Commit 2cd46ad2 authored by Ken Wang's avatar Ken Wang Committed by Alex Deucher

drm/amdgpu: add graphic pipeline implementation for si v8

v5: rebase fixes
v6: rebase fixes
v7: rebase fixes
    fix tile reg offset as noticed by Jonathan
    Drop some debugging remnants
v8: add gfx v6 firmware versions for sysfs dump
Acked-by: default avatarChristian König <christian.koenig@amd.com>
Signed-off-by: default avatarKen Wang <Qingqing.Wang@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 098e4b6a
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_ih.h"
#include "amdgpu_gfx.h"
#include "amdgpu_ucode.h"
#include "si/clearstate_si.h"
#include "si/sid.h"
#define GFX6_NUM_GFX_RINGS 1
#define GFX6_NUM_COMPUTE_RINGS 2
#define STATIC_PER_CU_PG_ENABLE (1 << 3)
#define DYN_PER_CU_PG_ENABLE (1 << 2)
#define RLC_SAVE_AND_RESTORE_STARTING_OFFSET 0x90
#define RLC_CLEAR_STATE_DESCRIPTOR_OFFSET 0x3D
static void gfx_v6_0_set_ring_funcs(struct amdgpu_device *adev);
static void gfx_v6_0_set_irq_funcs(struct amdgpu_device *adev);
static void gfx_v6_0_get_cu_info(struct amdgpu_device *adev);
MODULE_FIRMWARE("radeon/tahiti_pfp.bin");
MODULE_FIRMWARE("radeon/tahiti_me.bin");
MODULE_FIRMWARE("radeon/tahiti_ce.bin");
MODULE_FIRMWARE("radeon/tahiti_rlc.bin");
MODULE_FIRMWARE("radeon/pitcairn_pfp.bin");
MODULE_FIRMWARE("radeon/pitcairn_me.bin");
MODULE_FIRMWARE("radeon/pitcairn_ce.bin");
MODULE_FIRMWARE("radeon/pitcairn_rlc.bin");
MODULE_FIRMWARE("radeon/verde_pfp.bin");
MODULE_FIRMWARE("radeon/verde_me.bin");
MODULE_FIRMWARE("radeon/verde_ce.bin");
MODULE_FIRMWARE("radeon/verde_rlc.bin");
MODULE_FIRMWARE("radeon/oland_pfp.bin");
MODULE_FIRMWARE("radeon/oland_me.bin");
MODULE_FIRMWARE("radeon/oland_ce.bin");
MODULE_FIRMWARE("radeon/oland_rlc.bin");
MODULE_FIRMWARE("radeon/hainan_pfp.bin");
MODULE_FIRMWARE("radeon/hainan_me.bin");
MODULE_FIRMWARE("radeon/hainan_ce.bin");
MODULE_FIRMWARE("radeon/hainan_rlc.bin");
static u32 gfx_v6_0_get_csb_size(struct amdgpu_device *adev);
static void gfx_v6_0_get_csb_buffer(struct amdgpu_device *adev, volatile u32 *buffer);
//static void gfx_v6_0_init_cp_pg_table(struct amdgpu_device *adev);
static void gfx_v6_0_init_pg(struct amdgpu_device *adev);
static const u32 verde_rlc_save_restore_register_list[] =
{
(0x8000 << 16) | (0x98f4 >> 2),
0x00000000,
(0x8040 << 16) | (0x98f4 >> 2),
0x00000000,
(0x8000 << 16) | (0xe80 >> 2),
0x00000000,
(0x8040 << 16) | (0xe80 >> 2),
0x00000000,
(0x8000 << 16) | (0x89bc >> 2),
0x00000000,
(0x8040 << 16) | (0x89bc >> 2),
0x00000000,
(0x8000 << 16) | (0x8c1c >> 2),
0x00000000,
(0x8040 << 16) | (0x8c1c >> 2),
0x00000000,
(0x9c00 << 16) | (0x98f0 >> 2),
0x00000000,
(0x9c00 << 16) | (0xe7c >> 2),
0x00000000,
(0x8000 << 16) | (0x9148 >> 2),
0x00000000,
(0x8040 << 16) | (0x9148 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9150 >> 2),
0x00000000,
(0x9c00 << 16) | (0x897c >> 2),
0x00000000,
(0x9c00 << 16) | (0x8d8c >> 2),
0x00000000,
(0x9c00 << 16) | (0xac54 >> 2),
0X00000000,
0x3,
(0x9c00 << 16) | (0x98f8 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9910 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9914 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9918 >> 2),
0x00000000,
(0x9c00 << 16) | (0x991c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9920 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9924 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9928 >> 2),
0x00000000,
(0x9c00 << 16) | (0x992c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9930 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9934 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9938 >> 2),
0x00000000,
(0x9c00 << 16) | (0x993c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9940 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9944 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9948 >> 2),
0x00000000,
(0x9c00 << 16) | (0x994c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9950 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9954 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9958 >> 2),
0x00000000,
(0x9c00 << 16) | (0x995c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9960 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9964 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9968 >> 2),
0x00000000,
(0x9c00 << 16) | (0x996c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9970 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9974 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9978 >> 2),
0x00000000,
(0x9c00 << 16) | (0x997c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9980 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9984 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9988 >> 2),
0x00000000,
(0x9c00 << 16) | (0x998c >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c00 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c14 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c04 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c08 >> 2),
0x00000000,
(0x8000 << 16) | (0x9b7c >> 2),
0x00000000,
(0x8040 << 16) | (0x9b7c >> 2),
0x00000000,
(0x8000 << 16) | (0xe84 >> 2),
0x00000000,
(0x8040 << 16) | (0xe84 >> 2),
0x00000000,
(0x8000 << 16) | (0x89c0 >> 2),
0x00000000,
(0x8040 << 16) | (0x89c0 >> 2),
0x00000000,
(0x8000 << 16) | (0x914c >> 2),
0x00000000,
(0x8040 << 16) | (0x914c >> 2),
0x00000000,
(0x8000 << 16) | (0x8c20 >> 2),
0x00000000,
(0x8040 << 16) | (0x8c20 >> 2),
0x00000000,
(0x8000 << 16) | (0x9354 >> 2),
0x00000000,
(0x8040 << 16) | (0x9354 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9060 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9364 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9100 >> 2),
0x00000000,
(0x9c00 << 16) | (0x913c >> 2),
0x00000000,
(0x8000 << 16) | (0x90e0 >> 2),
0x00000000,
(0x8000 << 16) | (0x90e4 >> 2),
0x00000000,
(0x8000 << 16) | (0x90e8 >> 2),
0x00000000,
(0x8040 << 16) | (0x90e0 >> 2),
0x00000000,
(0x8040 << 16) | (0x90e4 >> 2),
0x00000000,
(0x8040 << 16) | (0x90e8 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8bcc >> 2),
0x00000000,
(0x9c00 << 16) | (0x8b24 >> 2),
0x00000000,
(0x9c00 << 16) | (0x88c4 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8e50 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8c0c >> 2),
0x00000000,
(0x9c00 << 16) | (0x8e58 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8e5c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9508 >> 2),
0x00000000,
(0x9c00 << 16) | (0x950c >> 2),
0x00000000,
(0x9c00 << 16) | (0x9494 >> 2),
0x00000000,
(0x9c00 << 16) | (0xac0c >> 2),
0x00000000,
(0x9c00 << 16) | (0xac10 >> 2),
0x00000000,
(0x9c00 << 16) | (0xac14 >> 2),
0x00000000,
(0x9c00 << 16) | (0xae00 >> 2),
0x00000000,
(0x9c00 << 16) | (0xac08 >> 2),
0x00000000,
(0x9c00 << 16) | (0x88d4 >> 2),
0x00000000,
(0x9c00 << 16) | (0x88c8 >> 2),
0x00000000,
(0x9c00 << 16) | (0x88cc >> 2),
0x00000000,
(0x9c00 << 16) | (0x89b0 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8b10 >> 2),
0x00000000,
(0x9c00 << 16) | (0x8a14 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9830 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9834 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9838 >> 2),
0x00000000,
(0x9c00 << 16) | (0x9a10 >> 2),
0x00000000,
(0x8000 << 16) | (0x9870 >> 2),
0x00000000,
(0x8000 << 16) | (0x9874 >> 2),
0x00000000,
(0x8001 << 16) | (0x9870 >> 2),
0x00000000,
(0x8001 << 16) | (0x9874 >> 2),
0x00000000,
(0x8040 << 16) | (0x9870 >> 2),
0x00000000,
(0x8040 << 16) | (0x9874 >> 2),
0x00000000,
(0x8041 << 16) | (0x9870 >> 2),
0x00000000,
(0x8041 << 16) | (0x9874 >> 2),
0x00000000,
0x00000000
};
static int gfx_v6_0_init_microcode(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err;
const struct gfx_firmware_header_v1_0 *cp_hdr;
const struct rlc_firmware_header_v1_0 *rlc_hdr;
DRM_DEBUG("\n");
switch (adev->asic_type) {
case CHIP_TAHITI:
chip_name = "tahiti";
break;
case CHIP_PITCAIRN:
chip_name = "pitcairn";
break;
case CHIP_VERDE:
chip_name = "verde";
break;
case CHIP_OLAND:
chip_name = "oland";
break;
case CHIP_HAINAN:
chip_name = "hainan";
break;
default: BUG();
}
snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name);
err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.pfp_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data;
adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name);
err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.me_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data;
adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name);
err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.ce_fw);
if (err)
goto out;
cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data;
adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version);
snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name);
err = request_firmware(&adev->gfx.rlc_fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->gfx.rlc_fw);
rlc_hdr = (const struct rlc_firmware_header_v1_0 *)adev->gfx.rlc_fw->data;
adev->gfx.rlc_fw_version = le32_to_cpu(rlc_hdr->header.ucode_version);
adev->gfx.rlc_feature_version = le32_to_cpu(rlc_hdr->ucode_feature_version);
out:
if (err) {
printk(KERN_ERR
"gfx6: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(adev->gfx.pfp_fw);
adev->gfx.pfp_fw = NULL;
release_firmware(adev->gfx.me_fw);
adev->gfx.me_fw = NULL;
release_firmware(adev->gfx.ce_fw);
adev->gfx.ce_fw = NULL;
release_firmware(adev->gfx.rlc_fw);
adev->gfx.rlc_fw = NULL;
}
return err;
}
static void gfx_v6_0_tiling_mode_table_init(struct amdgpu_device *adev)
{
const u32 num_tile_mode_states = 32;
u32 reg_offset, gb_tile_moden, split_equal_to_row_size;
switch (adev->gfx.config.mem_row_size_in_kb) {
case 1:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB;
break;
case 2:
default:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB;
break;
case 4:
split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB;
break;
}
if (adev->asic_type == CHIP_VERDE ||
adev->asic_type == CHIP_OLAND ||
adev->asic_type == CHIP_HAINAN) {
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
break;
case 1:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
break;
case 2:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
break;
case 3:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
break;
case 4:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 5:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 6:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 7:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
break;
case 8:
gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 9:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 10:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
break;
case 11:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 12:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 13:
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 14:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 15:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 16:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 17:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P4_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 21:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 22:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
break;
case 23:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 24:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 25:
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) |
NUM_BANKS(ADDR_SURF_8_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
break;
default:
gb_tile_moden = 0;
break;
}
adev->gfx.config.tile_mode_array[reg_offset] = gb_tile_moden;
WREG32(GB_TILE_MODE0 + reg_offset, gb_tile_moden);
}
} else if ((adev->asic_type == CHIP_TAHITI) || (adev->asic_type == CHIP_PITCAIRN)) {
for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
switch (reg_offset) {
case 0: /* non-AA compressed depth or any compressed stencil */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 1: /* 2xAA/4xAA compressed depth only */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 2: /* 8xAA compressed depth only */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 3: /* 2xAA/4xAA compressed depth with stencil (for depth buffer) */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 4: /* Maps w/ a dimension less than the 2D macro-tile dimensions (for mipmapped depth textures) */
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 5: /* Uncompressed 16bpp depth - and stencil buffer allocated with it */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 6: /* Uncompressed 32bpp depth - and stencil buffer allocated with it */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
break;
case 7: /* Uncompressed 8bpp stencil without depth (drivers typically do not use) */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 8: /* 1D and 1D Array Surfaces */
gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 9: /* Displayable maps. */
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 10: /* Display 8bpp. */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 11: /* Display 16bpp. */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 12: /* Display 32bpp. */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
break;
case 13: /* Thin. */
gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 14: /* Thin 8 bpp. */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
break;
case 15: /* Thin 16 bpp. */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
break;
case 16: /* Thin 32 bpp. */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
break;
case 17: /* Thin 64 bpp. */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(split_equal_to_row_size) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
break;
case 21: /* 8 bpp PRT. */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 22: /* 16 bpp PRT */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4));
break;
case 23: /* 32 bpp PRT */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 24: /* 64 bpp PRT */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) |
NUM_BANKS(ADDR_SURF_16_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2));
break;
case 25: /* 128 bpp PRT */
gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) |
PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) |
NUM_BANKS(ADDR_SURF_8_BANK) |
BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1));
break;
default:
gb_tile_moden = 0;
break;
}
adev->gfx.config.tile_mode_array[reg_offset] = gb_tile_moden;
WREG32(GB_TILE_MODE0 + reg_offset, gb_tile_moden);
}
} else{
DRM_ERROR("unknown asic: 0x%x\n", adev->asic_type);
}
}
static void gfx_v6_0_select_se_sh(struct amdgpu_device *adev, u32 se_num,
u32 sh_num, u32 instance)
{
u32 data;
if (instance == 0xffffffff)
data = INSTANCE_BROADCAST_WRITES;
else
data = INSTANCE_INDEX(instance);
if ((se_num == 0xffffffff) && (sh_num == 0xffffffff))
data |= SH_BROADCAST_WRITES | SE_BROADCAST_WRITES;
else if (se_num == 0xffffffff)
data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num);
else if (sh_num == 0xffffffff)
data |= SH_BROADCAST_WRITES | SE_INDEX(se_num);
else
data |= SH_INDEX(sh_num) | SE_INDEX(se_num);
WREG32(GRBM_GFX_INDEX, data);
}
static u32 gfx_v6_0_create_bitmask(u32 bit_width)
{
u32 i, mask = 0;
for (i = 0; i < bit_width; i++) {
mask <<= 1;
mask |= 1;
}
return mask;
}
static u32 gfx_v6_0_get_rb_disabled(struct amdgpu_device *adev,
u32 max_rb_num_per_se,
u32 sh_per_se)
{
u32 data, mask;
data = RREG32(CC_RB_BACKEND_DISABLE);
data &= BACKEND_DISABLE_MASK;
data |= RREG32(GC_USER_RB_BACKEND_DISABLE);
data >>= BACKEND_DISABLE_SHIFT;
mask = gfx_v6_0_create_bitmask(max_rb_num_per_se / sh_per_se);
return data & mask;
}
static void gfx_v6_0_setup_rb(struct amdgpu_device *adev,
u32 se_num, u32 sh_per_se,
u32 max_rb_num_per_se)
{
int i, j;
u32 data, mask;
u32 disabled_rbs = 0;
u32 enabled_rbs = 0;
for (i = 0; i < se_num; i++) {
for (j = 0; j < sh_per_se; j++) {
gfx_v6_0_select_se_sh(adev, i, j, 0xffffffff);
data = gfx_v6_0_get_rb_disabled(adev, max_rb_num_per_se, sh_per_se);
disabled_rbs |= data << ((i * sh_per_se + j) * TAHITI_RB_BITMAP_WIDTH_PER_SH);
}
}
gfx_v6_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mask = 1;
for (i = 0; i < max_rb_num_per_se * se_num; i++) {
if (!(disabled_rbs & mask))
enabled_rbs |= mask;
mask <<= 1;
}
adev->gfx.config.backend_enable_mask = enabled_rbs;
adev->gfx.config.num_rbs = hweight32(enabled_rbs);
for (i = 0; i < se_num; i++) {
gfx_v6_0_select_se_sh(adev, i, 0xffffffff, 0xffffffff);
data = 0;
for (j = 0; j < sh_per_se; j++) {
switch (enabled_rbs & 3) {
case 1:
data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2);
break;
case 2:
data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2);
break;
case 3:
default:
data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2);
break;
}
enabled_rbs >>= 2;
}
WREG32(PA_SC_RASTER_CONFIG, data);
}
gfx_v6_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
}
/*
static void gmc_v6_0_init_compute_vmid(struct amdgpu_device *adev)
{
}
*/
static u32 gfx_v6_0_get_cu_enabled(struct amdgpu_device *adev, u32 cu_per_sh)
{
u32 data, mask;
data = RREG32(CC_GC_SHADER_ARRAY_CONFIG);
data &= INACTIVE_CUS_MASK;
data |= RREG32(GC_USER_SHADER_ARRAY_CONFIG);
data >>= INACTIVE_CUS_SHIFT;
mask = gfx_v6_0_create_bitmask(cu_per_sh);
return ~data & mask;
}
static void gfx_v6_0_setup_spi(struct amdgpu_device *adev,
u32 se_num, u32 sh_per_se,
u32 cu_per_sh)
{
int i, j, k;
u32 data, mask;
u32 active_cu = 0;
for (i = 0; i < se_num; i++) {
for (j = 0; j < sh_per_se; j++) {
gfx_v6_0_select_se_sh(adev, i, j, 0xffffffff);
data = RREG32(SPI_STATIC_THREAD_MGMT_3);
active_cu = gfx_v6_0_get_cu_enabled(adev, cu_per_sh);
mask = 1;
for (k = 0; k < 16; k++) {
mask <<= k;
if (active_cu & mask) {
data &= ~mask;
WREG32(SPI_STATIC_THREAD_MGMT_3, data);
break;
}
}
}
}
gfx_v6_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
}
static void gfx_v6_0_gpu_init(struct amdgpu_device *adev)
{
u32 gb_addr_config = 0;
u32 mc_shared_chmap, mc_arb_ramcfg;
u32 sx_debug_1;
u32 hdp_host_path_cntl;
u32 tmp;
switch (adev->asic_type) {
case CHIP_TAHITI:
adev->gfx.config.max_shader_engines = 2;
adev->gfx.config.max_tile_pipes = 12;
adev->gfx.config.max_cu_per_sh = 8;
adev->gfx.config.max_sh_per_se = 2;
adev->gfx.config.max_backends_per_se = 4;
adev->gfx.config.max_texture_channel_caches = 12;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TAHITI_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_PITCAIRN:
adev->gfx.config.max_shader_engines = 2;
adev->gfx.config.max_tile_pipes = 8;
adev->gfx.config.max_cu_per_sh = 5;
adev->gfx.config.max_sh_per_se = 2;
adev->gfx.config.max_backends_per_se = 4;
adev->gfx.config.max_texture_channel_caches = 8;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = TAHITI_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_VERDE:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 4;
adev->gfx.config.max_cu_per_sh = 5;
adev->gfx.config.max_sh_per_se = 2;
adev->gfx.config.max_backends_per_se = 4;
adev->gfx.config.max_texture_channel_caches = 4;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 32;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x40;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = VERDE_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_OLAND:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 4;
adev->gfx.config.max_cu_per_sh = 6;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 2;
adev->gfx.config.max_texture_channel_caches = 4;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 16;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x40;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = VERDE_GB_ADDR_CONFIG_GOLDEN;
break;
case CHIP_HAINAN:
adev->gfx.config.max_shader_engines = 1;
adev->gfx.config.max_tile_pipes = 4;
adev->gfx.config.max_cu_per_sh = 5;
adev->gfx.config.max_sh_per_se = 1;
adev->gfx.config.max_backends_per_se = 1;
adev->gfx.config.max_texture_channel_caches = 2;
adev->gfx.config.max_gprs = 256;
adev->gfx.config.max_gs_threads = 16;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x40;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x30;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130;
gb_addr_config = HAINAN_GB_ADDR_CONFIG_GOLDEN;
break;
default:
BUG();
break;
}
WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));
WREG32(SRBM_INT_CNTL, 1);
WREG32(SRBM_INT_ACK, 1);
WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN);
mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);
adev->gfx.config.num_tile_pipes = adev->gfx.config.max_tile_pipes;
adev->gfx.config.mem_max_burst_length_bytes = 256;
tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT;
adev->gfx.config.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
if (adev->gfx.config.mem_row_size_in_kb > 4)
adev->gfx.config.mem_row_size_in_kb = 4;
adev->gfx.config.shader_engine_tile_size = 32;
adev->gfx.config.num_gpus = 1;
adev->gfx.config.multi_gpu_tile_size = 64;
gb_addr_config &= ~ROW_SIZE_MASK;
switch (adev->gfx.config.mem_row_size_in_kb) {
case 1:
default:
gb_addr_config |= ROW_SIZE(0);
break;
case 2:
gb_addr_config |= ROW_SIZE(1);
break;
case 4:
gb_addr_config |= ROW_SIZE(2);
break;
}
adev->gfx.config.gb_addr_config = gb_addr_config;
WREG32(GB_ADDR_CONFIG, gb_addr_config);
WREG32(DMIF_ADDR_CONFIG, gb_addr_config);
WREG32(DMIF_ADDR_CALC, gb_addr_config);
WREG32(HDP_ADDR_CONFIG, gb_addr_config);
WREG32(DMA_TILING_CONFIG + DMA0_REGISTER_OFFSET, gb_addr_config);
WREG32(DMA_TILING_CONFIG + DMA1_REGISTER_OFFSET, gb_addr_config);
#if 0
if (adev->has_uvd) {
WREG32(UVD_UDEC_ADDR_CONFIG, gb_addr_config);
WREG32(UVD_UDEC_DB_ADDR_CONFIG, gb_addr_config);
WREG32(UVD_UDEC_DBW_ADDR_CONFIG, gb_addr_config);
}
#endif
gfx_v6_0_tiling_mode_table_init(adev);
gfx_v6_0_setup_rb(adev, adev->gfx.config.max_shader_engines,
adev->gfx.config.max_sh_per_se,
adev->gfx.config.max_backends_per_se);
gfx_v6_0_setup_spi(adev, adev->gfx.config.max_shader_engines,
adev->gfx.config.max_sh_per_se,
adev->gfx.config.max_cu_per_sh);
gfx_v6_0_get_cu_info(adev);
WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) |
ROQ_IB2_START(0x2b)));
WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60));
sx_debug_1 = RREG32(SX_DEBUG_1);
WREG32(SX_DEBUG_1, sx_debug_1);
WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));
WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(adev->gfx.config.sc_prim_fifo_size_frontend) |
SC_BACKEND_PRIM_FIFO_SIZE(adev->gfx.config.sc_prim_fifo_size_backend) |
SC_HIZ_TILE_FIFO_SIZE(adev->gfx.config.sc_hiz_tile_fifo_size) |
SC_EARLYZ_TILE_FIFO_SIZE(adev->gfx.config.sc_earlyz_tile_fifo_size)));
WREG32(VGT_NUM_INSTANCES, 1);
WREG32(CP_PERFMON_CNTL, 0);
WREG32(SQ_CONFIG, 0);
WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
FORCE_EOV_MAX_REZ_CNT(255)));
WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) |
AUTO_INVLD_EN(ES_AND_GS_AUTO));
WREG32(VGT_GS_VERTEX_REUSE, 16);
WREG32(PA_SC_LINE_STIPPLE_STATE, 0);
WREG32(CB_PERFCOUNTER0_SELECT0, 0);
WREG32(CB_PERFCOUNTER0_SELECT1, 0);
WREG32(CB_PERFCOUNTER1_SELECT0, 0);
WREG32(CB_PERFCOUNTER1_SELECT1, 0);
WREG32(CB_PERFCOUNTER2_SELECT0, 0);
WREG32(CB_PERFCOUNTER2_SELECT1, 0);
WREG32(CB_PERFCOUNTER3_SELECT0, 0);
WREG32(CB_PERFCOUNTER3_SELECT1, 0);
hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);
WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
udelay(50);
}
static void gfx_v6_0_scratch_init(struct amdgpu_device *adev)
{
int i;
adev->gfx.scratch.num_reg = 7;
adev->gfx.scratch.reg_base = SCRATCH_REG0;
for (i = 0; i < adev->gfx.scratch.num_reg; i++) {
adev->gfx.scratch.free[i] = true;
adev->gfx.scratch.reg[i] = adev->gfx.scratch.reg_base + i;
}
}
static int gfx_v6_0_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
uint32_t scratch;
uint32_t tmp = 0;
unsigned i;
int r;
r = amdgpu_gfx_scratch_get(adev, &scratch);
if (r) {
DRM_ERROR("amdgpu: cp failed to get scratch reg (%d).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
r = amdgpu_ring_alloc(ring, 3);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n", ring->idx, r);
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
amdgpu_ring_write(ring, (scratch - PACKET3_SET_CONFIG_REG_START));
amdgpu_ring_write(ring, 0xDEADBEEF);
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF)
break;
DRM_UDELAY(1);
}
if (i < adev->usec_timeout) {
DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
} else {
DRM_ERROR("amdgpu: ring %d test failed (scratch(0x%04X)=0x%08X)\n",
ring->idx, scratch, tmp);
r = -EINVAL;
}
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
static void gfx_v6_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
/* flush hdp cache */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0x1);
}
/**
* gfx_v6_0_ring_emit_hdp_invalidate - emit an hdp invalidate on the cp
*
* @adev: amdgpu_device pointer
* @ridx: amdgpu ring index
*
* Emits an hdp invalidate on the cp.
*/
static void gfx_v6_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, HDP_DEBUG0);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0x1);
}
static void gfx_v6_0_ring_emit_fence_gfx(struct amdgpu_ring *ring, u64 addr,
u64 seq, unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
bool int_sel = flags & AMDGPU_FENCE_FLAG_INT;
/* flush read cache over gart */
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
amdgpu_ring_write(ring, (CP_COHER_CNTL2 - PACKET3_SET_CONFIG_REG_START));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3));
amdgpu_ring_write(ring, PACKET3_TCL1_ACTION_ENA |
PACKET3_TC_ACTION_ENA |
PACKET3_SH_KCACHE_ACTION_ENA |
PACKET3_SH_ICACHE_ACTION_ENA);
amdgpu_ring_write(ring, 0xFFFFFFFF);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 10); /* poll interval */
/* EVENT_WRITE_EOP - flush caches, send int */
amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
amdgpu_ring_write(ring, EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xffff) |
DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0));
amdgpu_ring_write(ring, lower_32_bits(seq));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
static void gfx_v6_0_ring_emit_fence_compute(struct amdgpu_ring *ring,
u64 addr, u64 seq,
unsigned flags)
{
gfx_v6_0_ring_emit_fence_gfx(ring, addr, seq, flags);
}
static void gfx_v6_0_ring_emit_ib_gfx(struct amdgpu_ring *ring,
struct amdgpu_ib *ib,
unsigned vm_id, bool ctx_switch)
{
u32 header, control = 0;
/* insert SWITCH_BUFFER packet before first IB in the ring frame */
if (ctx_switch) {
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
}
if (ib->flags & AMDGPU_IB_FLAG_CE)
header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2);
else
header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
control |= ib->length_dw | (vm_id << 24);
amdgpu_ring_write(ring, header);
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
(ib->gpu_addr & 0xFFFFFFFC));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
amdgpu_ring_write(ring, control);
}
static void gfx_v6_0_ring_emit_ib_compute(struct amdgpu_ring *ring,
struct amdgpu_ib *ib,
unsigned vm_id, bool ctx_switch)
{
gfx_v6_0_ring_emit_ib_gfx(ring, ib, vm_id, ctx_switch);
}
/**
* gfx_v6_0_ring_test_ib - basic ring IB test
*
* @ring: amdgpu_ring structure holding ring information
*
* Allocate an IB and execute it on the gfx ring (SI).
* Provides a basic gfx ring test to verify that IBs are working.
* Returns 0 on success, error on failure.
*/
static int gfx_v6_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct fence *f = NULL;
uint32_t scratch;
uint32_t tmp = 0;
long r;
r = amdgpu_gfx_scratch_get(adev, &scratch);
if (r) {
DRM_ERROR("amdgpu: failed to get scratch reg (%ld).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(adev, NULL, 256, &ib);
if (r) {
DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
goto err1;
}
ib.ptr[0] = PACKET3(PACKET3_SET_CONFIG_REG, 1);
ib.ptr[1] = ((scratch - PACKET3_SET_CONFIG_REG_START));
ib.ptr[2] = 0xDEADBEEF;
ib.length_dw = 3;
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
if (r)
goto err2;
r = fence_wait_timeout(f, false, timeout);
if (r == 0) {
DRM_ERROR("amdgpu: IB test timed out\n");
r = -ETIMEDOUT;
goto err2;
} else if (r < 0) {
DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
goto err2;
}
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF) {
DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
r = 0;
} else {
DRM_ERROR("amdgpu: ib test failed (scratch(0x%04X)=0x%08X)\n",
scratch, tmp);
r = -EINVAL;
}
err2:
amdgpu_ib_free(adev, &ib, NULL);
fence_put(f);
err1:
amdgpu_gfx_scratch_free(adev, scratch);
return r;
}
static void gfx_v6_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable)
{
int i;
if (enable)
WREG32(CP_ME_CNTL, 0);
else {
WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT));
WREG32(SCRATCH_UMSK, 0);
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].ready = false;
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].ready = false;
}
udelay(50);
}
static int gfx_v6_0_cp_gfx_load_microcode(struct amdgpu_device *adev)
{
unsigned i;
const struct gfx_firmware_header_v1_0 *pfp_hdr;
const struct gfx_firmware_header_v1_0 *ce_hdr;
const struct gfx_firmware_header_v1_0 *me_hdr;
const __le32 *fw_data;
u32 fw_size;
if (!adev->gfx.me_fw || !adev->gfx.pfp_fw || !adev->gfx.ce_fw)
return -EINVAL;
gfx_v6_0_cp_gfx_enable(adev, false);
pfp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data;
ce_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data;
me_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data;
amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header);
amdgpu_ucode_print_gfx_hdr(&ce_hdr->header);
amdgpu_ucode_print_gfx_hdr(&me_hdr->header);
/* PFP */
fw_data = (const __le32 *)
(adev->gfx.pfp_fw->data + le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes) / 4;
WREG32(CP_PFP_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(CP_PFP_UCODE_DATA, le32_to_cpup(fw_data++));
WREG32(CP_PFP_UCODE_ADDR, 0);
/* CE */
fw_data = (const __le32 *)
(adev->gfx.ce_fw->data + le32_to_cpu(ce_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(ce_hdr->header.ucode_size_bytes) / 4;
WREG32(CP_CE_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(CP_CE_UCODE_DATA, le32_to_cpup(fw_data++));
WREG32(CP_CE_UCODE_ADDR, 0);
/* ME */
fw_data = (const __be32 *)
(adev->gfx.me_fw->data + le32_to_cpu(me_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes) / 4;
WREG32(CP_ME_RAM_WADDR, 0);
for (i = 0; i < fw_size; i++)
WREG32(CP_ME_RAM_DATA, le32_to_cpup(fw_data++));
WREG32(CP_ME_RAM_WADDR, 0);
WREG32(CP_PFP_UCODE_ADDR, 0);
WREG32(CP_CE_UCODE_ADDR, 0);
WREG32(CP_ME_RAM_WADDR, 0);
WREG32(CP_ME_RAM_RADDR, 0);
return 0;
}
static int gfx_v6_0_cp_gfx_start(struct amdgpu_device *adev)
{
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
struct amdgpu_ring *ring = &adev->gfx.gfx_ring[0];
int r, i;
r = amdgpu_ring_alloc(ring, 7 + 4);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_ME_INITIALIZE, 5));
amdgpu_ring_write(ring, 0x1);
amdgpu_ring_write(ring, 0x0);
amdgpu_ring_write(ring, adev->gfx.config.max_hw_contexts - 1);
amdgpu_ring_write(ring, PACKET3_ME_INITIALIZE_DEVICE_ID(1));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
amdgpu_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
amdgpu_ring_write(ring, 0xc000);
amdgpu_ring_write(ring, 0xe000);
amdgpu_ring_commit(ring);
gfx_v6_0_cp_gfx_enable(adev, true);
r = amdgpu_ring_alloc(ring, gfx_v6_0_get_csb_size(adev) + 10);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
amdgpu_ring_write(ring,
PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
amdgpu_ring_write(ring, ext->reg_index - PACKET3_SET_CONTEXT_REG_START);
for (i = 0; i < ext->reg_count; i++)
amdgpu_ring_write(ring, ext->extent[i]);
}
}
}
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2));
amdgpu_ring_write(ring, 0x00000316);
amdgpu_ring_write(ring, 0x0000000e);
amdgpu_ring_write(ring, 0x00000010);
amdgpu_ring_commit(ring);
return 0;
}
static int gfx_v6_0_cp_gfx_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 tmp;
u32 rb_bufsz;
int r;
u64 rptr_addr;
WREG32(CP_SEM_WAIT_TIMER, 0x0);
WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0);
/* Set the write pointer delay */
WREG32(CP_RB_WPTR_DELAY, 0);
WREG32(CP_DEBUG, 0);
WREG32(SCRATCH_ADDR, 0);
/* ring 0 - compute and gfx */
/* Set ring buffer size */
ring = &adev->gfx.gfx_ring[0];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = (order_base_2(AMDGPU_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB0_CNTL, tmp);
/* Initialize the ring buffer's read and write pointers */
WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA);
ring->wptr = 0;
WREG32(CP_RB0_WPTR, ring->wptr);
/* set the wb address whether it's enabled or not */
rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
WREG32(CP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & 0xFF);
WREG32(SCRATCH_UMSK, 0);
mdelay(1);
WREG32(CP_RB0_CNTL, tmp);
WREG32(CP_RB0_BASE, ring->gpu_addr >> 8);
/* start the rings */
gfx_v6_0_cp_gfx_start(adev);
ring->ready = true;
r = amdgpu_ring_test_ring(ring);
if (r) {
ring->ready = false;
return r;
}
return 0;
}
static u32 gfx_v6_0_ring_get_rptr_gfx(struct amdgpu_ring *ring)
{
u32 rptr;
rptr = ring->adev->wb.wb[ring->rptr_offs];
return rptr;
}
static u32 gfx_v6_0_ring_get_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 wptr;
wptr = RREG32(CP_RB0_WPTR);
return wptr;
}
static void gfx_v6_0_ring_set_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
WREG32(CP_RB0_WPTR, ring->wptr);
(void)RREG32(CP_RB0_WPTR);
}
static u32 gfx_v6_0_ring_get_rptr_compute(struct amdgpu_ring *ring)
{
u32 rptr = ring->adev->wb.wb[ring->rptr_offs];
return rptr;
}
static u32 gfx_v6_0_ring_get_wptr_compute(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 wptr;
if (ring == &adev->gfx.compute_ring[0]) {
wptr = RREG32(CP_RB1_WPTR);
} else if (ring == &adev->gfx.compute_ring[1]) {
wptr = RREG32(CP_RB2_WPTR);
} else {
BUG();
}
return wptr;
}
static void gfx_v6_0_ring_set_wptr_compute(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring == &adev->gfx.compute_ring[0]) {
WREG32(CP_RB1_WPTR, ring->wptr);
(void)RREG32(CP_RB1_WPTR);
} else if (ring == &adev->gfx.compute_ring[1]) {
WREG32(CP_RB2_WPTR, ring->wptr);
(void)RREG32(CP_RB2_WPTR);
} else {
BUG();
}
}
static void gfx_v6_0_cp_compute_fini(struct amdgpu_device *adev)
{
int i, r;
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
struct amdgpu_ring *ring = &adev->gfx.compute_ring[i];
if (ring->mqd_obj) {
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve MQD bo failed\n", r);
amdgpu_bo_unpin(ring->mqd_obj);
amdgpu_bo_unreserve(ring->mqd_obj);
amdgpu_bo_unref(&ring->mqd_obj);
ring->mqd_obj = NULL;
}
}
}
static int gfx_v6_0_cp_compute_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 tmp;
u32 rb_bufsz;
int r;
u64 rptr_addr;
/* ring1 - compute only */
/* Set ring buffer size */
ring = &adev->gfx.compute_ring[0];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = (order_base_2(AMDGPU_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB1_CNTL, tmp);
WREG32(CP_RB1_CNTL, tmp | RB_RPTR_WR_ENA);
ring->wptr = 0;
WREG32(CP_RB1_WPTR, ring->wptr);
rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
WREG32(CP_RB1_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32(CP_RB1_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & 0xFF);
mdelay(1);
WREG32(CP_RB1_CNTL, tmp);
WREG32(CP_RB1_BASE, ring->gpu_addr >> 8);
ring = &adev->gfx.compute_ring[1];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = (order_base_2(AMDGPU_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
tmp |= BUF_SWAP_32BIT;
#endif
WREG32(CP_RB2_CNTL, tmp);
WREG32(CP_RB2_CNTL, tmp | RB_RPTR_WR_ENA);
ring->wptr = 0;
WREG32(CP_RB2_WPTR, ring->wptr);
rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4);
WREG32(CP_RB2_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32(CP_RB2_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & 0xFF);
mdelay(1);
WREG32(CP_RB2_CNTL, tmp);
WREG32(CP_RB2_BASE, ring->gpu_addr >> 8);
adev->gfx.compute_ring[0].ready = true;
adev->gfx.compute_ring[1].ready = true;
r = amdgpu_ring_test_ring(&adev->gfx.compute_ring[0]);
if (r) {
adev->gfx.compute_ring[0].ready = false;
return r;
}
r = amdgpu_ring_test_ring(&adev->gfx.compute_ring[1]);
if (r) {
adev->gfx.compute_ring[1].ready = false;
return r;
}
return 0;
}
static void gfx_v6_0_cp_enable(struct amdgpu_device *adev, bool enable)
{
gfx_v6_0_cp_gfx_enable(adev, enable);
}
static int gfx_v6_0_cp_load_microcode(struct amdgpu_device *adev)
{
int r;
r = gfx_v6_0_cp_gfx_load_microcode(adev);
return r;
}
static void gfx_v6_0_enable_gui_idle_interrupt(struct amdgpu_device *adev,
bool enable)
{
u32 tmp = RREG32(CP_INT_CNTL_RING0);
u32 mask;
int i;
if (enable)
tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
else
tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
WREG32(CP_INT_CNTL_RING0, tmp);
if (!enable) {
/* read a gfx register */
tmp = RREG32(DB_DEPTH_INFO);
mask = RLC_BUSY_STATUS | GFX_POWER_STATUS | GFX_CLOCK_STATUS | GFX_LS_STATUS;
for (i = 0; i < adev->usec_timeout; i++) {
if ((RREG32(RLC_STAT) & mask) == (GFX_CLOCK_STATUS | GFX_POWER_STATUS))
break;
udelay(1);
}
}
}
static int gfx_v6_0_cp_resume(struct amdgpu_device *adev)
{
int r;
gfx_v6_0_enable_gui_idle_interrupt(adev, false);
r = gfx_v6_0_cp_load_microcode(adev);
if (r)
return r;
r = gfx_v6_0_cp_gfx_resume(adev);
if (r)
return r;
r = gfx_v6_0_cp_compute_resume(adev);
if (r)
return r;
gfx_v6_0_enable_gui_idle_interrupt(adev, true);
return 0;
}
static void gfx_v6_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
int usepfp = (ring->type == AMDGPU_RING_TYPE_GFX);
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring, (WAIT_REG_MEM_MEM_SPACE(1) | /* memory */
WAIT_REG_MEM_FUNCTION(3) | /* equal */
WAIT_REG_MEM_ENGINE(usepfp))); /* pfp or me */
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
amdgpu_ring_write(ring, seq);
amdgpu_ring_write(ring, 0xffffffff);
amdgpu_ring_write(ring, 4); /* poll interval */
if (usepfp) {
/* synce CE with ME to prevent CE fetch CEIB before context switch done */
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
}
}
static void gfx_v6_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vm_id, uint64_t pd_addr)
{
int usepfp = (ring->type == AMDGPU_RING_TYPE_GFX);
/* write new base address */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(0)));
if (vm_id < 8) {
amdgpu_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id ));
} else {
amdgpu_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + (vm_id - 8)));
}
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, pd_addr >> 12);
/* bits 0-15 are the VM contexts0-15 */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(0)));
amdgpu_ring_write(ring, VM_INVALIDATE_REQUEST);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 1 << vm_id);
/* wait for the invalidate to complete */
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring, (WAIT_REG_MEM_FUNCTION(0) | /* always */
WAIT_REG_MEM_ENGINE(0))); /* me */
amdgpu_ring_write(ring, VM_INVALIDATE_REQUEST);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0); /* ref */
amdgpu_ring_write(ring, 0); /* mask */
amdgpu_ring_write(ring, 0x20); /* poll interval */
if (usepfp) {
/* sync PFP to ME, otherwise we might get invalid PFP reads */
amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
amdgpu_ring_write(ring, 0x0);
/* synce CE with ME to prevent CE fetch CEIB before context switch done */
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
amdgpu_ring_write(ring, 0);
}
}
static void gfx_v6_0_rlc_fini(struct amdgpu_device *adev)
{
int r;
if (adev->gfx.rlc.save_restore_obj) {
r = amdgpu_bo_reserve(adev->gfx.rlc.save_restore_obj, false);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve RLC sr bo failed\n", r);
amdgpu_bo_unpin(adev->gfx.rlc.save_restore_obj);
amdgpu_bo_unreserve(adev->gfx.rlc.save_restore_obj);
amdgpu_bo_unref(&adev->gfx.rlc.save_restore_obj);
adev->gfx.rlc.save_restore_obj = NULL;
}
if (adev->gfx.rlc.clear_state_obj) {
r = amdgpu_bo_reserve(adev->gfx.rlc.clear_state_obj, false);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve RLC c bo failed\n", r);
amdgpu_bo_unpin(adev->gfx.rlc.clear_state_obj);
amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj);
amdgpu_bo_unref(&adev->gfx.rlc.clear_state_obj);
adev->gfx.rlc.clear_state_obj = NULL;
}
if (adev->gfx.rlc.cp_table_obj) {
r = amdgpu_bo_reserve(adev->gfx.rlc.cp_table_obj, false);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve RLC cp table bo failed\n", r);
amdgpu_bo_unpin(adev->gfx.rlc.cp_table_obj);
amdgpu_bo_unreserve(adev->gfx.rlc.cp_table_obj);
amdgpu_bo_unref(&adev->gfx.rlc.cp_table_obj);
adev->gfx.rlc.cp_table_obj = NULL;
}
}
static int gfx_v6_0_rlc_init(struct amdgpu_device *adev)
{
const u32 *src_ptr;
volatile u32 *dst_ptr;
u32 dws, i;
u64 reg_list_mc_addr;
const struct cs_section_def *cs_data;
int r;
adev->gfx.rlc.reg_list = verde_rlc_save_restore_register_list;
adev->gfx.rlc.reg_list_size =
(u32)ARRAY_SIZE(verde_rlc_save_restore_register_list);
adev->gfx.rlc.cs_data = si_cs_data;
src_ptr = adev->gfx.rlc.reg_list;
dws = adev->gfx.rlc.reg_list_size;
cs_data = adev->gfx.rlc.cs_data;
if (src_ptr) {
/* save restore block */
if (adev->gfx.rlc.save_restore_obj == NULL) {
r = amdgpu_bo_create(adev, dws * 4, PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_VRAM,
AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED,
NULL, NULL,
&adev->gfx.rlc.save_restore_obj);
if (r) {
dev_warn(adev->dev, "(%d) create RLC sr bo failed\n", r);
return r;
}
}
r = amdgpu_bo_reserve(adev->gfx.rlc.save_restore_obj, false);
if (unlikely(r != 0)) {
gfx_v6_0_rlc_fini(adev);
return r;
}
r = amdgpu_bo_pin(adev->gfx.rlc.save_restore_obj, AMDGPU_GEM_DOMAIN_VRAM,
&adev->gfx.rlc.save_restore_gpu_addr);
if (r) {
amdgpu_bo_unreserve(adev->gfx.rlc.save_restore_obj);
dev_warn(adev->dev, "(%d) pin RLC sr bo failed\n", r);
gfx_v6_0_rlc_fini(adev);
return r;
}
r = amdgpu_bo_kmap(adev->gfx.rlc.save_restore_obj, (void **)&adev->gfx.rlc.sr_ptr);
if (r) {
dev_warn(adev->dev, "(%d) map RLC sr bo failed\n", r);
gfx_v6_0_rlc_fini(adev);
return r;
}
/* write the sr buffer */
dst_ptr = adev->gfx.rlc.sr_ptr;
for (i = 0; i < adev->gfx.rlc.reg_list_size; i++)
dst_ptr[i] = cpu_to_le32(src_ptr[i]);
amdgpu_bo_kunmap(adev->gfx.rlc.save_restore_obj);
amdgpu_bo_unreserve(adev->gfx.rlc.save_restore_obj);
}
if (cs_data) {
/* clear state block */
adev->gfx.rlc.clear_state_size = gfx_v6_0_get_csb_size(adev);
dws = adev->gfx.rlc.clear_state_size + (256 / 4);
if (adev->gfx.rlc.clear_state_obj == NULL) {
r = amdgpu_bo_create(adev, dws * 4, PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_VRAM,
AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED,
NULL, NULL,
&adev->gfx.rlc.clear_state_obj);
if (r) {
dev_warn(adev->dev, "(%d) create RLC c bo failed\n", r);
gfx_v6_0_rlc_fini(adev);
return r;
}
}
r = amdgpu_bo_reserve(adev->gfx.rlc.clear_state_obj, false);
if (unlikely(r != 0)) {
gfx_v6_0_rlc_fini(adev);
return r;
}
r = amdgpu_bo_pin(adev->gfx.rlc.clear_state_obj, AMDGPU_GEM_DOMAIN_VRAM,
&adev->gfx.rlc.clear_state_gpu_addr);
if (r) {
amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj);
dev_warn(adev->dev, "(%d) pin RLC c bo failed\n", r);
gfx_v6_0_rlc_fini(adev);
return r;
}
r = amdgpu_bo_kmap(adev->gfx.rlc.clear_state_obj, (void **)&adev->gfx.rlc.cs_ptr);
if (r) {
dev_warn(adev->dev, "(%d) map RLC c bo failed\n", r);
gfx_v6_0_rlc_fini(adev);
return r;
}
/* set up the cs buffer */
dst_ptr = adev->gfx.rlc.cs_ptr;
reg_list_mc_addr = adev->gfx.rlc.clear_state_gpu_addr + 256;
dst_ptr[0] = cpu_to_le32(upper_32_bits(reg_list_mc_addr));
dst_ptr[1] = cpu_to_le32(lower_32_bits(reg_list_mc_addr));
dst_ptr[2] = cpu_to_le32(adev->gfx.rlc.clear_state_size);
gfx_v6_0_get_csb_buffer(adev, &dst_ptr[(256/4)]);
amdgpu_bo_kunmap(adev->gfx.rlc.clear_state_obj);
amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj);
}
return 0;
}
static void gfx_v6_0_enable_lbpw(struct amdgpu_device *adev, bool enable)
{
u32 tmp;
tmp = RREG32(RLC_LB_CNTL);
if (enable)
tmp |= LOAD_BALANCE_ENABLE;
else
tmp &= ~LOAD_BALANCE_ENABLE;
WREG32(RLC_LB_CNTL, tmp);
if (!enable) {
gfx_v6_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
WREG32(SPI_LB_CU_MASK, 0x00ff);
}
}
static void gfx_v6_0_wait_for_rlc_serdes(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32(RLC_SERDES_MASTER_BUSY_0) == 0)
break;
udelay(1);
}
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32(RLC_SERDES_MASTER_BUSY_1) == 0)
break;
udelay(1);
}
}
static void gfx_v6_0_update_rlc(struct amdgpu_device *adev, u32 rlc)
{
u32 tmp;
tmp = RREG32(RLC_CNTL);
if (tmp != rlc)
WREG32(RLC_CNTL, rlc);
}
static u32 gfx_v6_0_halt_rlc(struct amdgpu_device *adev)
{
u32 data, orig;
orig = data = RREG32(RLC_CNTL);
if (data & RLC_ENABLE) {
data &= ~RLC_ENABLE;
WREG32(RLC_CNTL, data);
gfx_v6_0_wait_for_rlc_serdes(adev);
}
return orig;
}
static void gfx_v6_0_rlc_stop(struct amdgpu_device *adev)
{
WREG32(RLC_CNTL, 0);
gfx_v6_0_enable_gui_idle_interrupt(adev, false);
gfx_v6_0_wait_for_rlc_serdes(adev);
}
static void gfx_v6_0_rlc_start(struct amdgpu_device *adev)
{
WREG32(RLC_CNTL, RLC_ENABLE);
gfx_v6_0_enable_gui_idle_interrupt(adev, true);
udelay(50);
}
static void gfx_v6_0_rlc_reset(struct amdgpu_device *adev)
{
u32 tmp = RREG32(GRBM_SOFT_RESET);
tmp |= SOFT_RESET_RLC;
WREG32(GRBM_SOFT_RESET, tmp);
udelay(50);
tmp &= ~SOFT_RESET_RLC;
WREG32(GRBM_SOFT_RESET, tmp);
udelay(50);
}
static bool gfx_v6_0_lbpw_supported(struct amdgpu_device *adev)
{
u32 tmp;
/* Enable LBPW only for DDR3 */
tmp = RREG32(MC_SEQ_MISC0);
if ((tmp & 0xF0000000) == 0xB0000000)
return true;
return false;
}
static void gfx_v6_0_init_cg(struct amdgpu_device *adev)
{
}
static int gfx_v6_0_rlc_resume(struct amdgpu_device *adev)
{
u32 i;
const struct rlc_firmware_header_v1_0 *hdr;
const __le32 *fw_data;
u32 fw_size;
if (!adev->gfx.rlc_fw)
return -EINVAL;
gfx_v6_0_rlc_stop(adev);
gfx_v6_0_rlc_reset(adev);
gfx_v6_0_init_pg(adev);
gfx_v6_0_init_cg(adev);
WREG32(RLC_RL_BASE, 0);
WREG32(RLC_RL_SIZE, 0);
WREG32(RLC_LB_CNTL, 0);
WREG32(RLC_LB_CNTR_MAX, 0xffffffff);
WREG32(RLC_LB_CNTR_INIT, 0);
WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff);
WREG32(RLC_MC_CNTL, 0);
WREG32(RLC_UCODE_CNTL, 0);
hdr = (const struct rlc_firmware_header_v1_0 *)adev->gfx.rlc_fw->data;
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
fw_data = (const __le32 *)
(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
amdgpu_ucode_print_rlc_hdr(&hdr->header);
for (i = 0; i < fw_size; i++) {
WREG32(RLC_UCODE_ADDR, i);
WREG32(RLC_UCODE_DATA, le32_to_cpup(fw_data++));
}
WREG32(RLC_UCODE_ADDR, 0);
gfx_v6_0_enable_lbpw(adev, gfx_v6_0_lbpw_supported(adev));
gfx_v6_0_rlc_start(adev);
return 0;
}
static void gfx_v6_0_enable_cgcg(struct amdgpu_device *adev, bool enable)
{
u32 data, orig, tmp;
orig = data = RREG32(RLC_CGCG_CGLS_CTRL);
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)) {
gfx_v6_0_enable_gui_idle_interrupt(adev, true);
WREG32(RLC_GCPM_GENERAL_3, 0x00000080);
tmp = gfx_v6_0_halt_rlc(adev);
WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff);
WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff);
WREG32(RLC_SERDES_WR_CTRL, 0x00b000ff);
gfx_v6_0_wait_for_rlc_serdes(adev);
gfx_v6_0_update_rlc(adev, tmp);
WREG32(RLC_SERDES_WR_CTRL, 0x007000ff);
data |= CGCG_EN | CGLS_EN;
} else {
gfx_v6_0_enable_gui_idle_interrupt(adev, false);
RREG32(CB_CGTT_SCLK_CTRL);
RREG32(CB_CGTT_SCLK_CTRL);
RREG32(CB_CGTT_SCLK_CTRL);
RREG32(CB_CGTT_SCLK_CTRL);
data &= ~(CGCG_EN | CGLS_EN);
}
if (orig != data)
WREG32(RLC_CGCG_CGLS_CTRL, data);
}
static void gfx_v6_0_enable_mgcg(struct amdgpu_device *adev, bool enable)
{
u32 data, orig, tmp = 0;
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG)) {
orig = data = RREG32(CGTS_SM_CTRL_REG);
data = 0x96940200;
if (orig != data)
WREG32(CGTS_SM_CTRL_REG, data);
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) {
orig = data = RREG32(CP_MEM_SLP_CNTL);
data |= CP_MEM_LS_EN;
if (orig != data)
WREG32(CP_MEM_SLP_CNTL, data);
}
orig = data = RREG32(RLC_CGTT_MGCG_OVERRIDE);
data &= 0xffffffc0;
if (orig != data)
WREG32(RLC_CGTT_MGCG_OVERRIDE, data);
tmp = gfx_v6_0_halt_rlc(adev);
WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff);
WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff);
WREG32(RLC_SERDES_WR_CTRL, 0x00d000ff);
gfx_v6_0_update_rlc(adev, tmp);
} else {
orig = data = RREG32(RLC_CGTT_MGCG_OVERRIDE);
data |= 0x00000003;
if (orig != data)
WREG32(RLC_CGTT_MGCG_OVERRIDE, data);
data = RREG32(CP_MEM_SLP_CNTL);
if (data & CP_MEM_LS_EN) {
data &= ~CP_MEM_LS_EN;
WREG32(CP_MEM_SLP_CNTL, data);
}
orig = data = RREG32(CGTS_SM_CTRL_REG);
data |= LS_OVERRIDE | OVERRIDE;
if (orig != data)
WREG32(CGTS_SM_CTRL_REG, data);
tmp = gfx_v6_0_halt_rlc(adev);
WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff);
WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff);
WREG32(RLC_SERDES_WR_CTRL, 0x00e000ff);
gfx_v6_0_update_rlc(adev, tmp);
}
}
/*
static void gfx_v6_0_update_cg(struct amdgpu_device *adev,
bool enable)
{
gfx_v6_0_enable_gui_idle_interrupt(adev, false);
if (enable) {
gfx_v6_0_enable_mgcg(adev, true);
gfx_v6_0_enable_cgcg(adev, true);
} else {
gfx_v6_0_enable_cgcg(adev, false);
gfx_v6_0_enable_mgcg(adev, false);
}
gfx_v6_0_enable_gui_idle_interrupt(adev, true);
}
*/
static void gfx_v6_0_enable_sclk_slowdown_on_pu(struct amdgpu_device *adev,
bool enable)
{
}
static void gfx_v6_0_enable_sclk_slowdown_on_pd(struct amdgpu_device *adev,
bool enable)
{
}
static void gfx_v6_0_enable_cp_pg(struct amdgpu_device *adev, bool enable)
{
u32 data, orig;
orig = data = RREG32(RLC_PG_CNTL);
if (enable && (adev->pg_flags & AMD_PG_SUPPORT_CP))
data &= ~0x8000;
else
data |= 0x8000;
if (orig != data)
WREG32(RLC_PG_CNTL, data);
}
static void gfx_v6_0_enable_gds_pg(struct amdgpu_device *adev, bool enable)
{
}
/*
static void gfx_v6_0_init_cp_pg_table(struct amdgpu_device *adev)
{
const __le32 *fw_data;
volatile u32 *dst_ptr;
int me, i, max_me = 4;
u32 bo_offset = 0;
u32 table_offset, table_size;
if (adev->asic_type == CHIP_KAVERI)
max_me = 5;
if (adev->gfx.rlc.cp_table_ptr == NULL)
return;
dst_ptr = adev->gfx.rlc.cp_table_ptr;
for (me = 0; me < max_me; me++) {
if (me == 0) {
const struct gfx_firmware_header_v1_0 *hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data;
fw_data = (const __le32 *)
(adev->gfx.ce_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
table_offset = le32_to_cpu(hdr->jt_offset);
table_size = le32_to_cpu(hdr->jt_size);
} else if (me == 1) {
const struct gfx_firmware_header_v1_0 *hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data;
fw_data = (const __le32 *)
(adev->gfx.pfp_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
table_offset = le32_to_cpu(hdr->jt_offset);
table_size = le32_to_cpu(hdr->jt_size);
} else if (me == 2) {
const struct gfx_firmware_header_v1_0 *hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data;
fw_data = (const __le32 *)
(adev->gfx.me_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
table_offset = le32_to_cpu(hdr->jt_offset);
table_size = le32_to_cpu(hdr->jt_size);
} else if (me == 3) {
const struct gfx_firmware_header_v1_0 *hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
fw_data = (const __le32 *)
(adev->gfx.mec_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
table_offset = le32_to_cpu(hdr->jt_offset);
table_size = le32_to_cpu(hdr->jt_size);
} else {
const struct gfx_firmware_header_v1_0 *hdr =
(const struct gfx_firmware_header_v1_0 *)adev->gfx.mec2_fw->data;
fw_data = (const __le32 *)
(adev->gfx.mec2_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
table_offset = le32_to_cpu(hdr->jt_offset);
table_size = le32_to_cpu(hdr->jt_size);
}
for (i = 0; i < table_size; i ++) {
dst_ptr[bo_offset + i] =
cpu_to_le32(le32_to_cpu(fw_data[table_offset + i]));
}
bo_offset += table_size;
}
}
*/
static void gfx_v6_0_enable_gfx_cgpg(struct amdgpu_device *adev,
bool enable)
{
u32 tmp;
if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)) {
tmp = RLC_PUD(0x10) | RLC_PDD(0x10) | RLC_TTPD(0x10) | RLC_MSD(0x10);
WREG32(RLC_TTOP_D, tmp);
tmp = RREG32(RLC_PG_CNTL);
tmp |= GFX_PG_ENABLE;
WREG32(RLC_PG_CNTL, tmp);
tmp = RREG32(RLC_AUTO_PG_CTRL);
tmp |= AUTO_PG_EN;
WREG32(RLC_AUTO_PG_CTRL, tmp);
} else {
tmp = RREG32(RLC_AUTO_PG_CTRL);
tmp &= ~AUTO_PG_EN;
WREG32(RLC_AUTO_PG_CTRL, tmp);
tmp = RREG32(DB_RENDER_CONTROL);
}
}
static u32 gfx_v6_0_get_cu_active_bitmap(struct amdgpu_device *adev,
u32 se, u32 sh)
{
u32 mask = 0, tmp, tmp1;
int i;
gfx_v6_0_select_se_sh(adev, se, sh, 0xffffffff);
tmp = RREG32(CC_GC_SHADER_ARRAY_CONFIG);
tmp1 = RREG32(GC_USER_SHADER_ARRAY_CONFIG);
gfx_v6_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
tmp &= 0xffff0000;
tmp |= tmp1;
tmp >>= 16;
for (i = 0; i < adev->gfx.config.max_cu_per_sh; i ++) {
mask <<= 1;
mask |= 1;
}
return (~tmp) & mask;
}
static void gfx_v6_0_init_ao_cu_mask(struct amdgpu_device *adev)
{
u32 i, j, k, active_cu_number = 0;
u32 mask, counter, cu_bitmap;
u32 tmp = 0;
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
mask = 1;
cu_bitmap = 0;
counter = 0;
for (k = 0; k < adev->gfx.config.max_cu_per_sh; k++) {
if (gfx_v6_0_get_cu_active_bitmap(adev, i, j) & mask) {
if (counter < 2)
cu_bitmap |= mask;
counter++;
}
mask <<= 1;
}
active_cu_number += counter;
tmp |= (cu_bitmap << (i * 16 + j * 8));
}
}
WREG32(RLC_PG_AO_CU_MASK, tmp);
tmp = RREG32(RLC_MAX_PG_CU);
tmp &= ~MAX_PU_CU_MASK;
tmp |= MAX_PU_CU(active_cu_number);
WREG32(RLC_MAX_PG_CU, tmp);
}
static void gfx_v6_0_enable_gfx_static_mgpg(struct amdgpu_device *adev,
bool enable)
{
u32 data, orig;
orig = data = RREG32(RLC_PG_CNTL);
if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_SMG))
data |= STATIC_PER_CU_PG_ENABLE;
else
data &= ~STATIC_PER_CU_PG_ENABLE;
if (orig != data)
WREG32(RLC_PG_CNTL, data);
}
static void gfx_v6_0_enable_gfx_dynamic_mgpg(struct amdgpu_device *adev,
bool enable)
{
u32 data, orig;
orig = data = RREG32(RLC_PG_CNTL);
if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_DMG))
data |= DYN_PER_CU_PG_ENABLE;
else
data &= ~DYN_PER_CU_PG_ENABLE;
if (orig != data)
WREG32(RLC_PG_CNTL, data);
}
static void gfx_v6_0_init_gfx_cgpg(struct amdgpu_device *adev)
{
u32 tmp;
WREG32(RLC_SAVE_AND_RESTORE_BASE, adev->gfx.rlc.save_restore_gpu_addr >> 8);
tmp = RREG32(RLC_PG_CNTL);
tmp |= GFX_PG_SRC;
WREG32(RLC_PG_CNTL, tmp);
WREG32(RLC_CLEAR_STATE_RESTORE_BASE, adev->gfx.rlc.clear_state_gpu_addr >> 8);
tmp = RREG32(RLC_AUTO_PG_CTRL);
tmp &= ~GRBM_REG_SGIT_MASK;
tmp |= GRBM_REG_SGIT(0x700);
tmp &= ~PG_AFTER_GRBM_REG_ST_MASK;
WREG32(RLC_AUTO_PG_CTRL, tmp);
}
static void gfx_v6_0_update_gfx_pg(struct amdgpu_device *adev, bool enable)
{
gfx_v6_0_enable_gfx_cgpg(adev, enable);
gfx_v6_0_enable_gfx_static_mgpg(adev, enable);
gfx_v6_0_enable_gfx_dynamic_mgpg(adev, enable);
}
static u32 gfx_v6_0_get_csb_size(struct amdgpu_device *adev)
{
u32 count = 0;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
if (adev->gfx.rlc.cs_data == NULL)
return 0;
/* begin clear state */
count += 2;
/* context control state */
count += 3;
for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT)
count += 2 + ext->reg_count;
else
return 0;
}
}
/* pa_sc_raster_config */
count += 3;
/* end clear state */
count += 2;
/* clear state */
count += 2;
return count;
}
static void gfx_v6_0_get_csb_buffer(struct amdgpu_device *adev,
volatile u32 *buffer)
{
u32 count = 0, i;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
if (adev->gfx.rlc.cs_data == NULL)
return;
if (buffer == NULL)
return;
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1));
buffer[count++] = cpu_to_le32(0x80000000);
buffer[count++] = cpu_to_le32(0x80000000);
for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
buffer[count++] =
cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
buffer[count++] = cpu_to_le32(ext->reg_index - 0xa000);
for (i = 0; i < ext->reg_count; i++)
buffer[count++] = cpu_to_le32(ext->extent[i]);
} else {
return;
}
}
}
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 1));
buffer[count++] = cpu_to_le32(PA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START);
switch (adev->asic_type) {
case CHIP_TAHITI:
case CHIP_PITCAIRN:
buffer[count++] = cpu_to_le32(0x2a00126a);
break;
case CHIP_VERDE:
buffer[count++] = cpu_to_le32(0x0000124a);
break;
case CHIP_OLAND:
buffer[count++] = cpu_to_le32(0x00000082);
break;
case CHIP_HAINAN:
buffer[count++] = cpu_to_le32(0x00000000);
break;
default:
buffer[count++] = cpu_to_le32(0x00000000);
break;
}
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0));
buffer[count++] = cpu_to_le32(0);
}
static void gfx_v6_0_init_pg(struct amdgpu_device *adev)
{
if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG |
AMD_PG_SUPPORT_GFX_SMG |
AMD_PG_SUPPORT_GFX_DMG |
AMD_PG_SUPPORT_CP |
AMD_PG_SUPPORT_GDS |
AMD_PG_SUPPORT_RLC_SMU_HS)) {
gfx_v6_0_enable_sclk_slowdown_on_pu(adev, true);
gfx_v6_0_enable_sclk_slowdown_on_pd(adev, true);
if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) {
gfx_v6_0_init_gfx_cgpg(adev);
gfx_v6_0_enable_cp_pg(adev, true);
gfx_v6_0_enable_gds_pg(adev, true);
} else {
WREG32(RLC_SAVE_AND_RESTORE_BASE, adev->gfx.rlc.save_restore_gpu_addr >> 8);
WREG32(RLC_CLEAR_STATE_RESTORE_BASE, adev->gfx.rlc.clear_state_gpu_addr >> 8);
}
gfx_v6_0_init_ao_cu_mask(adev);
gfx_v6_0_update_gfx_pg(adev, true);
} else {
WREG32(RLC_SAVE_AND_RESTORE_BASE, adev->gfx.rlc.save_restore_gpu_addr >> 8);
WREG32(RLC_CLEAR_STATE_RESTORE_BASE, adev->gfx.rlc.clear_state_gpu_addr >> 8);
}
}
static void gfx_v6_0_fini_pg(struct amdgpu_device *adev)
{
if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG |
AMD_PG_SUPPORT_GFX_SMG |
AMD_PG_SUPPORT_GFX_DMG |
AMD_PG_SUPPORT_CP |
AMD_PG_SUPPORT_GDS |
AMD_PG_SUPPORT_RLC_SMU_HS)) {
gfx_v6_0_update_gfx_pg(adev, false);
if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) {
gfx_v6_0_enable_cp_pg(adev, false);
gfx_v6_0_enable_gds_pg(adev, false);
}
}
}
static uint64_t gfx_v6_0_get_gpu_clock_counter(struct amdgpu_device *adev)
{
uint64_t clock;
mutex_lock(&adev->gfx.gpu_clock_mutex);
WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1);
clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) |
((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL);
mutex_unlock(&adev->gfx.gpu_clock_mutex);
return clock;
}
static void gfx_v6_0_ring_emit_gds_switch(struct amdgpu_ring *ring,
uint32_t vmid,
uint32_t gds_base, uint32_t gds_size,
uint32_t gws_base, uint32_t gws_size,
uint32_t oa_base, uint32_t oa_size)
{
}
static const struct amdgpu_gfx_funcs gfx_v6_0_gfx_funcs = {
.get_gpu_clock_counter = &gfx_v6_0_get_gpu_clock_counter,
.select_se_sh = &gfx_v6_0_select_se_sh,
};
static int gfx_v6_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->gfx.num_gfx_rings = GFX6_NUM_GFX_RINGS;
adev->gfx.num_compute_rings = GFX6_NUM_COMPUTE_RINGS;
adev->gfx.funcs = &gfx_v6_0_gfx_funcs;
gfx_v6_0_set_ring_funcs(adev);
gfx_v6_0_set_irq_funcs(adev);
return 0;
}
static int gfx_v6_0_sw_init(void *handle)
{
struct amdgpu_ring *ring;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int i, r;
r = amdgpu_irq_add_id(adev, 181, &adev->gfx.eop_irq);
if (r)
return r;
r = amdgpu_irq_add_id(adev, 184, &adev->gfx.priv_reg_irq);
if (r)
return r;
r = amdgpu_irq_add_id(adev, 185, &adev->gfx.priv_inst_irq);
if (r)
return r;
gfx_v6_0_scratch_init(adev);
r = gfx_v6_0_init_microcode(adev);
if (r) {
DRM_ERROR("Failed to load gfx firmware!\n");
return r;
}
r = gfx_v6_0_rlc_init(adev);
if (r) {
DRM_ERROR("Failed to init rlc BOs!\n");
return r;
}
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
ring->ring_obj = NULL;
sprintf(ring->name, "gfx");
r = amdgpu_ring_init(adev, ring, 1024,
0x80000000, 0xf,
&adev->gfx.eop_irq, AMDGPU_CP_IRQ_GFX_EOP,
AMDGPU_RING_TYPE_GFX);
if (r)
return r;
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
unsigned irq_type;
if ((i >= 32) || (i >= AMDGPU_MAX_COMPUTE_RINGS)) {
DRM_ERROR("Too many (%d) compute rings!\n", i);
break;
}
ring = &adev->gfx.compute_ring[i];
ring->ring_obj = NULL;
ring->use_doorbell = false;
ring->doorbell_index = 0;
ring->me = 1;
ring->pipe = i;
ring->queue = i;
sprintf(ring->name, "comp %d.%d.%d", ring->me, ring->pipe, ring->queue);
irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ring->pipe;
r = amdgpu_ring_init(adev, ring, 1024 * 1024,
0x80000000, 0xf,
&adev->gfx.eop_irq, irq_type,
AMDGPU_RING_TYPE_COMPUTE);
if (r)
return r;
}
return r;
}
static int gfx_v6_0_sw_fini(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_bo_unref(&adev->gds.oa_gfx_bo);
amdgpu_bo_unref(&adev->gds.gws_gfx_bo);
amdgpu_bo_unref(&adev->gds.gds_gfx_bo);
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
amdgpu_ring_fini(&adev->gfx.gfx_ring[i]);
for (i = 0; i < adev->gfx.num_compute_rings; i++)
amdgpu_ring_fini(&adev->gfx.compute_ring[i]);
gfx_v6_0_cp_compute_fini(adev);
gfx_v6_0_rlc_fini(adev);
return 0;
}
static int gfx_v6_0_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gfx_v6_0_gpu_init(adev);
r = gfx_v6_0_rlc_resume(adev);
if (r)
return r;
r = gfx_v6_0_cp_resume(adev);
if (r)
return r;
adev->gfx.ce_ram_size = 0x8000;
return r;
}
static int gfx_v6_0_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
gfx_v6_0_cp_enable(adev, false);
gfx_v6_0_rlc_stop(adev);
gfx_v6_0_fini_pg(adev);
return 0;
}
static int gfx_v6_0_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return gfx_v6_0_hw_fini(adev);
}
static int gfx_v6_0_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return gfx_v6_0_hw_init(adev);
}
static bool gfx_v6_0_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (RREG32(GRBM_STATUS) & GRBM_STATUS__GUI_ACTIVE_MASK)
return false;
else
return true;
}
static int gfx_v6_0_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(GRBM_STATUS) & GRBM_STATUS__GUI_ACTIVE_MASK;
if (!tmp)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int gfx_v6_0_soft_reset(void *handle)
{
return 0;
}
static void gfx_v6_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cp_int_cntl = RREG32(CP_INT_CNTL_RING0);
cp_int_cntl &= ~CP_INT_CNTL_RING__TIME_STAMP_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING0, cp_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cp_int_cntl = RREG32(CP_INT_CNTL_RING0);
cp_int_cntl |= CP_INT_CNTL_RING__TIME_STAMP_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING0, cp_int_cntl);
break;
default:
break;
}
}
static void gfx_v6_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev,
int ring,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl;
switch (state){
case AMDGPU_IRQ_STATE_DISABLE:
if (ring == 0) {
cp_int_cntl = RREG32(CP_INT_CNTL_RING1);
cp_int_cntl &= ~CP_INT_CNTL_RING__TIME_STAMP_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING1, cp_int_cntl);
break;
} else {
cp_int_cntl = RREG32(CP_INT_CNTL_RING2);
cp_int_cntl &= ~CP_INT_CNTL_RING__TIME_STAMP_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING2, cp_int_cntl);
break;
}
case AMDGPU_IRQ_STATE_ENABLE:
if (ring == 0) {
cp_int_cntl = RREG32(CP_INT_CNTL_RING1);
cp_int_cntl |= CP_INT_CNTL_RING__TIME_STAMP_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING1, cp_int_cntl);
break;
} else {
cp_int_cntl = RREG32(CP_INT_CNTL_RING2);
cp_int_cntl |= CP_INT_CNTL_RING__TIME_STAMP_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING2, cp_int_cntl);
break;
}
default:
BUG();
break;
}
}
static int gfx_v6_0_set_priv_reg_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cp_int_cntl = RREG32(CP_INT_CNTL_RING0);
cp_int_cntl &= ~CP_INT_CNTL_RING0__PRIV_REG_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING0, cp_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cp_int_cntl = RREG32(CP_INT_CNTL_RING0);
cp_int_cntl |= CP_INT_CNTL_RING0__PRIV_REG_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING0, cp_int_cntl);
break;
default:
break;
}
return 0;
}
static int gfx_v6_0_set_priv_inst_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cp_int_cntl = RREG32(CP_INT_CNTL_RING0);
cp_int_cntl &= ~CP_INT_CNTL_RING0__PRIV_INSTR_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING0, cp_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cp_int_cntl = RREG32(CP_INT_CNTL_RING0);
cp_int_cntl |= CP_INT_CNTL_RING0__PRIV_INSTR_INT_ENABLE_MASK;
WREG32(CP_INT_CNTL_RING0, cp_int_cntl);
break;
default:
break;
}
return 0;
}
static int gfx_v6_0_set_eop_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (type) {
case AMDGPU_CP_IRQ_GFX_EOP:
gfx_v6_0_set_gfx_eop_interrupt_state(adev, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP:
gfx_v6_0_set_compute_eop_interrupt_state(adev, 0, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP:
gfx_v6_0_set_compute_eop_interrupt_state(adev, 1, state);
break;
default:
break;
}
return 0;
}
static int gfx_v6_0_eop_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
switch (entry->ring_id) {
case 0:
amdgpu_fence_process(&adev->gfx.gfx_ring[0]);
break;
case 1:
case 2:
amdgpu_fence_process(&adev->gfx.compute_ring[entry->ring_id -1]);
break;
default:
break;
}
return 0;
}
static int gfx_v6_0_priv_reg_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal register access in command stream\n");
schedule_work(&adev->reset_work);
return 0;
}
static int gfx_v6_0_priv_inst_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal instruction in command stream\n");
schedule_work(&adev->reset_work);
return 0;
}
static int gfx_v6_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
bool gate = false;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (state == AMD_CG_STATE_GATE)
gate = true;
gfx_v6_0_enable_gui_idle_interrupt(adev, false);
if (gate) {
gfx_v6_0_enable_mgcg(adev, true);
gfx_v6_0_enable_cgcg(adev, true);
} else {
gfx_v6_0_enable_cgcg(adev, false);
gfx_v6_0_enable_mgcg(adev, false);
}
gfx_v6_0_enable_gui_idle_interrupt(adev, true);
return 0;
}
static int gfx_v6_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
bool gate = false;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (state == AMD_PG_STATE_GATE)
gate = true;
if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG |
AMD_PG_SUPPORT_GFX_SMG |
AMD_PG_SUPPORT_GFX_DMG |
AMD_PG_SUPPORT_CP |
AMD_PG_SUPPORT_GDS |
AMD_PG_SUPPORT_RLC_SMU_HS)) {
gfx_v6_0_update_gfx_pg(adev, gate);
if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) {
gfx_v6_0_enable_cp_pg(adev, gate);
gfx_v6_0_enable_gds_pg(adev, gate);
}
}
return 0;
}
const struct amd_ip_funcs gfx_v6_0_ip_funcs = {
.name = "gfx_v6_0",
.early_init = gfx_v6_0_early_init,
.late_init = NULL,
.sw_init = gfx_v6_0_sw_init,
.sw_fini = gfx_v6_0_sw_fini,
.hw_init = gfx_v6_0_hw_init,
.hw_fini = gfx_v6_0_hw_fini,
.suspend = gfx_v6_0_suspend,
.resume = gfx_v6_0_resume,
.is_idle = gfx_v6_0_is_idle,
.wait_for_idle = gfx_v6_0_wait_for_idle,
.soft_reset = gfx_v6_0_soft_reset,
.set_clockgating_state = gfx_v6_0_set_clockgating_state,
.set_powergating_state = gfx_v6_0_set_powergating_state,
};
static const struct amdgpu_ring_funcs gfx_v6_0_ring_funcs_gfx = {
.get_rptr = gfx_v6_0_ring_get_rptr_gfx,
.get_wptr = gfx_v6_0_ring_get_wptr_gfx,
.set_wptr = gfx_v6_0_ring_set_wptr_gfx,
.parse_cs = NULL,
.emit_ib = gfx_v6_0_ring_emit_ib_gfx,
.emit_fence = gfx_v6_0_ring_emit_fence_gfx,
.emit_pipeline_sync = gfx_v6_0_ring_emit_pipeline_sync,
.emit_vm_flush = gfx_v6_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v6_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v6_0_ring_emit_hdp_flush,
.emit_hdp_invalidate = gfx_v6_0_ring_emit_hdp_invalidate,
.test_ring = gfx_v6_0_ring_test_ring,
.test_ib = gfx_v6_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
};
static const struct amdgpu_ring_funcs gfx_v6_0_ring_funcs_compute = {
.get_rptr = gfx_v6_0_ring_get_rptr_compute,
.get_wptr = gfx_v6_0_ring_get_wptr_compute,
.set_wptr = gfx_v6_0_ring_set_wptr_compute,
.parse_cs = NULL,
.emit_ib = gfx_v6_0_ring_emit_ib_compute,
.emit_fence = gfx_v6_0_ring_emit_fence_compute,
.emit_pipeline_sync = gfx_v6_0_ring_emit_pipeline_sync,
.emit_vm_flush = gfx_v6_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v6_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v6_0_ring_emit_hdp_flush,
.emit_hdp_invalidate = gfx_v6_0_ring_emit_hdp_invalidate,
.test_ring = gfx_v6_0_ring_test_ring,
.test_ib = gfx_v6_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
};
static void gfx_v6_0_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].funcs = &gfx_v6_0_ring_funcs_gfx;
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].funcs = &gfx_v6_0_ring_funcs_compute;
}
static const struct amdgpu_irq_src_funcs gfx_v6_0_eop_irq_funcs = {
.set = gfx_v6_0_set_eop_interrupt_state,
.process = gfx_v6_0_eop_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v6_0_priv_reg_irq_funcs = {
.set = gfx_v6_0_set_priv_reg_fault_state,
.process = gfx_v6_0_priv_reg_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v6_0_priv_inst_irq_funcs = {
.set = gfx_v6_0_set_priv_inst_fault_state,
.process = gfx_v6_0_priv_inst_irq,
};
static void gfx_v6_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST;
adev->gfx.eop_irq.funcs = &gfx_v6_0_eop_irq_funcs;
adev->gfx.priv_reg_irq.num_types = 1;
adev->gfx.priv_reg_irq.funcs = &gfx_v6_0_priv_reg_irq_funcs;
adev->gfx.priv_inst_irq.num_types = 1;
adev->gfx.priv_inst_irq.funcs = &gfx_v6_0_priv_inst_irq_funcs;
}
static void gfx_v6_0_get_cu_info(struct amdgpu_device *adev)
{
int i, j, k, counter, active_cu_number = 0;
u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0;
struct amdgpu_cu_info *cu_info = &adev->gfx.cu_info;
memset(cu_info, 0, sizeof(*cu_info));
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
mask = 1;
ao_bitmap = 0;
counter = 0;
gfx_v6_0_select_se_sh(adev, i, j, 0xffffffff);
bitmap = gfx_v6_0_get_cu_active_bitmap(adev, i, j);
cu_info->bitmap[i][j] = bitmap;
for (k = 0; k < adev->gfx.config.max_cu_per_sh; k ++) {
if (bitmap & mask) {
if (counter < 2)
ao_bitmap |= mask;
counter ++;
}
mask <<= 1;
}
active_cu_number += counter;
ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8));
}
}
gfx_v6_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
mutex_unlock(&adev->grbm_idx_mutex);
cu_info->number = active_cu_number;
cu_info->ao_cu_mask = ao_cu_mask;
}
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef __GFX_V6_0_H__
#define __GFX_V6_0_H__
extern const struct amd_ip_funcs gfx_v6_0_ip_funcs;
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment