Commit 45f85a25 authored by David S. Miller's avatar David S. Miller

Merge branch 'fec-next'

Frank Li says:

====================
net: fec: imx6sx multiqueue support

These patches enable i.MX6SX multi queue support.
i.MX6SX support 3 queue and AVB feature.

Change from v3 to v4
 - use "unsigned int" instead of "unsigned"

Change from v2 to v3
 - fixed alignment requirement for ARM and NO-ARM platform

Change from v1 to v2.
 - Change num_tx_queue to unsigned int
 - Avoid block non-dt platform
 - remove call netif_set_real_num_rx_queues
 - seperate multi queue patch two part, one is tx and rx handle, with fixed queue 0
   then other one is initilized multiqueue
 - use two difference alignment for tx and rx path
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 42f27253 0afdfe95
......@@ -16,6 +16,12 @@ Optional properties:
- phy-handle : phandle to the PHY device connected to this device.
- fixed-link : Assume a fixed link. See fixed-link.txt in the same directory.
Use instead of phy-handle.
- fsl,num-tx-queues : The property is valid for enet-avb IP, which supports
hw multi queues. Should specify the tx queue number, otherwise set tx queue
number to 1.
- fsl,num-rx-queues : The property is valid for enet-avb IP, which supports
hw multi queues. Should specify the rx queue number, otherwise set rx queue
number to 1.
Optional subnodes:
- mdio : specifies the mdio bus in the FEC, used as a container for phy nodes
......
......@@ -776,6 +776,8 @@ fec1: ethernet@02188000 {
<&clks IMX6SX_CLK_ENET_PTP>;
clock-names = "ipg", "ahb", "ptp",
"enet_clk_ref", "enet_out";
fsl,num-tx-queues=<3>;
fsl,num-rx-queues=<3>;
status = "disabled";
};
......
......@@ -27,8 +27,8 @@
*/
#define FEC_IEVENT 0x004 /* Interrupt event reg */
#define FEC_IMASK 0x008 /* Interrupt mask reg */
#define FEC_R_DES_ACTIVE 0x010 /* Receive descriptor reg */
#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */
#define FEC_R_DES_ACTIVE_0 0x010 /* Receive descriptor reg */
#define FEC_X_DES_ACTIVE_0 0x014 /* Transmit descriptor reg */
#define FEC_ECNTRL 0x024 /* Ethernet control reg */
#define FEC_MII_DATA 0x040 /* MII manage frame reg */
#define FEC_MII_SPEED 0x044 /* MII speed control reg */
......@@ -38,6 +38,12 @@
#define FEC_ADDR_LOW 0x0e4 /* Low 32bits MAC address */
#define FEC_ADDR_HIGH 0x0e8 /* High 16bits MAC address */
#define FEC_OPD 0x0ec /* Opcode + Pause duration */
#define FEC_TXIC0 0xF0 /* Tx Interrupt Coalescing for ring 0 */
#define FEC_TXIC1 0xF4 /* Tx Interrupt Coalescing for ring 1 */
#define FEC_TXIC2 0xF8 /* Tx Interrupt Coalescing for ring 2 */
#define FEC_RXIC0 0x100 /* Rx Interrupt Coalescing for ring 0 */
#define FEC_RXIC1 0x104 /* Rx Interrupt Coalescing for ring 1 */
#define FEC_RXIC2 0x108 /* Rx Interrupt Coalescing for ring 2 */
#define FEC_HASH_TABLE_HIGH 0x118 /* High 32bits hash table */
#define FEC_HASH_TABLE_LOW 0x11c /* Low 32bits hash table */
#define FEC_GRP_HASH_TABLE_HIGH 0x120 /* High 32bits hash table */
......@@ -45,14 +51,27 @@
#define FEC_X_WMRK 0x144 /* FIFO transmit water mark */
#define FEC_R_BOUND 0x14c /* FIFO receive bound reg */
#define FEC_R_FSTART 0x150 /* FIFO receive start reg */
#define FEC_R_DES_START 0x180 /* Receive descriptor ring */
#define FEC_X_DES_START 0x184 /* Transmit descriptor ring */
#define FEC_R_DES_START_1 0x160 /* Receive descriptor ring 1 */
#define FEC_X_DES_START_1 0x164 /* Transmit descriptor ring 1 */
#define FEC_R_DES_START_2 0x16c /* Receive descriptor ring 2 */
#define FEC_X_DES_START_2 0x170 /* Transmit descriptor ring 2 */
#define FEC_R_DES_START_0 0x180 /* Receive descriptor ring */
#define FEC_X_DES_START_0 0x184 /* Transmit descriptor ring */
#define FEC_R_BUFF_SIZE 0x188 /* Maximum receive buff size */
#define FEC_R_FIFO_RSFL 0x190 /* Receive FIFO section full threshold */
#define FEC_R_FIFO_RSEM 0x194 /* Receive FIFO section empty threshold */
#define FEC_R_FIFO_RAEM 0x198 /* Receive FIFO almost empty threshold */
#define FEC_R_FIFO_RAFL 0x19c /* Receive FIFO almost full threshold */
#define FEC_RACC 0x1C4 /* Receive Accelerator function */
#define FEC_RCMR_1 0x1c8 /* Receive classification match ring 1 */
#define FEC_RCMR_2 0x1cc /* Receive classification match ring 2 */
#define FEC_DMA_CFG_1 0x1d8 /* DMA class configuration for ring 1 */
#define FEC_DMA_CFG_2 0x1dc /* DMA class Configuration for ring 2 */
#define FEC_R_DES_ACTIVE_1 0x1e0 /* Rx descriptor active for ring 1 */
#define FEC_X_DES_ACTIVE_1 0x1e4 /* Tx descriptor active for ring 1 */
#define FEC_R_DES_ACTIVE_2 0x1e8 /* Rx descriptor active for ring 2 */
#define FEC_X_DES_ACTIVE_2 0x1ec /* Tx descriptor active for ring 2 */
#define FEC_QOS_SCHEME 0x1f0 /* Set multi queues Qos scheme */
#define FEC_MIIGSK_CFGR 0x300 /* MIIGSK Configuration reg */
#define FEC_MIIGSK_ENR 0x308 /* MIIGSK Enable reg */
......@@ -233,6 +252,43 @@ struct bufdesc_ex {
/* This device has up to three irqs on some platforms */
#define FEC_IRQ_NUM 3
/* Maximum number of queues supported
* ENET with AVB IP can support up to 3 independent tx queues and rx queues.
* User can point the queue number that is less than or equal to 3.
*/
#define FEC_ENET_MAX_TX_QS 3
#define FEC_ENET_MAX_RX_QS 3
#define FEC_R_DES_START(X) ((X == 1) ? FEC_R_DES_START_1 : \
((X == 2) ? \
FEC_R_DES_START_2 : FEC_R_DES_START_0))
#define FEC_X_DES_START(X) ((X == 1) ? FEC_X_DES_START_1 : \
((X == 2) ? \
FEC_X_DES_START_2 : FEC_X_DES_START_0))
#define FEC_R_DES_ACTIVE(X) ((X == 1) ? FEC_R_DES_ACTIVE_1 : \
((X == 2) ? \
FEC_R_DES_ACTIVE_2 : FEC_R_DES_ACTIVE_0))
#define FEC_X_DES_ACTIVE(X) ((X == 1) ? FEC_X_DES_ACTIVE_1 : \
((X == 2) ? \
FEC_X_DES_ACTIVE_2 : FEC_X_DES_ACTIVE_0))
#define FEC_DMA_CFG(X) ((X == 2) ? FEC_DMA_CFG_2 : FEC_DMA_CFG_1)
#define DMA_CLASS_EN (1 << 16)
#define FEC_RCMR(X) ((X == 2) ? FEC_RCMR_2 : FEC_RCMR_1)
#define IDLE_SLOPE_MASK 0xFFFF
#define IDLE_SLOPE_1 0x200 /* BW fraction: 0.5 */
#define IDLE_SLOPE_2 0x200 /* BW fraction: 0.5 */
#define IDLE_SLOPE(X) ((X == 1) ? (IDLE_SLOPE_1 & IDLE_SLOPE_MASK) : \
(IDLE_SLOPE_2 & IDLE_SLOPE_MASK))
#define RCMR_MATCHEN (0x1 << 16)
#define RCMR_CMP_CFG(v, n) ((v & 0x7) << (n << 2))
#define RCMR_CMP_1 (RCMR_CMP_CFG(0, 0) | RCMR_CMP_CFG(1, 1) | \
RCMR_CMP_CFG(2, 2) | RCMR_CMP_CFG(3, 3))
#define RCMR_CMP_2 (RCMR_CMP_CFG(4, 0) | RCMR_CMP_CFG(5, 1) | \
RCMR_CMP_CFG(6, 2) | RCMR_CMP_CFG(7, 3))
#define RCMR_CMP(X) ((X == 1) ? RCMR_CMP_1 : RCMR_CMP_2)
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it it best
* to keep them that size.
......@@ -256,6 +312,61 @@ struct bufdesc_ex {
#define FLAG_RX_CSUM_ENABLED (BD_ENET_RX_ICE | BD_ENET_RX_PCR)
#define FLAG_RX_CSUM_ERROR (BD_ENET_RX_ICE | BD_ENET_RX_PCR)
/* Interrupt events/masks. */
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
#define FEC_ENET_TXF_0 ((uint)0x08000000) /* Full frame transmitted */
#define FEC_ENET_TXF_1 ((uint)0x00000008) /* Full frame transmitted */
#define FEC_ENET_TXF_2 ((uint)0x00000080) /* Full frame transmitted */
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
#define FEC_ENET_RXF_0 ((uint)0x02000000) /* Full frame received */
#define FEC_ENET_RXF_1 ((uint)0x00000002) /* Full frame received */
#define FEC_ENET_RXF_2 ((uint)0x00000020) /* Full frame received */
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
#define FEC_ENET_TXF (FEC_ENET_TXF_0 | FEC_ENET_TXF_1 | FEC_ENET_TXF_2)
#define FEC_ENET_RXF (FEC_ENET_RXF_0 | FEC_ENET_RXF_1 | FEC_ENET_RXF_2)
#define FEC_ENET_TS_AVAIL ((uint)0x00010000)
#define FEC_ENET_TS_TIMER ((uint)0x00008000)
#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII | FEC_ENET_TS_TIMER)
#define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
#define FEC_VLAN_TAG_LEN 0x04
#define FEC_ETHTYPE_LEN 0x02
struct fec_enet_priv_tx_q {
int index;
unsigned char *tx_bounce[TX_RING_SIZE];
struct sk_buff *tx_skbuff[TX_RING_SIZE];
dma_addr_t bd_dma;
struct bufdesc *tx_bd_base;
uint tx_ring_size;
unsigned short tx_stop_threshold;
unsigned short tx_wake_threshold;
struct bufdesc *cur_tx;
struct bufdesc *dirty_tx;
char *tso_hdrs;
dma_addr_t tso_hdrs_dma;
};
struct fec_enet_priv_rx_q {
int index;
struct sk_buff *rx_skbuff[RX_RING_SIZE];
dma_addr_t bd_dma;
struct bufdesc *rx_bd_base;
uint rx_ring_size;
struct bufdesc *cur_rx;
};
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
......@@ -272,36 +383,28 @@ struct fec_enet_private {
struct clk *clk_ipg;
struct clk *clk_ahb;
struct clk *clk_ref;
struct clk *clk_enet_out;
struct clk *clk_ptp;
bool ptp_clk_on;
struct mutex ptp_clk_mutex;
unsigned int num_tx_queues;
unsigned int num_rx_queues;
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
unsigned char *tx_bounce[TX_RING_SIZE];
struct sk_buff *tx_skbuff[TX_RING_SIZE];
struct sk_buff *rx_skbuff[RX_RING_SIZE];
struct fec_enet_priv_tx_q *tx_queue[FEC_ENET_MAX_TX_QS];
struct fec_enet_priv_rx_q *rx_queue[FEC_ENET_MAX_RX_QS];
/* CPM dual port RAM relative addresses */
dma_addr_t bd_dma;
/* Address of Rx and Tx buffers */
struct bufdesc *rx_bd_base;
struct bufdesc *tx_bd_base;
/* The next free ring entry */
struct bufdesc *cur_rx, *cur_tx;
/* The ring entries to be free()ed */
struct bufdesc *dirty_tx;
unsigned int total_tx_ring_size;
unsigned int total_rx_ring_size;
unsigned short bufdesc_size;
unsigned short tx_ring_size;
unsigned short rx_ring_size;
unsigned short tx_stop_threshold;
unsigned short tx_wake_threshold;
unsigned long work_tx;
unsigned long work_rx;
unsigned long work_ts;
unsigned long work_mdio;
/* Software TSO */
char *tso_hdrs;
dma_addr_t tso_hdrs_dma;
unsigned short bufdesc_size;
struct platform_device *pdev;
......@@ -340,6 +443,9 @@ struct fec_enet_private {
int hwts_tx_en;
struct delayed_work time_keep;
struct regulator *reg_phy;
unsigned int tx_align;
unsigned int rx_align;
};
void fec_ptp_init(struct platform_device *pdev);
......
......@@ -64,14 +64,10 @@
static void set_multicast_list(struct net_device *ndev);
#if defined(CONFIG_ARM)
#define FEC_ALIGNMENT 0xf
#else
#define FEC_ALIGNMENT 0x3
#endif
#define DRIVER_NAME "fec"
#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
/* Pause frame feild and FIFO threshold */
#define FEC_ENET_FCE (1 << 5)
#define FEC_ENET_RSEM_V 0x84
......@@ -104,6 +100,16 @@ static void set_multicast_list(struct net_device *ndev);
* ENET_TDAR[TDAR].
*/
#define FEC_QUIRK_ERR006358 (1 << 7)
/* ENET IP hw AVB
*
* i.MX6SX ENET IP add Audio Video Bridging (AVB) feature support.
* - Two class indicators on receive with configurable priority
* - Two class indicators and line speed timer on transmit allowing
* implementation class credit based shapers externally
* - Additional DMA registers provisioned to allow managing up to 3
* independent rings
*/
#define FEC_QUIRK_HAS_AVB (1 << 8)
static struct platform_device_id fec_devtype[] = {
{
......@@ -127,6 +133,12 @@ static struct platform_device_id fec_devtype[] = {
}, {
.name = "mvf600-fec",
.driver_data = FEC_QUIRK_ENET_MAC,
}, {
.name = "imx6sx-fec",
.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
FEC_QUIRK_HAS_AVB,
}, {
/* sentinel */
}
......@@ -139,6 +151,7 @@ enum imx_fec_type {
IMX28_FEC,
IMX6Q_FEC,
MVF600_FEC,
IMX6SX_FEC,
};
static const struct of_device_id fec_dt_ids[] = {
......@@ -147,6 +160,7 @@ static const struct of_device_id fec_dt_ids[] = {
{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fec_dt_ids);
......@@ -175,21 +189,6 @@ MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
#endif
#endif /* CONFIG_M5272 */
/* Interrupt events/masks. */
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
#define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
*/
#define PKT_MAXBUF_SIZE 1522
......@@ -242,22 +241,26 @@ MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
static int mii_cnt;
static inline
struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
struct fec_enet_private *fep,
int queue_id)
{
struct bufdesc *new_bd = bdp + 1;
struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
struct bufdesc_ex *ex_base;
struct bufdesc *base;
int ring_size;
if (bdp >= fep->tx_bd_base) {
base = fep->tx_bd_base;
ring_size = fep->tx_ring_size;
ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
if (bdp >= txq->tx_bd_base) {
base = txq->tx_bd_base;
ring_size = txq->tx_ring_size;
ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
} else {
base = fep->rx_bd_base;
ring_size = fep->rx_ring_size;
ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
base = rxq->rx_bd_base;
ring_size = rxq->rx_ring_size;
ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
}
if (fep->bufdesc_ex)
......@@ -269,22 +272,26 @@ struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_priva
}
static inline
struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
struct fec_enet_private *fep,
int queue_id)
{
struct bufdesc *new_bd = bdp - 1;
struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
struct bufdesc_ex *ex_base;
struct bufdesc *base;
int ring_size;
if (bdp >= fep->tx_bd_base) {
base = fep->tx_bd_base;
ring_size = fep->tx_ring_size;
ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
if (bdp >= txq->tx_bd_base) {
base = txq->tx_bd_base;
ring_size = txq->tx_ring_size;
ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
} else {
base = fep->rx_bd_base;
ring_size = fep->rx_ring_size;
ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
base = rxq->rx_bd_base;
ring_size = rxq->rx_ring_size;
ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
}
if (fep->bufdesc_ex)
......@@ -300,14 +307,15 @@ static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
}
static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
struct fec_enet_priv_tx_q *txq)
{
int entries;
entries = ((const char *)fep->dirty_tx -
(const char *)fep->cur_tx) / fep->bufdesc_size - 1;
entries = ((const char *)txq->dirty_tx -
(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
return entries > 0 ? entries : entries + fep->tx_ring_size;
return entries > 0 ? entries : entries + txq->tx_ring_size;
}
static void *swap_buffer(void *bufaddr, int len)
......@@ -324,22 +332,26 @@ static void *swap_buffer(void *bufaddr, int len)
static void fec_dump(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct bufdesc *bdp = fep->tx_bd_base;
unsigned int index = 0;
struct bufdesc *bdp;
struct fec_enet_priv_tx_q *txq;
int index = 0;
netdev_info(ndev, "TX ring dump\n");
pr_info("Nr SC addr len SKB\n");
txq = fep->tx_queue[0];
bdp = txq->tx_bd_base;
do {
pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
index,
bdp == fep->cur_tx ? 'S' : ' ',
bdp == fep->dirty_tx ? 'H' : ' ',
bdp == txq->cur_tx ? 'S' : ' ',
bdp == txq->dirty_tx ? 'H' : ' ',
bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
fep->tx_skbuff[index]);
bdp = fec_enet_get_nextdesc(bdp, fep);
txq->tx_skbuff[index]);
bdp = fec_enet_get_nextdesc(bdp, fep, 0);
index++;
} while (bdp != fep->tx_bd_base);
} while (bdp != txq->tx_bd_base);
}
static inline bool is_ipv4_pkt(struct sk_buff *skb)
......@@ -365,14 +377,17 @@ fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
}
static int
fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
struct sk_buff *skb,
struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
struct bufdesc *bdp = fep->cur_tx;
struct bufdesc *bdp = txq->cur_tx;
struct bufdesc_ex *ebdp;
int nr_frags = skb_shinfo(skb)->nr_frags;
unsigned short queue = skb_get_queue_mapping(skb);
int frag, frag_len;
unsigned short status;
unsigned int estatus = 0;
......@@ -384,7 +399,7 @@ fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
for (frag = 0; frag < nr_frags; frag++) {
this_frag = &skb_shinfo(skb)->frags[frag];
bdp = fec_enet_get_nextdesc(bdp, fep);
bdp = fec_enet_get_nextdesc(bdp, fep, queue);
ebdp = (struct bufdesc_ex *)bdp;
status = bdp->cbd_sc;
......@@ -412,11 +427,11 @@ fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
if (((unsigned long) bufaddr) & fep->tx_align ||
id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
memcpy(fep->tx_bounce[index], bufaddr, frag_len);
bufaddr = fep->tx_bounce[index];
memcpy(txq->tx_bounce[index], bufaddr, frag_len);
bufaddr = txq->tx_bounce[index];
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
swap_buffer(bufaddr, frag_len);
......@@ -436,21 +451,22 @@ fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
bdp->cbd_sc = status;
}
fep->cur_tx = bdp;
txq->cur_tx = bdp;
return 0;
dma_mapping_error:
bdp = fep->cur_tx;
bdp = txq->cur_tx;
for (i = 0; i < frag; i++) {
bdp = fec_enet_get_nextdesc(bdp, fep);
bdp = fec_enet_get_nextdesc(bdp, fep, queue);
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
bdp->cbd_datlen, DMA_TO_DEVICE);
}
return NETDEV_TX_OK;
}
static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
struct sk_buff *skb, struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
......@@ -461,12 +477,13 @@ static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
dma_addr_t addr;
unsigned short status;
unsigned short buflen;
unsigned short queue;
unsigned int estatus = 0;
unsigned int index;
int entries_free;
int ret;
entries_free = fec_enet_get_free_txdesc_num(fep);
entries_free = fec_enet_get_free_txdesc_num(fep, txq);
if (entries_free < MAX_SKB_FRAGS + 1) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
......@@ -481,7 +498,7 @@ static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
}
/* Fill in a Tx ring entry */
bdp = fep->cur_tx;
bdp = txq->cur_tx;
status = bdp->cbd_sc;
status &= ~BD_ENET_TX_STATS;
......@@ -489,11 +506,12 @@ static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
bufaddr = skb->data;
buflen = skb_headlen(skb);
index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
queue = skb_get_queue_mapping(skb);
index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
if (((unsigned long) bufaddr) & fep->tx_align ||
id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
memcpy(fep->tx_bounce[index], skb->data, buflen);
bufaddr = fep->tx_bounce[index];
memcpy(txq->tx_bounce[index], skb->data, buflen);
bufaddr = txq->tx_bounce[index];
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
swap_buffer(bufaddr, buflen);
......@@ -509,7 +527,7 @@ static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
}
if (nr_frags) {
ret = fec_enet_txq_submit_frag_skb(skb, ndev);
ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
if (ret)
return ret;
} else {
......@@ -537,10 +555,10 @@ static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
ebdp->cbd_esc = estatus;
}
last_bdp = fep->cur_tx;
index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
last_bdp = txq->cur_tx;
index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
/* Save skb pointer */
fep->tx_skbuff[index] = skb;
txq->tx_skbuff[index] = skb;
bdp->cbd_datlen = buflen;
bdp->cbd_bufaddr = addr;
......@@ -552,22 +570,23 @@ static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
bdp->cbd_sc = status;
/* If this was the last BD in the ring, start at the beginning again. */
bdp = fec_enet_get_nextdesc(last_bdp, fep);
bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
skb_tx_timestamp(skb);
fep->cur_tx = bdp;
txq->cur_tx = bdp;
/* Trigger transmission start */
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
return 0;
}
static int
fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
struct bufdesc *bdp, int index, char *data,
int size, bool last_tcp, bool is_last)
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
struct net_device *ndev,
struct bufdesc *bdp, int index, char *data,
int size, bool last_tcp, bool is_last)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
......@@ -582,10 +601,10 @@ fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
if (((unsigned long) data) & FEC_ALIGNMENT ||
if (((unsigned long) data) & fep->tx_align ||
id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
memcpy(fep->tx_bounce[index], data, size);
data = fep->tx_bounce[index];
memcpy(txq->tx_bounce[index], data, size);
data = txq->tx_bounce[index];
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
swap_buffer(data, size);
......@@ -624,8 +643,9 @@ fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
}
static int
fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
struct bufdesc *bdp, int index)
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
struct sk_buff *skb, struct net_device *ndev,
struct bufdesc *bdp, int index)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
......@@ -641,12 +661,12 @@ fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
status &= ~BD_ENET_TX_STATS;
status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
if (((unsigned long)bufaddr) & fep->tx_align ||
id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
memcpy(fep->tx_bounce[index], skb->data, hdr_len);
bufaddr = fep->tx_bounce[index];
memcpy(txq->tx_bounce[index], skb->data, hdr_len);
bufaddr = txq->tx_bounce[index];
if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
swap_buffer(bufaddr, hdr_len);
......@@ -676,17 +696,20 @@ fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
return 0;
}
static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
struct sk_buff *skb,
struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
int total_len, data_left;
struct bufdesc *bdp = fep->cur_tx;
struct bufdesc *bdp = txq->cur_tx;
unsigned short queue = skb_get_queue_mapping(skb);
struct tso_t tso;
unsigned int index = 0;
int ret;
if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
dev_kfree_skb_any(skb);
if (net_ratelimit())
netdev_err(ndev, "NOT enough BD for TSO!\n");
......@@ -706,14 +729,14 @@ static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
while (total_len > 0) {
char *hdr;
index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_left;
/* prepare packet headers: MAC + IP + TCP */
hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
if (ret)
goto err_release;
......@@ -721,10 +744,13 @@ static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
int size;
size = min_t(int, tso.size, data_left);
bdp = fec_enet_get_nextdesc(bdp, fep);
index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
size, size == data_left,
bdp = fec_enet_get_nextdesc(bdp, fep, queue);
index = fec_enet_get_bd_index(txq->tx_bd_base,
bdp, fep);
ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
bdp, index,
tso.data, size,
size == data_left,
total_len == 0);
if (ret)
goto err_release;
......@@ -733,17 +759,17 @@ static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
tso_build_data(skb, &tso, size);
}
bdp = fec_enet_get_nextdesc(bdp, fep);
bdp = fec_enet_get_nextdesc(bdp, fep, queue);
}
/* Save skb pointer */
fep->tx_skbuff[index] = skb;
txq->tx_skbuff[index] = skb;
skb_tx_timestamp(skb);
fep->cur_tx = bdp;
txq->cur_tx = bdp;
/* Trigger transmission start */
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
return 0;
......@@ -757,18 +783,25 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int entries_free;
unsigned short queue;
struct fec_enet_priv_tx_q *txq;
struct netdev_queue *nq;
int ret;
queue = skb_get_queue_mapping(skb);
txq = fep->tx_queue[queue];
nq = netdev_get_tx_queue(ndev, queue);
if (skb_is_gso(skb))
ret = fec_enet_txq_submit_tso(skb, ndev);
ret = fec_enet_txq_submit_tso(txq, skb, ndev);
else
ret = fec_enet_txq_submit_skb(skb, ndev);
ret = fec_enet_txq_submit_skb(txq, skb, ndev);
if (ret)
return ret;
entries_free = fec_enet_get_free_txdesc_num(fep);
if (entries_free <= fep->tx_stop_threshold)
netif_stop_queue(ndev);
entries_free = fec_enet_get_free_txdesc_num(fep, txq);
if (entries_free <= txq->tx_stop_threshold)
netif_tx_stop_queue(nq);
return NETDEV_TX_OK;
}
......@@ -778,46 +811,111 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
static void fec_enet_bd_init(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
struct fec_enet_priv_tx_q *txq;
struct fec_enet_priv_rx_q *rxq;
struct bufdesc *bdp;
unsigned int i;
unsigned int q;
/* Initialize the receive buffer descriptors. */
bdp = fep->rx_bd_base;
for (i = 0; i < fep->rx_ring_size; i++) {
for (q = 0; q < fep->num_rx_queues; q++) {
/* Initialize the receive buffer descriptors. */
rxq = fep->rx_queue[q];
bdp = rxq->rx_bd_base;
/* Initialize the BD for every fragment in the page. */
if (bdp->cbd_bufaddr)
bdp->cbd_sc = BD_ENET_RX_EMPTY;
else
for (i = 0; i < rxq->rx_ring_size; i++) {
/* Initialize the BD for every fragment in the page. */
if (bdp->cbd_bufaddr)
bdp->cbd_sc = BD_ENET_RX_EMPTY;
else
bdp->cbd_sc = 0;
bdp = fec_enet_get_nextdesc(bdp, fep, q);
}
/* Set the last buffer to wrap */
bdp = fec_enet_get_prevdesc(bdp, fep, q);
bdp->cbd_sc |= BD_SC_WRAP;
rxq->cur_rx = rxq->rx_bd_base;
}
for (q = 0; q < fep->num_tx_queues; q++) {
/* ...and the same for transmit */
txq = fep->tx_queue[q];
bdp = txq->tx_bd_base;
txq->cur_tx = bdp;
for (i = 0; i < txq->tx_ring_size; i++) {
/* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = 0;
bdp = fec_enet_get_nextdesc(bdp, fep);
if (txq->tx_skbuff[i]) {
dev_kfree_skb_any(txq->tx_skbuff[i]);
txq->tx_skbuff[i] = NULL;
}
bdp->cbd_bufaddr = 0;
bdp = fec_enet_get_nextdesc(bdp, fep, q);
}
/* Set the last buffer to wrap */
bdp = fec_enet_get_prevdesc(bdp, fep, q);
bdp->cbd_sc |= BD_SC_WRAP;
txq->dirty_tx = bdp;
}
}
/* Set the last buffer to wrap */
bdp = fec_enet_get_prevdesc(bdp, fep);
bdp->cbd_sc |= BD_SC_WRAP;
static void fec_enet_active_rxring(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int i;
for (i = 0; i < fep->num_rx_queues; i++)
writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
}
static void fec_enet_enable_ring(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct fec_enet_priv_tx_q *txq;
struct fec_enet_priv_rx_q *rxq;
int i;
fep->cur_rx = fep->rx_bd_base;
for (i = 0; i < fep->num_rx_queues; i++) {
rxq = fep->rx_queue[i];
writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
/* ...and the same for transmit */
bdp = fep->tx_bd_base;
fep->cur_tx = bdp;
for (i = 0; i < fep->tx_ring_size; i++) {
/* enable DMA1/2 */
if (i)
writel(RCMR_MATCHEN | RCMR_CMP(i),
fep->hwp + FEC_RCMR(i));
}
/* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = 0;
if (fep->tx_skbuff[i]) {
dev_kfree_skb_any(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
bdp->cbd_bufaddr = 0;
bdp = fec_enet_get_nextdesc(bdp, fep);
for (i = 0; i < fep->num_tx_queues; i++) {
txq = fep->tx_queue[i];
writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
/* enable DMA1/2 */
if (i)
writel(DMA_CLASS_EN | IDLE_SLOPE(i),
fep->hwp + FEC_DMA_CFG(i));
}
}
/* Set the last buffer to wrap */
bdp = fec_enet_get_prevdesc(bdp, fep);
bdp->cbd_sc |= BD_SC_WRAP;
fep->dirty_tx = bdp;
static void fec_enet_reset_skb(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
struct fec_enet_priv_tx_q *txq;
int i, j;
for (i = 0; i < fep->num_tx_queues; i++) {
txq = fep->tx_queue[i];
for (j = 0; j < txq->tx_ring_size; j++) {
if (txq->tx_skbuff[j]) {
dev_kfree_skb_any(txq->tx_skbuff[j]);
txq->tx_skbuff[j] = NULL;
}
}
}
}
/*
......@@ -831,15 +929,21 @@ fec_restart(struct net_device *ndev)
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
int i;
u32 val;
u32 temp_mac[2];
u32 rcntl = OPT_FRAME_SIZE | 0x04;
u32 ecntl = 0x2; /* ETHEREN */
/* Whack a reset. We should wait for this. */
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
/* Whack a reset. We should wait for this.
* For i.MX6SX SOC, enet use AXI bus, we use disable MAC
* instead of reset MAC itself.
*/
if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
writel(0, fep->hwp + FEC_ECNTRL);
} else {
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
}
/*
* enet-mac reset will reset mac address registers too,
......@@ -859,22 +963,10 @@ fec_restart(struct net_device *ndev)
fec_enet_bd_init(ndev);
/* Set receive and transmit descriptor base. */
writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
if (fep->bufdesc_ex)
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
else
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
fec_enet_enable_ring(ndev);
for (i = 0; i <= TX_RING_MOD_MASK; i++) {
if (fep->tx_skbuff[i]) {
dev_kfree_skb_any(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
}
/* Reset tx SKB buffers. */
fec_enet_reset_skb(ndev);
/* Enable MII mode */
if (fep->full_duplex == DUPLEX_FULL) {
......@@ -996,7 +1088,7 @@ fec_restart(struct net_device *ndev)
/* And last, enable the transmit and receive processing */
writel(ecntl, fep->hwp + FEC_ECNTRL);
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
fec_enet_active_rxring(ndev);
if (fep->bufdesc_ex)
fec_ptp_start_cyclecounter(ndev);
......@@ -1021,9 +1113,16 @@ fec_stop(struct net_device *ndev)
netdev_err(ndev, "Graceful transmit stop did not complete!\n");
}
/* Whack a reset. We should wait for this. */
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
/* Whack a reset. We should wait for this.
* For i.MX6SX SOC, enet use AXI bus, we use disable MAC
* instead of reset MAC itself.
*/
if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
writel(0, fep->hwp + FEC_ECNTRL);
} else {
writel(1, fep->hwp + FEC_ECNTRL);
udelay(10);
}
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
......@@ -1081,37 +1180,45 @@ fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
}
static void
fec_enet_tx(struct net_device *ndev)
fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
{
struct fec_enet_private *fep;
struct bufdesc *bdp;
unsigned short status;
struct sk_buff *skb;
struct fec_enet_priv_tx_q *txq;
struct netdev_queue *nq;
int index = 0;
int entries_free;
fep = netdev_priv(ndev);
bdp = fep->dirty_tx;
queue_id = FEC_ENET_GET_QUQUE(queue_id);
txq = fep->tx_queue[queue_id];
/* get next bdp of dirty_tx */
bdp = fec_enet_get_nextdesc(bdp, fep);
nq = netdev_get_tx_queue(ndev, queue_id);
bdp = txq->dirty_tx;
/* get next bdp of dirty_tx */
bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
/* current queue is empty */
if (bdp == fep->cur_tx)
if (bdp == txq->cur_tx)
break;
index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
skb = fep->tx_skbuff[index];
fep->tx_skbuff[index] = NULL;
if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
skb = txq->tx_skbuff[index];
txq->tx_skbuff[index] = NULL;
if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
bdp->cbd_datlen, DMA_TO_DEVICE);
bdp->cbd_bufaddr = 0;
if (!skb) {
bdp = fec_enet_get_nextdesc(bdp, fep);
bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
continue;
}
......@@ -1153,23 +1260,37 @@ fec_enet_tx(struct net_device *ndev)
/* Free the sk buffer associated with this last transmit */
dev_kfree_skb_any(skb);
fep->dirty_tx = bdp;
txq->dirty_tx = bdp;
/* Update pointer to next buffer descriptor to be transmitted */
bdp = fec_enet_get_nextdesc(bdp, fep);
bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
/* Since we have freed up a buffer, the ring is no longer full
*/
if (netif_queue_stopped(ndev)) {
entries_free = fec_enet_get_free_txdesc_num(fep);
if (entries_free >= fep->tx_wake_threshold)
netif_wake_queue(ndev);
entries_free = fec_enet_get_free_txdesc_num(fep, txq);
if (entries_free >= txq->tx_wake_threshold)
netif_tx_wake_queue(nq);
}
}
/* ERR006538: Keep the transmitter going */
if (bdp != fep->cur_tx && readl(fep->hwp + FEC_X_DES_ACTIVE) == 0)
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
if (bdp != txq->cur_tx &&
readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
}
static void
fec_enet_tx(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
u16 queue_id;
/* First process class A queue, then Class B and Best Effort queue */
for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
clear_bit(queue_id, &fep->work_tx);
fec_enet_tx_queue(ndev, queue_id);
}
return;
}
/* During a receive, the cur_rx points to the current incoming buffer.
......@@ -1178,11 +1299,12 @@ fec_enet_tx(struct net_device *ndev)
* effectively tossing the packet.
*/
static int
fec_enet_rx(struct net_device *ndev, int budget)
fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
{
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
struct fec_enet_priv_rx_q *rxq;
struct bufdesc *bdp;
unsigned short status;
struct sk_buff *skb;
......@@ -1197,11 +1319,13 @@ fec_enet_rx(struct net_device *ndev, int budget)
#ifdef CONFIG_M532x
flush_cache_all();
#endif
queue_id = FEC_ENET_GET_QUQUE(queue_id);
rxq = fep->rx_queue[queue_id];
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = fep->cur_rx;
bdp = rxq->cur_rx;
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
......@@ -1215,7 +1339,6 @@ fec_enet_rx(struct net_device *ndev, int budget)
if ((status & BD_ENET_RX_LAST) == 0)
netdev_err(ndev, "rcv is not +last\n");
writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
/* Check for errors. */
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
......@@ -1248,8 +1371,8 @@ fec_enet_rx(struct net_device *ndev, int budget)
pkt_len = bdp->cbd_datlen;
ndev->stats.rx_bytes += pkt_len;
index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
data = fep->rx_skbuff[index]->data;
index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
data = rxq->rx_skbuff[index]->data;
dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
......@@ -1264,7 +1387,7 @@ fec_enet_rx(struct net_device *ndev, int budget)
/* If this is a VLAN packet remove the VLAN Tag */
vlan_packet_rcvd = false;
if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
/* Push and remove the vlan tag */
struct vlan_hdr *vlan_header =
(struct vlan_hdr *) (data + ETH_HLEN);
......@@ -1292,7 +1415,7 @@ fec_enet_rx(struct net_device *ndev, int budget)
skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
if (vlan_packet_rcvd)
payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
data + payload_offset,
pkt_len - 4 - (2 * ETH_ALEN));
......@@ -1341,19 +1464,56 @@ fec_enet_rx(struct net_device *ndev, int budget)
}
/* Update BD pointer to next entry */
bdp = fec_enet_get_nextdesc(bdp, fep);
bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
/* Doing this here will keep the FEC running while we process
* incoming frames. On a heavily loaded network, we should be
* able to keep up at the expense of system resources.
*/
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
}
fep->cur_rx = bdp;
rxq->cur_rx = bdp;
return pkt_received;
}
static int
fec_enet_rx(struct net_device *ndev, int budget)
{
int pkt_received = 0;
u16 queue_id;
struct fec_enet_private *fep = netdev_priv(ndev);
for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
clear_bit(queue_id, &fep->work_rx);
pkt_received += fec_enet_rx_queue(ndev,
budget - pkt_received, queue_id);
}
return pkt_received;
}
static bool
fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
{
if (int_events == 0)
return false;
if (int_events & FEC_ENET_RXF)
fep->work_rx |= (1 << 2);
if (int_events & FEC_ENET_RXF_1)
fep->work_rx |= (1 << 0);
if (int_events & FEC_ENET_RXF_2)
fep->work_rx |= (1 << 1);
if (int_events & FEC_ENET_TXF)
fep->work_tx |= (1 << 2);
if (int_events & FEC_ENET_TXF_1)
fep->work_tx |= (1 << 0);
if (int_events & FEC_ENET_TXF_2)
fep->work_tx |= (1 << 1);
return true;
}
static irqreturn_t
fec_enet_interrupt(int irq, void *dev_id)
{
......@@ -1365,6 +1525,7 @@ fec_enet_interrupt(int irq, void *dev_id)
int_events = readl(fep->hwp + FEC_IEVENT);
writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
fec_enet_collect_events(fep, int_events);
if (int_events & napi_mask) {
ret = IRQ_HANDLED;
......@@ -1621,6 +1782,11 @@ static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
}
mutex_unlock(&fep->ptp_clk_mutex);
}
if (fep->clk_ref) {
ret = clk_prepare_enable(fep->clk_ref);
if (ret)
goto failed_clk_ref;
}
} else {
clk_disable_unprepare(fep->clk_ahb);
clk_disable_unprepare(fep->clk_ipg);
......@@ -1632,9 +1798,15 @@ static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
fep->ptp_clk_on = false;
mutex_unlock(&fep->ptp_clk_mutex);
}
if (fep->clk_ref)
clk_disable_unprepare(fep->clk_ref);
}
return 0;
failed_clk_ref:
if (fep->clk_ref)
clk_disable_unprepare(fep->clk_ref);
failed_clk_ptp:
if (fep->clk_enet_out)
clk_disable_unprepare(fep->clk_enet_out);
......@@ -2105,46 +2277,140 @@ static void fec_enet_free_buffers(struct net_device *ndev)
unsigned int i;
struct sk_buff *skb;
struct bufdesc *bdp;
struct fec_enet_priv_tx_q *txq;
struct fec_enet_priv_rx_q *rxq;
unsigned int q;
for (q = 0; q < fep->num_rx_queues; q++) {
rxq = fep->rx_queue[q];
bdp = rxq->rx_bd_base;
for (i = 0; i < rxq->rx_ring_size; i++) {
skb = rxq->rx_skbuff[i];
rxq->rx_skbuff[i] = NULL;
if (skb) {
dma_unmap_single(&fep->pdev->dev,
bdp->cbd_bufaddr,
FEC_ENET_RX_FRSIZE,
DMA_FROM_DEVICE);
dev_kfree_skb(skb);
}
bdp = fec_enet_get_nextdesc(bdp, fep, q);
}
}
bdp = fep->rx_bd_base;
for (i = 0; i < fep->rx_ring_size; i++) {
skb = fep->rx_skbuff[i];
fep->rx_skbuff[i] = NULL;
if (skb) {
dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
for (q = 0; q < fep->num_tx_queues; q++) {
txq = fep->tx_queue[q];
bdp = txq->tx_bd_base;
for (i = 0; i < txq->tx_ring_size; i++) {
kfree(txq->tx_bounce[i]);
txq->tx_bounce[i] = NULL;
skb = txq->tx_skbuff[i];
txq->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
}
bdp = fec_enet_get_nextdesc(bdp, fep);
}
}
static void fec_enet_free_queue(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int i;
struct fec_enet_priv_tx_q *txq;
for (i = 0; i < fep->num_tx_queues; i++)
if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
txq = fep->tx_queue[i];
dma_free_coherent(NULL,
txq->tx_ring_size * TSO_HEADER_SIZE,
txq->tso_hdrs,
txq->tso_hdrs_dma);
}
for (i = 0; i < fep->num_rx_queues; i++)
if (fep->rx_queue[i])
kfree(fep->rx_queue[i]);
for (i = 0; i < fep->num_tx_queues; i++)
if (fep->tx_queue[i])
kfree(fep->tx_queue[i]);
}
static int fec_enet_alloc_queue(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
int i;
int ret = 0;
struct fec_enet_priv_tx_q *txq;
for (i = 0; i < fep->num_tx_queues; i++) {
txq = kzalloc(sizeof(*txq), GFP_KERNEL);
if (!txq) {
ret = -ENOMEM;
goto alloc_failed;
}
fep->tx_queue[i] = txq;
txq->tx_ring_size = TX_RING_SIZE;
fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
txq->tx_wake_threshold =
(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
txq->tso_hdrs = dma_alloc_coherent(NULL,
txq->tx_ring_size * TSO_HEADER_SIZE,
&txq->tso_hdrs_dma,
GFP_KERNEL);
if (!txq->tso_hdrs) {
ret = -ENOMEM;
goto alloc_failed;
}
}
for (i = 0; i < fep->num_rx_queues; i++) {
fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
GFP_KERNEL);
if (!fep->rx_queue[i]) {
ret = -ENOMEM;
goto alloc_failed;
}
bdp = fep->tx_bd_base;
for (i = 0; i < fep->tx_ring_size; i++) {
kfree(fep->tx_bounce[i]);
fep->tx_bounce[i] = NULL;
skb = fep->tx_skbuff[i];
fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb);
fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
}
return ret;
alloc_failed:
fec_enet_free_queue(ndev);
return ret;
}
static int fec_enet_alloc_buffers(struct net_device *ndev)
static int
fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
struct sk_buff *skb;
struct bufdesc *bdp;
struct fec_enet_priv_rx_q *rxq;
unsigned int off;
bdp = fep->rx_bd_base;
for (i = 0; i < fep->rx_ring_size; i++) {
rxq = fep->rx_queue[queue];
bdp = rxq->rx_bd_base;
for (i = 0; i < rxq->rx_ring_size; i++) {
dma_addr_t addr;
skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
if (!skb)
goto err_alloc;
off = ((unsigned long)skb->data) & fep->rx_align;
if (off)
skb_reserve(skb, fep->rx_align + 1 - off);
addr = dma_map_single(&fep->pdev->dev, skb->data,
FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE);
if (dma_mapping_error(&fep->pdev->dev, addr)) {
dev_kfree_skb(skb);
if (net_ratelimit())
......@@ -2152,7 +2418,7 @@ static int fec_enet_alloc_buffers(struct net_device *ndev)
goto err_alloc;
}
fep->rx_skbuff[i] = skb;
rxq->rx_skbuff[i] = skb;
bdp->cbd_bufaddr = addr;
bdp->cbd_sc = BD_ENET_RX_EMPTY;
......@@ -2161,17 +2427,32 @@ static int fec_enet_alloc_buffers(struct net_device *ndev)
ebdp->cbd_esc = BD_ENET_RX_INT;
}
bdp = fec_enet_get_nextdesc(bdp, fep);
bdp = fec_enet_get_nextdesc(bdp, fep, queue);
}
/* Set the last buffer to wrap. */
bdp = fec_enet_get_prevdesc(bdp, fep);
bdp = fec_enet_get_prevdesc(bdp, fep, queue);
bdp->cbd_sc |= BD_SC_WRAP;
return 0;
err_alloc:
fec_enet_free_buffers(ndev);
return -ENOMEM;
}
bdp = fep->tx_bd_base;
for (i = 0; i < fep->tx_ring_size; i++) {
fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
if (!fep->tx_bounce[i])
static int
fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
struct bufdesc *bdp;
struct fec_enet_priv_tx_q *txq;
txq = fep->tx_queue[queue];
bdp = txq->tx_bd_base;
for (i = 0; i < txq->tx_ring_size; i++) {
txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
if (!txq->tx_bounce[i])
goto err_alloc;
bdp->cbd_sc = 0;
......@@ -2182,11 +2463,11 @@ static int fec_enet_alloc_buffers(struct net_device *ndev)
ebdp->cbd_esc = BD_ENET_TX_INT;
}
bdp = fec_enet_get_nextdesc(bdp, fep);
bdp = fec_enet_get_nextdesc(bdp, fep, queue);
}
/* Set the last buffer to wrap. */
bdp = fec_enet_get_prevdesc(bdp, fep);
bdp = fec_enet_get_prevdesc(bdp, fep, queue);
bdp->cbd_sc |= BD_SC_WRAP;
return 0;
......@@ -2196,6 +2477,21 @@ static int fec_enet_alloc_buffers(struct net_device *ndev)
return -ENOMEM;
}
static int fec_enet_alloc_buffers(struct net_device *ndev)
{
struct fec_enet_private *fep = netdev_priv(ndev);
unsigned int i;
for (i = 0; i < fep->num_rx_queues; i++)
if (fec_enet_alloc_rxq_buffers(ndev, i))
return -ENOMEM;
for (i = 0; i < fep->num_tx_queues; i++)
if (fec_enet_alloc_txq_buffers(ndev, i))
return -ENOMEM;
return 0;
}
static int
fec_enet_open(struct net_device *ndev)
{
......@@ -2225,7 +2521,8 @@ fec_enet_open(struct net_device *ndev)
fec_restart(ndev);
napi_enable(&fep->napi);
phy_start(fep->phy_dev);
netif_start_queue(ndev);
netif_tx_start_all_queues(ndev);
return 0;
}
......@@ -2399,7 +2696,7 @@ static int fec_set_features(struct net_device *netdev,
/* Resume the device after updates */
if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
fec_restart(netdev);
netif_wake_queue(netdev);
netif_tx_wake_all_queues(netdev);
netif_tx_unlock_bh(netdev);
napi_enable(&fep->napi);
}
......@@ -2407,10 +2704,17 @@ static int fec_set_features(struct net_device *netdev,
return 0;
}
u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
void *accel_priv, select_queue_fallback_t fallback)
{
return skb_tx_hash(ndev, skb);
}
static const struct net_device_ops fec_netdev_ops = {
.ndo_open = fec_enet_open,
.ndo_stop = fec_enet_close,
.ndo_start_xmit = fec_enet_start_xmit,
.ndo_select_queue = fec_enet_select_queue,
.ndo_set_rx_mode = set_multicast_list,
.ndo_change_mtu = eth_change_mtu,
.ndo_validate_addr = eth_validate_addr,
......@@ -2432,39 +2736,38 @@ static int fec_enet_init(struct net_device *ndev)
struct fec_enet_private *fep = netdev_priv(ndev);
const struct platform_device_id *id_entry =
platform_get_device_id(fep->pdev);
struct fec_enet_priv_tx_q *txq;
struct fec_enet_priv_rx_q *rxq;
struct bufdesc *cbd_base;
dma_addr_t bd_dma;
int bd_size;
unsigned int i;
/* init the tx & rx ring size */
fep->tx_ring_size = TX_RING_SIZE;
fep->rx_ring_size = RX_RING_SIZE;
#if defined(CONFIG_ARM)
fep->rx_align = 0xf;
fep->tx_align = 0xf;
#else
fep->rx_align = 0x3;
fep->tx_align = 0x3;
#endif
fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
fec_enet_alloc_queue(ndev);
if (fep->bufdesc_ex)
fep->bufdesc_size = sizeof(struct bufdesc_ex);
else
fep->bufdesc_size = sizeof(struct bufdesc);
bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
fep->bufdesc_size;
/* Allocate memory for buffer descriptors. */
cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
GFP_KERNEL);
if (!cbd_base)
return -ENOMEM;
fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
&fep->tso_hdrs_dma, GFP_KERNEL);
if (!fep->tso_hdrs) {
dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
if (!cbd_base) {
return -ENOMEM;
}
memset(cbd_base, 0, PAGE_SIZE);
fep->netdev = ndev;
memset(cbd_base, 0, bd_size);
/* Get the Ethernet address */
fec_get_mac(ndev);
......@@ -2472,12 +2775,36 @@ static int fec_enet_init(struct net_device *ndev)
fec_set_mac_address(ndev, NULL);
/* Set receive and transmit descriptor base. */
fep->rx_bd_base = cbd_base;
if (fep->bufdesc_ex)
fep->tx_bd_base = (struct bufdesc *)
(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
else
fep->tx_bd_base = cbd_base + fep->rx_ring_size;
for (i = 0; i < fep->num_rx_queues; i++) {
rxq = fep->rx_queue[i];
rxq->index = i;
rxq->rx_bd_base = (struct bufdesc *)cbd_base;
rxq->bd_dma = bd_dma;
if (fep->bufdesc_ex) {
bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
cbd_base = (struct bufdesc *)
(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
} else {
bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
cbd_base += rxq->rx_ring_size;
}
}
for (i = 0; i < fep->num_tx_queues; i++) {
txq = fep->tx_queue[i];
txq->index = i;
txq->tx_bd_base = (struct bufdesc *)cbd_base;
txq->bd_dma = bd_dma;
if (fep->bufdesc_ex) {
bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
cbd_base = (struct bufdesc *)
(((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
} else {
bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
cbd_base += txq->tx_ring_size;
}
}
/* The FEC Ethernet specific entries in the device structure */
ndev->watchdog_timeo = TX_TIMEOUT;
......@@ -2500,6 +2827,11 @@ static int fec_enet_init(struct net_device *ndev)
fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
}
if (id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
fep->tx_align = 0;
fep->rx_align = 0x3f;
}
ndev->hw_features = ndev->features;
fec_restart(ndev);
......@@ -2545,6 +2877,42 @@ static void fec_reset_phy(struct platform_device *pdev)
}
#endif /* CONFIG_OF */
static void
fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
{
struct device_node *np = pdev->dev.of_node;
int err;
*num_tx = *num_rx = 1;
if (!np || !of_device_is_available(np))
return;
/* parse the num of tx and rx queues */
err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
err |= of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
if (err) {
*num_tx = 1;
*num_rx = 1;
return;
}
if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
dev_err(&pdev->dev, "Invalidate num_tx(=%d), fail back to 1\n",
*num_tx);
*num_tx = 1;
return;
}
if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
dev_err(&pdev->dev, "Invalidate num_rx(=%d), fail back to 1\n",
*num_rx);
*num_rx = 1;
return;
}
}
static int
fec_probe(struct platform_device *pdev)
{
......@@ -2556,13 +2924,18 @@ fec_probe(struct platform_device *pdev)
const struct of_device_id *of_id;
static int dev_id;
struct device_node *np = pdev->dev.of_node, *phy_node;
int num_tx_qs = 1;
int num_rx_qs = 1;
of_id = of_match_device(fec_dt_ids, &pdev->dev);
if (of_id)
pdev->id_entry = of_id->data;
fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
/* Init network device */
ndev = alloc_etherdev(sizeof(struct fec_enet_private));
ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
num_tx_qs, num_rx_qs);
if (!ndev)
return -ENOMEM;
......@@ -2571,6 +2944,9 @@ fec_probe(struct platform_device *pdev)
/* setup board info structure */
fep = netdev_priv(ndev);
fep->num_rx_queues = num_rx_qs;
fep->num_tx_queues = num_tx_qs;
#if !defined(CONFIG_M5272)
/* default enable pause frame auto negotiation */
if (pdev->id_entry &&
......@@ -2637,6 +3013,12 @@ fec_probe(struct platform_device *pdev)
fep->ptp_clk_on = false;
mutex_init(&fep->ptp_clk_mutex);
/* clk_ref is optional, depends on board */
fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
if (IS_ERR(fep->clk_ref))
fep->clk_ref = NULL;
fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
fep->bufdesc_ex =
pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
......@@ -2684,6 +3066,7 @@ fec_probe(struct platform_device *pdev)
goto failed_irq;
}
init_completion(&fep->mdio_done);
ret = fec_enet_mii_init(pdev);
if (ret)
goto failed_mii_init;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment