SNA_DIX);
if ((pskb->len <= 0) || (pskb->len > ch->max_bufsize)) {
printk(KERN_INFO
"%s Illegal packet size %d "
"received "
"dropping\n", dev->name,
pskb->len);
priv->stats.rx_dropped++;
priv->stats.rx_length_errors++;
goto done;
}
skb_reset_mac_header(pskb);
new_len = curr_pdu->pdu_offset;
if (do_debug_data)
ctcm_pr_debug("ctcmpc: %s() new_len: %04x \n",
__FUNCTION__, new_len);
if ((new_len == 0) || (new_len > pskb->len)) {
/* should never happen */
/* pskb len must be hosed...bail out */
printk(KERN_INFO
"ctcmpc: %s(): invalid pdu"
" offset of %04x - data may be"
"lost\n", __FUNCTION__, new_len);
goto done;
}
skb = __dev_alloc_skb(new_len+4, GFP_ATOMIC);
if (!skb) {
printk(KERN_INFO
"ctcm: %s Out of memory in "
"%s()- request-len:%04x \n",
dev->name,
__FUNCTION__,
new_len+4);
priv->stats.rx_dropped++;
fsm_event(grp->fsm,
MPCG_EVENT_INOP, dev);
goto done;
}
memcpy(skb_put(skb, new_len),
pskb->data, new_len);
skb_reset_mac_header(skb);
skb->dev = pskb->dev;
skb->protocol = pskb->protocol;
skb->ip_summed = CHECKSUM_UNNECESSARY;
*((__u32 *) skb_push(skb, 4)) = ch->pdu_seq;
ch->pdu_seq++;
if (do_debug_data)
ctcm_pr_debug("%s: ToDCM_pdu_seq= %08x\n",
__FUNCTION__, ch->pdu_seq);
ctcm_pr_debug("ctcm: %s() skb:%0lx "
"skb len: %d \n", __FUNCTION__,
(unsigned long)skb, skb->len);
if (do_debug_data) {
ctcm_pr_debug("ctcmpc: %s() up to 32 bytes"
" of pdu_data sent\n",
__FUNCTION__);
ctcmpc_dump32((char *)skb->data, skb->len);
}
skblen = skb->len;
sendrc = netif_rx(skb);
priv->stats.rx_packets++;
priv->stats.rx_bytes += skblen;
skb_pull(pskb, new_len); /* point to next PDU */
}
} else {
mpcginfo = (struct mpcg_info *)
kmalloc(sizeof(struct mpcg_info), gfp_type());
if (mpcginfo == NULL)
goto done;
mpcginfo->ch = ch;
mpcginfo->th = header;
mpcginfo->skb = pskb;
ctcm_pr_debug("ctcmpc: %s() Not PDU - may be control pkt\n",
__FUNCTION__);
/* it's a sweep? */
sweep = (struct th_sweep *)pskb->data;
mpcginfo->sweep = sweep;
if (header->th_ch_flag == TH_SWEEP_REQ)
mpc_rcvd_sweep_req(mpcginfo);
else if (header->th_ch_flag == TH_SWEEP_RESP)
mpc_rcvd_sweep_resp(mpcginfo);
else if (header->th_blk_flag == TH_DATA_IS_XID) {
struct xid2 *thisxid = (struct xid2 *)pskb->data;
skb_pull(pskb, XID2_LENGTH);
mpcginfo->xid = thisxid;
fsm_event(grp->fsm, MPCG_EVENT_XID2, mpcginfo);
} else if (header->th_blk_flag == TH_DISCONTACT)
fsm_event(grp->fsm, MPCG_EVENT_DISCONC, mpcginfo);
else if (header->th_seq_num != 0) {
printk(KERN_INFO "%s unexpected packet"
" expected control pkt\n", dev->name);
priv->stats.rx_dropped++;
/* mpcginfo only used for non-data transfers */
kfree(mpcginfo);
if (do_debug_data)
ctcmpc_dump_skb(pskb, -8);
}
}
done:
dev_kfree_skb_any(pskb);
if (sendrc == NET_RX_DROP) {
printk(KERN_WARNING "%s %s() NETWORK BACKLOG EXCEEDED"
" - PACKET DROPPED\n", dev->name, __FUNCTION__);
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
}
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s %s(): ch=0x%p id=%s\n",
dev->name, __FUNCTION__, ch, ch->id);
}
/**
* tasklet helper for mpc's skb unpacking.
*
* ch The channel to work on.
* Allow flow control back pressure to occur here.
* Throttling back channel can result in excessive
* channel inactivity and system deact of channel
*/
void ctcmpc_bh(unsigned long thischan)
{
struct channel *ch = (struct channel *)thischan;
struct sk_buff *skb;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
if (do_debug)
ctcm_pr_debug("%s cp:%i enter: %s() %s\n",
dev->name, smp_processor_id(), __FUNCTION__, ch->id);
/* caller has requested driver to throttle back */
while ((fsm_getstate(grp->fsm) != MPCG_STATE_FLOWC) &&
(skb = skb_dequeue(&ch->io_queue))) {
ctcmpc_unpack_skb(ch, skb);
if (grp->out_of_sequence > 20) {
/* assume data loss has occurred if */
/* missing seq_num for extended */
/* period of time */
grp->out_of_sequence = 0;
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
break;
}
if (skb == skb_peek(&ch->io_queue))
break;
}
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s %s(): ch=0x%p id=%s\n",
dev->name, __FUNCTION__, ch, ch->id);
return;
}
/*
* MPC Group Initializations
*/
struct mpc_group *ctcmpc_init_mpc_group(struct ctcm_priv *priv)
{
struct mpc_group *grp;
CTCM_DBF_TEXT(MPC_SETUP, 3, __FUNCTION__);
grp = kzalloc(sizeof(struct mpc_group), GFP_KERNEL);
if (grp == NULL)
return NULL;
grp->fsm =
init_fsm("mpcg", mpcg_state_names, mpcg_event_names,
MPCG_NR_STATES, MPCG_NR_EVENTS, mpcg_fsm,
mpcg_fsm_len, GFP_KERNEL);
if (grp->fsm == NULL) {
kfree(grp);
return NULL;
}
fsm_newstate(grp->fsm, MPCG_STATE_RESET);
fsm_settimer(grp->fsm, &grp->timer);
grp->xid_skb =
__dev_alloc_skb(MPC_BUFSIZE_DEFAULT, GFP_ATOMIC | GFP_DMA);
if (grp->xid_skb == NULL) {
printk(KERN_INFO "Couldn't alloc MPCgroup xid_skb\n");
kfree_fsm(grp->fsm);
kfree(grp);
return NULL;
}
/* base xid for all channels in group */
grp->xid_skb_data = grp->xid_skb->data;
grp->xid_th = (struct th_header *)grp->xid_skb->data;
memcpy(skb_put(grp->xid_skb, TH_HEADER_LENGTH),
&thnorm, TH_HEADER_LENGTH);
grp->xid = (struct xid2 *) skb_tail_pointer(grp->xid_skb);
memcpy(skb_put(grp->xid_skb, XID2_LENGTH), &init_xid, XID2_LENGTH);
grp->xid->xid2_adj_id = jiffies | 0xfff00000;
grp->xid->xid2_sender_id = jiffies;
grp->xid_id = skb_tail_pointer(grp->xid_skb);
memcpy(skb_put(grp->xid_skb, 4), "VTAM", 4);
grp->rcvd_xid_skb =
__dev_alloc_skb(MPC_BUFSIZE_DEFAULT, GFP_ATOMIC|GFP_DMA);
if (grp->rcvd_xid_skb == NULL) {
printk(KERN_INFO "Couldn't alloc MPCgroup rcvd_xid_skb\n");
kfree_fsm(grp->fsm);
dev_kfree_skb(grp->xid_skb);
kfree(grp);
return NULL;
}
grp->rcvd_xid_data = grp->rcvd_xid_skb->data;
grp->rcvd_xid_th = (struct th_header *)grp->rcvd_xid_skb->data;
memcpy(skb_put(grp->rcvd_xid_skb, TH_HEADER_LENGTH),
&thnorm, TH_HEADER_LENGTH);
grp->saved_xid2 = NULL;
priv->xid = grp->xid;
priv->mpcg = grp;
return grp;
}
/*
* The MPC Group Station FSM
*/
/*
* MPC Group Station FSM actions
* CTCM_PROTO_MPC only
*/
/**
* NOP action for statemachines
*/
static void mpc_action_nop(fsm_instance *fi, int event, void *arg)
{
}
/*
* invoked when the device transitions to dev_stopped
* MPC will stop each individual channel if a single XID failure
* occurs, or will intitiate all channels be stopped if a GROUP
* level failure occurs.
*/
static void mpc_action_go_inop(fsm_instance *fi, int event, void *arg)
{
struct net_device *dev = arg;
struct ctcm_priv *priv;
struct mpc_group *grp;
int rc = 0;
struct channel *wch, *rch;
if (dev == NULL) {
printk(KERN_INFO "%s() dev=NULL\n", __FUNCTION__);
return;
}
ctcm_pr_debug("ctcmpc enter: %s %s()\n", dev->name, __FUNCTION__);
priv = dev->priv;
grp = priv->mpcg;
grp->flow_off_called = 0;
fsm_deltimer(&grp->timer);
if (grp->channels_terminating)
goto done;
grp->channels_terminating = 1;
grp->saved_state = fsm_getstate(grp->fsm);
fsm_newstate(grp->fsm, MPCG_STATE_INOP);
if (grp->saved_state > MPCG_STATE_XID7INITF)
printk(KERN_NOTICE "%s:MPC GROUP INOPERATIVE\n", dev->name);
if ((grp->saved_state != MPCG_STATE_RESET) ||
/* dealloc_channel has been called */
((grp->saved_state == MPCG_STATE_RESET) &&
(grp->port_persist == 0)))
fsm_deltimer(&priv->restart_timer);
wch = priv->channel[WRITE];
rch = priv->channel[READ];
switch (grp->saved_state) {
case MPCG_STATE_RESET:
case MPCG_STATE_INOP:
case MPCG_STATE_XID2INITW:
case MPCG_STATE_XID0IOWAIT:
case MPCG_STATE_XID2INITX:
case MPCG_STATE_XID7INITW:
case MPCG_STATE_XID7INITX:
case MPCG_STATE_XID0IOWAIX:
case MPCG_STATE_XID7INITI:
case MPCG_STATE_XID7INITZ:
case MPCG_STATE_XID7INITF:
break;
case MPCG_STATE_FLOWC:
case MPCG_STATE_READY:
default:
tasklet_hi_schedule(&wch->ch_disc_tasklet);
}
grp->xid2_tgnum = 0;
grp->group_max_buflen = 0; /*min of all received */
grp->outstanding_xid2 = 0;
grp->outstanding_xid7 = 0;
grp->outstanding_xid7_p2 = 0;
grp->saved_xid2 = NULL;
grp->xidnogood = 0;
grp->changed_side = 0;
grp->rcvd_xid_skb->data = grp->rcvd_xid_data;
skb_reset_tail_pointer(grp->rcvd_xid_skb);
grp->rcvd_xid_skb->len = 0;
grp->rcvd_xid_th = (struct th_header *)grp->rcvd_xid_skb->data;
memcpy(skb_put(grp->rcvd_xid_skb, TH_HEADER_LENGTH), &thnorm,
TH_HEADER_LENGTH);
if (grp->send_qllc_disc == 1) {
grp->send_qllc_disc = 0;
rc = mpc_send_qllc_discontact(dev);
}
/* DO NOT issue DEV_EVENT_STOP directly out of this code */
/* This can result in INOP of VTAM PU due to halting of */
/* outstanding IO which causes a sense to be returned */
/* Only about 3 senses are allowed and then IOS/VTAM will*/
/* ebcome unreachable without manual intervention */
if ((grp->port_persist == 1) || (grp->alloc_called)) {
grp->alloc_called = 0;
fsm_deltimer(&priv->restart_timer);
fsm_addtimer(&priv->restart_timer,
500,
DEV_EVENT_RESTART,
dev);
fsm_newstate(grp->fsm, MPCG_STATE_RESET);
if (grp->saved_state > MPCG_STATE_XID7INITF)
printk(KERN_NOTICE "%s:MPC GROUP RECOVERY SCHEDULED\n",
dev->name);
} else {
fsm_deltimer(&priv->restart_timer);
fsm_addtimer(&priv->restart_timer, 500, DEV_EVENT_STOP, dev);
fsm_newstate(grp->fsm, MPCG_STATE_RESET);
printk(KERN_NOTICE "%s:MPC GROUP RECOVERY NOT ATTEMPTED\n",
dev->name);
}
done:
ctcm_pr_debug("ctcmpc exit:%s %s()\n", dev->name, __FUNCTION__);
return;
}
/**
* Handle mpc group action timeout.
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*
* fi An instance of an mpc_group fsm.
* event The event, just happened.
* arg Generic pointer, casted from net_device * upon call.
*/
static void mpc_action_timeout(fsm_instance *fi, int event, void *arg)
{
struct net_device *dev = arg;
struct ctcm_priv *priv;
struct mpc_group *grp;
struct channel *wch;
struct channel *rch;
CTCM_DBF_TEXT(MPC_TRACE, 6, __FUNCTION__);
if (dev == NULL) {
CTCM_DBF_TEXT_(MPC_ERROR, 4, "%s: dev=NULL\n", __FUNCTION__);
return;
}
priv = dev->priv;
grp = priv->mpcg;
wch = priv->channel[WRITE];
rch = priv->channel[READ];
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_XID2INITW:
/* Unless there is outstanding IO on the */
/* channel just return and wait for ATTN */
/* interrupt to begin XID negotiations */
if ((fsm_getstate(rch->fsm) == CH_XID0_PENDING) &&
(fsm_getstate(wch->fsm) == CH_XID0_PENDING))
break;
default:
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
}
CTCM_DBF_TEXT_(MPC_TRACE, 6, "%s: dev=%s exit",
__FUNCTION__, dev->name);
return;
}
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
void mpc_action_discontact(fsm_instance *fi, int event, void *arg)
{
struct mpcg_info *mpcginfo = arg;
struct channel *ch = mpcginfo->ch;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
if (ch == NULL) {
printk(KERN_INFO "%s() ch=NULL\n", __FUNCTION__);
return;
}
if (ch->netdev == NULL) {
printk(KERN_INFO "%s() dev=NULL\n", __FUNCTION__);
return;
}
ctcm_pr_debug("ctcmpc enter: %s %s()\n", dev->name, __FUNCTION__);
grp->send_qllc_disc = 1;
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
ctcm_pr_debug("ctcmpc exit: %s %s()\n", dev->name, __FUNCTION__);
return;
}
/*
* MPC Group Station - not part of FSM
* CTCM_PROTO_MPC only
* called from add_channel in ctcm_main.c
*/
void mpc_action_send_discontact(unsigned long thischan)
{
struct channel *ch;
struct net_device *dev;
struct ctcm_priv *priv;
struct mpc_group *grp;
int rc = 0;
unsigned long saveflags;
ch = (struct channel *)thischan;
dev = ch->netdev;
priv = dev->priv;
grp = priv->mpcg;
ctcm_pr_info("ctcmpc: %s cp:%i enter: %s() GrpState:%s ChState:%s\n",
dev->name,
smp_processor_id(),
__FUNCTION__,
fsm_getstate_str(grp->fsm),
fsm_getstate_str(ch->fsm));
saveflags = 0; /* avoids compiler warning with
spin_unlock_irqrestore */
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
rc = ccw_device_start(ch->cdev, &ch->ccw[15],
(unsigned long)ch, 0xff, 0);
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags);
if (rc != 0) {
ctcm_pr_info("ctcmpc: %s() ch:%s IO failed \n",
__FUNCTION__,
ch->id);
ctcm_ccw_check_rc(ch, rc, "send discontact");
/* Not checking return code value here */
/* Making best effort to notify partner*/
/* that MPC Group is going down */
}
ctcm_pr_debug("ctcmpc exit: %s %s()\n", dev->name, __FUNCTION__);
return;
}
/*
* helper function of mpc FSM
* CTCM_PROTO_MPC only
* mpc_action_rcvd_xid7
*/
static int mpc_validate_xid(struct mpcg_info *mpcginfo)
{
struct channel *ch = mpcginfo->ch;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
struct xid2 *xid = mpcginfo->xid;
int failed = 0;
int rc = 0;
__u64 our_id, their_id = 0;
int len;
len = TH_HEADER_LENGTH + PDU_HEADER_LENGTH;
ctcm_pr_debug("ctcmpc enter: %s()\n", __FUNCTION__);
if (mpcginfo->xid == NULL) {
printk(KERN_INFO "%s() xid=NULL\n", __FUNCTION__);
rc = 1;
goto done;
}
ctcm_pr_debug("ctcmpc : %s xid received()\n", __FUNCTION__);
ctcmpc_dumpit((char *)mpcginfo->xid, XID2_LENGTH);
/*the received direction should be the opposite of ours */
if (((CHANNEL_DIRECTION(ch->flags) == READ) ? XID2_WRITE_SIDE :
XID2_READ_SIDE) != xid->xid2_dlc_type) {
failed = 1;
printk(KERN_INFO "ctcmpc:%s() XID REJECTED - READ-WRITE CH "
"Pairing Invalid \n", __FUNCTION__);
}
if (xid->xid2_dlc_type == XID2_READ_SIDE) {
ctcm_pr_debug("ctcmpc: %s(): grpmaxbuf:%d xid2buflen:%d\n",
__FUNCTION__, grp->group_max_buflen,
xid->xid2_buf_len);
if (grp->group_max_buflen == 0 ||
grp->group_max_buflen > xid->xid2_buf_len - len)
grp->group_max_buflen = xid->xid2_buf_len - len;
}
if (grp->saved_xid2 == NULL) {
grp->saved_xid2 =
(struct xid2 *)skb_tail_pointer(grp->rcvd_xid_skb);
memcpy(skb_put(grp->rcvd_xid_skb,
XID2_LENGTH), xid, XID2_LENGTH);
grp->rcvd_xid_skb->data = grp->rcvd_xid_data;
skb_reset_tail_pointer(grp->rcvd_xid_skb);
grp->rcvd_xid_skb->len = 0;
/* convert two 32 bit numbers into 1 64 bit for id compare */
our_id = (__u64)priv->xid->xid2_adj_id;
our_id = our_id << 32;
our_id = our_id + priv->xid->xid2_sender_id;
their_id = (__u64)xid->xid2_adj_id;
their_id = their_id << 32;
their_id = their_id + xid->xid2_sender_id;
/* lower id assume the xside role */
if (our_id < their_id) {
grp->roll = XSIDE;
ctcm_pr_debug("ctcmpc :%s() WE HAVE LOW ID-"
"TAKE XSIDE\n", __FUNCTION__);
} else {
grp->roll = YSIDE;
ctcm_pr_debug("ctcmpc :%s() WE HAVE HIGH ID-"
"TAKE YSIDE\n", __FUNCTION__);
}
} else {
if (xid->xid2_flag4 != grp->saved_xid2->xid2_flag4) {
failed = 1;
printk(KERN_INFO "%s XID REJECTED - XID Flag Byte4\n",
__FUNCTION__);
}
if (xid->xid2_flag2 == 0x40) {
failed = 1;
printk(KERN_INFO "%s XID REJECTED - XID NOGOOD\n",
__FUNCTION__);
}
if (xid->xid2_adj_id != grp->saved_xid2->xid2_adj_id) {
failed = 1;
printk(KERN_INFO "%s XID REJECTED - "
"Adjacent Station ID Mismatch\n",
__FUNCTION__);
}
if (xid->xid2_sender_id != grp->saved_xid2->xid2_sender_id) {
failed = 1;
printk(KERN_INFO "%s XID REJECTED - "
"Sender Address Mismatch\n", __FUNCTION__);
}
}
if (failed) {
ctcm_pr_info("ctcmpc : %s() failed\n", __FUNCTION__);
priv->xid->xid2_flag2 = 0x40;
grp->saved_xid2->xid2_flag2 = 0x40;
rc = 1;
}
done:
ctcm_pr_debug("ctcmpc exit: %s()\n", __FUNCTION__);
return rc;
}
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static void mpc_action_side_xid(fsm_instance *fsm, void *arg, int side)
{
struct channel *ch = arg;
struct ctcm_priv *priv;
struct mpc_group *grp = NULL;
struct net_device *dev = NULL;
int rc = 0;
int gotlock = 0;
unsigned long saveflags = 0; /* avoids compiler warning with
spin_unlock_irqrestore */
if (ch == NULL) {
printk(KERN_INFO "%s ch=NULL\n", __FUNCTION__);
goto done;
}
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id);
dev = ch->netdev;
if (dev == NULL) {
printk(KERN_INFO "%s dev=NULL\n", __FUNCTION__);
goto done;
}
priv = dev->priv;
if (priv == NULL) {
printk(KERN_INFO "%s priv=NULL\n", __FUNCTION__);
goto done;
}
grp = priv->mpcg;
if (grp == NULL) {
printk(KERN_INFO "%s grp=NULL\n", __FUNCTION__);
goto done;
}
if (ctcm_checkalloc_buffer(ch))
goto done;
/* skb data-buffer referencing: */
ch->trans_skb->data = ch->trans_skb_data;
skb_reset_tail_pointer(ch->trans_skb);
ch->trans_skb->len = 0;
/* result of the previous 3 statements is NOT always
* already set after ctcm_checkalloc_buffer
* because of possible reuse of the trans_skb
*/
memset(ch->trans_skb->data, 0, 16);
ch->rcvd_xid_th = (struct th_header *)ch->trans_skb_data;
/* check is main purpose here: */
skb_put(ch->trans_skb, TH_HEADER_LENGTH);
ch->rcvd_xid = (struct xid2 *)skb_tail_pointer(ch->trans_skb);
/* check is main purpose here: */
skb_put(ch->trans_skb, XID2_LENGTH);
ch->rcvd_xid_id = skb_tail_pointer(ch->trans_skb);
/* cleanup back to startpoint */
ch->trans_skb->data = ch->trans_skb_data;
skb_reset_tail_pointer(ch->trans_skb);
ch->trans_skb->len = 0;
/* non-checking rewrite of above skb data-buffer referencing: */
/*
memset(ch->trans_skb->data, 0, 16);
ch->rcvd_xid_th = (struct th_header *)ch->trans_skb_data;
ch->rcvd_xid = (struct xid2 *)(ch->trans_skb_data + TH_HEADER_LENGTH);
ch->rcvd_xid_id = ch->trans_skb_data + TH_HEADER_LENGTH + XID2_LENGTH;
*/
ch->ccw[8].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[8].count = 0;
ch->ccw[8].cda = 0x00;
if (side == XSIDE) {
/* mpc_action_xside_xid */
if (ch->xid_th == NULL) {
printk(KERN_INFO "%s ch->xid_th=NULL\n", __FUNCTION__);
goto done;
}
ch->ccw[9].cmd_code = CCW_CMD_WRITE;
ch->ccw[9].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[9].count = TH_HEADER_LENGTH;
ch->ccw[9].cda = virt_to_phys(ch->xid_th);
if (ch->xid == NULL) {
printk(KERN_INFO "%s ch->xid=NULL\n", __FUNCTION__);
goto done;
}
ch->ccw[10].cmd_code = CCW_CMD_WRITE;
ch->ccw[10].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[10].count = XID2_LENGTH;
ch->ccw[10].cda = virt_to_phys(ch->xid);
ch->ccw[11].cmd_code = CCW_CMD_READ;
ch->ccw[11].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[11].count = TH_HEADER_LENGTH;
ch->ccw[11].cda = virt_to_phys(ch->rcvd_xid_th);
ch->ccw[12].cmd_code = CCW_CMD_READ;
ch->ccw[12].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[12].count = XID2_LENGTH;
ch->ccw[12].cda = virt_to_phys(ch->rcvd_xid);
ch->ccw[13].cmd_code = CCW_CMD_READ;
ch->ccw[13].cda = virt_to_phys(ch->rcvd_xid_id);
} else { /* side == YSIDE : mpc_action_yside_xid */
ch->ccw[9].cmd_code = CCW_CMD_READ;
ch->ccw[9].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[9].count = TH_HEADER_LENGTH;
ch->ccw[9].cda = virt_to_phys(ch->rcvd_xid_th);
ch->ccw[10].cmd_code = CCW_CMD_READ;
ch->ccw[10].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[10].count = XID2_LENGTH;
ch->ccw[10].cda = virt_to_phys(ch->rcvd_xid);
if (ch->xid_th == NULL) {
printk(KERN_INFO "%s ch->xid_th=NULL\n", __FUNCTION__);
goto done;
}
ch->ccw[11].cmd_code = CCW_CMD_WRITE;
ch->ccw[11].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[11].count = TH_HEADER_LENGTH;
ch->ccw[11].cda = virt_to_phys(ch->xid_th);
if (ch->xid == NULL) {
printk(KERN_INFO "%s ch->xid=NULL\n", __FUNCTION__);
goto done;
}
ch->ccw[12].cmd_code = CCW_CMD_WRITE;
ch->ccw[12].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[12].count = XID2_LENGTH;
ch->ccw[12].cda = virt_to_phys(ch->xid);
if (ch->xid_id == NULL) {
printk(KERN_INFO "%s ch->xid_id=NULL\n", __FUNCTION__);
goto done;
}
ch->ccw[13].cmd_code = CCW_CMD_WRITE;
ch->ccw[13].cda = virt_to_phys(ch->xid_id);
}
ch->ccw[13].flags = CCW_FLAG_SLI | CCW_FLAG_CC;
ch->ccw[13].count = 4;
ch->ccw[14].cmd_code = CCW_CMD_NOOP;
ch->ccw[14].flags = CCW_FLAG_SLI;
ch->ccw[14].count = 0;
ch->ccw[14].cda = 0;
if (do_debug_ccw)
ctcmpc_dumpit((char *)&ch->ccw[8], sizeof(struct ccw1) * 7);
ctcmpc_dumpit((char *)ch->xid_th, TH_HEADER_LENGTH);
ctcmpc_dumpit((char *)ch->xid, XID2_LENGTH);
ctcmpc_dumpit((char *)ch->xid_id, 4);
if (!in_irq()) {
/* Such conditional locking is a known problem for
* sparse because its static undeterministic.
* Warnings should be ignored here. */
spin_lock_irqsave(get_ccwdev_lock(ch->cdev), saveflags);
gotlock = 1;
}
fsm_addtimer(&ch->timer, 5000 , CTC_EVENT_TIMER, ch);
rc = ccw_device_start(ch->cdev, &ch->ccw[8],
(unsigned long)ch, 0xff, 0);
if (gotlock) /* see remark above about conditional locking */
spin_unlock_irqrestore(get_ccwdev_lock(ch->cdev), saveflags);
if (rc != 0) {
ctcm_pr_info("ctcmpc: %s() ch:%s IO failed \n",
__FUNCTION__, ch->id);
ctcm_ccw_check_rc(ch, rc,
(side == XSIDE) ? "x-side XID" : "y-side XID");
}
done:
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s(): ch=0x%p id=%s\n",
__FUNCTION__, ch, ch->id);
return;
}
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static void mpc_action_xside_xid(fsm_instance *fsm, int event, void *arg)
{
mpc_action_side_xid(fsm, arg, XSIDE);
}
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static void mpc_action_yside_xid(fsm_instance *fsm, int event, void *arg)
{
mpc_action_side_xid(fsm, arg, YSIDE);
}
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static void mpc_action_doxid0(fsm_instance *fsm, int event, void *arg)
{
struct channel *ch = arg;
struct ctcm_priv *priv;
struct mpc_group *grp = NULL;
struct net_device *dev = NULL;
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id);
if (ch == NULL) {
printk(KERN_WARNING "%s ch=NULL\n", __FUNCTION__);
goto done;
}
dev = ch->netdev;
if (dev == NULL) {
printk(KERN_WARNING "%s dev=NULL\n", __FUNCTION__);
goto done;
}
priv = dev->priv;
if (priv == NULL) {
printk(KERN_WARNING "%s priv=NULL\n", __FUNCTION__);
goto done;
}
grp = priv->mpcg;
if (grp == NULL) {
printk(KERN_WARNING "%s grp=NULL\n", __FUNCTION__);
goto done;
}
if (ch->xid == NULL) {
printk(KERN_WARNING "%s ch-xid=NULL\n", __FUNCTION__);
goto done;
}
fsm_newstate(ch->fsm, CH_XID0_INPROGRESS);
ch->xid->xid2_option = XID2_0;
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_XID2INITW:
case MPCG_STATE_XID2INITX:
ch->ccw[8].cmd_code = CCW_CMD_SENSE_CMD;
break;
case MPCG_STATE_XID0IOWAIT:
case MPCG_STATE_XID0IOWAIX:
ch->ccw[8].cmd_code = CCW_CMD_WRITE_CTL;
break;
}
fsm_event(grp->fsm, MPCG_EVENT_DOIO, ch);
done:
if (do_debug)
ctcm_pr_debug("ctcmpc exit : %s(): ch=0x%p id=%s\n",
__FUNCTION__, ch, ch->id);
return;
}
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static void mpc_action_doxid7(fsm_instance *fsm, int event, void *arg)
{
struct net_device *dev = arg;
struct ctcm_priv *priv = NULL;
struct mpc_group *grp = NULL;
int direction;
int rc = 0;
int send = 0;
ctcm_pr_debug("ctcmpc enter: %s() \n", __FUNCTION__);
if (dev == NULL) {
printk(KERN_INFO "%s dev=NULL \n", __FUNCTION__);
rc = 1;
goto done;
}
priv = dev->priv;
if (priv == NULL) {
printk(KERN_INFO "%s priv=NULL \n", __FUNCTION__);
rc = 1;
goto done;
}
grp = priv->mpcg;
if (grp == NULL) {
printk(KERN_INFO "%s grp=NULL \n", __FUNCTION__);
rc = 1;
goto done;
}
for (direction = READ; direction <= WRITE; direction++) {
struct channel *ch = priv->channel[direction];
struct xid2 *thisxid = ch->xid;
ch->xid_skb->data = ch->xid_skb_data;
skb_reset_tail_pointer(ch->xid_skb);
ch->xid_skb->len = 0;
thisxid->xid2_option = XID2_7;
send = 0;
/* xid7 phase 1 */
if (grp->outstanding_xid7_p2 > 0) {
if (grp->roll == YSIDE) {
if (fsm_getstate(ch->fsm) == CH_XID7_PENDING1) {
fsm_newstate(ch->fsm, CH_XID7_PENDING2);
ch->ccw[8].cmd_code = CCW_CMD_SENSE_CMD;
memcpy(skb_put(ch->xid_skb,
TH_HEADER_LENGTH),
&thdummy, TH_HEADER_LENGTH);
send = 1;
}
} else if (fsm_getstate(ch->fsm) < CH_XID7_PENDING2) {
fsm_newstate(ch->fsm, CH_XID7_PENDING2);
ch->ccw[8].cmd_code = CCW_CMD_WRITE_CTL;
memcpy(skb_put(ch->xid_skb,
TH_HEADER_LENGTH),
&thnorm, TH_HEADER_LENGTH);
send = 1;
}
} else {
/* xid7 phase 2 */
if (grp->roll == YSIDE) {
if (fsm_getstate(ch->fsm) < CH_XID7_PENDING4) {
fsm_newstate(ch->fsm, CH_XID7_PENDING4);
memcpy(skb_put(ch->xid_skb,
TH_HEADER_LENGTH),
&thnorm, TH_HEADER_LENGTH);
ch->ccw[8].cmd_code = CCW_CMD_WRITE_CTL;
send = 1;
}
} else if (fsm_getstate(ch->fsm) == CH_XID7_PENDING3) {
fsm_newstate(ch->fsm, CH_XID7_PENDING4);
ch->ccw[8].cmd_code = CCW_CMD_SENSE_CMD;
memcpy(skb_put(ch->xid_skb, TH_HEADER_LENGTH),
&thdummy, TH_HEADER_LENGTH);
send = 1;
}
}
if (send)
fsm_event(grp->fsm, MPCG_EVENT_DOIO, ch);
}
done:
if (rc != 0)
fsm_event(grp->fsm, MPCG_EVENT_INOP, dev);
return;
}
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static void mpc_action_rcvd_xid0(fsm_instance *fsm, int event, void *arg)
{
struct mpcg_info *mpcginfo = arg;
struct channel *ch = mpcginfo->ch;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv;
struct mpc_group *grp;
if (do_debug)
ctcm_pr_debug("ctcmpc enter: %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id);
priv = dev->priv;
grp = priv->mpcg;
ctcm_pr_debug("ctcmpc in:%s() %s xid2:%i xid7:%i xidt_p2:%i \n",
__FUNCTION__, ch->id,
grp->outstanding_xid2,
grp->outstanding_xid7,
grp->outstanding_xid7_p2);
if (fsm_getstate(ch->fsm) < CH_XID7_PENDING)
fsm_newstate(ch->fsm, CH_XID7_PENDING);
grp->outstanding_xid2--;
grp->outstanding_xid7++;
grp->outstanding_xid7_p2++;
/* must change state before validating xid to */
/* properly handle interim interrupts received*/
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_XID2INITW:
fsm_newstate(grp->fsm, MPCG_STATE_XID2INITX);
mpc_validate_xid(mpcginfo);
break;
case MPCG_STATE_XID0IOWAIT:
fsm_newstate(grp->fsm, MPCG_STATE_XID0IOWAIX);
mpc_validate_xid(mpcginfo);
break;
case MPCG_STATE_XID2INITX:
if (grp->outstanding_xid2 == 0) {
fsm_newstate(grp->fsm, MPCG_STATE_XID7INITW);
mpc_validate_xid(mpcginfo);
fsm_event(grp->fsm, MPCG_EVENT_XID2DONE, dev);
}
break;
case MPCG_STATE_XID0IOWAIX:
if (grp->outstanding_xid2 == 0) {
fsm_newstate(grp->fsm, MPCG_STATE_XID7INITI);
mpc_validate_xid(mpcginfo);
fsm_event(grp->fsm, MPCG_EVENT_XID2DONE, dev);
}
break;
}
kfree(mpcginfo);
if (do_debug) {
ctcm_pr_debug("ctcmpc:%s() %s xid2:%i xid7:%i xidt_p2:%i \n",
__FUNCTION__, ch->id,
grp->outstanding_xid2,
grp->outstanding_xid7,
grp->outstanding_xid7_p2);
ctcm_pr_debug("ctcmpc:%s() %s grpstate: %s chanstate: %s \n",
__FUNCTION__, ch->id,
fsm_getstate_str(grp->fsm),
fsm_getstate_str(ch->fsm));
}
return;
}
/*
* MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static void mpc_action_rcvd_xid7(fsm_instance *fsm, int event, void *arg)
{
struct mpcg_info *mpcginfo = arg;
struct channel *ch = mpcginfo->ch;
struct net_device *dev = ch->netdev;
struct ctcm_priv *priv = dev->priv;
struct mpc_group *grp = priv->mpcg;
if (do_debug) {
ctcm_pr_debug("ctcmpc enter: %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id);
ctcm_pr_debug("ctcmpc: outstanding_xid7: %i, "
" outstanding_xid7_p2: %i\n",
grp->outstanding_xid7,
grp->outstanding_xid7_p2);
}
grp->outstanding_xid7--;
ch->xid_skb->data = ch->xid_skb_data;
skb_reset_tail_pointer(ch->xid_skb);
ch->xid_skb->len = 0;
switch (fsm_getstate(grp->fsm)) {
case MPCG_STATE_XID7INITI:
fsm_newstate(grp->fsm, MPCG_STATE_XID7INITZ);
mpc_validate_xid(mpcginfo);
break;
case MPCG_STATE_XID7INITW:
fsm_newstate(grp->fsm, MPCG_STATE_XID7INITX);
mpc_validate_xid(mpcginfo);
break;
case MPCG_STATE_XID7INITZ:
case MPCG_STATE_XID7INITX:
if (grp->outstanding_xid7 == 0) {
if (grp->outstanding_xid7_p2 > 0) {
grp->outstanding_xid7 =
grp->outstanding_xid7_p2;
grp->outstanding_xid7_p2 = 0;
} else
fsm_newstate(grp->fsm, MPCG_STATE_XID7INITF);
mpc_validate_xid(mpcginfo);
fsm_event(grp->fsm, MPCG_EVENT_XID7DONE, dev);
break;
}
mpc_validate_xid(mpcginfo);
break;
}
kfree(mpcginfo);
if (do_debug)
ctcm_pr_debug("ctcmpc exit: %s(): cp=%i ch=0x%p id=%s\n",
__FUNCTION__, smp_processor_id(), ch, ch->id);
return;
}
/*
* mpc_action helper of an MPC Group Station FSM action
* CTCM_PROTO_MPC only
*/
static int mpc_send_qllc_discontact(struct net_device *dev)
{
int rc = 0;
__u32 new_len = 0;
struct sk_buff *skb;
struct qllc *qllcptr;
struct ctcm_priv *priv;
struct mpc_group *grp;
ctcm_pr_debug("ctcmpc enter: %s()\n", __FUNCTION__);
if (dev == NULL) {
printk(KERN_INFO "%s() dev=NULL\n", __FUNCTION__);
rc = 1;
goto done;
}
priv = dev->priv;
if (priv == NULL) {
printk(KERN_INFO "%s() priv=NULL\n", __FUNCTION__);
rc = 1;
goto done;
}
grp = priv->mpcg;
if (grp == NULL) {
printk(KERN_INFO "%s() grp=NULL\n", __FUNCTION__);
rc = 1;
goto done;
}
ctcm_pr_info("ctcmpc: %s() GROUP STATE: %s\n", __FUNCTION__,
mpcg_state_names[grp->saved_state]);
switch (grp->saved_state) {
/*
* establish conn callback function is
* preferred method to report failure
*/
case MPCG_STATE_XID0IOWAIT:
case MPCG_STATE_XID0IOWAIX:
case MPCG_STATE_XID7INITI:
case MPCG_STATE_XID7INITZ:
case MPCG_STATE_XID2INITW:
case MPCG_STATE_XID2INITX:
case MPCG_STATE_XID7INITW:
case MPCG_STATE_XID7INITX:
if (grp->estconnfunc) {
grp->estconnfunc(grp->port_num, -1, 0);
grp->estconnfunc = NULL;
break;
}
case MPCG_STATE_FLOWC:
case MPCG_STATE_READY:
grp->send_qllc_disc = 2;
new_len = sizeof(struct qllc);
qllcptr = kzalloc(new_len, gfp_type() | GFP_DMA);
if (qllcptr == NULL) {
printk(KERN_INFO
"ctcmpc: Out of memory in %s()\n",
dev->name);
rc = 1;
goto done;
}
qllcptr->qllc_address = 0xcc;
qllcptr->qllc_commands = 0x03;
skb = __dev_alloc_skb(new_len, GFP_ATOMIC);
if (skb == NULL) {
printk(KERN_INFO "%s Out of memory in mpc_send_qllc\n",
dev->name);
priv->stats.rx_dropped++;
rc = 1;
kfree(qllcptr);
goto done;
}
memcpy(skb_put(skb, new_len), qllcptr, new_len);
kfree(qllcptr);
if (skb_headroom(skb) < 4) {
printk(KERN_INFO "ctcmpc: %s() Unable to"
" build discontact for %s\n",
__FUNCTION__, dev->name);
rc = 1;
dev_kfree_skb_any(skb);
goto done;
}
*((__u32 *)skb_push(skb, 4)) = priv->channel[READ]->pdu_seq;
priv->channel[READ]->pdu_seq++;
if (do_debug_data)
ctcm_pr_debug("ctcmpc: %s ToDCM_pdu_seq= %08x\n",
__FUNCTION__, priv->channel[READ]->pdu_seq);
/* receipt of CC03 resets anticipated sequence number on
receiving side */
priv->channel[READ]->pdu_seq = 0x00;
skb_reset_mac_header(skb);
skb->dev = dev;
skb->protocol = htons(ETH_P_SNAP);
skb->ip_summed = CHECKSUM_UNNECESSARY;
ctcmpc_dumpit((char *)skb->data, (sizeof(struct qllc) + 4));
netif_rx(skb);
break;
default:
break;
}
done:
ctcm_pr_debug("ctcmpc exit: %s()\n", __FUNCTION__);
return rc;
}
/* --- This is the END my friend --- */
/*
* drivers/s390/net/ctcm_mpc.h
*
* Copyright IBM Corp. 2007
* Authors: Peter Tiedemann (ptiedem@de.ibm.com)
*
* MPC additions:
* Belinda Thompson (belindat@us.ibm.com)
* Andy Richter (richtera@us.ibm.com)
*/
#ifndef _CTC_MPC_H_
#define _CTC_MPC_H_
#include <linux/skbuff.h>
#include "fsm.h"
/*
* MPC external interface
* Note that ctc_mpc_xyz are called with a lock on ................
*/
/* port_number is the mpc device 0, 1, 2 etc mpc2 is port_number 2 */
/* passive open Just wait for XID2 exchange */
extern int ctc_mpc_alloc_channel(int port,
void (*callback)(int port_num, int max_write_size));
/* active open Alloc then send XID2 */
extern void ctc_mpc_establish_connectivity(int port,
void (*callback)(int port_num, int rc, int max_write_size));
extern void ctc_mpc_dealloc_ch(int port);
extern void ctc_mpc_flow_control(int port, int flowc);
/*
* other MPC Group prototypes and structures
*/
#define ETH_P_SNA_DIX 0x80D5
/*
* Declaration of an XID2
*
*/
#define ALLZEROS 0x0000000000000000
#define XID_FM2 0x20
#define XID2_0 0x00
#define XID2_7 0x07
#define XID2_WRITE_SIDE 0x04
#define XID2_READ_SIDE 0x05
struct xid2 {
__u8 xid2_type_id;
__u8 xid2_len;
__u32 xid2_adj_id;
__u8 xid2_rlen;
__u8 xid2_resv1;
__u8 xid2_flag1;
__u8 xid2_fmtt;
__u8 xid2_flag4;
__u16 xid2_resv2;
__u8 xid2_tgnum;
__u32 xid2_sender_id;
__u8 xid2_flag2;
__u8 xid2_option;
char xid2_resv3[8];
__u16 xid2_resv4;
__u8 xid2_dlc_type;
__u16 xid2_resv5;
__u8 xid2_mpc_flag;
__u8 xid2_resv6;
__u16 xid2_buf_len;
char xid2_buffer[255 - (13 * sizeof(__u8) +
2 * sizeof(__u32) +
4 * sizeof(__u16) +
8 * sizeof(char))];
} __attribute__ ((packed));
#define XID2_LENGTH (sizeof(struct xid2))
struct th_header {
__u8 th_seg;
__u8 th_ch_flag;
#define TH_HAS_PDU 0xf0
#define TH_IS_XID 0x01
#define TH_SWEEP_REQ 0xfe
#define TH_SWEEP_RESP 0xff
__u8 th_blk_flag;
#define TH_DATA_IS_XID 0x80
#define TH_RETRY 0x40
#define TH_DISCONTACT 0xc0
#define TH_SEG_BLK 0x20
#define TH_LAST_SEG 0x10
#define TH_PDU_PART 0x08
__u8 th_is_xid; /* is 0x01 if this is XID */
__u32 th_seq_num;
} __attribute__ ((packed));
struct th_addon {
__u32 th_last_seq;
__u32 th_resvd;
} __attribute__ ((packed));
struct th_sweep {
struct th_header th;
struct th_addon sw;
} __attribute__ ((packed));
#define TH_HEADER_LENGTH (sizeof(struct th_header))
#define TH_SWEEP_LENGTH (sizeof(struct th_sweep))
#define PDU_LAST 0x80
#define PDU_CNTL 0x40
#define PDU_FIRST 0x20
struct pdu {
__u32 pdu_offset;
__u8 pdu_flag;
__u8 pdu_proto; /* 0x01 is APPN SNA */
__u16 pdu_seq;
} __attribute__ ((packed));
#define PDU_HEADER_LENGTH (sizeof(struct pdu))
struct qllc {
__u8 qllc_address;
#define QLLC_REQ 0xFF
#define QLLC_RESP 0x00
__u8 qllc_commands;
#define QLLC_DISCONNECT 0x53
#define QLLC_UNSEQACK 0x73
#define QLLC_SETMODE 0x93
#define QLLC_EXCHID 0xBF
} __attribute__ ((packed));
/*
* Definition of one MPC group
*/
#define MAX_MPCGCHAN 10
#define MPC_XID_TIMEOUT_VALUE 10000
#define MPC_CHANNEL_ADD 0
#define MPC_CHANNEL_REMOVE 1
#define MPC_CHANNEL_ATTN 2
#define XSIDE 1
#define YSIDE 0
struct mpcg_info {
struct sk_buff *skb;
struct channel *ch;
struct xid2 *xid;
struct th_sweep *sweep;
struct th_header *th;
};
struct mpc_group {
struct tasklet_struct mpc_tasklet;
struct tasklet_struct mpc_tasklet2;
int changed_side;
int saved_state;
int channels_terminating;
int out_of_sequence;
int flow_off_called;
int port_num;
int port_persist;
int alloc_called;
__u32 xid2_adj_id;
__u8 xid2_tgnum;
__u32 xid2_sender_id;
int num_channel_paths;
int active_channels[2];
__u16 group_max_buflen;
int outstanding_xid2;
int outstanding_xid7;
int outstanding_xid7_p2;
int sweep_req_pend_num;
int sweep_rsp_pend_num;
struct sk_buff *xid_skb;
char *xid_skb_data;
struct th_header *xid_th;
struct xid2 *xid;
char *xid_id;
struct th_header *rcvd_xid_th;
struct sk_buff *rcvd_xid_skb;
char *rcvd_xid_data;
__u8 in_sweep;
__u8 roll;
struct xid2 *saved_xid2;
void (*allochanfunc)(int, int);
int allocchan_callback_retries;
void (*estconnfunc)(int, int, int);
int estconn_callback_retries;
int estconn_called;
int xidnogood;
int send_qllc_disc;
fsm_timer timer;
fsm_instance *fsm; /* group xid fsm */
};
#ifdef DEBUGDATA
void ctcmpc_dumpit(char *buf, int len);
#else
static inline void ctcmpc_dumpit(char *buf, int len)
{
}
#endif
#ifdef DEBUGDATA
/*
* Dump header and first 16 bytes of an sk_buff for debugging purposes.
*
* skb The struct sk_buff to dump.
* offset Offset relative to skb-data, where to start the dump.
*/
void ctcmpc_dump_skb(struct sk_buff *skb, int offset);
#else
static inline void ctcmpc_dump_skb(struct sk_buff *skb, int offset)
{}
#endif
static inline void ctcmpc_dump32(char *buf, int len)
{
if (len < 32)
ctcmpc_dumpit(buf, len);
else
ctcmpc_dumpit(buf, 32);
}
int ctcmpc_open(struct net_device *);
void ctcm_ccw_check_rc(struct channel *, int, char *);
void mpc_group_ready(unsigned long adev);
int mpc_channel_action(struct channel *ch, int direction, int action);
void mpc_action_send_discontact(unsigned long thischan);
void mpc_action_discontact(fsm_instance *fi, int event, void *arg);
void ctcmpc_bh(unsigned long thischan);
#endif
/* --- This is the END my friend --- */
/*
* drivers/s390/net/ctcm_sysfs.c
*
* Copyright IBM Corp. 2007, 2007
* Authors: Peter Tiedemann (ptiedem@de.ibm.com)
*
*/
#undef DEBUG
#undef DEBUGDATA
#undef DEBUGCCW
#include <linux/sysfs.h>
#include "ctcm_main.h"
/*
* sysfs attributes
*/
static ssize_t ctcm_buffer_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ctcm_priv *priv = dev_get_drvdata(dev);
if (!priv)
return -ENODEV;
return sprintf(buf, "%d\n", priv->buffer_size);
}
static ssize_t ctcm_buffer_write(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct net_device *ndev;
int bs1;
struct ctcm_priv *priv = dev_get_drvdata(dev);
if (!(priv && priv->channel[READ] &&
(ndev = priv->channel[READ]->netdev))) {
CTCM_DBF_TEXT(SETUP, CTC_DBF_ERROR, "bfnondev");
return -ENODEV;
}
sscanf(buf, "%u", &bs1);
if (bs1 > CTCM_BUFSIZE_LIMIT)
goto einval;
if (bs1 < (576 + LL_HEADER_LENGTH + 2))
goto einval;
priv->buffer_size = bs1; /* just to overwrite the default */
if ((ndev->flags & IFF_RUNNING) &&
(bs1 < (ndev->mtu + LL_HEADER_LENGTH + 2)))
goto einval;
priv->channel[READ]->max_bufsize = bs1;
priv->channel[WRITE]->max_bufsize = bs1;
if (!(ndev->flags & IFF_RUNNING))
ndev->mtu = bs1 - LL_HEADER_LENGTH - 2;
priv->channel[READ]->flags |= CHANNEL_FLAGS_BUFSIZE_CHANGED;
priv->channel[WRITE]->flags |= CHANNEL_FLAGS_BUFSIZE_CHANGED;
CTCM_DBF_DEV(SETUP, ndev, buf);
return count;
einval:
CTCM_DBF_DEV(SETUP, ndev, "buff_err");
return -EINVAL;
}
static void ctcm_print_statistics(struct ctcm_priv *priv)
{
char *sbuf;
char *p;
if (!priv)
return;
sbuf = kmalloc(2048, GFP_KERNEL);
if (sbuf == NULL)
return;
p = sbuf;
p += sprintf(p, " Device FSM state: %s\n",
fsm_getstate_str(priv->fsm));
p += sprintf(p, " RX channel FSM state: %s\n",
fsm_getstate_str(priv->channel[READ]->fsm));
p += sprintf(p, " TX channel FSM state: %s\n",
fsm_getstate_str(priv->channel[WRITE]->fsm));
p += sprintf(p, " Max. TX buffer used: %ld\n",
priv->channel[WRITE]->prof.maxmulti);
p += sprintf(p, " Max. chained SKBs: %ld\n",
priv->channel[WRITE]->prof.maxcqueue);
p += sprintf(p, " TX single write ops: %ld\n",
priv->channel[WRITE]->prof.doios_single);
p += sprintf(p, " TX multi write ops: %ld\n",
priv->channel[WRITE]->prof.doios_multi);
p += sprintf(p, " Netto bytes written: %ld\n",
priv->channel[WRITE]->prof.txlen);
p += sprintf(p, " Max. TX IO-time: %ld\n",
priv->channel[WRITE]->prof.tx_time);
printk(KERN_INFO "Statistics for %s:\n%s",
priv->channel[WRITE]->netdev->name, sbuf);
kfree(sbuf);
return;
}
static ssize_t stats_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ctcm_priv *priv = dev_get_drvdata(dev);
if (!priv)
return -ENODEV;
ctcm_print_statistics(priv);
return sprintf(buf, "0\n");
}
static ssize_t stats_write(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ctcm_priv *priv = dev_get_drvdata(dev);
if (!priv)
return -ENODEV;
/* Reset statistics */
memset(&priv->channel[WRITE]->prof, 0,
sizeof(priv->channel[WRITE]->prof));
return count;
}
static ssize_t ctcm_proto_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ctcm_priv *priv = dev_get_drvdata(dev);
if (!priv)
return -ENODEV;
return sprintf(buf, "%d\n", priv->protocol);
}
static ssize_t ctcm_proto_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int value;
struct ctcm_priv *priv = dev_get_drvdata(dev);
if (!priv)
return -ENODEV;
sscanf(buf, "%u", &value);
if (!((value == CTCM_PROTO_S390) ||
(value == CTCM_PROTO_LINUX) ||
(value == CTCM_PROTO_MPC) ||
(value == CTCM_PROTO_OS390)))
return -EINVAL;
priv->protocol = value;
CTCM_DBF_DEV(SETUP, dev, buf);
return count;
}
static ssize_t ctcm_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ccwgroup_device *cgdev;
cgdev = to_ccwgroupdev(dev);
if (!cgdev)
return -ENODEV;
return sprintf(buf, "%s\n",
cu3088_type[cgdev->cdev[0]->id.driver_info]);
}
static DEVICE_ATTR(buffer, 0644, ctcm_buffer_show, ctcm_buffer_write);
static DEVICE_ATTR(protocol, 0644, ctcm_proto_show, ctcm_proto_store);
static DEVICE_ATTR(type, 0444, ctcm_type_show, NULL);
static DEVICE_ATTR(stats, 0644, stats_show, stats_write);
static struct attribute *ctcm_attr[] = {
&dev_attr_protocol.attr,
&dev_attr_type.attr,
&dev_attr_buffer.attr,
NULL,
};
static struct attribute_group ctcm_attr_group = {
.attrs = ctcm_attr,
};
int ctcm_add_attributes(struct device *dev)
{
int rc;
rc = device_create_file(dev, &dev_attr_stats);
return rc;
}
void ctcm_remove_attributes(struct device *dev)
{
device_remove_file(dev, &dev_attr_stats);
}
int ctcm_add_files(struct device *dev)
{
return sysfs_create_group(&dev->kobj, &ctcm_attr_group);
}
void ctcm_remove_files(struct device *dev)
{
sysfs_remove_group(&dev->kobj, &ctcm_attr_group);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment