Commit 41dac9a2 authored by Borislav Petkov's avatar Borislav Petkov

Merge branches 'edac-mc-cleanup', 'edac-misc', 'edac-drivers' and...

Merge branches 'edac-mc-cleanup', 'edac-misc', 'edac-drivers' and 'edac-urgent' into edac-updates-for-5.7
Signed-off-by: default avatarBorislav Petkov <bp@suse.de>
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/edac/dmc-520.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: ARM DMC-520 EDAC bindings
maintainers:
- Lei Wang <lewan@microsoft.com>
description: |+
DMC-520 node is defined to describe DRAM error detection and correction.
https://static.docs.arm.com/100000/0200/corelink_dmc520_trm_100000_0200_01_en.pdf
properties:
compatible:
items:
- const: brcm,dmc-520
- const: arm,dmc-520
reg:
maxItems: 1
interrupts:
minItems: 1
maxItems: 10
interrupt-names:
minItems: 1
maxItems: 10
items:
enum:
- ram_ecc_errc
- ram_ecc_errd
- dram_ecc_errc
- dram_ecc_errd
- failed_access
- failed_prog
- link_err
- temperature_event
- arch_fsm
- phy_request
required:
- compatible
- reg
- interrupts
- interrupt-names
examples:
- |
dmc0: dmc@200000 {
compatible = "brcm,dmc-520", "arm,dmc-520";
reg = <0x200000 0x80000>;
interrupts = <0x0 0x349 0x4>, <0x0 0x34B 0x4>;
interrupt-names = "dram_ecc_errc", "dram_ecc_errd";
};
...@@ -5998,6 +5998,12 @@ F: Documentation/driver-api/edac.rst ...@@ -5998,6 +5998,12 @@ F: Documentation/driver-api/edac.rst
F: drivers/edac/ F: drivers/edac/
F: include/linux/edac.h F: include/linux/edac.h
EDAC-DMC520
M: Lei Wang <lewan@microsoft.com>
L: linux-edac@vger.kernel.org
S: Supported
F: drivers/edac/dmc520_edac.c
EDAC-E752X EDAC-E752X
M: Mark Gross <mark.gross@intel.com> M: Mark Gross <mark.gross@intel.com>
L: linux-edac@vger.kernel.org L: linux-edac@vger.kernel.org
......
...@@ -523,4 +523,11 @@ config EDAC_BLUEFIELD ...@@ -523,4 +523,11 @@ config EDAC_BLUEFIELD
Support for error detection and correction on the Support for error detection and correction on the
Mellanox BlueField SoCs. Mellanox BlueField SoCs.
config EDAC_DMC520
tristate "ARM DMC-520 ECC"
depends on ARM64
help
Support for error detection and correction on the
SoCs with ARM DMC-520 DRAM controller.
endif # EDAC endif # EDAC
...@@ -87,3 +87,4 @@ obj-$(CONFIG_EDAC_TI) += ti_edac.o ...@@ -87,3 +87,4 @@ obj-$(CONFIG_EDAC_TI) += ti_edac.o
obj-$(CONFIG_EDAC_QCOM) += qcom_edac.o obj-$(CONFIG_EDAC_QCOM) += qcom_edac.o
obj-$(CONFIG_EDAC_ASPEED) += aspeed_edac.o obj-$(CONFIG_EDAC_ASPEED) += aspeed_edac.o
obj-$(CONFIG_EDAC_BLUEFIELD) += bluefield_edac.o obj-$(CONFIG_EDAC_BLUEFIELD) += bluefield_edac.o
obj-$(CONFIG_EDAC_DMC520) += dmc520_edac.o
...@@ -429,26 +429,26 @@ static void aurora_l2_check(struct edac_device_ctl_info *dci) ...@@ -429,26 +429,26 @@ static void aurora_l2_check(struct edac_device_ctl_info *dci)
src = (attr_cap & AURORA_ERR_ATTR_SRC_MSK) >> AURORA_ERR_ATTR_SRC_OFF; src = (attr_cap & AURORA_ERR_ATTR_SRC_MSK) >> AURORA_ERR_ATTR_SRC_OFF;
if (src <= 3) if (src <= 3)
len += snprintf(msg+len, size-len, "src=CPU%d ", src); len += scnprintf(msg+len, size-len, "src=CPU%d ", src);
else else
len += snprintf(msg+len, size-len, "src=IO "); len += scnprintf(msg+len, size-len, "src=IO ");
txn = (attr_cap & AURORA_ERR_ATTR_TXN_MSK) >> AURORA_ERR_ATTR_TXN_OFF; txn = (attr_cap & AURORA_ERR_ATTR_TXN_MSK) >> AURORA_ERR_ATTR_TXN_OFF;
switch (txn) { switch (txn) {
case 0: case 0:
len += snprintf(msg+len, size-len, "txn=Data-Read "); len += scnprintf(msg+len, size-len, "txn=Data-Read ");
break; break;
case 1: case 1:
len += snprintf(msg+len, size-len, "txn=Isn-Read "); len += scnprintf(msg+len, size-len, "txn=Isn-Read ");
break; break;
case 2: case 2:
len += snprintf(msg+len, size-len, "txn=Clean-Flush "); len += scnprintf(msg+len, size-len, "txn=Clean-Flush ");
break; break;
case 3: case 3:
len += snprintf(msg+len, size-len, "txn=Eviction "); len += scnprintf(msg+len, size-len, "txn=Eviction ");
break; break;
case 4: case 4:
len += snprintf(msg+len, size-len, len += scnprintf(msg+len, size-len,
"txn=Read-Modify-Write "); "txn=Read-Modify-Write ");
break; break;
} }
...@@ -456,19 +456,19 @@ static void aurora_l2_check(struct edac_device_ctl_info *dci) ...@@ -456,19 +456,19 @@ static void aurora_l2_check(struct edac_device_ctl_info *dci)
err = (attr_cap & AURORA_ERR_ATTR_ERR_MSK) >> AURORA_ERR_ATTR_ERR_OFF; err = (attr_cap & AURORA_ERR_ATTR_ERR_MSK) >> AURORA_ERR_ATTR_ERR_OFF;
switch (err) { switch (err) {
case 0: case 0:
len += snprintf(msg+len, size-len, "err=CorrECC "); len += scnprintf(msg+len, size-len, "err=CorrECC ");
break; break;
case 1: case 1:
len += snprintf(msg+len, size-len, "err=UnCorrECC "); len += scnprintf(msg+len, size-len, "err=UnCorrECC ");
break; break;
case 2: case 2:
len += snprintf(msg+len, size-len, "err=TagParity "); len += scnprintf(msg+len, size-len, "err=TagParity ");
break; break;
} }
len += snprintf(msg+len, size-len, "addr=0x%x ", addr_cap & AURORA_ERR_ADDR_CAP_ADDR_MASK); len += scnprintf(msg+len, size-len, "addr=0x%x ", addr_cap & AURORA_ERR_ADDR_CAP_ADDR_MASK);
len += snprintf(msg+len, size-len, "index=0x%x ", (way_cap & AURORA_ERR_WAY_IDX_MSK) >> AURORA_ERR_WAY_IDX_OFF); len += scnprintf(msg+len, size-len, "index=0x%x ", (way_cap & AURORA_ERR_WAY_IDX_MSK) >> AURORA_ERR_WAY_IDX_OFF);
len += snprintf(msg+len, size-len, "way=0x%x", (way_cap & AURORA_ERR_WAY_CAP_WAY_MASK) >> AURORA_ERR_WAY_CAP_WAY_OFFSET); len += scnprintf(msg+len, size-len, "way=0x%x", (way_cap & AURORA_ERR_WAY_CAP_WAY_MASK) >> AURORA_ERR_WAY_CAP_WAY_OFFSET);
/* clear error capture registers */ /* clear error capture registers */
writel(AURORA_ERR_ATTR_CAP_VALID, drvdata->base + AURORA_ERR_ATTR_CAP_REG); writel(AURORA_ERR_ATTR_CAP_VALID, drvdata->base + AURORA_ERR_ATTR_CAP_REG);
......
// SPDX-License-Identifier: GPL-2.0
/*
* EDAC driver for DMC-520 memory controller.
*
* The driver supports 10 interrupt lines,
* though only dram_ecc_errc and dram_ecc_errd are currently handled.
*
* Authors: Rui Zhao <ruizhao@microsoft.com>
* Lei Wang <lewan@microsoft.com>
* Shiping Ji <shji@microsoft.com>
*/
#include <linux/bitfield.h>
#include <linux/edac.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include "edac_mc.h"
/* DMC-520 registers */
#define REG_OFFSET_FEATURE_CONFIG 0x130
#define REG_OFFSET_ECC_ERRC_COUNT_31_00 0x158
#define REG_OFFSET_ECC_ERRC_COUNT_63_32 0x15C
#define REG_OFFSET_ECC_ERRD_COUNT_31_00 0x160
#define REG_OFFSET_ECC_ERRD_COUNT_63_32 0x164
#define REG_OFFSET_INTERRUPT_CONTROL 0x500
#define REG_OFFSET_INTERRUPT_CLR 0x508
#define REG_OFFSET_INTERRUPT_STATUS 0x510
#define REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_31_00 0x528
#define REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_63_32 0x52C
#define REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_31_00 0x530
#define REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_63_32 0x534
#define REG_OFFSET_ADDRESS_CONTROL_NOW 0x1010
#define REG_OFFSET_MEMORY_TYPE_NOW 0x1128
#define REG_OFFSET_SCRUB_CONTROL0_NOW 0x1170
#define REG_OFFSET_FORMAT_CONTROL 0x18
/* DMC-520 types, masks and bitfields */
#define RAM_ECC_INT_CE_BIT BIT(0)
#define RAM_ECC_INT_UE_BIT BIT(1)
#define DRAM_ECC_INT_CE_BIT BIT(2)
#define DRAM_ECC_INT_UE_BIT BIT(3)
#define FAILED_ACCESS_INT_BIT BIT(4)
#define FAILED_PROG_INT_BIT BIT(5)
#define LINK_ERR_INT_BIT BIT(6)
#define TEMPERATURE_EVENT_INT_BIT BIT(7)
#define ARCH_FSM_INT_BIT BIT(8)
#define PHY_REQUEST_INT_BIT BIT(9)
#define MEMORY_WIDTH_MASK GENMASK(1, 0)
#define SCRUB_TRIGGER0_NEXT_MASK GENMASK(1, 0)
#define REG_FIELD_DRAM_ECC_ENABLED GENMASK(1, 0)
#define REG_FIELD_MEMORY_TYPE GENMASK(2, 0)
#define REG_FIELD_DEVICE_WIDTH GENMASK(9, 8)
#define REG_FIELD_ADDRESS_CONTROL_COL GENMASK(2, 0)
#define REG_FIELD_ADDRESS_CONTROL_ROW GENMASK(10, 8)
#define REG_FIELD_ADDRESS_CONTROL_BANK GENMASK(18, 16)
#define REG_FIELD_ADDRESS_CONTROL_RANK GENMASK(25, 24)
#define REG_FIELD_ERR_INFO_LOW_VALID BIT(0)
#define REG_FIELD_ERR_INFO_LOW_COL GENMASK(10, 1)
#define REG_FIELD_ERR_INFO_LOW_ROW GENMASK(28, 11)
#define REG_FIELD_ERR_INFO_LOW_RANK GENMASK(31, 29)
#define REG_FIELD_ERR_INFO_HIGH_BANK GENMASK(3, 0)
#define REG_FIELD_ERR_INFO_HIGH_VALID BIT(31)
#define DRAM_ADDRESS_CONTROL_MIN_COL_BITS 8
#define DRAM_ADDRESS_CONTROL_MIN_ROW_BITS 11
#define DMC520_SCRUB_TRIGGER_ERR_DETECT 2
#define DMC520_SCRUB_TRIGGER_IDLE 3
/* Driver settings */
/*
* The max-length message would be: "rank:7 bank:15 row:262143 col:1023".
* Max length is 34. Using a 40-size buffer is enough.
*/
#define DMC520_MSG_BUF_SIZE 40
#define EDAC_MOD_NAME "dmc520-edac"
#define EDAC_CTL_NAME "dmc520"
/* the data bus width for the attached memory chips. */
enum dmc520_mem_width {
MEM_WIDTH_X32 = 2,
MEM_WIDTH_X64 = 3
};
/* memory type */
enum dmc520_mem_type {
MEM_TYPE_DDR3 = 1,
MEM_TYPE_DDR4 = 2
};
/* memory device width */
enum dmc520_dev_width {
DEV_WIDTH_X4 = 0,
DEV_WIDTH_X8 = 1,
DEV_WIDTH_X16 = 2
};
struct ecc_error_info {
u32 col;
u32 row;
u32 bank;
u32 rank;
};
/* The interrupt config */
struct dmc520_irq_config {
char *name;
int mask;
};
/* The interrupt mappings */
static struct dmc520_irq_config dmc520_irq_configs[] = {
{
.name = "ram_ecc_errc",
.mask = RAM_ECC_INT_CE_BIT
},
{
.name = "ram_ecc_errd",
.mask = RAM_ECC_INT_UE_BIT
},
{
.name = "dram_ecc_errc",
.mask = DRAM_ECC_INT_CE_BIT
},
{
.name = "dram_ecc_errd",
.mask = DRAM_ECC_INT_UE_BIT
},
{
.name = "failed_access",
.mask = FAILED_ACCESS_INT_BIT
},
{
.name = "failed_prog",
.mask = FAILED_PROG_INT_BIT
},
{
.name = "link_err",
.mask = LINK_ERR_INT_BIT
},
{
.name = "temperature_event",
.mask = TEMPERATURE_EVENT_INT_BIT
},
{
.name = "arch_fsm",
.mask = ARCH_FSM_INT_BIT
},
{
.name = "phy_request",
.mask = PHY_REQUEST_INT_BIT
}
};
#define NUMBER_OF_IRQS ARRAY_SIZE(dmc520_irq_configs)
/*
* The EDAC driver private data.
* error_lock is to protect concurrent writes to the mci->error_desc through
* edac_mc_handle_error().
*/
struct dmc520_edac {
void __iomem *reg_base;
spinlock_t error_lock;
u32 mem_width_in_bytes;
int irqs[NUMBER_OF_IRQS];
int masks[NUMBER_OF_IRQS];
};
static int dmc520_mc_idx;
static u32 dmc520_read_reg(struct dmc520_edac *pvt, u32 offset)
{
return readl(pvt->reg_base + offset);
}
static void dmc520_write_reg(struct dmc520_edac *pvt, u32 val, u32 offset)
{
writel(val, pvt->reg_base + offset);
}
static u32 dmc520_calc_dram_ecc_error(u32 value)
{
u32 total = 0;
/* Each rank's error counter takes one byte. */
while (value > 0) {
total += (value & 0xFF);
value >>= 8;
}
return total;
}
static u32 dmc520_get_dram_ecc_error_count(struct dmc520_edac *pvt,
bool is_ce)
{
u32 reg_offset_low, reg_offset_high;
u32 err_low, err_high;
u32 err_count;
reg_offset_low = is_ce ? REG_OFFSET_ECC_ERRC_COUNT_31_00 :
REG_OFFSET_ECC_ERRD_COUNT_31_00;
reg_offset_high = is_ce ? REG_OFFSET_ECC_ERRC_COUNT_63_32 :
REG_OFFSET_ECC_ERRD_COUNT_63_32;
err_low = dmc520_read_reg(pvt, reg_offset_low);
err_high = dmc520_read_reg(pvt, reg_offset_high);
/* Reset error counters */
dmc520_write_reg(pvt, 0, reg_offset_low);
dmc520_write_reg(pvt, 0, reg_offset_high);
err_count = dmc520_calc_dram_ecc_error(err_low) +
dmc520_calc_dram_ecc_error(err_high);
return err_count;
}
static void dmc520_get_dram_ecc_error_info(struct dmc520_edac *pvt,
bool is_ce,
struct ecc_error_info *info)
{
u32 reg_offset_low, reg_offset_high;
u32 reg_val_low, reg_val_high;
bool valid;
reg_offset_low = is_ce ? REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_31_00 :
REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_31_00;
reg_offset_high = is_ce ? REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_63_32 :
REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_63_32;
reg_val_low = dmc520_read_reg(pvt, reg_offset_low);
reg_val_high = dmc520_read_reg(pvt, reg_offset_high);
valid = (FIELD_GET(REG_FIELD_ERR_INFO_LOW_VALID, reg_val_low) != 0) &&
(FIELD_GET(REG_FIELD_ERR_INFO_HIGH_VALID, reg_val_high) != 0);
if (valid) {
info->col = FIELD_GET(REG_FIELD_ERR_INFO_LOW_COL, reg_val_low);
info->row = FIELD_GET(REG_FIELD_ERR_INFO_LOW_ROW, reg_val_low);
info->rank = FIELD_GET(REG_FIELD_ERR_INFO_LOW_RANK, reg_val_low);
info->bank = FIELD_GET(REG_FIELD_ERR_INFO_HIGH_BANK, reg_val_high);
} else {
memset(info, 0, sizeof(*info));
}
}
static bool dmc520_is_ecc_enabled(void __iomem *reg_base)
{
u32 reg_val = readl(reg_base + REG_OFFSET_FEATURE_CONFIG);
return FIELD_GET(REG_FIELD_DRAM_ECC_ENABLED, reg_val);
}
static enum scrub_type dmc520_get_scrub_type(struct dmc520_edac *pvt)
{
enum scrub_type type = SCRUB_NONE;
u32 reg_val, scrub_cfg;
reg_val = dmc520_read_reg(pvt, REG_OFFSET_SCRUB_CONTROL0_NOW);
scrub_cfg = FIELD_GET(SCRUB_TRIGGER0_NEXT_MASK, reg_val);
if (scrub_cfg == DMC520_SCRUB_TRIGGER_ERR_DETECT ||
scrub_cfg == DMC520_SCRUB_TRIGGER_IDLE)
type = SCRUB_HW_PROG;
return type;
}
/* Get the memory data bus width, in number of bytes. */
static u32 dmc520_get_memory_width(struct dmc520_edac *pvt)
{
enum dmc520_mem_width mem_width_field;
u32 mem_width_in_bytes = 0;
u32 reg_val;
reg_val = dmc520_read_reg(pvt, REG_OFFSET_FORMAT_CONTROL);
mem_width_field = FIELD_GET(MEMORY_WIDTH_MASK, reg_val);
if (mem_width_field == MEM_WIDTH_X32)
mem_width_in_bytes = 4;
else if (mem_width_field == MEM_WIDTH_X64)
mem_width_in_bytes = 8;
return mem_width_in_bytes;
}
static enum mem_type dmc520_get_mtype(struct dmc520_edac *pvt)
{
enum mem_type mt = MEM_UNKNOWN;
enum dmc520_mem_type type;
u32 reg_val;
reg_val = dmc520_read_reg(pvt, REG_OFFSET_MEMORY_TYPE_NOW);
type = FIELD_GET(REG_FIELD_MEMORY_TYPE, reg_val);
switch (type) {
case MEM_TYPE_DDR3:
mt = MEM_DDR3;
break;
case MEM_TYPE_DDR4:
mt = MEM_DDR4;
break;
}
return mt;
}
static enum dev_type dmc520_get_dtype(struct dmc520_edac *pvt)
{
enum dmc520_dev_width device_width;
enum dev_type dt = DEV_UNKNOWN;
u32 reg_val;
reg_val = dmc520_read_reg(pvt, REG_OFFSET_MEMORY_TYPE_NOW);
device_width = FIELD_GET(REG_FIELD_DEVICE_WIDTH, reg_val);
switch (device_width) {
case DEV_WIDTH_X4:
dt = DEV_X4;
break;
case DEV_WIDTH_X8:
dt = DEV_X8;
break;
case DEV_WIDTH_X16:
dt = DEV_X16;
break;
}
return dt;
}
static u32 dmc520_get_rank_count(void __iomem *reg_base)
{
u32 reg_val, rank_bits;
reg_val = readl(reg_base + REG_OFFSET_ADDRESS_CONTROL_NOW);
rank_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_RANK, reg_val);
return BIT(rank_bits);
}
static u64 dmc520_get_rank_size(struct dmc520_edac *pvt)
{
u32 reg_val, col_bits, row_bits, bank_bits;
reg_val = dmc520_read_reg(pvt, REG_OFFSET_ADDRESS_CONTROL_NOW);
col_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_COL, reg_val) +
DRAM_ADDRESS_CONTROL_MIN_COL_BITS;
row_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_ROW, reg_val) +
DRAM_ADDRESS_CONTROL_MIN_ROW_BITS;
bank_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_BANK, reg_val);
return (u64)pvt->mem_width_in_bytes << (col_bits + row_bits + bank_bits);
}
static void dmc520_handle_dram_ecc_errors(struct mem_ctl_info *mci,
bool is_ce)
{
struct dmc520_edac *pvt = mci->pvt_info;
char message[DMC520_MSG_BUF_SIZE];
struct ecc_error_info info;
u32 cnt;
dmc520_get_dram_ecc_error_info(pvt, is_ce, &info);
cnt = dmc520_get_dram_ecc_error_count(pvt, is_ce);
if (!cnt)
return;
snprintf(message, ARRAY_SIZE(message),
"rank:%d bank:%d row:%d col:%d",
info.rank, info.bank,
info.row, info.col);
spin_lock(&pvt->error_lock);
edac_mc_handle_error((is_ce ? HW_EVENT_ERR_CORRECTED :
HW_EVENT_ERR_UNCORRECTED),
mci, cnt, 0, 0, 0, info.rank, -1, -1,
message, "");
spin_unlock(&pvt->error_lock);
}
static irqreturn_t dmc520_edac_dram_ecc_isr(int irq, struct mem_ctl_info *mci,
bool is_ce)
{
struct dmc520_edac *pvt = mci->pvt_info;
u32 i_mask;
i_mask = is_ce ? DRAM_ECC_INT_CE_BIT : DRAM_ECC_INT_UE_BIT;
dmc520_handle_dram_ecc_errors(mci, is_ce);
dmc520_write_reg(pvt, i_mask, REG_OFFSET_INTERRUPT_CLR);
return IRQ_HANDLED;
}
static irqreturn_t dmc520_edac_dram_all_isr(int irq, struct mem_ctl_info *mci,
u32 irq_mask)
{
struct dmc520_edac *pvt = mci->pvt_info;
irqreturn_t irq_ret = IRQ_NONE;
u32 status;
status = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_STATUS);
if ((irq_mask & DRAM_ECC_INT_CE_BIT) &&
(status & DRAM_ECC_INT_CE_BIT))
irq_ret = dmc520_edac_dram_ecc_isr(irq, mci, true);
if ((irq_mask & DRAM_ECC_INT_UE_BIT) &&
(status & DRAM_ECC_INT_UE_BIT))
irq_ret = dmc520_edac_dram_ecc_isr(irq, mci, false);
return irq_ret;
}
static irqreturn_t dmc520_isr(int irq, void *data)
{
struct mem_ctl_info *mci = data;
struct dmc520_edac *pvt = mci->pvt_info;
u32 mask = 0;
int idx;
for (idx = 0; idx < NUMBER_OF_IRQS; idx++) {
if (pvt->irqs[idx] == irq) {
mask = pvt->masks[idx];
break;
}
}
return dmc520_edac_dram_all_isr(irq, mci, mask);
}
static void dmc520_init_csrow(struct mem_ctl_info *mci)
{
struct dmc520_edac *pvt = mci->pvt_info;
struct csrow_info *csi;
struct dimm_info *dimm;
u32 pages_per_rank;
enum dev_type dt;
enum mem_type mt;
int row, ch;
u64 rs;
dt = dmc520_get_dtype(pvt);
mt = dmc520_get_mtype(pvt);
rs = dmc520_get_rank_size(pvt);
pages_per_rank = rs >> PAGE_SHIFT;
for (row = 0; row < mci->nr_csrows; row++) {
csi = mci->csrows[row];
for (ch = 0; ch < csi->nr_channels; ch++) {
dimm = csi->channels[ch]->dimm;
dimm->grain = pvt->mem_width_in_bytes;
dimm->dtype = dt;
dimm->mtype = mt;
dimm->edac_mode = EDAC_FLAG_SECDED;
dimm->nr_pages = pages_per_rank / csi->nr_channels;
}
}
}
static int dmc520_edac_probe(struct platform_device *pdev)
{
bool registered[NUMBER_OF_IRQS] = { false };
int irqs[NUMBER_OF_IRQS] = { -ENXIO };
int masks[NUMBER_OF_IRQS] = { 0 };
struct edac_mc_layer layers[1];
struct dmc520_edac *pvt = NULL;
struct mem_ctl_info *mci;
void __iomem *reg_base;
u32 irq_mask_all = 0;
struct resource *res;
struct device *dev;
int ret, idx, irq;
u32 reg_val;
/* Parse the device node */
dev = &pdev->dev;
for (idx = 0; idx < NUMBER_OF_IRQS; idx++) {
irq = platform_get_irq_byname(pdev, dmc520_irq_configs[idx].name);
irqs[idx] = irq;
masks[idx] = dmc520_irq_configs[idx].mask;
if (irq >= 0) {
irq_mask_all |= dmc520_irq_configs[idx].mask;
edac_dbg(0, "Discovered %s, irq: %d.\n", dmc520_irq_configs[idx].name, irq);
}
}
if (!irq_mask_all) {
edac_printk(KERN_ERR, EDAC_MOD_NAME,
"At least one valid interrupt line is expected.\n");
return -EINVAL;
}
/* Initialize dmc520 edac */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
reg_base = devm_ioremap_resource(dev, res);
if (IS_ERR(reg_base))
return PTR_ERR(reg_base);
if (!dmc520_is_ecc_enabled(reg_base))
return -ENXIO;
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = dmc520_get_rank_count(reg_base);
layers[0].is_virt_csrow = true;
mci = edac_mc_alloc(dmc520_mc_idx++, ARRAY_SIZE(layers), layers, sizeof(*pvt));
if (!mci) {
edac_printk(KERN_ERR, EDAC_MOD_NAME,
"Failed to allocate memory for mc instance\n");
ret = -ENOMEM;
goto err;
}
pvt = mci->pvt_info;
pvt->reg_base = reg_base;
spin_lock_init(&pvt->error_lock);
memcpy(pvt->irqs, irqs, sizeof(irqs));
memcpy(pvt->masks, masks, sizeof(masks));
platform_set_drvdata(pdev, mci);
mci->pdev = dev;
mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR4;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->scrub_cap = SCRUB_FLAG_HW_SRC;
mci->scrub_mode = dmc520_get_scrub_type(pvt);
mci->ctl_name = EDAC_CTL_NAME;
mci->dev_name = dev_name(mci->pdev);
mci->mod_name = EDAC_MOD_NAME;
edac_op_state = EDAC_OPSTATE_INT;
pvt->mem_width_in_bytes = dmc520_get_memory_width(pvt);
dmc520_init_csrow(mci);
/* Clear interrupts, not affecting other unrelated interrupts */
reg_val = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_CONTROL);
dmc520_write_reg(pvt, reg_val & (~irq_mask_all),
REG_OFFSET_INTERRUPT_CONTROL);
dmc520_write_reg(pvt, irq_mask_all, REG_OFFSET_INTERRUPT_CLR);
for (idx = 0; idx < NUMBER_OF_IRQS; idx++) {
irq = irqs[idx];
if (irq >= 0) {
ret = devm_request_irq(&pdev->dev, irq,
dmc520_isr, IRQF_SHARED,
dev_name(&pdev->dev), mci);
if (ret < 0) {
edac_printk(KERN_ERR, EDAC_MC,
"Failed to request irq %d\n", irq);
goto err;
}
registered[idx] = true;
}
}
/* Reset DRAM CE/UE counters */
if (irq_mask_all & DRAM_ECC_INT_CE_BIT)
dmc520_get_dram_ecc_error_count(pvt, true);
if (irq_mask_all & DRAM_ECC_INT_UE_BIT)
dmc520_get_dram_ecc_error_count(pvt, false);
ret = edac_mc_add_mc(mci);
if (ret) {
edac_printk(KERN_ERR, EDAC_MOD_NAME,
"Failed to register with EDAC core\n");
goto err;
}
/* Enable interrupts, not affecting other unrelated interrupts */
dmc520_write_reg(pvt, reg_val | irq_mask_all,
REG_OFFSET_INTERRUPT_CONTROL);
return 0;
err:
for (idx = 0; idx < NUMBER_OF_IRQS; idx++) {
if (registered[idx])
devm_free_irq(&pdev->dev, pvt->irqs[idx], mci);
}
if (mci)
edac_mc_free(mci);
return ret;
}
static int dmc520_edac_remove(struct platform_device *pdev)
{
u32 reg_val, idx, irq_mask_all = 0;
struct mem_ctl_info *mci;
struct dmc520_edac *pvt;
mci = platform_get_drvdata(pdev);
pvt = mci->pvt_info;
/* Disable interrupts */
reg_val = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_CONTROL);
dmc520_write_reg(pvt, reg_val & (~irq_mask_all),
REG_OFFSET_INTERRUPT_CONTROL);
/* free irq's */
for (idx = 0; idx < NUMBER_OF_IRQS; idx++) {
if (pvt->irqs[idx] >= 0) {
irq_mask_all |= pvt->masks[idx];
devm_free_irq(&pdev->dev, pvt->irqs[idx], mci);
}
}
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
return 0;
}
static const struct of_device_id dmc520_edac_driver_id[] = {
{ .compatible = "arm,dmc-520", },
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, dmc520_edac_driver_id);
static struct platform_driver dmc520_edac_driver = {
.driver = {
.name = "dmc520",
.of_match_table = dmc520_edac_driver_id,
},
.probe = dmc520_edac_probe,
.remove = dmc520_edac_remove
};
module_platform_driver(dmc520_edac_driver);
MODULE_AUTHOR("Rui Zhao <ruizhao@microsoft.com>");
MODULE_AUTHOR("Lei Wang <lewan@microsoft.com>");
MODULE_AUTHOR("Shiping Ji <shji@microsoft.com>");
MODULE_DESCRIPTION("DMC-520 ECC driver");
MODULE_LICENSE("GPL v2");
...@@ -55,6 +55,11 @@ static LIST_HEAD(mc_devices); ...@@ -55,6 +55,11 @@ static LIST_HEAD(mc_devices);
*/ */
static const char *edac_mc_owner; static const char *edac_mc_owner;
static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
{
return container_of(e, struct mem_ctl_info, error_desc);
}
int edac_get_report_status(void) int edac_get_report_status(void)
{ {
return edac_report; return edac_report;
...@@ -278,6 +283,12 @@ void *edac_align_ptr(void **p, unsigned int size, int n_elems) ...@@ -278,6 +283,12 @@ void *edac_align_ptr(void **p, unsigned int size, int n_elems)
static void _edac_mc_free(struct mem_ctl_info *mci) static void _edac_mc_free(struct mem_ctl_info *mci)
{ {
put_device(&mci->dev);
}
static void mci_release(struct device *dev)
{
struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
struct csrow_info *csr; struct csrow_info *csr;
int i, chn, row; int i, chn, row;
...@@ -305,103 +316,26 @@ static void _edac_mc_free(struct mem_ctl_info *mci) ...@@ -305,103 +316,26 @@ static void _edac_mc_free(struct mem_ctl_info *mci)
kfree(mci); kfree(mci);
} }
struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
unsigned int n_layers,
struct edac_mc_layer *layers,
unsigned int sz_pvt)
{ {
struct mem_ctl_info *mci; unsigned int tot_channels = mci->num_cschannel;
struct edac_mc_layer *layer; unsigned int tot_csrows = mci->nr_csrows;
struct csrow_info *csr; unsigned int row, chn;
struct rank_info *chan;
struct dimm_info *dimm;
u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
unsigned int pos[EDAC_MAX_LAYERS];
unsigned int idx, size, tot_dimms = 1, count = 1;
unsigned int tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
void *pvt, *p, *ptr = NULL;
int i, j, row, chn, n, len;
bool per_rank = false;
if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
return NULL;
/*
* Calculate the total amount of dimms and csrows/cschannels while
* in the old API emulation mode
*/
for (idx = 0; idx < n_layers; idx++) {
tot_dimms *= layers[idx].size;
if (layers[idx].is_virt_csrow)
tot_csrows *= layers[idx].size;
else
tot_channels *= layers[idx].size;
if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
per_rank = true;
}
/* Figure out the offsets of the various items from the start of an mc
* structure. We want the alignment of each item to be at least as
* stringent as what the compiler would provide if we could simply
* hardcode everything into a single struct.
*/
mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
for (i = 0; i < n_layers; i++) {
count *= layers[i].size;
edac_dbg(4, "errcount layer %d size %d\n", i, count);
ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
tot_errcount += 2 * count;
}
edac_dbg(4, "allocating %d error counters\n", tot_errcount);
pvt = edac_align_ptr(&ptr, sz_pvt, 1);
size = ((unsigned long)pvt) + sz_pvt;
edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
size,
tot_dimms,
per_rank ? "ranks" : "dimms",
tot_csrows * tot_channels);
mci = kzalloc(size, GFP_KERNEL);
if (mci == NULL)
return NULL;
/* Adjust pointers so they point within the memory we just allocated
* rather than an imaginary chunk of memory located at address 0.
*/
layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
for (i = 0; i < n_layers; i++) {
mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
}
pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
/* setup index and various internal pointers */
mci->mc_idx = mc_num;
mci->tot_dimms = tot_dimms;
mci->pvt_info = pvt;
mci->n_layers = n_layers;
mci->layers = layer;
memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
mci->nr_csrows = tot_csrows;
mci->num_cschannel = tot_channels;
mci->csbased = per_rank;
/* /*
* Alocate and fill the csrow/channels structs * Alocate and fill the csrow/channels structs
*/ */
mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
if (!mci->csrows) if (!mci->csrows)
goto error; return -ENOMEM;
for (row = 0; row < tot_csrows; row++) { for (row = 0; row < tot_csrows; row++) {
struct csrow_info *csr;
csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
if (!csr) if (!csr)
goto error; return -ENOMEM;
mci->csrows[row] = csr; mci->csrows[row] = csr;
csr->csrow_idx = row; csr->csrow_idx = row;
csr->mci = mci; csr->mci = mci;
...@@ -409,34 +343,51 @@ struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, ...@@ -409,34 +343,51 @@ struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
GFP_KERNEL); GFP_KERNEL);
if (!csr->channels) if (!csr->channels)
goto error; return -ENOMEM;
for (chn = 0; chn < tot_channels; chn++) { for (chn = 0; chn < tot_channels; chn++) {
struct rank_info *chan;
chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
if (!chan) if (!chan)
goto error; return -ENOMEM;
csr->channels[chn] = chan; csr->channels[chn] = chan;
chan->chan_idx = chn; chan->chan_idx = chn;
chan->csrow = csr; chan->csrow = csr;
} }
} }
return 0;
}
static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
{
unsigned int pos[EDAC_MAX_LAYERS];
unsigned int row, chn, idx;
int layer;
void *p;
/* /*
* Allocate and fill the dimm structs * Allocate and fill the dimm structs
*/ */
mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
if (!mci->dimms) if (!mci->dimms)
goto error; return -ENOMEM;
memset(&pos, 0, sizeof(pos)); memset(&pos, 0, sizeof(pos));
row = 0; row = 0;
chn = 0; chn = 0;
for (idx = 0; idx < tot_dimms; idx++) { for (idx = 0; idx < mci->tot_dimms; idx++) {
struct dimm_info *dimm;
struct rank_info *chan;
int n, len;
chan = mci->csrows[row]->channels[chn]; chan = mci->csrows[row]->channels[chn];
dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
if (!dimm) if (!dimm)
goto error; return -ENOMEM;
mci->dimms[idx] = dimm; mci->dimms[idx] = dimm;
dimm->mci = mci; dimm->mci = mci;
dimm->idx = idx; dimm->idx = idx;
...@@ -446,16 +397,16 @@ struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, ...@@ -446,16 +397,16 @@ struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
*/ */
len = sizeof(dimm->label); len = sizeof(dimm->label);
p = dimm->label; p = dimm->label;
n = snprintf(p, len, "mc#%u", mc_num); n = snprintf(p, len, "mc#%u", mci->mc_idx);
p += n; p += n;
len -= n; len -= n;
for (j = 0; j < n_layers; j++) { for (layer = 0; layer < mci->n_layers; layer++) {
n = snprintf(p, len, "%s#%u", n = snprintf(p, len, "%s#%u",
edac_layer_name[layers[j].type], edac_layer_name[mci->layers[layer].type],
pos[j]); pos[layer]);
p += n; p += n;
len -= n; len -= n;
dimm->location[j] = pos[j]; dimm->location[layer] = pos[layer];
if (len <= 0) if (len <= 0)
break; break;
...@@ -467,29 +418,109 @@ struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, ...@@ -467,29 +418,109 @@ struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
dimm->cschannel = chn; dimm->cschannel = chn;
/* Increment csrow location */ /* Increment csrow location */
if (layers[0].is_virt_csrow) { if (mci->layers[0].is_virt_csrow) {
chn++; chn++;
if (chn == tot_channels) { if (chn == mci->num_cschannel) {
chn = 0; chn = 0;
row++; row++;
} }
} else { } else {
row++; row++;
if (row == tot_csrows) { if (row == mci->nr_csrows) {
row = 0; row = 0;
chn++; chn++;
} }
} }
/* Increment dimm location */ /* Increment dimm location */
for (j = n_layers - 1; j >= 0; j--) { for (layer = mci->n_layers - 1; layer >= 0; layer--) {
pos[j]++; pos[layer]++;
if (pos[j] < layers[j].size) if (pos[layer] < mci->layers[layer].size)
break; break;
pos[j] = 0; pos[layer] = 0;
} }
} }
return 0;
}
struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
unsigned int n_layers,
struct edac_mc_layer *layers,
unsigned int sz_pvt)
{
struct mem_ctl_info *mci;
struct edac_mc_layer *layer;
unsigned int idx, size, tot_dimms = 1;
unsigned int tot_csrows = 1, tot_channels = 1;
void *pvt, *ptr = NULL;
bool per_rank = false;
if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
return NULL;
/*
* Calculate the total amount of dimms and csrows/cschannels while
* in the old API emulation mode
*/
for (idx = 0; idx < n_layers; idx++) {
tot_dimms *= layers[idx].size;
if (layers[idx].is_virt_csrow)
tot_csrows *= layers[idx].size;
else
tot_channels *= layers[idx].size;
if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
per_rank = true;
}
/* Figure out the offsets of the various items from the start of an mc
* structure. We want the alignment of each item to be at least as
* stringent as what the compiler would provide if we could simply
* hardcode everything into a single struct.
*/
mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
pvt = edac_align_ptr(&ptr, sz_pvt, 1);
size = ((unsigned long)pvt) + sz_pvt;
edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
size,
tot_dimms,
per_rank ? "ranks" : "dimms",
tot_csrows * tot_channels);
mci = kzalloc(size, GFP_KERNEL);
if (mci == NULL)
return NULL;
mci->dev.release = mci_release;
device_initialize(&mci->dev);
/* Adjust pointers so they point within the memory we just allocated
* rather than an imaginary chunk of memory located at address 0.
*/
layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
/* setup index and various internal pointers */
mci->mc_idx = mc_num;
mci->tot_dimms = tot_dimms;
mci->pvt_info = pvt;
mci->n_layers = n_layers;
mci->layers = layer;
memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
mci->nr_csrows = tot_csrows;
mci->num_cschannel = tot_channels;
mci->csbased = per_rank;
if (edac_mc_alloc_csrows(mci))
goto error;
if (edac_mc_alloc_dimms(mci))
goto error;
mci->op_state = OP_ALLOC; mci->op_state = OP_ALLOC;
return mci; return mci;
...@@ -505,9 +536,6 @@ void edac_mc_free(struct mem_ctl_info *mci) ...@@ -505,9 +536,6 @@ void edac_mc_free(struct mem_ctl_info *mci)
{ {
edac_dbg(1, "\n"); edac_dbg(1, "\n");
if (device_is_registered(&mci->dev))
edac_unregister_sysfs(mci);
_edac_mc_free(mci); _edac_mc_free(mci);
} }
EXPORT_SYMBOL_GPL(edac_mc_free); EXPORT_SYMBOL_GPL(edac_mc_free);
...@@ -902,88 +930,51 @@ const char *edac_layer_name[] = { ...@@ -902,88 +930,51 @@ const char *edac_layer_name[] = {
}; };
EXPORT_SYMBOL_GPL(edac_layer_name); EXPORT_SYMBOL_GPL(edac_layer_name);
static void edac_inc_ce_error(struct mem_ctl_info *mci, static void edac_inc_ce_error(struct edac_raw_error_desc *e)
bool enable_per_layer_report,
const int pos[EDAC_MAX_LAYERS],
const u16 count)
{ {
int i, index = 0; int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
struct mem_ctl_info *mci = error_desc_to_mci(e);
mci->ce_mc += count; struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
if (!enable_per_layer_report) {
mci->ce_noinfo_count += count;
return;
}
for (i = 0; i < mci->n_layers; i++) { mci->ce_mc += e->error_count;
if (pos[i] < 0)
break;
index += pos[i];
mci->ce_per_layer[i][index] += count;
if (i < mci->n_layers - 1) if (dimm)
index *= mci->layers[i + 1].size; dimm->ce_count += e->error_count;
} else
mci->ce_noinfo_count += e->error_count;
} }
static void edac_inc_ue_error(struct mem_ctl_info *mci, static void edac_inc_ue_error(struct edac_raw_error_desc *e)
bool enable_per_layer_report,
const int pos[EDAC_MAX_LAYERS],
const u16 count)
{ {
int i, index = 0; int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
struct mem_ctl_info *mci = error_desc_to_mci(e);
mci->ue_mc += count; struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
if (!enable_per_layer_report) { mci->ue_mc += e->error_count;
mci->ue_noinfo_count += count;
return;
}
for (i = 0; i < mci->n_layers; i++) { if (dimm)
if (pos[i] < 0) dimm->ue_count += e->error_count;
break; else
index += pos[i]; mci->ue_noinfo_count += e->error_count;
mci->ue_per_layer[i][index] += count;
if (i < mci->n_layers - 1)
index *= mci->layers[i + 1].size;
}
} }
static void edac_ce_error(struct mem_ctl_info *mci, static void edac_ce_error(struct edac_raw_error_desc *e)
const u16 error_count,
const int pos[EDAC_MAX_LAYERS],
const char *msg,
const char *location,
const char *label,
const char *detail,
const char *other_detail,
const bool enable_per_layer_report,
const unsigned long page_frame_number,
const unsigned long offset_in_page,
long grain)
{ {
struct mem_ctl_info *mci = error_desc_to_mci(e);
unsigned long remapped_page; unsigned long remapped_page;
char *msg_aux = "";
if (*msg)
msg_aux = " ";
if (edac_mc_get_log_ce()) { if (edac_mc_get_log_ce()) {
if (other_detail && *other_detail)
edac_mc_printk(mci, KERN_WARNING,
"%d CE %s%son %s (%s %s - %s)\n",
error_count, msg, msg_aux, label,
location, detail, other_detail);
else
edac_mc_printk(mci, KERN_WARNING, edac_mc_printk(mci, KERN_WARNING,
"%d CE %s%son %s (%s %s)\n", "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
error_count, msg, msg_aux, label, e->error_count, e->msg,
location, detail); *e->msg ? " " : "",
e->label, e->location, e->page_frame_number, e->offset_in_page,
e->grain, e->syndrome,
*e->other_detail ? " - " : "",
e->other_detail);
} }
edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
edac_inc_ce_error(e);
if (mci->scrub_mode == SCRUB_SW_SRC) { if (mci->scrub_mode == SCRUB_SW_SRC) {
/* /*
...@@ -998,60 +989,64 @@ static void edac_ce_error(struct mem_ctl_info *mci, ...@@ -998,60 +989,64 @@ static void edac_ce_error(struct mem_ctl_info *mci,
* be scrubbed. * be scrubbed.
*/ */
remapped_page = mci->ctl_page_to_phys ? remapped_page = mci->ctl_page_to_phys ?
mci->ctl_page_to_phys(mci, page_frame_number) : mci->ctl_page_to_phys(mci, e->page_frame_number) :
page_frame_number; e->page_frame_number;
edac_mc_scrub_block(remapped_page, edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
offset_in_page, grain);
} }
} }
static void edac_ue_error(struct mem_ctl_info *mci, static void edac_ue_error(struct edac_raw_error_desc *e)
const u16 error_count,
const int pos[EDAC_MAX_LAYERS],
const char *msg,
const char *location,
const char *label,
const char *detail,
const char *other_detail,
const bool enable_per_layer_report)
{ {
char *msg_aux = ""; struct mem_ctl_info *mci = error_desc_to_mci(e);
if (*msg)
msg_aux = " ";
if (edac_mc_get_log_ue()) { if (edac_mc_get_log_ue()) {
if (other_detail && *other_detail)
edac_mc_printk(mci, KERN_WARNING, edac_mc_printk(mci, KERN_WARNING,
"%d UE %s%son %s (%s %s - %s)\n", "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
error_count, msg, msg_aux, label, e->error_count, e->msg,
location, detail, other_detail); *e->msg ? " " : "",
else e->label, e->location, e->page_frame_number, e->offset_in_page,
edac_mc_printk(mci, KERN_WARNING, e->grain,
"%d UE %s%son %s (%s %s)\n", *e->other_detail ? " - " : "",
error_count, msg, msg_aux, label, e->other_detail);
location, detail);
} }
if (edac_mc_get_panic_on_ue()) { if (edac_mc_get_panic_on_ue()) {
if (other_detail && *other_detail) panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
panic("UE %s%son %s (%s%s - %s)\n", e->msg,
msg, msg_aux, label, location, detail, other_detail); *e->msg ? " " : "",
else e->label, e->location, e->page_frame_number, e->offset_in_page,
panic("UE %s%son %s (%s%s)\n", e->grain,
msg, msg_aux, label, location, detail); *e->other_detail ? " - " : "",
e->other_detail);
} }
edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); edac_inc_ue_error(e);
} }
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
struct mem_ctl_info *mci,
struct edac_raw_error_desc *e)
{ {
char detail[80]; struct mem_ctl_info *mci = error_desc_to_mci(e);
int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; enum hw_event_mc_err_type type = e->type;
u16 count = e->error_count;
if (row < 0)
return;
edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
if (type == HW_EVENT_ERR_CORRECTED) {
mci->csrows[row]->ce_count += count;
if (chan >= 0)
mci->csrows[row]->channels[chan]->ce_count += count;
} else {
mci->csrows[row]->ue_count += count;
}
}
void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
{
struct mem_ctl_info *mci = error_desc_to_mci(e);
u8 grain_bits; u8 grain_bits;
/* Sanity-check driver-supplied grain value. */ /* Sanity-check driver-supplied grain value. */
...@@ -1062,31 +1057,16 @@ void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, ...@@ -1062,31 +1057,16 @@ void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
/* Report the error via the trace interface */ /* Report the error via the trace interface */
if (IS_ENABLED(CONFIG_RAS)) if (IS_ENABLED(CONFIG_RAS))
trace_mc_event(type, e->msg, e->label, e->error_count, trace_mc_event(e->type, e->msg, e->label, e->error_count,
mci->mc_idx, e->top_layer, e->mid_layer, mci->mc_idx, e->top_layer, e->mid_layer,
e->low_layer, e->low_layer,
(e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
grain_bits, e->syndrome, e->other_detail); grain_bits, e->syndrome, e->other_detail);
/* Memory type dependent details about the error */ if (e->type == HW_EVENT_ERR_CORRECTED)
if (type == HW_EVENT_ERR_CORRECTED) { edac_ce_error(e);
snprintf(detail, sizeof(detail), else
"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", edac_ue_error(e);
e->page_frame_number, e->offset_in_page,
e->grain, e->syndrome);
edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
detail, e->other_detail, e->enable_per_layer_report,
e->page_frame_number, e->offset_in_page, e->grain);
} else {
snprintf(detail, sizeof(detail),
"page:0x%lx offset:0x%lx grain:%ld",
e->page_frame_number, e->offset_in_page, e->grain);
edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
detail, e->other_detail, e->enable_per_layer_report);
}
} }
EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
...@@ -1108,25 +1088,27 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type, ...@@ -1108,25 +1088,27 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type,
int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
int i, n_labels = 0; int i, n_labels = 0;
struct edac_raw_error_desc *e = &mci->error_desc; struct edac_raw_error_desc *e = &mci->error_desc;
bool any_memory = true;
edac_dbg(3, "MC%d\n", mci->mc_idx); edac_dbg(3, "MC%d\n", mci->mc_idx);
/* Fills the error report buffer */ /* Fills the error report buffer */
memset(e, 0, sizeof (*e)); memset(e, 0, sizeof (*e));
e->error_count = error_count; e->error_count = error_count;
e->type = type;
e->top_layer = top_layer; e->top_layer = top_layer;
e->mid_layer = mid_layer; e->mid_layer = mid_layer;
e->low_layer = low_layer; e->low_layer = low_layer;
e->page_frame_number = page_frame_number; e->page_frame_number = page_frame_number;
e->offset_in_page = offset_in_page; e->offset_in_page = offset_in_page;
e->syndrome = syndrome; e->syndrome = syndrome;
e->msg = msg; /* need valid strings here for both: */
e->other_detail = other_detail; e->msg = msg ?: "";
e->other_detail = other_detail ?: "";
/* /*
* Check if the event report is consistent and if the memory * Check if the event report is consistent and if the memory location is
* location is known. If it is known, enable_per_layer_report will be * known. If it is, the DIMM(s) label info will be filled and the DIMM's
* true, the DIMM(s) label info will be filled and the per-layer
* error counters will be incremented. * error counters will be incremented.
*/ */
for (i = 0; i < mci->n_layers; i++) { for (i = 0; i < mci->n_layers; i++) {
...@@ -1145,7 +1127,7 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type, ...@@ -1145,7 +1127,7 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type,
pos[i] = -1; pos[i] = -1;
} }
if (pos[i] >= 0) if (pos[i] >= 0)
e->enable_per_layer_report = true; any_memory = false;
} }
/* /*
...@@ -1176,24 +1158,25 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type, ...@@ -1176,24 +1158,25 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type,
/* /*
* If the error is memory-controller wide, there's no need to * If the error is memory-controller wide, there's no need to
* seek for the affected DIMMs because the whole * seek for the affected DIMMs because the whole channel/memory
* channel/memory controller/... may be affected. * controller/... may be affected. Also, don't show errors for
* Also, don't show errors for empty DIMM slots. * empty DIMM slots.
*/ */
if (!e->enable_per_layer_report || !dimm->nr_pages) if (!dimm->nr_pages)
continue; continue;
if (n_labels >= EDAC_MAX_LABELS) {
e->enable_per_layer_report = false;
break;
}
n_labels++; n_labels++;
if (n_labels > EDAC_MAX_LABELS) {
p = e->label;
*p = '\0';
} else {
if (p != e->label) { if (p != e->label) {
strcpy(p, OTHER_LABEL); strcpy(p, OTHER_LABEL);
p += strlen(OTHER_LABEL); p += strlen(OTHER_LABEL);
} }
strcpy(p, dimm->label); strcpy(p, dimm->label);
p += strlen(p); p += strlen(p);
}
/* /*
* get csrow/channel of the DIMM, in order to allow * get csrow/channel of the DIMM, in order to allow
...@@ -1213,22 +1196,12 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type, ...@@ -1213,22 +1196,12 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type,
chan = -2; chan = -2;
} }
if (!e->enable_per_layer_report) { if (any_memory)
strcpy(e->label, "any memory"); strcpy(e->label, "any memory");
} else { else if (!*e->label)
edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
if (p == e->label)
strcpy(e->label, "unknown memory"); strcpy(e->label, "unknown memory");
if (type == HW_EVENT_ERR_CORRECTED) {
if (row >= 0) { edac_inc_csrow(e, row, chan);
mci->csrows[row]->ce_count += error_count;
if (chan >= 0)
mci->csrows[row]->channels[chan]->ce_count += error_count;
}
} else
if (row >= 0)
mci->csrows[row]->ue_count += error_count;
}
/* Fill the RAM location data */ /* Fill the RAM location data */
p = e->location; p = e->location;
...@@ -1244,6 +1217,6 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type, ...@@ -1244,6 +1217,6 @@ void edac_mc_handle_error(const enum hw_event_mc_err_type type,
if (p > e->location) if (p > e->location)
*(p - 1) = '\0'; *(p - 1) = '\0';
edac_raw_mc_handle_error(type, mci, e); edac_raw_mc_handle_error(e);
} }
EXPORT_SYMBOL_GPL(edac_mc_handle_error); EXPORT_SYMBOL_GPL(edac_mc_handle_error);
...@@ -212,17 +212,13 @@ extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, ...@@ -212,17 +212,13 @@ extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
* edac_raw_mc_handle_error() - Reports a memory event to userspace without * edac_raw_mc_handle_error() - Reports a memory event to userspace without
* doing anything to discover the error location. * doing anything to discover the error location.
* *
* @type: severity of the error (CE/UE/Fatal)
* @mci: a struct mem_ctl_info pointer
* @e: error description * @e: error description
* *
* This raw function is used internally by edac_mc_handle_error(). It should * This raw function is used internally by edac_mc_handle_error(). It should
* only be called directly when the hardware error come directly from BIOS, * only be called directly when the hardware error come directly from BIOS,
* like in the case of APEI GHES driver. * like in the case of APEI GHES driver.
*/ */
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, void edac_raw_mc_handle_error(struct edac_raw_error_desc *e);
struct mem_ctl_info *mci,
struct edac_raw_error_desc *e);
/** /**
* edac_mc_handle_error() - Reports a memory event to userspace. * edac_mc_handle_error() - Reports a memory event to userspace.
......
...@@ -274,14 +274,8 @@ static const struct attribute_group *csrow_attr_groups[] = { ...@@ -274,14 +274,8 @@ static const struct attribute_group *csrow_attr_groups[] = {
NULL NULL
}; };
static void csrow_attr_release(struct device *dev)
{
/* release device with _edac_mc_free() */
}
static const struct device_type csrow_attr_type = { static const struct device_type csrow_attr_type = {
.groups = csrow_attr_groups, .groups = csrow_attr_groups,
.release = csrow_attr_release,
}; };
/* /*
...@@ -387,6 +381,14 @@ static const struct attribute_group *csrow_dev_groups[] = { ...@@ -387,6 +381,14 @@ static const struct attribute_group *csrow_dev_groups[] = {
NULL NULL
}; };
static void csrow_release(struct device *dev)
{
/*
* Nothing to do, just unregister sysfs here. The mci
* device owns the data and will also release it.
*/
}
static inline int nr_pages_per_csrow(struct csrow_info *csrow) static inline int nr_pages_per_csrow(struct csrow_info *csrow)
{ {
int chan, nr_pages = 0; int chan, nr_pages = 0;
...@@ -405,6 +407,7 @@ static int edac_create_csrow_object(struct mem_ctl_info *mci, ...@@ -405,6 +407,7 @@ static int edac_create_csrow_object(struct mem_ctl_info *mci,
csrow->dev.type = &csrow_attr_type; csrow->dev.type = &csrow_attr_type;
csrow->dev.groups = csrow_dev_groups; csrow->dev.groups = csrow_dev_groups;
csrow->dev.release = csrow_release;
device_initialize(&csrow->dev); device_initialize(&csrow->dev);
csrow->dev.parent = &mci->dev; csrow->dev.parent = &mci->dev;
csrow->mci = mci; csrow->mci = mci;
...@@ -441,9 +444,7 @@ static int edac_create_csrow_objects(struct mem_ctl_info *mci) ...@@ -441,9 +444,7 @@ static int edac_create_csrow_objects(struct mem_ctl_info *mci)
error: error:
for (--i; i >= 0; i--) { for (--i; i >= 0; i--) {
csrow = mci->csrows[i]; if (device_is_registered(&mci->csrows[i]->dev))
if (!nr_pages_per_csrow(csrow))
continue;
device_unregister(&mci->csrows[i]->dev); device_unregister(&mci->csrows[i]->dev);
} }
...@@ -453,15 +454,13 @@ static int edac_create_csrow_objects(struct mem_ctl_info *mci) ...@@ -453,15 +454,13 @@ static int edac_create_csrow_objects(struct mem_ctl_info *mci)
static void edac_delete_csrow_objects(struct mem_ctl_info *mci) static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
{ {
int i; int i;
struct csrow_info *csrow;
for (i = mci->nr_csrows - 1; i >= 0; i--) { for (i = 0; i < mci->nr_csrows; i++) {
csrow = mci->csrows[i]; if (device_is_registered(&mci->csrows[i]->dev))
if (!nr_pages_per_csrow(csrow))
continue;
device_unregister(&mci->csrows[i]->dev); device_unregister(&mci->csrows[i]->dev);
} }
} }
#endif #endif
/* /*
...@@ -552,10 +551,8 @@ static ssize_t dimmdev_ce_count_show(struct device *dev, ...@@ -552,10 +551,8 @@ static ssize_t dimmdev_ce_count_show(struct device *dev,
char *data) char *data)
{ {
struct dimm_info *dimm = to_dimm(dev); struct dimm_info *dimm = to_dimm(dev);
u32 count;
count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][dimm->idx]; return sprintf(data, "%u\n", dimm->ce_count);
return sprintf(data, "%u\n", count);
} }
static ssize_t dimmdev_ue_count_show(struct device *dev, static ssize_t dimmdev_ue_count_show(struct device *dev,
...@@ -563,10 +560,8 @@ static ssize_t dimmdev_ue_count_show(struct device *dev, ...@@ -563,10 +560,8 @@ static ssize_t dimmdev_ue_count_show(struct device *dev,
char *data) char *data)
{ {
struct dimm_info *dimm = to_dimm(dev); struct dimm_info *dimm = to_dimm(dev);
u32 count;
count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][dimm->idx]; return sprintf(data, "%u\n", dimm->ue_count);
return sprintf(data, "%u\n", count);
} }
/* dimm/rank attribute files */ /* dimm/rank attribute files */
...@@ -602,16 +597,18 @@ static const struct attribute_group *dimm_attr_groups[] = { ...@@ -602,16 +597,18 @@ static const struct attribute_group *dimm_attr_groups[] = {
NULL NULL
}; };
static void dimm_attr_release(struct device *dev)
{
/* release device with _edac_mc_free() */
}
static const struct device_type dimm_attr_type = { static const struct device_type dimm_attr_type = {
.groups = dimm_attr_groups, .groups = dimm_attr_groups,
.release = dimm_attr_release,
}; };
static void dimm_release(struct device *dev)
{
/*
* Nothing to do, just unregister sysfs here. The mci
* device owns the data and will also release it.
*/
}
/* Create a DIMM object under specifed memory controller device */ /* Create a DIMM object under specifed memory controller device */
static int edac_create_dimm_object(struct mem_ctl_info *mci, static int edac_create_dimm_object(struct mem_ctl_info *mci,
struct dimm_info *dimm) struct dimm_info *dimm)
...@@ -620,6 +617,7 @@ static int edac_create_dimm_object(struct mem_ctl_info *mci, ...@@ -620,6 +617,7 @@ static int edac_create_dimm_object(struct mem_ctl_info *mci,
dimm->mci = mci; dimm->mci = mci;
dimm->dev.type = &dimm_attr_type; dimm->dev.type = &dimm_attr_type;
dimm->dev.release = dimm_release;
device_initialize(&dimm->dev); device_initialize(&dimm->dev);
dimm->dev.parent = &mci->dev; dimm->dev.parent = &mci->dev;
...@@ -659,7 +657,9 @@ static ssize_t mci_reset_counters_store(struct device *dev, ...@@ -659,7 +657,9 @@ static ssize_t mci_reset_counters_store(struct device *dev,
const char *data, size_t count) const char *data, size_t count)
{ {
struct mem_ctl_info *mci = to_mci(dev); struct mem_ctl_info *mci = to_mci(dev);
int cnt, row, chan, i; struct dimm_info *dimm;
int row, chan;
mci->ue_mc = 0; mci->ue_mc = 0;
mci->ce_mc = 0; mci->ce_mc = 0;
mci->ue_noinfo_count = 0; mci->ue_noinfo_count = 0;
...@@ -675,11 +675,9 @@ static ssize_t mci_reset_counters_store(struct device *dev, ...@@ -675,11 +675,9 @@ static ssize_t mci_reset_counters_store(struct device *dev,
ri->channels[chan]->ce_count = 0; ri->channels[chan]->ce_count = 0;
} }
cnt = 1; mci_for_each_dimm(mci, dimm) {
for (i = 0; i < mci->n_layers; i++) { dimm->ue_count = 0;
cnt *= mci->layers[i].size; dimm->ce_count = 0;
memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
} }
mci->start_time = jiffies; mci->start_time = jiffies;
...@@ -884,14 +882,8 @@ static const struct attribute_group *mci_attr_groups[] = { ...@@ -884,14 +882,8 @@ static const struct attribute_group *mci_attr_groups[] = {
NULL NULL
}; };
static void mci_attr_release(struct device *dev)
{
/* release device with _edac_mc_free() */
}
static const struct device_type mci_attr_type = { static const struct device_type mci_attr_type = {
.groups = mci_attr_groups, .groups = mci_attr_groups,
.release = mci_attr_release,
}; };
/* /*
...@@ -910,8 +902,6 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, ...@@ -910,8 +902,6 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
/* get the /sys/devices/system/edac subsys reference */ /* get the /sys/devices/system/edac subsys reference */
mci->dev.type = &mci_attr_type; mci->dev.type = &mci_attr_type;
device_initialize(&mci->dev);
mci->dev.parent = mci_pdev; mci->dev.parent = mci_pdev;
mci->dev.groups = groups; mci->dev.groups = groups;
dev_set_name(&mci->dev, "mc%d", mci->mc_idx); dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
...@@ -921,7 +911,7 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, ...@@ -921,7 +911,7 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
err = device_add(&mci->dev); err = device_add(&mci->dev);
if (err < 0) { if (err < 0) {
edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
put_device(&mci->dev); /* no put_device() here, free mci with _edac_mc_free() */
return err; return err;
} }
...@@ -937,24 +927,20 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, ...@@ -937,24 +927,20 @@ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
err = edac_create_dimm_object(mci, dimm); err = edac_create_dimm_object(mci, dimm);
if (err) if (err)
goto fail_unregister_dimm; goto fail;
} }
#ifdef CONFIG_EDAC_LEGACY_SYSFS #ifdef CONFIG_EDAC_LEGACY_SYSFS
err = edac_create_csrow_objects(mci); err = edac_create_csrow_objects(mci);
if (err < 0) if (err < 0)
goto fail_unregister_dimm; goto fail;
#endif #endif
edac_create_debugfs_nodes(mci); edac_create_debugfs_nodes(mci);
return 0; return 0;
fail_unregister_dimm: fail:
mci_for_each_dimm(mci, dimm) { edac_remove_sysfs_mci_device(mci);
if (device_is_registered(&dimm->dev))
device_unregister(&dimm->dev);
}
device_unregister(&mci->dev);
return err; return err;
} }
...@@ -966,6 +952,9 @@ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) ...@@ -966,6 +952,9 @@ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
{ {
struct dimm_info *dimm; struct dimm_info *dimm;
if (!device_is_registered(&mci->dev))
return;
edac_dbg(0, "\n"); edac_dbg(0, "\n");
#ifdef CONFIG_EDAC_DEBUG #ifdef CONFIG_EDAC_DEBUG
...@@ -976,17 +965,14 @@ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) ...@@ -976,17 +965,14 @@ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
#endif #endif
mci_for_each_dimm(mci, dimm) { mci_for_each_dimm(mci, dimm) {
if (dimm->nr_pages == 0) if (!device_is_registered(&dimm->dev))
continue; continue;
edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev)); edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev));
device_unregister(&dimm->dev); device_unregister(&dimm->dev);
} }
}
void edac_unregister_sysfs(struct mem_ctl_info *mci) /* only remove the device, but keep mci */
{ device_del(&mci->dev);
edac_dbg(1, "unregistering device %s\n", dev_name(&mci->dev));
device_unregister(&mci->dev);
} }
static void mc_attr_release(struct device *dev) static void mc_attr_release(struct device *dev)
...@@ -1000,9 +986,6 @@ static void mc_attr_release(struct device *dev) ...@@ -1000,9 +986,6 @@ static void mc_attr_release(struct device *dev)
kfree(dev); kfree(dev);
} }
static const struct device_type mc_attr_type = {
.release = mc_attr_release,
};
/* /*
* Init/exit code for the module. Basically, creates/removes /sys/class/rc * Init/exit code for the module. Basically, creates/removes /sys/class/rc
*/ */
...@@ -1015,11 +998,10 @@ int __init edac_mc_sysfs_init(void) ...@@ -1015,11 +998,10 @@ int __init edac_mc_sysfs_init(void)
return -ENOMEM; return -ENOMEM;
mci_pdev->bus = edac_get_sysfs_subsys(); mci_pdev->bus = edac_get_sysfs_subsys();
mci_pdev->type = &mc_attr_type; mci_pdev->release = mc_attr_release;
device_initialize(mci_pdev); mci_pdev->init_name = "mc";
dev_set_name(mci_pdev, "mc");
err = device_add(mci_pdev); err = device_register(mci_pdev);
if (err < 0) { if (err < 0) {
edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev)); edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev));
put_device(mci_pdev); put_device(mci_pdev);
......
...@@ -28,7 +28,6 @@ void edac_mc_sysfs_exit(void); ...@@ -28,7 +28,6 @@ void edac_mc_sysfs_exit(void);
extern int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, extern int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
const struct attribute_group **groups); const struct attribute_group **groups);
extern void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci); extern void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci);
void edac_unregister_sysfs(struct mem_ctl_info *mci);
extern int edac_get_log_ue(void); extern int edac_get_log_ue(void);
extern int edac_get_log_ce(void); extern int edac_get_log_ce(void);
extern int edac_get_panic_on_ue(void); extern int edac_get_panic_on_ue(void);
......
...@@ -201,7 +201,6 @@ static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg) ...@@ -201,7 +201,6 @@ static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg)
void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err) void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
{ {
enum hw_event_mc_err_type type;
struct edac_raw_error_desc *e; struct edac_raw_error_desc *e;
struct mem_ctl_info *mci; struct mem_ctl_info *mci;
struct ghes_edac_pvt *pvt; struct ghes_edac_pvt *pvt;
...@@ -240,17 +239,17 @@ void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err) ...@@ -240,17 +239,17 @@ void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
switch (sev) { switch (sev) {
case GHES_SEV_CORRECTED: case GHES_SEV_CORRECTED:
type = HW_EVENT_ERR_CORRECTED; e->type = HW_EVENT_ERR_CORRECTED;
break; break;
case GHES_SEV_RECOVERABLE: case GHES_SEV_RECOVERABLE:
type = HW_EVENT_ERR_UNCORRECTED; e->type = HW_EVENT_ERR_UNCORRECTED;
break; break;
case GHES_SEV_PANIC: case GHES_SEV_PANIC:
type = HW_EVENT_ERR_FATAL; e->type = HW_EVENT_ERR_FATAL;
break; break;
default: default:
case GHES_SEV_NO: case GHES_SEV_NO:
type = HW_EVENT_ERR_INFO; e->type = HW_EVENT_ERR_INFO;
} }
edac_dbg(1, "error validation_bits: 0x%08llx\n", edac_dbg(1, "error validation_bits: 0x%08llx\n",
...@@ -356,11 +355,8 @@ void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err) ...@@ -356,11 +355,8 @@ void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
mem_err->mem_dev_handle); mem_err->mem_dev_handle);
index = get_dimm_smbios_index(mci, mem_err->mem_dev_handle); index = get_dimm_smbios_index(mci, mem_err->mem_dev_handle);
if (index >= 0) { if (index >= 0)
e->top_layer = index; e->top_layer = index;
e->enable_per_layer_report = true;
}
} }
if (p > e->location) if (p > e->location)
*(p - 1) = '\0'; *(p - 1) = '\0';
...@@ -442,7 +438,7 @@ void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err) ...@@ -442,7 +438,7 @@ void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
if (p > pvt->other_detail) if (p > pvt->other_detail)
*(p - 1) = '\0'; *(p - 1) = '\0';
edac_raw_mc_handle_error(type, mci, e); edac_raw_mc_handle_error(e);
unlock: unlock:
spin_unlock_irqrestore(&ghes_lock, flags); spin_unlock_irqrestore(&ghes_lock, flags);
......
...@@ -1239,7 +1239,7 @@ static int __init mce_amd_init(void) ...@@ -1239,7 +1239,7 @@ static int __init mce_amd_init(void)
case 0x17: case 0x17:
case 0x18: case 0x18:
pr_warn("Decoding supported only on Scalable MCA processors.\n"); pr_warn_once("Decoding supported only on Scalable MCA processors.\n");
return -EINVAL; return -EINVAL;
default: default:
......
...@@ -477,16 +477,16 @@ static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p) ...@@ -477,16 +477,16 @@ static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
if (p->ce_cnt) { if (p->ce_cnt) {
pinf = &p->ceinfo; pinf = &p->ceinfo;
if (!priv->p_data->quirks) { if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x", "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
"CE", pinf->row, pinf->bank, pinf->col, "CE", pinf->row, pinf->bank,
pinf->bankgrpnr, pinf->blknr,
pinf->bitpos, pinf->data); pinf->bitpos, pinf->data);
} else { } else {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type:%s Row %d Bank %d Col %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x", "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
"CE", pinf->row, pinf->bank, pinf->col, "CE", pinf->row, pinf->bank, pinf->col,
pinf->bankgrpnr, pinf->blknr,
pinf->bitpos, pinf->data); pinf->bitpos, pinf->data);
} }
...@@ -497,15 +497,15 @@ static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p) ...@@ -497,15 +497,15 @@ static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
if (p->ue_cnt) { if (p->ue_cnt) {
pinf = &p->ueinfo; pinf = &p->ueinfo;
if (!priv->p_data->quirks) { if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type :%s Row %d Bank %d Col %d ", "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
"UE", pinf->row, pinf->bank, pinf->col); "UE", pinf->row, pinf->bank,
pinf->bankgrpnr, pinf->blknr);
} else { } else {
snprintf(priv->message, SYNPS_EDAC_MSG_SIZE, snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
"DDR ECC error type :%s Row %d Bank %d Col %d BankGroup Number %d Block Number %d", "DDR ECC error type :%s Row %d Bank %d Col %d ",
"UE", pinf->row, pinf->bank, pinf->col, "UE", pinf->row, pinf->bank, pinf->col);
pinf->bankgrpnr, pinf->blknr);
} }
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
......
...@@ -383,6 +383,9 @@ struct dimm_info { ...@@ -383,6 +383,9 @@ struct dimm_info {
unsigned int csrow, cschannel; /* Points to the old API data */ unsigned int csrow, cschannel; /* Points to the old API data */
u16 smbios_handle; /* Handle for SMBIOS type 17 */ u16 smbios_handle; /* Handle for SMBIOS type 17 */
u32 ce_count;
u32 ue_count;
}; };
/** /**
...@@ -442,6 +445,7 @@ struct errcount_attribute_data { ...@@ -442,6 +445,7 @@ struct errcount_attribute_data {
* struct edac_raw_error_desc - Raw error report structure * struct edac_raw_error_desc - Raw error report structure
* @grain: minimum granularity for an error report, in bytes * @grain: minimum granularity for an error report, in bytes
* @error_count: number of errors of the same type * @error_count: number of errors of the same type
* @type: severity of the error (CE/UE/Fatal)
* @top_layer: top layer of the error (layer[0]) * @top_layer: top layer of the error (layer[0])
* @mid_layer: middle layer of the error (layer[1]) * @mid_layer: middle layer of the error (layer[1])
* @low_layer: low layer of the error (layer[2]) * @low_layer: low layer of the error (layer[2])
...@@ -453,8 +457,6 @@ struct errcount_attribute_data { ...@@ -453,8 +457,6 @@ struct errcount_attribute_data {
* @location: location of the error * @location: location of the error
* @label: label of the affected DIMM(s) * @label: label of the affected DIMM(s)
* @other_detail: other driver-specific detail about the error * @other_detail: other driver-specific detail about the error
* @enable_per_layer_report: if false, the error affects all layers
* (typically, a memory controller error)
*/ */
struct edac_raw_error_desc { struct edac_raw_error_desc {
char location[LOCATION_SIZE]; char location[LOCATION_SIZE];
...@@ -462,6 +464,7 @@ struct edac_raw_error_desc { ...@@ -462,6 +464,7 @@ struct edac_raw_error_desc {
long grain; long grain;
u16 error_count; u16 error_count;
enum hw_event_mc_err_type type;
int top_layer; int top_layer;
int mid_layer; int mid_layer;
int low_layer; int low_layer;
...@@ -470,7 +473,6 @@ struct edac_raw_error_desc { ...@@ -470,7 +473,6 @@ struct edac_raw_error_desc {
unsigned long syndrome; unsigned long syndrome;
const char *msg; const char *msg;
const char *other_detail; const char *other_detail;
bool enable_per_layer_report;
}; };
/* MEMORY controller information structure /* MEMORY controller information structure
...@@ -560,7 +562,6 @@ struct mem_ctl_info { ...@@ -560,7 +562,6 @@ struct mem_ctl_info {
*/ */
u32 ce_noinfo_count, ue_noinfo_count; u32 ce_noinfo_count, ue_noinfo_count;
u32 ue_mc, ce_mc; u32 ue_mc, ce_mc;
u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
struct completion complete; struct completion complete;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment