Commit 3711c94f authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull EFI updates from Ingo Molnar:
 "The main changes in this cycle were:

   - move BGRT handling to drivers/acpi so it can be shared between x86
     and ARM

   - bring the EFI stub's initrd and FDT allocation logic in line with
     the latest changes to the arm64 boot protocol

   - improvements and fixes to the EFI stub's command line parsing
     routines

   - randomize the virtual mapping of the UEFI runtime services on
     ARM/arm64

   - ... and other misc enhancements, cleanups and fixes"

* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  efi/libstub/arm: Don't use TASK_SIZE when randomizing the RT space
  ef/libstub/arm/arm64: Randomize the base of the UEFI rt services region
  efi/libstub/arm/arm64: Disable debug prints on 'quiet' cmdline arg
  efi/libstub: Unify command line param parsing
  efi/libstub: Fix harmless command line parsing bug
  efi/arm32-stub: Allow boot-time allocations in the vmlinux region
  x86/efi: Clean up a minor mistake in comment
  efi/pstore: Return error code (if any) from efi_pstore_write()
  efi/bgrt: Enable ACPI BGRT handling on arm64
  x86/efi/bgrt: Move efi-bgrt handling out of arch/x86
  efi/arm-stub: Round up FDT allocation to mapping size
  efi/arm-stub: Correct FDT and initrd allocation rules for arm64
parents 174ddfd5 197decef
......@@ -85,6 +85,18 @@ static inline void efifb_setup_from_dmi(struct screen_info *si, const char *opt)
*/
#define ZIMAGE_OFFSET_LIMIT SZ_128M
#define MIN_ZIMAGE_OFFSET MAX_UNCOMP_KERNEL_SIZE
#define MAX_FDT_OFFSET ZIMAGE_OFFSET_LIMIT
/* on ARM, the FDT should be located in the first 128 MB of RAM */
static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
{
return dram_base + ZIMAGE_OFFSET_LIMIT;
}
/* on ARM, the initrd should be loaded in a lowmem region */
static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base,
unsigned long image_addr)
{
return dram_base + SZ_512M;
}
#endif /* _ASM_ARM_EFI_H */
#ifndef _ASM_EFI_H
#define _ASM_EFI_H
#include <asm/boot.h>
#include <asm/cpufeature.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
......@@ -46,7 +47,28 @@ int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);
* 2MiB so we know it won't cross a 2MiB boundary.
*/
#define EFI_FDT_ALIGN SZ_2M /* used by allocate_new_fdt_and_exit_boot() */
#define MAX_FDT_OFFSET SZ_512M
/* on arm64, the FDT may be located anywhere in system RAM */
static inline unsigned long efi_get_max_fdt_addr(unsigned long dram_base)
{
return ULONG_MAX;
}
/*
* On arm64, we have to ensure that the initrd ends up in the linear region,
* which is a 1 GB aligned region of size '1UL << (VA_BITS - 1)' that is
* guaranteed to cover the kernel Image.
*
* Since the EFI stub is part of the kernel Image, we can relax the
* usual requirements in Documentation/arm64/booting.txt, which still
* apply to other bootloaders, and are required for some kernel
* configurations.
*/
static inline unsigned long efi_get_max_initrd_addr(unsigned long dram_base,
unsigned long image_addr)
{
return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS - 1));
}
#define efi_call_early(f, ...) sys_table_arg->boottime->f(__VA_ARGS__)
#define __efi_call_early(f, ...) f(__VA_ARGS__)
......
......@@ -18,6 +18,7 @@
#include <linux/acpi.h>
#include <linux/bootmem.h>
#include <linux/cpumask.h>
#include <linux/efi-bgrt.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
......@@ -233,6 +234,8 @@ void __init acpi_boot_table_init(void)
early_init_dt_scan_chosen_stdout();
} else {
parse_spcr(earlycon_init_is_deferred);
if (IS_ENABLED(CONFIG_ACPI_BGRT))
acpi_table_parse(ACPI_SIG_BGRT, acpi_parse_bgrt);
}
}
......
......@@ -1564,12 +1564,6 @@ int __init early_acpi_boot_init(void)
return 0;
}
static int __init acpi_parse_bgrt(struct acpi_table_header *table)
{
efi_bgrt_init(table);
return 0;
}
int __init acpi_boot_init(void)
{
/* those are executed after early-quirks are executed */
......
OBJECT_FILES_NON_STANDARD_efi_thunk_$(BITS).o := y
obj-$(CONFIG_EFI) += quirks.o efi.o efi_$(BITS).o efi_stub_$(BITS).o
obj-$(CONFIG_ACPI_BGRT) += efi-bgrt.o
obj-$(CONFIG_EARLY_PRINTK_EFI) += early_printk.o
obj-$(CONFIG_EFI_MIXED) += efi_thunk_$(BITS).o
......@@ -47,7 +47,7 @@
#include <asm/pgalloc.h>
/*
* We allocate runtime services regions bottom-up, starting from -4G, i.e.
* We allocate runtime services regions top-down, starting from -4G, i.e.
* 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
*/
static u64 efi_va = EFI_VA_START;
......
......@@ -440,7 +440,7 @@ config ACPI_CUSTOM_METHOD
config ACPI_BGRT
bool "Boottime Graphics Resource Table support"
depends on EFI && X86
depends on EFI && (X86 || ARM64)
help
This driver adds support for exposing the ACPI Boottime Graphics
Resource Table, which allows the operating system to obtain
......
......@@ -81,6 +81,12 @@ static struct attribute_group bgrt_attribute_group = {
.bin_attrs = bgrt_bin_attributes,
};
int __init acpi_parse_bgrt(struct acpi_table_header *table)
{
efi_bgrt_init(table);
return 0;
}
static int __init bgrt_init(void)
{
int ret;
......
......@@ -9,6 +9,7 @@
#
KASAN_SANITIZE_runtime-wrappers.o := n
obj-$(CONFIG_ACPI_BGRT) += efi-bgrt.o
obj-$(CONFIG_EFI) += efi.o vars.o reboot.o memattr.o
obj-$(CONFIG_EFI) += capsule.o memmap.o
obj-$(CONFIG_EFI_VARS) += efivars.o
......
......@@ -274,7 +274,7 @@ static int efi_pstore_write(enum pstore_type_id type,
for (i = 0; i < DUMP_NAME_LEN; i++)
efi_name[i] = name[i];
efivar_entry_set_safe(efi_name, vendor, PSTORE_EFI_ATTRIBUTES,
ret = efivar_entry_set_safe(efi_name, vendor, PSTORE_EFI_ATTRIBUTES,
!pstore_cannot_block_path(reason),
size, psi->buf);
......
......@@ -18,7 +18,27 @@
#include "efistub.h"
bool __nokaslr;
/*
* This is the base address at which to start allocating virtual memory ranges
* for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
* any allocation we choose, and eliminate the risk of a conflict after kexec.
* The value chosen is the largest non-zero power of 2 suitable for this purpose
* both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
* be mapped efficiently.
* Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
* map everything below 1 GB. (512 MB is a reasonable upper bound for the
* entire footprint of the UEFI runtime services memory regions)
*/
#define EFI_RT_VIRTUAL_BASE SZ_512M
#define EFI_RT_VIRTUAL_SIZE SZ_512M
#ifdef CONFIG_ARM64
# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_64
#else
# define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
#endif
static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
void *__image, void **__fh)
......@@ -118,8 +138,6 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
goto fail;
pr_efi(sys_table, "Booting Linux Kernel...\n");
status = check_platform_features(sys_table);
if (status != EFI_SUCCESS)
goto fail;
......@@ -153,17 +171,15 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
goto fail;
}
/* check whether 'nokaslr' was passed on the command line */
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
static const u8 default_cmdline[] = CONFIG_CMDLINE;
const u8 *str, *cmdline = cmdline_ptr;
if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
cmdline_size == 0)
efi_parse_options(CONFIG_CMDLINE);
if (IS_ENABLED(CONFIG_CMDLINE_FORCE))
cmdline = default_cmdline;
str = strstr(cmdline, "nokaslr");
if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
__nokaslr = true;
}
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
efi_parse_options(cmdline_ptr);
pr_efi(sys_table, "Booting Linux Kernel...\n");
si = setup_graphics(sys_table);
......@@ -176,10 +192,6 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
goto fail_free_cmdline;
}
status = efi_parse_options(cmdline_ptr);
if (status != EFI_SUCCESS)
pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");
secure_boot = efi_get_secureboot(sys_table);
/*
......@@ -213,8 +225,9 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
if (!fdt_addr)
pr_efi(sys_table, "Generating empty DTB\n");
status = handle_cmdline_files(sys_table, image, cmdline_ptr,
"initrd=", dram_base + SZ_512M,
status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
efi_get_max_initrd_addr(dram_base,
*image_addr),
(unsigned long *)&initrd_addr,
(unsigned long *)&initrd_size);
if (status != EFI_SUCCESS)
......@@ -222,9 +235,29 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
efi_random_get_seed(sys_table);
if (!nokaslr()) {
/*
* Randomize the base of the UEFI runtime services region.
* Preserve the 2 MB alignment of the region by taking a
* shift of 21 bit positions into account when scaling
* the headroom value using a 32-bit random value.
*/
static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
EFI_RT_VIRTUAL_BASE -
EFI_RT_VIRTUAL_SIZE;
u32 rnd;
status = efi_get_random_bytes(sys_table, sizeof(rnd),
(u8 *)&rnd);
if (status == EFI_SUCCESS) {
virtmap_base = EFI_RT_VIRTUAL_BASE +
(((headroom >> 21) * rnd) >> (32 - 21));
}
}
new_fdt_addr = fdt_addr;
status = allocate_new_fdt_and_exit_boot(sys_table, handle,
&new_fdt_addr, dram_base + MAX_FDT_OFFSET,
&new_fdt_addr, efi_get_max_fdt_addr(dram_base),
initrd_addr, initrd_size, cmdline_ptr,
fdt_addr, fdt_size);
......@@ -251,18 +284,6 @@ unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
return EFI_ERROR;
}
/*
* This is the base address at which to start allocating virtual memory ranges
* for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
* any allocation we choose, and eliminate the risk of a conflict after kexec.
* The value chosen is the largest non-zero power of 2 suitable for this purpose
* both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
* be mapped efficiently.
* Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
* map everything below 1 GB.
*/
#define EFI_RT_VIRTUAL_BASE SZ_512M
static int cmp_mem_desc(const void *l, const void *r)
{
const efi_memory_desc_t *left = l, *right = r;
......@@ -312,7 +333,7 @@ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
unsigned long desc_size, efi_memory_desc_t *runtime_map,
int *count)
{
u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
u64 efi_virt_base = virtmap_base;
efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
int l;
......
......@@ -9,6 +9,8 @@
#include <linux/efi.h>
#include <asm/efi.h>
#include "efistub.h"
efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
{
int block;
......@@ -63,6 +65,132 @@ void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
efi_call_early(free_pool, si);
}
static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
unsigned long dram_base,
unsigned long *reserve_addr,
unsigned long *reserve_size)
{
efi_physical_addr_t alloc_addr;
efi_memory_desc_t *memory_map;
unsigned long nr_pages, map_size, desc_size, buff_size;
efi_status_t status;
unsigned long l;
struct efi_boot_memmap map = {
.map = &memory_map,
.map_size = &map_size,
.desc_size = &desc_size,
.desc_ver = NULL,
.key_ptr = NULL,
.buff_size = &buff_size,
};
/*
* Reserve memory for the uncompressed kernel image. This is
* all that prevents any future allocations from conflicting
* with the kernel. Since we can't tell from the compressed
* image how much DRAM the kernel actually uses (due to BSS
* size uncertainty) we allocate the maximum possible size.
* Do this very early, as prints can cause memory allocations
* that may conflict with this.
*/
alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
if (status == EFI_SUCCESS) {
if (alloc_addr == dram_base) {
*reserve_addr = alloc_addr;
*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
return EFI_SUCCESS;
}
/*
* If we end up here, the allocation succeeded but starts below
* dram_base. This can only occur if the real base of DRAM is
* not a multiple of 128 MB, in which case dram_base will have
* been rounded up. Since this implies that a part of the region
* was already occupied, we need to fall through to the code
* below to ensure that the existing allocations don't conflict.
* For this reason, we use EFI_BOOT_SERVICES_DATA above and not
* EFI_LOADER_DATA, which we wouldn't able to distinguish from
* allocations that we want to disallow.
*/
}
/*
* If the allocation above failed, we may still be able to proceed:
* if the only allocations in the region are of types that will be
* released to the OS after ExitBootServices(), the decompressor can
* safely overwrite them.
*/
status = efi_get_memory_map(sys_table_arg, &map);
if (status != EFI_SUCCESS) {
pr_efi_err(sys_table_arg,
"reserve_kernel_base(): Unable to retrieve memory map.\n");
return status;
}
for (l = 0; l < map_size; l += desc_size) {
efi_memory_desc_t *desc;
u64 start, end;
desc = (void *)memory_map + l;
start = desc->phys_addr;
end = start + desc->num_pages * EFI_PAGE_SIZE;
/* Skip if entry does not intersect with region */
if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
end <= dram_base)
continue;
switch (desc->type) {
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
/* Ignore types that are released to the OS anyway */
continue;
case EFI_CONVENTIONAL_MEMORY:
/*
* Reserve the intersection between this entry and the
* region.
*/
start = max(start, (u64)dram_base);
end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
status = efi_call_early(allocate_pages,
EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA,
(end - start) / EFI_PAGE_SIZE,
&start);
if (status != EFI_SUCCESS) {
pr_efi_err(sys_table_arg,
"reserve_kernel_base(): alloc failed.\n");
goto out;
}
break;
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
/*
* These regions may be released and reallocated for
* another purpose (including EFI_RUNTIME_SERVICE_DATA)
* at any time during the execution of the OS loader,
* so we cannot consider them as safe.
*/
default:
/*
* Treat any other allocation in the region as unsafe */
status = EFI_OUT_OF_RESOURCES;
goto out;
}
}
status = EFI_SUCCESS;
out:
efi_call_early(free_pool, memory_map);
return status;
}
efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
unsigned long *image_addr,
unsigned long *image_size,
......@@ -71,10 +199,7 @@ efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
unsigned long dram_base,
efi_loaded_image_t *image)
{
unsigned long nr_pages;
efi_status_t status;
/* Use alloc_addr to tranlsate between types */
efi_physical_addr_t alloc_addr;
/*
* Verify that the DRAM base address is compatible with the ARM
......@@ -85,27 +210,12 @@ efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
*/
dram_base = round_up(dram_base, SZ_128M);
/*
* Reserve memory for the uncompressed kernel image. This is
* all that prevents any future allocations from conflicting
* with the kernel. Since we can't tell from the compressed
* image how much DRAM the kernel actually uses (due to BSS
* size uncertainty) we allocate the maximum possible size.
* Do this very early, as prints can cause memory allocations
* that may conflict with this.
*/
alloc_addr = dram_base;
*reserve_size = MAX_UNCOMP_KERNEL_SIZE;
nr_pages = round_up(*reserve_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
status = sys_table->boottime->allocate_pages(EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA,
nr_pages, &alloc_addr);
status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
reserve_size);
if (status != EFI_SUCCESS) {
*reserve_size = 0;
pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
return status;
}
*reserve_addr = alloc_addr;
/*
* Relocate the zImage, so that it appears in the lowest 128 MB
......
......@@ -16,8 +16,6 @@
#include "efistub.h"
extern bool __nokaslr;
efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
{
u64 tg;
......@@ -52,7 +50,7 @@ efi_status_t handle_kernel_image(efi_system_table_t *sys_table_arg,
u64 phys_seed = 0;
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
if (!__nokaslr) {
if (!nokaslr()) {
status = efi_get_random_bytes(sys_table_arg,
sizeof(phys_seed),
(u8 *)&phys_seed);
......
......@@ -32,6 +32,18 @@
static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
static int __section(.data) __nokaslr;
static int __section(.data) __quiet;
int __pure nokaslr(void)
{
return __nokaslr;
}
int __pure is_quiet(void)
{
return __quiet;
}
#define EFI_MMAP_NR_SLACK_SLOTS 8
struct file_info {
......@@ -409,17 +421,17 @@ static efi_status_t efi_file_close(void *handle)
* environments, first in the early boot environment of the EFI boot
* stub, and subsequently during the kernel boot.
*/
efi_status_t efi_parse_options(char *cmdline)
efi_status_t efi_parse_options(char const *cmdline)
{
char *str;
/*
* Currently, the only efi= option we look for is 'nochunk', which
* is intended to work around known issues on certain x86 UEFI
* versions. So ignore for now on other architectures.
*/
if (!IS_ENABLED(CONFIG_X86))
return EFI_SUCCESS;
str = strstr(cmdline, "nokaslr");
if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
__nokaslr = 1;
str = strstr(cmdline, "quiet");
if (str == cmdline || (str && str > cmdline && *(str - 1) == ' '))
__quiet = 1;
/*
* If no EFI parameters were specified on the cmdline we've got
......@@ -436,14 +448,14 @@ efi_status_t efi_parse_options(char *cmdline)
* Remember, because efi= is also used by the kernel we need to
* skip over arguments we don't understand.
*/
while (*str) {
while (*str && *str != ' ') {
if (!strncmp(str, "nochunk", 7)) {
str += strlen("nochunk");
__chunk_size = -1UL;
}
/* Group words together, delimited by "," */
while (*str && *str != ',')
while (*str && *str != ' ' && *str != ',')
str++;
if (*str == ',')
......
......@@ -24,6 +24,15 @@
#define EFI_ALLOC_ALIGN EFI_PAGE_SIZE
#endif
extern int __pure nokaslr(void);
extern int __pure is_quiet(void);
#define pr_efi(sys_table, msg) do { \
if (!is_quiet()) efi_printk(sys_table, "EFI stub: "msg); \
} while (0)
#define pr_efi_err(sys_table, msg) efi_printk(sys_table, "EFI stub: ERROR: "msg)
void efi_char16_printk(efi_system_table_t *, efi_char16_t *);
efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg, void *__image,
......
......@@ -206,6 +206,10 @@ static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
return update_fdt_memmap(p->new_fdt_addr, map);
}
#ifndef MAX_FDT_SIZE
#define MAX_FDT_SIZE SZ_2M
#endif
/*
* Allocate memory for a new FDT, then add EFI, commandline, and
* initrd related fields to the FDT. This routine increases the
......@@ -233,7 +237,6 @@ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
u32 desc_ver;
unsigned long mmap_key;
efi_memory_desc_t *memory_map, *runtime_map;
unsigned long new_fdt_size;
efi_status_t status;
int runtime_entry_count = 0;
struct efi_boot_memmap map;
......@@ -262,42 +265,30 @@ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
"Exiting boot services and installing virtual address map...\n");
map.map = &memory_map;
/*
* Estimate size of new FDT, and allocate memory for it. We
* will allocate a bigger buffer if this ends up being too
* small, so a rough guess is OK here.
*/
new_fdt_size = fdt_size + EFI_PAGE_SIZE;
while (1) {
status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
new_fdt_addr, max_addr);
if (status != EFI_SUCCESS) {
pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
pr_efi_err(sys_table,
"Unable to allocate memory for new device tree.\n");
goto fail;
}
status = update_fdt(sys_table,
(void *)fdt_addr, fdt_size,
(void *)*new_fdt_addr, new_fdt_size,
cmdline_ptr, initrd_addr, initrd_size);
/* Succeeding the first time is the expected case. */
if (status == EFI_SUCCESS)
break;
if (status == EFI_BUFFER_TOO_SMALL) {
/*
* We need to allocate more space for the new
* device tree, so free existing buffer that is
* too small.
* Now that we have done our final memory allocation (and free)
* we can get the memory map key needed for exit_boot_services().
*/
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
new_fdt_size += EFI_PAGE_SIZE;
} else {
status = efi_get_memory_map(sys_table, &map);
if (status != EFI_SUCCESS)
goto fail_free_new_fdt;
status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
(void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
initrd_addr, initrd_size);
if (status != EFI_SUCCESS) {
pr_efi_err(sys_table, "Unable to construct new device tree.\n");
goto fail_free_new_fdt;
}
}
priv.runtime_map = runtime_map;
priv.runtime_entry_count = &runtime_entry_count;
......@@ -340,7 +331,7 @@ efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
pr_efi_err(sys_table, "Exit boot services failed.\n");
fail_free_new_fdt:
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
fail:
sys_table->boottime->free_pool(runtime_map);
......
......@@ -12,6 +12,8 @@
#include <linux/efi.h>
#include <asm/efi.h>
#include "efistub.h"
/* BIOS variables */
static const efi_guid_t efi_variable_guid = EFI_GLOBAL_VARIABLE_GUID;
static const efi_char16_t const efi_SecureBoot_name[] = {
......
......@@ -6,6 +6,7 @@
#ifdef CONFIG_ACPI_BGRT
void efi_bgrt_init(struct acpi_table_header *table);
int __init acpi_parse_bgrt(struct acpi_table_header *table);
/* The BGRT data itself; only valid if bgrt_image != NULL. */
extern size_t bgrt_image_size;
......@@ -14,6 +15,10 @@ extern struct acpi_table_bgrt bgrt_tab;
#else /* !CONFIG_ACPI_BGRT */
static inline void efi_bgrt_init(struct acpi_table_header *table) {}
static inline int __init acpi_parse_bgrt(struct acpi_table_header *table)
{
return 0;
}
#endif /* !CONFIG_ACPI_BGRT */
......
......@@ -1435,9 +1435,6 @@ static inline int efi_runtime_map_copy(void *buf, size_t bufsz)
/* prototypes shared between arch specific and generic stub code */
#define pr_efi(sys_table, msg) efi_printk(sys_table, "EFI stub: "msg)
#define pr_efi_err(sys_table, msg) efi_printk(sys_table, "EFI stub: ERROR: "msg)
void efi_printk(efi_system_table_t *sys_table_arg, char *str);
void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
......@@ -1471,7 +1468,7 @@ efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
unsigned long *load_addr,
unsigned long *load_size);
efi_status_t efi_parse_options(char *cmdline);
efi_status_t efi_parse_options(char const *cmdline);
efi_status_t efi_setup_gop(efi_system_table_t *sys_table_arg,
struct screen_info *si, efi_guid_t *proto,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment